
PyMuPDF Documentation
Release 1.21.1

Artifex

Jan 09, 2023

CONTENTS

1 Introduction 1
1.1 Note on the Name fitz . 2
1.2 License and Copyright . 2
1.3 Covered Version . 2

2 Installation 3
2.1 Installation when a suitable wheel is not available . 3
2.2 Notes . 4
2.3 Install from source without using an sdist . 4
2.4 Running tests . 5
2.5 Enabling Integrated OCR Support . 5

3 Tutorial 7
3.1 Importing the Bindings . 7
3.2 Opening a Document . 7
3.3 Some Document Methods and Attributes . 8
3.4 Accessing Meta Data . 8
3.5 Working with Outlines . 9
3.6 Working with Pages . 9

3.6.1 Inspecting the Links, Annotations or Form Fields of a Page 10
3.6.2 Rendering a Page . 10
3.6.3 Saving the Page Image in a File . 11
3.6.4 Displaying the Image in GUIs . 11

3.6.4.1 wxPython . 11
3.6.4.2 Tkinter . 11
3.6.4.3 PyQt4, PyQt5, PySide . 11

3.6.5 Extracting Text and Images . 12
3.6.6 Searching for Text . 12

3.7 Working with Stories . 13
3.8 PDF Maintenance . 14

3.8.1 Modifying, Creating, Re-arranging and Deleting Pages . 14
3.8.2 Joining and Splitting PDF Documents . 15
3.8.3 Embedding Data . 15
3.8.4 Saving . 15

3.9 Closing . 16
3.10 Further Reading . 16

4 Recipes 17
4.1 Recipes: Images . 17

4.1.1 How to Make Images from Document Pages . 17

i

4.1.2 How to Increase Image Resolution . 17
4.1.3 How to Create Partial Pixmaps (Clips) . 18
4.1.4 How to Zoom a Clip to a GUI Window . 19
4.1.5 How to Create or Suppress Annotation Images . 19
4.1.6 How to Extract Images: Non-PDF Documents . 20
4.1.7 How to Extract Images: PDF Documents . 20
4.1.8 How to Handle Image Masks . 22
4.1.9 How to Make one PDF of all your Pictures (or Files) . 22
4.1.10 How to Create Vector Images . 25
4.1.11 How to Convert Images . 26
4.1.12 How to Use Pixmaps: Glueing Images . 27
4.1.13 How to Use Pixmaps: Making a Fractal . 28
4.1.14 How to Interface with NumPy . 30
4.1.15 How to Add Images to a PDF Page . 30

4.2 Recipes: Text . 31
4.2.1 How to Extract all Document Text . 31
4.2.2 How to Extract Text from within a Rectangle . 32
4.2.3 How to Extract Text in Natural Reading Order . 32
4.2.4 How to Extract Tables from Documents . 33
4.2.5 How to Mark Extracted Text . 33
4.2.6 How to Mark Searched Text . 34
4.2.7 How to Mark Non-horizontal Text . 35
4.2.8 How to Analyze Font Characteristics . 36
4.2.9 How to Insert Text . 37

4.2.9.1 How to Write Text Lines . 38
4.2.9.2 How to Fill a Text Box . 40
4.2.9.3 How to Use Non-Standard Encoding . 41

4.3 Recipes: Annotations . 42
4.3.1 How to Add and Modify Annotations . 42
4.3.2 How to Use FreeText . 47
4.3.3 Using Buttons and JavaScript . 48
4.3.4 How to Use Ink Annotations . 50

4.4 Recipes: Drawing and Graphics . 51
4.4.1 Extracting Drawings . 53

4.5 Recipes: Multiprocessing . 56
4.6 Recipes: General . 61

4.6.1 How to Open with a Wrong File Extension . 61
4.6.2 How to Embed or Attach Files . 62
4.6.3 How to Delete and Re-Arrange Pages . 62
4.6.4 How to Join PDFs . 63
4.6.5 How to Add Pages . 64
4.6.6 How To Dynamically Clean Up Corrupt PDFs . 65
4.6.7 How to Split Single Pages . 66
4.6.8 How to Combine Single Pages . 67
4.6.9 How to Convert Any Document to PDF . 69
4.6.10 How to Deal with Messages Issued by MuPDF . 70
4.6.11 How to Deal with PDF Encryption . 71

4.7 Recipes: Common Issues and their Solutions . 73
4.7.1 Changing Annotations: Unexpected Behaviour . 73

4.7.1.1 Problem . 73
4.7.1.2 Cause . 73
4.7.1.3 Solutions . 73

4.7.2 Misplaced Item Insertions on PDF Pages . 74
4.7.2.1 Problem . 74

ii

4.7.2.2 Cause . 74
4.7.2.3 Solutions . 75

4.7.3 Missing or Unreadable Extracted Text . 75
4.7.3.1 Problem: no text is extracted . 76
4.7.3.2 Cause . 76
4.7.3.3 Solution . 76
4.7.3.4 Problem: unreadable text . 76
4.7.3.5 Cause . 76
4.7.3.6 Solution . 76

4.8 Recipes: Low-Level Interfaces . 76
4.8.1 How to Iterate through the xref Table . 77
4.8.2 How to Handle Object Streams . 78
4.8.3 How to Handle Page Contents . 78
4.8.4 How to Access the PDF Catalog . 79
4.8.5 How to Access the PDF File Trailer . 79
4.8.6 How to Access XML Metadata . 80
4.8.7 How to Extend PDF Metadata . 81
4.8.8 How to Read and Update PDF Objects . 82

4.9 Recipes: Journalling . 85
4.9.1 Example Session 1 . 86
4.9.2 Example Session 2 . 88

4.10 Recipes: Stories . 89
4.10.1 How to add a line of text with some formatting . 89
4.10.2 How to use images . 91
4.10.3 Reading external HTML and CSS for a Story . 92
4.10.4 How to output database content with Story templates . 92
4.10.5 How to integrate with existing PDFs . 95
4.10.6 How to make multi-columned layouts and access fonts from package pymupdf-fonts 97
4.10.7 How make a layout which wraps around a predefined “no go area” layout 99
4.10.8 How to output a table . 103
4.10.9 How to create a simple grid layout . 105
4.10.10 How to generate a Table of Contents . 106
4.10.11 How to display a list from JSON data . 111
4.10.12 Using the alternative Story.write*() functions . 115

4.10.12.1 How to do basic layout with Story.write() . 115
4.10.12.2 How to do iterative layout for a table of contents with Story.write_stabilized() 117
4.10.12.3 How to do iterative layout and create PDF links with Story.

write_stabilized_links() . 119

5 Module fitz 123
5.1 Invocation . 123
5.2 Cleaning and Copying . 124
5.3 Extracting Fonts and Images . 125
5.4 Joining PDF Documents . 125
5.5 Low Level Information . 126
5.6 Embedded Files Commands . 127

5.6.1 Information . 128
5.6.2 Extraction . 129
5.6.3 Deletion . 129
5.6.4 Insertion . 130
5.6.5 Updates . 130
5.6.6 Copying . 131

5.7 Text Extraction . 131

iii

6 Classes 135
6.1 Annot . 135

6.1.1 Annotation Icons in MuPDF . 146
6.1.2 Example . 147

6.2 Archive . 148
6.3 Colorspace . 150
6.4 DisplayList . 151
6.5 Document . 152

6.5.1 set_metadata() Example . 198
6.5.2 set_toc() Demonstration . 198
6.5.3 insert_pdf() Examples . 199
6.5.4 Other Examples . 199

6.6 DocumentWriter . 200
6.7 Font . 201
6.8 Identity . 208
6.9 IRect . 209
6.10 Link . 213
6.11 linkDest . 215
6.12 Matrix . 217

6.12.1 Examples . 221
6.12.2 Shifting . 221
6.12.3 Flipping . 222
6.12.4 Shearing . 223
6.12.5 Rotating . 224

6.13 Outline . 225
6.14 Page . 226

6.14.1 Modifying Pages . 226
6.14.2 Description of get_links() Entries . 262
6.14.3 Notes on Supporting Links . 263

6.14.3.1 Reading (pertains to method get_links() and the first_link property chain) 263
6.14.3.2 Writing . 263

6.14.4 Homologous Methods of Document and Page . 264
6.15 Pixmap . 264

6.15.1 Supported Input Image Formats . 277
6.15.2 Supported Output Image Formats . 278

6.16 Point . 278
6.17 Quad . 281

6.17.1 Remark . 284
6.17.2 Algebra and Containment Checks . 284

6.18 Rect . 284
6.19 Shape . 291

6.19.1 Usage . 304
6.19.2 Examples . 304
6.19.3 Common Parameters . 306

6.20 Story . 309
6.20.1 Element Positioning CallBack function . 313

6.20.1.1 Attributes of the ElementPosition class . 313
6.21 TextPage . 314

6.21.1 Structure of Dictionary Outputs . 317
6.21.1.1 Page Dictionary . 318
6.21.1.2 Block Dictionaries . 319
6.21.1.3 Line Dictionary . 320
6.21.1.4 Span Dictionary . 321
6.21.1.5 Character Dictionary for extractRAWDICT() . 322

iv

6.22 TextWriter . 323
6.23 Tools . 328

6.23.1 Example Session . 333
6.24 Widget . 334

6.24.1 Standard Fonts for Widgets . 337
6.24.2 Supported Widget Types . 337

6.25 Xml . 338
6.25.1 Setting Text properties . 344
6.25.2 Context Manager support . 345

7 Operator Algebra for Geometry Objects 347
7.1 General Remarks . 347
7.2 Unary Operations . 347
7.3 Binary Operations . 348
7.4 Some Examples . 349

7.4.1 Manipulation with numbers . 349
7.4.2 Manipulation with “like” Objects . 349

8 Low Level Functions and Classes 353
8.1 Functions . 353
8.2 Device . 372
8.3 Working together: DisplayList and TextPage . 373

8.3.1 Create a DisplayList . 373
8.3.2 Generate Pixmap . 373
8.3.3 Perform Text Search . 373
8.3.4 Extract Text . 374
8.3.5 Further Performance improvements . 374

8.3.5.1 Pixmap . 374
8.3.5.2 TextPage . 374

9 Glossary 375

10 Constants and Enumerations 379
10.1 Constants . 379
10.2 Document Permissions . 380
10.3 PDF encryption method codes . 380
10.4 Font File Extensions . 381
10.5 Text Alignment . 381
10.6 Text Extraction Flags . 381
10.7 Link Destination Kinds . 382
10.8 Link Destination Flags . 383
10.9 Annotation Related Constants . 384

10.9.1 Annotation Types . 384
10.9.2 Annotation Flag Bits . 385
10.9.3 Annotation Line Ending Styles . 385

10.10 Widget Constants . 385
10.10.1 Widget Types (field_type) . 385
10.10.2 Text Widget Subtypes (text_format) . 386
10.10.3 Widget flags (field_flags) . 386

10.11 PDF Standard Blend Modes . 386
10.12 Stamp Annotation Icons . 387

11 Color Database 389
11.1 Function getColor() . 389
11.2 Printing the Color Database . 390

v

12 Appendix 1: Details on Text Extraction 391
12.1 General structure of a TextPage . 391
12.2 Plain Text . 391
12.3 BLOCKS . 392
12.4 WORDS . 392
12.5 HTML . 393
12.6 Controlling Quality of HTML Output . 393
12.7 DICT (or JSON) . 394
12.8 RAWDICT (or RAWJSON) . 395
12.9 XML . 395
12.10 XHTML . 396
12.11 Text Extraction Flags Defaults . 396
12.12 Performance . 397

13 Appendix 2: Considerations on Embedded Files 399
13.1 General . 399
13.2 MuPDF Support . 399
13.3 PyMuPDF Support . 400

14 Appendix 3: Assorted Technical Information 401
14.1 Image Transformation Matrix . 401
14.2 PDF Base 14 Fonts . 402
14.3 Adobe PDF References . 403
14.4 Using Python Sequences as Arguments in PyMuPDF . 403
14.5 Ensuring Consistency of Important Objects in PyMuPDF . 404
14.6 Design of Method Page.show_pdf_page() . 406

14.6.1 Purpose and Capabilities . 406
14.6.2 Technical Implementation . 406

14.7 Redirecting Error and Warning Messages . 407

15 Change Log 409

16 Deprecated Names 445

Index 453

vi

CHAPTER

ONE

INTRODUCTION

PyMuPDF is a Python binding for MuPDF – a lightweight PDF, XPS, and E-book viewer, renderer, and toolkit, which
is maintained and developed by Artifex Software, Inc

MuPDF can access files in PDF, XPS, OpenXPS, CBZ, EPUB, MOBI and FB2 (e-books) formats, and it is known for
its top performance and high rendering quality.

MuPDF stands out among all similar products for its top rendering capability and unsurpassed processing speed. At
the same time, its “light weight” makes it an excellent choice for platforms where resources are typically limited, like
smartphones.

Check this out yourself and compare the various free PDF-viewers. In terms of speed and rendering quality SumatraPDF
ranges at the top (apart from MuPDF’s own standalone viewer) – since it has changed its library basis to MuPDF!

With PyMuPDF you can access files with extensions like “.pdf”, “.xps”, “.oxps”, “.cbz”, “.fb2”, “.mobi” or “.epub”.
In addition, about 10 popular image formats can also be opened and handled like documents.

PyMuPDF provides access to many important functions of MuPDF from within a Python environment, and we are
continuously seeking to expand this function set.

PyMuPDF runs and has been tested on Mac, Linux and Windows for Python versions 3.71 and up. Other platforms
should work too, as long as MuPDF and Python support them.

PyMuPDF is hosted on GitHub and registered on PyPI.

For MS Windows, Mac OSX and Linux Python wheels are available – please see the installation chapter.

The GitHub repository PyMuPDF-Utilities contains a full range of examples, demonstrations and use cases.
1 PyMuPDF generally only supports Python versions that are still maintained by the Python Software Foundation. Once a Python version is being

retired, PyMuPDF support will also be ended. This means that wheels for a retired Python platform will no longer be provided, and that Python
language features may be used that did not exist in the retired Python version.

1

https://www.mupdf.com/
http://www.sumatrapdfreader.org/
https://github.com/pymupdf/PyMuPDF
https://pypi.org/project/PyMuPDF/
https://github.com/pymupdf/PyMuPDF-Utilities

PyMuPDF Documentation, Release 1.21.1

1.1 Note on the Name fitz

The top level Python import name for this library is “fitz”. This has historical reasons:

The original rendering library for MuPDF was called Libart.

“After Artifex Software acquired the MuPDF project, the development focus shifted on writing a new modern graphics
library called “Fitz”. Fitz was originally intended as an R&D project to replace the aging Ghostscript graphics library,
but has instead become the rendering engine powering MuPDF.” (Quoted from Wikipedia).

So PyMuPDF cannot coexist with packages named “fitz” in the same Python environment.

1.2 License and Copyright

In order to comply with MuPDF’s dual licensing model, PyMuPDF has entered into an agreement with Artifex who
has the right to sublicense PyMuPDF to third parties.

PyMuPDF and MuPDF are now available under both, open-source AGPL and commercial license agreements. Please
read the full text of the AGPL license agreement, available in the distribution material (file COPYING) and here, to
ensure that your use case complies with the guidelines of the license. If you determine you cannot meet the requirements
of the AGPL, please contact Artifex for more information regarding a commercial license.

Artifex is the exclusive commercial licensing agent for MuPDF.

Artifex, the Artifex logo, MuPDF, and the MuPDF logo are registered trademarks of Artifex Software Inc. © 2022
Artifex Software, Inc. All rights reserved.

1.3 Covered Version

This documentation covers PyMuPDF v1.21.1 features as of 2022-12-13 00:00:01.

Note: The major and minor versions of PyMuPDF and MuPDF will always be the same. Only the third qualifier
(patch level) may deviate from that of MuPDF.

2 Chapter 1. Introduction

https://en.wikipedia.org/wiki/MuPDF
https://www.gnu.org/licenses/agpl-3.0.html
https://artifex.com/contact/
https://discord.gg/TSpYGBW4eq

CHAPTER

TWO

INSTALLATION

PyMuPDF should be installed using pip with:

python -m pip install --upgrade pip
python -m pip install --upgrade pymupdf

This will install from a Python wheel if one is available for your platform.

2.1 Installation when a suitable wheel is not available

If a suitable Python wheel is not available, pip will automatically build from source using a Python sdist.

This requires C/C++ development tools and SWIG to be installed:

• On Unix-style systems such as Linux, OpenBSD and FreeBSD, use the system package manager to install SWIG.

– For example on Debian Linux, do: sudo apt install swig

• On Windows:

– Install Visual Studio 2019. If not installed in a standard location, set environmental variable
PYMUPDF_SETUP_DEVENV to the location of the devenv.com binary.

– Install SWIG by following the instructions at: https://swig.org/Doc4.0/Windows.html#Windows_
installation

• On MacOS, install MacPorts using the instructions at: https://www.macports.org/install.php

– Then install SWIG with: sudo port install swig

– You may also need: sudo port install swig-python

As of PyMuPDF-1.20.0, the required MuPDF source code is already in the sdist and is automatically built into
PyMuPDF.

3

https://swig.org/Doc4.0/Windows.html#Windows_installation
https://swig.org/Doc4.0/Windows.html#Windows_installation
https://www.macports.org/install.php

PyMuPDF Documentation, Release 1.21.1

2.2 Notes

Wheels are available for Windows (32-bit Intel, 64-bit Intel), Linux (64-bit Intel, 64-bit ARM) and Mac OSX (64-bit
Intel, 64-bit ARM), Python versions 3.7 and up.

Wheels are not available for Python installed with Chocolatey on Windows. Instead install Python using the Windows
installer from the python.org website, see: http://www.python.org/downloads

PyMuPDF does not support Python versions prior to 3.7. Older wheels can be found in this repository and on PyPI.
Please note that we generally follow the official Python release schedules. For Python versions dropping out of official
support this means, that generation of wheels will also be ceased for them.

There are no mandatory external dependencies. However, some optional feature are available only if additional com-
ponents are installed:

• Pillow is required for Pixmap.pil_save() and Pixmap.pil_tobytes().

• fontTools is required for Document.subset_fonts().

• pymupdf-fonts is a collection of nice fonts to be used for text output methods.

• Tesseract-OCR for optical character recognition in images and document pages. Tesseract is separate software,
not a Python package. To enable OCR functions in PyMuPDF, the software must be installed and the system envi-
ronment variable "TESSDATA_PREFIX" must be defined and contain the tessdata folder name of the Tesseract
installation location. See below.

Note: You can install these additional components at any time – before or after installing PyMuPDF. PyMuPDF will
detect their presence during import or when the respective functions are being used.

2.3 Install from source without using an sdist

• First get a PyMuPDF source tree:

– Clone the git repository at https://github.com/pymupdf/PyMuPDF, for example:

git clone https://github.com/pymupdf/PyMuPDF.git

– Or download and extract a .zip or .tar.gz source release from https://github.com/pymupdf/PyMuPDF/
releases.

• Install C/C++ development tools and SWIG as described above.

• Build and install PyMuPDF:

cd PyMuPDF && python setup.py install

This will automatically download a specific hard-coded MuPDF source release, and build it into PyMuPDF.

One can build with a non-default MuPDF (for example one installed on the system, or a local checkout) by setting
environmental variables. See the comments at the start of PyMuPDF/setup.py for more information.

Note: When running Python scripts that use PyMuPDF, make sure that the current directory is not the PyMuPDF/
directory.

4 Chapter 2. Installation

https://chocolatey.org/
http://www.python.org/downloads
https://github.com/pymupdf/PyMuPDF-Optional-Material/tree/master/wheels-upto-Py3.5
https://pypi.org/project/PyMuPDF/
https://pypi.org/project/Pillow/
https://pypi.org/project/fonttools/
https://pypi.org/project/pymupdf-fonts/
https://github.com/tesseract-ocr/tesseract
https://github.com/pymupdf/PyMuPDF
https://github.com/pymupdf/PyMuPDF/releases
https://github.com/pymupdf/PyMuPDF/releases

PyMuPDF Documentation, Release 1.21.1

Otherwise, confusingly, Python will attempt to import fitz from the local fitz/ directory, which will fail because it
only contains source files.

2.4 Running tests

PyMuPDF has a set of pytest scripts within the tests/ directory.

Run tests with:

pip install pytest fontTools
pytest PyMuPDF/tests

If PyMuPDF has been built with a non-default build of MuPDF (using environmental variable
PYMUPDF_SETUP_MUPDF_BUILD), it is possible that tests/test_textbox.py:test_textbox3() will fail,
because it relies on MuPDF having been built with PyMuPDF’s customized configuration, fitz/_config.h.

One can skip this particular test by adding -k 'not test_textbox3' to the pytest command line.

2.5 Enabling Integrated OCR Support

If you do not intend to use this feature, skip this step. Otherwise, it is required for both installation paths: from wheels
and from sources.
PyMuPDF will already contain all the logic to support OCR functions. But it additionally does need Tesseract’s lan-
guage support data, so installation of Tesseract-OCR is still required.

The language support folder location must currently1 be communicated via storing it in the environment variable
"TESSDATA_PREFIX".

So for a working OCR functionality, make sure to complete this checklist:

1. Install Tesseract.

2. Locate Tesseract’s language support folder. Typically you will find it here:
• Windows: C:\Program Files\Tesseract-OCR\tessdata

• Unix systems: /usr/share/tesseract-ocr/4.00/tessdata

3. Set the environment variable TESSDATA_PREFIX
• Windows: set TESSDATA_PREFIX=C:\Program Files\Tesseract-OCR\tessdata

• Unix systems: export TESSDATA_PREFIX=/usr/share/tesseract-ocr/4.00/tessdata

Note: This must happen outside Python – before starting your script. Just manipulating os.environ will not work!

1 In the next MuPDF version, it will be possible to pass this value as a parameter – directly in the OCR invocations.

2.4. Running tests 5

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6 Chapter 2. Installation

CHAPTER

THREE

TUTORIAL

This tutorial will show you the use of PyMuPDF, MuPDF in Python, step by step.

Because MuPDF supports not only PDF, but also XPS, OpenXPS, CBZ, CBR, FB2 and EPUB formats, so does
PyMuPDF1. Nevertheless, for the sake of brevity we will only talk about PDF files. At places where indeed only
PDF files are supported, this will be mentioned explicitely.

3.1 Importing the Bindings

The Python bindings to MuPDF are made available by this import statement. We also show here how your version can
be checked:

>>> import fitz
>>> print(fitz.__doc__)
PyMuPDF 1.16.0: Python bindings for the MuPDF 1.16.0 library.
Version date: 2019-07-28 07:30:14.
Built for Python 3.7 on win32 (64-bit).

3.2 Opening a Document

To access a supported document, it must be opened with the following statement:

doc = fitz.open(filename) # or fitz.Document(filename)

This creates the Document object doc. filename must be a Python string (or a pathlib.Path) specifying the name of
an existing file.

It is also possible to open a document from memory data, or to create a new, empty PDF. See Document for details.
You can also use Document as a context manager.

A document contains many attributes and functions. Among them are meta information (like “author” or “subject”),
number of total pages, outline and encryption information.

1 PyMuPDF lets you also open several image file types just like normal documents. See section Supported Input Image Formats in chapter
Pixmap for more comments.

7

PyMuPDF Documentation, Release 1.21.1

3.3 Some Document Methods and Attributes

Method / Attribute Description
Document.page_count the number of pages (int)
Document.metadata the metadata (dict)
Document.get_toc() get the table of contents (list)
Document.load_page() read a Page

3.4 Accessing Meta Data

PyMuPDF fully supports standard metadata. Document.metadata is a Python dictionary with the following keys. It
is available for all document types, though not all entries may always contain data. For details of their meanings and
formats consult the respective manuals, e.g. Adobe PDF References for PDF. Further information can also be found in
chapter Document. The meta data fields are strings or None if not otherwise indicated. Also be aware that not all of
them always contain meaningful data – even if they are not None.

Key Value
producer producer (producing software)
format format: ‘PDF-1.4’, ‘EPUB’, etc.
encryption encryption method used if any
author author
modDate date of last modification
keywords keywords
title title
creationDate date of creation
creator creating application
subject subject

Note: Apart from these standard metadata, PDF documents starting from PDF version 1.4 may also contain so-called
“metadata streams” (see also stream). Information in such streams is coded in XML. PyMuPDF deliberately contains
no XML components for this purpose (the PyMuPDF Xml class is a helper class intended to access the DOM content
of a Story object), so we do not directly support access to information contained therein. But you can extract the stream
as a whole, inspect or modify it using a package like lxml and then store the result back into the PDF. If you want, you
can also delete this data altogether.

Note: There are two utility scripts in the repository that metadata import (PDF only) resp. metadata export metadata
from resp. to CSV files.

8 Chapter 3. Tutorial

https://pypi.org/project/lxml/
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/csv2meta.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/meta2csv.py

PyMuPDF Documentation, Release 1.21.1

3.5 Working with Outlines

The easiest way to get all outlines (also called “bookmarks”) of a document, is by loading its table of contents:

toc = doc.get_toc()

This will return a Python list of lists [[lvl, title, page, . . .], . . .] which looks much like a conventional table of contents
found in books.

lvl is the hierarchy level of the entry (starting from 1), title is the entry’s title, and page the page number (1-based!).
Other parameters describe details of the bookmark target.

Note: There are two utility scripts in the repository that toc import (PDF only) resp. toc export table of contents from
resp. to CSV files.

3.6 Working with Pages

Page handling is at the core of MuPDF’s functionality.

• You can render a page into a raster or vector (SVG) image, optionally zooming, rotating, shifting or shearing it.

• You can extract a page’s text and images in many formats and search for text strings.

• For PDF documents many more methods are available to add text or images to pages.

First, a Page must be created. This is a method of Document:

page = doc.load_page(pno) # loads page number 'pno' of the document (0-based)
page = doc[pno] # the short form

Any integer -∞ < pno < page_count is possible here. Negative numbers count backwards from the end, so doc[-1]
is the last page, like with Python sequences.

Some more advanced way would be using the document as an iterator over its pages:

for page in doc:
do something with 'page'

... or read backwards
for page in reversed(doc):

do something with 'page'

... or even use 'slicing'
for page in doc.pages(start, stop, step):

do something with 'page'

Once you have your page, here is what you would typically do with it:

3.5. Working with Outlines 9

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/csv2toc.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/toc2csv.py

PyMuPDF Documentation, Release 1.21.1

3.6.1 Inspecting the Links, Annotations or Form Fields of a Page

Links are shown as “hot areas” when a document is displayed with some viewer software. If you click while your cursor
shows a hand symbol, you will usually be taken to the taget that is encoded in that hot area. Here is how to get all links:

get all links on a page
links = page.get_links()

links is a Python list of dictionaries. For details see Page.get_links().

You can also use an iterator which emits one link at a time:

for link in page.links():
do something with 'link'

If dealing with a PDF document page, there may also exist annotations (Annot) or form fields (Widget), each of which
have their own iterators:

for annot in page.annots():
do something with 'annot'

for field in page.widgets():
do something with 'field'

3.6.2 Rendering a Page

This example creates a raster image of a page’s content:

pix = page.get_pixmap()

pix is a Pixmap object which (in this case) contains an RGB image of the page, ready to be used for many pur-
poses. Method Page.get_pixmap() offers lots of variations for controlling the image: resolution / DPI, colorspace
(e.g. to produce a grayscale image or an image with a subtractive color scheme), transparency, rotation, mirroring,
shifting, shearing, etc. For example: to create an RGBA image (i.e. containing an alpha channel), specify pix =
page.get_pixmap(alpha=True).

A Pixmap contains a number of methods and attributes which are referenced below. Among them are the integers
width, height (each in pixels) and stride (number of bytes of one horizontal image line). Attribute samples represents
a rectangular area of bytes representing the image data (a Python bytes object).

Note: You can also create a vector image of a page by using Page.get_svg_image(). Refer to this Vector Image
Support page for details.

10 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF/wiki/Vector-Image-Support
https://github.com/pymupdf/PyMuPDF/wiki/Vector-Image-Support

PyMuPDF Documentation, Release 1.21.1

3.6.3 Saving the Page Image in a File

We can simply store the image in a PNG file:

pix.save("page-%i.png" % page.number)

3.6.4 Displaying the Image in GUIs

We can also use it in GUI dialog managers. Pixmap.samples represents an area of bytes of all the pixels as a Python
bytes object. Here are some examples, find more in the examples directory.

3.6.4.1 wxPython

Consult their documentation for adjustments to RGB(A) pixmaps and, potentially, specifics for your wxPython release:

if pix.alpha:
bitmap = wx.Bitmap.FromBufferRGBA(pix.width, pix.height, pix.samples)

else:
bitmap = wx.Bitmap.FromBuffer(pix.width, pix.height, pix.samples)

3.6.4.2 Tkinter

Please also see section 3.19 of the Pillow documentation:

from PIL import Image, ImageTk

set the mode depending on alpha
mode = "RGBA" if pix.alpha else "RGB"
img = Image.frombytes(mode, [pix.width, pix.height], pix.samples)
tkimg = ImageTk.PhotoImage(img)

The following avoids using Pillow:

remove alpha if present
pix1 = fitz.Pixmap(pix, 0) if pix.alpha else pix # PPM does not support transparency
imgdata = pix1.tobytes("ppm") # extremely fast!
tkimg = tkinter.PhotoImage(data = imgdata)

If you are looking for a complete Tkinter script paging through any supported document, here it is!. It can also zoom
into pages, and it runs under Python 2 or 3. It requires the extremely handy PySimpleGUI pure Python package.

3.6.4.3 PyQt4, PyQt5, PySide

Please also see section 3.16 of the Pillow documentation:

from PIL import Image, ImageQt

set the mode depending on alpha
mode = "RGBA" if pix.alpha else "RGB"
img = Image.frombytes(mode, [pix.width, pix.height], pix.samples)
qtimg = ImageQt.ImageQt(img)

3.6. Working with Pages 11

https://github.com/pymupdf/PyMuPDF/tree/master/examples
https://Pillow.readthedocs.io
https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/doc-browser.py
https://pypi.org/project/PySimpleGUI/
https://Pillow.readthedocs.io

PyMuPDF Documentation, Release 1.21.1

Again, you also can get along without using Pillow. Qt’s QImage luckily supports native Python pointers, so the
following is the recommended way to create Qt images:

from PyQt5.QtGui import QImage

set the correct QImage format depending on alpha
fmt = QImage.Format_RGBA8888 if pix.alpha else QImage.Format_RGB888
qtimg = QImage(pix.samples_ptr, pix.width, pix.height, fmt)

3.6.5 Extracting Text and Images

We can also extract all text, images and other information of a page in many different forms, and levels of detail:

text = page.get_text(opt)

Use one of the following strings for opt to obtain different formats2:

• “text”: (default) plain text with line breaks. No formatting, no text position details, no images.

• “blocks”: generate a list of text blocks (= paragraphs).

• “words”: generate a list of words (strings not containing spaces).

• “html”: creates a full visual version of the page including any images. This can be displayed with your internet
browser.

• “dict” / “json”: same information level as HTML, but provided as a Python dictionary or resp. JSON string.
See TextPage.extractDICT() for details of its structure.

• “rawdict” / “rawjson”: a super-set of “dict” / “json”. It additionally provides character detail information like
XML. See TextPage.extractRAWDICT() for details of its structure.

• “xhtml”: text information level as the TEXT version but includes images. Can also be displayed by internet
browsers.

• “xml”: contains no images, but full position and font information down to each single text character. Use an
XML module to interpret.

To give you an idea about the output of these alternatives, we did text example extracts. See Appendix 2: Considerations
on Embedded Files.

3.6.6 Searching for Text

You can find out, exactly where on a page a certain text string appears:

areas = page.search_for("mupdf")

This delivers a list of rectangles (see Rect), each of which surrounds one occurrence of the string “mupdf” (case
insensitive). You could use this information to e.g. highlight those areas (PDF only) or create a cross reference of the
document.

Please also do have a look at chapter Working together: DisplayList and TextPage and at demo programs demo.py and
demo-lowlevel.py. Among other things they contain details on how the TextPage, Device and DisplayList classes can
be used for a more direct control, e.g. when performance considerations suggest it.

2 Page.get_text() is a convenience wrapper for several methods of another PyMuPDF class, TextPage. The names of these methods correspond
to the argument string passed to Page.get_text() : Page.get_text(“dict”) is equivalent to TextPage.extractDICT() .

12 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/demo.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/demo-lowlevel.py

PyMuPDF Documentation, Release 1.21.1

3.7 Working with Stories

The Story class is a new feature of PyMuPDF version 1.21.0. It represents support for MuPDF’s “story” interface.

The following is a quote from the book “MuPDF Explored” by Robin Watts from Artifex:

Stories provide a way to easily layout styled content for use with devices, such as those offered by Document Writers
(. . .). The concept of a story comes from desktop publishing, which in turn (. . .) gets it from newspapers. If you consider
a traditional newspaper layout, it will consist of various news articles (stories) that are laid out into multiple columns,
possibly across multiple pages.

Accordingly, MuPDF uses a story to represent a flow of text with styling information. The user of the story can then
supply a sequence of rectangles into which the story will be laid out, and the positioned text can then be drawn to an
output device. This keeps the concept of the text itself (the story) to be separated from the areas into which the text
should be flowed (the layout).

Note: A Story works somewhat similar to an internet browser: It faithfully parses and renders HTML hypertext and
also optional stylesheets (CSS). But its output is a PDF – not web pages.

When creating a Story, the input from up to three different information sources is taken into account. All these items
are optional.

1. HTML source code, provided as a Python string, from which a so-called Document Object Model (DOM)
is created. As usual, this string may be read from a file, be stored in a Python variable of the script, or be
programmatically created by the script itself via an API (Xml).

2. CSS (Cascaded Style Sheet) source code, provided as a Python string. CSS can be used to provide styling
information (text font size, color, etc.) like it would happen for web pages. Obviously, this string may also be
read from a file.

3. An Archive must be used whenever the DOM references images, or uses text fonts except the standard PDF Base
14 Fonts, CJK fonts and the NOTO fonts generated into the PyMuPDF binary.

The API allows creating DOMs completely from scratch, including desired styling information. It can also be used to
modify or extend provided HTML: text can be deleted or replaced, or its styling can be changed. Text – for example
extracted from databases – can also be added and fill template-like HTML documents.

After the story DOM is considered complete, it can be used to create a PDF document. This happens via the new
DocumentWriter class. During the output page creation, the programmer will provide a number of rectangles where
the story should place its content.

The story in turn will return completion codes indicating whether or not more content is waiting to be written. Which
part of the content will land in which rectangle or on which page is automatically determined by the story itself – it
cannot be influenced other than by providing the rectangles.

Please see the Stories recipes for a number of typical use cases.

3.7. Working with Stories 13

https://mupdf.com/docs/mupdf-explored.html
https://www.artifex.com

PyMuPDF Documentation, Release 1.21.1

3.8 PDF Maintenance

PDFs are the only document type that can be modified using PyMuPDF. Other file types are read-only.

However, you can convert any document (including images) to a PDF and then apply all PyMuPDF features to the con-
version result. Find out more here Document.convert_to_pdf(), and also look at the demo script pdf-converter.py
which can convert any supported document to PDF.

Document.save() always stores a PDF in its current (potentially modified) state on disk.

You normally can choose whether to save to a new file, or just append your modifications to the existing one (“incre-
mental save”), which often is very much faster.

The following describes ways how you can manipulate PDF documents. This description is by no means complete:
much more can be found in the following chapters.

3.8.1 Modifying, Creating, Re-arranging and Deleting Pages

There are several ways to manipulate the so-called page tree (a structure describing all the pages) of a PDF:

Document.delete_page() and Document.delete_pages() delete pages.

Document.copy_page(), Document.fullcopy_page() and Document.move_page() copy or move a page to
other locations within the same document.

Document.select() shrinks a PDF down to selected pages. Parameter is a sequence3 of the page numbers that you
want to keep. These integers must all be in range 0 <= i < page_count. When executed, all pages missing in this list
will be deleted. Remaining pages will occur in the sequence and as many times (!) as you specify them.

So you can easily create new PDFs with

• the first or last 10 pages,

• only the odd or only the even pages (for doing double-sided printing),

• pages that do or don’t contain a given text,

• reverse the page sequence, . . .

. . . whatever you can think of.

The saved new document will contain links, annotations and bookmarks that are still valid (i.a.w. either pointing to a
selected page or to some external resource).

Document.insert_page() and Document.new_page() insert new pages.

Pages themselves can moreover be modified by a range of methods (e.g. page rotation, annotation and link maintenance,
text and image insertion).

3 “Sequences” are Python objects conforming to the sequence protocol. These objects implement a method named __getitem__(). Best known
examples are Python tuples and lists. But array.array, numpy.array and PyMuPDF’s “geometry” objects (Operator Algebra for Geometry Objects)
are sequences, too. Refer to Using Python Sequences as Arguments in PyMuPDF for details.

14 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/pdf-converter.py

PyMuPDF Documentation, Release 1.21.1

3.8.2 Joining and Splitting PDF Documents

Method Document.insert_pdf() copies pages between different PDF documents. Here is a simple joiner example
(doc1 and doc2 being openend PDFs):

append complete doc2 to the end of doc1
doc1.insert_pdf(doc2)

Here is a snippet that splits doc1. It creates a new document of its first and its last 10 pages:

doc2 = fitz.open() # new empty PDF
doc2.insert_pdf(doc1, to_page = 9) # first 10 pages
doc2.insert_pdf(doc1, from_page = len(doc1) - 10) # last 10 pages
doc2.save("first-and-last-10.pdf")

More can be found in the Document chapter. Also have a look at PDFjoiner.py.

3.8.3 Embedding Data

PDFs can be used as containers for abitrary data (executables, other PDFs, text or binary files, etc.) much like ZIP
archives.

PyMuPDF fully supports this feature via Document embfile_* methods and attributes. For some detail read Appendix
3, consult the Wiki on dealing with embedding files, or the example scripts embedded-copy.py, embedded-export.py,
embedded-import.py, and embedded-list.py.

3.8.4 Saving

As mentioned above, Document.save() will always save the document in its current state.

You can write changes back to the original PDF by specifying option incremental=True. This process is (usually)
extremely fast, since changes are appended to the original file without completely rewriting it.

Document.save() options correspond to options of MuPDF’s command line utility mutool clean, see the following
table.

Save Option mutool Effect
garbage=1 g garbage collect unused objects
garbage=2 gg in addition to 1, compact xref tables
garbage=3 ggg in addition to 2, merge duplicate objects
garbage=4 gggg in addition to 3, merge duplicate stream content
clean=True cs clean and sanitize content streams
deflate=True z deflate uncompressed streams
deflate_images=True i deflate image streams
deflate_fonts=True f deflate fontfile streams
ascii=True a convert binary data to ASCII format
linear=True l create a linearized version
expand=True d decompress all streams

Note: For an explanation of terms like object, stream, xref consult the Glossary chapter.

3.8. PDF Maintenance 15

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/PDFjoiner.py
https://github.com/pymupdf/PyMuPDF/wiki/Dealing-with-Embedded-Files
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-copy.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-export.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-import.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-list.py

PyMuPDF Documentation, Release 1.21.1

For example, mutool clean -ggggz file.pdf yields excellent compression results. It corresponds to doc.save(filename,
garbage=4, deflate=True).

3.9 Closing

It is often desirable to “close” a document to relinquish control of the underlying file to the OS, while your program
continues.

This can be achieved by the Document.close()method. Apart from closing the underlying file, buffer areas associated
with the document will be freed.

3.10 Further Reading

Also have a look at PyMuPDF’s Wiki pages. Especially those named in the sidebar under title “Recipes” cover over
15 topics written in “How-To” style.

This document also contains a FAQ. This chapter has close connection to the aforementioned recipes, and it will be
extended with more content over time.

16 Chapter 3. Tutorial

https://github.com/pymupdf/PyMuPDF/wiki
https://discord.gg/TSpYGBW4eq

CHAPTER

FOUR

RECIPES

4.1 Recipes: Images

4.1.1 How to Make Images from Document Pages

This little script will take a document filename and generate a PNG file from each of its pages.

The document can be any supported type like PDF, XPS, etc.

The script works as a command line tool which expects the filename being supplied as a parameter. The generated
image files (1 per page) are stored in the directory of the script:

import sys, fitz # import the bindings
fname = sys.argv[1] # get filename from command line
doc = fitz.open(fname) # open document
for page in doc: # iterate through the pages

pix = page.get_pixmap() # render page to an image
pix.save("page-%i.png" % page.number) # store image as a PNG

The script directory will now contain PNG image files named page-0.png, page-1.png, etc. Pictures have the dimension
of their pages with width and height rounded to integers, e.g. 595 x 842 pixels for an A4 portrait sized page. They will
have a resolution of 96 dpi in x and y dimension and have no transparency. You can change all that – for how to do this,
read the next sections.

4.1.2 How to Increase Image Resolution

The image of a document page is represented by a Pixmap, and the simplest way to create a pixmap is via method
Page.get_pixmap().

This method has many options to influence the result. The most important among them is the Matrix, which lets you
zoom, rotate, distort or mirror the outcome.

Page.get_pixmap() by default will use the Identity matrix, which does nothing.

In the following, we apply a zoom factor of 2 to each dimension, which will generate an image with a four times better
resolution for us (and also about 4 times the size):

zoom_x = 2.0 # horizontal zoom
zoom_y = 2.0 # vertical zoom
mat = fitz.Matrix(zoom_x, zoom_y) # zoom factor 2 in each dimension
pix = page.get_pixmap(matrix=mat) # use 'mat' instead of the identity matrix

17

PyMuPDF Documentation, Release 1.21.1

Since version 1.19.2 there is a more direct way to set the resolution: Parameter "dpi" (dots per inch) can be used in
place of "matrix". To create a 300 dpi image of a page specify pix = page.get_pixmap(dpi=300). Apart from
notation brevity, this approach has the additional advantage that the dpi value is saved with the image file – which
does not happen automatically when using the Matrix notation.

4.1.3 How to Create Partial Pixmaps (Clips)

You do not always need or want the full image of a page. This is the case e.g. when you display the image in a GUI
and would like to fill the respective window with a zoomed part of the page.

Let’s assume your GUI window has room to display a full document page, but you now want to fill this room with the
bottom right quarter of your page, thus using a four times better resolution.

To achieve this, define a rectangle equal to the area you want to appear in the GUI and call it “clip”. One way of
constructing rectangles in PyMuPDF is by providing two diagonally opposite corners, which is what we are doing
here.

mat = fitz.Matrix(2, 2) # zoom factor 2 in each direction
rect = page.rect # the page rectangle
mp = (rect.tl + rect.br) / 2 # its middle point, becomes top-left of clip
clip = fitz.Rect(mp, rect.br) # the area we want
pix = page.get_pixmap(matrix=mat, clip=clip)

In the above we construct clip by specifying two diagonally opposite points: the middle point mp of the page rectangle,
and its bottom right, rect.br.

18 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.1.4 How to Zoom a Clip to a GUI Window

Please also read the previous section. This time we want to compute the zoom factor for a clip, such that its image best
fits a given GUI window. This means, that the image’s width or height (or both) will equal the window dimension. For
the following code snippet you need to provide the WIDTH and HEIGHT of your GUI’s window that should receive
the page’s clip rectangle.

WIDTH: width of the GUI window
HEIGHT: height of the GUI window
clip: a subrectangle of the document page
compare width/height ratios of image and window

if clip.width / clip.height < WIDTH / HEIGHT:
clip is narrower: zoom to window HEIGHT
zoom = HEIGHT / clip.height

else: # clip is broader: zoom to window WIDTH
zoom = WIDTH / clip.width

mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, clip=clip)

For the other way round, now assume you have the zoom factor and need to compute the fitting clip.

In this case we have zoom = HEIGHT/clip.height = WIDTH/clip.width, so we must set clip.height =
HEIGHT/zoom and, clip.width = WIDTH/zoom. Choose the top-left point tl of the clip on the page to compute
the right pixmap:

width = WIDTH / zoom
height = HEIGHT / zoom
clip = fitz.Rect(tl, tl.x + width, tl.y + height)
ensure we still are inside the page
clip &= page.rect
mat = fitz.Matrix(zoom, zoom)
pix = fitz.Pixmap(matrix=mat, clip=clip)

4.1.5 How to Create or Suppress Annotation Images

Normally, the pixmap of a page also shows the page’s annotations. Occasionally, this may not be desirable.

To suppress the annotation images on a rendered page, just specify annots=False in Page.get_pixmap().

You can also render annotations separately: they have their own Annot.get_pixmap()method. The resulting pixmap
has the same dimensions as the annotation rectangle.

4.1. Recipes: Images 19

PyMuPDF Documentation, Release 1.21.1

4.1.6 How to Extract Images: Non-PDF Documents

In contrast to the previous sections, this section deals with extracting images contained in documents, so they can be
displayed as part of one or more pages.

If you want to recreate the original image in file form or as a memory area, you have basically two options:

1. Convert your document to a PDF, and then use one of the PDF-only extraction methods. This snippet will convert
a document to PDF:

>>> pdfbytes = doc.convert_to_pdf() # this a bytes object
>>> pdf = fitz.open("pdf", pdfbytes) # open it as a PDF document
>>> # now use 'pdf' like any PDF document

2. Use Page.get_text() with the “dict” parameter. This works for all document types. It will extract all text
and images shown on the page, formatted as a Python dictionary. Every image will occur in an image block,
containing meta information and the binary image data. For details of the dictionary’s structure, see TextPage.
The method works equally well for PDF files. This creates a list of all images shown on a page:

>>> d = page.get_text("dict")
>>> blocks = d["blocks"] # the list of block dictionaries
>>> imgblocks = [b for b in blocks if b["type"] == 1]
>>> pprint(imgblocks[0])
{'bbox': (100.0, 135.8769989013672, 300.0, 364.1230163574219),
'bpc': 8,
'colorspace': 3,
'ext': 'jpeg',
'height': 501,
'image': b'\xff\xd8\xff\xe0\x00\x10JFIF\...', # CAUTION: LARGE!
'size': 80518,
'transform': (200.0, 0.0, -0.0, 228.2460174560547, 100.0, 135.8769989013672),
'type': 1,
'width': 439,
'xres': 96,
'yres': 96}

4.1.7 How to Extract Images: PDF Documents

Like any other “object” in a PDF, images are identified by a cross reference number (xref , an integer). If you know
this number, you have two ways to access the image’s data:

1. Create a Pixmap of the image with instruction pix = fitz.Pixmap(doc, xref). This method is very fast (single
digit micro-seconds). The pixmap’s properties (width, height, . . .) will reflect the ones of the image. In this case
there is no way to tell which image format the embedded original has.

2. Extract the image with img = doc.extract_image(xref). This is a dictionary containing the binary image data as
img[“image”]. A number of meta data are also provided – mostly the same as you would find in the pixmap of the
image. The major difference is string img[“ext”], which specifies the image format: apart from “png”, strings like
“jpeg”, “bmp”, “tiff”, etc. can also occur. Use this string as the file extension if you want to store to disk. The ex-
ecution speed of this method should be compared to the combined speed of the statements pix = fitz.Pixmap(doc,
xref);pix.tobytes(). If the embedded image is in PNG format, the speed of Document.extract_image() is
about the same (and the binary image data are identical). Otherwise, this method is thousands of times faster,
and the image data is much smaller.

20 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

The question remains: “How do I know those ‘xref’ numbers of images?”. There are two answers to this:

a. “Inspect the page objects:” Loop through the items of Page.get_images(). It is a list of list, and its items
look like [xref, smask, . . .], containing the xref of an image. This xref can then be used with one of the above
methods. Use this method for valid (undamaged) documents. Be wary however, that the same image may be
referenced multiple times (by different pages), so you might want to provide a mechanism avoiding multiple
extracts.

b. “No need to know:” Loop through the list of all xrefs of the document and perform a Document.
extract_image() for each one. If the returned dictionary is empty, then continue – this xref is no image.
Use this method if the PDF is damaged (unusable pages). Note that a PDF often contains “pseudo-images”
(“stencil masks”) with the special purpose of defining the transparency of some other image. You may want to
provide logic to exclude those from extraction. Also have a look at the next section.

For both extraction approaches, there exist ready-to-use general purpose scripts:

extract-imga.py extracts images page by page:

and extract-imgb.py extracts images by xref table:

4.1. Recipes: Images 21

https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/extract-imga.py
https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/extract-imgb.py

PyMuPDF Documentation, Release 1.21.1

4.1.8 How to Handle Image Masks

Some images in PDFs are accompanied by image masks. In their simplest form, masks represent alpha (transparency)
bytes stored as separate images. In order to reconstruct the original of an image, which has a mask, it must be “enriched”
with transparency bytes taken from its mask.

Whether an image does have such a mask can be recognized in one of two ways in PyMuPDF:

1. An item of Document.get_page_images() has the general format (xref, smask, ...), where xref is the
image’s xref and smask, if positive, then it is the xref of a mask.

2. The (dictionary) results of Document.extract_image() have a key “smask”, which also contains any mask’s
xref if positive.

If smask == 0 then the image encountered via xref can be processed as it is.

To recover the original image using PyMuPDF, the procedure depicted as follows must be executed:

>>> pix1 = fitz.Pixmap(doc.extract_image(xref)["image"]) # (1) pixmap of image w/o␣
→˓alpha
>>> mask = fitz.Pixmap(doc.extract_image(smask)["image"]) # (2) mask pixmap
>>> pix = fitz.Pixmap(pix1, mask) # (3) copy of pix1, image␣
→˓mask added

Step (1) creates a pixmap of the basic image. Step (2) does the same with the image mask. Step (3) adds an alpha
channel and fills it with transparency information.

The scripts extract-imga.py, and extract-imgb.py above also contain this logic.

4.1.9 How to Make one PDF of all your Pictures (or Files)

We show here three scripts that take a list of (image and other) files and put them all in one PDF.

Method 1: Inserting Images as Pages
The first one converts each image to a PDF page with the same dimensions. The result will be a PDF with one page
per image. It will only work for supported image file formats:

import os, fitz
import PySimpleGUI as psg # for showing a progress bar
doc = fitz.open() # PDF with the pictures

(continues on next page)

22 Chapter 4. Recipes

https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/extract-imga.py
https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/extract-imgb.py

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

imgdir = "D:/2012_10_05" # where the pics are
imglist = os.listdir(imgdir) # list of them
imgcount = len(imglist) # pic count

for i, f in enumerate(imglist):
img = fitz.open(os.path.join(imgdir, f)) # open pic as document
rect = img[0].rect # pic dimension
pdfbytes = img.convert_to_pdf() # make a PDF stream
img.close() # no longer needed
imgPDF = fitz.open("pdf", pdfbytes) # open stream as PDF
page = doc.new_page(width = rect.width, # new page with ...

height = rect.height) # pic dimension
page.show_pdf_page(rect, imgPDF, 0) # image fills the page
psg.EasyProgressMeter("Import Images", # show our progress

i+1, imgcount)

doc.save("all-my-pics.pdf")

This will generate a PDF only marginally larger than the combined pictures’ size. Some numbers on performance:

The above script needed about 1 minute on my machine for 149 pictures with a total size of 514 MB (and about the
same resulting PDF size).

Look here for a more complete source code: it offers a directory selection dialog and skips unsupported files and
non-file entries.

Note: We might have used Page.insert_image() instead of Page.show_pdf_page(), and the result would have
been a similar looking file. However, depending on the image type, it may store images uncompressed. Therefore, the
save option deflate = True must be used to achieve a reasonable file size, which hugely increases the runtime for large
numbers of images. So this alternative cannot be recommended here.

Method 2: Embedding Files
The second script embeds arbitrary files – not only images. The resulting PDF will have just one (empty) page, required
for technical reasons. To later access the embedded files again, you would need a suitable PDF viewer that can display
and / or extract embedded files:

4.1. Recipes: Images 23

https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/all-my-pics-inserted.py

PyMuPDF Documentation, Release 1.21.1

import os, fitz
import PySimpleGUI as psg # for showing progress bar
doc = fitz.open() # PDF with the pictures
imgdir = "D:/2012_10_05" # where my files are

imglist = os.listdir(imgdir) # list of pictures
imgcount = len(imglist) # pic count
imglist.sort() # nicely sort them

for i, f in enumerate(imglist):
img = open(os.path.join(imgdir,f), "rb").read() # make pic stream
doc.embfile_add(img, f, filename=f, # and embed it

ufilename=f, desc=f)
psg.EasyProgressMeter("Embedding Files", # show our progress

i+1, imgcount)

page = doc.new_page() # at least 1 page is needed

doc.save("all-my-pics-embedded.pdf")

This is by far the fastest method, and it also produces the smallest possible output file size. The above pictures needed
20 seconds on my machine and yielded a PDF size of 510 MB. Look here for a more complete source code: it offers a
directory selection dialog and skips non-file entries.

Method 3: Attaching Files
A third way to achieve this task is attaching files via page annotations see here for the complete source code.

This has a similar performance as the previous script and it also produces a similar file size. It will produce PDF pages
which show a ‘FileAttachment’ icon for each attached file.

24 Chapter 4. Recipes

https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/all-my-pics-embedded.py
https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/examples/all-my-pics-attached.py

PyMuPDF Documentation, Release 1.21.1

Note: Both, the embed and the attach methods can be used for arbitrary files – not just images.

Note: We strongly recommend using the awesome package PySimpleGUI to display a progress meter for tasks that
may run for an extended time span. It’s pure Python, uses Tkinter (no additional GUI package) and requires just one
more line of code!

4.1.10 How to Create Vector Images

The usual way to create an image from a document page is Page.get_pixmap(). A pixmap represents a raster image,
so you must decide on its quality (i.e. resolution) at creation time. It cannot be changed later.

PyMuPDF also offers a way to create a vector image of a page in SVG format (scalable vector graphics, defined in
XML syntax). SVG images remain precise across zooming levels (of course with the exception of any raster graphic
elements embedded therein).

Instruction svg = page.get_svg_image(matrix=fitz.Identity) delivers a UTF-8 string svg which can be stored with ex-
tension “.svg”.

4.1. Recipes: Images 25

https://pypi.org/project/PySimpleGUI/

PyMuPDF Documentation, Release 1.21.1

4.1.11 How to Convert Images

Just as a feature among others, PyMuPDF’s image conversion is easy. It may avoid using other graphics packages like
PIL/Pillow in many cases.

Notwithstanding that interfacing with Pillow is almost trivial.

Input Formats Output Formats Description
BMP . Windows Bitmap
JPEG . Joint Photographic Experts Group
JXR . JPEG Extended Range
JPX/JP2 . JPEG 2000
GIF . Graphics Interchange Format
TIFF . Tagged Image File Format
PNG PNG Portable Network Graphics
PNM PNM Portable Anymap
PGM PGM Portable Graymap
PBM PBM Portable Bitmap
PPM PPM Portable Pixmap
PAM PAM Portable Arbitrary Map
. PSD Adobe Photoshop Document
. PS Adobe Postscript

The general scheme is just the following two lines:

pix = fitz.Pixmap("input.xxx") # any supported input format
pix.save("output.yyy") # any supported output format

Remarks
1. The input argument of fitz.Pixmap(arg) can be a file or a bytes / io.BytesIO object containing an image.

2. Instead of an output file, you can also create a bytes object via pix.tobytes(“yyy”) and pass this around.

3. As a matter of course, input and output formats must be compatible in terms of colorspace and transparency. The
Pixmap class has batteries included if adjustments are needed.

Note: Convert JPEG to Photoshop:

pix = fitz.Pixmap("myfamily.jpg")
pix.save("myfamily.psd")

Note: Save to JPEG using PIL/Pillow:

pix = fitz.Pixmap(...)
pix.pil_save("output.jpg")

Note: Convert JPEG to Tkinter PhotoImage. Any RGB / no-alpha image works exactly the same. Conversion
to one of the Portable Anymap formats (PPM, PGM, etc.) does the trick, because they are supported by all Tkinter
versions:

26 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

import tkinter as tk
pix = fitz.Pixmap("input.jpg") # or any RGB / no-alpha image
tkimg = tk.PhotoImage(data=pix.tobytes("ppm"))

Note: Convert PNG with alpha to Tkinter PhotoImage. This requires removing the alpha bytes, before we can do
the PPM conversion:

import tkinter as tk
pix = fitz.Pixmap("input.png") # may have an alpha channel
if pix.alpha: # we have an alpha channel!

pix = fitz.Pixmap(pix, 0) # remove it
tkimg = tk.PhotoImage(data=pix.tobytes("ppm"))

4.1.12 How to Use Pixmaps: Glueing Images

This shows how pixmaps can be used for purely graphical, non-document purposes. The script reads an image file and
creates a new image which consist of 3 * 4 tiles of the original:

import fitz
src = fitz.Pixmap("img-7edges.png") # create pixmap from a picture
col = 3 # tiles per row
lin = 4 # tiles per column
tar_w = src.width * col # width of target
tar_h = src.height * lin # height of target

create target pixmap
tar_pix = fitz.Pixmap(src.colorspace, (0, 0, tar_w, tar_h), src.alpha)

now fill target with the tiles
for i in range(col):

for j in range(lin):
src.set_origin(src.width * i, src.height * j)
tar_pix.copy(src, src.irect) # copy input to new loc

tar_pix.save("tar.png")

This is the input picture:

Here is the output:

4.1. Recipes: Images 27

PyMuPDF Documentation, Release 1.21.1

4.1.13 How to Use Pixmaps: Making a Fractal

Here is another Pixmap example that creates Sierpinski’s Carpet – a fractal generalizing the Cantor Set to two
dimensions. Given a square carpet, mark its 9 sub-suqares (3 times 3) and cut out the one in the center. Treat each of
the remaining eight sub-squares in the same way, and continue ad infinitum. The end result is a set with area zero and
fractal dimension 1.8928. . .

This script creates an approximate image of it as a PNG, by going down to one-pixel granularity. To increase the image
precision, change the value of n (precision):

import fitz, time
if not list(map(int, fitz.VersionBind.split("."))) >= [1, 14, 8]:

raise SystemExit("need PyMuPDF v1.14.8 for this script")
n = 6 # depth (precision)
d = 3**n # edge length

t0 = time.perf_counter()
ir = (0, 0, d, d) # the pixmap rectangle

pm = fitz.Pixmap(fitz.csRGB, ir, False)
pm.set_rect(pm.irect, (255,255,0)) # fill it with some background color

color = (0, 0, 255) # color to fill the punch holes

alternatively, define a 'fill' pixmap for the punch holes
this could be anything, e.g. some photo image ...
fill = fitz.Pixmap(fitz.csRGB, ir, False) # same size as 'pm'
fill.set_rect(fill.irect, (0, 255, 255)) # put some color in

def punch(x, y, step):
"""Recursively "punch a hole" in the central square of a pixmap.

Arguments are top-left coords and the step width.

Some alternative punching methods are commented out.
(continues on next page)

28 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

"""
s = step // 3 # the new step
iterate through the 9 sub-squares
the central one will be filled with the color
for i in range(3):

for j in range(3):
if i != j or i != 1: # this is not the central cube

if s >= 3: # recursing needed?
punch(x+i*s, y+j*s, s) # recurse

else: # punching alternatives are:
pm.set_rect((x+s, y+s, x+2*s, y+2*s), color) # fill with a color
#pm.copy(fill, (x+s, y+s, x+2*s, y+2*s)) # copy from fill
#pm.invert_irect((x+s, y+s, x+2*s, y+2*s)) # invert colors

return

#==
main program
#==
now start punching holes into the pixmap
punch(0, 0, d)
t1 = time.perf_counter()
pm.save("sierpinski-punch.png")
t2 = time.perf_counter()
print ("%g sec to create / fill the pixmap" % round(t1-t0,3))
print ("%g sec to save the image" % round(t2-t1,3))

The result should look something like this:

4.1. Recipes: Images 29

PyMuPDF Documentation, Release 1.21.1

4.1.14 How to Interface with NumPy

This shows how to create a PNG file from a numpy array (several times faster than most other methods):

import numpy as np
import fitz
#==
create a fun-colored width * height PNG with fitz and numpy
#==
height = 150
width = 100
bild = np.ndarray((height, width, 3), dtype=np.uint8)

for i in range(height):
for j in range(width):

one pixel (some fun coloring)
bild[i, j] = [(i+j)%256, i%256, j%256]

samples = bytearray(bild.tostring()) # get plain pixel data from numpy array
pix = fitz.Pixmap(fitz.csRGB, width, height, samples, alpha=False)
pix.save("test.png")

4.1.15 How to Add Images to a PDF Page

There are two methods to add images to a PDF page: Page.insert_image() and Page.show_pdf_page(). Both
methods have things in common, but there are also differences.

Criterion Page.
insert_image()

Page.show_pdf_page()

displayable con-
tent

image file, image in
memory, pixmap

PDF page

display resolu-
tion

image resolution vectorized (except raster page content)

rotation 0, 90, 180 or 270 de-
grees

any angle

clipping no (full image only) yes
keep aspect ra-
tio

yes (default option) yes (default option)

transparency
(water marking)

depends on the im-
age

depends on the page

location / place-
ment

scaled to fit target
rectangle

scaled to fit target rectangle

performance automatic preven-
tion of duplicates;

automatic prevention of duplicates;

multi-page im-
age support

no yes

ease of use simple, intuitive; simple, intuitive; usable for all document types (including images!)
after conversion to PDF via Document.convert_to_pdf()

Basic code pattern for Page.insert_image(). Exactly one of the parameters filename / stream / pixmap must be
given, if not re-inserting an existing image:

30 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

page.insert_image(
rect, # where to place the image (rect-like)
filename=None, # image in a file
stream=None, # image in memory (bytes)
pixmap=None, # image from pixmap
mask=None, # specify alpha channel separately
rotate=0, # rotate (int, multiple of 90)
xref=0, # re-use existing image
oc=0, # control visibility via OCG / OCMD
keep_proportion=True, # keep aspect ratio
overlay=True, # put in foreground

)

Basic code pattern for Page.show_pdf_page(). Source and target PDF must be different Document objects (but may
be opened from the same file):

page.show_pdf_page(
rect, # where to place the image (rect-like)
src, # source PDF
pno=0, # page number in source PDF
clip=None, # only display this area (rect-like)
rotate=0, # rotate (float, any value)
oc=0, # control visibility via OCG / OCMD
keep_proportion=True, # keep aspect ratio
overlay=True, # put in foreground

)

4.2 Recipes: Text

4.2.1 How to Extract all Document Text

This script will take a document filename and generate a text file from all of its text.

The document can be any supported type like PDF, XPS, etc.

The script works as a command line tool which expects the document filename supplied as a parameter. It generates
one text file named “filename.txt” in the script directory. Text of pages is separated by a form feed character:

import sys, fitz
fname = sys.argv[1] # get document filename
doc = fitz.open(fname) # open document
out = open(fname + ".txt", "wb") # open text output
for page in doc: # iterate the document pages

text = page.get_text().encode("utf8") # get plain text (is in UTF-8)
out.write(text) # write text of page
out.write(bytes((12,))) # write page delimiter (form feed 0x0C)

out.close()

The output will be plain text as it is coded in the document. No effort is made to prettify in any way. Specifically for
PDF, this may mean output not in usual reading order, unexpected line breaks and so forth.

4.2. Recipes: Text 31

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

You have many options to rectify this – see chapter Appendix 2: Considerations on Embedded Files. Among them are:

1. Extract text in HTML format and store it as a HTML document, so it can be viewed in any browser.

2. Extract text as a list of text blocks via Page.get_text(“blocks”). Each item of this list contains position information
for its text, which can be used to establish a convenient reading order.

3. Extract a list of single words via Page.get_text(“words”). Its items are words with position information. Use it
to determine text contained in a given rectangle – see next section.

See the following two sections for examples and further explanations.

4.2.2 How to Extract Text from within a Rectangle

There is now (v1.18.0) more than one way to achieve this. We therefore have created a folder in the PyMuPDF-Utilities
repository specifically dealing with this topic.

4.2.3 How to Extract Text in Natural Reading Order

One of the common issues with PDF text extraction is, that text may not appear in any particular reading order.

This is the responsibility of the PDF creator (software or a human). For example, page headers may have been inserted
in a separate step – after the document had been produced. In such a case, the header text will appear at the end of a
page text extraction (although it will be correctly shown by PDF viewer software). For example, the following snippet
will add some header and footer lines to an existing PDF:

doc = fitz.open("some.pdf")
header = "Header" # text in header
footer = "Page %i of %i" # text in footer
for page in doc:

page.insert_text((50, 50), header) # insert header
page.insert_text(# insert footer 50 points above page bottom

(50, page.rect.height - 50),
footer % (page.number + 1, doc.page_count),

)

The text sequence extracted from a page modified in this way will look like this:

1. original text

2. header line

3. footer line

PyMuPDF has several means to re-establish some reading sequence or even to re-generate a layout close to the original:

1. Use sort parameter of Page.get_text(). It will sort the output from top-left to bottom-right (ignored for
XHTML, HTML and XML output).

2. Use the fitz module in CLI: python -m fitz gettext ..., which produces a text file where text has been
re-arranged in layout-preserving mode. Many options are available to control the output.

You can also use the above mentioned script with your modifications.

32 Chapter 4. Recipes

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/textbox-extraction
https://github.com/pymupdf/PyMuPDF/wiki/How-to-extract-text-from-a-rectangle

PyMuPDF Documentation, Release 1.21.1

4.2.4 How to Extract Tables from Documents

If you see a table in a document, you are not normally looking at something like an embedded Excel or other identifiable
object. It usually is just text, formatted to appear as appropriate.

Extracting a tabular data from such a page area therefore means that you must find a way to (1) graphically indicate
table and column borders, and (2) then extract text based on this information.

The wxPython GUI script wxTableExtract.py strives to exactly do that. You may want to have a look at it and adjust it
to your liking.

4.2.5 How to Mark Extracted Text

There is a standard search function to search for arbitrary text on a page: Page.search_for(). It returns a list of
Rect objects which surround a found occurrence. These rectangles can for example be used to automatically insert
annotations which visibly mark the found text.

This method has advantages and drawbacks. Pros are:

• The search string can contain blanks and wrap across lines

• Upper or lower case characters are treated equal

• Word hyphenation at line ends is detected and resolved

• Return may also be a list of Quad objects to precisely locate text that is not parallel to either axis – using Quad
output is also recommend, when page rotation is not zero

But you also have other options:

import sys
import fitz

def mark_word(page, text):
"""Underline each word that contains 'text'.
"""
found = 0
wlist = page.get_text("words") # make the word list
for w in wlist: # scan through all words on page

if text in w[4]: # w[4] is the word's string
found += 1 # count
r = fitz.Rect(w[:4]) # make rect from word bbox
page.add_underline_annot(r) # underline

return found

fname = sys.argv[1] # filename
text = sys.argv[2] # search string
doc = fitz.open(fname)

print("underlining words containing '%s' in document '%s'" % (word, doc.name))

new_doc = False # indicator if anything found at all

for page in doc: # scan through the pages
found = mark_word(page, text) # mark the page's words

(continues on next page)

4.2. Recipes: Text 33

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/wxTableExtract.py

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

if found: # if anything found ...
new_doc = True
print("found '%s' %i times on page %i" % (text, found, page.number + 1))

if new_doc:
doc.save("marked-" + doc.name)

This script uses Page.get_text("words") to look for a string, handed in via cli parameter. This method separates a
page’s text into “words” using spaces and line breaks as delimiters. Further remarks:

• If found, the complete word containing the string is marked (underlined) – not only the search string.

• The search string may not contain spaces or other white space.

• As shown here, upper / lower cases are respected. But this can be changed by using the string method lower()
(or even regular expressions) in function mark_word.

• There is no upper limit: all occurrences will be detected.

• You can use anything to mark the word: ‘Underline’, ‘Highlight’, ‘StrikeThrough’ or ‘Square’ annotations, etc.

• Here is an example snippet of a page of this manual, where “MuPDF” has been used as the search string. Note
that all strings containing “MuPDF” have been completely underlined (not just the search string).

4.2.6 How to Mark Searched Text

This script searches for text and marks it:

-*- coding: utf-8 -*-
import fitz

the document to annotate
doc = fitz.open("tilted-text.pdf")

the text to be marked
t = "¡La práctica hace el campeón!"

work with first page only
(continues on next page)

34 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

page = doc[0]

get list of text locations
we use "quads", not rectangles because text may be tilted!
rl = page.search_for(t, quads = True)

mark all found quads with one annotation
page.add_squiggly_annot(rl)

save to a new PDF
doc.save("a-squiggly.pdf")

The result looks like this:

4.2.7 How to Mark Non-horizontal Text

The previous section already shows an example for marking non-horizontal text, that was detected by text searching.

But text extraction with the “dict” / “rawdict” options of Page.get_text() may also return text with a non-zero
angle to the x-axis. This is indicated by the value of the line dictionary’s "dir" key: it is the tuple (cosine, sine)
for that angle. If line["dir"] != (1, 0), then the text of all its spans is rotated by (the same) angle != 0.

The “bboxes” returned by the method however are rectangles only – not quads. So, to mark span text correctly, its quad
must be recovered from the data contained in the line and span dictionary. Do this with the following utility function
(new in v1.18.9):

span_quad = fitz.recover_quad(line["dir"], span)
annot = page.add_highlight_annot(span_quad) # this will mark the complete span text

If you want to mark the complete line or a subset of its spans in one go, use the following snippet (works for v1.18.10
or later):

line_quad = fitz.recover_line_quad(line, spans=line["spans"][1:-1])
page.add_highlight_annot(line_quad)

4.2. Recipes: Text 35

PyMuPDF Documentation, Release 1.21.1

The spans argument above may specify any sub-list of line["spans"]. In the example above, the second to second-
to-last span are marked. If omitted, the complete line is taken.

4.2.8 How to Analyze Font Characteristics

To analyze the characteristics of text in a PDF use this elementary script as a starting point:

import sys

import fitz

def flags_decomposer(flags):
"""Make font flags human readable."""
l = []
if flags & 2 ** 0:

l.append("superscript")
if flags & 2 ** 1:

l.append("italic")
if flags & 2 ** 2:

l.append("serifed")
else:

l.append("sans")
if flags & 2 ** 3:

l.append("monospaced")
else:

l.append("proportional")
if flags & 2 ** 4:

l.append("bold")
return ", ".join(l)

doc = fitz.open(sys.argv[1])
page = doc[0]

read page text as a dictionary, suppressing extra spaces in CJK fonts
blocks = page.get_text("dict", flags=11)["blocks"]
for b in blocks: # iterate through the text blocks

(continues on next page)

36 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

for l in b["lines"]: # iterate through the text lines
for s in l["spans"]: # iterate through the text spans

print("")
font_properties = "Font: '%s' (%s), size %g, color #%06x" % (

s["font"], # font name
flags_decomposer(s["flags"]), # readable font flags
s["size"], # font size
s["color"], # font color

)
print("Text: '%s'" % s["text"]) # simple print of text
print(font_properties)

Here is the PDF page and the script output:

4.2.9 How to Insert Text

PyMuPDF provides ways to insert text on new or existing PDF pages with the following features:

• choose the font, including built-in fonts and fonts that are available as files

• choose text characteristics like bold, italic, font size, font color, etc.

• position the text in multiple ways:

– either as simple line-oriented output starting at a certain point,

– or fitting text in a box provided as a rectangle, in which case text alignment choices are also available,

– choose whether text should be put in foreground (overlay existing content),

4.2. Recipes: Text 37

PyMuPDF Documentation, Release 1.21.1

– all text can be arbitrarily “morphed”, i.e. its appearance can be changed via a Matrix, to achieve effects like
scaling, shearing or mirroring,

– independently from morphing and in addition to that, text can be rotated by integer multiples of 90 degrees.

All of the above is provided by three basic Page, resp. Shape methods:

• Page.insert_font() – install a font for the page for later reference. The result is reflected in the output of
Document.get_page_fonts(). The font can be:

– provided as a file,

– via Font (then use Font.buffer)

– already present somewhere in this or another PDF, or

– be a built-in font.

• Page.insert_text() – write some lines of text. Internally, this uses Shape.insert_text().

• Page.insert_textbox() – fit text in a given rectangle. Here you can choose text alignment features (left,
right, centered, justified) and you keep control as to whether text actually fits. Internally, this uses Shape.
insert_textbox().

Note: Both text insertion methods automatically install the font as necessary.

4.2.9.1 How to Write Text Lines

Output some text lines on a page:

import fitz
doc = fitz.open(...) # new or existing PDF
page = doc.new_page() # new or existing page via doc[n]
p = fitz.Point(50, 72) # start point of 1st line

text = "Some text,\nspread across\nseveral lines."
the same result is achievable by
text = ["Some text", "spread across", "several lines."]

rc = page.insert_text(p, # bottom-left of 1st char
text, # the text (honors '\n')
fontname = "helv", # the default font
fontsize = 11, # the default font size
rotate = 0, # also available: 90, 180, 270
)

print("%i lines printed on page %i." % (rc, page.number))

doc.save("text.pdf")

With this method, only the number of lines will be controlled to not go beyond page height. Surplus lines will not be
written and the number of actual lines will be returned. The calculation uses a line height calculated from the fontsize
and 36 points (0.5 inches) as bottom margin.

Line width is ignored. The surplus part of a line will simply be invisible.

However, for built-in fonts there are ways to calculate the line width beforehand - see get_text_length().

38 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

Here is another example. It inserts 4 text strings using the four different rotation options, and thereby explains, how the
text insertion point must be chosen to achieve the desired result:

import fitz
doc = fitz.open()
page = doc.new_page()
the text strings, each having 3 lines
text1 = "rotate=0\nLine 2\nLine 3"
text2 = "rotate=90\nLine 2\nLine 3"
text3 = "rotate=-90\nLine 2\nLine 3"
text4 = "rotate=180\nLine 2\nLine 3"
red = (1, 0, 0) # the color for the red dots
the insertion points, each with a 25 pix distance from the corners
p1 = fitz.Point(25, 25)
p2 = fitz.Point(page.rect.width - 25, 25)
p3 = fitz.Point(25, page.rect.height - 25)
p4 = fitz.Point(page.rect.width - 25, page.rect.height - 25)
create a Shape to draw on
shape = page.new_shape()

draw the insertion points as red, filled dots
shape.draw_circle(p1,1)
shape.draw_circle(p2,1)
shape.draw_circle(p3,1)
shape.draw_circle(p4,1)
shape.finish(width=0.3, color=red, fill=red)

insert the text strings
shape.insert_text(p1, text1)
shape.insert_text(p3, text2, rotate=90)
shape.insert_text(p2, text3, rotate=-90)
shape.insert_text(p4, text4, rotate=180)

store our work to the page
shape.commit()
doc.save(...)

This is the result:

4.2. Recipes: Text 39

PyMuPDF Documentation, Release 1.21.1

4.2.9.2 How to Fill a Text Box

This script fills 4 different rectangles with text, each time choosing a different rotation value:

import fitz
doc = fitz.open(...) # new or existing PDF
page = doc.new_page() # new page, or choose doc[n]
r1 = fitz.Rect(50,100,100,150) # a 50x50 rectangle
disp = fitz.Rect(55, 0, 55, 0) # add this to get more rects
r2 = r1 + disp # 2nd rect
r3 = r1 + disp * 2 # 3rd rect
r4 = r1 + disp * 3 # 4th rect
t1 = "text with rotate = 0." # the texts we will put in
t2 = "text with rotate = 90."
t3 = "text with rotate = -90."
t4 = "text with rotate = 180."
red = (1,0,0) # some colors
gold = (1,1,0)
blue = (0,0,1)
"""We use a Shape object (something like a canvas) to output the text and
the rectangles surrounding it for demonstration.
"""
shape = page.new_shape() # create Shape
shape.draw_rect(r1) # draw rectangles
shape.draw_rect(r2) # giving them
shape.draw_rect(r3) # a yellow background
shape.draw_rect(r4) # and a red border
shape.finish(width = 0.3, color = red, fill = gold)
Now insert text in the rectangles. Font "Helvetica" will be used
by default. A return code rc < 0 indicates insufficient space (not checked here).
rc = shape.insert_textbox(r1, t1, color = blue)
rc = shape.insert_textbox(r2, t2, color = blue, rotate = 90)
rc = shape.insert_textbox(r3, t3, color = blue, rotate = -90)
rc = shape.insert_textbox(r4, t4, color = blue, rotate = 180)
shape.commit() # write all stuff to page /Contents
doc.save("...")

Several default values were used above: font “Helvetica”, font size 11 and text alignment “left”. The result will look
like this:

40 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.2.9.3 How to Use Non-Standard Encoding

Since v1.14, MuPDF allows Greek and Russian encoding variants for the Base14_Fonts. In PyMuPDF this is sup-
ported via an additional encoding argument. Effectively, this is relevant for Helvetica, Times-Roman and Courier (and
their bold / italic forms) and characters outside the ASCII code range only. Elsewhere, the argument is ignored. Here
is how to request Russian encoding with the standard font Helvetica:

page.insert_text(point, russian_text, encoding=fitz.TEXT_ENCODING_CYRILLIC)

The valid encoding values are TEXT_ENCODING_LATIN (0), TEXT_ENCODING_GREEK (1), and
TEXT_ENCODING_CYRILLIC (2, Russian) with Latin being the default. Encoding can be specified by all
relevant font and text insertion methods.

By the above statement, the fontname helv is automatically connected to the Russian font variant of Helvetica. Any
subsequent text insertion with this fontname will use the Russian Helvetica encoding.

If you change the fontname just slightly, you can also achieve an encoding “mixture” for the same base font on the
same page:

import fitz
doc=fitz.open()
page = doc.new_page()
shape = page.new_shape()
t="Sômé tèxt wìth nöñ-Lâtîn characterß."
shape.insert_text((50,70), t, fontname="helv", encoding=fitz.TEXT_ENCODING_LATIN)
shape.insert_text((50,90), t, fontname="HElv", encoding=fitz.TEXT_ENCODING_GREEK)
shape.insert_text((50,110), t, fontname="HELV", encoding=fitz.TEXT_ENCODING_CYRILLIC)
shape.commit()
doc.save("t.pdf")

The result:

The snippet above indeed leads to three different copies of the Helvetica font in the PDF. Each copy is uniquely identified
(and referenceable) by using the correct upper-lower case spelling of the reserved word “helv”:

for f in doc.get_page_fonts(0): print(f)

[6, 'n/a', 'Type1', 'Helvetica', 'helv', 'WinAnsiEncoding']
[7, 'n/a', 'Type1', 'Helvetica', 'HElv', 'WinAnsiEncoding']
[8, 'n/a', 'Type1', 'Helvetica', 'HELV', 'WinAnsiEncoding']

4.2. Recipes: Text 41

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

4.3 Recipes: Annotations

In v1.14.0, annotation handling has been considerably extended:

• New annotation type support for ‘Ink’, ‘Rubber Stamp’ and ‘Squiggly’ annotations. Ink annots simulate hand-
writing by combining one or more lists of interconnected points. Stamps are intended to visually inform about a
document’s status or intended usage (like “draft”, “confidential”, etc.). ‘Squiggly’ is a text marker annot, which
underlines selected text with a zig-zagged line.

• Extended ‘FreeText’ support:
1. all characters from the Latin character set are now available,

2. colors of text, rectangle background and rectangle border can be independently set

3. text in rectangle can be rotated by either +90 or -90 degrees

4. text is automatically wrapped (made multi-line) in available rectangle

5. all Base-14 fonts are now available (normal variants only, i.e. no bold, no italic).

• MuPDF now supports line end icons for ‘Line’ annots (only). PyMuPDF supported that in v1.13.x already – and
for (almost) the full range of applicable types. So we adjusted the appearance of ‘Polygon’ and ‘PolyLine’ annots
to closely resemble the one of MuPDF for ‘Line’.

• MuPDF now provides its own annotation icons where relevant. PyMuPDF switched to using them (for ‘FileAt-
tachment’ and ‘Text’ [“sticky note”] so far).

• MuPDF now also supports ‘Caret’, ‘Movie’, ‘Sound’ and ‘Signature’ annotations, which we may include in
PyMuPDF at some later time.

4.3.1 How to Add and Modify Annotations

In PyMuPDF, new annotations can be added via Page methods. Once an annotation exists, it can be modified to a large
extent using methods of the Annot class.

In contrast to many other tools, initial insert of annotations happens with a minimum number of properties. We leave
it to the programmer to e.g. set attributes like author, creation date or subject.

As an overview for these capabilities, look at the following script that fills a PDF page with most of the available
annotations. Look in the next sections for more special situations:

-*- coding: utf-8 -*-
"""

Demo script showing how annotations can be added to a PDF using PyMuPDF.

It contains the following annotation types:
Caret, Text, FreeText, text markers (underline, strike-out, highlight,
squiggle), Circle, Square, Line, PolyLine, Polygon, FileAttachment, Stamp
and Redaction.
There is some effort to vary appearances by adding colors, line ends,
opacity, rotation, dashed lines, etc.

Dependencies

PyMuPDF v1.17.0

(continues on next page)

42 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

"""
from __future__ import print_function

import gc
import sys

import fitz

print(fitz.__doc__)
if fitz.VersionBind.split(".") < ["1", "17", "0"]:

sys.exit("PyMuPDF v1.17.0+ is needed.")

gc.set_debug(gc.DEBUG_UNCOLLECTABLE)

highlight = "this text is highlighted"
underline = "this text is underlined"
strikeout = "this text is striked out"
squiggled = "this text is zigzag-underlined"
red = (1, 0, 0)
blue = (0, 0, 1)
gold = (1, 1, 0)
green = (0, 1, 0)

displ = fitz.Rect(0, 50, 0, 50)
r = fitz.Rect(72, 72, 220, 100)
t1 = u"têxt üsès Lätiñ charß,\nEUR: €, mu: µ, super scripts: 23!"

def print_descr(annot):
"""Print a short description to the right of each annot rect."""
annot.parent.insert_text(

annot.rect.br + (10, -5), "%s annotation" % annot.type[1], color=red
)

doc = fitz.open()
page = doc.new_page()

page.set_rotation(0)

annot = page.add_caret_annot(r.tl)
print_descr(annot)

r = r + displ
annot = page.add_freetext_annot(

r,
t1,
fontsize=10,
rotate=90,
text_color=blue,
fill_color=gold,
align=fitz.TEXT_ALIGN_CENTER,

(continues on next page)

4.3. Recipes: Annotations 43

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

)
annot.set_border(width=0.3, dashes=[2])
annot.update(text_color=blue, fill_color=gold)
print_descr(annot)

r = annot.rect + displ
annot = page.add_text_annot(r.tl, t1)
print_descr(annot)

Adding text marker annotations:
first insert a unique text, then search for it, then mark it
pos = annot.rect.tl + displ.tl
page.insert_text(

pos, # insertion point
highlight, # inserted text
morph=(pos, fitz.Matrix(-5)), # rotate around insertion point

)
rl = page.search_for(highlight, quads=True) # need a quad b/o tilted text
annot = page.add_highlight_annot(rl[0])
print_descr(annot)

pos = annot.rect.bl # next insertion point
page.insert_text(pos, underline, morph=(pos, fitz.Matrix(-10)))
rl = page.search_for(underline, quads=True)
annot = page.add_underline_annot(rl[0])
print_descr(annot)

pos = annot.rect.bl
page.insert_text(pos, strikeout, morph=(pos, fitz.Matrix(-15)))
rl = page.search_for(strikeout, quads=True)
annot = page.add_strikeout_annot(rl[0])
print_descr(annot)

pos = annot.rect.bl
page.insert_text(pos, squiggled, morph=(pos, fitz.Matrix(-20)))
rl = page.search_for(squiggled, quads=True)
annot = page.add_squiggly_annot(rl[0])
print_descr(annot)

pos = annot.rect.bl
r = fitz.Rect(pos, pos.x + 75, pos.y + 35) + (0, 20, 0, 20)
annot = page.add_polyline_annot([r.bl, r.tr, r.br, r.tl]) # 'Polyline'
annot.set_border(width=0.3, dashes=[2])
annot.set_colors(stroke=blue, fill=green)
annot.set_line_ends(fitz.PDF_ANNOT_LE_CLOSED_ARROW, fitz.PDF_ANNOT_LE_R_CLOSED_ARROW)
annot.update(fill_color=(1, 1, 0))
print_descr(annot)

r += displ
annot = page.add_polygon_annot([r.bl, r.tr, r.br, r.tl]) # 'Polygon'
annot.set_border(width=0.3, dashes=[2])
annot.set_colors(stroke=blue, fill=gold)

(continues on next page)

44 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

annot.set_line_ends(fitz.PDF_ANNOT_LE_DIAMOND, fitz.PDF_ANNOT_LE_CIRCLE)
annot.update()
print_descr(annot)

r += displ
annot = page.add_line_annot(r.tr, r.bl) # 'Line'
annot.set_border(width=0.3, dashes=[2])
annot.set_colors(stroke=blue, fill=gold)
annot.set_line_ends(fitz.PDF_ANNOT_LE_DIAMOND, fitz.PDF_ANNOT_LE_CIRCLE)
annot.update()
print_descr(annot)

r += displ
annot = page.add_rect_annot(r) # 'Square'
annot.set_border(width=1, dashes=[1, 2])
annot.set_colors(stroke=blue, fill=gold)
annot.update(opacity=0.5)
print_descr(annot)

r += displ
annot = page.add_circle_annot(r) # 'Circle'
annot.set_border(width=0.3, dashes=[2])
annot.set_colors(stroke=blue, fill=gold)
annot.update()
print_descr(annot)

r += displ
annot = page.add_file_annot(

r.tl, b"just anything for testing", "testdata.txt" # 'FileAttachment'
)
print_descr(annot) # annot.rect

r += displ
annot = page.add_stamp_annot(r, stamp=10) # 'Stamp'
annot.set_colors(stroke=green)
annot.update()
print_descr(annot)

r += displ + (0, 0, 50, 10)
rc = page.insert_textbox(

r,
"This content will be removed upon applying the redaction.",
color=blue,
align=fitz.TEXT_ALIGN_CENTER,

)
annot = page.add_redact_annot(r)
print_descr(annot)

doc.save(__file__.replace(".py", "-%i.pdf" % page.rotation), deflate=True)

This script should lead to the following output:

4.3. Recipes: Annotations 45

PyMuPDF Documentation, Release 1.21.1

46 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.3.2 How to Use FreeText

This script shows a couple of ways to deal with ‘FreeText’ annotations:

-*- coding: utf-8 -*-
import fitz

some colors
blue = (0,0,1)
green = (0,1,0)
red = (1,0,0)
gold = (1,1,0)

a new PDF with 1 page
doc = fitz.open()
page = doc.new_page()

3 rectangles, same size, above each other
r1 = fitz.Rect(100,100,200,150)
r2 = r1 + (0,75,0,75)
r3 = r2 + (0,75,0,75)

the text, Latin alphabet
t = "¡Un pequeño texto para practicar!"

add 3 annots, modify the last one somewhat
a1 = page.add_freetext_annot(r1, t, color=red)
a2 = page.add_freetext_annot(r2, t, fontname="Ti", color=blue)
a3 = page.add_freetext_annot(r3, t, fontname="Co", color=blue, rotate=90)
a3.set_border(width=0)
a3.update(fontsize=8, fill_color=gold)

save the PDF
doc.save("a-freetext.pdf")

The result looks like this:

4.3. Recipes: Annotations 47

PyMuPDF Documentation, Release 1.21.1

4.3.3 Using Buttons and JavaScript

Since MuPDF v1.16, ‘FreeText’ annotations no longer support bold or italic versions of the Times-Roman, Helvetica
or Courier fonts.

A big thank you to our user @kurokawaikki, who contributed the following script to circumvent this restriction.

"""
Problem: Since MuPDF v1.16 a 'Freetext' annotation font is restricted to the
"normal" versions (no bold, no italics) of Times-Roman, Helvetica, Courier.
It is impossible to use PyMuPDF to modify this.

Solution: Using Adobe's JavaScript API, it is possible to manipulate properties
of Freetext annotations. Check out these references:
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/js_api_reference.pdf,
or https://www.adobe.com/devnet/acrobat/documentation.html.

Function 'this.getAnnots()' will return all annotations as an array. We loop
over this array to set the properties of the text through the 'richContents'
attribute.
There is no explicit property to set text to bold, but it is possible to set
fontWeight=800 (400 is the normal size) of richContents.
Other attributes, like color, italics, etc. can also be set via richContents.

If we have 'FreeText' annotations created with PyMuPDF, we can make use of this
JavaScript feature to modify the font - thus circumventing the above restriction.

Use PyMuPDF v1.16.12 to create a push button that executes a Javascript
containing the desired code. This is what this program does.
Then open the resulting file with Adobe reader (!).
After clicking on the button, all Freetext annotations will be bold, and the
file can be saved.

(continues on next page)

48 Chapter 4. Recipes

https://github.com/kurokawaikki

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

If desired, the button can be removed again, using free tools like PyMuPDF or
PDF XChange editor.

Note / Caution:

The JavaScript will **only** work if the file is opened with Adobe Acrobat reader!
When using other PDF viewers, the reaction is unforeseeable.
"""
import sys

import fitz

this JavaScript will execute when the button is clicked:
jscript = """
var annt = this.getAnnots();
annt.forEach(function (item, index) {

try {
var span = item.richContents;
span.forEach(function (it, dx) {

it.fontWeight = 800;
})
item.richContents = span;

} catch (err) {}
});
app.alert('Done');
"""
i_fn = sys.argv[1] # input file name
o_fn = "bold-" + i_fn # output filename
doc = fitz.open(i_fn) # open input
page = doc[0] # get desired page

--
make a push button for invoking the JavaScript
--

widget = fitz.Widget() # create widget

make it a 'PushButton'
widget.field_type = fitz.PDF_WIDGET_TYPE_BUTTON
widget.field_flags = fitz.PDF_BTN_FIELD_IS_PUSHBUTTON

widget.rect = fitz.Rect(5, 5, 20, 20) # button position

widget.script = jscript # fill in JavaScript source text
widget.field_name = "Make bold" # arbitrary name
widget.field_value = "Off" # arbitrary value
widget.fill_color = (0, 0, 1) # make button visible

annot = page.add_widget(widget) # add the widget to the page
doc.save(o_fn) # output the file

4.3. Recipes: Annotations 49

PyMuPDF Documentation, Release 1.21.1

4.3.4 How to Use Ink Annotations

Ink annotations are used to contain freehand scribbling. A typical example may be an image of your signature consisting
of first name and last name. Technically an ink annotation is implemented as a list of lists of points. Each point list
is regarded as a continuous line connecting the points. Different point lists represent independent line segments of the
annotation.

The following script creates an ink annotation with two mathematical curves (sine and cosine function graphs) as line
segments:

import math
import fitz

#--
preliminary stuff: create function value lists for sine and cosine
#--
w360 = math.pi * 2 # go through full circle
deg = w360 / 360 # 1 degree as radians
rect = fitz.Rect(100,200, 300, 300) # use this rectangle
first_x = rect.x0 # x starts from left
first_y = rect.y0 + rect.height / 2. # rect middle means y = 0
x_step = rect.width / 360 # rect width means 360 degrees
y_scale = rect.height / 2. # rect height means 2
sin_points = [] # sine values go here
cos_points = [] # cosine values go here
for x in range(362): # now fill in the values

x_coord = x * x_step + first_x # current x coordinate
y = -math.sin(x * deg) # sine
p = (x_coord, y * y_scale + first_y) # corresponding point
sin_points.append(p) # append
y = -math.cos(x * deg) # cosine
p = (x_coord, y * y_scale + first_y) # corresponding point
cos_points.append(p) # append

#--
create the document with one page
#--
doc = fitz.open() # make new PDF
page = doc.new_page() # give it a page

#--
add the Ink annotation, consisting of 2 curve segments
#--
annot = page.addInkAnnot((sin_points, cos_points))
let it look a little nicer
annot.set_border(width=0.3, dashes=[1,]) # line thickness, some dashing
annot.set_colors(stroke=(0,0,1)) # make the lines blue
annot.update() # update the appearance

page.draw_rect(rect, width=0.3) # only to demonstrate we did OK

doc.save("a-inktest.pdf")

This is the result:

50 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.4 Recipes: Drawing and Graphics

PDF files support elementary drawing operations as part of their syntax. This includes basic geometrical objects like
lines, curves, circles, rectangles including specifying colors.

The syntax for such operations is defined in “A Operator Summary” on page 643 of the Adobe PDF References. Spec-
ifying these operators for a PDF page happens in its contents objects.

PyMuPDF implements a large part of the available features via its Shape class, which is comparable to notions like
“canvas” in other packages (e.g. reportlab).

A shape is always created as a child of a page, usually with an instruction like shape = page.new_shape(). The
class defines numerous methods that perform drawing operations on the page’s area. For example, last_point =
shape.draw_rect(rect) draws a rectangle along the borders of a suitably defined rect = fitz.Rect(. . .).

The returned last_point always is the Point where drawing operation ended (“last point”). Every such elementary
drawing requires a subsequent Shape.finish() to “close” it, but there may be multiple drawings which have one
common finish() method.

In fact, Shape.finish() defines a group of preceding draw operations to form one – potentially rather complex –
graphics object. PyMuPDF provides several predefined graphics in shapes_and_symbols.py which demonstrate how
this works.

If you import this script, you can also directly use its graphics as in the following example:

-*- coding: utf-8 -*-
"""
Created on Sun Dec 9 08:34:06 2018

@author: Jorj
@license: GNU AFFERO GPL V3

Create a list of available symbols defined in shapes_and_symbols.py

This also demonstrates an example usage: how these symbols could be used
as bullet-point symbols in some text.

"""

import fitz
import shapes_and_symbols as sas

(continues on next page)

4.4. Recipes: Drawing and Graphics 51

https://discord.gg/TSpYGBW4eq
https://pypi.org/project/reportlab/
https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/shapes/shapes_and_symbols.py

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

list of available symbol functions and their descriptions
tlist = [

(sas.arrow, "arrow (easy)"),
(sas.caro, "caro (easy)"),
(sas.clover, "clover (easy)"),
(sas.diamond, "diamond (easy)"),
(sas.dontenter, "do not enter (medium)"),
(sas.frowney, "frowney (medium)"),
(sas.hand, "hand (complex)"),
(sas.heart, "heart (easy)"),
(sas.pencil, "pencil (very complex)"),
(sas.smiley, "smiley (easy)"),
]

r = fitz.Rect(50, 50, 100, 100) # first rect to contain a symbol
d = fitz.Rect(0, r.height + 10, 0, r.height + 10) # displacement to next rect
p = (15, -r.height * 0.2) # starting point of explanation text
rlist = [r] # rectangle list

for i in range(1, len(tlist)): # fill in all the rectangles
rlist.append(rlist[i-1] + d)

doc = fitz.open() # create empty PDF
page = doc.new_page() # create an empty page
shape = page.new_shape() # start a Shape (canvas)

for i, r in enumerate(rlist):
tlist[i][0](shape, rlist[i]) # execute symbol creation
shape.insert_text(rlist[i].br + p, # insert description text

tlist[i][1], fontsize=r.height/1.2)

store everything to the page's /Contents object
shape.commit()

import os
scriptdir = os.path.dirname(__file__)
doc.save(os.path.join(scriptdir, "symbol-list.pdf")) # save the PDF

This is the script’s outcome:

52 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.4.1 Extracting Drawings

• New in v1.18.0

The drawing commands issued by a page can be extracted. Interestingly, this is possible for all supported document
types – not just PDF: so you can use it for XPS, EPUB and others as well.

Page method, Page.get_drawings() accesses draw commands and converts them into a list of Python dictionaries.
Each dictionary – called a “path” – represents a separate drawing – it may be simple like a single line, or a complex
combination of lines and curves representing one of the shapes of the previous section.

The path dictionary has been designed such that it can easily be used by the Shape class and its methods. Here is an
example for a page with one path, that draws a red-bordered yellow circle inside rectangle Rect(100, 100, 200, 200):

>>> pprint(page.get_drawings())
[{'closePath': True,
'color': [1.0, 0.0, 0.0],
'dashes': '[] 0',
'even_odd': False,
'fill': [1.0, 1.0, 0.0],
'items': [('c',

Point(100.0, 150.0),
Point(100.0, 177.614013671875),
Point(122.38600158691406, 200.0),
Point(150.0, 200.0)),
('c',
Point(150.0, 200.0),
Point(177.61399841308594, 200.0),

(continues on next page)

4.4. Recipes: Drawing and Graphics 53

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

Point(200.0, 177.614013671875),
Point(200.0, 150.0)),
('c',
Point(200.0, 150.0),
Point(200.0, 122.385986328125),
Point(177.61399841308594, 100.0),
Point(150.0, 100.0)),
('c',
Point(150.0, 100.0),
Point(122.38600158691406, 100.0),
Point(100.0, 122.385986328125),
Point(100.0, 150.0))],

'lineCap': (0, 0, 0),
'lineJoin': 0,
'opacity': 1.0,
'rect': Rect(100.0, 100.0, 200.0, 200.0),
'width': 1.0}]
>>>

Note: You need (at least) 4 Bézier curves (of 3rd order) to draw a circle with acceptable precision. See this Wikipedia
article for some background.

The following is a code snippet which extracts the drawings of a page and re-draws them on a new page:

import fitz
doc = fitz.open("some.file")
page = doc[0]
paths = page.get_drawings() # extract existing drawings
this is a list of "paths", which can directly be drawn again using Shape

#
define some output page with the same dimensions
outpdf = fitz.open()
outpage = outpdf.new_page(width=page.rect.width, height=page.rect.height)
shape = outpage.new_shape() # make a drawing canvas for the output page

loop through the paths and draw them

for path in paths:

draw each entry of the 'items' list

for item in path["items"]: # these are the draw commands

if item[0] == "l": # line
shape.draw_line(item[1], item[2])

elif item[0] == "re": # rectangle
shape.draw_rect(item[1])

elif item[0] == "qu": # quad
shape.draw_quad(item[1])

elif item[0] == "c": # curve
shape.draw_bezier(item[1], item[2], item[3], item[4])

(continues on next page)

54 Chapter 4. Recipes

https://en.wikipedia.org/wiki/B%C3%A9zier_curve
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

else:
raise ValueError("unhandled drawing", item)

--
all items are drawn, now apply the common properties
to finish the path
--
shape.finish(

fill=path["fill"], # fill color
color=path["color"], # line color
dashes=path["dashes"], # line dashing
even_odd=path.get("even_odd", True), # control color of overlaps
closePath=path["closePath"], # whether to connect last and first point
lineJoin=path["lineJoin"], # how line joins should look like
lineCap=max(path["lineCap"]), # how line ends should look like
width=path["width"], # line width
stroke_opacity=path.get("stroke_opacity", 1), # same value for both
fill_opacity=path.get("fill_opacity", 1), # opacity parameters
)

all paths processed - commit the shape to its page
shape.commit()
outpdf.save("drawings-page-0.pdf")

As can be seen, there is a high congruence level with the Shape class. With one exception: For technical reasons
lineCap is a tuple of 3 numbers here, whereas it is an integer in Shape (and in PDF). So we simply take the maximum
value of that tuple.

Here is a comparison between input and output of an example page, created by the previous script:

Note: The reconstruction of graphics, like shown here, is not perfect. The following aspects will not be reproduced
as of this version:

• Page definitions can be complex and include instructions for not showing / hiding certain areas to keep them

4.4. Recipes: Drawing and Graphics 55

PyMuPDF Documentation, Release 1.21.1

invisible. Things like this are ignored by Page.get_drawings() - it will always return all paths.

Note: You can use the path list to make your own lists of e.g. all lines or all rectangles on the page and subselect them
by criteria, like color or position on the page etc.

4.5 Recipes: Multiprocessing

MuPDF has no integrated support for threading - they call themselves “threading-agnostic”. While there do exist tricky
possibilities to still use threading with MuPDF, the baseline consequence for PyMuPDF is:

No Python threading support.
Using PyMuPDF in a Python threading environment will lead to blocking effects for the main thread.

However, there is the option to use Python’s multiprocessing module in a variety of ways.

If you are looking to speed up page-oriented processing for a large document, use this script as a starting point. It
should be at least twice as fast as the corresponding sequential processing.

"""
Demonstrate the use of multiprocessing with PyMuPDF.

Depending on the number of CPUs, the document is divided in page ranges.
Each range is then worked on by one process.
The type of work would typically be text extraction or page rendering. Each
process must know where to put its results, because this processing pattern
does not include inter-process communication or data sharing.

Compared to sequential processing, speed improvements in range of 100% (ie.
twice as fast) or better can be expected.
"""
from __future__ import print_function, division
import sys
import os
import time
from multiprocessing import Pool, cpu_count
import fitz

choose a version specific timer function (bytes == str in Python 2)
mytime = time.clock if str is bytes else time.perf_counter

def render_page(vector):
"""Render a page range of a document.

Notes:
The PyMuPDF document cannot be part of the argument, because that
cannot be pickled. So we are being passed in just its filename.
This is no performance issue, because we are a separate process and
need to open the document anyway.

(continues on next page)

56 Chapter 4. Recipes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

Any page-specific function can be processed here - rendering is just
an example - text extraction might be another.
The work must however be self-contained: no inter-process communication
or synchronization is possible with this design.
Care must also be taken with which parameters are contained in the
argument, because it will be passed in via pickling by the Pool class.
So any large objects will increase the overall duration.

Args:
vector: a list containing required parameters.

"""
recreate the arguments
idx = vector[0] # this is the segment number we have to process
cpu = vector[1] # number of CPUs
filename = vector[2] # document filename
mat = vector[3] # the matrix for rendering
doc = fitz.open(filename) # open the document
num_pages = doc.page_count # get number of pages

pages per segment: make sure that cpu * seg_size >= num_pages!
seg_size = int(num_pages / cpu + 1)
seg_from = idx * seg_size # our first page number
seg_to = min(seg_from + seg_size, num_pages) # last page number

for i in range(seg_from, seg_to): # work through our page segment
page = doc[i]
page.get_text("rawdict") # use any page-related type of work here, eg
pix = page.get_pixmap(alpha=False, matrix=mat)
store away the result somewhere ...
pix.save("p-%i.png" % i)

print("Processed page numbers %i through %i" % (seg_from, seg_to - 1))

if __name__ == "__main__":
t0 = mytime() # start a timer
filename = sys.argv[1]
mat = fitz.Matrix(0.2, 0.2) # the rendering matrix: scale down to 20%
cpu = cpu_count()

make vectors of arguments for the processes
vectors = [(i, cpu, filename, mat) for i in range(cpu)]
print("Starting %i processes for '%s'." % (cpu, filename))

pool = Pool() # make pool of 'cpu_count()' processes
pool.map(render_page, vectors, 1) # start processes passing each a vector

t1 = mytime() # stop the timer
print("Total time %g seconds" % round(t1 - t0, 2))

Here is a more complex example involving inter-process communication between a main process (showing a GUI) and
a child process doing PyMuPDF access to a document.

"""
(continues on next page)

4.5. Recipes: Multiprocessing 57

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

Created on 2019-05-01

@author: yinkaisheng@live.com
@copyright: 2019 yinkaisheng@live.com
@license: GNU AFFERO GPL 3.0

Demonstrate the use of multiprocessing with PyMuPDF

This example shows some more advanced use of multiprocessing.
The main process show a Qt GUI and establishes a 2-way communication with
another process, which accesses a supported document.
"""
import os
import sys
import time
import multiprocessing as mp
import queue
import fitz

''' PyQt and PySide namespace unifier shim
https://www.pythonguis.com/faq/pyqt6-vs-pyside6/
simple "if 'PyQt6' in sys.modules:" test fails for me, so the more complex pkgutil use
overkill for most people who might have one or the other, why both?

'''

from pkgutil import iter_modules

def module_exists(module_name):
return module_name in (name for loader, name, ispkg in iter_modules())

if module_exists("PyQt6"):
PyQt6
from PyQt6 import QtGui, QtWidgets, QtCore
from PyQt6.QtCore import pyqtSignal as Signal, pyqtSlot as Slot
wrapper = "PyQt6"

elif module_exists("PySide6"):
PySide6
from PySide6 import QtGui, QtWidgets, QtCore
from PySide6.QtCore import Signal, Slot
wrapper = "PySide6"

my_timer = time.clock if str is bytes else time.perf_counter

class DocForm(QtWidgets.QWidget):
def __init__(self):

super().__init__()
self.process = None
self.queNum = mp.Queue()
self.queDoc = mp.Queue()

(continues on next page)

58 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

self.page_count = 0
self.curPageNum = 0
self.lastDir = ""
self.timerSend = QtCore.QTimer(self)
self.timerSend.timeout.connect(self.onTimerSendPageNum)
self.timerGet = QtCore.QTimer(self)
self.timerGet.timeout.connect(self.onTimerGetPage)
self.timerWaiting = QtCore.QTimer(self)
self.timerWaiting.timeout.connect(self.onTimerWaiting)
self.initUI()

def initUI(self):
vbox = QtWidgets.QVBoxLayout()
self.setLayout(vbox)

hbox = QtWidgets.QHBoxLayout()
self.btnOpen = QtWidgets.QPushButton("OpenDocument", self)
self.btnOpen.clicked.connect(self.openDoc)
hbox.addWidget(self.btnOpen)

self.btnPlay = QtWidgets.QPushButton("PlayDocument", self)
self.btnPlay.clicked.connect(self.playDoc)
hbox.addWidget(self.btnPlay)

self.btnStop = QtWidgets.QPushButton("Stop", self)
self.btnStop.clicked.connect(self.stopPlay)
hbox.addWidget(self.btnStop)

self.label = QtWidgets.QLabel("0/0", self)
self.label.setFont(QtGui.QFont("Verdana", 20))
hbox.addWidget(self.label)

vbox.addLayout(hbox)

self.labelImg = QtWidgets.QLabel("Document", self)
sizePolicy = QtWidgets.QSizePolicy(

QtWidgets.QSizePolicy.Policy.Preferred, QtWidgets.QSizePolicy.Policy.
→˓Expanding

)
self.labelImg.setSizePolicy(sizePolicy)
vbox.addWidget(self.labelImg)

self.setGeometry(100, 100, 400, 600)
self.setWindowTitle("PyMuPDF Document Player")
self.show()

def openDoc(self):
path, _ = QtWidgets.QFileDialog.getOpenFileName(

self,
"Open Document",
self.lastDir,
"All Supported Files (*.pdf;*.epub;*.xps;*.oxps;*.cbz;*.fb2);;PDF Files (*.

(continues on next page)

4.5. Recipes: Multiprocessing 59

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

→˓pdf);;EPUB Files (*.epub);;XPS Files (*.xps);;OpenXPS Files (*.oxps);;CBZ Files (*.
→˓cbz);;FB2 Files (*.fb2)",

#options=QtWidgets.QFileDialog.Options(),
)
if path:

self.lastDir, self.file = os.path.split(path)
if self.process:

self.queNum.put(-1) # use -1 to notify the process to exit
self.timerSend.stop()
self.curPageNum = 0
self.page_count = 0
self.process = mp.Process(

target=openDocInProcess, args=(path, self.queNum, self.queDoc)
)
self.process.start()
self.timerGet.start(40)
self.label.setText("0/0")
self.queNum.put(0)
self.startTime = time.perf_counter()
self.timerWaiting.start(40)

def playDoc(self):
self.timerSend.start(500)

def stopPlay(self):
self.timerSend.stop()

def onTimerSendPageNum(self):
if self.curPageNum < self.page_count - 1:

self.queNum.put(self.curPageNum + 1)
else:

self.timerSend.stop()

def onTimerGetPage(self):
try:

ret = self.queDoc.get(False)
if isinstance(ret, int):

self.timerWaiting.stop()
self.page_count = ret
self.label.setText("{}/{}".format(self.curPageNum + 1, self.page_count))

else: # tuple, pixmap info
num, samples, width, height, stride, alpha = ret
self.curPageNum = num
self.label.setText("{}/{}".format(self.curPageNum + 1, self.page_count))
fmt = (

QtGui.QImage.Format.Format_RGBA8888
if alpha
else QtGui.QImage.Format.Format_RGB888

)
qimg = QtGui.QImage(samples, width, height, stride, fmt)
self.labelImg.setPixmap(QtGui.QPixmap.fromImage(qimg))

except queue.Empty as ex:

(continues on next page)

60 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

pass

def onTimerWaiting(self):
self.labelImg.setText(

'Loading "{}", {:.2f}s'.format(
self.file, time.perf_counter() - self.startTime

)
)

def closeEvent(self, event):
self.queNum.put(-1)
event.accept()

def openDocInProcess(path, queNum, quePageInfo):
start = my_timer()
doc = fitz.open(path)
end = my_timer()
quePageInfo.put(doc.page_count)
while True:

num = queNum.get()
if num < 0:

break
page = doc.load_page(num)
pix = page.get_pixmap()
quePageInfo.put(

(num, pix.samples, pix.width, pix.height, pix.stride, pix.alpha)
)

doc.close()
print("process exit")

if __name__ == "__main__":
app = QtWidgets.QApplication(sys.argv)
form = DocForm()
sys.exit(app.exec())

4.6 Recipes: General

4.6.1 How to Open with a Wrong File Extension

If you have a document with a wrong file extension for its type, you can still correctly open it.

Assume that “some.file” is actually an XPS. Open it like so:

>>> doc = fitz.open("some.file", filetype="xps")

Note: MuPDF itself does not try to determine the file type from the file contents. You are responsible for supplying

4.6. Recipes: General 61

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

the filetype info in some way – either implicitly via the file extension, or explicitly as shown. There are pure Python
packages like filetype that help you doing this. Also consult the Document chapter for a full description.

If MuPDF encounters a file with an unknown / missing extension, it will try to open it as a PDF. So in these cases
there is no need to for additional precautions. Similarly, for memory documents, you can just specify doc=fitz.
open(stream=mem_area) to open it as a PDF document.

4.6.2 How to Embed or Attach Files

PDF supports incorporating arbitrary data. This can be done in one of two ways: “embedding” or “attaching”.
PyMuPDF supports both options.

1. Attached Files: data are attached to a page by way of a FileAttachment annotation with this statement: annot =
page.add_file_annot(pos, . . .), for details see Page.add_file_annot(). The first parameter “pos” is the Point,
where a “PushPin” icon should be placed on the page.

2. Embedded Files: data are embedded on the document level via method Document.embfile_add().

The basic differences between these options are (1) you need edit permission to embed a file, but only annotation
permission to attach, (2) like all annotations, attachments are visible on a page, embedded files are not.

There exist several example scripts: embedded-list.py, new-annots.py.

Also look at the sections above and at chapter Appendix 3.

4.6.3 How to Delete and Re-Arrange Pages

With PyMuPDF you have all options to copy, move, delete or re-arrange the pages of a PDF. Intuitive methods exist
that allow you to do this on a page-by-page level, like the Document.copy_page() method.

Or you alternatively prepare a complete new page layout in form of a Python sequence, that contains the page numbers
you want, in the sequence you want, and as many times as you want each page. The following may illustrate what can
be done with Document.select():

doc.select([1, 1, 1, 5, 4, 9, 9, 9, 0, 2, 2, 2])

Now let’s prepare a PDF for double-sided printing (on a printer not directly supporting this):

The number of pages is given by len(doc) (equal to doc.page_count). The following lists represent the even and
the odd page numbers, respectively:

>>> p_even = [p in range(doc.page_count) if p % 2 == 0]
>>> p_odd = [p in range(doc.page_count) if p % 2 == 1]

This snippet creates the respective sub documents which can then be used to print the document:

>>> doc.select(p_even) # only the even pages left over
>>> doc.save("even.pdf") # save the "even" PDF
>>> doc.close() # recycle the file
>>> doc = fitz.open(doc.name) # re-open
>>> doc.select(p_odd) # and do the same with the odd pages
>>> doc.save("odd.pdf")

62 Chapter 4. Recipes

https://pypi.org/project/filetype/
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/embedded-list.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/new-annots.py

PyMuPDF Documentation, Release 1.21.1

For more information also have a look at this Wiki article.

The following example will reverse the order of all pages (extremely fast: sub-second time for the 756 pages of the
Adobe PDF References):

>>> lastPage = doc.page_count - 1
>>> for i in range(lastPage):

doc.move_page(lastPage, i) # move current last page to the front

This snippet duplicates the PDF with itself so that it will contain the pages 0, 1, . . . , n, 0, 1, . . . , n (extremely fast and
without noticeably increasing the file size!):

>>> page_count = len(doc)
>>> for i in range(page_count):

doc.copy_page(i) # copy this page to after last page

4.6.4 How to Join PDFs

It is easy to join PDFs with method Document.insert_pdf(). Given open PDF documents, you can copy page
ranges from one to the other. You can select the point where the copied pages should be placed, you can revert the page
sequence and also change page rotation. This Wiki article contains a full description.

The GUI script PDFjoiner.py uses this method to join a list of files while also joining the respective table of contents
segments. It looks like this:

4.6. Recipes: General 63

https://github.com/pymupdf/PyMuPDF/wiki/Rearranging-Pages-of-a-PDF
https://github.com/pymupdf/PyMuPDF/wiki/Inserting-Pages-from-other-PDFs
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.21.1

4.6.5 How to Add Pages

There two methods for adding new pages to a PDF: Document.insert_page() and Document.new_page() (and
they share a common code base).

new_page
Document.new_page() returns the created Page object. Here is the constructor showing defaults:

>>> doc = fitz.open(...) # some new or existing PDF document
>>> page = doc.new_page(to = -1, # insertion point: end of document

width = 595, # page dimension: A4 portrait
height = 842)

The above could also have been achieved with the short form page = doc.new_page(). The to parameter specifies the
document’s page number (0-based) in front of which to insert.

To create a page in landscape format, just exchange the width and height values.

Use this to create the page with another pre-defined paper format:

>>> w, h = fitz.paper_size("letter-l") # 'Letter' landscape
>>> page = doc.new_page(width = w, height = h)

The convenience function paper_size() knows over 40 industry standard paper formats to choose from. To see them,
inspect dictionary paperSizes. Pass the desired dictionary key to paper_size() to retrieve the paper dimensions.
Upper and lower case is supported. If you append “-L” to the format name, the landscape version is returned.

Note: Here is a 3-liner that creates a PDF with one empty page. Its file size is 470 bytes:

>>> doc = fitz.open()
>>> doc.new_page()
>>> doc.save("A4.pdf")

insert_page
Document.insert_page() also inserts a new page and accepts the same parameters to, width and height. But it lets
you also insert arbitrary text into the new page and returns the number of inserted lines:

>>> doc = fitz.open(...) # some new or existing PDF document
>>> n = doc.insert_page(to = -1, # default insertion point

text = None, # string or sequence of strings
fontsize = 11,
width = 595,
height = 842,
fontname = "Helvetica", # default font
fontfile = None, # any font file name
color = (0, 0, 0)) # text color (RGB)

The text parameter can be a (sequence of) string (assuming UTF-8 encoding). Insertion will start at Point (50, 72),
which is one inch below top of page and 50 points from the left. The number of inserted text lines is returned. See the
method definition for more details.

64 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.6.6 How To Dynamically Clean Up Corrupt PDFs

This shows a potential use of PyMuPDF with another Python PDF library (the excellent pure Python package pdfrw is
used here as an example).

If a clean, non-corrupt / decompressed PDF is needed, one could dynamically invoke PyMuPDF to recover from many
problems like so:

import sys
from io import BytesIO
from pdfrw import PdfReader
import fitz

#---------------------------------------
'Tolerant' PDF reader
#---------------------------------------
def reader(fname, password = None):

idata = open(fname, "rb").read() # read the PDF into memory and
ibuffer = BytesIO(idata) # convert to stream
if password is None:

try:
return PdfReader(ibuffer) # if this works: fine!

except:
pass

either we need a password or it is a problem-PDF
create a repaired / decompressed / decrypted version
doc = fitz.open("pdf", ibuffer)
if password is not None: # decrypt if password provided

rc = doc.authenticate(password)
if not rc > 0:

raise ValueError("wrong password")
c = doc.tobytes(garbage=3, deflate=True)
del doc # close & delete doc
return PdfReader(BytesIO(c)) # let pdfrw retry

#---------------------------------------
Main program
#---------------------------------------
pdf = reader("pymupdf.pdf", password = None) # include a password if necessary
print pdf.Info
do further processing

With the command line utility pdftk (available for Windows only, but reported to also run under Wine) a similar result
can be achieved, see here. However, you must invoke it as a separate process via subprocess.Popen, using stdin and
stdout as communication vehicles.

4.6. Recipes: General 65

https://pypi.python.org/pypi/pdfrw
https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
https://www.winehq.org/
http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/

PyMuPDF Documentation, Release 1.21.1

4.6.7 How to Split Single Pages

This deals with splitting up pages of a PDF in arbitrary pieces. For example, you may have a PDF with Letter format
pages which you want to print with a magnification factor of four: each page is split up in 4 pieces which each go to a
separate PDF page in Letter format again:

"""
Create a PDF copy with split-up pages (posterize)

License: GNU AFFERO GPL V3
(c) 2018 Jorj X. McKie

Usage

python posterize.py input.pdf

Result

A file "poster-input.pdf" with 4 output pages for every input page.

Notes

(1) Output file is chosen to have page dimensions of 1/4 of input.

(2) Easily adapt the example to make n pages per input, or decide per each
input page or whatever.

Dependencies

PyMuPDF 1.12.2 or later
"""
import fitz, sys
infile = sys.argv[1] # input file name
src = fitz.open(infile)
doc = fitz.open() # empty output PDF

for spage in src: # for each page in input
r = spage.rect # input page rectangle
d = fitz.Rect(spage.cropbox_position, # CropBox displacement if not

spage.cropbox_position) # starting at (0, 0)
#--
example: cut input page into 2 x 2 parts
#--
r1 = r / 2 # top left rect
r2 = r1 + (r1.width, 0, r1.width, 0) # top right rect
r3 = r1 + (0, r1.height, 0, r1.height) # bottom left rect
r4 = fitz.Rect(r1.br, r.br) # bottom right rect
rect_list = [r1, r2, r3, r4] # put them in a list

for rx in rect_list: # run thru rect list
rx += d # add the CropBox displacement
page = doc.new_page(-1, # new output page with rx dimensions

width = rx.width,
(continues on next page)

66 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

height = rx.height)
page.show_pdf_page(

page.rect, # fill all new page with the image
src, # input document
spage.number, # input page number
clip = rx, # which part to use of input page

)

that's it, save output file
doc.save("poster-" + src.name,

garbage=3, # eliminate duplicate objects
deflate=True, # compress stuff where possible

)

This shows what happens to an input page:

4.6.8 How to Combine Single Pages

This deals with joining PDF pages to form a new PDF with pages each combining two or four original ones (also called
“2-up”, “4-up”, etc.). This could be used to create booklets or thumbnail-like overviews:

'''
Copy an input PDF to output combining every 4 pages

License: GNU AFFERO GPL V3
(c) 2018 Jorj X. McKie

Usage

python 4up.py input.pdf

Result

A file "4up-input.pdf" with 1 output page for every 4 input pages.

Notes

(1) Output file is chosen to have A4 portrait pages. Input pages are scaled

maintaining side proportions. Both can be changed, e.g. based on input
page size. However, note that not all pages need to have the same size, etc.

(2) Easily adapt the example to combine just 2 pages (like for a booklet) or
(continues on next page)

4.6. Recipes: General 67

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

make the output page dimension dependent on input, or whatever.

Dependencies

PyMuPDF 1.12.1 or later
'''
import fitz, sys
infile = sys.argv[1]
src = fitz.open(infile)
doc = fitz.open() # empty output PDF

width, height = fitz.paper_size("a4") # A4 portrait output page format
r = fitz.Rect(0, 0, width, height)

define the 4 rectangles per page
r1 = r / 2 # top left rect
r2 = r1 + (r1.width, 0, r1.width, 0) # top right
r3 = r1 + (0, r1.height, 0, r1.height) # bottom left
r4 = fitz.Rect(r1.br, r.br) # bottom right

put them in a list
r_tab = [r1, r2, r3, r4]

now copy input pages to output
for spage in src:

if spage.number % 4 == 0: # create new output page
page = doc.new_page(-1,

width = width,
height = height)

insert input page into the correct rectangle
page.show_pdf_page(r_tab[spage.number % 4], # select output rect

src, # input document
spage.number) # input page number

by all means, save new file using garbage collection and compression
doc.save("4up-" + infile, garbage=3, deflate=True)

Example effect:

68 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.6.9 How to Convert Any Document to PDF

Here is a script that converts any PyMuPDF supported document to a PDF. These include XPS, EPUB, FB2, CBZ and
all image formats, including multi-page TIFF images.

It features maintaining any metadata, table of contents and links contained in the source document:

"""
Demo script: Convert input file to a PDF

Intended for multi-page input files like XPS, EPUB etc.

Features:

Recovery of table of contents and links of input file.
While this works well for bookmarks (outlines, table of contents),
links will only work if they are not of type "LINK_NAMED".
This link type is skipped by the script.

For XPS and EPUB input, internal links however **are** of type "LINK_NAMED".
Base library MuPDF does not resolve them to page numbers.

So, for anyone expert enough to know the internal structure of these
document types, can further interpret and resolve these link types.

Dependencies

PyMuPDF v1.14.0+
"""
import sys
import fitz
if not (list(map(int, fitz.VersionBind.split("."))) >= [1,14,0]):

raise SystemExit("need PyMuPDF v1.14.0+")
fn = sys.argv[1]

print("Converting '%s' to '%s.pdf'" % (fn, fn))

doc = fitz.open(fn)

b = doc.convert_to_pdf() # convert to pdf
pdf = fitz.open("pdf", b) # open as pdf

toc= doc.het_toc() # table of contents of input
pdf.set_toc(toc) # simply set it for output
meta = doc.metadata # read and set metadata
if not meta["producer"]:

meta["producer"] = "PyMuPDF v" + fitz.VersionBind

if not meta["creator"]:
meta["creator"] = "PyMuPDF PDF converter"

meta["modDate"] = fitz.get_pdf_now()
meta["creationDate"] = meta["modDate"]
pdf.set_metadata(meta)

(continues on next page)

4.6. Recipes: General 69

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

now process the links
link_cnti = 0
link_skip = 0
for pinput in doc: # iterate through input pages

links = pinput.get_links() # get list of links
link_cnti += len(links) # count how many
pout = pdf[pinput.number] # read corresp. output page
for l in links: # iterate though the links

if l["kind"] == fitz.LINK_NAMED: # we do not handle named links
print("named link page", pinput.number, l)
link_skip += 1 # count them
continue

pout.insert_link(l) # simply output the others

save the conversion result
pdf.save(fn + ".pdf", garbage=4, deflate=True)
say how many named links we skipped
if link_cnti > 0:

print("Skipped %i named links of a total of %i in input." % (link_skip, link_cnti))

4.6.10 How to Deal with Messages Issued by MuPDF

Since PyMuPDF v1.16.0, error messages issued by the underlying MuPDF library are being redirected to the Python
standard device sys.stderr. So you can handle them like any other output going to this devices.

In addition, these messages go to the internal buffer together with any MuPDF warnings – see below.

We always prefix these messages with an identifying string “mupdf:”. If you prefer to not see recoverable MuPDF
errors at all, issue the command fitz.TOOLS.mupdf_display_errors(False).

MuPDF warnings continue to be stored in an internal buffer and can be viewed using Tools.mupdf_warnings().

Please note that MuPDF errors may or may not lead to Python exceptions. In other words, you may see error messages
from which MuPDF can recover and continue processing.

Example output for a recoverable error. We are opening a damaged PDF, but MuPDF is able to repair it and gives
us a little information on what happened. Then we illustrate how to find out whether the document can later be saved
incrementally. Checking the Document.is_dirty attribute at this point also indicates that during fitz.open the
document had to be repaired:

>>> import fitz
>>> doc = fitz.open("damaged-file.pdf") # leads to a sys.stderr message:
mupdf: cannot find startxref
>>> print(fitz.TOOLS.mupdf_warnings()) # check if there is more info:
cannot find startxref
trying to repair broken xref
repairing PDF document
object missing 'endobj' token
>>> doc.can_save_incrementally() # this is to be expected:
False
>>> # the following indicates whether there are updates so far
>>> # this is the case because of the repair actions:

(continues on next page)

70 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> doc.is_dirty
True
>>> # the document has nevertheless been created:
>>> doc
fitz.Document('damaged-file.pdf')
>>> # we now know that any save must occur to a new file

Example output for an unrecoverable error:

>>> import fitz
>>> doc = fitz.open("does-not-exist.pdf")
mupdf: cannot open does-not-exist.pdf: No such file or directory
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
doc = fitz.open("does-not-exist.pdf")

File "C:\Users\Jorj\AppData\Local\Programs\Python\Python37\lib\site-packages\fitz\fitz.
→˓py", line 2200, in __init__

_fitz.Document_swiginit(self, _fitz.new_Document(filename, stream, filetype, rect,␣
→˓width, height, fontsize))
RuntimeError: cannot open does-not-exist.pdf: No such file or directory
>>>

4.6.11 How to Deal with PDF Encryption

Starting with version 1.16.0, PDF decryption and encryption (using passwords) are fully supported. You can do the
following:

• Check whether a document is password protected / (still) encrypted (Document.needs_pass, Document.
is_encrypted).

• Gain access authorization to a document (Document.authenticate()).

• Set encryption details for PDF files using Document.save() or Document.write() and

– decrypt or encrypt the content

– set password(s)

– set the encryption method

– set permission details

Note: A PDF document may have two different passwords:

• The owner password provides full access rights, including changing passwords, encryption method, or permis-
sion detail.

• The user password provides access to document content according to the established permission details. If
present, opening the PDF in a viewer will require providing it.

Method Document.authenticate() will automatically establish access rights according to the password used.

The following snippet creates a new PDF and encrypts it with separate user and owner passwords. Permissions are
granted to print, copy and annotate, but no changes are allowed to someone authenticating with the user password:

4.6. Recipes: General 71

PyMuPDF Documentation, Release 1.21.1

import fitz

text = "some secret information" # keep this data secret
perm = int(

fitz.PDF_PERM_ACCESSIBILITY # always use this
| fitz.PDF_PERM_PRINT # permit printing
| fitz.PDF_PERM_COPY # permit copying
| fitz.PDF_PERM_ANNOTATE # permit annotations

)
owner_pass = "owner" # owner password
user_pass = "user" # user password
encrypt_meth = fitz.PDF_ENCRYPT_AES_256 # strongest algorithm
doc = fitz.open() # empty pdf
page = doc.new_page() # empty page
page.insert_text((50, 72), text) # insert the data
doc.save(

"secret.pdf",
encryption=encrypt_meth, # set the encryption method
owner_pw=owner_pass, # set the owner password
user_pw=user_pass, # set the user password
permissions=perm, # set permissions

)

Opening this document with some viewer (Nitro Reader 5) reflects these settings:

Decrypting will automatically happen on save as before when no encryption parameters are provided.

To keep the encryption method of a PDF save it using encryption=fitz.PDF_ENCRYPT_KEEP. If
doc.can_save_incrementally() == True, an incremental save is also possible.

To change the encryption method specify the full range of options above (encryption, owner_pw, user_pw, permis-
sions). An incremental save is not possible in this case.

72 Chapter 4. Recipes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

4.7 Recipes: Common Issues and their Solutions

4.7.1 Changing Annotations: Unexpected Behaviour

4.7.1.1 Problem

There are two scenarios:

1. Updating an annotation with PyMuPDF which was created by some other software.

2. Creating an annotation with PyMuPDF and later changing it with some other software.

In both cases you may experience unintended changes, like a different annotation icon or text font, the fill color or line
dashing have disappeared, line end symbols have changed their size or even have disappeared too, etc.

4.7.1.2 Cause

Annotation maintenance is handled differently by each PDF maintenance application. Some annotation types may not
be supported, or not be supported fully or some details may be handled in a different way than in another application.
There is no standard.
Almost always a PDF application also comes with its own icons (file attachments, sticky notes and stamps) and its own
set of supported text fonts. For example:

• (Py-) MuPDF only supports these 5 basic fonts for ‘FreeText’ annotations: Helvetica, Times-Roman, Courier,
ZapfDingbats and Symbol – no italics / no bold variations. When changing a ‘FreeText’ annotation created by
some other app, its font will probably not be recognized nor accepted and be replaced by Helvetica.

• PyMuPDF supports all PDF text markers (highlight, underline, strikeout, squiggly), but these types cannot be
updated with Adobe Acrobat Reader.

In most cases there also exists limited support for line dashing which causes existing dashes to be replaced by straight
lines. For example:

• PyMuPDF fully supports all line dashing forms, while other viewers only accept a limited subset.

4.7.1.3 Solutions

Unfortunately there is not much you can do in most of these cases.

1. Stay with the same software for creating and changing an annotation.

2. When using PyMuPDF to change an “alien” annotation, try to avoid Annot.update(). The following methods
can be used without it, so that the original appearance should be maintained:

• Annot.set_rect() (location changes)

• Annot.set_flags() (annotation behaviour)

• Annot.set_info() (meta information, except changes to content)

• Annot.set_popup() (create popup or change its rect)

• Annot.set_optional_content() (add / remove reference to optional content information)

• Annot.set_open()

• Annot.update_file() (file attachment changes)

4.7. Recipes: Common Issues and their Solutions 73

PyMuPDF Documentation, Release 1.21.1

4.7.2 Misplaced Item Insertions on PDF Pages

4.7.2.1 Problem

You inserted an item (like an image, an annotation or some text) on an existing PDF page, but later you find it being
placed at a different location than intended. For example an image should be inserted at the top, but it unexpectedly
appears near the bottom of the page.

4.7.2.2 Cause

The creator of the PDF has established a non-standard page geometry without keeping it “local” (as they should!). Most
commonly, the PDF standard point (0,0) at bottom-left has been changed to the top-left point. So top and bottom are
reversed – causing your insertion to be misplaced.

The visible image of a PDF page is controlled by commands coded in a special mini-language. For an overview of
this language consult “Operator Summary” on pp. 643 of the Adobe PDF References. These commands are stored in
contents objects as strings (bytes in PyMuPDF).

There are commands in that language, which change the coordinate system of the page for all the following commands.
In order to limit the scope of such commands to “local”, they must be wrapped by the command pair q (“save graphics
state”, or “stack”) and Q (“restore graphics state”, or “unstack”).

So the PDF creator did this:

stream
1 0 0 -1 0 792 cm % <=== change of coordinate system:
... % letter page, top / bottom reversed
... % remains active beyond these lines
endstream

where they should have done this:

stream
q % put the following in a stack
1 0 0 -1 0 792 cm % <=== scope of this is limited by Q command
... % here, a different geometry exists
Q % after this line, geometry of outer scope prevails
endstream

Note:
• In the mini-language’s syntax, spaces and line breaks are equally accepted token delimiters.

• Multiple consecutive delimiters are treated as one.

• Keywords “stream” and “endstream” are inserted automatically – not by the programmer.

74 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.7.2.3 Solutions

Since v1.16.0, there is the property Page.is_wrapped , which lets you check whether a page’s contents are wrapped
in that string pair.

If it is False or if you want to be on the safe side, pick one of the following:

1. The easiest way: in your script, do a Page.clean_contents() before you do your first item insertion.

2. Pre-process your PDF with the MuPDF command line utility mutool clean -c . . . and work with its output file
instead.

3. Directly wrap the page’s contents with the stacking commands before you do your first item insertion.

Solutions 1. and 2. use the same technical basis and do a lot more than what is required in this context: they also
clean up other inconsistencies or redundancies that may exist, multiple /Contents objects will be concatenated into one,
and much more.

Note: For incremental saves, solution 1. has an unpleasant implication: it will bloat the update delta, because
it changes so many things and, in addition, stores the cleaned contents uncompressed. So, if you use Page.
clean_contents() you should consider saving to a new file with (at least) garbage=3 and deflate=True.

Solution 3. is completely under your control and only does the minimum corrective action. There is a handy low-level
utility function which you can use for this. Suggested procedure:

• Prepend the missing stacking command by executing fitz.TOOLS._insert_contents(page, b”qn”, False).

• Append an unstacking command by executing fitz.TOOLS._insert_contents(page, b”nQ”, True).

• Alternatively, just use Page._wrap_contents(), which executes the previous two functions.

Note: If small incremental update deltas are a concern, this approach is the most effective. Other contents objects are
not touched. The utility method creates two new PDF stream objects and inserts them before, resp. after the page’s
other contents. We therefore recommend the following snippet to get this situation under control:

>>> if not page.is_wrapped:
page.wrap_contents()

>>> # start inserting text, images or annotations here

4.7.3 Missing or Unreadable Extracted Text

Fairly often, text extraction does not work text as you would expect: text may be missing, or may not appear in the
reading sequence visible on your screen, or contain garbled characters (like a ? or a “TOFU” symbol), etc. This can
be caused by a number of different problems.

4.7. Recipes: Common Issues and their Solutions 75

PyMuPDF Documentation, Release 1.21.1

4.7.3.1 Problem: no text is extracted

Your PDF viewer does display text, but you cannot select it with your cursor, and text extraction delivers nothing.

4.7.3.2 Cause

1. You may be looking at an image embedded in the PDF page (e.g. a scanned PDF).

2. The PDF creator used no font, but simulated text by painting it, using little lines and curves. E.g. a capital “D”
could be painted by a line “|” and a left-open semi-circle, an “o” by an ellipse, and so on.

4.7.3.3 Solution

Use an OCR software like OCRmyPDF to insert a hidden text layer underneath the visible page. The resulting PDF
should behave as expected.

4.7.3.4 Problem: unreadable text

Text extraction does not deliver the text in readable order, duplicates some text, or is otherwise garbled.

4.7.3.5 Cause

1. The single characters are readable as such (no “<?>” symbols), but the sequence in which the text is coded in
the file deviates from the reading order. The motivation behind may be technical or protection of data against
unwanted copies.

2. Many “<?>” symbols occur, indicating MuPDF could not interpret these characters. The font may indeed be
unsupported by MuPDF, or the PDF creator may haved used a font that displays readable text, but on purpose
obfuscates the originating corresponding unicode character.

4.7.3.6 Solution

1. Use layout preserving text extraction: python -m fitz gettext file.pdf.

2. If other text extraction tools also don’t work, then the only solution again is OCRing the page.

4.8 Recipes: Low-Level Interfaces

Numerous methods are available to access and manipulate PDF files on a fairly low level. Admittedly, a clear distinction
between “low level” and “normal” functionality is not always possible or subject to personal taste.

It also may happen, that functionality previously deemed low-level is later on assessed as being part of the normal
interface. This has happened in v1.14.0 for the class Tools - you now find it as an item in the Classes chapter.

It is a matter of documentation only in which chapter of the documentation you find what you are looking for. Everything
is available and always via the same interface.

76 Chapter 4. Recipes

https://pypi.org/project/ocrmypdf/
https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

4.8.1 How to Iterate through the xref Table

A PDF’s xref table is a list of all objects defined in the file. This table may easily contain many thousands of entries
– the manual Adobe PDF References for example has 127,000 objects. Table entry “0” is reserved and must not be
touched. The following script loops through the xref table and prints each object’s definition:

>>> xreflen = doc.xref_length() # length of objects table
>>> for xref in range(1, xreflen): # skip item 0!

print("")
print("object %i (stream: %s)" % (xref, doc.xref_is_stream(xref)))
print(doc.xref_object(xref, compressed=False))

This produces the following output:

object 1 (stream: False)
<<

/ModDate (D:20170314122233-04'00')
/PXCViewerInfo (PDF-XChange Viewer;2.5.312.1;Feb 9 2015;12:00:06;D:20170314122233-04

→˓'00')
>>

object 2 (stream: False)
<<

/Type /Catalog
/Pages 3 0 R

>>

object 3 (stream: False)
<<

/Kids [4 0 R 5 0 R]
/Type /Pages
/Count 2

>>

object 4 (stream: False)
<<

/Type /Page
/Annots [6 0 R]
/Parent 3 0 R
/Contents 7 0 R
/MediaBox [0 0 595 842]
/Resources 8 0 R

>>
...
object 7 (stream: True)
<<

/Length 494
/Filter /FlateDecode

>>
...

A PDF object definition is an ordinary ASCII string.

4.8. Recipes: Low-Level Interfaces 77

PyMuPDF Documentation, Release 1.21.1

4.8.2 How to Handle Object Streams

Some object types contain additional data apart from their object definition. Examples are images, fonts, embedded
files or commands describing the appearance of a page.

Objects of these types are called “stream objects”. PyMuPDF allows reading an object’s stream via method Document.
xref_stream()with the object’s xref as an argument. It is also possible to write back a modified version of a stream
using Document.update_stream().

Assume that the following snippet wants to read all streams of a PDF for whatever reason:

>>> xreflen = doc.xref_length() # number of objects in file
>>> for xref in range(1, xreflen): # skip item 0!

if stream := doc.xref_stream(xref):
do something with it (it is a bytes object or None)
e.g. just write it back:
doc.update_stream(xref, stream)

Document.xref_stream() automatically returns a stream decompressed as a bytes object – and Document.
update_stream() automatically compresses it if beneficial.

4.8.3 How to Handle Page Contents

A PDF page can have zero or multiple contents objects. These are stream objects describing what appears where
and how on a page (like text and images). They are written in a special mini-language described e.g. in chapter
“APPENDIX A - Operator Summary” on page 643 of the Adobe PDF References.

Every PDF reader application must be able to interpret the contents syntax to reproduce the intended appearance of the
page.

If multiple contents objects are provided, they must be interpreted in the specified sequence in exactly the same way
as if they were provided as a concatenation of the several.

There are good technical arguments for having multiple contents objects:

• It is a lot easier and faster to just add new contents objects than maintaining a single big one (which entails
reading, decompressing, modifying, recompressing, and rewriting it for each change).

• When working with incremental updates, a modified big contents object will bloat the update delta and can
thus easily negate the efficiency of incremental saves.

For example, PyMuPDF adds new, small contents objects in methods Page.insert_image(), Page.
show_pdf_page() and the Shape methods.

However, there are also situations when a single contents object is beneficial: it is easier to interpret and more
compressible than multiple smaller ones.

Here are two ways of combining multiple contents of a page:

>>> # method 1: use the MuPDF clean function
>>> page.clean_contents() # cleans and combines multiple Contents
>>> xref = page.get_contents()[0] # only one /Contents now!
>>> cont = doc.xref_stream(xref)
>>> # this has also reformatted the PDF commands

>>> # method 2: extract concatenated contents
(continues on next page)

78 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> cont = page.read_contents()
>>> # the /Contents source itself is unmodified

The clean function Page.clean_contents() does a lot more than just glueing contents objects: it also corrects
and optimizes the PDF operator syntax of the page and removes any inconsistencies with the page’s object definition.

4.8.4 How to Access the PDF Catalog

This is a central (“root”) object of a PDF. It serves as a starting point to reach important other objects and it also contains
some global options for the PDF:

>>> import fitz
>>> doc=fitz.open("PyMuPDF.pdf")
>>> cat = doc.pdf_catalog() # get xref of the /Catalog
>>> print(doc.xref_object(cat)) # print object definition
<<

/Type/Catalog % object type
/Pages 3593 0 R % points to page tree
/OpenAction 225 0 R % action to perform on open
/Names 3832 0 R % points to global names tree
/PageMode /UseOutlines % initially show the TOC
/PageLabels<</Nums[0<</S/D>>2<</S/r>>8<</S/D>>]>> % labels given to pages
/Outlines 3835 0 R % points to outline tree

>>

Note: Indentation, line breaks and comments are inserted here for clarification purposes only and will not normally
appear. For more information on the PDF catalog see section 7.7.2 on page 71 of the Adobe PDF References.

4.8.5 How to Access the PDF File Trailer

The trailer of a PDF file is a dictionary located towards the end of the file. It contains special objects, and pointers
to important other information. See Adobe PDF References p. 42. Here is an overview:

Key Type Value
Size int Number of entries in the cross-reference table + 1.
Prev int Offset to previous xref section (indicates incremental updates).
Root dictionary (indirect) Pointer to the catalog. See previous section.
Encrypt dictionary Pointer to encryption object (encrypted files only).
Info dictionary (indirect) Pointer to information (metadata).
ID array File identifier consisting of two byte strings.
XRefStm int Offset of a cross-reference stream. See Adobe PDF References p. 49.

Access this information via PyMuPDF with Document.pdf_trailer() or, equivalently, via Document.
xref_object() using -1 instead of a valid xref number.

4.8. Recipes: Low-Level Interfaces 79

PyMuPDF Documentation, Release 1.21.1

>>> import fitz
>>> doc=fitz.open("PyMuPDF.pdf")
>>> print(doc.xref_object(-1)) # or: print(doc.pdf_trailer())
<<
/Type /XRef
/Index [0 8263]
/Size 8263
/W [1 3 1]
/Root 8260 0 R
/Info 8261 0 R
/ID [<4339B9CEE46C2CD28A79EBDDD67CC9B3> <4339B9CEE46C2CD28A79EBDDD67CC9B3>]
/Length 19883
/Filter /FlateDecode
>>
>>>

4.8.6 How to Access XML Metadata

A PDF may contain XML metadata in addition to the standard metadata format. In fact, most PDF viewer or modifi-
cation software adds this type of information when saving the PDF (Adobe, Nitro PDF, PDF-XChange, etc.).

PyMuPDF has no way to interpret or change this information directly, because it contains no XML features. XML
metadata is however stored as a stream object, so it can be read, modified with appropriate software and written back.

>>> xmlmetadata = doc.get_xml_metadata()
>>> print(xmlmetadata)
<?xpacket begin="\ufeff" id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="3.1-702">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
...
omitted data
...
<?xpacket end="w"?>

Using some XML package, the XML data can be interpreted and / or modified and then stored back. The following
also works, if the PDF previously had no XML metadata:

>>> # write back modified XML metadata:
>>> doc.set_xml_metadata(xmlmetadata)
>>>
>>> # XML metadata can be deleted like this:
>>> doc.del_xml_metadata()

80 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.8.7 How to Extend PDF Metadata

Attribute Document.metadata is designed so it works for all supported document types in the same way: it is a Python
dictionary with a fixed set of key-value pairs. Correspondingly, Document.set_metadata() only accepts standard
keys.

However, PDFs may contain items not accessible like this. Also, there may be reasons to store additional information,
like copyrights. Here is a way to handle arbitrary metadata items by using PyMuPDF low-level functions.

As an example, look at this standard metadata output of some PDF:

standard metadata

pprint(doc.metadata)
{'author': 'PRINCE',
'creationDate': "D:2010102417034406'-30'",
'creator': 'PrimoPDF http://www.primopdf.com/',
'encryption': None,
'format': 'PDF 1.4',
'keywords': '',
'modDate': "D:20200725062431-04'00'",
'producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '

'AppendMode 1.1',
'subject': '',
'title': 'Full page fax print',
'trapped': ''}

Use the following code to see all items stored in the metadata object:

metadata including private items

metadata = {} # make my own metadata dict
what, value = doc.xref_get_key(-1, "Info") # /Info key in the trailer
if what != "xref":

pass # PDF has no metadata
else:

xref = int(value.replace("0 R", "")) # extract the metadata xref
for key in doc.xref_get_keys(xref):

metadata[key] = doc.xref_get_key(xref, key)[1]
pprint(metadata)
{'Author': 'PRINCE',
'CreationDate': "D:2010102417034406'-30'",
'Creator': 'PrimoPDF http://www.primopdf.com/',
'ModDate': "D:20200725062431-04'00'",
'PXCViewerInfo': 'PDF-XChange Viewer;2.5.312.1;Feb 9 '

"2015;12:00:06;D:20200725062431-04'00'",
'Producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '

'AppendMode 1.1',
'Title': 'Full page fax print'}

note the additional 'PXCViewerInfo' key - ignored in standard!

4.8. Recipes: Low-Level Interfaces 81

PyMuPDF Documentation, Release 1.21.1

Vice versa, you can also store private metadata items in a PDF. It is your responsibility to make sure that these items
conform to PDF specifications - especially they must be (unicode) strings. Consult section 14.3 (p. 548) of the Adobe
PDF References for details and caveats:

what, value = doc.xref_get_key(-1, "Info") # /Info key in the trailer
if what != "xref":

raise ValueError("PDF has no metadata")
xref = int(value.replace("0 R", "")) # extract the metadata xref
add some private information
doc.xref_set_key(xref, "mykey", fitz.get_pdf_str(" is Beijing"))
#
after executing the previous code snippet, we will see this:
pprint(metadata)
{'Author': 'PRINCE',
'CreationDate': "D:2010102417034406'-30'",
'Creator': 'PrimoPDF http://www.primopdf.com/',
'ModDate': "D:20200725062431-04'00'",
'PXCViewerInfo': 'PDF-XChange Viewer;2.5.312.1;Feb 9 '

"2015;12:00:06;D:20200725062431-04'00'",
'Producer': 'macOS Version 10.15.6 (Build 19G71a) Quartz PDFContext, '

'AppendMode 1.1',
'Title': 'Full page fax print',
'mykey': ' is Beijing'}

To delete selected keys, use doc.xref_set_key(xref, "mykey", "null"). As explained in the next section, string
“null” is the PDF equivalent to Python’s None. A key with that value will be treated as not being specified – and
physically removed in garbage collections.

4.8.8 How to Read and Update PDF Objects

There also exist granular, elegant ways to access and manipulate selected PDF dictionary keys.

• Document.xref_get_keys() returns the PDF keys of the object at xref :

In [1]: import fitz
In [2]: doc = fitz.open("pymupdf.pdf")
In [3]: page = doc[0]
In [4]: from pprint import pprint
In [5]: pprint(doc.xref_get_keys(page.xref))
('Type', 'Contents', 'Resources', 'MediaBox', 'Parent')

• Compare with the full object definition:

In [6]: print(doc.xref_object(page.xref))
<<
/Type /Page
/Contents 1297 0 R
/Resources 1296 0 R
/MediaBox [0 0 612 792]
/Parent 1301 0 R

>>

82 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

• Single keys can also be accessed directly via Document.xref_get_key(). The value always is a string together
with type information, that helps with interpreting it:

In [7]: doc.xref_get_key(page.xref, "MediaBox")
Out[7]: ('array', '[0 0 612 792]')

• Here is a full listing of the above page keys:

In [9]: for key in doc.xref_get_keys(page.xref):
...: print("%s = %s" % (key, doc.xref_get_key(page.xref, key)))
...:
Type = ('name', '/Page')
Contents = ('xref', '1297 0 R')
Resources = ('xref', '1296 0 R')
MediaBox = ('array', '[0 0 612 792]')
Parent = ('xref', '1301 0 R')

• An undefined key inquiry returns ('null', 'null') – PDF object type null corresponds to None in Python.
Similar for the booleans true and false.

• Let us add a new key to the page definition that sets its rotation to 90 degrees (you are aware that there actually
exists Page.set_rotation() for this?):

In [11]: doc.xref_get_key(page.xref, "Rotate") # no rotation set:
Out[11]: ('null', 'null')
In [12]: doc.xref_set_key(page.xref, "Rotate", "90") # insert a new key
In [13]: print(doc.xref_object(page.xref)) # confirm success
<<
/Type /Page
/Contents 1297 0 R
/Resources 1296 0 R
/MediaBox [0 0 612 792]
/Parent 1301 0 R
/Rotate 90

>>

• This method can also be used to remove a key from the xref dictionary by setting its value to null: The fol-
lowing will remove the rotation specification from the page: doc.xref_set_key(page.xref, "Rotate",
"null"). Similarly, to remove all links, annotations and fields from a page, use doc.xref_set_key(page.
xref, "Annots", "null"). Because Annots by definition is an array, setting en empty array with the state-
ment doc.xref_set_key(page.xref, "Annots", "[]") would do the same job in this case.

• PDF dictionaries can be hierarchically nested. In the following page object definition both, Font and XObject
are subdictionaries of Resources:

In [15]: print(doc.xref_object(page.xref))
<<
/Type /Page
/Contents 1297 0 R
/Resources <<
/XObject <<

/Im1 1291 0 R
>>
/Font <<
/F39 1299 0 R

(continues on next page)

4.8. Recipes: Low-Level Interfaces 83

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

/F40 1300 0 R
>>

>>
/MediaBox [0 0 612 792]
/Parent 1301 0 R
/Rotate 90

>>

• The above situation is supported by methods Document.xref_set_key() and Document.xref_get_key():
use a path-like notation to point at the required key. For example, to retrieve the value of key Im1 above, specify
the complete chain of dictionaries “above” it in the key argument: "Resources/XObject/Im1":

In [16]: doc.xref_get_key(page.xref, "Resources/XObject/Im1")
Out[16]: ('xref', '1291 0 R')

• The path notation can also be used to directly set a value: use the following to let Im1 point to a different object:

In [17]: doc.xref_set_key(page.xref, "Resources/XObject/Im1", "9999 0 R")
In [18]: print(doc.xref_object(page.xref)) # confirm success:
<<
/Type /Page
/Contents 1297 0 R
/Resources <<
/XObject <<

/Im1 9999 0 R
>>
/Font <<
/F39 1299 0 R
/F40 1300 0 R

>>
>>
/MediaBox [0 0 612 792]
/Parent 1301 0 R
/Rotate 90

>>

Be aware, that no semantic checks whatsoever will take place here: if the PDF has no xref 9999, it won’t be
detected at this point.

• If a key does not exist, it will be created by setting its value. Moreover, if any intermediate keys do not exist
either, they will also be created as necessary. The following creates an array D several levels below the existing
dictionary A. Intermediate dictionaries B and C are automatically created:

In [5]: print(doc.xref_object(xref)) # some existing PDF object:
<<
/A <<
>>

>>
In [6]: # the following will create 'B', 'C' and 'D'
In [7]: doc.xref_set_key(xref, "A/B/C/D", "[1 2 3 4]")
In [8]: print(doc.xref_object(xref)) # check out what happened:
<<
/A <<

(continues on next page)

84 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

/B <<
/C <<
/D [1 2 3 4]

>>
>>

>>
>>

• When setting key values, basic PDF syntax checking will be done by MuPDF. For example, new keys can only
be created below a dictionary. The following tries to create some new string item E below the previously created
array D:

In [9]: # 'D' is an array, no dictionary!
In [10]: doc.xref_set_key(xref, "A/B/C/D/E", "(hello)")
mupdf: not a dict (array)
--- ... ---
RuntimeError: not a dict (array)

• It is also not possible, to create a key if some higher level key is an “indirect” object, i.e. an xref. In other
words, xrefs can only be modified directly and not implicitely via other objects referencing them:

In [13]: # the following object points to an xref
In [14]: print(doc.xref_object(4))
<<
/E 3 0 R

>>
In [15]: # 'E' is an indirect object and cannot be modified here!
In [16]: doc.xref_set_key(4, "E/F", "90")
mupdf: path to 'F' has indirects
--- ... ---
RuntimeError: path to 'F' has indirects

Caution: These are expert functions! There are no validations as to whether valid PDF objects, xrefs, etc. are
specified. As with other low-level methods there is the risk to render the PDF, or parts of it unusable.

4.9 Recipes: Journalling

Starting with version 1.19.0, journalling is possible when updating PDF documents.

Journalling is a logging mechanism which permits either reverting or re-applying changes to a PDF. Similar to LUWs
“Logical Units of Work” in modern database systems, one can group a set of updates into an “operation”. In MuPDF
journalling, an operation plays the role of a LUW.

Note: In contrast to LUW implementations found in database systems, MuPDF journalling happens on a per docu-
ment level. There is no support for simultaneous updates across multiple PDFs: one would have to establish one’s own
logic here.

4.9. Recipes: Journalling 85

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

• Journalling must be enabled via a document method. Journalling is possible for existing or new documents.
Journalling can be disabled only by closing the file.

• Once enabled, every change must happen inside an operation – otherwise an exception is raised. An operation is
started and stopped via document methods. Updates happening between these two calls form an LUW and can
thus collectively be rolled back or re-applied, or, in MuPDF terminology “undone” resp. “redone”.

• At any point, the journalling status can be queried: whether journalling is active, how many operations have been
recorded, whether “undo” or “redo” is possible, the current position inside the journal, etc.

• The journal can be saved to or loaded from a file. These are document methods.

• When loading a journal file, compatibility with the document is checked and journalling is automatically enabled
upon success.

• For an exising PDF being journalled, a special new save method is available: Document.save_snapshot().
This performs a special incremental save that includes all journalled updates so far. If its journal is saved at
the same time (immediately after the document snapshot), then document and journal are in sync and can later
on be used together to undo or redo operations or to continue journalled updates – just as if there had been no
interruption.

• The snapshot PDF is a valid PDF in every aspect and fully usable. If the document is however changed in any
way without using its journal file, then a desynchronization will take place and the journal is rendered unusable.

• Snapshot files are structured like incremental updates. Nevertheless, the internal journalling logic requires, that
saving must happen to a new file. So the user should develop a file naming convention to support recognizable
relationships between an original PDF, like original.pdf and its snapshot sets, like original-snap1.pdf /
original-snap1.log, original-snap2.pdf / original-snap2.log, etc.

4.9.1 Example Session 1

Description:

• Make a new PDF and enable journalling. Then add a page and some text lines – each as a separate operation.

• Navigate within the journal, undoing and redoing these updates and displaying status and file results:

>>> import fitz
>>> doc=fitz.open()
>>> doc.journal_enable()

>>> # try update without an operation:
>>> page = doc.new_page()
mupdf: No journalling operation started
... omitted lines
RuntimeError: No journalling operation started

>>> doc.journal_start_op("op1")
>>> page = doc.new_page()
>>> doc.journal_stop_op()

>>> doc.journal_start_op("op2")
>>> page.insert_text((100,100), "Line 1")
>>> doc.journal_stop_op()

>>> doc.journal_start_op("op3")
>>> page.insert_text((100,120), "Line 2")

(continues on next page)

86 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> doc.journal_stop_op()

>>> doc.journal_start_op("op4")
>>> page.insert_text((100,140), "Line 3")
>>> doc.journal_stop_op()

>>> # show position in journal
>>> doc.journal_position()
(4, 4)
>>> # 4 operations recorded - positioned at bottom
>>> # what can we do?
>>> doc.journal_can_do()
{'undo': True, 'redo': False}
>>> # currently only undos are possible. Print page content:
>>> print(page.get_text())
Line 1
Line 2
Line 3

>>> # undo last insert:
>>> doc.journal_undo()
>>> # show combined status again:
>>> doc.journal_position();doc.journal_can_do()
(3, 4)
{'undo': True, 'redo': True}
>>> print(page.get_text())
Line 1
Line 2

>>> # our position is now second to last
>>> # last text insertion was reverted
>>> # but we can redo / move forward as well:
>>> doc.journal_redo()
>>> # our combined status:
>>> doc.journal_position();doc.journal_can_do()
(4, 4)
{'undo': True, 'redo': False}
>>> print(page.get_text())
Line 1
Line 2
Line 3
>>> # line 3 has appeared again!

4.9. Recipes: Journalling 87

PyMuPDF Documentation, Release 1.21.1

4.9.2 Example Session 2

Description:

• Similar to previous, but after undoing some operations, we now add a different update. This will cause:

– permanent removal of the undone journal entries

– the new update operation will become the new last entry.

>>> doc=fitz.open()
>>> doc.journal_enable()
>>> doc.journal_start_op("Page insert")
>>> page=doc.new_page()
>>> doc.journal_stop_op()
>>> for i in range(5):

doc.journal_start_op("insert-%i" % i)
page.insert_text((100, 100 + 20*i), "text line %i" %i)
doc.journal_stop_op()

>>> # combined status info:
>>> doc.journal_position();doc.journal_can_do()
(6, 6)
{'undo': True, 'redo': False}

>>> for i in range(3): # revert last three operations
doc.journal_undo()

>>> doc.journal_position();doc.journal_can_do()
(3, 6)
{'undo': True, 'redo': True}

>>> # now do a different update:
>>> doc.journal_start_op("Draw some line")
>>> page.draw_line((100,150), (300,150))
Point(300.0, 150.0)
>>> doc.journal_stop_op()
>>> doc.journal_position();doc.journal_can_do()
(4, 4)
{'undo': True, 'redo': False}

>>> # this has changed the journal:
>>> # previous last 3 text line operations were removed, and
>>> # we have only 4 operations: drawing the line is the new last one

88 Chapter 4. Recipes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

4.10 Recipes: Stories

This document showcases some typical use cases for Stories.

As mentioned in the tutorial, stories may be created using up to three input sources: HTML, CSS and Archives – all
of which are optional and which, respectively, can be provided programmatically.

The following examples will showcase combinations for using these inputs.

Note: Many of these recipe’s source code are included as examples in the docs folder.

4.10.1 How to add a line of text with some formatting

Here is the inevitable “Hello World” example. We will show two variants:

1. Create using existing HTML source1, that may come from anywhere.

2. Create using the Python API.

Variant using an existing HTML source1 – which in this case is defined as a constant in the script:

import fitz

HTML = """
<p style="font-family: sans-serif;color: blue">Hello World!</p>
"""

MEDIABOX = fitz.paper_rect("letter") # output page format: Letter
WHERE = MEDIABOX + (36, 36, -36, -36) # leave borders of 0.5 inches

story = fitz.Story(html=HTML) # create story from HTML
writer = fitz.DocumentWriter("output.pdf") # create the writer

more = 1 # will indicate end of input once it is set to 0

while more: # loop outputting the story
device = writer.begin_page(MEDIABOX) # make new page
more, _ = story.place(WHERE) # layout into allowed rectangle
story.draw(device) # write on page
writer.end_page() # finish page

writer.close() # close output file

1 HTML & CSS support

Note: At the time of writing the HTML engine for Stories is fairly basic and supports a subset of CSS2 attributes.

Some important CSS support to consider:
• The only available layout is relative layout.
• background is unavalable, use background-color instead.
• float is unavailable.

4.10. Recipes: Stories 89

PyMuPDF Documentation, Release 1.21.1

Note: The above effect (sans-serif and blue text) could have been achieved by using a separate CSS source like so:

import fitz

CSS = """
body {

font-family: sans-serif;
color: blue;

}
"""

HTML = """
<p>Hello World!</p>
"""

the story would then be created like this:
story = fitz.Story(html=HTML, user_css=CSS)

The Python API variant – everything is created programmatically:

import fitz

MEDIABOX = fitz.paper_rect("letter")
WHERE = MEDIABOX + (36, 36, -36, -36)

story = fitz.Story() # create an empty story
body = story.body # access the body of its DOM
with body.add_paragraph() as para: # store desired content

para.set_font("sans-serif").set_color("blue").add_text("Hello World!")

writer = fitz.DocumentWriter("output.pdf")

more = 1

while more:
device = writer.begin_page(MEDIABOX)
more, _ = story.place(WHERE)
story.draw(device)
writer.end_page()

writer.close()

Both variants will produce the same output PDF.

90 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.10.2 How to use images

Images can be referenced in the provided HTML source, or the reference to a desired image can also be stored via the
Python API. In any case, this requires using an Archive, which refers to the place where the image can be found.

Note: Images with the binary content embedded in the HTML source are not supported by stories.

We extend our “Hello World” example from above and display an image of our planet right after the text. Assuming
the image has the name “world.jpg” and is present in the script’s folder, then this is the modified version of the above
Python API variant:

import fitz

MEDIABOX = fitz.paper_rect("letter")
WHERE = MEDIABOX + (36, 36, -36, -36)

create story, let it look at script folder for resources
story = fitz.Story(archive=".")
body = story.body # access the body of its DOM

with body.add_paragraph() as para:
store desired content
para.set_font("sans-serif").set_color("blue").add_text("Hello World!")

another paragraph for our image:
with body.add_paragraph() as para:

store image in another paragraph
para.add_image("world.jpg")

writer = fitz.DocumentWriter("output.pdf")

more = 1

while more:
device = writer.begin_page(MEDIABOX)
more, _ = story.place(WHERE)
story.draw(device)
writer.end_page()

writer.close()

4.10. Recipes: Stories 91

PyMuPDF Documentation, Release 1.21.1

4.10.3 Reading external HTML and CSS for a Story

These cases are fairly straightforward.

As a general recommendation, HTML and CSS sources should be read as binary files and decoded before using them
in a story. The Python pathlib.Path provides convenient ways to do this:

import pathlib
import fitz

htmlpath = pathlib.Path("myhtml.html")
csspath = pathlib.Path("mycss.css")

HTML = htmlpath.read_bytes().decode()
CSS = csspath.read_bytes().decode()

story = fitz.Story(html=HTML, user_css=CSS)

4.10.4 How to output database content with Story templates

This script demonstrates how to report SQL database content using an HTML template.

The example SQL database contains two tables:

1. Table “films” contains one row per film with the fields “title”, “director” and (release) “year”.

2. Table “actors” contains one row per actor and film title (fields (actor) “name” and (film) “title”).

The story DOM consists of a template for one film, which reports film data together with a list of casted actors.

Files:
• docs/samples/filmfestival-sql.py

• docs/samples/filmfestival-sql.db

"""
This is a demo script for using PyMuPDF with its "Story" feature.

The following aspects are being covered here:

* The script produces a report of films that are stored in an SQL database
* The report format is provided as a HTML template

The SQL database contains two tables:
1. Table "films" which has the columns "title" (film title, str), "director"
(str) and "year" (year of release, int).

2. Table "actors" which has the columns "name" (actor name, str) and "title"
(the film title where the actor had been casted, str).

The script reads all content of the "films" table. For each film title it
reads all rows from table "actors" which took part in that film.

(continues on next page)

92 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

Comment 1

To keep things easy and free from pesky technical detail, the relevant file
names inherit the name of this script:
- the database's filename is the script name with ".py" extension replaced
by ".db".

- the output PDF similarly has script file name with extension ".pdf".

Comment 2

The SQLITE database has been created using https://sqlitebrowser.org/, a free
multi-platform tool to maintain or manipulate SQLITE databases.
"""
import os
import sqlite3

import fitz

--
HTML template for the film report
There are four placeholders coded as "id" attributes.
One "id" allows locating the template part itself, the other three
indicate where database text should be inserted.
--
festival_template = (

"<html><head><title>Just some arbitrary text</title></head>"
'<body><h1 style="text-align:center">Hook Norton Film Festival</h1>'
""
'<li id="filmtemplate">'
'<b id="filmtitle">'
"<dl>"
'<dt>Director<dd id="director">'
'<dt>Release Year<dd id="filmyear">'
'<dt>Cast<dd id="cast">'
"</dl>"
""
""
"</body></html"

)

define database access

dbfilename = __file__.replace(".py", ".db") # the SQLITE database file name
assert os.path.isfile(dbfilename), f'{dbfilename}'
database = sqlite3.connect(dbfilename) # open database
cursor_films = database.cursor() # cursor for selecting the films
cursor_casts = database.cursor() # cursor for selecting actors per film

select statement for the films - let SQL also sort it for us
select_films = """SELECT title, director, year FROM films ORDER BY title"""

(continues on next page)

4.10. Recipes: Stories 93

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

select stament for actors, a skeleton: sub-select by film title
select_casts = """SELECT name FROM actors WHERE film = "%s" ORDER BY name"""

define the HTML Story and fill it with database data

story = fitz.Story(festival_template)
body = story.body # access the HTML body detail
template = body.find(None, "id", "filmtemplate") # find the template part

read the films from the database and put them all in one Python list
NOTE: instead we might fetch rows one by one (advisable for large volumes)
cursor_films.execute(select_films) # execute cursor, and ...
films = cursor_films.fetchall() # read out what was found

for title, director, year in films: # iterate through the films
film = template.clone() # clone template to report each film
film.find(None, "id", "filmtitle").add_text(title) # put title in templ
film.find(None, "id", "director").add_text(director) # put director
film.find(None, "id", "filmyear").add_text(str(year)) # put year

the actors reside in their own table - find the ones for this film title
cursor_casts.execute(select_casts % title) # execute cursor
casts = cursor_casts.fetchall() # read actors for the film
each actor name appears in its own tuple, so extract it from there
film.find(None, "id", "cast").add_text("\n".join([c[0] for c in casts]))
body.append_child(film)

template.remove() # remove the template

generate the PDF

writer = fitz.DocumentWriter(__file__.replace(".py", ".pdf"), "compress")
mediabox = fitz.paper_rect("a4") # use pages in ISO-A4 format
where = mediabox + (72, 36, -36, -72) # leave page borders

more = 1 # end of output indicator

while more:
dev = writer.begin_page(mediabox) # make a new page
more, filled = story.place(where) # arrange content for this page
story.draw(dev, None) # write content to page
writer.end_page() # finish the page

writer.close() # close the PDF

94 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.10.5 How to integrate with existing PDFs

Because a DocumentWriter can only write to a new file, stories cannot be placed on existing pages. This script demon-
strates a circumvention of this restriction.

The basic idea is letting DocumentWriter output to a PDF in memory. Once the story has finished, we re-open this
memory PDF and put its pages to desired locations on existing pages via method Page.show_pdf_page().

Files:
• docs/samples/showpdf-page.py

"""
Demo of Story class in PyMuPDF

This script demonstrates how to the results of a fitz.Story output can be
placed in a rectangle of an existing (!) PDF page.

"""
import io
import os

import fitz

def make_pdf(fileptr, text, rect, font="sans-serif", archive=None):
"""Make a memory DocumentWriter from HTML text and a rect.

Args:
fileptr: a Python file object. For example an io.BytesIO().
text: the text to output (HTML format)
rect: the target rectangle. Will use its width / height as mediabox
font: (str) font family name, default sans-serif
archive: fitz.Archive parameter. To be used if e.g. images or special

fonts should be used.
Returns:

The matrix to convert page rectangles of the created PDF back
to rectangle coordinates in the parameter "rect".
Normal use will expect to fit all the text in the given rect.
However, if an overflow occurs, this function will output multiple
pages, and the caller may decide to either accept or retry with
changed parameters.

"""
use input rectangle as the page dimension
mediabox = fitz.Rect(0, 0, rect.width, rect.height)
this matrix converts mediabox back to input rect
matrix = mediabox.torect(rect)

story = fitz.Story(text, archive=archive)
body = story.body
body.set_properties(font=font)
writer = fitz.DocumentWriter(fileptr)

(continues on next page)

4.10. Recipes: Stories 95

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

while True:
device = writer.begin_page(mediabox)
more, _ = story.place(mediabox)
story.draw(device)
writer.end_page()
if not more:

break
writer.close()
return matrix

We want to put this in a given rectangle of an existing page

HTML = """
<p>PyMuPDF is a great package! And it still improves significantly from one version to␣
→˓the next one!</p>
<p>It is a Python binding for MuPDF, a lightweight PDF, XPS, and E-book viewer,␣
→˓renderer, and toolkit.
 Both are maintained and developed by Artifex Software, Inc.
→˓</p>
<p>Via MuPDF it can access files in PDF, XPS, OpenXPS, CBZ, EPUB, MOBI and FB2 (e-books)␣
→˓formats,
 and it is known for its top
<i>performance</i> and <i>rendering quality.</p>"""

Make a PDF page for demo purposes
root = os.path.abspath(f"{__file__}/..")
doc = fitz.open(f"{root}/mupdf-title.pdf")
page = doc[0]

WHERE = fitz.Rect(50, 100, 250, 500) # target rectangle on existing page

fileptr = io.BytesIO() # let DocumentWriter use this as its file

call DocumentWriter and Story to fill our rectangle
matrix = make_pdf(fileptr, HTML, WHERE)

src = fitz.open("pdf", fileptr) # open DocumentWriter output PDF
if src.page_count > 1: # target rect was too small

raise ValueError("target WHERE too small")

its page 0 contains our result
page.show_pdf_page(WHERE, src, 0)

doc.ez_save(f"{root}/mupdf-title-after.pdf")

96 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.10.6 How to make multi-columned layouts and access fonts from package
pymupdf-fonts

This script outputs an article (taken from Wikipedia) that contains text and multiple images and uses a 2-column page
layout.

In addition, two “Ubuntu” font families from package pymupdf-fonts are used instead of defaulting to Base-14 fonts.

Yet another feature used here is that all data – the images and the article HTML – are jointly stored in a ZIP file.

Files:
• docs/samples/quickfox.py

• docs/samples/quickfox.zip

"""
This is a demo script using PyMuPDF's Story class to output text as a PDF with
a two-column page layout.

The script demonstrates the following features:
* How to fill columns or table cells of complex page layouts
* How to embed images
* How to modify existing, given HTML sources for output (text indent, font size)
* How to use fonts defined in package "pymupdf-fonts"
* How to use ZIP files as Archive

The example is taken from the somewhat modified Wikipedia article
https://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog.

"""

import io
import os
import zipfile
import fitz

thisdir = os.path.dirname(os.path.abspath(__file__))
myzip = zipfile.ZipFile(os.path.join(thisdir, "quickfox.zip"))
arch = fitz.Archive(myzip)

if fitz.fitz_fontdescriptors:
we want to use the Ubuntu fonts for sans-serif and for monospace
CSS = fitz.css_for_pymupdf_font("ubuntu", archive=arch, name="sans-serif")
CSS = fitz.css_for_pymupdf_font("ubuntm", CSS=CSS, archive=arch, name="monospace")

else:
No pymupdf-fonts available.
CSS=""

docname = __file__.replace(".py", ".pdf") # output PDF file name

HTML = myzip.read("quickfox.html").decode()
(continues on next page)

4.10. Recipes: Stories 97

https://github.com/pymupdf/pymupdf-fonts

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

make the Story object
story = fitz.Story(HTML, user_css=CSS, archive=arch)

--
modify the DOM somewhat
--
body = story.body # access HTML body
body.set_properties(font="sans-serif") # and give it our font globally

modify certain nodes
para = body.find("p", None, None) # find relevant nodes (here: paragraphs)
while para != None:

para.set_properties(# method MUST be used for existing nodes
indent=15,
fontsize=13,

)
para = para.find_next("p", None, None)

choose PDF page size
MEDIABOX = fitz.paper_rect("letter")
text appears only within this subrectangle
WHERE = MEDIABOX + (36, 36, -36, -36)

--
define page layout within the WHERE rectangle
--
COLS = 2 # layout: 2 cols 1 row
ROWS = 1
TABLE = fitz.make_table(WHERE, cols=COLS, rows=ROWS)
fill the cells of each page in this sequence:
CELLS = [TABLE[i][j] for i in range(ROWS) for j in range(COLS)]

fileobject = io.BytesIO() # let DocumentWriter write to memory
writer = fitz.DocumentWriter(fileobject) # define the writer

more = 1
while more: # loop until all input text has been written out

dev = writer.begin_page(MEDIABOX) # prepare a new output page
for cell in CELLS:

content may be complete after any cell, ...
if more: # so check this status first

more, _ = story.place(cell)
story.draw(dev)

writer.end_page() # finish the PDF page

writer.close() # close DocumentWriter output

for housekeeping work re-open from memory
doc = fitz.open("pdf", fileobject)
doc.ez_save(docname)

98 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

4.10.7 How make a layout which wraps around a predefined “no go area” layout

This is a demo script using PyMuPDF’s Story class to output text as a PDF with a two-column page layout.

The script demonstrates the following features:

• Layout text around images of an existing (“target”) PDF.

• Based on a few global parameters, areas on each page are identified, that can be used to receive text layouted by
a Story.

• These global parameters are not stored anywhere in the target PDF and must therefore be provided in some way:

– The width of the border(s) on each page.

– The fontsize to use for text. This value determines whether the provided text will fit in the empty spaces
of the (fixed) pages of target PDF. It cannot be predicted in any way. The script ends with an exception if
target PDF has not enough pages, and prints a warning message if not all pages receive at least some text.
In both cases, the FONTSIZE value can be changed (a float value).

– Use of a 2-column page layout for the text.

• The layout creates a temporary (memory) PDF. Its produced page content (the text) is used to overlay the corre-
sponding target page. If text requires more pages than are available in target PDF, an exception is raised. If not
all target pages receive at least some text, a warning is printed.

• The script reads “image-no-go.pdf” in its own folder. This is the “target” PDF. It contains 2 pages with each
2 images (from the original article), which are positioned at places that create a broad overall test coverage.
Otherwise the pages are empty.

• The script produces “quickfox-image-no-go.pdf” which contains the original pages and image positions, but with
the original article text laid out around them.

Files:
• docs/samples/quickfox-image-no-go.py

• docs/samples/quickfox-image-no-go.pdf

• docs/samples/quickfox.zip

"""
This is a demo script using PyMuPDF's Story class to output text as a PDF with
a two-column page layout.

The script demonstrates the following features:
* Layout text around images of an existing ("target") PDF.
* Based on a few global parameters, areas on each page are identified, that
can be used to receive text layouted by a Story.

* These global parameters are not stored anywhere in the target PDF and
must therefore be provided in some way.
- The width of the border(s) on each page.
- The fontsize to use for text. This value determines whether the provided
text will fit in the empty spaces of the (fixed) pages of target PDF. It
cannot be predicted in any way. The script ends with an exception if

(continues on next page)

4.10. Recipes: Stories 99

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

target PDF has not enough pages, and prints a warning message if not all
pages receive at least some text. In both cases, the FONTSIZE value
can be changed (a float value).

- Use of a 2-column page layout for the text.
* The layout creates a temporary (memory) PDF. Its produced page content
(the text) is used to overlay the corresponding target page. If text
requires more pages than are available in target PDF, an exception is raised.
If not all target pages receive at least some text, a warning is printed.

* The script reads "image-no-go.pdf" in its own folder. This is the "target" PDF.
It contains 2 pages with each 2 images (from the original article), which are
positioned at places that create a broad overall test coverage. Otherwise the
pages are empty.

* The script produces "quickfox-image-no-go.pdf" which contains the original pages
and image positions, but with the original article text laid out around them.

Note:

This script version uses just image positions to derive "No-Go areas" for
layouting the text. Other PDF objects types are detectable by PyMuPDF and may
be taken instead or in addition, without influencing the layouting.
The following are candidates for other such "No-Go areas". Each can be detected
and located by PyMuPDF:
* Annotations
* Drawings
* Existing text

The text and images are taken from the somewhat modified Wikipedia article
https://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog.

"""

import io
import os
import zipfile
import fitz

thisdir = os.path.dirname(os.path.abspath(__file__))
myzip = zipfile.ZipFile(os.path.join(thisdir, "quickfox.zip"))

docname = os.path.join(thisdir, "image-no-go.pdf") # "no go" input PDF file name
outname = os.path.join(thisdir, "quickfox-image-no-go.pdf") # output PDF file name
BORDER = 36 # global parameter
FONTSIZE = 12.5 # global parameter
COLS = 2 # number of text columns, global parameter

def analyze_page(page):
"""Compute MediaBox and rectangles on page that are free to receive text.

Notes:

(continues on next page)

100 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

Assume a BORDER around the page, make 2 columns of the resulting
sub-rectangle and extract the rectangles of all images on page.
For demo purposes, the image rectangles are taken as "NO-GO areas"
on the page when writing text with the Story.
The function returns free areas for each of the columns.

Returns:
(page.number, mediabox, CELLS), where CELLS is a list of free cells.

"""
prect = page.rect # page rectangle - will be our MEDIABOX later
where = prect + (BORDER, BORDER, -BORDER, -BORDER)
TABLE = fitz.make_table(where, rows=1, cols=COLS)

extract rectangles covered by images on this page
IMG_RECTS = sorted(# image rects on page (sort top-left to bottom-right)

[fitz.Rect(item["bbox"]) for item in page.get_image_info()],
key=lambda b: (b.y1, b.x0),

)

def free_cells(column):
"""Return free areas in this colum."""
free_stripes = [] # y-value pairs wrapping a free area stripe
intersecting images: block complete intersecting column stripe
col_imgs = [(b.y0, b.y1) for b in IMG_RECTS if abs(b & column) > 0]
s_y0 = column.y0 # top y-value of column
for y0, y1 in col_imgs: # an image stripe

if y0 > s_y0 + FONTSIZE: # image starts below last free btm value
free_stripes.append((s_y0, y0)) # store as free stripe

s_y0 = y1 # start of next free stripe

if s_y0 + FONTSIZE < column.y1: # enough room to column bottom
free_stripes.append((s_y0, column.y1))

if free_stripes == []: # covers "no image in this column"
free_stripes.append((column.y0, column.y1))

make available cells of this column
CELLS = [fitz.Rect(column.x0, y0, column.x1, y1) for (y0, y1) in free_stripes]
return CELLS

collection of available Story rectangles on page
CELLS = []
for i in range(COLS):

CELLS.extend(free_cells(TABLE[0][i]))

return page.number, prect, CELLS

HTML = myzip.read("quickfox.html").decode()

--
Make the Story object

(continues on next page)

4.10. Recipes: Stories 101

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

--
story = fitz.Story(HTML)

modify the DOM somewhat
body = story.body # access HTML body
body.set_properties(font="sans-serif") # and give it our font globally

modify certain nodes
para = body.find("p", None, None) # find relevant nodes (here: paragraphs)
while para != None:

para.set_properties(# method MUST be used for existing nodes
indent=15,
fontsize=FONTSIZE,

)
para = para.find_next("p", None, None)

we remove all image references, because the target PDF already has them
img = body.find("img", None, None)
while img != None:

next_img = img.find_next("img", None, None)
img.remove()
img = next_img

page_info = {} # contains MEDIABOX and free CELLS per page
doc = fitz.open(docname)
for page in doc:

pno, mediabox, cells = analyze_page(page)
page_info[pno] = (mediabox, cells)

doc.close() # close target PDF for now - re-open later

fileobject = io.BytesIO() # let DocumentWriter write to memory
writer = fitz.DocumentWriter(fileobject) # define output writer

more = 1 # stop if this ever becomes zero
pno = 0 # count output pages
while more: # loop until all HTML text has been written

try:
MEDIABOX, CELLS = page_info[pno]

except KeyError: # too much text space required: reduce fontsize?
raise ValueError("text does not fit on target PDF")

dev = writer.begin_page(MEDIABOX) # prepare a new output page
for cell in CELLS: # iterate over free cells on this page

if not more: # need to check this for every cell
continue

more, _ = story.place(cell)
story.draw(dev)

writer.end_page() # finish the PDF page
pno += 1

writer.close() # close DocumentWriter output

Re-open writer output, read its pages and overlay target pages with them.

(continues on next page)

102 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

The generated pages have same dimension as their targets.
src = fitz.open("pdf", fileobject)
doc = fitz.open(doc.name)
for page in doc: # overlay every target page with the prepared text

if page.number >= src.page_count:
print(f"Text only uses {src.page_count} target pages!")
continue # story did not need all target pages?

overlay target page
page.show_pdf_page(page.rect, src, page.number)

DEBUG start --- draw the text rectangles
mb, cells = page_info[page.number]
for cell in cells:
page.draw_rect(cell, color=(1, 0, 0))
DEBUG stop ---

doc.ez_save(outname)

4.10.8 How to output a table

Support for HTML tables is yet not complete in MuPDF. It is however possible to output tables with equal column
widths that do not cross page boundaries.

This script reflects existing features.

Files:
• docs/samples/table01.py

import fitz

table_text = (
(

"Length",
"integer",
"""(Required) The number of bytes from the beginning of the line following the␣

→˓keyword stream to the last byte just before the keyword endstream. (There may be an␣
→˓additional EOL marker, preceding endstream, that is not included in the count and is␣
→˓not logically part of the stream data.) See “Stream Extent,” above, for further␣
→˓discussion.""",

),
(

"Filter",
"name or array",
"""(Optional) The name of a filter to be applied in processing the stream data␣

→˓found between the keywords stream and endstream, or an array of such names. Multiple␣
→˓filters should be specified in the order in which they are to be applied.""",

(continues on next page)

4.10. Recipes: Stories 103

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

),
(

"FFilter",
"name or array",
"""(Optional; PDF 1.2) The name of a filter to be applied in processing the data␣

→˓found in the stream's external file, or an array of such names. The same rules apply as␣
→˓for Filter.""",

),
)

HTML = """
<html>
<body><h2>TABLE 3.4 Entries common to all stream dictionaries</h2>
<table style="width: 100%">

<tr>
<th class="w25">KEY
<th class="w25">TYPE
<th class="w50">VALUE

</tr>
<tr id="rowtemplate">

<td id="col0" class="w25"></td>
<td id="col1" class="w25"></td>
<td id="col2" class="w50"></td>

</tr>
"""
CSS = """
body {font-family: sans-serif;}
th {text-align: left;}
td {font-size: 8px;}
.w25 {width: 50px;}
.w50 {width: 300px;}
"""

story = fitz.Story(HTML, user_css=CSS)
body = story.body
template = body.find(None, "id", "rowtemplate")
parent = template.parent

for col0, col1, col2 in table_text:
row = template.clone()
row.find(None, "id", "col0").add_text("\n" + col0)
row.find(None, "id", "col1").add_text("\n" + col1)
row.find(None, "id", "col2").add_text("\n" + col2)
parent.append_child(row)

template.remove()

writer = fitz.DocumentWriter(__file__.replace(".py", ".pdf"), "compress")
mediabox = fitz.paper_rect("letter")
where = mediabox + (36, 36, -36, -36)

more = 1
while more:

(continues on next page)

104 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

dev = writer.begin_page(mediabox)
more, filled = story.place(where)
story.draw(dev, None)
writer.end_page()

writer.close()

4.10.9 How to create a simple grid layout

By creating a sequence of Story objects within a grid created via the make_table function a developer can create grid
layouts as required.

Files:
• docs/samples/simple-grid.py

import fitz

MEDIABOX = fitz.paper_rect("letter") # output page format: Letter
GRIDSPACE = fitz.Rect(100, 100, 400, 400)
GRID = fitz.make_table(GRIDSPACE, rows=2, cols=2)
CELLS = [GRID[i][j] for i in range(2) for j in range(2)]
text_table = ("A", "B", "C", "D")
writer = fitz.DocumentWriter(__file__.replace(".py", ".pdf")) # create the writer

device = writer.begin_page(MEDIABOX) # make new page
for i, text in enumerate(text_table):

story = fitz.Story(em=1)
body = story.body
with body.add_paragraph() as para:

para.set_bgcolor("#ecc")
para.set_pagebreak_after() # fills whole cell with bgcolor
para.set_align("center")
para.set_fontsize(16)
para.add_text(f"\n\n\n{text}")

story.place(CELLS[i])
story.draw(device)
del story

writer.end_page() # finish page

writer.close() # close output file

4.10. Recipes: Stories 105

PyMuPDF Documentation, Release 1.21.1

4.10.10 How to generate a Table of Contents

This script lists the source code of all Python scripts that live in the script’s directory.

Files:
• docs/samples/code-printer.py

"""
Demo script PyMuPDF Story class

Read the Python sources in the script directory and create a PDF of all their
source codes.

The following features are included as a specialty:
1. HTML source for fitz.Story created via Python API exclusively
2. Separate Story objects for page headers and footers
3. Use of HTML "id" elements for identifying source start pages
4. Generate a Table of Contents pointing to source file starts. This
- uses the new Stoy callback feature
- uses Story also for making the TOC page(s)

"""
import io
import os
import time

import fitz

THISDIR = os.path.dirname(os.path.abspath(__file__))
TOC = [] # this will contain the TOC list items
CURRENT_ID = "" # currently processed filename - stored by recorder func
MEDIABOX = fitz.paper_rect("a4-l") # chosen page size
WHERE = MEDIABOX + (36, 50, -36, -36) # sub rectangle for source content
location of the header rectangle
HDR_WHERE = (36, 5, MEDIABOX.width - 36, 40)
location of the footer rectangle
FTR_WHERE = (36, MEDIABOX.height - 36, MEDIABOX.width - 36, MEDIABOX.height)

def recorder(elpos):
"""Callback function invoked during story.place().
This function generates / collects all TOC items and updates the value of
CURRENT_ID - which is used to update the footer line of each page.
"""
global TOC, CURRENT_ID
if not elpos.open_close & 1: # only consider "open" items

return
level = elpos.heading
y0 = elpos.rect[1] # top of written rectangle (use for TOC)
if level > 0: # this is a header (h1 - h6)

pno = elpos.page + 1 # the page number
(continues on next page)

106 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

TOC.append(
(

level,
elpos.text,
elpos.page + 1,
y0,

)
)
return

CURRENT_ID = elpos.id if elpos.id else "" # update for footer line
return

def header_story(text):
"""Make the page header"""
header = fitz.Story()
hdr_body = header.body
hdr_body.add_paragraph().set_properties(

align=fitz.fitz.TEXT_ALIGN_CENTER,
bgcolor="#eee",
font="sans-serif",
bold=True,
fontsize=12,
color="green",

).add_text(text)
return header

def footer_story(text):
"""Make the page footer"""
footer = fitz.Story()
ftr_body = footer.body
ftr_body.add_paragraph().set_properties(

bgcolor="#eee",
align=fitz.TEXT_ALIGN_CENTER,
color="blue",
fontsize=10,
font="sans-serif",

).add_text(text)
return footer

def code_printer(outfile):
"""Output the generated PDF to outfile."""
global MAX_TITLE_LEN
where = +WHERE
writer = fitz.DocumentWriter(outfile, "")
print_time = time.strftime("%Y-%m-%d %H:%M:%S (%z)")
thispath = os.path.abspath(os.curdir)
basename = os.path.basename(thispath)

(continues on next page)

4.10. Recipes: Stories 107

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

story = fitz.Story()
body = story.body
body.set_properties(font="sans-serif")

text = f"Python sources in folder '{THISDIR}'"

body.add_header(1).add_text(text) # the only h1 item in the story

files = os.listdir(THISDIR) # list / select Python files in our directory
i = 1
for code_file in files:

if not code_file.endswith(".py"):
continue

read Python file source
fileinput = open(os.path.join(THISDIR, code_file), "rb")
text = fileinput.read().decode()
fileinput.close()

make level 2 header
hdr = body.add_header(2)
if i > 1:

hdr.set_pagebreak_before()
hdr.add_text(f"{i}. Listing of file '{code_file}'")

Write the file code
body.add_codeblock().set_bgcolor((240, 255, 210)).set_color("blue").set_id(

code_file
).set_fontsize(10).add_text(text)

Indicate end of a source file
body.add_paragraph().set_align(fitz.TEXT_ALIGN_CENTER).add_text(

f"---------- End of File '{code_file}' ----------"
)
i += 1 # update file counter

i = 0
while True:

i += 1
device = writer.begin_page(MEDIABOX)
create Story objects for header, footer and the rest.
header = header_story(f"Python Files in '{THISDIR}'")
hdr_ok, _ = header.place(HDR_WHERE)
if hdr_ok != 0:

raise ValueError("header does not fit")
header.draw(device, None)

--
Write the file content.
--
more, filled = story.place(where)
Inform the callback function

(continues on next page)

108 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

Args:
recorder: the Python function to call
{}: dictionary containing anything - we pass the page number
story.element_positions(recorder, {"page": i - 1})
story.draw(device, None)

--
Make / write page footer.
We MUST have a paragraph b/o background color / alignment
--
if CURRENT_ID:

text = f"File '{CURRENT_ID}' printed at {print_time}{chr(160)*5}{'-'*10}
→˓{chr(160)*5}Page {i}"

else:
text = f"Printed at {print_time}{chr(160)*5}{'-'*10}{chr(160)*5}Page {i}"

footer = footer_story(text)
write the page footer
ftr_ok, _ = footer.place(FTR_WHERE)
if ftr_ok != 0:

raise ValueError("footer does not fit")
footer.draw(device, None)

writer.end_page()
if more == 0:

break
writer.close()

if __name__ == "__main__" or os.environ.get('PYTEST_CURRENT_TEST'):
fileptr1 = io.BytesIO()
t0 = time.perf_counter()
code_printer(fileptr1) # make the PDF
t1 = time.perf_counter()
doc = fitz.open("pdf", fileptr1)
old_count = doc.page_count

Post-processing step to make / insert the toc
This also works using fitz.Story:
- make a new PDF in memory which contains pages with the TOC text
- add these TOC pages to the end of the original file
- search item text on the inserted pages and cover each with a PDF link
- move the TOC pages to the front of the document

story = fitz.Story()
body = story.body
body.add_header(1).set_font("sans-serif").add_text("Table of Contents")
prefix TOC with an entry pointing to this page
TOC.insert(0, [1, "Table of Contents", old_count + 1, 36])

for item in TOC[1:]: # write the file name headers as TOC lines
body.add_paragraph().set_font("sans-serif").add_text(

item[1] + f" - ({item[2]})"

(continues on next page)

4.10. Recipes: Stories 109

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

)
fileptr2 = io.BytesIO() # put TOC pages to a separate PDF initially
writer = fitz.DocumentWriter(fileptr2)
i = 1
more = 1
while more:

device = writer.begin_page(MEDIABOX)
header = header_story(f"Python Files in '{THISDIR}'")
write the page header
hdr_ok, _ = header.place(HDR_WHERE)
header.draw(device, None)

more, filled = story.place(WHERE)
story.draw(device, None)

footer = footer_story(f"TOC-{i}") # separate page numbering scheme
write the page footer
ftr_ok, _ = footer.place(FTR_WHERE)
footer.draw(device, None)
writer.end_page()
i += 1

writer.close()
doc2 = fitz.open("pdf", fileptr2) # open TOC pages as another PDF
doc.insert_pdf(doc2) # and append to the main PDF
new_range = range(old_count, doc.page_count) # the TOC page numbers
pages = [doc[i] for i in new_range] # these are the TOC pages within main PDF
for item in TOC: # search for TOC item text to get its rectangle

for page in pages:
rl = page.search_for(item[1], flags=~fitz.TEXT_PRESERVE_LIGATURES)
if rl != []: # this text must be on next page

break
rect = rl[0] # rectangle of TOC item text
link = { # make a link from it

"kind": fitz.LINK_GOTO,
"from": rect,
"to": fitz.Point(0, item[3]),
"page": item[2] - 1,

}
page.insert_link(link)

insert the TOC in the main PDF
doc.set_toc(TOC)
move all the TOC pages to the desired place (1st page here)
for i in new_range:

doc.move_page(doc.page_count - 1, 0)
doc.ez_save(__file__.replace(".py", ".pdf"))

It features the following capabilities:

• Automatic generation of a Table of Contents (TOC) on separately numbered pages at the start of the document -
using a specialized Story.

110 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

• Use of 3 separate Story objects per page: header story, footer story and the story for printing the Python sources.

– The page footer is automatically changed to show the name of the current Python file.

• Use of Story.element_positions() to collect the data for the TOC and for the dynamic adjustment of page
footers. This is an example of a bidirectional communication between the story output process and the script.

• The main PDF with the Python sources is being written to memory by its DocumentWriter. Another Story /
DocumentWriter pair is then used to create a (memory) PDF for the TOC pages. Finally, both these PDFs are
joined and the result stored to disk.

4.10.11 How to display a list from JSON data

This example takes some JSON data input which it uses to populate a Story. It also contains some visual text formatting
and shows how to add links.

Files:
• docs/samples/json-example.py

import fitz
import json

my_json = """
[

{
"name" : "Five-storied Pagoda",
"temple" : "Rurikō-ji",
"founded" : "middle Muromachi period, 1442",
"region" : "Yamaguchi, Yamaguchi",
"position" : "34.190181,131.472917"

},
{

"name" : "Founder's Hall",
"temple" : "Eihō-ji",
"founded" : "early Muromachi period",
"region" : "Tajimi, Gifu",
"position" : "35.346144,137.129189"

},
{

"name" : "Fudōdō",
"temple" : "Kongōbu-ji",
"founded" : "early Kamakura period",
"region" : "Kōya, Wakayama",
"position" : "34.213103,135.580397"

},
{

"name" : "Goeidō",
"temple" : "Nishi Honganji",
"founded" : "Edo period, 1636",
"region" : "Kyoto",
"position" : "34.991394,135.751689"

(continues on next page)

4.10. Recipes: Stories 111

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

},
{

"name" : "Golden Hall",
"temple" : "Murō-ji",
"founded" : "early Heian period",
"region" : "Uda, Nara",
"position" : "34.536586819357986,136.0395548452301"

},
{

"name" : "Golden Hall",
"temple" : "Fudō-in",
"founded" : "late Muromachi period, 1540",
"region" : "Hiroshima",
"position" : "34.427014,132.471117"

},
{

"name" : "Golden Hall",
"temple" : "Ninna-ji",
"founded" : "Momoyama period, 1613",
"region" : "Kyoto",
"position" : "35.031078,135.713811"

},
{

"name" : "Golden Hall",
"temple" : "Mii-dera",
"founded" : "Momoyama period, 1599",
"region" : "Ōtsu, Shiga",
"position" : "35.013403,135.852861"

},
{

"name" : "Golden Hall",
"temple" : "Tōshōdai-ji",
"founded" : "Nara period, 8th century",
"region" : "Nara, Nara",
"position" : "34.675619,135.784842"

},
{

"name" : "Golden Hall",
"temple" : "Tō-ji",
"founded" : "Momoyama period, 1603",
"region" : "Kyoto",
"position" : "34.980367,135.747686"

},
{

"name" : "Golden Hall",
"temple" : "Tōdai-ji",
"founded" : "middle Edo period, 1705",
"region" : "Nara, Nara",
"position" : "34.688992,135.839822"

},
{

"name" : "Golden Hall",

(continues on next page)

112 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

"temple" : "Hōryū-ji",
"founded" : "Asuka period, by 693",
"region" : "Ikaruga, Nara",
"position" : "34.614317,135.734458"

},
{

"name" : "Golden Hall",
"temple" : "Daigo-ji",
"founded" : "late Heian period",
"region" : "Kyoto",
"position" : "34.951481,135.821747"

},
{

"name" : "Keigū-in Main Hall",
"temple" : "Kōryū-ji",
"founded" : "early Kamakura period, before 1251",
"region" : "Kyoto",
"position" : "35.015028,135.705425"

},
{

"name" : "Konpon-chūdō",
"temple" : "Enryaku-ji",
"founded" : "early Edo period, 1640",
"region" : "Ōtsu, Shiga",
"position" : "35.070456,135.840942"

},
{

"name" : "Korō",
"temple" : "Tōshōdai-ji",
"founded" : "early Kamakura period, 1240",
"region" : "Nara, Nara",
"position" : "34.675847,135.785069"

},
{

"name" : "Kōfūzō",
"temple" : "Hōryū-ji",
"founded" : "early Heian period",
"region" : "Ikaruga, Nara",
"position" : "34.614439,135.735428"

},
{

"name" : "Large Lecture Hall",
"temple" : "Hōryū-ji",
"founded" : "middle Heian period, 990",
"region" : "Ikaruga, Nara",
"position" : "34.614783,135.734175"

},
{

"name" : "Lecture Hall",
"temple" : "Zuiryū-ji",
"founded" : "early Edo period, 1655",
"region" : "Takaoka, Toyama",

(continues on next page)

4.10. Recipes: Stories 113

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

"position" : "36.735689,137.010019"
},
{

"name" : "Lecture Hall",
"temple" : "Tōshōdai-ji",
"founded" : "Nara period, 763",
"region" : "Nara, Nara",
"position" : "34.675933,135.784842"

},
{

"name" : "Lotus Flower Gate",
"temple" : "Tō-ji",
"founded" : "early Kamakura period",
"region" : "Kyoto",
"position" : "34.980678,135.746314"

},
{

"name" : "Main Hall",
"temple" : "Akishinodera",
"founded" : "early Kamakura period",
"region" : "Nara, Nara",
"position" : "34.703769,135.776189"

}
]

"""

the result is a Python dictionary:
my_dict = json.loads(my_json)

MEDIABOX = fitz.paper_rect("letter") # output page format: Letter
WHERE = MEDIABOX + (36, 36, -36, -36)
writer = fitz.DocumentWriter("json-example.pdf") # create the writer

story = fitz.Story()
body = story.body

for i, entry in enumerate(my_dict):

for attribute, value in entry.items():
para = body.add_paragraph()

if attribute == "position":
para.set_fontsize(10)
para.add_link(f"www.google.com/maps/@{value},14z")

else:
para.add_span()
para.set_color("#990000")
para.set_fontsize(14)
para.set_bold()
para.add_text(f"{attribute} ")
para.add_span()

(continues on next page)

114 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

para.set_fontsize(18)
para.add_text(f"{value}")

body.add_horizontal_line()

This while condition will check a value from the Story `place` method
for whether all content for the story has been written (0), otherwise
more content is waiting to be written (1)
more = 1
while more:

device = writer.begin_page(MEDIABOX) # make new page
more, _ = story.place(WHERE)
story.draw(device)
writer.end_page() # finish page

writer.close() # close output file

del story

4.10.12 Using the alternative Story.write*() functions

The Story.write*() functions provide a different way to use the Story functionality, removing the need for calling
code to implement a loop that calls Story.place() and Story.draw() etc, at the expense of having to provide at
least a rectfn() callback.

4.10.12.1 How to do basic layout with Story.write()

This script lays out multiple copies of its own source code, into four rectangles per page.

Files:
• docs/samples/story-write.py

"""
Demo script for PyMuPDF's `Story.write()` method.

This is a way of laying out a story into a PDF document, that avoids the need
to write a loop that calls `story.place()` and `story.draw()`.

Instead just a single function call is required, albeit with a `rectfn()`
callback that returns the rectangles into which the story is placed.
"""

import html

import fitz
(continues on next page)

4.10. Recipes: Stories 115

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

Create html containing multiple copies of our own source code.
#
with open(__file__) as f:

text = f.read()
text = html.escape(text)
html = f'''
<!DOCTYPE html>
<body>

<h1>Contents of {__file__}</h1>

<h2>Normal</h2>
<pre>
{text}
</pre>

<h2>Strong</h2>

<pre>
{text}
</pre>

<h2>Em</h2>

<pre>
{text}
</pre>

</body>
'''

def rectfn(rect_num, filled):
'''
We return four rectangles per page in this order:

1 3
2 4

'''
page_w = 800
page_h = 600
margin = 50
rect_w = (page_w - 3*margin) / 2
rect_h = (page_h - 3*margin) / 2

if rect_num % 4 == 0:
New page.
mediabox = fitz.Rect(0, 0, page_w, page_h)

(continues on next page)

116 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

else:
mediabox = None

Return one of four rects in turn.
rect_x = margin + (rect_w+margin) * ((rect_num // 2) % 2)
rect_y = margin + (rect_h+margin) * (rect_num % 2)
rect = fitz.Rect(rect_x, rect_y, rect_x + rect_w, rect_y + rect_h)
#print(f'rectfn(): rect_num={rect_num} filled={filled}. Returning: rect={rect}')
return mediabox, rect, None

story = fitz.Story(html, em=8)

out_path = __file__.replace('.py', '.pdf')
writer = fitz.DocumentWriter(out_path)

story.write(writer, rectfn)
writer.close()

4.10.12.2 How to do iterative layout for a table of contents with Story.write_stabilized()

This script creates html content dynamically, adding a contents section based on ElementPosition items that have non-
zero .heading values.

The contents section is at the start of the document, so modifications to the contents can change page numbers in the
rest of the document, which in turn can cause page numbers in the contents section to be incorrect.

So the script uses Story.write_stabilized() to repeatedly lay things out until things are stable.

Files:
• docs/samples/story-write-stabilized.py

"""
Demo script for PyMuPDF's `fitz.Story.write_stabilized()`.

`fitz.Story.write_stabilized()` is similar to `fitz.Story.write()`,
except instead of taking a fixed html document, it does iterative layout
of dynamically-generated html content (provided by a callback) to a
`fitz.DocumentWriter`.

For example this allows one to add a dynamically-generated table of contents
section while ensuring that page numbers are patched up until stable.
"""

import textwrap

import fitz

(continues on next page)

4.10. Recipes: Stories 117

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

def rectfn(rect_num, filled):
'''
We return one rect per page.
'''
rect = fitz.Rect(10, 20, 290, 380)
mediabox = fitz.Rect(0, 0, 300, 400)
#print(f'rectfn(): rect_num={rect_num} filled={filled}')
return mediabox, rect, None

def contentfn(positions):
'''
Returns html content, with a table of contents derived from `positions`.
'''
ret = ''
ret += textwrap.dedent('''

<!DOCTYPE html>
<body>
<h2>Contents</h2>

''')

Create table of contents with links to all <h1..6> sections in the
document.
for position in positions:

if position.heading and (position.open_close & 1):
text = position.text if position.text else ''
if position.id:

ret += f" {text}\n"
else:

ret += f" {text}\n"
ret += f" \n"
ret += f" page={position.page_num}\n"
ret += f" depth={position.depth}\n"
ret += f" heading={position.heading}\n"
ret += f" id={position.id!r}\n"
ret += f" href={position.href!r}\n"
ret += f" rect={position.rect}\n"
ret += f" text={text!r}\n"
ret += f" open_close={position.open_close}\n"
ret += f" \n"

ret += '\n'

Main content.
ret += textwrap.dedent(f'''

<h1>First section</h1>
<p>Contents of first section.

<h1>Second section</h1>
<p>Contents of second section.

(continues on next page)

118 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

<h2>Second section first subsection</h2>

<p>Contents of second section first subsection.

<h1>Third section</h1>
<p>Contents of third section.

</body>
''')

ret = ret.strip()
with open(__file__.replace('.py', '.html'), 'w') as f:

f.write(ret)
return ret;

out_path = __file__.replace('.py', '.pdf')
writer = fitz.DocumentWriter(out_path)
fitz.Story.write_stabilized(writer, contentfn, rectfn)
writer.close()

4.10.12.3 How to do iterative layout and create PDF links with Story.write_stabilized_links()

This script is similar to the one described in “How to use Story.write_stabilized()” above, except that the gen-
erated PDF also contains links that correspond to the internal links in the original html.

This is done by using Story.write_stabilized_links(); this is slightly different from Story.
write_stabilized():

• It does not take a DocumentWriter writer arg.

• It returns a PDF Document instance.

[The reasons for this are a little involved; for example a DocumentWriter is not necessarily a PDF writer, so doesn’t
really work in a PDF-specific API.]

Files:
• docs/samples/story-write-stabilized-links.py

"""
Demo script for PyMuPDF's `fitz.Story.write_stabilized_with_links()`.

`fitz.Story.write_stabilized_links()` is similar to
`fitz.Story.write_stabilized()` except that it creates a PDF `fitz.Document`
that contains PDF links generated from all internal links in the original html.
"""

import textwrap

(continues on next page)

4.10. Recipes: Stories 119

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

import fitz

def rectfn(rect_num, filled):
'''
We return one rect per page.
'''
rect = fitz.Rect(10, 20, 290, 380)
mediabox = fitz.Rect(0, 0, 300, 400)
#print(f'rectfn(): rect_num={rect_num} filled={filled}')
return mediabox, rect, None

def contentfn(positions):
'''
Returns html content, with a table of contents derived from `positions`.
'''
ret = ''
ret += textwrap.dedent('''

<!DOCTYPE html>
<body>
<h2>Contents</h2>

''')

Create table of contents with links to all <h1..6> sections in the
document.
for position in positions:

if position.heading and (position.open_close & 1):
text = position.text if position.text else ''
if position.id:

ret += f" {text}\n"
else:

ret += f" {text}\n"
ret += f" \n"
ret += f" page={position.page_num}\n"
ret += f" depth={position.depth}\n"
ret += f" heading={position.heading}\n"
ret += f" id={position.id!r}\n"
ret += f" href={position.href!r}\n"
ret += f" rect={position.rect}\n"
ret += f" text={text!r}\n"
ret += f" open_close={position.open_close}\n"
ret += f" \n"

ret += '\n'

Main content.
ret += textwrap.dedent(f'''

<h1>First section</h1>
<p>Contents of first section.

(continues on next page)

120 Chapter 4. Recipes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

Link to IDTEST.
Link to NAMETEST.

<h1>Second section</h1>
<p>Contents of second section.
<h2>Second section first subsection</h2>

<p>Contents of second section first subsection.
<p id="idtest">IDTEST

<h1>Third section</h1>
<p>Contents of third section.
<p>NAMETEST.

</body>
''')

ret = ret.strip()
with open(__file__.replace('.py', '.html'), 'w') as f:

f.write(ret)
return ret;

out_path = __file__.replace('.py', '.pdf')
document = fitz.Story.write_stabilized_with_links(contentfn, rectfn)
document.save(out_path)

4.10. Recipes: Stories 121

https://discord.gg/TSpYGBW4eq
https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

122 Chapter 4. Recipes

CHAPTER

FIVE

MODULE FITZ

• New in version 1.16.8

PyMuPDF can also be used in the command line as a module to perform utility functions. This feature should obsolete
writing some of the most basic scripts.

Admittedly, there is some functional overlap with the MuPDF CLI mutool. On the other hand, PDF embedded files
are no longer supported by MuPDF, so PyMuPDF is offering something unique here.

5.1 Invocation

Invoke the module like this:

python -m fitz <command and parameters>

General remarks:

• Request help via "-h", resp. command-specific help via "command -h".

• Parameters may be abbreviated where this does not introduce ambiguities.

• Several commands support parameters -pages and -xrefs. They are intended for down-selection. Please note
that:

– page numbers for this utility must be given 1-based.

– valid xref numbers start at 1.

– Specify a comma-separated list of either single integers or integer ranges. A range is a pair of integers
separated by one hyphen “-”. Integers must not exceed the maximum page, resp. xref number. To specify
that maximum, the symbolic variable “N” may be used. Integers or ranges may occur several times, in any
sequence and may overlap. If in a range the first number is greater than the second one, the respective items
will be processed in reversed order.

• How to use the module inside your script:

>>> from fitz.__main__ import main as fitz_command
>>> cmd = "clean input.pdf output.pdf -pages 1,N".split() # prepare command line
>>> saved_parms = sys.argv[1:] # save original command line
>>> sys.argv[1:] = cmd # store new command line
>>> fitz_command() # execute module
>>> sys.argv[1:] = saved_parms # restore original command line

123

PyMuPDF Documentation, Release 1.21.1

• Use the following 2-liner and compile it with Nuitka in standalone mode. This will give you a CLI executable
with all the module’s features, that can be used on all compatible platforms without Python, PyMuPDF or MuPDF
being installed.

from fitz.__main__ import main
main()

5.2 Cleaning and Copying

This command will optimize the PDF and store the result in a new file. You can use it also for encryption, decryption
and creating sub documents. It is mostly similar to the MuPDF command line utility “mutool clean”:

python -m fitz clean -h
usage: fitz clean [-h] [-password PASSWORD]

[-encryption {keep,none,rc4-40,rc4-128,aes-128,aes-256}]
[-owner OWNER] [-user USER] [-garbage {0,1,2,3,4}]
[-compress] [-ascii] [-linear] [-permission PERMISSION]
[-sanitize] [-pretty] [-pages PAGES]
input output

-------------- optimize PDF or create sub-PDF if pages given --------------

positional arguments:
input PDF filename
output output PDF filename

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password
-encryption {keep,none,rc4-40,rc4-128,aes-128,aes-256}

encryption method
-owner OWNER owner password
-user USER user password
-garbage {0,1,2,3,4} garbage collection level
-compress compress (deflate) output
-ascii ASCII encode binary data
-linear format for fast web display
-permission PERMISSION

integer with permission levels
-sanitize sanitize / clean contents
-pretty prettify PDF structure
-pages PAGES output selected pages, format: 1,5-7,50-N

If you specify “-pages”, be aware that only page-related objects are copied, no document-level items like e.g. embedded
files.

Please consult Document.save() for the parameter meanings.

124 Chapter 5. Module fitz

https://pypi.org/project/Nuitka/

PyMuPDF Documentation, Release 1.21.1

5.3 Extracting Fonts and Images

Extract fonts or images from selected PDF pages to a desired directory:

python -m fitz extract -h
usage: fitz extract [-h] [-images] [-fonts] [-output OUTPUT] [-password PASSWORD]

[-pages PAGES]
input

--------------------- extract images and fonts to disk --------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-images extract images
-fonts extract fonts
-output OUTPUT output directory, defaults to current
-password PASSWORD password
-pages PAGES only consider these pages, format: 1,5-7,50-N

Image filenames are built according to the naming scheme: “img-xref.ext”, where “ext” is the extension associated
with the image and “xref” the xref of the image PDF object.

Font filenames consist of the fontname and the associated extension. Any spaces in the fontname are replaced with
hyphens “-“.

The output directory must already exist.

Note: Except for output directory creation, this feature is functionally equivalent to and obsoletes this script.

5.4 Joining PDF Documents

To join several PDF files specify:

python -m fitz join -h
usage: fitz join [-h] -output OUTPUT [input [input ...]]

---------------------------- join PDF documents ---------------------------

positional arguments:
input input filenames

optional arguments:
-h, --help show this help message and exit
-output OUTPUT output filename

specify each input as 'filename[,password[,pages]]'

Note:

5.3. Extracting Fonts and Images 125

https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/extract-imga.py

PyMuPDF Documentation, Release 1.21.1

1. Each input must be entered as “filename,password,pages”. Password and pages are optional.

2. The password entry is required if the “pages” entry is used. If the PDF needs no password, specify two commas.

3. The “pages” format is the same as explained at the top of this section.

4. Each input file is immediately closed after use. Therefore you can use one of them as output filename, and thus
overwrite it.

Example: To join the following files

1. file1.pdf: all pages, back to front, no password

2. file2.pdf: last page, first page, password: “secret”

3. file3.pdf: pages 5 to last, no password

and store the result as output.pdf enter this command:

python -m fitz join -o output.pdf file1.pdf„N-1 file2.pdf,secret,N,1 file3.pdf„5-N

5.5 Low Level Information

Display PDF internal information. Again, there are similarities to “mutool show”:

python -m fitz show -h
usage: fitz show [-h] [-password PASSWORD] [-catalog] [-trailer] [-metadata]

[-xrefs XREFS] [-pages PAGES]
input

------------------------- display PDF information -------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password
-catalog show PDF catalog
-trailer show PDF trailer
-metadata show PDF metadata
-xrefs XREFS show selected objects, format: 1,5-7,N
-pages PAGES show selected pages, format: 1,5-7,50-N

Examples:

python -m fitz show x.pdf
PDF is password protected

python -m fitz show x.pdf -pass hugo
authentication unsuccessful

python -m fitz show x.pdf -pass jorjmckie
authenticated as owner
file 'x.pdf', pages: 1, objects: 19, 58 MB, PDF 1.4, encryption: Standard V5 R6 256-bit␣

(continues on next page)

126 Chapter 5. Module fitz

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

→˓AES
Document contains 15 embedded files.

python -m fitz show FDA-1572_508_R6_FINAL.pdf -tr -m
'FDA-1572_508_R6_FINAL.pdf', pages: 2, objects: 1645, 1.4 MB, PDF 1.6, encryption:␣
→˓Standard V4 R4 128-bit AES
document contains 740 root form fields and is signed

------------------------------- PDF metadata ------------------------------
format: PDF 1.6
title: FORM FDA 1572
author: PSC Publishing Services

subject: Statement of Investigator
keywords: None
creator: PScript5.dll Version 5.2.2
producer: Acrobat Distiller 9.0.0 (Windows)

creationDate: D:20130522104413-04'00'
modDate: D:20190718154905-07'00'

encryption: Standard V4 R4 128-bit AES

------------------------------- PDF trailer -------------------------------
<<
/DecodeParms <<

/Columns 5
/Predictor 12

>>
/Encrypt 1389 0 R
/Filter /FlateDecode
/ID [<9252E9E39183F2A0B0C51BE557B8A8FC> <85227BE9B84B724E8F678E1529BA8351>]
/Index [1388 258]
/Info 1387 0 R
/Length 253
/Prev 1510559
/Root 1390 0 R
/Size 1646
/Type /XRef
/W [1 3 1]
>>

5.6 Embedded Files Commands

The following commands deal with embedded files – which is a feature completely removed from MuPDF after v1.14,
and hence from all its command line tools.

5.6. Embedded Files Commands 127

PyMuPDF Documentation, Release 1.21.1

5.6.1 Information

Show the embedded file names (long or short format):

python -m fitz embed-info -h
usage: fitz embed-info [-h] [-name NAME] [-detail] [-password PASSWORD] input

--------------------------- list embedded files ---------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-name NAME if given, report only this one
-detail show detail information
-password PASSWORD password

Example:

python -m fitz embed-info some.pdf
'some.pdf' contains the following 15 embedded files.

20110813_180956_0002.jpg
20110813_181009_0003.jpg
20110813_181012_0004.jpg
20110813_181131_0005.jpg
20110813_181144_0006.jpg
20110813_181306_0007.jpg
20110813_181307_0008.jpg
20110813_181314_0009.jpg
20110813_181315_0010.jpg
20110813_181324_0011.jpg
20110813_181339_0012.jpg
20110813_181913_0013.jpg
insta-20110813_180944_0001.jpg
markiert-20110813_180944_0001.jpg
neue.datei

Detailed output would look like this per entry:

name: neue.datei
filename: text-tester.pdf
ufilename: text-tester.pdf

desc: nur zum Testen!
size: 4639

length: 1566

128 Chapter 5. Module fitz

PyMuPDF Documentation, Release 1.21.1

5.6.2 Extraction

Extract an embedded file like this:

python -m fitz embed-extract -h
usage: fitz embed-extract [-h] -name NAME [-password PASSWORD] [-output OUTPUT]

input

---------------------- extract embedded file to disk ----------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-name NAME name of entry
-password PASSWORD password
-output OUTPUT output filename, default is stored name

For details consult Document.embfile_get(). Example (refer to previous section):

python -m fitz embed-extract some.pdf -name neue.datei
Saved entry 'neue.datei' as 'text-tester.pdf'

5.6.3 Deletion

Delete an embedded file like this:

python -m fitz embed-del -h
usage: fitz embed-del [-h] [-password PASSWORD] [-output OUTPUT] -name NAME input

--------------------------- delete embedded file --------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password
-output OUTPUT output PDF filename, incremental save if none
-name NAME name of entry to delete

For details consult Document.embfile_del().

5.6. Embedded Files Commands 129

PyMuPDF Documentation, Release 1.21.1

5.6.4 Insertion

Add a new embedded file using this command:

python -m fitz embed-add -h
usage: fitz embed-add [-h] [-password PASSWORD] [-output OUTPUT] -name NAME -path

PATH [-desc DESC]
input

---------------------------- add embedded file ----------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password
-output OUTPUT output PDF filename, incremental save if none
-name NAME name of new entry
-path PATH path to data for new entry
-desc DESC description of new entry

“NAME” must not already exist in the PDF. For details consult Document.embfile_add().

5.6.5 Updates

Update an existing embedded file using this command:

python -m fitz embed-upd -h
usage: fitz embed-upd [-h] -name NAME [-password PASSWORD] [-output OUTPUT]

[-path PATH] [-filename FILENAME] [-ufilename UFILENAME]
[-desc DESC]
input

--------------------------- update embedded file --------------------------

positional arguments:
input PDF filename

optional arguments:
-h, --help show this help message and exit
-name NAME name of entry
-password PASSWORD password
-output OUTPUT Output PDF filename, incremental save if none
-path PATH path to new data for entry
-filename FILENAME new filename to store in entry
-ufilename UFILENAME new unicode filename to store in entry
-desc DESC new description to store in entry

except '-name' all parameters are optional

Use this method to change meta-information of the file – just omit the “PATH”. For details consult Document.
embfile_upd().

130 Chapter 5. Module fitz

PyMuPDF Documentation, Release 1.21.1

5.6.6 Copying

Copy embedded files between PDFs:

python -m fitz embed-copy -h
usage: fitz embed-copy [-h] [-password PASSWORD] [-output OUTPUT] -source

SOURCE [-pwdsource PWDSOURCE]
[-name [NAME [NAME ...]]]
input

--------------------- copy embedded files between PDFs --------------------

positional arguments:
input PDF to receive embedded files

optional arguments:
-h, --help show this help message and exit
-password PASSWORD password of input
-output OUTPUT output PDF, incremental save to 'input' if omitted
-source SOURCE copy embedded files from here
-pwdsource PWDSOURCE password of 'source' PDF
-name [NAME [NAME ...]]

restrict copy to these entries

5.7 Text Extraction

• New in v1.18.16

Extract text from arbitrary supported documents (not only PDF) to a textfile. Currently, there are three output format-
ting modes available: simple, block sorting and reproduction of physical layout.

• Simple text extraction reproduces all text as it appears in the document pages – no effort is made to rearrange in
any particular reading order.

• Block sorting sorts text blocks (as identified by MuPDF) by ascending vertical, then horizontal coordinates.
This should be sufficient to establish a “natural” reading order for basic pages of text.

• Layout strives to reproduce the original appearance of the input pages. You can expect results like this (produced
by the command python -m fitz gettext -pages 1 demo1.pdf):

5.7. Text Extraction 131

PyMuPDF Documentation, Release 1.21.1

Note: The “gettext” command offers a functionality similar to the CLI tool pdftotext by XPDF software, http:
//www.foolabs.com/xpdf/ – this is especially true for “layout” mode, which combines that tool’s -layout and -table
options.

After each page of the output file, a formfeed character, hex(12) is written – even if the input page has no text at all.
This behavior can be controlled via options.

Note: For “layout” mode, only horizontal, left-to-right, top-to bottom text is supported, other text is ignored. In
this mode, text is also ignored, if its fontsize is too small.

“Simple” and “blocks” mode in contrast output all text for any text size or orientation.

Command:

python -m fitz gettext -h
usage: fitz gettext [-h] [-password PASSWORD] [-mode {simple,blocks,layout}] [-pages␣
→˓PAGES] [-noligatures]

[-convert-white] [-extra-spaces] [-noformfeed] [-skip-empty] [-
→˓output OUTPUT] [-grid GRID]

[-fontsize FONTSIZE]
input

----------------- extract text in various formatting modes ----------------

positional arguments:
input input document filename

optional arguments:
(continues on next page)

132 Chapter 5. Module fitz

http://www.foolabs.com/xpdf/
http://www.foolabs.com/xpdf/

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

-h, --help show this help message and exit
-password PASSWORD password for input document
-mode {simple,blocks,layout}

mode: simple, block sort, or layout (default)
-pages PAGES select pages, format: 1,5-7,50-N
-noligatures expand ligature characters (default False)
-convert-white convert whitespace characters to space (default False)
-extra-spaces fill gaps with spaces (default False)
-noformfeed write linefeeds, no formfeeds (default False)
-skip-empty suppress pages with no text (default False)
-output OUTPUT store text in this file (default inputfilename.txt)
-grid GRID merge lines if closer than this (default 2)
-fontsize FONTSIZE only include text with a larger fontsize (default 3)

Note: Command options may be abbreviated as long as no ambiguities are introduced. So the following do the same:

• ... -output text.txt -noligatures -noformfeed -convert-white -grid 3 -extra-spaces
...

• ... -o text.txt -nol -nof -c -g 3 -e ...

The output filename defaults to the input with its extension replaced by .txt. As with other commands, you can select
page ranges (caution: 1-based!) in mutool format, as indicated above.

• mode: (str) select a formatting mode – default is “layout”.

• noligatures: (bool) corresponds to not TEXT_PRESERVE_LIGATURES. If specified, ligatures (present in ad-
vanced fonts: glyphs combining multiple characters like “fi”) are split up into their components (i.e. “f”, “i”).
Default is passing them through.

• convert-white: corresponds to not TEXT_PRESERVE_WHITESPACE. If specified, all white space characters (like
tabs) are replaced with one or more spaces. Default is passing them through.

• extra-spaces: (bool) corresponds to not TEXT_INHIBIT_SPACES. If specified, large gaps between adjacent
characters will be filled with one or more spaces. Default is off.

• noformfeed: (bool) instead of hex(12) (formfeed), write linebreaks \n at end of output pages.

• skip-empty: (bool) skip pages with no text.

• grid: lines with a vertical coordinate difference of no more than this value (in points) will be merged into the
same output line. Only relevant for “layout” mode. Use with care: 3 or the default 2 should be adequate in most
cases. If too large, lines that are intended to be different in the original may be merged and will result in garbled
and / or incomplete output. If too low, artifact separate output lines may be generated for some spans in the input
line, just because they are coded in a different font with slightly deviating properties.

• fontsize: include text with fontsize larger than this value only (default 3). Only relevant for “layout” option.

5.7. Text Extraction 133

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

134 Chapter 5. Module fitz

CHAPTER

SIX

CLASSES

6.1 Annot

This class is supported for PDF documents only.
Quote from the Adobe PDF References: “An annotation associates an object such as a note, sound, or movie with a
location on a page of a PDF document, or provides a way to interact with the user by means of the mouse and keyboard.”

There is a parent-child relationship between an annotation and its page. If the page object becomes unusable (closed
document, any document structure change, etc.), then so does every of its existing annotation objects – an exception is
raised saying that the object is “orphaned”, whenever an annotation property or method is accessed.

Note: Unfortunately, there exists no single, unique naming convention in PyMuPDF: examples for all of CamelCases,
mixedCases and lower_case_with underscores can be found all over the place. We are now in the process of cleaning
this up, step by step.

This class, Annot, is the first candidate for this execise. In this chapter, you will for example find Annot.get_pixmap()
– and no longer the old name getPixmap. The method with the old name however continues to exists and you can
continue using it: your existing code will not break. But we do hope you will start using the new names – for new code
at least.

Attribute Short Description
Annot.delete_responses() delete all responding annotions
Annot.get_file() get attached file content
Annot.get_oc() get xref of an OCG / OCMD
Annot.get_pixmap() image of the annotation as a pixmap
Annot.get_sound() get the sound of an audio annotation
Annot.get_text() extract annotation text
Annot.get_textbox() extract annotation text
Annot.set_border() set annotation’s border properties
Annot.set_blendmode() set annotation’s blend mode
Annot.set_colors() set annotation’s colors
Annot.set_flags() set annotation’s flags field
Annot.set_irt_xref() define the annotation to being “In Response To”
Annot.set_name() set annotation’s name field
Annot.set_oc() set xref to an OCG / OCMD
Annot.set_opacity() change transparency
Annot.set_open() open / close annotation or its Popup
Annot.set_popup() create a Popup for the annotation

continues on next page

135

PyMuPDF Documentation, Release 1.21.1

Table 1 – continued from previous page
Attribute Short Description
Annot.set_rect() change annotation rectangle
Annot.set_rotation() change rotation
Annot.update_file() update attached file content
Annot.update() apply accumulated annot changes
Annot.blendmode annotation BlendMode
Annot.border border details
Annot.colors border / background and fill colors
Annot.file_info get attached file information
Annot.flags annotation flags
Annot.has_popup whether annotation has a Popup
Annot.irt_xref annotation to which this one responds
Annot.info various information
Annot.is_open whether annotation or its Popup is open
Annot.line_ends start / end appearance of line-type annotations
Annot.next link to the next annotation
Annot.opacity the annot’s transparency
Annot.parent page object of the annotation
Annot.popup_rect rectangle of the annotation’s Popup
Annot.popup_xref the PDF xref number of the annotation’s Popup
Annot.rect rectangle containing the annotation
Annot.type type of the annotation
Annot.vertices point coordinates of Polygons, PolyLines, etc.
Annot.xref the PDF xref number

Class API
class Annot

get_pixmap(matrix=fitz.Identity, dpi=None, colorspace=fitz.csRGB, alpha=False)

• Changed in v1.19.2: added support of dpi parameter.

Creates a pixmap from the annotation as it appears on the page in untransformed coordinates. The pixmap’s
IRect equals Annot.rect.irect (see below). All parameters are keyword only.

Parameters
• matrix (matrix_like) – a matrix to be used for image creation. Default is Identity.

• dpi (int) – (new in v1.19.2) desired resolution in dots per inch. If not None, the matrix
parameter is ignored.

• colorspace (Colorspace) – a colorspace to be used for image creation. Default is
fitz.csRGB.

• alpha (bool) – whether to include transparency information. Default is False.

Return type
Pixmap

Note: If the annotation has just been created or modified, you should reload the page first via page =
doc.reload_page(page).

136 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

get_text(opt, clip=None, flags=None)

• New in 1.18.0

Retrieves the content of the annotation in a variety of formats – much like the same method for Page.. This
currently only delivers relevant data for annotation types ‘FreeText’ and ‘Stamp’. Other types return an
empty string (or equivalent objects).

Parameters
• opt (str) – (positional only) the desired format - one of the following values. Please note

that this method works exactly like the same-named method of Page.

– ”text” – TextPage.extractTEXT(), default

– ”blocks” – TextPage.extractBLOCKS()

– ”words” – TextPage.extractWORDS()

– ”html” – TextPage.extractHTML()

– ”xhtml” – TextPage.extractXHTML()

– ”xml” – TextPage.extractXML()

– ”dict” – TextPage.extractDICT()

– ”json” – TextPage.extractJSON()

– ”rawdict” – TextPage.extractRAWDICT()

• clip (rect-like) – (keyword only) restrict the extraction to this area. Should hardly ever
be required, defaults to Annot.rect.

• flags (int) – (keyword only) control the amount of data returned. Defaults to simple text
extraction.

get_textbox(rect)

• New in 1.18.0

Return the annotation text. Mostly (except line breaks) equal to Annot.get_text()with the “text” option.

Parameters
rect (rect-like) – the area to consider, defaults to Annot.rect.

set_info(info=None, content=None, title=None, creationDate=None, modDate=None, subject=None)

• Changed in version 1.16.10

Changes annotation properties. These include dates, contents, subject and author (title). Changes for name
and id will be ignored. The update happens selectively: To leave a property unchanged, set it to None. To
delete existing data, use an empty string.

Parameters
• info (dict) – a dictionary compatible with the info property (see below). All entries must

be strings. If this argument is not a dictionary, the other arguments are used instead – else
they are ignored.

• content (str) – (new in v1.16.10) see description in info.

• title (str) – (new in v1.16.10) see description in info.

• creationDate (str) – (new in v1.16.10) date of annot creation. If given, should be in
PDF datetime format.

6.1. Annot 137

PyMuPDF Documentation, Release 1.21.1

• modDate (str) – (new in v1.16.10) date of last modification. If given, should be in PDF
datetime format.

• subject (str) – (new in v1.16.10) see description in info.

set_line_ends(start, end)
Sets an annotation’s line ending styles. Each of these annotation types is defined by a list of points which
are connected by lines. The symbol identified by start is attached to the first point, and end to the last point
of this list. For unsupported annotation types, a no-operation with a warning message results.

Note:
• While ‘FreeText’, ‘Line’, ‘PolyLine’, and ‘Polygon’ annotations can have these properties, (Py-)

MuPDF does not support line ends for ‘FreeText’, because the call-out variant of it is not supported.

• (Changed in v1.16.16) Some symbols have an interior area (diamonds, circles, squares, etc.). By de-
fault, these areas are filled with the fill color of the annotation. If this is None, then white is chosen. The
fill_color argument of Annot.update() can now be used to override this and give line end symbols
their own fill color.

Parameters
• start (int) – The symbol number for the first point.

• end (int) – The symbol number for the last point.

set_oc(xref)
Set the annotation’s visibility using PDF optional content mechanisms. This visibility is controlled by the
user interface of supporting PDF viewers. It is independent from other attributes like Annot.flags.

Parameters
xref (int) – the xref of an optional contents group (OCG or OCMD). Any previous xref
will be overwritten. If zero, a previous entry will be removed. An exception occurs if the xref
is not zero and does not point to a valid PDF object.

Note: This does not require executing Annot.update() to take effect.

get_oc()

Return the xref of an optional content object, or zero if there is none.

Returns
zero or the xref of an OCG (or OCMD).

set_irt_xref(xref)

• New in v1.19.3

Set annotation to be “In Response To” another one.

Parameters
xref (int) – The xref of another annotation.

Note: Must refer to an existing annotation on this page. Setting this property requires no
subsequent update().

138 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

set_open(value)

• New in v1.18.4

Set the annotation’s Popup annotation to open or closed – or the annotation itself, if its type is ‘Text’ (“sticky
note”).

Parameters
value (bool) – the desired open state.

set_popup(rect)

• New in v1.18.4

Create a Popup annotation for the annotation and specify its rectangle. If the Popup already exists, only its
rectangle is updated.

Parameters
rect (rect_like) – the desired rectangle.

set_opacity(value)
Set the annotation’s transparency. Opacity can also be set in Annot.update().

Parameters
value (float) – a float in range [0, 1]. Any value outside is assumed to be 1. E.g. a value
of 0.5 sets the transparency to 50%.

Three overlapping ‘Circle’ annotations with each opacity set to 0.5:

blendmode

• New in v1.18.4

The annotation’s blend mode. See Adobe PDF References, page 324 for explanations.

Return type
str

Returns
the blend mode or None.

>>> annot=page.first_annot
>>> annot.blendmode
'Multiply'

6.1. Annot 139

PyMuPDF Documentation, Release 1.21.1

set_blendmode(blendmode)

• New in v1.16.14

Set the annotation’s blend mode. See Adobe PDF References, page 324 for explanations. The blend mode
can also be set in Annot.update().

Parameters
blendmode (str) – set the blend mode. Use Annot.update() to reflect this in the visual
appearance. For predefined values see PDF Standard Blend Modes. Use PDF_BM_Normal to
remove a blend mode.

>>> annot.set_blendmode(fitz.PDF_BM_Multiply)
>>> annot.update()
>>> # or in one statement:
>>> annot.update(blend_mode=fitz.PDF_BM_Multiply, ...)

set_name(name)

• New in version 1.16.0

Change the name field of any annotation type. For ‘FileAttachment’ and ‘Text’ annotations, this is the icon
name, for ‘Stamp’ annotations the text in the stamp. The visual result (if any) depends on your PDF viewer.
See also Annotation Icons in MuPDF.

Parameters
name (str) – the new name.

Caution: If you set the name of a ‘Stamp’ annotation, then this will not change the rectangle, nor
will the text be layouted in any way. If you choose a standard text from Stamp Annotation Icons (the
exact name piece after “STAMP_”), you should receive the original layout. An arbitrary text will not
be changed to upper case, but be written in font “Times-Bold” as is, horizontally centered in one line
and be shortened to fit. To get your text fully displayed, its length using fontsize 20 must not exceed
190 pixels. So please make sure that the following inequality is true: fitz.get_text_length(text,
fontname="tibo", fontsize=20) <= 190.

set_rect(rect)
Change the rectangle of an annotation. The annotation can be moved around and both sides of the rectangle
can be independently scaled. However, the annotation appearance will never get rotated, flipped or sheared.

Parameters
rect (rect_like) – the new rectangle of the annotation (finite and not empty). E.g. using
a value of annot.rect + (5, 5, 5, 5) will shift the annot position 5 pixels to the right and
downwards.

Note: You need not invoke Annot.update() for activation of the effect.

set_rotation(angle)
Set the rotation of an annotation. This rotates the annotation rectangle around its center point. Then a new
annotation rectangle is calculated from the resulting quad.

Parameters
angle (int) – rotation angle in degrees. Arbitrary values are possible, but will be clamped
to the interval 0 <= angle < 360.

140 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Note:
• You must invoke Annot.update() to activate the effect.

• For PDF_ANNOT_FREE_TEXT, only one of the values 0, 90, 180 and 270 is possible and will rotate
the text inside the current rectangle (which remains unchanged). Other values are silently ignored and
replaced by 0.

• Otherwise, only the following Annotation Types can be rotated: ‘Square’, ‘Circle’, ‘Caret’, ‘Text’,
‘FileAttachment’, ‘Ink’, ‘Line’, ‘Polyline’, ‘Polygon’, and ‘Stamp’. For all others the method is a no-
op.

set_border(border=None, width=0, style=None, dashes=None)

• Changed in version 1.16.9: Allow specification without using a dictionary. The direct parameters are
used if border is not a dictionary.

PDF only: Change border width and dashing properties.

Parameters
• border (dict) – a dictionary as returned by the border property, with keys “width”

(float), “style” (str) and “dashes” (sequence). Omitted keys will leave the resp. property
unchanged. To e.g. remove dashing use: “dashes”: []. If dashes is not an empty sequence,
“style” will automatically be set to “D” (dashed).

• width (float) – see above.

• style (str) – see above.

• dashes (sequence) – see above.

set_flags(flags)
Changes the annotation flags. Use the | operator to combine several.

Parameters
flags (int) – an integer specifying the required flags.

set_colors(colors=None, stroke=None, fill=None)

• Changed in version 1.16.9: Allow colors to be directly set. These parameters are used if colors is not
a dictionary.

Changes the “stroke” and “fill” colors for supported annotation types – not all annotations accept both.

Parameters
• colors (dict) – a dictionary containing color specifications. For accepted dictionary keys

and values see below. The most practical way should be to first make a copy of the colors
property and then modify this dictionary as required.

• stroke (sequence) – see above.

• fill (sequence) – see above.

Changed in v1.18.5: To completely remove a color specification, use an empty sequence like []. If you
specify None, an existing specification will not be changed.

delete_responses()

• New in version 1.16.12

6.1. Annot 141

PyMuPDF Documentation, Release 1.21.1

Delete annotations referring to this one. This includes any ‘Popup’ annotations and all annotations respond-
ing to it.

update(opacity=None, blend_mode=None, fontsize=0, text_color=None, border_color=None,
fill_color=None, cross_out=True, rotate=-1)

Synchronize the appearance of an annotation with its properties after relevant changes.

You can safely omit this method only for the following changes:

• Annot.set_rect()

• Annot.set_flags()

• Annot.set_oc()

• Annot.update_file()

• Annot.set_info() (except any changes to “content”)

All arguments are optional. (Changed in v1.16.14) Blend mode and opacity are applicable to all annotation
types. The other arguments are mostly special use, as described below.

Color specifications may be made in the usual format used in PuMuPDF as sequences of floats ranging from
0.0 to 1.0 (including both). The sequence length must be 1, 3 or 4 (supporting GRAY, RGB and CMYK
colorspaces respectively). For GRAY, just a float is also acceptable.

Parameters
• opacity (float) – (new in v1.16.14) valid for all annotation types: change or set the

annotation’s transparency. Valid values are 0 <= opacity < 1.

• blend_mode (str) – (new in v1.16.14) valid for all annotation types: change or set the
annotation’s blend mode. For valid values see PDF Standard Blend Modes.

• fontsize (float) – change font size of the text. ‘FreeText’ annotations only.

• text_color (sequence,float) – change the text color. ‘FreeText’ annotations only.

• border_color (sequence,float) – change the border color. ‘FreeText’ annotations
only.

• fill_color (sequence,float) – the fill color.

– ’Line’, ‘Polyline’, ‘Polygon’ annotations: use it to give applicable line end symbols a fill
color other than that of the annotation (changed in v1.16.16).

• cross_out (bool) – (new in v1.17.2) add two diagonal lines to the annotation rectangle.
‘Redact’ annotations only. If not desired, False must be specified even if the annotation
was created with False.

• rotate (int) – new rotation value. Default (-1) means no change. Supports ‘FreeText’
and several other annotation types (see Annot.set_rotation()),1. Only choose 0, 90,
180, or 270 degrees for ‘FreeText’. Otherwise any integer is acceptable.

Return type
bool

Note: Using this method inside a Page.annots() loop is not recommended! This is because most
annotation updates require the owning page to be reloaded – which cannot be done inside this loop. Please
use the example coding pattern given in the documentation of this generator.

1 Rotating an annotation also changes its rectangle. Depending on how the annotation was defined, the original rectangle is not reconstructible
by setting the rotation value to zero again and will be lost.

142 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

file_info

Basic information of the annot’s attached file.

Return type
dict

Returns
a dictionary with keys filename, ufilename, desc (description), size (uncompressed file size),
length (compressed length) for FileAttachment annot types, else None.

get_file()

Returns attached file content.

Return type
bytes

Returns
the content of the attached file.

update_file(buffer=None, filename=None, ufilename=None, desc=None)
Updates the content of an attached file. All arguments are optional. No arguments lead to a no-op.

Parameters
• buffer (bytes|bytearray|BytesIO) – the new file content. Omit to only change meta-

information.

(Changed in version 1.14.13) io.BytesIO is now also supported.

• filename (str) – new filename to associate with the file.

• ufilename (str) – new unicode filename to associate with the file.

• desc (str) – new description of the file content.

get_sound()

Return the embedded sound of an audio annotation.

Return type
dict

Returns
the sound audio file and accompanying properties. These are the possible dictionary keys, of
which only “rate” and “stream” are always present.

Key Description
rate (float, requ.) samples per second
channels (int, opt.) number of sound channels
bps (int, opt.) bits per sample value per channel
encoding (str, opt.) encoding format: Raw, Signed, muLaw, ALaw
compression (str, opt.) name of compression filter
stream (bytes, requ.) the sound file content

opacity

The annotation’s transparency. If set, it is a value in range [0, 1]. The PDF default is 1. However, in an
effort to tell the difference, we return -1.0 if not set.

Return type
float

6.1. Annot 143

PyMuPDF Documentation, Release 1.21.1

parent

The owning page object of the annotation.

Return type
Page

rotation

The annot rotation.

Return type
int

Returns
a value [-1, 359]. If rotation is not at all, -1 is returned (and implies a rotation angle of 0).
Other possible values are normalized to some value value 0 <= angle < 360.

rect

The rectangle containing the annotation.

Return type
Rect

next

The next annotation on this page or None.

Return type
Annot

type

A number and one or two strings describing the annotation type, like [2, ‘FreeText’, ‘FreeTextCallout’].
The second string entry is optional and may be empty. See the appendix Annotation Types for a list of
possible values and their meanings.

Return type
list

info

A dictionary containing various information. All fields are optional strings. If an information is not pro-
vided, an empty string is returned.

• name – e.g. for ‘Stamp’ annotations it will contain the stamp text like “Sold” or “Experimental”, for
other annot types you will see the name of the annot’s icon here (“PushPin” for FileAttachment).

• content – a string containing the text for type Text and FreeText annotations. Commonly used for filling
the text field of annotation pop-up windows.

• title – a string containing the title of the annotation pop-up window. By convention, this is used for the
annotation author.

• creationDate – creation timestamp.

• modDate – last modified timestamp.

• subject – subject.

• id – (new in version 1.16.10) a unique identification of the annotation. This is taken from PDF key
/NM. Annotations added by PyMuPDF will have a unique name, which appears here.

Return type
dict

144 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

flags

An integer whose low order bits contain flags for how the annotation should be presented.

Return type
int

line_ends

A pair of integers specifying start and end symbol of annotations types ‘FreeText’, ‘Line’, ‘PolyLine’, and
‘Polygon’. None if not applicable. For possible values and descriptions in this list, see the Adobe PDF
References, table 1.76 on page 400.

Return type
tuple

vertices

A list containing a variable number of point (“vertices”) coordinates (each given by a pair of floats) for
various types of annotations:

• ‘Line’ – the starting and ending coordinates (2 float pairs).

• ‘FreeText’ – 2 or 3 float pairs designating the starting, the (optional) knee point, and the ending coor-
dinates.

• ‘PolyLine’ / ‘Polygon’ – the coordinates of the edges connected by line pieces (n float pairs for n
points).

• text markup annotations – 4 float pairs specifying the QuadPoints of the marked text span (see Adobe
PDF References, page 403).

• ‘Ink’ – list of one to many sublists of vertex coordinates. Each such sublist represents a separate line
in the drawing.

Return type
list

colors

dictionary of two lists of floats in range 0 <= float <= 1 specifying the “stroke” and the interior (“fill”)
colors. The stroke color is used for borders and everything that is actively painted or written (“stroked”).
The fill color is used for the interior of objects like line ends, circles and squares. The lengths of these lists
implicitely determine the colorspaces used: 1 = GRAY, 3 = RGB, 4 = CMYK. So “[1.0, 0.0, 0.0]” stands
for RGB color red. Both lists can be empty if no color is specified.

Return type
dict

xref

The PDF xref .

Return type
int

irt_xref

The PDF xref of an annotation to which this one responds. Return zero if this is no response annotation.

Return type
int

popup_xref

The PDF xref of the associated Popup annotation. Zero if non-existent.

6.1. Annot 145

PyMuPDF Documentation, Release 1.21.1

Return type
int

has_popup

Whether the annotation has a Popup annotation.

Return type
bool

is_open

Whether the annotation’s Popup is open – or the annotation itself (‘Text’ annotations only).

Return type
bool

popup_rect

The rectangle of the associated Popup annotation. Infinite rectangle if non-existent.

Return type
Rect

border

A dictionary containing border characteristics. Empty if no border information exists. The following keys
may be present:

• width – a float indicating the border thickness in points. The value is -1.0 if no width is specified.

• dashes – a sequence of integers specifying a line dash pattern. [] means no dashes, [n] means equal
on-off lengths of n points, longer lists will be interpreted as specifying alternating on-off length values.
See the Adobe PDF References page 126 for more details.

• style – 1-byte border style: “S” (Solid) = solid rectangle surrounding the annotation, “D” (Dashed)
= dashed rectangle surrounding the annotation, the dash pattern is specified by the dashes entry, “B”
(Beveled) = a simulated embossed rectangle that appears to be raised above the surface of the page,
“I” (Inset) = a simulated engraved rectangle that appears to be recessed below the surface of the page,
“U” (Underline) = a single line along the bottom of the annotation rectangle.

Return type
dict

6.1.1 Annotation Icons in MuPDF

This is a list of icons referencable by name for annotation types ‘Text’ and ‘FileAttachment’. You can use them via the
icon parameter when adding an annotation, or use the as argument in Annot.set_name(). It is left to your discretion
which item to choose when – no mechanism will keep you from using e.g. the “Speaker” icon for a ‘FileAttachment’.

146 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

6.1.2 Example

Change the graphical image of an annotation. Also update the “author” and the text to be shown in the popup window:

doc = fitz.open("circle-in.pdf")
page = doc[0] # page 0
annot = page.first_annot # get the annotation
annot.set_border(dashes=[3]) # set dashes to "3 on, 3 off ..."

set stroke and fill color to some blue
annot.set_colors({"stroke":(0, 0, 1), "fill":(0.75, 0.8, 0.95)})
info = annot.info # get info dict
info["title"] = "Jorj X. McKie" # set author

text in popup window ...
info["content"] = "I changed border and colors and enlarged the image by 20%."
info["subject"] = "Demonstration of PyMuPDF" # some PDF viewers also show this
annot.set_info(info) # update info dict
r = annot.rect # take annot rect
r.x1 = r.x0 + r.width * 1.2 # new location has same top-left
r.y1 = r.y0 + r.height * 1.2 # but 20% longer sides
annot.set_rect(r) # update rectangle

(continues on next page)

6.1. Annot 147

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

annot.update() # update the annot's appearance
doc.save("circle-out.pdf") # save

This is how the circle annotation looks like before and after the change (pop-up windows displayed using Nitro PDF
viewer):

6.2 Archive

• New in v1.21.0

This class represents a generalization of file folders and container files like ZIP and TAR archives. Archives allow
accessing arbitrary collections of file folders, ZIP / TAR files and single binary data elements as if they all were part
of one hierarchical tree of folders.

In PyMuPDF, archives are currently only used by Story objects to specify where to look for fonts, images and other
resources.

Method / Attribute Short Description
Archive.add() add new data to the archive
Archive.has_entry() check if given name is a member
Archive.read_entry() read the data given by the name
Archive.entry_list list[dict] of archive items

Class API
class Archive

__init__(self [, content[, path]])
Creates a new archive. Without parameters, an empty archive is created.

148 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

If provided, content may be one of the following:

• another Archive: the archive is being made a sub-archive of the new one.

• a string: this must be the name of a local folder or file. pathlib.Path objects are also supported.

– A folder will be converted to a sub-archive, so its files (and any sub-folders) can be accessed by
their names.

– A file will be read with mode "rb" and these binary data (a bytes object) be treated as a single-
member sub-archive. In this case, the path parameter is mandatory and should be the member
name under which this item can be found / retrieved.

• a zipfile.ZipFile or tarfile.TarFile object: Will be added as a sub-archive.

• a Python binary object (bytes, bytearray, io.BytesIO): this will add a single-member sub-archive.
In this case, the path parameter is mandatory and should be the member name under which this item
can be found / retrieved.

• a tuple (data, name): This will add a single-member sub-archive with the member name name.
data may be a Python binary object or a local file name (in which case its binary file content is used).
Use this format if you need to specify path.

• a Python sequence: This is a convenience format to specify any combination of the above.

If provided, path must be a string.

• If content is either binary data or a file name, this parameter is mandatory and must be the name
under which the data can be found.

• Otherwise this parameter is optional. It can be used to simulate a folder name or a mount point, under
which this sub-archive’s elements can be found. For example this specification Archive((data,
"name"), "path") means that data will be found using the element name "path/name". Similar
is true for other sub-archives: to retrieve members of a ZIP sub-archive, their names must be prefixed
with “path/”. The main purpose of this parameter probably is to differentiate between duplicate names.

Note: If duplicate entry names exist in the archive, always the last entry with that name will be found /
retrieved. During archive creation, or appending more data to an archive (see Archive.add()) no check
for duplicates will be made. Use the path parameter to prevent this from happening.

add(content[, path])
Append a sub-archive. The meaning of the parameters are exactly the same as explained above. Of course,
parametrer content is not optional here.

has_entry(name)
Checks whether an entry exists in any of the sub-archives.

Parameters
name (str) – The fully qualified name of the entry. So must include any path prefix under
which the entry’s sub-archive has been added.

Returns
True or False.

read_entry(name)
Retrieve the data of an entry.

Parameters
name (str) – The fully qualified name of the entry. So must include any path prefix under
which the entry’s sub-archive has been added.

6.2. Archive 149

PyMuPDF Documentation, Release 1.21.1

Returns
The binary data (bytes) of the entry. If not found, an exception is raised.

entry_list

A list of the archive’s sub-archives. Each list item is a dictionary with the following keys:

• entries – a list of (top-level) entry names in this sub-archive.

• fmt – the format of the sub-archive. This is one of the strings “dir” (file folder), “zip” (ZIP archive),
“tar” (TAR archive), or “tree” for single binary entries or file content.

• path – the value of the path parameter under which this sub-archive was added.

Example:

>>> from pprint import pprint
>>> import fitz
>>> dir1 = "fitz-32" # a folder name
>>> dir2 = "fitz-64" # a folder name
>>> img = ("nur-ruhig.jpg", "img") # an image file
>>> members = (dir1, img, dir2) # we want to append these in one go
>>> arch = fitz.Archive()
>>> arch.add(members, path="mypath")
>>> pprint(arch.entry_list)
[{'entries': ['310', '37', '38', '39'], 'fmt': 'dir', 'path': 'mypath'},
{'entries': ['img'], 'fmt': 'tree', 'path': 'mypath'},
{'entries': ['310', '311', '37', '38', '39', 'pypy'],
'fmt': 'dir',
'path': 'mypath'}]
>>>

6.3 Colorspace

Represents the color space of a Pixmap.

Class API
class Colorspace

__init__(self, n)
Constructor

Parameters
n (int) – A number identifying the colorspace. Possible values are CS_RGB, CS_GRAY and
CS_CMYK .

name

The name identifying the colorspace. Example: fitz.csCMYK.name = ‘DeviceCMYK’.

Type
str

n

The number of bytes required to define the color of one pixel. Example: fitz.csCMYK.n == 4.

150 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

type
int

Predefined Colorspaces
For saving some typing effort, there exist predefined colorspace objects for the three available cases.

• csRGB = fitz.Colorspace(fitz.CS_RGB)

• csGRAY = fitz.Colorspace(fitz.CS_GRAY)

• csCMYK = fitz.Colorspace(fitz.CS_CMYK)

6.4 DisplayList

DisplayList is a list containing drawing commands (text, images, etc.). The intent is two-fold:

1. as a caching-mechanism to reduce parsing of a page

2. as a data structure in multi-threading setups, where one thread parses the page and another one renders pages.
This aspect is currently not supported by PyMuPDF.

A display list is populated with objects from a page, usually by executing Page.get_displaylist(). There also
exists an independent constructor.

“Replay” the list (once or many times) by invoking one of its methods run(), get_pixmap() or get_textpage().

Method Short Description
run() Run a display list through a device.
get_pixmap() generate a pixmap
get_textpage() generate a text page
rect mediabox of the display list

Class API
class DisplayList

__init__(self, mediabox)
Create a new display list.

Parameters
mediabox (Rect) – The page’s rectangle.

Return type
DisplayList

run(device, matrix, area)
Run the display list through a device. The device will populate the display list with its “commands” (i.e.
text extraction or image creation). The display list can later be used to “read” a page many times without
having to re-interpret it from the document file.

You will most probably instead use one of the specialized run methods below – get_pixmap() or
get_textpage().

Parameters
• device (Device) – Device

6.4. DisplayList 151

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

• matrix (Matrix) – Transformation matrix to apply to the display list contents.

• area (Rect) – Only the part visible within this area will be considered when the list is run
through the device.

get_pixmap(matrix=fitz.Identity, colorspace=fitz.csRGB, alpha=0, clip=None)
Run the display list through a draw device and return a pixmap.

Parameters
• matrix (Matrix) – matrix to use. Default is the identity matrix.

• colorspace (Colorspace) – the desired colorspace. Default is RGB.

• alpha (int) – determine whether or not (0, default) to include a transparency channel.

• clip (irect_like) – restrict rendering to the intersection of this area with
DisplayList.rect.

Return type
Pixmap

Returns
pixmap of the display list.

get_textpage(flags)
Run the display list through a text device and return a text page.

Parameters
flags (int) – control which information is parsed into a text page. Default value
in PyMuPDF is 3 = TEXT_PRESERVE_LIGATURES | TEXT_PRESERVE_WHITESPACE, i.e.
ligatures are passed through, white spaces are passed through (not translated to spaces),
and images are not included. See Text Extraction Flags.

Return type
TextPage

Returns
text page of the display list.

rect

Contains the display list’s mediabox. This will equal the page’s rectangle if it was created via Page.
get_displaylist().

Type
Rect

6.5 Document

This class represents a document. It can be constructed from a file or from memory.

There exists the alias open for this class, i.e. fitz.Document(...) and fitz.open(...) do exactly the same thing.

For details on embedded files refer to Appendix 3.

Note: Starting with v1.17.0, a new page addressing mechanism for EPUB files only is supported. This document
type is internally organized in chapters such that pages can most efficiently be found by their so-called “location”. The

152 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

location is a tuple (chapter, pno) consisting of the chapter number and the page number in that chapter. Both numbers
are zero-based.

While it is still possible to locate a page via its (absoute) number, doing so may mean that the complete EPUB document
must be layouted before the page can be addressed. This may have a significant performance impact if the document is
very large. Using the page’s (chapter, pno) prevents this from happening.

To maintain a consistent API, PyMuPDF supports the page location syntax for all file types – documents without this
feature simply have just one chapter. Document.load_page() and the equivalent index access now also support a
location argument.

There are a number of methods for converting between page numbers and locations, for determining the chapter count,
the page count per chapter, for computing the next and the previous locations, and the last page location of a document.

Method / Attribute Short Description
Document.add_layer() PDF only: make new optional content configuration
Document.add_ocg() PDF only: add new optional content group
Document.authenticate() gain access to an encrypted document
Document.can_save_incrementally() check if incremental save is possible
Document.chapter_page_count() number of pages in chapter
Document.close() close the document
Document.convert_to_pdf() write a PDF version to memory
Document.copy_page() PDF only: copy a page reference
Document.del_toc_item() PDF only: remove a single TOC item
Document.delete_page() PDF only: delete a page
Document.delete_pages() PDF only: delete multiple pages
Document.embfile_add() PDF only: add a new embedded file from buffer
Document.embfile_count() PDF only: number of embedded files
Document.embfile_del() PDF only: delete an embedded file entry
Document.embfile_get() PDF only: extract an embedded file buffer
Document.embfile_info() PDF only: metadata of an embedded file
Document.embfile_names() PDF only: list of embedded files
Document.embfile_upd() PDF only: change an embedded file
Document.extract_font() PDF only: extract a font by xref
Document.extract_image() PDF only: extract an embedded image by xref
Document.ez_save() PDF only: Document.save() with different defaults
Document.find_bookmark() retrieve page location after layouting document
Document.fullcopy_page() PDF only: duplicate a page
Document.get_layer() PDF only: lists of OCGs in ON, OFF, RBGroups
Document.get_layers() PDF only: list of optional content configurations
Document.get_oc() PDF only: get OCG /OCMD xref of image / form xobject
Document.get_ocgs() PDF only: info on all optional content groups
Document.get_ocmd() PDF only: retrieve definition of an OCMD
Document.get_page_fonts() PDF only: list of fonts referenced by a page
Document.get_page_images() PDF only: list of images referenced by a page
Document.get_page_labels() PDF only: list of page label definitions
Document.get_page_numbers() PDF only: get page numbers having a given label
Document.get_page_pixmap() create a pixmap of a page by page number
Document.get_page_text() extract the text of a page by page number
Document.get_page_xobjects() PDF only: list of XObjects referenced by a page
Document.get_sigflags() PDF only: determine signature state
Document.get_toc() extract the table of contents

continues on next page

6.5. Document 153

PyMuPDF Documentation, Release 1.21.1

Table 2 – continued from previous page
Method / Attribute Short Description
Document.get_xml_metadata() PDF only: read the XML metadata
Document.has_annots() PDF only: check if PDF contains any annots
Document.has_links() PDF only: check if PDF contains any links
Document.insert_page() PDF only: insert a new page
Document.insert_pdf() PDF only: insert pages from another PDF
Document.journal_can_do() PDF only: which journal actions are possible
Document.journal_enable() PDF only: enables journalling for the document
Document.journal_load() PDF only: load joural from a file
Document.journal_op_name() PDF only: return name of a journalling step
Document.journal_position() PDF only: return journalling status
Document.journal_redo() PDF only: redo current operation
Document.journal_save() PDF only: save joural to a file
Document.journal_start_op() PDF only: start an “operation” giving it a name
Document.journal_stop_op() PDF only: end current operation
Document.journal_undo() PDF only: undo current operation
Document.layer_ui_configs() PDF only: list of optional content intents
Document.layout() re-paginate the document (if supported)
Document.load_page() read a page
Document.make_bookmark() create a page pointer in reflowable documents
Document.move_page() PDF only: move a page to different location in doc
Document.need_appearances() PDF only: get/set /NeedAppearances property
Document.new_page() PDF only: insert a new empty page
Document.next_location() return (chapter, pno) of following page
Document.outline_xref() PDF only: xref a TOC item
Document.page_cropbox() PDF only: the unrotated page rectangle
Document.page_xref() PDF only: xref of a page number
Document.pages() iterator over a page range
Document.pdf_catalog() PDF only: xref of catalog (root)
Document.pdf_trailer() PDF only: trailer source
Document.prev_location() return (chapter, pno) of preceeding page
Document.reload_page() PDF only: provide a new copy of a page
Document.save() PDF only: save the document
Document.saveIncr() PDF only: save the document incrementally
Document.scrub() PDF only: remove sensitive data
Document.search_page_for() search for a string on a page
Document.select() PDF only: select a subset of pages
Document.set_layer_ui_config() PDF only: set OCG visibility temporarily
Document.set_layer() PDF only: mass changing OCG states
Document.set_metadata() PDF only: set the metadata
Document.set_oc() PDF only: attach OCG/OCMD to image / form xobject
Document.set_ocmd() PDF only: create or update an OCMD
Document.set_page_labels() PDF only: add/update page label definitions
Document.set_toc_item() PDF only: change a single TOC item
Document.set_toc() PDF only: set the table of contents (TOC)
Document.set_xml_metadata() PDF only: create or update document XML metadata
Document.subset_fonts() PDF only: create font subsets
Document.switch_layer() PDF only: activate OC configuration
Document.tobytes() PDF only: writes document to memory
Document.xref_copy() PDF only: copy a PDF dictionary to another xref

continues on next page

154 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Table 2 – continued from previous page
Method / Attribute Short Description
Document.xref_get_key() PDF only: get the value of a dictionary key
Document.xref_get_keys() PDF only: list the keys of object at xref
Document.xref_object() PDF only: get the definition source of xref
Document.xref_set_key() PDF only: set the value of a dictionary key
Document.xref_stream_raw() PDF only: raw stream source at xref
Document.xref_xml_metadata() PDF only: xref of XML metadata
Document.chapter_count number of chapters
Document.FormFonts PDF only: list of global widget fonts
Document.is_closed has document been closed?
Document.is_dirty PDF only: has document been changed yet?
Document.is_encrypted document (still) encrypted?
Document.is_form_pdf is this a Form PDF?
Document.is_pdf is this a PDF?
Document.is_reflowable is this a reflowable document?
Document.is_repaired PDF only: has this PDF been repaired during open?
Document.last_location (chapter, pno) of last page
Document.metadata metadata
Document.name filename of document
Document.needs_pass require password to access data?
Document.outline first Outline item
Document.page_count number of pages
Document.permissions permissions to access the document

Class API
class Document

__init__(self, filename=None, stream=None, *, filetype=None, rect=None, width=0, height=0,
fontsize=11)

• Changed in v1.14.13: support io.BytesIO for memory documents.
• Changed in v1.19.6: Clearer, shorter and more consistent exception messages. File type

“pdf” is always assumed if not specified. Empty files and memory areas will always lead to
exceptions.

Creates a Document object.
• With default parameters, a new empty PDF document will be created.
• If stream is given, then the document is created from memory and, if not a PDF, either

filename or filetype must indicate its type.
• If stream is None, then a document is created from the file given by filename. Its type is

inferred from the extension. This can be overruled by filetype.

Parameters
• filename (str,pathlib) – A UTF-8 string or pathlib object containing a file

path. The document type is inferred from the filename extension. If not present or
not matching a supported type, a PDF document is assumed. For memory docu-
ments, this argument may be used instead of filetype, see below.

• stream (bytes,bytearray,BytesIO) – A memory area containing a supported
document. If not a PDF, its type must be specified by either filename or
filetype.

• filetype (str) – A string specifying the type of document. This may be anything
looking like a filename (e.g. “x.pdf”), in which case MuPDF uses the extension to
determine the type, or a mime type like application/pdf. Just using strings like
“pdf” or “.pdf” will also work. May be omitted for PDF documents, otherwise

6.5. Document 155

PyMuPDF Documentation, Release 1.21.1

must match a supported document type.
• rect (rect_like) – a rectangle specifying the desired page size. This parameter

is only meaningful for documents with a variable page layout (“reflowable” docu-
ments), like e-books or HTML, and ignored otherwise. If specified, it must be a
non-empty, finite rectangle with top-left coordinates (0, 0). Together with param-
eter fontsize, each page will be accordingly laid out and hence also determine the
number of pages.

• width (float) – may used together with height as an alternative to rect to specify
layout information.

• height (float) – may used together with width as an alternative to rect to specify
layout information.

• fontsize (float) – the default fontsize for reflowable document types. This pa-
rameter is ignored if none of the parameters rect or width and height are specified.
Will be used to calculate the page layout.

Raises
• TypeError – if the type of any parameter does not conform.
• FileNotFoundError – if the file / path cannot be found. Re-implemented as sub-

class of RuntimeError.
• EmptyFileError – if the file / path is empty or the bytes object in memory has

zero length. A subclass of FileDataError and RuntimeError.
• ValueError – if an unknown file type is explicitely specified.
• FileDataError – if the document has an invalid structure for the given type – or

is no file at all (but e.g. a folder). A subclass of RuntimeError.
Returns

A document object. If the document cannot be created, an exception
is raised in the above sequence. Note that PyMuPDF-specific exceptions,
FileNotFoundError, EmptyFileError and FileDataError are intercepted if you
check for RuntimeError.

In case of problems you can see more detail in the internal messages store:
print(fitz.TOOLS.mupdf_warnings()) (which will be emptied by this call, but
you can also prevent this – consult Tools.mupdf_warnings()).

Note: Not all document types are checked for valid formats already at open time. Raster im-
ages for example will raise exceptions only later, when trying to access the content. Other types
(notably with non-binary content) may also be opened (and sometimes accessed) successfully –
sometimes even when having invalid content for the format:

• HTM, HTML, XHTML: always opened, metadata["format"] is “HTML5”, resp.
“XHTML”.

• XML, FB2: always opened, metadata["format"] is “FictionBook2”.

Overview of possible forms, note: open is a synonym of Document:

>>> # from a file
>>> doc = fitz.open("some.xps")
>>> # handle wrong extension
>>> doc = fitz.open("some.file", filetype="xps")
>>>
>>> # from memory, filetype is required if not a PDF
>>> doc = fitz.open("xps", mem_area)
>>> doc = fitz.open(None, mem_area, "xps")
>>> doc = fitz.open(stream=mem_area, filetype="xps")

(continues on next page)

156 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>>
>>> # new empty PDF
>>> doc = fitz.open()
>>> doc = fitz.open(None)
>>> doc = fitz.open("")

Note: Raster images with a wrong (but supported) file extension are no problem. MuPDF
will determine the correct image type when file content is actually accessed and will process it
without complaint. So fitz.open("file.jpg") will work even for a PNG image.

The Document class can be also be used as a context manager. On exit, the document will
automatically be closed.

>>> import fitz
>>> with fitz.open(...) as doc:

for page in doc: print("page %i" % page.number)
page 0
page 1
page 2
page 3
>>> doc.is_closed
True
>>>

get_oc(xref)
• New in v1.18.4

Return the cross reference number of an OCG or OCMD attached to an image or form xobject.
Parameters
xref (int) – the xref of an image or form xobject. Valid such cross refer-
ence numbers are returned by Document.get_page_images(), resp. Document.
get_page_xobjects(). For invalid numbers, an exception is raised.

Return type
int

Returns
the cross reference number of an optional contents object or zero if there is none.

set_oc(xref, ocxref)
• New in v1.18.4

If xref represents an image or form xobject, set or remove the cross reference number ocxref of
an optional contents object.

Parameters
• xref (int) – the xref of an image or form xobject5. Valid such cross refer-

ence numbers are returned by Document.get_page_images(), resp. Document.
get_page_xobjects(). For invalid numbers, an exception is raised.

• ocxref (int) – the xref number of an OCG / OCMD. If not zero, an invalid reference
raises an exception. If zero, any OC reference is removed.

get_layers()

• New in v1.18.3
5 Examples for “Form XObjects” are created by Page.show_pdf_page().

6.5. Document 157

PyMuPDF Documentation, Release 1.21.1

Show optional layer configurations. There always is a standard one, which is not included in the
response.

>>> for item in doc.get_layers(): print(item)
{'number': 0, 'name': 'my-config', 'creator': ''}
>>> # use 'number' as config identifyer in add_ocg

add_layer(name, creator=None, on=None)
• New in v1.18.3

Add an optional content configuration. Layers serve as a collection of ON / OFF states for op-
tional content groups and allow fast visibility switches between different views on the same doc-
ument.

Parameters
• name (str) – arbitrary name.
• creator (str) – (optional) creating software.
• on (sequ) – a sequence of OCG xref numbers which should be set to ON when

this layer gets activated. All OCGs not listed here will be set to OFF.

switch_layer(number, as_default=False)
• New in v1.18.3

Switch to a document view as defined by the optional layer’s configuration number. This is
temporary, except if established as default.

Parameters
• number (int) – config number as returned by Document.layer_configs().
• as_default (bool) – make this the default configuration.

Activates the ON / OFF states of OCGs as defined in the identified layer. If as_default=True,
then additionally all layers, including the standard one, are merged and the result is written back
to the standard layer, and all optional layers are deleted.

add_ocg(name, config=-1, on=True, intent='View', usage='Artwork')
• New in v1.18.3

Add an optional content group. An OCG is the most important unit of information to determine
object visibility. For a PDF, in order to be regarded as having optional content, at least one OCG
must exist.

Parameters
• name (str) – arbitrary name. Will show up in supporting PDF viewers.
• config (int) – layer configuration number. Default -1 is the standard configura-

tion.
• on (bool) – standard visibility status for objects pointing to this OCG.
• intent (str,list) – a string or list of strings declaring the visibility intents.

There are two PDF standard values to choose from: “View” and “Design”. Default
is “View”. Correct spelling is important.

• usage (str) – another influencer for OCG visibility. This will become part of the
OCG’s /Usage key. There are two PDF standard values to choose from: “Artwork”
and “Technical”. Default is “Artwork”. Please only change when required.

Returns
xref of the created OCG. Use as entry for oc parameter in supporting objects.

Note: Multiple OCGs with identical parameters may be created. This will not cause problems.
Garbage option 3 of Document.save() will get rid of any duplicates.

set_ocmd(xref=0, ocgs=None, policy='AnyOn', ve=None)
• New in v1.18.4

Create or update an OCMD, Optional Content Membership Dictionary.

158 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Parameters
• xref (int) – xref of the OCMD to be updated, or 0 for a new OCMD.
• ocgs (list) – a sequence of xref numbers of existing OCG PDF objects.
• policy (str) – one of “AnyOn” (default), “AnyOff”, “AllOn”, “AllOff” (mixed or

lower case).
• ve (list) – a “visibility expression”. This is a list of arbitrarily nested other lists

– see explanation below. Use as an alternative to the combination ocgs / policy if
you need to formulate more complex conditions.

Return type
int

Returns
xref of the OCMD. Use as oc=xref parameter in supporting objects, and respec-
tively in Document.set_oc() or Annot.set_oc().

Note: Like an OCG, an OCMD has a visibility state ON or OFF, and it can be used like an
OCG. In contrast to an OCG, the OCMD state is determined by evaluating the state of one or
more OCGs via special forms of boolean expressions. If the expression evaluates to true, the
OCMD state is ON and OFF for false.

There are two ways to formulate OCMD visibility:
1. Use the combination of ocgs and policy: The policy value is interpreted as follows:

• AnyOn – (default) true if at least one OCG is ON.
• AnyOff – true if at least one OCG is OFF.
• AllOn – true if all OCGs are ON.
• AllOff – true if all OCGs are OFF.

Suppose you want two PDF objects be displayed exactly one at a time (if one is ON, then
the other one must be OFF):

Solution: use an OCG for object 1 and an OCMD for object 2. Create the OCMD via
set_ocmd(ocgs=[xref], policy="AllOff"), with the xref of the OCG.

2. Use the visibility expression ve: This is a list of two or more items. The first item is a
logical keyword: one of the strings “and”, “or”, or “not”. The second and all subsequent
items must either be an integer or another list. An integer must be the xref number of an
OCG. A list must again have at least two items starting with one of the boolean keywords.
This syntax is a bit awkward, but quite powerful:

• Each list must start with a logical keyword.
• If the keyword is a “not”, then the list must have exactly two items. If it is “and” or

“or”, any number of other items may follow.
• Items following the logical keyword may be either integers or again a list. An integer

must be the xref of an OCG. A list must conform to the previous rules.

Examples:
• set_ocmd(ve=["or", 4, ["not", 5], ["and", 6, 7]]). This delivers ON if

the following is true: “4 is ON, or 5 is OFF, or 6 and 7 are both ON”.
• set_ocmd(ve=["not", xref]). This has the same effect as the OCMD example

created under 1.
For more details and examples see page 224 of Adobe PDF References. Also do have a
look at example scripts here.

Visibility expressions, /VE, are part of PDF specification version 1.6. So not all PDF
viewers / readers may already support this feature and hence will react in some standard
way for those cases.

6.5. Document 159

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/optional-content

PyMuPDF Documentation, Release 1.21.1

get_ocmd(xref)
• New in v1.18.4

Retrieve the definition of an OCMD.
Parameters
xref (int) – the xref of the OCMD.

Return type
dict

Returns
a dictionary with the keys xref, ocgs, policy and ve.

get_layer(config=-1)
• New in v1.18.3

List of optional content groups by status in the specified configuration. This is a dictionary with
lists of cross reference numbers for OCGs that occur in the arrays /ON, /OFF or in some radio
button group (/RBGroups).

Parameters
config (int) – the configuration layer (default is the standard config layer).

>>> pprint(doc.get_layer())
{'off': [8, 9, 10], 'on': [5, 6, 7], 'rbgroups': [[7, 10]]}
>>>

set_layer(config, on=None, off=None, basestate=None, rbgroups=None)
• New in v1.18.3

Mass status changes of optional content groups. Permanently sets the status of OCGs.
Parameters

• config (int) – desired configuration layer, choose -1 for the default one.
• on (list) – list of xref of OCGs to set ON. Replaces previous values. An

empty list will cause no OCG being set to ON anymore. Should be specified if
basestate="ON" is used.

• off (list) – list of xref of OCGs to set OFF. Replaces previous values. An
empty list will cause no OCG being set to OFF anymore. Should be specified if
basestate="OFF" is used.

• basestate (str) – desired state of OCGs that are not mentioned in on resp. off.
Possible values are “ON”, “OFF” or “Unchanged”. Upper / lower case possible.

• rbgroups (list) – a list of lists. Replaces previous values. Each sublist should
contain two or more OCG xrefs. OCGs in the same sublist are handled like but-
tons in a radio button group: setting one to ON automatically sets all other group
members to OFF.

Values None will not change the corresponding PDF array.

>>> doc.set_layer(-1, basestate="OFF") # only changes the base state
>>> pprint(doc.get_layer())
{'basestate': 'OFF', 'off': [8, 9, 10], 'on': [5, 6, 7], 'rbgroups':␣
→˓[[7, 10]]}

get_ocgs()

• New in v1.18.3
Details of all optional content groups. This is a dictionary of dictionaries like this (key is the
OCG’s xref):

>>> pprint(doc.get_ocgs())
{13: {'on': True,

(continues on next page)

160 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

'intent': ['View', 'Design'],
'name': 'Circle',
'usage': 'Artwork'},

14: {'on': True,
'intent': ['View', 'Design'],
'name': 'Square',
'usage': 'Artwork'},

15: {'on': False, 'intent': ['View'], 'name': 'Square', 'usage':
→˓'Artwork'}}
>>>

layer_ui_configs()

• New in v1.18.3
Show the visibility status of optional content that is modifyable by the user interface of supporting
PDF viewers. Example:

>>> pprint(doc.layer_ui_configs())
({'depth': 0,
'locked': False,
'number': 0,
'on': True,
'text': 'Circle',
'type': 'checkbox'},

{'depth': 0,
'locked': False,
'number': 1,
'on': False,
'text': 'Square',
'type': 'checkbox'})

>>> # refers to OCGs named "Circle" (ON), resp. "Square" (OFF)

Note:
• Only reports items contained in the currently selected layer configuration.
• The meaning of the dictionary keys is as follows:

– depth: item’s nesting level in the /Order array
– locked: whether changing the item’s state is prohibited
– number: running sequence number
– on: item state
– text: text string or name field of the originating OCG
– type: one of “label” (set by a text string), “checkbox” (set by a single OCG) or

“radiobox” (set by a set of connected OCGs)

set_layer_ui_config(number, action=0)

• New in v1.18.3

Modify OC visibility status of content groups. This is analog to what supporting PDF viewers
would offer.

Note: Visibility is not a property stored with the OCG. It is not even an information necessarily
present in the PDF document at all. Instead, the current visibility is temporarily set using the

6.5. Document 161

PyMuPDF Documentation, Release 1.21.1

user interface of some supporting PDF consumer software. The same type of functionality is
offered by this method.

To make permanent changes, use Document.set_layer().

Parameters
• number (in) – number as returned by Document.layer_ui_configs().

• action (int) – 0 = set on (default), 1 = toggle on/off, 2 = set off.

Example:

>>> # let's make above "Square" visible:
>>> doc.set_layer_ui_config(1, action=0)
>>> pprint(doc.layer_ui_configs())
({'depth': 0,
'locked': False,
'number': 0,
'on': True,
'text': 'Circle',
'type': 'checkbox'},

{'depth': 0,
'locked': False,
'number': 1,
'on': True, # <===
'text': 'Square',
'type': 'checkbox'})

>>>

authenticate(password)
Decrypts the document with the string password. If successful, document data can be accessed.
For PDF documents, the “owner” and the “user” have different priviledges, and hence different
passwords may exist for these authorization levels. The method will automatically establish the
appropriate (owner or user) access rights for the provided password.

Parameters
password (str) – owner or user password.

Return type
int

Returns
a positive value if successful, zero otherwise (the string does not match either
password). If positive, the indicator Document.is_encrypted is set to False.
Positive return codes carry the following information detail:

• 1 => authenticated, but the PDF has neither owner nor user passwords.

• 2 => authenticated with the user password.

• 4 => authenticated with the owner password.

• 6 => authenticated and both passwords are equal – probably a rare situation.

Note: The document may be protected by an owner, but not by a user password.
Detect this situation via doc.authenticate(“”) == 2. This allows opening and

162 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

reading the document without authentication, but, depending on the Document.
permissions value, other actions may be prohibited. PyMuPDF (like MuPDF)
in this case ignores those restrictions. So, – in contrast to any PDF viewers – you
can for example extract text and add or modify content, even if the respective per-
mission flags PDF_PERM_COPY, PDF_PERM_MODIFY, PDF_PERM_ANNOTATE, etc.
are set off! It is your responsibility building a legally compliant application where
applicable.

get_page_numbers(label, only_one=False)

• New in v 1.18.6

PDF only: Return a list of page numbers that have the specified label – note that labels may not
be unique in a PDF. This implies a sequential search through all page numbers to compare their
labels.

Note: Implementation detail – pages are not loaded for this purpose.

Parameters
• label (str) – the label to look for, e.g. “vii” (Roman number 7).

• only_one (bool) – stop after first hit. Useful e.g. if labelling is known to be
unique, or there are many pages, etc. The default will check every page number.

Return type
list

Returns
list of page numbers that have this label. Empty if none found, no labels defined,
etc.

get_page_labels()

• New in v1.18.7

PDF only: Extract the list of page label definitions. Typically used for modifications before
feeding it into Document.set_page_labels().

Returns
a list of dictionaries as defined in Document.set_page_labels().

set_page_labels(labels)

• New in v1.18.6

PDF only: Add or update the page label definitions of the PDF.

Parameters
labels (list) – a list of dictionaries. Each dictionary defines a label build-
ing rule and a 0-based “start” page number. That start page is the first
for which the label definition is valid. Each dictionary has up to 4 items
and looks like {'startpage': int, 'prefix': str, 'style': str,
'firstpagenum': int} and has the following items.

• startpage: (int) the first page number (0-based) to apply the label rule. This
key must be present. The rule is applied to all subsequent pages until either
end of document or superseded by the rule with the next larger page number.

6.5. Document 163

PyMuPDF Documentation, Release 1.21.1

• prefix: (str) an arbitrary string to start the label with, e.g. “A-”. Default is “”.

• style: (str) the numbering style. Available are “D” (decimal), “r”/”R” (Ro-
man numbers, lower / upper case), and “a”/”A” (lower / upper case alphabetical
numbering: “a” through “z”, then “aa” through “zz”, etc.). Default is “”. If “”,
no numbering will take place and the pages in that range will receive the same
label consisting of the prefix value. If prefix is also omitted, then the label
will be “”.

• firstpagenum: (int) start numbering with this value. Default is 1, smaller
values are ignored.

For example:

[{'startpage': 6, 'prefix': 'A-', 'style': 'D', 'firstpagenum': 10},
{'startpage': 10, 'prefix': '', 'style': 'D', 'firstpagenum': 1}]

will generate the labels “A-10”, “A-11”, “A-12”, “A-13”, “1”, “2”, “3”, . . . for pages 6, 7 and so
on until end of document. Pages 0 through 5 will have the label “”.

make_bookmark(loc)

• New in v.1.17.3

Return a page pointer in a reflowable document. After re-layouting the document, the result of
this method can be used to find the new location of the page.

Note: Do not confuse with items of a table of contents, TOC.

Parameters
loc (list,tuple) – page location. Must be a valid (chapter, pno).

Return type
pointer

Returns
a long integer in pointer format. To be used for finding the new location of the
page after re-layouting the document. Do not touch or re-assign.

find_bookmark(bookmark)

• New in v.1.17.3

Return the new page location after re-layouting the document.

Parameters
bookmark (pointer) – created by Document.make_bookmark().

Return type
tuple

Returns
the new (chapter, pno) of the page.

chapter_page_count(chapter)

• New in v.1.17.0

Return the number of pages of a chapter.

164 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Parameters
chapter (int) – the 0-based chapter number.

Return type
int

Returns
number of pages in chapter. Relevant only for document types whith chapter sup-
port (EPUB currently).

next_location(page_id)

• New in v.1.17.0

Return the location of the following page.

Parameters
page_id (tuple) – the current page id. This must be a tuple (chapter, pno) iden-
tifying an existing page.

Returns
The tuple of the following page, i.e. either (chapter, pno + 1) or (chapter + 1, 0),
or the empty tuple () if the argument was the last page. Relevant only for document
types whith chapter support (EPUB currently).

prev_location(page_id)

• New in v.1.17.0

Return the locator of the preceeding page.

Parameters
page_id (tuple) – the current page id. This must be a tuple (chapter, pno) iden-
tifying an existing page.

Returns
The tuple of the preceeding page, i.e. either (chapter, pno - 1) or the last page
of the receeding chapter, or the empty tuple () if the argument was the first page.
Relevant only for document types whith chapter support (EPUB currently).

load_page(page_id=0)

• Changed in v1.17.0: For document types supporting a so-called “chapter structure” (like
EPUB), pages can also be loaded via the combination of chapter number and relative page
number, instead of the absolute page number. This should significantly speed up access
for large documents.

Create a Page object for further processing (like rendering, text searching, etc.).

Parameters
page_id (int,tuple) – (Changed in v1.17.0)

Either a 0-based page number, or a tuple (chapter, pno). For an integer, any -∞ <
page_id < page_count is acceptable. While page_id is negative, page_count
will be added to it. For example: to load the last page, you can use doc.load_page(-
1). After this you have page.number = doc.page_count - 1.

For a tuple, chapter must be in range Document.chapter_count, and pno must
be in range Document.chapter_page_count() of that chapter. Both values are
0-based. Using this notation, Page.number will equal the given tuple. Relevant
only for document types whith chapter support (EPUB currently).

6.5. Document 165

PyMuPDF Documentation, Release 1.21.1

Return type
Page

Note: Documents also follow the Python sequence protocol with page numbers as indices:
doc.load_page(n) == doc[n].

For absolute page numbers only, expressions like “for page in doc: . . . ” and “for page in re-
versed(doc): . . . ” will successively yield the document’s pages. Refer to Document.pages() which
allows processing pages as with slicing.

You can also use index notation with the new chapter-based page identification: use page = doc[(5,
2)] to load the third page of the sixth chapter.

To maintain a consistent API, for document types not supporting a chapter structure (like PDFs),
Document.chapter_count is 1, and pages can also be loaded via tuples (0, pno). See this3 footnote
for comments on performance improvements.

reload_page(page)

• New in v1.16.10

PDF only: Provide a new copy of a page after finishing and updating all pending changes.

Parameters
page (Page) – page object.

Return type
Page

Returns
a new copy of the same page. All pending updates (e.g. to annotations or widgets)
will be finalized and a fresh copy of the page will be loaded.

Note: In a typical use case, a page Pixmap should be taken after annotations /
widgets have been added or changed. To force all those changes being reflected in
the page structure, this method re-instates a fresh copy while keeping the object
hierarchy “document -> page -> annotations/widgets” intact.

page_cropbox(pno)

• New in v1.17.7

PDF only: Return the unrotated page rectangle – without loading the page (via Document.
load_page()). This is meant for internal purpose requiring best possible performance.

Parameters
pno (int) – 0-based page number.

Returns
Rect of the page like Page.rect(), but ignoring any rotation.

page_xref(pno)

• New in v1.17.7
3 For applicable (EPUB) document types, loading a page via its absolute number may result in layouting a large part of the document, before

the page can be accessed. To avoid this performance impact, prefer chapter-based access. Use convenience methods and attributes Document.
next_location(), Document.prev_location() and Document.last_location for maintaining a high level of coding efficiency.

166 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

PDF only: Return the xref of the page – without loading the page (via Document.
load_page()). This is meant for internal purpose requiring best possible performance.

Parameters
pno (int) – 0-based page number.

Returns
xref of the page like Page.xref .

pages(start=None[, stop=None[, step=None]])
• New in v1.16.4

A generator for a range of pages. Parameters have the same meaning as in the built-in function
range(). Intended for expressions of the form “for page in doc.pages(start, stop, step): . . . ”.

Parameters
• start (int) – start iteration with this page number. Default is zero, allowed

values are -∞ < start < page_count. While this is negative, page_count
is added before starting the iteration.

• stop (int) – stop iteration at this page number. Default is page_count, possi-
ble are -∞ < stop <= page_count. Larger values are silently replaced by
the default. Negative values will cyclically emit the pages in reversed order. As
with the built-in range(), this is the first page not returned.

• step (int) – stepping value. Defaults are 1 if start < stop and -1 if start > stop.
Zero is not allowed.

Returns
a generator iterator over the document’s pages. Some examples:

• ”doc.pages()” emits all pages.

• ”doc.pages(4, 9, 2)” emits pages 4, 6, 8.

• ”doc.pages(0, None, 2)” emits all pages with even numbers.

• ”doc.pages(-2)” emits the last two pages.

• ”doc.pages(-1, -1)” emits all pages in reversed order.

• ”doc.pages(-1, -10)” always emits 10 pages in reversed order, starting with the
last page – repeatedly if the document has less than 10 pages. So for a 4-page
document the following page numbers are emitted: 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1,
0, 3.

convert_to_pdf(from_page=-1, to_page=-1, rotate=0)
Create a PDF version of the current document and write it to memory. All document types are
supported. The parameters have the same meaning as in insert_pdf(). In essence, you can
restrict the conversion to a page subset, specify page rotation, and revert page sequence.

Parameters
• from_page (int) – first page to copy (0-based). Default is first page.

• to_page (int) – last page to copy (0-based). Default is last page.

• rotate (int) – rotation angle. Default is 0 (no rotation). Should be n * 90 with
an integer n (not checked).

Return type
bytes

6.5. Document 167

PyMuPDF Documentation, Release 1.21.1

Returns
a Python bytes object containing a PDF file image. It is created by internally using
tobytes(garbage=4, deflate=True). See tobytes(). You can output it
directly to disk or open it as a PDF. Here are some examples:

>>> # convert an XPS file to PDF
>>> xps = fitz.open("some.xps")
>>> pdfbytes = xps.convert_to_pdf()
>>>
>>> # either do this -->
>>> pdf = fitz.open("pdf", pdfbytes)
>>> pdf.save("some.pdf")
>>>
>>> # or this -->
>>> pdfout = open("some.pdf", "wb")
>>> pdfout.tobytes(pdfbytes)
>>> pdfout.close()

>>> # copy image files to PDF pages
>>> # each page will have image dimensions
>>> doc = fitz.open() # new PDF
>>> imglist = [... image file names ...] # e.g. a directory␣
→˓listing
>>> for img in imglist:

imgdoc=fitz.open(img) # open image as a␣
→˓document

pdfbytes=imgdoc.convert_to_pdf() # make a 1-page␣
→˓PDF of it

imgpdf=fitz.open("pdf", pdfbytes)
doc.insert_pdf(imgpdf) # insert the␣

→˓image PDF
>>> doc.save("allmyimages.pdf")

Note: The method uses the same logic as the mutool convert CLI. This works very well in most
cases – however, beware of the following limitations.

• Image files: perfect, no issues detected. Apparently however, image transparency is ig-
nored. If you need that (like for a watermark), use Page.insert_image() instead. Oth-
erwise, this method is recommended for its much better prformance.

• XPS: appearance very good. Links work fine, outlines (bookmarks) are lost, but can easily
be recovered2.

• EPUB, CBZ, FB2: similar to XPS.

• SVG: medium. Roughly comparable to svglib.

get_toc(simple=True)
Creates a table of contents (TOC) out of the document’s outline chain.

Parameters
simple (bool) – Indicates whether a simple or a detailed TOC is required. If

2 However, you can use Document.get_toc() and Page.get_links() (which are available for all document types) and copy this information
over to the output PDF. See demo pdf-converter.py.

168 Chapter 6. Classes

https://github.com/deeplook/svglib
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/pdf-converter.py

PyMuPDF Documentation, Release 1.21.1

False, each item of the list also contains a dictionary with linkDest details for each
outline entry.

Return type
list

Returns
a list of lists. Each entry has the form [lvl, title, page, dest]. Its entries have the
following meanings:

• lvl – hierarchy level (positive int). The first entry is always 1. Entries in a row
are either equal, increase by 1, or decrease by any number.

• title – title (str)

• page – 1-based page number (int). If -1 either no destination or outside docu-
ment.

• dest – (dict) included only if simple=False. Contains details of the TOC item
as follows:

– kind: destination kind, see Link Destination Kinds.

– file: filename if kind is LINK_GOTOR or LINK_LAUNCH .

– page: target page, 0-based, LINK_GOTOR or LINK_GOTO only.

– to: position on target page (Point).

– zoom: (float) zoom factor on target page.

– xref: xref of the item (0 if no PDF).

– color: item color in PDF RGB format (red, green, blue), or omitted
(always omitted if no PDF).

– bold: true if bold item text or omitted. PDF only.

– italic: true if italic item text, or omitted. PDF only.

– collapse: true if sub-items are folded, or omitted. PDF only.

xref_get_keys(xref)

• New in v1.18.7

PDF only: Return the PDF dictionary keys of the dictionary object provided by its xref num-
ber.

Parameters
xref (int) – the xref . (Changed in v1.18.10) Use -1 to access the special dic-
tionary “PDF trailer”.

Returns
a tuple of dictionary keys present in object xref . Examples:

>>> from pprint import pprint
>>> import fitz
>>> doc=fitz.open("pymupdf.pdf")
>>> xref = doc.page_xref(0) # xref of page 0
>>> pprint(doc.xref_get_keys(xref)) # primary level keys of␣
→˓a page
('Type', 'Contents', 'Resources', 'MediaBox', 'Parent')

(continues on next page)

6.5. Document 169

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> pprint(doc.xref_get_keys(-1)) # primary level keys of␣
→˓the trailer
('Type', 'Index', 'Size', 'W', 'Root', 'Info', 'ID', 'Length
→˓', 'Filter')
>>>

xref_get_key(xref, key)

• New in v1.18.7

PDF only: Return type and value of a PDF dictionary key of a dictionary object given by its
xref.

Parameters
• xref (int) – the xref . Changed in v1.18.10: Use -1 to access the special

dictionary “PDF trailer”.

• key (str) – the desired PDF key. Must exactly match (case-sensitive) one of
the keys contained in Document.xref_get_keys().

Return type
tuple

Returns
A tuple (type, value) of strings, where type is one of “xref”, “array”, “dict”, “int”,
“float”, “null”, “bool”, “name”, “string” or “unknown” (should not occur). Inde-
pendent of “type”, the value of the key is always formatted as a string – see the
following example – and (almost always) a faithful reflection of what is stored in
the PDF. In most cases, the format of the value string also gives a clue about the
key type:

• A “name” always starts with a “/” slash.

• An “xref” always ends with ” 0 R”.

• An “array” is always enclosed in “[. . .]” brackets.

• A “dict” is always enclosed in “<<. . .>>” brackets.

• A “bool”, resp. “null” always equal either “true”, “false”, resp. “null”.

• “float” and “int” are represented by their string format – and are thus not always distin-
guishable.

• A “string” is converted to UTF-8 and may therefore deviate from what is
stored in the PDF. For example, the PDF key “Author” may have a value of
“<FEFF004A006F0072006A00200058002E0020004D0063004B00690065>” in the
file, but the method will return ('string', 'Jorj X. McKie').

>>> for key in doc.xref_get_keys(xref):
print(key, "=" , doc.xref_get_key(xref, key))

Type = ('name', '/Page')
Contents = ('xref', '1297 0 R')
Resources = ('xref', '1296 0 R')
MediaBox = ('array', '[0 0 612 792]')
Parent = ('xref', '1301 0 R')
>>> #

(continues on next page)

170 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> # Now same thing for the PDF trailer.
>>> # It has no xref, so -1 must be used instead.
>>> #
>>> for key in doc.xref_get_keys(-1):

print(key, "=", doc.xref_get_key(-1, key))
Type = ('name', '/XRef')
Index = ('array', '[0 8802]')
Size = ('int', '8802')
W = ('array', '[1 3 1]')
Root = ('xref', '8799 0 R')
Info = ('xref', '8800 0 R')
ID = ('array', '[<DC9D56A6277EFFD82084E64F9441E18C>
→˓<DC9D56A6277EFFD82084E64F9441E18C>]')
Length = ('int', '21111')
Filter = ('name', '/FlateDecode')
>>>

xref_set_key(xref, key, value)

• New in v1.18.7, changed in v 1.18.13

• Changed in v1.19.4: remove a key “physically” if set to “null”.

PDF only: Set (add, update, delete) the value of a PDF key for the dictionary object given by
its xref.

Caution: This is an expert function: if you do not know what you are doing, there is a high
risk to render (parts of) the PDF unusable. Please do consult Adobe PDF References about
object specification formats (page 18) and the structure of special dictionary types like page
objects.

Parameters
• xref (int) – the xref . Changed in v1.18.13: To update the PDF trailer, specify

-1.

• key (str) – the desired PDF key (without leading “/”). Must not be empty.
Any valid PDF key – whether already present in the object (which will be over-
written) – or new. It is possible to use PDF path notation like "Resources/
ExtGState" – which sets the value for key "/ExtGState" as a sub-object of
"/Resources".

• value (str) – the value for the key. It must be a non-empty string and, depend-
ing on the desired PDF object type, the following rules must be observed. There
is some syntax checking, but no type checking and no checking if it makes sense
PDF-wise, i.e. no semantics checking. Upper / lower case is important!

• xref – must be provided as "nnn 0 R" with a valid xref number nnn of the PDF. The
suffix “0 R” is required to be recognizable as an xref by PDF applications.

• array – a string like "[a b c d e f]". The brackets are required. Array items must
be separated by at least one space (not commas like in Python). An empty array "[]" is
possible and equivalent to removing the key. Array items may be any PDF objects, like
dictionaries, xrefs, other arrays, etc. Like in Python, array items may be of different types.

6.5. Document 171

PyMuPDF Documentation, Release 1.21.1

• dict – a string like "<< ... >>". The brackets are required and must enclose a valid PDF
dictionary definition. The empty dictionary "<<>>" is possible and equivalent to removing
the key.

• int – an integer formatted as a string.

• float – a float formatted as a string. Scientific notation (with exponents) is not allowed by
PDF.

• null – the string "null". This is the PDF equivalent to Python’s None and causes the key
to be ignored – however not necessarily removed, resp. removed on saves with garbage
collection. Changed in v1.19.4: If the key is no path hierarchy (i.e. contains no slash “/”),
then it will be completely removed.

• bool – one of the strings "true" or "false".

• name – a valid PDF name with a leading slash: "/PageLayout". See page 16 of the Adobe
PDF References.

• string – a valid PDF string. All PDF strings must be enclosed by brackets. Denote the
empty string as "()". Depending on its content, the possible brackets are

– “(. . .)” for ASCII-only text. Reserved PDF characters must be backslash-escaped and
non-ASCII characters must be provided as 3-digit backslash-escaped octals – including
leading zeros. Example: 12 = 0x0C must be encoded as \014.

– “<. . .>” for hex-encoded text. Every character must be represented by two hex-digits
(lower or upper case).

– If in doubt, we strongly recommend to use get_pdf_str()! This function automat-
ically generates the right brackets, escapes, and overall format. It will for example do
conversions like these:

>>> # because of the € symbol, the following yields UTF-16BE BOM
>>> fitz.get_pdf_str("Pay in $ or €.")
'<feff00500061007900200069006e002000240020006f0072002020ac002e>'
>>> # escapes for brackets and non-ASCII
>>> fitz.get_pdf_str("Prices in EUR (USD also accepted). Areas␣
→˓are in m2.")
'(Prices in EUR \\(USD also accepted\\). Areas are in m\\262.)'

get_page_pixmap(pno: int, *, matrix: matrix_like = Identity, dpi=None, colorspace: Colorspace
= csRGB, clip: rect_like = None, alpha: bool = False, annots: bool = True)

Creates a pixmap from page pno (zero-based). Invokes Page.get_pixmap().

All parameters except pno are keyword-only.

Parameters
pno (int) – page number, 0-based in -∞ < pno < page_count.

Return type
Pixmap

get_page_xobjects(pno)

• New in v1.16.13

• Changed in v1.18.11

PDF only: Return a list of all XObjects referenced by a page.

172 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Parameters
pno (int) – page number, 0-based, -∞ < pno < page_count.

Return type
list

Returns
a list of (non-image) XObjects. These objects typically represent pages embedded
(not copied) from other PDFs. For example, Page.show_pdf_page()will create
this type of object. An item of this list has the following layout: (xref, name,
invoker, bbox), where

• xref (int) is the XObject’s xref .

• name (str) is the symbolic name to reference the XObject.

• invoker (int) the xref of the invoking XObject or zero if the page directly
invokes it.

• bbox (Rect) the boundary box of the XObject’s location on the page in untrans-
formed coordinates. To get actual, non-rotated page coordinates, multiply with
the page’s transformation matrix Page.transformation_matrix. Changed
in v.18.11: the bbox is now formatted as Rect.

get_page_images(pno, full=False)
PDF only: Return a list of all images (directly or indirectly) referenced by the page.

Parameters
• pno (int) – page number, 0-based, -∞ < pno < page_count.

• full (bool) – whether to also include the referencer’s xref (which is zero if
this is the page).

Return type
list

Returns
a list of images referenced by this page. Each item looks like

(xref, smask, width, height, bpc, colorspace, alt.
colorspace, name, filter, referencer)

Where

• xref (int) is the image object number

• smask (int) is the object number of its soft-mask image

• width and height (ints) are the image dimensions

• bpc (int) denotes the number of bits per component (normally 8)

• colorspace (str) a string naming the colorspace (like DeviceRGB)

• alt. colorspace (str) is any alternate colorspace depending on the value of col-
orspace

• name (str) is the symbolic name by which the image is referenced

• filter (str) is the decode filter of the image (Adobe PDF References, pp. 22).

• referencer (int) the xref of the referencer. Zero if directly referenced by the
page. Only present if full=True.

6.5. Document 173

PyMuPDF Documentation, Release 1.21.1

Note: In general, this is not the list of images that are actually displayed. This method only
parses several PDF objects to collect references to embedded images. It does not analyse the
page’s contents, where all the actual image display commands are defined. To get this infor-
mation, please use Page.get_image_info(). Also have a look at the discussion in section
Structure of Dictionary Outputs.

get_page_fonts(pno, full=False)
PDF only: Return a list of all fonts (directly or indirectly) referenced by the page.

Parameters
• pno (int) – page number, 0-based, -∞ < pno < page_count.

• full (bool) – whether to also include the referencer’s xref . If True, the re-
turned items are one entry longer. Use this option if you need to know, whether
the page directly references the font. In this case the last entry is 0. If the font
is referenced by an /XObject of the page, you will find its xref here.

Return type
list

Returns
a list of fonts referenced by this page. Each entry looks like

(xref, ext, type, basefont, name, encoding, referencer),
where

• xref (int) is the font object number (may be zero if the PDF uses one of the builtin fonts
directly)

• ext (str) font file extension (e.g. “ttf”, see Font File Extensions)

• type (str) is the font type (like “Type1” or “TrueType” etc.)

• basefont (str) is the base font name,

• name (str) is the symbolic name, by which the font is referenced

• encoding (str) the font’s character encoding if different from its built-in encoding (Adobe
PDF References, p. 254):

• referencer (int optional) the xref of the referencer. Zero if directly referenced by the page,
otherwise the xref of an XObject. Only present if full=True.

Example:

>>> pprint(doc.get_page_fonts(0, full=False))
[(12, 'ttf', 'TrueType', 'FNUUTH+Calibri-Bold', 'R8', ''),
(13, 'ttf', 'TrueType', 'DOKBTG+Calibri', 'R10', ''),
(14, 'ttf', 'TrueType', 'NOHSJV+Calibri-Light', 'R12', ''),
(15, 'ttf', 'TrueType', 'NZNDCL+CourierNewPSMT', 'R14', ''),
(16, 'ttf', 'Type0', 'MNCSJY+SymbolMT', 'R17', 'Identity-H'),
(17, 'cff', 'Type1', 'UAEUYH+Helvetica', 'R20', 'WinAnsiEncoding'),
(18, 'ttf', 'Type0', 'ECPLRU+Calibri', 'R23', 'Identity-H'),
(19, 'ttf', 'Type0', 'TONAYT+CourierNewPSMT', 'R27', 'Identity-H')]

Note:

174 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• This list has no duplicate entries: the combination of xref , name and referencer is unique.

• In general, this is a superset of the fonts actually in use by this page. The PDF creator may
e.g. have specified some global list, of which each page only makes partial use.

get_page_text(pno, output='text', flags=3, textpage=None, sort=False)
Extracts the text of a page given its page number pno (zero-based). Invokes Page.get_text().

Parameters
pno (int) – page number, 0-based, any value -∞ < pno < page_count.

For other parameter refer to the page method.

Return type
str

layout(rect=None, width=0, height=0, fontsize=11)
Re-paginate (“reflow”) the document based on the given page dimension and fontsize. This
only affects some document types like e-books and HTML. Ignored if not supported. Supported
documents have True in property is_reflowable.

Parameters
• rect (rect_like) – desired page size. Must be finite, not empty and start at

point (0, 0).

• width (float) – use it together with height as alternative to rect.

• height (float) – use it together with width as alternative to rect.

• fontsize (float) – the desired default fontsize.

select(s)
PDF only: Keeps only those pages of the document whose numbers occur in the list. Empty
sequences or elements outside range(doc.page_count) will cause a ValueError. For more
details see remarks at the bottom or this chapter.

Parameters
s (sequence) – The sequence (see Using Python Sequences as Arguments in
PyMuPDF) of page numbers (zero-based) to be included. Pages not in the se-
quence will be deleted (from memory) and become unavailable until the docu-
ment is reopened. Page numbers can occur multiple times and in any order:
the resulting document will reflect the sequence exactly as specified.

Note:
• Page numbers in the sequence need not be unique nor be in any particular order. This makes

the method a versatile utility to e.g. select only the even or the odd pages or meeting some
other criteria and so forth.

• On a technical level, the method will always create a new pagetree.

• When dealing with only a few pages, methods copy_page(), move_page(),
delete_page() are easier to use. In fact, they are also much faster – by at least one
order of magnitude when the document has many pages.

set_metadata(m)

PDF only: Sets or updates the metadata of the document as specified in m, a Python dictionary.

6.5. Document 175

PyMuPDF Documentation, Release 1.21.1

Parameters
m (dict) – A dictionary with the same keys as metadata (see below). All keys are
optional. A PDF’s format and encryption method cannot be set or changed and
will be ignored. If any value should not contain data, do not specify its key or set
the value to None. If you use {} all metadata information will be cleared to the
string “none”. If you want to selectively change only some values, modify a copy
of doc.metadata and use it as the argument. Arbitrary unicode values are possible
if specified as UTF-8-encoded.

(Changed in v1.18.4) Empty values or “none” are no longer written, but completely omitted.

get_xml_metadata()

PDF only: Get the document XML metadata.

Return type
str

Returns
XML metadata of the document. Empty string if not present or not a PDF.

set_xml_metadata(xml)
PDF only: Sets or updates XML metadata of the document.

Parameters
xml (str) – the new XML metadata. Should be XML syntax, however no checking
is done by this method and any string is accepted.

set_toc(toc, collapse=1)
PDF only: Replaces the complete current outline tree (table of contents) with the one pro-
vided as the argument. After successful execution, the new outline tree can be accessed as usual
via Document.get_toc() or via Document.outline. Like with other output-oriented meth-
ods, changes become permanent only via save() (incremental save supported). Internally, this
method consists of the following two steps. For a demonstration see example below.

• Step 1 deletes all existing bookmarks.

• Step 2 creates a new TOC from the entries contained in toc.

Parameters
• toc (sequence) – A list / tuple with all bookmark entries that should form

the new table of contents. Output variants of get_toc() are acceptable. To
completely remove the table of contents specify an empty sequence or None.
Each item must be a list with the following format.

– [lvl, title, page [, dest]] where

∗ lvl is the hierarchy level (int > 0) of the item, which must be 1 for the first
item and at most 1 larger than the previous one.

∗ title (str) is the title to be displayed. It is assumed to be UTF-8-encoded
(relevant for multibyte code points only).

∗ page (int) is the target page number (attention: 1-based). Must be in valid
range if positive. Set it to -1 if there is no target, or the target is external.

∗ dest (optional) is a dictionary or a number. If a number, it will be inter-
preted as the desired height (in points) this entry should point to on the
page. Use a dictionary (like the one given as output by get_toc(False))
for a detailed control of the bookmark’s properties, see Document.
get_toc() for a description.

176 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• collapse (int) – (new in v1.16.9) controls the hierarchy level beyond which
outline entries should initially show up collapsed. The default 1 will hence only
display level 1, higher levels must be unfolded using the PDF viewer. To unfold
everything, specify either a large integer, 0 or None.

Return type
int

Returns
the number of inserted, resp. deleted items.

outline_xref(idx)

• New in v1.17.7

PDF only: Return the xref of the outline item. This is mainly used for internal purposes.

arg int idx: index of the item in list Document.get_toc().

Returns
xref .

del_toc_item(idx)

• New in v1.17.7

• Changed in v1.18.14: no longer remove the item’s text, but show it grayed-out.

PDF only: Remove this TOC item. This is a high-speed method, which disables the respective
item, but leaves the overall TOC struture intact. Physically, the item still exists in the TOC tree,
but is shown grayed-out and will no longer point to any destination.

This also implies that you can reassign the item to a new destination using Document.
set_toc_item(), when required.

Parameters
idx (int) – the index of the item in list Document.get_toc().

set_toc_item(idx, dest_dict=None, kind=None, pno=None, uri=None, title=None, to=None,
filename=None, zoom=0)

• New in v1.17.7

• Changed in v1.18.6

PDF only: Changes the TOC item identified by its index. Change the item title, destination,
appearance (color, bold, italic) or collapsing sub-items – or to remove the item altogether.

Use this method if you need specific changes for selected entries only and want to avoid replac-
ing the complete TOC. This is beneficial especially when dealing with large table of contents.

Parameters
• idx (int) – the index of the entry in the list created by Document.
get_toc().

• dest_dict (dict) – the new destination. A dictionary like the last entry
of an item in doc.get_toc(False). Using this as a template is recom-
mended. When given, all other parameters are ignored – except title.

• kind (int) – the link kind, see Link Destination Kinds. If LINK_NONE,
then all remaining parameter will be ignored, and the TOC item will be
removed – same as Document.del_toc_item(). If None, then only the

6.5. Document 177

PyMuPDF Documentation, Release 1.21.1

title is modified and the remaining parameters are ignored. All other val-
ues will lead to making a new destination dictionary using the subsequent
arguments.

• pno (int) – the 1-based page number, i.e. a value 1 <= pno <=
doc.page_count. Required for LINK_GOTO.

• uri (str) – the URL text. Required for LINK_URI.

• title (str) – the desired new title. None if no change.

• to (point_like) – (optional) points to a coordinate on the arget page.
Relevant for LINK_GOTO. If omitted, a point near the page’s top is chosen.

• filename (str) – required for LINK_GOTOR and LINK_LAUNCH.

• zoom (float) – use this zoom factor when showing the target page.

Example use: Change the TOC of the SWIG manual to achieve this:

Collapse everything below top level and show the chapter on Python support in red, bold and
italic:

>>> import fitz
>>> doc=fitz.open("SWIGDocumentation.pdf")
>>> toc = doc.get_toc(False) # we need the detailed TOC
>>> # list of level 1 indices and their titles
>>> lvl1 = [(i, item[1]) for i, item in enumerate(toc) if item[0] == 1]
>>> for i, title in lvl1:

d = toc[i][3] # get the destination dict
d["collapse"] = True # collapse items underneath
if "Python" in title: # show the 'Python' chapter

d["color"] = (1, 0, 0) # in red,
d["bold"] = True # bold and
d["italic"] = True # italic

doc.set_toc_item(i, dest_dict=d) # update this toc item
>>> doc.save("NEWSWIG.pdf",garbage=3,deflate=True)

In the previous example, we have changed only 42 of the 1240 TOC items of the file.

can_save_incrementally()

• New in v1.16.0

Check whether the document can be saved incrementally. Use it to choose the right option
without encountering exceptions.

scrub(attached_files=True, clean_pages=True, embedded_files=True, hidden_text=True,
javascript=True, metadata=True, redactions=True, redact_images=0, remove_links=True,
reset_fields=True, reset_responses=True, thumbnails=True, xml_metadata=True)

• New in v1.16.14

PDF only: Remove potentially sensitive data from the PDF. This function is inspired by the
similar “Sanitize” function in Adobe Acrobat products. The process is configurable by a number
of options, which are all True by default.

Parameters
• attached_files (bool) – Search for ‘FileAttachment’ annotations and

remove the file content.

178 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• clean_pages (bool) – Remove any comments from page painting
sources. If this option is set to False, then this is also done for hidden_text
and redactions.

• embedded_files (bool) – Remove embedded files.

• hidden_text (bool) – Remove OCRed text and invisible text7.

• javascript (bool) – Remove JavaScript sources.

• metadata (bool) – Remove PDF standard metadata.

• redactions (bool) – Apply redaction annotations.

• redact_images (int) – how to handle images if applying redactions. One
of 0 (ignore), 1 (blank out overlaps) or 2 (remove).

• remove_links (bool) – Remove all links.

• reset_fields (bool) – Reset all form fields to their defaults.

• reset_responses (bool) – Remove all responses from all annotations.

• thumbnails (bool) – Remove thumbnail images from pages.

• xml_metadata (bool) – Remove XML metadata.

save(outfile, garbage=0, clean=False, deflate=False, deflate_images=False, deflate_fonts=False,
incremental=False, ascii=False, expand=0, linear=False, pretty=False, no_new_id=False,
encryption=PDF_ENCRYPT_NONE, permissions=-1, owner_pw=None, user_pw=None)

• Changed in v1.18.7

• Changed in v1.19.0

PDF only: Saves the document in its current state.

Parameters
• outfile (str,Path,fp) – The file path, pathlib.Path or file object

to save to. A file object must have been created before via open(...)
or io.BytesIO(). Choosing io.BytesIO() is similar to Document.
tobytes() below, which equals the getvalue() output of an internally
created io.BytesIO().

• garbage (int) – Do garbage collection. Positive values exclude “incre-
mental”.

– 0 = none

– 1 = remove unused (unreferenced) objects.

– 2 = in addition to 1, compact the xref table.

– 3 = in addition to 2, merge duplicate objects.

– 4 = in addition to 3, check stream objects for duplication. This may be
slow because such data are typically large.

• clean (bool) – Clean and sanitize content streams1. Corresponds to “mu-
tool clean -sc”.

7 This only works under certain conditions. For example, if there is normal text covered by some image on top of it, then this is undetectable and
the respective text is not removed. Similar is true for white text on white background, and so on.

1 Content streams describe what (e.g. text or images) appears where and how on a page. PDF uses a specialized mini language similar to
PostScript to do this (pp. 643 in Adobe PDF References), which gets interpreted when a page is loaded.

6.5. Document 179

PyMuPDF Documentation, Release 1.21.1

• deflate (bool) – Deflate (compress) uncompressed streams.

• deflate_images (bool) – (new in v1.18.3) Deflate (compress) uncom-
pressed image streams4.

• deflate_fonts (bool) – (new in v1.18.3) Deflate (compress) uncom-
pressed fontfile streamsPage 180, 4.

• incremental (bool) – Only save changes to the PDF. Excludes “garbage”
and “linear”. Can only be used if outfile is a string or a pathlib.Path
and equal to Document.name. Cannot be used for files that are decrypted
or repaired and also in some other cases. To be sure, check Document.
can_save_incrementally(). If this is false, saving to a new file is re-
quired.

• ascii (bool) – convert binary data to ASCII.

• expand (int) – Decompress objects. Generates versions that can be better
read by some other programs and will lead to larger files.

– 0 = none

– 1 = images

– 2 = fonts

– 255 = all

• linear (bool) – Save a linearised version of the document. This option
creates a file format for improved performance for Internet access. Excludes
“incremental”.

• pretty (bool) – Prettify the document source for better readability. PDF
objects will be reformatted to look like the default output of Document.
xref_object().

• no_new_id (bool) – Suppress the update of the file’s /ID field. If the file
happens to have no such field at all, also suppress creation of a new one.
Default is False, so every save will lead to an updated file identification.

• permissions (int) – (new in v1.16.0) Set the desired permission levels.
See Document Permissions for possible values. Default is granting all.

• encryption (int) – (new in v1.16.0) set the desired encryption method.
See PDF encryption method codes for possible values.

• owner_pw (str) – (new in v1.16.0) set the document’s owner password.
(Changed in v1.18.3) If not provided, the user password is taken if provided.
The string length must not exceed 40 characters.

• user_pw (str) – (new in v1.16.0) set the document’s user password. The
string length must not exceed 40 characters.

Note: The method does not check, whether a file of that name already exists, will hence not
ask for confirmation, and overwrite the file. It is your responsibility as a programmer to handle
this.

4 These parameters cause separate handling of stream categories: use it together with expand to restrict decompression to streams other than
images / fontfiles.

180 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

ez_save(*args, **kwargs)

• New in v1.18.11

PDF only: The same as Document.save() but with the changed defaults deflate=True,
garbage=3.

saveIncr()

PDF only: saves the document incrementally. This is a convenience abbreviation for
doc.save(doc.name, incremental=True, encryption=PDF_ENCRYPT_KEEP).

Note: Saving incrementally may be required if the document contains verified signatures which
would be invalidated by saving to a new file.

tobytes(garbage=0, clean=False, deflate=False, deflate_images=False, deflate_fonts=False,
ascii=False, expand=0, linear=False, pretty=False, no_new_id=False,
encryption=PDF_ENCRYPT_NONE, permissions=-1, owner_pw=None,
user_pw=None)

• Changed in v1.18.7

• Changed in v1.19.0

PDF only: Writes the current content of the document to a bytes object instead of to a file.
Obviously, you should be wary about memory requirements. The meanings of the parameters
exactly equal those in save(). Chapter FAQ contains an example for using this method as a
pre-processor to pdfrw.

(Changed in v1.16.0) for extended encryption support.

Return type
bytes

Returns
a bytes object containing the complete document.

search_page_for(pno, text, quads=False)
Search for “text” on page number “pno”. Works exactly like the corresponding Page.
search_for(). Any integer -∞ < pno < page_count is acceptable.

insert_pdf(docsrc, from_page=-1, to_page=-1, start_at=-1, rotate=-1, links=True, annots=True,
show_progress=0, final=1)

• Changed in v1.19.3 - as a fix to issue #537, form fields are always excluded.

PDF only: Copy the page range [from_page, to_page] (including both) of PDF document
docsrc into the current one. Inserts will start with page number start_at. Value -1 indicates
default values. All pages thus copied will be rotated as specified. Links and annotations can be
excluded in the target, see below. All page numbers are 0-based.

Parameters
• docsrc (Document) – An opened PDF Document which must not be the

current document. However, it may refer to the same underlying file.

• from_page (int) – First page number in docsrc. Default is zero.

• to_page (int) – Last page number in docsrc to copy. Defaults to last page.

6.5. Document 181

https://pypi.python.org/pypi/pdfrw/0.3
https://github.com/pymupdf/PyMuPDF/issues/537

PyMuPDF Documentation, Release 1.21.1

• start_at (int) – First copied page, will become page number start_at in
the target. Default -1 appends the page range to the end. If zero, the page
range will be inserted before current first page.

• rotate (int) – All copied pages will be rotated by the provided value
(degrees, integer multiple of 90).

• links (bool) – Choose whether (internal and external) links should be
included in the copy. Default is True. Internal links to outside the copied
page range are always excluded.

• annots (bool) – (new in v1.16.1) choose whether annotations should be
included in the copy. (Fixed in v1.19.3) Form fields can never be copied.

• show_progress (int) – (new in v1.17.7) specify an interval size greater
zero to see progress messages on sys.stdout. After each interval, a mes-
sage like Inserted 30 of 47 pages. will be printed.

• final (int) – (new in v1.18.0) controls whether the list of already copied
objects should be dropped after this method, default True. Set it to 0 except
for the last one of multiple insertions from the same source PDF. This saves
target file size and speeds up execution considerably.

Note:
1. If from_page > to_page, pages will be copied in reverse order. If 0 <= from_page == to_page,

then one page will be copied.

2. docsrc TOC entries will not be copied. It is easy however, to recover a table of contents for the
resulting document. Look at the examples below and at program PDFjoiner.py in the examples
directory: it can join PDF documents and at the same time piece together respective parts of
the tables of contents.

new_page(pno=-1, width=595, height=842)
PDF only: Insert an empty page.

Parameters
• pno (int) – page number in front of which the new page should be inserted.

Must be in 1 < pno <= page_count. Special values -1 and doc.page_count
insert after the last page.

• width (float) – page width.

• height (float) – page height.

Return type
Page

Returns
the created page object.

insert_page(pno, text=None, fontsize=11, width=595, height=842, fontname='helv',
fontfile=None, color=None)

PDF only: Insert a new page and insert some text. Convenience function which combines
Document.new_page() and (parts of) Page.insert_text().

Parameters
pno (int) – page number (0-based) in front of which to insert. Must

182 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/PDFjoiner.py

PyMuPDF Documentation, Release 1.21.1

be in range(-1, doc.page_count + 1). Special values -1 and doc.
page_count insert after the last page.

Changed in v1.14.12
This is now a positional parameter

For the other parameters, please consult the aforementioned methods.

Return type
int

Returns
the result of Page.insert_text() (number of successfully inserted lines).

delete_page(pno=-1)
PDF only: Delete a page given by its 0-based number in -∞ < pno < page_count - 1.

• Changed in v1.18.14: support Python’s del statement.

Parameters
pno (int) – the page to be deleted. Negative number count backwards from the
end of the document (like with indices). Default is the last page.

delete_pages(*args, **kwds)

• Changed in v1.18.13: more flexibility specifying pages to delete.

• Changed in v1.18.14: support Python’s del statement.

PDF only: Delete multiple pages given as 0-based numbers.

Format 1: Use keywords. Represents the old format. A contiguous range of pages is
removed.

• “from_page”: first page to delete. Zero if omitted.

• “to_page”: last page to delete. Last page in document if omitted. Must not be less
then “from_page”.

Format 2: Two page numbers as positional parameters. Handled like Format 1.

Format 3: One positional integer parameter. Equivalent to Page.delete_page().

Format 4: One positional parameter of type list, tuple or range() of page numbers. The items
of this sequence may be in any order and may contain duplicates.

Format 5: (New in v1.18.14) Using the Python del statement and index / slice notation is now
possible.

Note: (Changed in v1.14.17, optimized in v1.17.7) In an effort to maintain a valid PDF struc-
ture, this method and delete_page() will also deactivate items in the table of contents which
point to deleted pages. “Deactivation” here means, that the bookmark will point to nowhere
and the title will be shown grayed-out by supporting PDF viewers. The overall TOC structure
is left intact.

It will also remove any links on remaining pages which point to a deleted one. This action
may have an extended response time for documents with many pages.

Following examples will all delete pages 500 through 519:

• doc.delete_pages(500, 519)

• doc.delete_pages(from_page=500, to_page=519)

6.5. Document 183

PyMuPDF Documentation, Release 1.21.1

• doc.delete_pages((500, 501, 502, ... , 519))

• doc.delete_pages(range(500, 520))

• del doc[500:520]

• del doc[(500, 501, 502, ... , 519)]

• del doc[range(500, 520)]

For the Adobe PDF References the above takes about 0.6 seconds, because the remaining 1290
pages must be cleaned from invalid links.

In general, the performance of this method is dependent on the number of remaining pages –
not on the number of deleted pages: in the above example, deleting all pages except those 20,
will need much less time.

copy_page(pno, to=-1)
PDF only: Copy a page reference within the document.

Parameters
• pno (int) – the page to be copied. Must be in range 0 <= pno <
page_count.

• to (int) – the page number in front of which to copy. The default inserts
after the last page.

Note: Only a new reference to the page object will be created – not a new page object, all
copied pages will have identical attribute values, including the Page.xref . This implies that
any changes to one of these copies will appear on all of them.

fullcopy_page(pno, to=-1)

• New in v1.14.17

PDF only: Make a full copy (duplicate) of a page.

Parameters
• pno (int) – the page to be duplicated. Must be in range 0 <= pno <
page_count.

• to (int) – the page number in front of which to copy. The default inserts
after the last page.

Note:
• In contrast to copy_page(), this method creates a new page object (with a new xref),

which can be changed independently from the original.

• Any Popup and “IRT” (“in response to”) annotations are not copied to avoid potentially
incorrect situations.

move_page(pno, to=-1)
PDF only: Move (copy and then delete original) a page within the document.

Parameters

184 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• pno (int) – the page to be moved. Must be in range 0 <= pno <
page_count.

• to (int) – the page number in front of which to insert the moved page. The
default moves after the last page.

need_appearances(value=None)

• New in v1.17.4

PDF only: Get or set the /NeedAppearances property of Form PDFs. Quote: “(Optional) A
flag specifying whether to construct appearance streams and appearance dictionaries for all
widget annotations in the document . . . Default value: false.” This may help controlling the
behavior of some readers / viewers.

Parameters
value (bool) – set the property to this value. If omitted or None, inquire the
current value.

Return type
bool

Returns
• None: not a Form PDF, or property not defined.

• True / False: the value of the property (either just set or existing for in-
quiries). Has no effect if no Form PDF.

get_sigflags()

PDF only: Return whether the document contains signature fields. This is an optional PDF
property: if not present (return value -1), no conclusions can be drawn – the PDF creator may
just not have bothered using it.

Return type
int

Returns
• -1: not a Form PDF / no signature fields recorded / no SigFlags found.

• 1: at least one signature field exists.

• 3: contains signatures that may be invalidated if the file is saved (written) in
a way that alters its previous contents, as opposed to an incremental update.

embfile_add(name, buffer, filename=None, ufilename=None, desc=None)

• Changed in v1.14.16: The sequence of positional parameters “name” and “buffer” has
been changed to comply with the call pattern of other functions.

PDF only: Embed a new file. All string parameters except the name may be unicode (in previous
versions, only ASCII worked correctly). File contents will be compressed (where beneficial).

Parameters
• name (str) – entry identifier, must not already exist.
• buffer (bytes,bytearray,BytesIO) – file contents.

(Changed in v1.14.13) io.BytesIO is now also supported.

• filename (str) – optional filename. Documentation only, will be set to
name if None.

6.5. Document 185

PyMuPDF Documentation, Release 1.21.1

• ufilename (str) – optional unicode filename. Documentation only, will
be set to filename if None.

• desc (str) – optional description. Documentation only, will be set to name
if None.

Return type
int

Returns
(Changed in v1.18.13) The method now returns the xref of the inserted file.
In addition, the file object now will be automatically given the PDF keys /
CreationDate and /ModDate based on the current date-time.

embfile_count()

• Changed in v1.14.16: This is now a method. In previous versions, this was a property.

PDF only: Return the number of embedded files.

embfile_get(item)

PDF only: Retrieve the content of embedded file by its entry number or name. If the document
is not a PDF, or entry cannot be found, an exception is raised.

Parameters
item (int,str) – index or name of entry. An integer must be in
range(embfile_count()).

Return type
bytes

embfile_del(item)

• Changed in v1.14.16: Items can now be deleted by index, too.

PDF only: Remove an entry from /EmbeddedFiles. As always, physical deletion of the embed-
ded file content (and file space regain) will occur only when the document is saved to a new file
with a suitable garbage option.

Parameters
item (int/str) – index or name of entry.

Warning: When specifying an entry name, this function will only delete the first item
with that name. Be aware that PDFs not created with PyMuPDF may contain duplicate
names. So you may want to take appropriate precautions.

embfile_info(item)

• Changed in v1.18.13

PDF only: Retrieve information of an embedded file given by its number or by its name.

Parameters
item (int/str) – index or name of entry. An integer must be in
range(embfile_count()).

Return type
dict

186 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Returns
a dictionary with the following keys:

• name – (str) name under which this entry is stored

• filename – (str) filename

• ufilename – (unicode) filename

• desc – (str) description

• size – (int) original file size

• length – (int) compressed file length

• creationDate – (New in v1.18.13) (str) date-time of item creation in PDF
format

• modDate – (New in v1.18.13) (str) date-time of last change in PDF format

• collection – (New in v1.18.13) (int) xref of the associated PDF portfolio
item if any, else zero.

• checksum – (New in v1.18.13) (str) a hashcode of the stored file content as
a hexadecimal string. Should be MD5 according to PDF specifications, but
be prepared to see other hashing algorithms.

embfile_names()

• New in v1.14.16

PDF only: Return a list of embedded file names. The sequence of the names equals the physical
sequence in the document.

Return type
list

embfile_upd(item, buffer=None, filename=None, ufilename=None, desc=None)
PDF only: Change an embedded file given its entry number or name. All parameters are op-
tional. Letting them default leads to a no-operation.

Parameters
• item (int/str) – index or name of entry. An integer must be in
range(embfile_count()).

• buffer (bytes,bytearray,BytesIO) – the new file content.

(Changed in v1.14.13) io.BytesIO is now also supported.

• filename (str) – the new filename.

• ufilename (str) – the new unicode filename.

• desc (str) – the new description.

(Changed in v1.18.13) The method now returns the xref of the file object.

Return type
int

Returns
xref of the file object. Automatically, its /ModDate PDF key will be updated
with the current date-time.

6.5. Document 187

PyMuPDF Documentation, Release 1.21.1

close()

Release objects and space allocations associated with the document. If created from a file, also
closes filename (releasing control to the OS). Explicitely closing a document is equivalent to
deleting it, del doc, or assigning it to something else like doc = None.

xref_object(xref, compressed=False, ascii=False)

• New in v1.16.8

• Changed in v1.18.10

PDF only: Return the definition source of a PDF object.

Parameters
• xref (int) – the object’s :data`xref`. Changed in v1.18.10: A value of -1

returns the PDF trailer source.

• compressed (bool) – whether to generate a compact output with no line
breaks or spaces.

• ascii (bool) – whether to ASCII-encode binary data.

Return type
str

Returns
The object definition source.

pdf_catalog()

• New in v1.16.8

PDF only: Return the xref number of the PDF catalog (or root) object. Use that number with
Document.xref_object() to see its source.

pdf_trailer(compressed=False)

• New in v1.16.8

PDF only: Return the trailer source of the PDF, which is usually located at the PDF file’s end.
This is Document.xref_object() with an xref argument of -1.

xref_stream(xref)

• New in v1.16.8

PDF only: Return the decompressed contents of the xref stream object.

Parameters
xref (int) – xref number.

Return type
bytes

Returns
the (decompressed) stream of the object.

xref_stream_raw(xref)

• New in v1.16.8

PDF only: Return the unmodified (esp. not decompressed) contents of the xref stream ob-
ject. Otherwise equal to Document.xref_stream().

188 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Return type
bytes

Returns
the (original, unmodified) stream of the object.

update_object(xref, obj_str, page=None)

• New in v1.16.8

PDF only: Replace object definition of xref with the provided string. The xref may also be
new, in which case this instruction completes the object definition. If a page object is also given,
its links and annotations will be reloaded afterwards.

Parameters
• xref (int) – xref number.

• obj_str (str) – a string containing a valid PDF object definition.

• page (Page) – a page object. If provided, indicates, that annotations of this
page should be refreshed (reloaded) to reflect changes incurred with links
and / or annotations.

Return type
int

Returns
zero if successful, otherwise an exception will be raised.

update_stream(xref, data, new=False, compress=True)

• New in v.1.16.8

• Changed in v1.19.2: added parameter “compress”

• Changed in v1.19.6: deprecated parameter “new”. Now confirms that the object is a PDF
dictionary object.

Replace the stream of an object identified by xref, which must be a PDF dictionary. If the object
is no stream , it will be turned into one. The function automatically performs a compress
operation (“deflate”) where beneficial.

Parameters
• xref (int) – xref number.

• stream (bytes|bytearray|BytesIO) – the new content of the stream.

(Changed in v1.14.13:) io.BytesIO objects are now also supported.

• new (bool) – deprecated and ignored. Will be removed some time after
v1.20.0.

• compress (bool) – whether to compress the inserted stream. If True (de-
fault), the stream will be inserted using /FlateDecode compression (if
beneficial), otherwise the stream will inserted as is.

Raises
ValueError – if xref does not represent a PDF dict. An empty dictionary
<<>> is accepted. So if you just created the xref and want to give it a stream, first
execute doc.update_object(xref, "<<>>"), and then insert the stream
data with this method.

6.5. Document 189

PyMuPDF Documentation, Release 1.21.1

The method is primarily (but not exclusively) intended to manipulate streams containing PDF
operator syntax (see pp. 643 of the Adobe PDF References) as it is the case for e.g. page content
streams.

If you update a contents stream, consider using save parameter clean=True to ensure consis-
tency between PDF operator source and the object structure.

Example: Let us assume that you no longer want a certain image appear on a page. This can be
achieved by deleting the respective reference in its contents source(s) – and indeed: the image
will be gone after reloading the page. But the page’s resources object would still show the
image as being referenced by the page. This save option will clean up any such mismatches.

xref_copy(source, target, *, keep=None)

• New in v1.19.5

PDF Only: Make target xref an exact copy of source. If source is a stream , then these data are also
copied.

Parameters
• source (int) – the source xref . It must be an existing dictionary object.

• target (int) – the target xref. Must be an existing dictionary object. If the xref
has just been created, make sure to initialize it as a PDF dictionary with the mini-
mum specification <<>>.

• keep (list) – an optional list of top-level keys in target, that should not be removed
in preparation of the copy process.

Note:
• This method has much in common with Python’s dict method copy().

• Both xref numbers must represent existing dictionaries.

• Before data is copied from source, all target dictionary keys are deleted. You can specify exceptions
from this in the keep list. If source however has a same-named key, its value will still replace the
target.

• If source is a stream object, then these data will also be copied over, and target will be converted
to a stream object.

• A typical use case is to replace or remove an existing image without using redaction annotations.
Example scripts can be seen here.

extract_image(xref)
PDF Only: Extract data and meta information of an image stored in the document. The output can directly
be used to be stored as an image file, as input for PIL, Pixmap creation, etc. This method avoids using
pixmaps wherever possible to present the image in its original format (e.g. as JPEG).

Parameters
xref (int) – xref of an image object. If this is not in range(1, doc.
xref_length()), or the object is no image or other errors occur, None is returned
and no exception is raised.

Return type
dict

Returns
a dictionary with the following keys

190 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/image-replacement

PyMuPDF Documentation, Release 1.21.1

• ext (str) image type (e.g. ‘jpeg’), usable as image file extension

• smask (int) xref number of a stencil (/SMask) image or zero

• width (int) image width

• height (int) image height

• colorspace (int) the image’s colorspace.n number.

• cs-name (str) the image’s colorspace.name.

• xres (int) resolution in x direction. Please also see resolution.

• yres (int) resolution in y direction. Please also see resolution.

• image (bytes) image data, usable as image file content

>>> d = doc.extract_image(1373)
>>> d
{'ext': 'png', 'smask': 2934, 'width': 5, 'height': 629, 'colorspace': 3, 'xres
→˓': 96,
'yres': 96, 'cs-name': 'DeviceRGB',
'image': b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x05\ ...'}
>>> imgout = open(f"image.{d['ext']}", "wb")
>>> imgout.write(d["image"])
102
>>> imgout.close()

Note: There is a functional overlap with pix = fitz.Pixmap(doc, xref), followed by a pix.tobytes(). Main
differences are that extract_image, (1) does not always deliver PNG image formats, (2) is very much faster
with non-PNG images, (3) usually results in much less disk storage for extracted images, (4) returns None
in error cases (generates no exception). Look at the following example images within the same PDF.

• xref 1268 is a PNG – Comparable execution time and identical output:

In [23]: %timeit pix = fitz.Pixmap(doc, 1268);pix.tobytes()
10.8 ms ± 52.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [24]: len(pix.tobytes())
Out[24]: 21462

In [25]: %timeit img = doc.extract_image(1268)
10.8 ms ± 86 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [26]: len(img["image"])
Out[26]: 21462

• xref 1186 is a JPEG – Document.extract_image() is many times faster and produces a much
smaller output (2.48 MB vs. 0.35 MB):

In [27]: %timeit pix = fitz.Pixmap(doc, 1186);pix.tobytes()
341 ms ± 2.86 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [28]: len(pix.tobytes())
Out[28]: 2599433

In [29]: %timeit img = doc.extract_image(1186)
15.7 µs ± 116 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [30]: len(img["image"])
Out[30]: 371177

6.5. Document 191

PyMuPDF Documentation, Release 1.21.1

extract_font(xref, info_only=False, named=None)

• Changed in v1.19.4: return a dictionary if named == True.

PDF Only: Return an embedded font file’s data and appropriate file extension. This can be
used to store the font as an external file. The method does not throw exceptions (other than
via checking for PDF and valid xref).

arg int xref
PDF object number of the font to extract.

arg bool info_only
only return font information, not the buffer. To be used for information-only
purposes, avoids allocation of large buffer areas.

arg bool named
If true, a dictionary with the following keys is returned: ‘name’ (font base
name), ‘ext’ (font file extension), ‘type’ (font type), ‘content’ (font file con-
tent).

rtype
tuple,dict

returns
a tuple (basename, ext, type, content), where ext is a 3-byte sug-
gested file extension (str), basename is the font’s name (str), type is the font’s
type (e.g. “Type1”) and content is a bytes object containing the font file’s con-
tent (or b””). For possible extension values and their meaning see Font File
Extensions. Return details on error:

• ("", "", "", b"") – invalid xref or xref is not a (valid) font object.

• (basename, "n/a", "Type1", b"") – basename is not embedded
and thus cannot be extracted. This is the case for e.g. the PDF Base
14 Fonts and Type 3 fonts.

Example:

>>> # store font as an external file
>>> name, ext, _, content = doc.extract_font(4711)
>>> # assuming content is not None:
>>> ofile = open(name + "." + ext, "wb")
>>> ofile.write(content)
>>> ofile.close()

Warning: The basename is returned unchanged from the PDF. So it may contain char-
acters (such as blanks) which may disqualify it as a filename for your operating system.
Take appropriate action.

Note:
• The returned basename in general is not the original file name, but it probably has some

similarity.

• If parameter named == True, a dictionary with the following keys is returned:
{'name': 'T1', 'ext': 'n/a', 'type': 'Type3', 'content': b''}.

192 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

xref_xml_metadata()

• New in v1.16.8

PDF only: Return the xref of the document’s XML metadata.

has_links()

has_annots()

• New in v1.18.7

PDF only: Check whether there are links, resp. annotations anywhere in the document.

Returns
True / False. As opposed to fields, which are also stored in a central place of a PDF
document, the existence of links / annotations can only be detected by parsing each
page. These methods are tuned to do this efficiently and will immediately return,
if the answer is True for a page. For PDFs with many thousand pages however, an
answer may take some time6 if no link, resp. no annotation is found.

subset_fonts()

• New in v1.18.7, changed in v1.18.9

PDF only: Investigate eligible fonts for their use by text in the document. If a font is supported and
a size reduction is possible, that font is replaced by a version with a character subset.

Use this method immediately before saving the document. The following features and restrictions
apply for the time being:

• Package fontTools must be installed. It is required for creating the font subsets. If not installed,
the method raises an ImportError exception.

• Supported font types only include embedded OTF, TTF and WOFF that are not already sub-
sets.

• Changed in v1.18.9: A subset font directly replaces its original – text remains untouched and
is not rewritten. It thus should retain all its properties, like spacing, hiddenness, control by
Optional Content, etc.

The greatest benefit can be achieved when creating new PDFs using large fonts like is typical for
Asian scripts. In these cases, the set of actually used unicodes mostly is small compared to the
number of glyphs in the font. Using this feature can easily reduce the embedded font binary by two
orders of magnitude – from several megabytes to a low two-digit kilobyte amount.

journal_enable()

• New in v1.19.0

PDF only: Enable journalling. Use this before you start logging operations.

journal_start_op(name)

• New in v1.19.0

PDF only: Start journalling an “operation” identified by a string “name”. Updates will fail for a
journal-enabled PDF, if no operation has been started.

6 For a False the complete document must be scanned. Both methods do not load pages, but only scan object definitions. This makes them
at least 10 times faster than application-level loops (where total response time roughly equals the time for loading all pages). For the Adobe PDF
References (756 pages) and the Pandas documentation (over 3070 pages) – both have no annotations – the method needs about 11 ms for the answer
False. So response times will probably become significant only well beyond this order of magnitude.

6.5. Document 193

https://pypi.org/project/fonttools/

PyMuPDF Documentation, Release 1.21.1

journal_stop_op()

• New in v1.19.0

PDF only: Stop the current operation. The updates between start and stop of an operation belong to
the same unit of work and will be undone / redone together.

journal_position()

• New in v1.19.0

PDF only: Return the numbers of the current operation and the total operation count.

Returns
a tuple (step, steps) containing the current operation number and the total num-
ber of operations in the journal. If step is 0, we are at the top of the journal. If step
equals steps, we are at the bottom. Updating the PDF with anything other than undo
or redo will automatically remove all journal entries after the current one and the new
update will become the new last entry in the journal. The updates corresponding to
the removed journal entries will be permanently lost.

journal_op_name(step)

• New in v1.19.0

PDF only: Return the name of operation number step.

journal_can_do()

• New in v1.19.0

PDF only: Show whether forward (“redo”) and / or backward (“undo”) executions are possible from
the current journal postion.

Returns
a dictionary {"undo": bool, "redo": bool}. The respective method is
available if its value is True.

journal_undo()

• New in v1.19.0

PDF only: Revert (undo) the current step in the journal. This moves towards the journal’s top.

journal_redo()

• New in v1.19.0

PDF only: Re-apply (redo) the current step in the journal. This moves towards the journal’s bottom.

journal_save(filename)

• New in v1.19.0

PDF only: Save the journal to a file.

Parameters
filename (str,fp) – either a filename as string or a file object opened as “wb” (or
an io.BytesIO() object).

journal_load(filename)

• New in v1.19.0

194 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

PDF only: Load journal from a file. Enables journalling for the document. If journalling is already
enabled, an exception is raised.

Parameters
filename (str,fp) – the filename (str) of the journal or a file object opened as “rb”
(or an io.BytesIO() object).

save_snapshot()

• New in v1.19.0

PDF only: Saves a “snapshot” of the document. This is a PDF document with a special, incremental-
save format compatible with journalling – therefore no save options are available. Saving a snapshot
is not possible for new documents.

This is a normal PDF document with no usage restrictions whatsoever. If it is not being changed in
any way, it can be used together with its journal to undo / redo operations or continue updating.

outline

Contains the first Outline entry of the document (or None). Can be used as a starting point to walk
through all outline items. Accessing this property for encrypted, not authenticated documents will
raise an AttributeError.

Type
Outline

is_closed

False if document is still open. If closed, most other attributes and methods will have been deleted
/ disabled. In addition, Page objects referring to this document (i.e. created with Document.
load_page()) and their dependent objects will no longer be usable. For reference purposes,
Document.name still exists and will contain the filename of the original document (if applicable).

Type
bool

is_dirty

True if this is a PDF document and contains unsaved changes, else False.

Type
bool

is_pdf

True if this is a PDF document, else False.

Type
bool

is_form_pdf

False if this is not a PDF or has no form fields, otherwise the number of root form fields (fields with
no ancestors).

(Changed in v1.16.4) Returns the total number of (root) form fields.

Type
bool,int

is_reflowable

True if document has a variable page layout (like e-books or HTML). In this case you can set the
desired page dimensions during document creation (open) or via method layout().

6.5. Document 195

PyMuPDF Documentation, Release 1.21.1

Type
bool

is_repaired

• New in v1.18.2

True if PDF has been repaired during open (because of major structure issues). Always False for
non-PDF documents. If true, more details have been stored in TOOLS.mupdf_warnings(), and
Document.can_save_incrementally() will return False.

Type
bool

needs_pass

Indicates whether the document is password-protected against access. This indicator remains un-
changed – even after the document has been authenticated. Precludes incremental saves if true.

Type
bool

is_encrypted

This indicator initially equals Document.needs_pass. After successful authentication, it is set to
False to reflect the situation.

Type
bool

permissions

• Changed in v1.16.0: This is now an integer comprised of bit indicators. Was a dictionary
previously.

Contains the permissions to access the document. This is an integer containing bool values in re-
spective bit positions. For example, if doc.permissions & fitz.PDF_PERM_MODIFY > 0, you may
change the document. See Document Permissions for details.

Type
int

metadata

Contains the document’s meta data as a Python dictionary or None (if is_encrypted=True and need-
Pass=True). Keys are format, encryption, title, author, subject, keywords, creator, producer, cre-
ationDate, modDate, trapped. All item values are strings or None.

Except format and encryption, for PDF documents, the key names correspond in an obvious way
to the PDF keys /Creator, /Producer, /CreationDate, /ModDate, /Title, /Author, /Subject, /Trapped
and /Keywords respectively.

• format contains the document format (e.g. ‘PDF-1.6’, ‘XPS’, ‘EPUB’).

• encryption either contains None (no encryption), or a string naming an encryption method
(e.g. ‘Standard V4 R4 128-bit RC4’). Note that an encryption method may be specified even if
needs_pass=False. In such cases not all permissions will probably have been granted. Check
Document.permissions for details.

• If the date fields contain valid data (which need not be the case at all!), they are strings in the
PDF-specific timestamp format “D:<TS><TZ>”, where

– <TS> is the 12 character ISO timestamp YYYYMMDDhhmmss (YYYY - year, MM - month,
DD - day, hh - hour, mm - minute, ss - second), and

196 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

– <TZ> is a time zone value (time intervall relative to GMT) containing a sign (‘+’ or ‘-‘),
the hour (hh), and the minute (‘mm’, note the apostrophies!).

• A Paraguayan value might hence look like D:20150415131602-04’00’, which corresponds to
the timestamp April 15, 2015, at 1:16:02 pm local time Asuncion.

Type
dict

name

Contains the filename or filetype value with which Document was created.

Type
str

page_count

Contains the number of pages of the document. May return 0 for documents with no pages. Function
len(doc) will also deliver this result.

Type
int

chapter_count

• New in v1.17.0

Contains the number of chapters in the document. Always at least 1. Relevant only for document
types with chapter support (EPUB currently). Other documents will return 1.

Type
int

last_location

• New in v1.17.0

Contains (chapter, pno) of the document’s last page. Relevant only for document types with chapter
support (EPUB currently). Other documents will return (0, page_count - 1) and (0, -1) if
it has no pages.

Type
int

FormFonts

A list of form field font names defined in the /AcroForm object. None if not a PDF.

Type
list

Note: For methods that change the structure of a PDF (insert_pdf(), select(), copy_page(), delete_page()
and others), be aware that objects or properties in your program may have been invalidated or orphaned. Examples are
Page objects and their children (links, annotations, widgets), variables holding old page counts, tables of content and
the like. Remember to keep such variables up to date or delete orphaned objects. Also refer to Ensuring Consistency
of Important Objects in PyMuPDF.

6.5. Document 197

PyMuPDF Documentation, Release 1.21.1

6.5.1 set_metadata() Example

Clear metadata information. If you do this out of privacy / data protection concerns, make sure you save the document
as a new file with garbage > 0. Only then the old /Info object will also be physically removed from the file. In this
case, you may also want to clear any XML metadata inserted by several PDF editors:

>>> import fitz
>>> doc=fitz.open("pymupdf.pdf")
>>> doc.metadata # look at what we currently have
{'producer': 'rst2pdf, reportlab', 'format': 'PDF 1.4', 'encryption': None, 'author':
'Jorj X. McKie', 'modDate': "D:20160611145816-04'00'", 'keywords': 'PDF, XPS, EPUB, CBZ',
'title': 'The PyMuPDF Documentation', 'creationDate': "D:20160611145816-04'00'",
'creator': 'sphinx', 'subject': 'PyMuPDF 1.9.1'}
>>> doc.set_metadata({}) # clear all fields
>>> doc.metadata # look again to show what happened
{'producer': 'none', 'format': 'PDF 1.4', 'encryption': None, 'author': 'none',
'modDate': 'none', 'keywords': 'none', 'title': 'none', 'creationDate': 'none',
'creator': 'none', 'subject': 'none'}
>>> doc._delXmlMetadata() # clear any XML metadata
>>> doc.save("anonymous.pdf", garbage = 4) # save anonymized doc

6.5.2 set_toc() Demonstration

This shows how to modify or add a table of contents. Also have a look at csv2toc.py and toc2csv.py in the examples
directory.

>>> import fitz
>>> doc = fitz.open("test.pdf")
>>> toc = doc.get_toc()
>>> for t in toc: print(t) # show what we have
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction', 1]
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]
>>> toc[1][1] += " modified by set_toc" # modify something
>>> doc.set_toc(toc) # replace outline tree
3 # number of bookmarks inserted
>>> for t in doc.get_toc(): print(t) # demonstrate it worked
[1, 'The PyMuPDF Documentation', 1]
[2, 'Introduction modified by set_toc', 1] # <<< this has changed
[3, 'Note on the Name fitz', 1]
[3, 'License', 1]

198 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/csv2toc.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/toc2csv.py

PyMuPDF Documentation, Release 1.21.1

6.5.3 insert_pdf() Examples

(1) Concatenate two documents including their TOCs:

>>> doc1 = fitz.open("file1.pdf") # must be a PDF
>>> doc2 = fitz.open("file2.pdf") # must be a PDF
>>> pages1 = len(doc1) # save doc1's page count
>>> toc1 = doc1.get_toc(False) # save TOC 1
>>> toc2 = doc2.get_toc(False) # save TOC 2
>>> doc1.insert_pdf(doc2) # doc2 at end of doc1
>>> for t in toc2: # increase toc2 page numbers

t[2] += pages1 # by old len(doc1)
>>> doc1.set_toc(toc1 + toc2) # now result has total TOC

Obviously, similar ways can be found in more general situations. Just make sure that hierarchy levels in a row do not
increase by more than one. Inserting dummy bookmarks before and after toc2 segments would heal such cases. A
ready-to-use GUI (wxPython) solution can be found in script PDFjoiner.py of the examples directory.

(2) More examples:

>>> # insert 5 pages of doc2, where its page 21 becomes page 15 in doc1
>>> doc1.insert_pdf(doc2, from_page=21, to_page=25, start_at=15)

>>> # same example, but pages are rotated and copied in reverse order
>>> doc1.insert_pdf(doc2, from_page=25, to_page=21, start_at=15, rotate=90)

>>> # put copied pages in front of doc1
>>> doc1.insert_pdf(doc2, from_page=21, to_page=25, start_at=0)

6.5.4 Other Examples

Extract all page-referenced images of a PDF into separate PNG files:

for i in range(doc.page_count):
imglist = doc.get_page_images(i)
for img in imglist:

xref = img[0] # xref number
pix = fitz.Pixmap(doc, xref) # make pixmap from image
if pix.n - pix.alpha < 4: # can be saved as PNG

pix.save("p%s-%s.png" % (i, xref))
else: # CMYK: must convert first

pix0 = fitz.Pixmap(fitz.csRGB, pix)
pix0.save("p%s-%s.png" % (i, xref))
pix0 = None # free Pixmap resources

pix = None # free Pixmap resources

Rotate all pages of a PDF:

>>> for page in doc: page.set_rotation(90)

6.5. Document 199

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/PDFjoiner.py
https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6.6 DocumentWriter

• New in v1.21.0

This class represents a utility which can output various document types supported by MuPDF.

In PyMuPDF only used for outputting PDF documents whose pages are populated by Story DOMs.

Using DocumentWriter also for other document types might happen in the future.

Method / Attribute Short Description
DocumentWriter.begin_page() start a new output page
DocumentWriter.end_page() finish the current output page
DocumentWriter.close() flush pending output and close the file

Class API
class DocumentWriter

__init__(self, path, options=None)
Create a document writer object, passing a Python file pointer or a file path. Options to use when saving
the file may also be passed.

Parameters
• path – the output file. This may be a string file name, or any Python file pointer.

Note: By using a io.BytesIO() object as file pointer, a document writer can
create a PDF in memory. Subsequently, this PDF can be re-opened for input and be
further manipulated. This technique is used by several example scripts in Stories
recipes.

• options (str) – specify saving options for the output PDF. Typical are “compress”
or “clean”. More possible values may be taken from help output of the mutool
convert CLI utility.

begin_page(mediabox)
Start a new output page of a given dimension.

Parameters
mediabox (rect_like) – a rectangle specifying the page size. After this method, out-
put operations may write content to the page.

end_page()

Finish a page. This flushes any pending data and appends the page to the output document.

close()

Close the output file. This method is required for writing any pending data.

For usage examples consult the section of Story.

200 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6.7 Font

• New in v1.16.18

This class represents a font as defined in MuPDF (fz_font_s structure). It is required for the new class TextWriter and the
new Page.write_text(). Currently, it has no connection to how fonts are used in methods Page.insert_text()
or Page.insert_textbox(), respectively.

A Font object also contains useful general information, like the font bbox, the number of defined glyphs, glyph names
or the bbox of a single glyph.

Method / Attribute Short Description
glyph_advance() Width of a character
glyph_bbox() Glyph rectangle
glyph_name_to_unicode() Get unicode from glyph name
has_glyph() Return glyph id of unicode
text_length() Compute string length
char_lengths() Tuple of char widths of a string
unicode_to_glyph_name() Get glyph name of a unicode
valid_codepoints() Array of supported unicodes
ascender Font ascender
descender Font descender
bbox Font rectangle
buffer Copy of the font’s binary image
flags Collection of font properties
glyph_count Number of supported glyphs
name Name of font
is_writable Font usable with TextWriter

Class API
class Font

__init__(self, fontname=None, fontfile=None,

fontbuffer=None, script=0, language=None, ordering=-1, is_bold=0,

is_italic=0, is_serif=0)

Font constructor. The large number of parameters are used to locate font, which most closely resembles
the requirements. Not all parameters are ever required – see the below pseudo code explaining the logic
how the parameters are evaluated.

Parameters
• fontname (str) – one of the PDF Base 14 Fonts or CJK fontnames. Also possible

are a select few other names like (watch the correct spelling): “Arial”, “Times”,
“Times Roman”.

(Changed in v1.17.5)

If you have installed pymupdf-fonts, there are also new “reserved” fontnames avail-
able, which are listed in fitz_fonts and in the table further down.

• fontfile (str) – the filename of a fontfile somewhere on your system1.
1 MuPDF does not support all fontfiles with this feature and will raise exceptions like “mupdf: FT_New_Memory_Face((null)): unknown file

format”, if it encounters issues. The TextWriter methods check Font.is_writable.

6.7. Font 201

https://pypi.org/project/pymupdf-fonts/

PyMuPDF Documentation, Release 1.21.1

• fontbuffer (bytes,bytearray,io.BytesIO) – a fontfile loaded in mem-
oryPage 201, 1.

• script (in) – the number of a UCDN script. Currently supported in PyMuPDF
are numbers 24, and 32 through 35.

• language (str) – one of the values “zh-Hant” (traditional Chinese), “zh-Hans”
(simplified Chinese), “ja” (Japanese) and “ko” (Korean). Otherwise, all ISO 639
codes from the subsets 1, 2, 3 and 5 are also possible, but are currently documentary
only.

• ordering (int) – an alternative selector for one of the CJK fonts.

• is_bold (bool) – look for a bold font.

• is_italic (bool) – look for an italic font.

• is_serif (bool) – look for a serifed font.

Returns
a MuPDF font if successful. This is the overall sequence of checks to determine an
appropriate font:

Argu-
ment

Action

fontfile? Create font from file, exception if failure.
font-
buffer?

Create font from buffer, exception if failure.

order-
ing>=0

Create universal font, always succeeds.

font-
name?

Create a Base-14 font, universal font, or font provided by pymupdf-
fonts. See table below.

Note: With the usual reserved names “helv”, “tiro”, etc., you will create fonts with the expected names
“Helvetica”, “Times-Roman” and so on. However, and in contrast to Page.insert_font() and friends,

• a font file will always be embedded in your PDF,

• Greek and Cyrillic characters are supported without needing the encoding parameter.

Using ordering >= 0, or fontnames “cjk”, “china-t”, “china-s”, “japan” or “korea” will always create
the same “universal” font “Droid Sans Fallback Regular”. This font supports all Chinese, Japanese,
Korean and Latin characters, including Greek and Cyrillic. This is a sans-serif font.

Actually, you would rarely ever need another sans-serif font than “Droid Sans Fallback Regular”. Except
that this font file is relatively large and adds about 1.65 MB (compressed) to your PDF file size. If you do
not need CJK support, stick with specifying “helv”, “tiro” etc., and you will get away with about 35 KB
compressed.

If you know you have a mixture of CJK and Latin text, consider just using Font("cjk") because this
supports everything and also significantly (by a factor of up to three) speeds up execution: MuPDF will
always find any character in this single font and never needs to check fallbacks.

But if you do use some other font, you will still automatically be able to also write CJK characters: MuPDF
detects this situation and silently falls back to the universal font (which will then of course also be embedded
in your PDF).

202 Chapter 6. Classes

https://pypi.org/project/pymupdf-fonts/
https://pypi.org/project/pymupdf-fonts/

PyMuPDF Documentation, Release 1.21.1

(New in v1.17.5) Optionally, some new “reserved” fontname codes become available if you install
pymupdf-fonts, pip install pymupdf-fonts. “Fira Mono” is a mono-spaced sans font set and Fi-
raGO is another non-serifed “universal” font set which supports all Latin (including Cyrillic and Greek)
plus Thai, Arabian, Hewbrew and Devanagari – but none of the CJK languages. The size of a FiraGO font
is only a quarter of the “Droid Sans Fallback” size (compressed 400 KB vs. 1.65 MB) – and it provides
the weights bold, italic, bold-italic – which the universal font doesn’t.

“Space Mono” is another nice and small mono-spaced font from Google Fonts, which supports Latin
Extended characters and comes with all 4 important weights.

The following table maps a fontname code to the corresponding font. For the current content of the package
please see its documentation:

Code Fontname New in Comment
figo FiraGO Regular v1.0.0 narrower than Helvetica
figbo FiraGO Bold v1.0.0
figit FiraGO Italic v1.0.0
figbi FiraGO Bold Italic v1.0.0
fimo Fira Mono Regular v1.0.0
fimbo Fira Mono Bold v1.0.0
spacemo Space Mono Regular v1.0.1
spacembo Space Mono Bold v1.0.1
spacemit Space Mono Italic v1.0.1
spacembi Space Mono Bold-Italic v1.0.1
math Noto Sans Math Regular v1.0.2 math symbols
music Noto Music Regular v1.0.2 musical symbols
symbol1 Noto Sans Symbols Regular v1.0.2 replacement for “symb”
symbol2 Noto Sans Symbols2 Regular v1.0.2 extended symbol set
notos Noto Sans Regular v1.0.3 alternative to Helvetica
notosit Noto Sans Italic v1.0.3
notosbo Noto Sans Bold v1.0.3
notosbi Noto Sans BoldItalic v1.0.3

has_glyph(chr, language=None, script=0, fallback=False)
Check whether the unicode chr exists in the font or (option) some fallback font. May be used to check
whether any “TOFU” symbols will appear on output.

Parameters
• chr (int) – the unicode of the character (i.e. ord()).

• language (str) – the language – currently unused.

• script (int) – the UCDN script number.

• fallback (bool) – (new in v1.17.5) perform an extended search in fallback fonts
or restrict to current font (default).

Returns
(changed in 1.17.7) the glyph number. Zero indicates no glyph found.

valid_codepoints()

• New in v1.17.5

Return an array of unicodes supported by this font.

6.7. Font 203

https://pypi.org/project/pymupdf-fonts/

PyMuPDF Documentation, Release 1.21.1

Returns
an array.array2 of length at most Font.glyph_count. I.e. chr() of every item in this
array has a glyph in the font without using fallbacks. This is an example display of the
supported glyphs:

>>> import fitz
>>> font = fitz.Font("math")
>>> vuc = font.valid_codepoints()
>>> for i in vuc:

print("%04X %s (%s)" % (i, chr(i), font.unicode_to_glyph_
→˓name(i)))
0000
000D (CR)
0020 (space)
0021 ! (exclam)
0022 " (quotedbl)
0023 # (numbersign)
0024 $ (dollar)
0025 % (percent)
...
00AC ¬ (logicalnot)
00B1 ± (plusminus)
...
21D0 (arrowdblleft)
21D1 (arrowdblup)
21D2 (arrowdblright)
21D3 (arrowdbldown)
21D4 (arrowdblboth)
...
221E ∞ (infinity)
...

Note: This method only returns meaningful data for fonts having a CMAP (character map, charmap, the
/ToUnicode PDF key). Otherwise, this array will have length 1 and contain zero only.

glyph_advance(chr, language=None, script=0, wmode=0)
Calculate the “width” of the character’s glyph (visual representation).

Parameters
• chr (int) – the unicode number of the character. Use ord(), not the character itself.

Again, this should normally work even if a character is not supported by that font,
because fallback fonts will be checked where necessary.

• wmode (int) – write mode, 0 = horizontal, 1 = vertical.

The other parameters are not in use currently.

Returns
a float representing the glyph’s width relative to fontsize 1.

2 The built-in module array has been chosen for its speed and its compact representation of values.

204 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

glyph_name_to_unicode(name)
Return the unicode value for a given glyph name. Use it in conjunction with chr() if you want to output
e.g. a certain symbol.

Parameters
name (str) – The name of the glyph.

Returns
The unicode integer, or 65533 = 0xFFFD if the name is unknown. Ex-
amples: font.glyph_name_to_unicode("Sigma") = 931, font.
glyph_name_to_unicode("sigma") = 963. Refer to the Adobe Glyph List
publication for a list of glyph names and their unicode numbers. Example:

>>> font = fitz.Font("helv")
>>> font.has_glyph(font.glyph_name_to_unicode("infinity"))
True

glyph_bbox(chr, language=None, script=0)
The glyph rectangle relative to fontsize 1.

Parameters
chr (int) – ord() of the character.

Returns
a Rect.

unicode_to_glyph_name(ch)
Show the name of the character’s glyph.

Parameters
ch (int) – the unicode number of the character. Use ord(), not the character itself.

Returns
a string representing the glyph’s name. E.g. font.glyph_name(ord("#")) =
"numbersign". For an invalid code “.notfound” is returned.

Note: (Changed in v1.18.0) This method and Font.glyph_name_to_unicode()
no longer depend on a font and instead retrieve information from the Adobe Glyph
List. Also available as fitz.unicode_to_glyph_name() and resp. fitz.
glyph_name_to_unicode().

text_length(text, fontsize=11)
Calculate the length in points of a unicode string.

Note: There is a functional overlap with get_text_length() for Base-14 fonts only.

Parameters
• text (str) – a text string, UTF-8 encoded.

• fontsize (float) – the fontsize.

Return type
float

6.7. Font 205

https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt

PyMuPDF Documentation, Release 1.21.1

Returns
the length of the string in points when stored in the PDF. If a character is not contained
in the font, it will automatically be looked up in a fallback font.

Note: This method was originally implemented in Python, based on calling Font.
glyph_advance(). For performance reasons, it has been rewritten in C for v1.18.14.
To compute the width of a single character, you can now use either of the following
without performance penalty:

1. font.glyph_advance(ord("Ä")) * fontsize

2. font.text_length("Ä", fontsize=fontsize)

For multi-character strings, the method offers a huge performance advantage compared
to the previous implementation: instead of about 0.5 microseconds for each character,
only 12.5 nanoseconds are required for the second and subsequent ones.

char_lengths(text, fontsize=11)
New in v1.18.14

Sequence of character lengths in points of a unicode string.

Parameters
• text (str) – a text string, UTF-8 encoded.

• fontsize (float) – the fontsize.

Return type
tuple

Returns
the lengths in points of the characters of a string when stored in the PDF. It works like
Font.text_length() broken down to single characters. This is a high speed method,
used e.g. in TextWriter.fill_textbox(). The following is true (allowing rounding
errors): font.text_length(text) == sum(font.char_lengths(text)).

>>> font = fitz.Font("helv")
>>> text = "PyMuPDF"
>>> font.text_length(text)
50.115999937057495
>>> fitz.get_text_length(text, fontname="helv")
50.115999937057495
>>> sum(font.char_lengths(text))
50.115999937057495
>>> pprint(font.char_lengths(text))
(7.336999952793121, # P
5.5, # y
9.163000047206879, # M
6.115999937057495, # u
7.336999952793121, # P
7.942000031471252, # D
6.721000015735626) # F

buffer

206 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• New in v1.17.6

Copy of the binary font file content.

Return type
bytes

flags

A dictionary with various font properties, each represented as bools. Example for Helvetica:

>>> pprint(font.flags)
{'bold': 0,
'fake-bold': 0,
'fake-italic': 0,
'invalid-bbox': 0,
'italic': 0,
'mono': 0,
'opentype': 0,
'serif': 1,
'stretch': 0,
'substitute': 0}

Return type
dict

name

Return type
str

Name of the font. May be “” or “(null)”.

bbox

The font bbox. This is the maximum of its glyph bboxes.

Return type
Rect

glyph_count

Return type
int

The number of glyphs defined in the font.

ascender

• New in v1.18.0

The ascender value of the font, see here for details. Please note that there is a difference to the strict
definition: our value includes everything above the baseline – not just the height difference between upper
case “A” and and lower case “a”.

Return type
float

descender

• New in v1.18.0

6.7. Font 207

https://en.wikipedia.org/wiki/Ascender_(typography)

PyMuPDF Documentation, Release 1.21.1

The descender value of the font, see here for details. This value always is negative and is the portion that
some glyphs descend below the base line, for example “g” or “y”. As a consequence, the value ascender
- descender is the total height, that every glyph of the font fits into. This is true at least for most fonts –
as always, there are exceptions, especially for calligraphic fonts, etc.

Return type
float

is_writable

• New in v1.18.0

Indicates whether this font can be used with TextWriter.

Return type
bool

6.8 Identity

Identity is a Matrix that performs no action – to be used whenever the syntax requires a matrix, but no actual transfor-
mation should take place. It has the form fitz.Matrix(1, 0, 0, 1, 0, 0).

Identity is a constant, an “immutable” object. So, all of its matrix properties are read-only and its methods are disabled.

If you need a mutable identity matrix as a starting point, use one of the following statements:

>>> m = fitz.Matrix(1, 0, 0, 1, 0, 0) # specify the values
>>> m = fitz.Matrix(1, 1) # use scaling by factor 1
>>> m = fitz.Matrix(0) # use rotation by zero degrees
>>> m = fitz.Matrix(fitz.Identity) # make a copy of Identity

208 Chapter 6. Classes

https://en.wikipedia.org/wiki/Descender
https://discord.gg/TSpYGBW4eq
https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6.9 IRect

IRect is a rectangular bounding box, very similar to Rect, except that all corner coordinates are integers. IRect is used
to specify an area of pixels, e.g. to receive image data during rendering. Otherwise, e.g. considerations concerning
emptiness and validity of rectangles also apply to this class. Methods and attributes have the same names, and in many
cases are implemented by re-using the respective Rect counterparts.

Attribute / Method Short Description
IRect.contains() checks containment of another object
IRect.get_area() calculate rectangle area
IRect.intersect() common part with another rectangle
IRect.intersects() checks for non-empty intersection
IRect.morph() transform with a point and a matrix
IRect.torect() matrix that transforms to another rectangle
IRect.norm() the Euclidean norm
IRect.normalize() makes a rectangle finite
IRect.bottom_left bottom left point, synonym bl
IRect.bottom_right bottom right point, synonym br
IRect.height height of the rectangle
IRect.is_empty whether rectangle is empty
IRect.is_infinite whether rectangle is infinite
IRect.rect the Rect equivalent
IRect.top_left top left point, synonym tl
IRect.top_right top_right point, synonym tr
IRect.quad Quad made from rectangle corners
IRect.width width of the rectangle
IRect.x0 X-coordinate of the top left corner
IRect.x1 X-coordinate of the bottom right corner
IRect.y0 Y-coordinate of the top left corner
IRect.y1 Y-coordinate of the bottom right corner

Class API
class IRect

__init__(self)

__init__(self, x0, y0, x1, y1)

__init__(self, irect)

__init__(self, sequence)
Overloaded constructors. Also see examples below and those for the Rect class.

If another irect is specified, a new copy will be made.

If sequence is specified, it must be a Python sequence type of 4 numbers (see Using Python Sequences
as Arguments in PyMuPDF). Non-integer numbers will be truncated, non-numeric values will raise an
exception.

The other parameters mean integer coordinates.

get_area([unit])
Calculates the area of the rectangle and, with no parameter, equals abs(IRect). Like an empty rectangle,
the area of an infinite rectangle is also zero.

6.9. IRect 209

PyMuPDF Documentation, Release 1.21.1

Parameters
unit (str) – Specify required unit: respective squares of “px” (pixels, default), “in”
(inches), “cm” (centimeters), or “mm” (millimeters).

Return type
float

intersect(ir)
The intersection (common rectangular area) of the current rectangle and ir is calculated and replaces the
current rectangle. If either rectangle is empty, the result is also empty. If either rectangle is infinite, the
other one is taken as the result – and hence also infinite if both rectangles were infinite.

Parameters
ir (rect_like) – Second rectangle.

contains(x)
Checks whether x is contained in the rectangle. It may be rect_like, point_like or a number. If x is
an empty rectangle, this is always true. Conversely, if the rectangle is empty this is always False, if x is not
an empty rectangle and not a number. If x is a number, it will be checked to be one of the four components.
x in irect and irect.contains(x) are equivalent.

Parameters
x (IRect or Rect or Point or int) – the object to check.

Return type
bool

intersects(r)
Checks whether the rectangle and the rect_like “r” contain a common non-empty IRect. This will
always be False if either is infinite or empty.

Parameters
r (rect_like) – the rectangle to check.

Return type
bool

torect(rect)

• New in version 1.19.3

Compute the matrix which transforms this rectangle to a given one. See Rect.torect().

Parameters
rect (rect_like) – the target rectangle. Must not be empty or infinite.

Return type
Matrix

Returns
a matrix mat such that self * mat = rect. Can for example be used to transform
between the page and the pixmap coordinates.

morph(fixpoint, matrix)

• New in version 1.17.0

Return a new quad after applying a matrix to it using a fixed point.

Parameters
• fixpoint (point_like) – the fixed point.

210 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• matrix (matrix_like) – the matrix.

Returns
a new Quad. This a wrapper of the same-named quad method. If infinite, the infinite
quad is returned.

norm()

• New in version 1.16.0

Return the Euclidean norm of the rectangle treated as a vector of four numbers.

normalize()

Make the rectangle finite. This is done by shuffling rectangle corners. After this, the bottom right corner
will indeed be south-eastern to the top left one. See Rect for a more details.

top_left

tl

Equals Point(x0, y0).

Type
Point

top_right

tr

Equals Point(x1, y0).

Type
Point

bottom_left

bl

Equals Point(x0, y1).

Type
Point

bottom_right

br

Equals Point(x1, y1).

Type
Point

rect

The Rect with the same coordinates as floats.

Type
Rect

quad

The quadrilateral Quad(irect.tl, irect.tr, irect.bl, irect.br).

Type
Quad

6.9. IRect 211

PyMuPDF Documentation, Release 1.21.1

width

Contains the width of the bounding box. Equals abs(x1 - x0).

Type
int

height

Contains the height of the bounding box. Equals abs(y1 - y0).

Type
int

x0

X-coordinate of the left corners.

Type
int

y0

Y-coordinate of the top corners.

Type
int

x1

X-coordinate of the right corners.

Type
int

y1

Y-coordinate of the bottom corners.

Type
int

is_infinite

True if rectangle is infinite, False otherwise.

Type
bool

is_empty

True if rectangle is empty, False otherwise.

Type
bool

Note:
• This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also

refer to Using Python Sequences as Arguments in PyMuPDF.

• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

212 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6.10 Link

Represents a pointer to somewhere (this document, other documents, the internet). Links exist per document page,
and they are forward-chained to each other, starting from an initial link which is accessible by the Page.first_link
property.

There is a parent-child relationship between a link and its page. If the page object becomes unusable (closed document,
any document structure change, etc.), then so does every of its existing link objects – an exception is raised saying that
the object is “orphaned”, whenever a link property or method is accessed.

Attribute Short Description
Link.set_border() modify border properties
Link.set_colors() modify color properties
Link.set_flags() modify link flags
Link.border border characteristics
Link.colors border line color
Link.dest points to destination details
Link.is_external external destination?
Link.flags link annotation flags
Link.next points to next link
Link.rect clickable area in untransformed coordinates.
Link.uri link destination
Link.xref xref number of the entry

Class API
class Link

set_border(border=None, width=0, style=None, dashes=None)
PDF only: Change border width and dashing properties.

(Changed in version 1.16.9) Allow specification without using a dictionary. The direct parameters are used
if border is not a dictionary.

Parameters
• border (dict) – a dictionary as returned by the border property, with keys

“width” (float), “style” (str) and “dashes” (sequence). Omitted keys will leave
the resp. property unchanged. To e.g. remove dashing use: “dashes”: []. If dashes
is not an empty sequence, “style” will automatically be set to “D” (dashed).

• width (float) – see above.

• style (str) – see above.

• dashes (sequence) – see above.

set_colors(colors=None, stroke=None)
PDF only: Changes the “stroke” color.

Note: In PDF, links are a subtype of annotations technically and do not support fill colors. However, to
keep a consistent API, we do allow specifying a fill= parameter like with all annotations, which will be
ignored with a warning.

(Changed in version 1.16.9) Allow colors to be directly set. These parameters are used if colors is not a
dictionary.

6.10. Link 213

PyMuPDF Documentation, Release 1.21.1

Parameters
• colors (dict) – a dictionary containing color specifications. For accepted dictio-

nary keys and values see below. The most practical way should be to first make a
copy of the colors property and then modify this dictionary as required.

• stroke (sequence) – see above.

set_flags(flags)
New in v1.18.16

Set the PDF /F property of the link annotation. See Annot.set_flags() for details. If not a PDF, this
method is a no-op.

flags

New in v1.18.16

Return the link annotation flags, an integer (see Annot.flags for details). Zero if not a PDF.

colors

Meaningful for PDF only: A dictionary of two tuples of floats in range 0 <= float <= 1 specifying the
stroke and the interior (fill) colors. If not a PDF, None is returned. As mentioned above, the fill color is
always None for links. The stroke color is used for the border of the link rectangle. The length of the tuple
implicitely determines the colorspace: 1 = GRAY, 3 = RGB, 4 = CMYK. So (1.0, 0.0, 0.0) stands
for RGB color red. The value of each float f is mapped to the integer value i in range 0 to 255 via the
computation f = i / 255.

Return type
dict

border

Meaningful for PDF only: A dictionary containing border characteristics. It will be None for non-PDFs
and an empty dictionary if no border information exists. The following keys can occur:

• width – a float indicating the border thickness in points. The value is -1.0 if no width is specified.

• dashes – a sequence of integers specifying a line dash pattern. [] means no dashes, [n] means equal
on-off lengths of n points, longer lists will be interpreted as specifying alternating on-off length
values. See the Adobe PDF References page 126 for more detail.

• style – 1-byte border style: S (Solid) = solid rectangle surrounding the annotation, D (Dashed) =
dashed rectangle surrounding the link, the dash pattern is specified by the dashes entry, B (Beveled)
= a simulated embossed rectangle that appears to be raised above the surface of the page, I (Inset) = a
simulated engraved rectangle that appears to be recessed below the surface of the page, U (Underline)
= a single line along the bottom of the annotation rectangle.

Return type
dict

rect

The area that can be clicked in untransformed coordinates.

Type
Rect

isExternal

A bool specifying whether the link target is outside of the current document.

Type
bool

214 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

uri

A string specifying the link target. The meaning of this property should be evaluated in conjunction with
property isExternal. The value may be None, in which case isExternal == False. If uri starts with file://,
mailto:, or an internet resource name, isExternal is True. In all other cases isExternal == False and uri
points to an internal location. In case of PDF documents, this should either be #nnnn to indicate a 1-
based (!) page number nnnn, or a named location. The format varies for other document types, e.g. uri =
‘../FixedDoc.fdoc#PG_2_LNK_1’ for page number 2 (1-based) in an XPS document.

Type
str

xref

An integer specifying the PDF xref . Zero if not a PDF.

Type
int

next

The next link or None.

Type
Link

dest

The link destination details object.

Type
linkDest

6.11 linkDest

Class representing the dest property of an outline entry or a link. Describes the destination to which such entries point.

Note: Up to MuPDF v1.9.0 this class existed inside MuPDF and was dropped in version 1.10.0. For backward
compatibility, PyMuPDF is still maintaining it, although some of its attributes are no longer backed by data actually
available via MuPDF.

Attribute Short Description
linkDest.dest destination
linkDest.fileSpec file specification (path, filename)
linkDest.flags descriptive flags
linkDest.isMap is this a MAP?
linkDest.isUri is this a URI?
linkDest.kind kind of destination
linkDest.lt top left coordinates
linkDest.named name if named destination
linkDest.newWindow name of new window
linkDest.page page number
linkDest.rb bottom right coordinates
linkDest.uri URI

6.11. linkDest 215

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

Class API
class linkDest

dest

Target destination name if linkDest.kind is LINK_GOTOR and linkDest.page is -1.

Type
str

fileSpec

Contains the filename and path this link points to, if linkDest.kind is LINK_GOTOR or LINK_LAUNCH .

Type
str

flags

A bitfield describing the validity and meaning of the different aspects of the destination. As far as possible,
link destinations are constructed such that e.g. linkDest.lt and linkDest.rb can be treated as defining
a bounding box. But the flags indicate which of the values were actually specified, see Link Destination
Flags.

Type
int

isMap

This flag specifies whether to track the mouse position when the URI is resolved. Default value: False.

Type
bool

isUri

Specifies whether this destination is an internet resource (as opposed to e.g. a local file specification in
URI format).

Type
bool

kind

Indicates the type of this destination, like a place in this document, a URI, a file launch, an action or a
place in another file. Look at Link Destination Kinds to see the names and numerical values.

Type
int

lt

The top left Point of the destination.

Type
Point

named

This destination refers to some named action to perform (e.g. a javascript, see Adobe PDF References).
Standard actions provided are NextPage, PrevPage, FirstPage, and LastPage.

Type
str

newWindow

If true, the destination should be launched in a new window.

216 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Type
bool

page

The page number (in this or the target document) this destination points to. Only set if linkDest.kind is
LINK_GOTOR or LINK_GOTO . May be -1 if linkDest.kind is LINK_GOTOR . In this case linkDest.dest
contains the name of a destination in the target document.

Type
int

rb

The bottom right Point of this destination.

Type
Point

uri

The name of the URI this destination points to.

Type
str

6.12 Matrix

Matrix is a row-major 3x3 matrix used by image transformations in MuPDF (which complies with the respective
concepts laid down in the Adobe PDF References). With matrices you can manipulate the rendered image of a page in
a variety of ways: (parts of) the page can be rotated, zoomed, flipped, sheared and shifted by setting some or all of just
six float values.

Since all points or pixels live in a two-dimensional space, one column vector of that matrix is a constant unit vector,
and only the remaining six elements are used for manipulations. These six elements are usually represented by [a, b,
c, d, e, f]. Here is how they are positioned in the matrix:

Please note:

• the below methods are just convenience functions – everything they do, can also be achieved by directly manip-
ulating the six numerical values

• all manipulations can be combined – you can construct a matrix that rotates and shears and scales and shifts,
etc. in one go. If you however choose to do this, do have a look at the remarks further down or at the Adobe
PDF References.

6.12. Matrix 217

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

Method / Attribute Description
Matrix.prerotate() perform a rotation
Matrix.prescale() perform a scaling
Matrix.preshear() perform a shearing (skewing)
Matrix.pretranslate() perform a translation (shifting)
Matrix.concat() perform a matrix multiplication
Matrix.invert() calculate the inverted matrix
Matrix.norm() the Euclidean norm
Matrix.a zoom factor X direction
Matrix.b shearing effect Y direction
Matrix.c shearing effect X direction
Matrix.d zoom factor Y direction
Matrix.e horizontal shift
Matrix.f vertical shift
Matrix.is_rectilinear true if rect corners will remain rect corners

Class API
class Matrix

__init__(self)

__init__(self, zoom-x, zoom-y)

__init__(self, shear-x, shear-y, 1)

__init__(self, a, b, c, d, e, f)

__init__(self, matrix)

__init__(self, degree)

__init__(self, sequence)
Overloaded constructors.

Without parameters, the zero matrix Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0) will be created.

zoom-* and shear-* specify zoom or shear values (float) and create a zoom or shear matrix, respectively.

For “matrix” a new copy of another matrix will be made.

Float value “degree” specifies the creation of a rotation matrix which rotates anit-clockwise.

A “sequence” must be any Python sequence object with exactly 6 float entries (see Using Python Sequences
as Arguments in PyMuPDF).

fitz.Matrix(1, 1), fitz.Matrix(0.0 and *fitz.Matrix(fitz.Identity) create modifyable versions of the Identity
matrix, which looks like [1, 0, 0, 1, 0, 0].

norm()

• New in version 1.16.0

Return the Euclidean norm of the matrix as a vector.

prerotate(deg)
Modify the matrix to perform a counter-clockwise rotation for positive deg degrees, else clockwise. The
matrix elements of an identity matrix will change in the following way:

[1, 0, 0, 1, 0, 0] -> [cos(deg), sin(deg), -sin(deg), cos(deg), 0, 0].

218 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Parameters
deg (float) – The rotation angle in degrees (use conventional notation based on Pi =
180 degrees).

prescale(sx, sy)
Modify the matrix to scale by the zoom factors sx and sy. Has effects on attributes a thru d only: [a, b, c,
d, e, f] -> [a*sx, b*sx, c*sy, d*sy, e, f].

Parameters
• sx (float) – Zoom factor in X direction. For the effect see description of attribute

a.

• sy (float) – Zoom factor in Y direction. For the effect see description of attribute
d.

preshear(sx, sy)
Modify the matrix to perform a shearing, i.e. transformation of rectangles into parallelograms (rhomboids).
Has effects on attributes a thru d only: [a, b, c, d, e, f] -> [c*sy, d*sy, a*sx, b*sx, e, f].

Parameters
• sx (float) – Shearing effect in X direction. See attribute c.

• sy (float) – Shearing effect in Y direction. See attribute b.

pretranslate(tx, ty)
Modify the matrix to perform a shifting / translation operation along the x and / or y axis. Has effects on
attributes e and f only: [a, b, c, d, e, f] -> [a, b, c, d, tx*a + ty*c, tx*b + ty*d].

Parameters
• tx (float) – Translation effect in X direction. See attribute e.

• ty (float) – Translation effect in Y direction. See attribute f.

concat(m1, m2)
Calculate the matrix product m1 * m2 and store the result in the current matrix. Any of m1 or m2 may be
the current matrix. Be aware that matrix multiplication is not commutative. So the sequence of m1, m2 is
important.

Parameters
• m1 (Matrix) – First (left) matrix.

• m2 (Matrix) – Second (right) matrix.

invert(m=None)
Calculate the matrix inverse of m and store the result in the current matrix. Returns 1 if m is not invertible
(“degenerate”). In this case the current matrix will not change. Returns 0 if m is invertible, and the current
matrix is replaced with the inverted m.

Parameters
m (Matrix) – Matrix to be inverted. If not provided, the current matrix will be used.

Return type
int

a

Scaling in X-direction (width). For example, a value of 0.5 performs a shrink of the width by a factor of
2. If a < 0, a left-right flip will (additionally) occur.

6.12. Matrix 219

PyMuPDF Documentation, Release 1.21.1

Type
float

b

Causes a shearing effect: each Point(x, y) will become Point(x, y - b*x). Therefore, looking from left to
right, e.g. horizontal lines will be “tilt” – downwards if b > 0, upwards otherwise (b is the tangens of the
tilting angle).

Type
float

c

Causes a shearing effect: each Point(x, y) will become Point(x - c*y, y). Therefore, looking upwards,
vertical lines will be “tilt” – to the left if c > 0, to the right otherwise (c ist the tangens of the tilting angle).

Type
float

d

Scaling in Y-direction (height). For example, a value of 1.5 performs a stretch of the height by 50%. If d
< 0, an up-down flip will (additionally) occur.

Type
float

e

Causes a horizontal shift effect: Each Point(x, y) will become Point(x + e, y). Positive (negative) values
of e will shift right (left).

Type
float

f

Causes a vertical shift effect: Each Point(x, y) will become Point(x, y - f). Positive (negative) values of f
will shift down (up).

Type
float

is_rectilinear

Rectilinear means that no shearing is present and that any rotations are integer multiples of 90 degrees.
Usually this is used to confirm that (axis-aligned) rectangles before the transformation are still axis-aligned
rectangles afterwards.

Type
bool

Note:
• This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also

refer to Using Python Sequences as Arguments in PyMuPDF.

• A matrix can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

• Changes of matrix properties and execution of matrix methods can be executed consecutively. This is the same
as multiplying the respective matrices.

• Matrix multiplication is not commutative – changing the execution sequence in general changes the result. So
it can quickly become unclear which result a transformation will yield.

220 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

6.12.1 Examples

Here are examples to illustrate some of the effects achievable. The following pictures start with a page of the PDF
version of this help file. We show what happens when a matrix is being applied (though always full pages are created,
only parts are displayed here to save space).

This is the original page image:

6.12.2 Shifting

We transform it with a matrix where e = 100 (right shift by 100 pixels).

Next we do a down shift by 100 pixels: f = 100.

6.12. Matrix 221

PyMuPDF Documentation, Release 1.21.1

6.12.3 Flipping

Flip the page left-right (a = -1).

Flip up-down (d = -1).

222 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

6.12.4 Shearing

First a shear in Y direction (b = 0.5).

Second a shear in X direction (c = 0.5).

6.12. Matrix 223

PyMuPDF Documentation, Release 1.21.1

6.12.5 Rotating

Finally a rotation by 30 clockwise degrees (prerotate(-30)).

224 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6.13 Outline

outline (or “bookmark”), is a property of Document. If not None, it stands for the first outline item of the document.
Its properties in turn define the characteristics of this item and also point to other outline items in “horizontal” or
downward direction. The full tree of all outline items for e.g. a conventional table of contents (TOC) can be recovered
by following these “pointers”.

Method / Attribute Short Description
Outline.down next item downwards
Outline.next next item same level
Outline.page page number (0-based)
Outline.title title
Outline.uri string further specifying outline target
Outline.is_external target outside document
Outline.is_open whether sub-outlines are open or collapsed
Outline.dest points to destination details object

Class API
class Outline

down

The next outline item on the next level down. Is None if the item has no kids.

Type
Outline

next

The next outline item at the same level as this item. Is None if this is the last one in its level.

Type
Outline

page

The page number (0-based) this bookmark points to.

Type
int

title

The item’s title as a string or None.

Type
str

is_open

Indicator showing whether any sub-outlines should be expanded (True) or be collapsed (False). This
information is interpreted by PDF reader software.

Type
bool

is_external

A bool specifying whether the target is outside (True) of the current document.

Type
bool

6.13. Outline 225

PyMuPDF Documentation, Release 1.21.1

uri

A string specifying the link target. The meaning of this property should be evaluated in conjunction with
isExternal. The value may be None, in which case isExternal == False. If uri starts with file://, mailto:,
or an internet resource name, isExternal is True. In all other cases isExternal == False and uri points
to an internal location. In case of PDF documents, this should either be #nnnn to indicate a 1-based
(!) page number nnnn, or a named location. The format varies for other document types, e.g. uri =
‘../FixedDoc.fdoc#PG_21_LNK_84’ for page number 21 (1-based) in an XPS document.

Type
str

dest

The link destination details object.

Type
linkDest

6.14 Page

Class representing a document page. A page object is created by Document.load_page() or, equivalently, via index-
ing the document like doc[n] - it has no independent constructor.

There is a parent-child relationship between a document and its pages. If the document is closed or deleted, all page
objects (and their respective children, too) in existence will become unusable (“orphaned”): If a page property or
method is being used, an exception is raised.

Several page methods have a Document counterpart for convenience. At the end of this chapter you will find a synopsis.

6.14.1 Modifying Pages

Changing page properties and adding or changing page content is available for PDF documents only.

In a nutshell, this is what you can do with PyMuPDF:

• Modify page rotation and the visible part (“cropbox”) of the page.

• Insert images, other PDF pages, text and simple geometrical objects.

• Add annotations and form fields.

Note: Methods require coordinates (points, rectangles) to put content in desired places. Please be aware that since
v1.17.0 these coordinates must always be provided relative to the unrotated page. The reverse is also true: except
Page.rect, resp. Page.bound() (both reflect when the page is rotated), all coordinates returned by methods and
attributes pertain to the unrotated page.

So the returned value of e.g. Page.get_image_bbox() will not change if you do a Page.set_rotation(). The
same is true for coordinates returned by Page.get_text(), annotation rectangles, and so on. If you want to find out,
where an object is located in rotated coordinates, multiply the coordinates with Page.rotation_matrix. There
also is its inverse, Page.derotation_matrix, which you can use when interfacing with other readers, which may
behave differently in this respect.

226 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

Note: If you add or update annotations, links or form fields on the page and immediately afterwards need to work with
them (i.e. without leaving the page), you should reload the page using Document.reload_page() before referring
to these new or updated items.

Reloading the page is generally recommended – although not strictly required in all cases. However, some annotation
and widget types have extended features in PyMuPDF compared to MuPDF. More of these extensions may also be
added in the future.

Releoading the page ensures all your changes have been fully applied to PDF structures, so you can safely create
Pixmaps or successfully iterate over annotations, links and form fields.

Method / Attribute Short Description
Page.add_caret_annot() PDF only: add a caret annotation
Page.add_circle_annot() PDF only: add a circle annotation
Page.add_file_annot() PDF only: add a file attachment annotation
Page.add_freetext_annot() PDF only: add a text annotation
Page.add_highlight_annot() PDF only: add a “highlight” annotation
Page.add_ink_annot() PDF only: add an ink annotation
Page.add_line_annot() PDF only: add a line annotation
Page.add_polygon_annot() PDF only: add a polygon annotation
Page.add_polyline_annot() PDF only: add a multi-line annotation
Page.add_rect_annot() PDF only: add a rectangle annotation
Page.add_redact_annot() PDF only: add a redaction annotation
Page.add_squiggly_annot() PDF only: add a “squiggly” annotation
Page.add_stamp_annot() PDF only: add a “rubber stamp” annotation
Page.add_strikeout_annot() PDF only: add a “strike-out” annotation
Page.add_text_annot() PDF only: add a comment
Page.add_underline_annot() PDF only: add an “underline” annotation
Page.add_widget() PDF only: add a PDF Form field
Page.annot_names() PDF only: a list of annotation (and widget) names
Page.annot_xrefs() PDF only: a list of annotation (and widget) xrefs
Page.annots() return a generator over the annots on the page
Page.apply_redactions() PDF olny: process the redactions of the page
Page.bound() rectangle of the page
Page.delete_annot() PDF only: delete an annotation
Page.delete_image() PDF only: delete an image
Page.delete_link() PDF only: delete a link
Page.delete_widget() PDF only: delete a widget / field
Page.draw_bezier() PDF only: draw a cubic Bezier curve
Page.draw_circle() PDF only: draw a circle
Page.draw_curve() PDF only: draw a special Bezier curve
Page.draw_line() PDF only: draw a line
Page.draw_oval() PDF only: draw an oval / ellipse
Page.draw_polyline() PDF only: connect a point sequence
Page.draw_quad() PDF only: draw a quad
Page.draw_rect() PDF only: draw a rectangle
Page.draw_sector() PDF only: draw a circular sector
Page.draw_squiggle() PDF only: draw a squiggly line
Page.draw_zigzag() PDF only: draw a zig-zagged line
Page.get_drawings() get list of the draw commands contained in the page

continues on next page

6.14. Page 227

PyMuPDF Documentation, Release 1.21.1

Table 3 – continued from previous page
Method / Attribute Short Description
Page.get_fonts() PDF only: get list of referenced fonts
Page.get_image_bbox() PDF only: get bbox and matrix of embedded image
Page.get_image_info() get list of meta information for all used images
Page.get_image_rects() PDF only: improved version of Page.get_image_bbox()
Page.get_images() PDF only: get list of referenced images
Page.get_label() PDF only: return the label of the page
Page.get_links() get all links
Page.get_pixmap() create a page image in raster format
Page.get_svg_image() create a page image in SVG format
Page.get_text() extract the page’s text
Page.get_textbox() extract text contained in a rectangle
Page.get_textpage_ocr() create a TextPage with OCR for the page
Page.get_textpage() create a TextPage for the page
Page.get_xobjects() PDF only: get list of referenced xobjects
Page.insert_font() PDF only: insert a font for use by the page
Page.insert_image() PDF only: insert an image
Page.insert_link() PDF only: insert a link
Page.insert_text() PDF only: insert text
Page.insert_textbox() PDF only: insert a text box
Page.links() return a generator of the links on the page
Page.load_annot() PDF only: load a specific annotation
Page.load_widget() PDF only: load a specific field
Page.load_links() return the first link on a page
Page.new_shape() PDF only: create a new Shape
Page.replace_image() PDF only: replace an image
Page.search_for() search for a string
Page.set_artbox() PDF only: modify /ArtBox
Page.set_bleedbox() PDF only: modify /BleedBox
Page.set_cropbox() PDF only: modify the cropbox (visible page)
Page.set_mediabox() PDF only: modify /MediaBox
Page.set_rotation() PDF only: set page rotation
Page.set_trimbox() PDF only: modify /TrimBox
Page.show_pdf_page() PDF only: display PDF page image
Page.update_link() PDF only: modify a link
Page.widgets() return a generator over the fields on the page
Page.write_text() write one or more TextWriter objects
Page.cropbox_position displacement of the cropbox
Page.cropbox the page’s cropbox
Page.artbox the page’s /ArtBox
Page.bleedbox the page’s /BleedBox
Page.trimbox the page’s /TrimBox
Page.derotation_matrix PDF only: get coordinates in unrotated page space
Page.first_annot first Annot on the page
Page.first_link first Link on the page
Page.first_widget first widget (form field) on the page
Page.mediabox_size bottom-right point of mediabox
Page.mediabox the page’s mediabox
Page.number page number
Page.parent owning document object

continues on next page

228 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Table 3 – continued from previous page
Method / Attribute Short Description
Page.rect rectangle of the page
Page.rotation_matrix PDF only: get coordinates in rotated page space
Page.rotation PDF only: page rotation
Page.transformation_matrix PDF only: translate between PDF and MuPDF space
Page.xref PDF only: page xref

Class API
class Page

bound()

Determine the rectangle of the page. Same as property Page.rect below. For PDF documents this usually
also coincides with mediabox and cropbox, but not always. For example, if the page is rotated, then this
is reflected by this method – the Page.cropbox however will not change.

Return type
Rect

add_caret_annot(point)

• New in v1.16.0

PDF only: Add a caret icon. A caret annotation is a visual symbol normally used to indicate the presence
of text edits on the page.

Parameters
point (point_like) – the top left point of a 20 x 20 rectangle containing the MuPDF-
provided icon.

Return type
Annot

Returns
the created annotation. Stroke color blue = (0, 0, 1), no fill color support.

add_text_annot(point, text, icon='Note')
PDF only: Add a comment icon (“sticky note”) with accompanying text. Only the icon is visible, the
accompanying text is hidden and can be visualized by many PDF viewers by hovering the mouse over the
symbol.

Parameters
• point (point_like) – the top left point of a 20 x 20 rectangle containing the

MuPDF-provided “note” icon.

• text (str) – the commentary text. This will be shown on double clicking or hov-
ering over the icon. May contain any Latin characters.

• icon (str) – (new in v1.16.0) choose one of “Note” (default), “Comment”, “Help”,
“Insert”, “Key”, “NewParagraph”, “Paragraph” as the visual symbol for the embod-
ied text4.

4 You are generally free to choose any of the Annotation Icons in MuPDF you consider adequate.

6.14. Page 229

PyMuPDF Documentation, Release 1.21.1

Return type
Annot

Returns
the created annotation. Stroke color yellow = (1, 1, 0), no fill color support.

add_freetext_annot(rect, text, fontsize=12, fontname='helv', border_color=None, text_color=0,
fill_color=1, rotate=0, align=TEXT_ALIGN_LEFT)

• Changed in v1.19.6: add border color parameter

PDF only: Add text in a given rectangle.

Parameters
• rect (rect_like) – the rectangle into which the text should be inserted. Text is

automatically wrapped to a new line at box width. Lines not fitting into the box will
be invisible.

• text (str) – the text. (New in v1.17.0) May contain any mixture of Latin, Greek,
Cyrillic, Chinese, Japanese and Korean characters. The respective required font is
automatically determined.

• fontsize (float) – the font size. Default is 12.

• fontname (str) – the font name. Default is “Helv”. Accepted alternatives are
“Cour”, “TiRo”, “ZaDb” and “Symb”. The name may be abbreviated to the first
two characters, like “Co” for “Cour”. Lower case is also accepted. (Changed
in v1.16.0) Bold or italic variants of the fonts are no longer accepted. A user-
contributed script provides a circumvention for this restriction – see section Using
Buttons and JavaScript in chapter FAQ. (New in v1.17.0) The actual font to use is
now determined on a by-character level, and all required fonts (or sub-fonts) are
automatically included. Therefore, you should rarely ever need to care about this
parameter and let it default (except you insist on a serifed font for your non-CJK
text parts).

• text_color (sequence,float) – (new in v1.16.0) the text color. Default is black.

• fill_color (sequence,float) – (new in v1.16.0) the fill color. Default is white.

• text_color – the text color. Default is black.

• border_color (sequence,float) – (new in v1.19.6) the border color. Default is
None.

• align (int) – (new in v1.17.0) text alignment, one of TEXT_ALIGN_LEFT,
TEXT_ALIGN_CENTER, TEXT_ALIGN_RIGHT - justify is not supported.

• rotate (int) – the text orientation. Accepted values are 0, 90, 270, invalid entries
are set to zero.

Return type
Annot

Returns
the created annotation. Color properties can only be changed using special parameters
of Annot.update(). There, you can also set a border color different from the text color.

add_file_annot(pos, buffer, filename, ufilename=None, desc=None, icon='PushPin')
PDF only: Add a file attachment annotation with a “PushPin” icon at the specified location.

Parameters

230 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• pos (point_like) – the top-left point of a 18x18 rectangle containing the MuPDF-
provided “PushPin” icon.

• buffer (bytes,bytearray,BytesIO) – the data to be stored (actual file content,
any data, etc.).

Changed in v1.14.13 io.BytesIO is now also supported.

• filename (str) – the filename to associate with the data.

• ufilename (str) – the optional PDF unicode version of filename. Defaults to
filename.

• desc (str) – an optional description of the file. Defaults to filename.

• icon (str) – (new in v1.16.0) choose one of “PushPin” (default), “Graph”, “Pa-
perclip”, “Tag” as the visual symbol for the attached dataPage 229, 4.

Return type
Annot

Returns
the created annotation. Stroke color yellow = (1, 1, 0), no fill color support.

add_ink_annot(list)
PDF only: Add a “freehand” scribble annotation.

Parameters
list (sequence) – a list of one or more lists, each containing point_like items. Each
item in these sublists is interpreted as a Point through which a connecting line is drawn.
Separate sublists thus represent separate drawing lines.

Return type
Annot

Returns
the created annotation in default appearance black =(0, 0, 0),line width 1. No fill color
support.

add_line_annot(p1, p2)
PDF only: Add a line annotation.

Parameters
• p1 (point_like) – the starting point of the line.

• p2 (point_like) – the end point of the line.

Return type
Annot

Returns
the created annotation. It is drawn with line (stroke) color red = (1, 0, 0) and line width
1. No fill color support. The annot rectangle is automatically created to contain both
points, each one surrounded by a circle of radius 3 * line width to make room for any
line end symbols.

add_rect_annot(rect)

add_circle_annot(rect)
PDF only: Add a rectangle, resp. circle annotation.

6.14. Page 231

PyMuPDF Documentation, Release 1.21.1

Parameters
rect (rect_like) – the rectangle in which the circle or rectangle is drawn, must be
finite and not empty. If the rectangle is not equal-sided, an ellipse is drawn.

Return type
Annot

Returns
the created annotation. It is drawn with line (stroke) color red = (1, 0, 0), line width 1,
fill color is supported.

add_redact_annot(quad, text=None, fontname=None, fontsize=11, align=TEXT_ALIGN_LEFT, fill=(1, 1,
1), text_color=(0, 0, 0), cross_out=True)

• New in v1.16.11

PDF only: Add a redaction annotation. A redaction annotation identifies content to be removed from the
document. Adding such an annotation is the first of two steps. It makes visible what will be removed in
the subsequent step, Page.apply_redactions().

Parameters
• quad (quad_like,rect_like) – specifies the (rectangular) area to be removed

which is always equal to the annotation rectangle. This may be a rect_like or
quad_like object. If a quad is specified, then the envelopping rectangle is taken.

• text (str) – (New in v1.16.12) text to be placed in the rectangle after applying the
redaction (and thus removing old content).

• fontname (str) – (New in v1.16.12) the font to use when text is given, other-
wise ignored. The same rules apply as for Page.insert_textbox() – which is
the method Page.apply_redactions() internally invokes. The replacement text
will be vertically centered, if this is one of the CJK or PDF Base 14 Fonts.

Note:
– For an existing font of the page, use its reference name as fontname (this is

item[4] of its entry in Page.get_fonts()).

– For a new, non-builtin font, proceed as follows:

page.insert_text(point, # anywhere, but outside all␣
→˓redaction rectangles

"somthing", # some non-empty string
fontname="newname", # new, unused reference name
fontfile="...", # desired font file
render_mode=3, # makes the text invisible

)
page.add_redact_annot(..., fontname="newname")

• fontsize (float) – (New in v1.16.12) the fontsize to use for the replacing text. If
the text is too large to fit, several insertion attempts will be made, gradually reducing
the fontsize to no less than 4. If then the text will still not fit, no text insertion will
take place at all.

• align (int) – (New in v1.16.12) the horizontal alignment for the replacing text.
See insert_textbox() for available values. The vertical alignment is (approxi-
mately) centered if a PDF built-in font is used (CJK or PDF Base 14 Fonts).

232 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• fill (sequence) – (New in v1.16.12) the fill color of the rectangle after applying
the redaction. The default is white = (1, 1, 1), which is also taken if None is spec-
ified. (Changed in v1.16.13) To suppress a fill color alltogether, specify False. In
this cases the rectangle remains transparent.

• text_color (sequence) – (New in v1.16.12) the color of the replacing text. De-
fault is black = (0, 0, 0).

• cross_out (bool) – (new in v1.17.2) add two diagonal lines to the annotation
rectangle.

Return type
Annot

Returns
the created annotation. (Changed in v1.17.2) Its standard appearance looks like a red
rectangle (no fill color), optionally showing two diagonal lines. Colors, line width, dash-
ing, opacity and blend mode can now be set and applied via Annot.update() like with
other annotations.

add_polyline_annot(points)

add_polygon_annot(points)
PDF only: Add an annotation consisting of lines which connect the given points. A Polygon’s first and last
points are automatically connected, which does not happen for a PolyLine. The rectangle is automatically
created as the smallest rectangle containing the points, each one surrounded by a circle of radius 3 (= 3 *
line width). The following shows a ‘PolyLine’ that has been modified with colors and line ends.

Parameters
points (list) – a list of point_like objects.

Return type
Annot

Returns
the created annotation. It is drawn with line color black, line width 1 no fill color but
fill color support. Use methods of Annot to make any changes to achieve something like
this:

add_underline_annot(quads=None, start=None, stop=None, clip=None)

add_strikeout_annot(quads=None, start=None, stop=None, clip=None)

add_squiggly_annot(quads=None, start=None, stop=None, clip=None)

add_highlight_annot(quads=None, start=None, stop=None, clip=None)
PDF only: These annotations are normally used for marking text which has previously been somehow
located (for example via Page.search_for()). But this is not required: you are free to “mark” just
anything.

6.14. Page 233

PyMuPDF Documentation, Release 1.21.1

Standard (stroke only – no fill color support) colors are chosen per annotation type: yellow for highlighting,
red for striking out, green for underlining, and magenta for wavy underlining.

All these four methods convert the arguments into a list of Quad objects. The annotation rectangle is then
calculated to envelop all these quadrilaterals.

Note: search_for() delivers a list of either Rect or Quad objects. Such a list can be directly used as an
argument for these annotation types and will deliver one common annotation for all occurrences of the
search string:

>>> # prefer quads=True in text searching for annotations!
>>> quads = page.search_for("pymupdf", quads=True)
>>> page.add_highlight_annot(quads)

Note: Obviously, text marker annotations need to know what is the top, the bottom, the left, and the right
side of the area(s) to be marked. If the arguments are quads, this information is given by the sequence of
the quad points. In contrast, a rectangle delivers much less information – this is illustrated by the fact, that
4! = 24 different quads can be constructed with the four corners of a reactangle.

Therefore, we strongly recommend to use the quads option for text searches, to ensure correct annota-
tions. A similar consideration applies to marking text spans extracted with the “dict” / “rawdict” options
of Page.get_text(). For more details on how to compute quadrilaterals in this case, see section “How
to Mark Non-horizontal Text” of FAQ.

Parameters
• quads (rect_like,quad_like,list,tuple) – (Changed in v1.14.20) the loca-

tion(s) – rectangle(s) or quad(s) – to be marked. A list or tuple must consist of
rect_like or quad_like items (or even a mixture of either). Every item must
be finite, convex and not empty (as applicable). (Changed in v1.16.14) Set this
parameter to None if you want to use the following arguments.

• start (point_like) – (New in v1.16.14) start text marking at this point. Defaults
to the top-left point of clip.

• stop (point_like) – (New in v1.16.14) stop text marking at this point. Defaults
to the bottom-right point of clip.

• clip (rect_like) – (New in v1.16.14) only consider text lines intersecting this
area. Defaults to the page rectangle.

Return type
Annot or (changed in v1.16.14) None

Returns
the created annotation. (Changed in v1.16.14) If quads is an empty list, no annotation
is created.

Note: Starting with v1.16.14 you can use parameters start, stop and clip to highlight consecutive lines
between the points start and stop. Make use of clip to further reduce the selected line bboxes and thus deal
with e.g. multi-column pages. The following multi-line highlight on a page with three text columnbs was
created by specifying the two red points and setting clip accordingly.

234 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

add_stamp_annot(rect, stamp=0)
PDF only: Add a “rubber stamp” like annotation to e.g. indicate the document’s intended use (“DRAFT”,
“CONFIDENTIAL”, etc.).

Parameters
• rect (rect_like) – rectangle where to place the annotation.

• stamp (int) – id number of the stamp text. For available stamps see Stamp Anno-
tation Icons.

Note:
• The stamp’s text and its border line will automatically be sized and be put horizontally and vertically

centered in the given rectangle. Annot.rect is automatically calculated to fit the given width and
will usually be smaller than this parameter.

• The font chosen is “Times Bold” and the text will be upper case.

• The appearance can be changed using Annot.set_opacity() and by setting the “stroke” color (no
“fill” color supported).

• This can be used to create watermark images: on a temporary PDF page create a stamp annotation
with a low opacity value, make a pixmap from it with alpha=True (and potentially also rotate it),
discard the temporary PDF page and use the pixmap with insert_image() for your target PDF.

add_widget(widget)
PDF only: Add a PDF Form field (“widget”) to a page. This also turns the PDF into a Form PDF.
Because of the large amount of different options available for widgets, we have developed a new class
Widget, which contains the possible PDF field attributes. It must be used for both, form field creation and
updates.

Parameters
widget (Widget) – a Widget object which must have been created upfront.

Returns
a widget annotation.

delete_annot(annot)

• Changed in v1.16.6: The removal will now include any bound ‘Popup’ or response annotations and
related objects.

6.14. Page 235

PyMuPDF Documentation, Release 1.21.1

PDF only: Delete annotation from the page and return the next one.

Parameters
annot (Annot) – the annotation to be deleted.

Return type
Annot

Returns
the annotation following the deleted one. Please remember that physical removal re-
quires saving to a new file with garbage > 0.

delete_widget(widget)

• New in v1.18.4

PDF only: Delete field from the page and return the next one.

Parameters
widget (Widget) – the widget to be deleted.

Return type
Widget

Returns
the widget following the deleted one. Please remember that physical removal requires
saving to a new file with garbage > 0.

apply_redactions(images=PDF_REDACT_IMAGE_PIXELS)

• New in v1.16.11

• Changed in v1.16.12: The previous mark parameter is gone. Instead, the respective rectangles are
filled with the individual fill color of each redaction annotation. If a text was given in the annotation,
then insert_textbox() is invoked to insert it, using parameters provided with the redaction.

• Changed in v1.18.0: added option for handling images that overlap redaction areas.

PDF only: Remove all text content contained in any redaction rectangle.

This method applies and then deletes all redactions from the page.
Parameters

images (int) – How to redact overlapping images. The default (2) blanks
out overlapping pixels. PDF_REDACT_IMAGE_NONE (0) ignores, and
PDF_REDACT_IMAGE_REMOVE (1) completely removes all overlapping images.

Returns
True if at least one redaction annotation has been processed, False otherwise.

Note:
• Text contained in a redaction rectangle will be physically removed from the page (assuming
Document.save()with a suitable garbage option) and will no longer appear in e.g. text extractions
or anywhere else. All redaction annotations will also be removed. Other annotations are unaffected.

• All overlapping links will be removed. If the rectangle of the link was covering text, then only the
overlapping part of the text is being removed. Similar applies to images covered by link rectangles.

• (Changed in v1.18.0) The overlapping parts of images will be blanked-out for default option
PDF_REDACT_IMAGE_PIXELS. Option 0 does not touch any images and 1 will remove any image
with an overlap. Please be aware that there is a bug for option PDF_REDACT_IMAGE_PIXELS =
2: transparent images will be incorrectly handled!

236 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• For option images=PDF_REDACT_IMAGE_REMOVE only this page’s references to the images are
removed - not necessarily the images themselves. Images are completely removed from the file
only, if no longer referenced at all (assuming suitable garbage collection options).

• For option images=PDF_REDACT_IMAGE_PIXELS a new image of format PNG is created, which
the page will use in place of the original one. The original image is not deleted or replaced as part of
this process, so other pages may still show the original. In addition, the new, modified PNG image
currently is stored uncompressed. Do keep these aspects in mind when choosing the right garbage
collection method and compression options during save.

• Text removal is done by character: A character is removed if its bbox has a non-empty over-
lap with a redaction rectangle (changed in MuPDF v1.17). Depending on the font properties
and / or the chosen line height, deletion may occur for undesired text parts. Using Tools.
set_small_glyph_heights() with a True argument before text search may help to prevent this.

• Redactions are a simple way to replace single words in a PDF, or to just physically remove them.
Locate the word “secret” using some text extraction or search method and insert a redaction using
“xxxxxx” as replacement text for each occurrence.

– Be wary if the replacement is longer than the original – this may lead to an awkward appear-
ance, line breaks or no new text at all.

– For a number of reasons, the new text may not exactly be positioned on the same line like the
old one – especially true if the replacement font was not one of CJK or PDF Base 14 Fonts.

delete_link(linkdict)
PDF only: Delete the specified link from the page. The parameter must be an original item of
get_links() (see below). The reason for this is the dictionary’s “xref” key, which identifies the PDF
object to be deleted.

Parameters
linkdict (dict) – the link to be deleted.

insert_link(linkdict)
PDF only: Insert a new link on this page. The parameter must be a dictionary of format as provided by
get_links() (see below).

Parameters
linkdict (dict) – the link to be inserted.

update_link(linkdict)
PDF only: Modify the specified link. The parameter must be a (modified) original item of get_links()
(see below). The reason for this is the dictionary’s “xref” key, which identifies the PDF object to be
changed.

Parameters
linkdict (dict) – the link to be modified.

Warning: If updating / inserting a URI link ("kind": LINK_URI), please make sure to start the
value for the "uri" key with a disambiguating string like "http://", "https://", "file://",
"ftp://", "mailto:", etc. Otherwise – depending on your browser or other “consumer” software –
unexpected default assumptions may lead to unwanted behaviours.

get_label()

• New in v1.18.6

6.14. Page 237

PyMuPDF Documentation, Release 1.21.1

PDF only: Return the label for the page.

Return type
str

Returns
the label string like “vii” for Roman numbering or “” if not defined.

get_links()

Retrieves all links of a page.

Return type
list

Returns
A list of dictionaries. For a description of the dictionary entries see below. Always use
this or the Page.links() method if you intend to make changes to the links of a page.

links(kinds=None)

• New in v1.16.4

Return a generator over the page’s links. The results equal the entries of Page.get_links().

Parameters
kinds (sequence) – a sequence of integers to down-select to one or more link kinds.
Default is all links. Example: kinds=(fitz.LINK_GOTO,) will only return internal links.

Return type
generator

Returns
an entry of Page.get_links() for each iteration.

annots(types=None)

• New in v1.16.4

Return a generator over the page’s annotations.

Parameters
types (sequence) – a sequence of integers to down-select to one or more annota-
tion types. Default is all annotations. Example: types=(fitz.PDF_ANNOT_FREETEXT,
fitz.PDF_ANNOT_TEXT) will only return ‘FreeText’ and ‘Text’ annotations.

Return type
generator

Returns
an Annot for each iteration.

Caution: You cannot safely update annotations from within this generator. This
is because most annotation updates require reloading the page via page = doc.
reload_page(page). To circumvent this restriction, make a list of annotations
xref numbers first and then iterate over these numbers:
In [4]: xrefs = [annot.xref for annot in page.annots(types=[...
→˓])]
In [5]: for xref in xrefs:

...: annot = page.load_annot(xref)

...: annot.update()

238 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

...: page = doc.reload_page(page)
In [6]:

widgets(types=None)

• New in v1.16.4

Return a generator over the page’s form fields.

Parameters
types (sequence) – a sequence of integers to down-select to one or more widget types.
Default is all form fields. Example: types=(fitz.PDF_WIDGET_TYPE_TEXT,) will
only return ‘Text’ fields.

Return type
generator

Returns
a Widget for each iteration.

write_text(rect=None, writers=None, overlay=True, color=None, opacity=None, keep_proportion=True,
rotate=0, oc=0)

• New in v1.16.18

PDF only: Write the text of one or more TextWriter ojects to the page.

Parameters
• rect (rect_like) – where to place the text. If omitted, the rectangle union of the

text writers is used.

• writers (sequence) – a non-empty tuple / list of TextWriter objects or a single
TextWriter.

• opacity (float) – set transparency, overwrites resp. value in the text writers.

• color (sequ) – set the text color, overwrites resp. value in the text writers.

• overlay (bool) – put the text in foreground or background.

• keep_proportion (bool) – maintain the aspect ratio.

• rotate (float) – rotate the text by an arbitrary angle.

• oc (int) – (new in v1.18.4) the xref of an OCG or OCMD.

Note: Parameters overlay, keep_proportion, rotate and oc have the same meaning as in Page.
show_pdf_page().

insert_text(point, text, fontsize=11, fontname='helv', fontfile=None, idx=0, color=None, fill=None,
render_mode=0, border_width=1, encoding=TEXT_ENCODING_LATIN, rotate=0,
morph=None, stroke_opacity=1, fill_opacity=1, overlay=True, oc=0)

• Changed in v1.18.4

PDF only: Insert text starting at point_like point. See Shape.insert_text().

6.14. Page 239

PyMuPDF Documentation, Release 1.21.1

insert_textbox(rect, buffer, fontsize=11, fontname='helv', fontfile=None, idx=0, color=None, fill=None,
render_mode=0, border_width=1, encoding=TEXT_ENCODING_LATIN, expandtabs=8,
align=TEXT_ALIGN_LEFT, charwidths=None, rotate=0, morph=None,
stroke_opacity=1, fill_opacity=1, oc=0, overlay=True)

• Changed in v1.18.4

PDF only: Insert text into the specified rect_like rect. See Shape.insert_textbox().

draw_line(p1, p2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True,
morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw a line from p1 to p2 (point_like s). See Shape.draw_line().

draw_zigzag(p1, p2, breadth=2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw a zigzag line from p1 to p2 (point_like s). See Shape.draw_zigzag().

draw_squiggle(p1, p2, breadth=2, color=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw a squiggly (wavy, undulated) line from p1 to p2 (point_like s). See Shape.
draw_squiggle().

draw_circle(center, radius, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw a circle around center (point_like) with a radius of radius. See Shape.
draw_circle().

draw_oval(quad, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True,
morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw an oval (ellipse) within the given rect_like or quad_like. See Shape.draw_oval().

draw_sector(center, point, angle, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,
fullSector=True, overlay=True, closePath=False, morph=None, stroke_opacity=1,
fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw a circular sector, optionally connecting the arc to the circle’s center (like a piece of pie).
See Shape.draw_sector().

draw_polyline(points, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, closePath=False, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw several connected lines defined by a sequence of point_like s. See Shape.
draw_polyline().

240 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

draw_bezier(p1, p2, p3, p4, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, closePath=False, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw a cubic Bézier curve from p1 to p4 with the control points p2 and p3 (all are point_like
s). See Shape.draw_bezier().

draw_curve(p1, p2, p3, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0,
overlay=True, closePath=False, morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: This is a special case of draw_bezier(). See Shape.draw_curve().

draw_rect(rect, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True,
morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw a rectangle. See Shape.draw_rect().

Note: An efficient way to background-color a PDF page with the old Python paper color is

>>> col = fitz.utils.getColor("py_color")
>>> page.draw_rect(page.rect, color=col, fill=col, overlay=False)

draw_quad(quad, color=None, fill=None, width=1, dashes=None, lineCap=0, lineJoin=0, overlay=True,
morph=None, stroke_opacity=1, fill_opacity=1, oc=0)

• Changed in v1.18.4

PDF only: Draw a quadrilateral. See Shape.draw_quad().

insert_font(fontname='helv', fontfile=None, fontbuffer=None, set_simple=False,
encoding=TEXT_ENCODING_LATIN)

PDF only: Add a new font to be used by text output methods and return its xref . If not already present in
the file, the font definition will be added. Supported are the built-in Base14_Fonts and the CJK fonts via
“reserved” fontnames. Fonts can also be provided as a file path or a memory area containing the image
of a font file.

Parameters
fontname (str) – The name by which this font shall be referenced when outputting
text on this page. In general, you have a “free” choice here (but consult the Adobe PDF
References, page 16, section 7.3.5 for a formal description of building legal PDF names).
However, if it matches one of the Base14_Fonts or one of the CJK fonts, fontfile and
fontbuffer are ignored.

In other words, you cannot insert a font via fontfile / fontbuffer and also give it a reserved fontname.

Note: A reserved fontname can be specified in any mixture of upper or lower case and still match the
right built-in font definition: fontnames “helv”, “Helv”, “HELV”, “Helvetica”, etc. all lead to the same
font definition “Helvetica”. But from a Page perspective, these are different references. You can exploit
this fact when using different encoding variants (Latin, Greek, Cyrillic) of the same font on a page.

Parameters

6.14. Page 241

PyMuPDF Documentation, Release 1.21.1

• fontfile (str) – a path to a font file. If used, fontname must be different from
all reserved names.

• fontbuffer (bytes/bytearray) – the memory image of a font file. If used, font-
name must be different from all reserved names. This parameter would typically
be used with Font.buffer for fonts supported / available via Font.

• set_simple (int) – applicable for fontfile / fontbuffer cases only: enforce treat-
ment as a “simple” font, i.e. one that only uses character codes up to 255.

• encoding (int) – applicable for the “Helvetica”, “Courier” and “Times” sets of
Base14_Fonts only. Select one of the available encodings Latin (0), Cyrillic (2)
or Greek (1). Only use the default (0 = Latin) for “Symbol” and “ZapfDingBats”.

Rytpe
int

Returns
the xref of the installed font.

Note: Built-in fonts will not lead to the inclusion of a font file. So the resulting PDF file will remain
small. However, your PDF viewer software is responsible for generating an appropriate appearance – and
there exist differences on whether or how each one of them does this. This is especially true for the CJK
fonts. But also Symbol and ZapfDingbats are incorrectly handled in some cases. Following are the Font
Names and their correspondingly installed Base Font names:

Base-14 Fonts1

Font Name Installed Base Font Comments
helv Helvetica normal
heit Helvetica-Oblique italic
hebo Helvetica-Bold bold
hebi Helvetica-BoldOblique bold-italic
cour Courier normal
coit Courier-Oblique italic
cobo Courier-Bold bold
cobi Courier-BoldOblique bold-italic
tiro Times-Roman normal
tiit Times-Italic italic
tibo Times-Bold bold
tibi Times-BoldItalic bold-italic
symb Symbol 3

zadb ZapfDingbats 3

CJK Fonts2 (China, Japan, Korea)
1 If your existing code already uses the installed base name as a font reference (as it was supported by PyMuPDF versions earlier than 1.14), this

will continue to work.
3 Not all PDF readers display these fonts at all. Some others do, but use a wrong character spacing, etc.
2 Not all PDF reader software (including internet browsers and office software) display all of these fonts. And if they do, the difference between

the serifed and the non-serifed version may hardly be noticable. But serifed and non-serifed versions lead to different installed base fonts, thus
providing an option to be displayable with your specific PDF viewer.

242 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Font Name Installed Base Font Comments
china-s Heiti simplified Chinese
china-ss Song simplified Chinese (serif)
china-t Fangti traditional Chinese
china-ts Ming traditional Chinese (serif)
japan Gothic Japanese
japan-s Mincho Japanese (serif)
korea Dotum Korean
korea-s Batang Korean (serif)

insert_image(rect, filename=None, pixmap=None, stream=None, mask=None, rotate=0, alpha=-1, oc=0,
xref=0, keep_proportion=True, overlay=True)

PDF only: Put an image inside the given rectangle. The image may already exist in the PDF or be taken
from a pixmap, a file, or a memory area.

• Changed in v1.14.1: By default, the image keeps its aspect ratio.

• Changed in v1.14.13: The image is now always placed centered in the rectangle, i.e. the centers of
image and rectangle are equal.

• Changed in v1.17.6: Insertion rectangle no longer needs to have a non-empty intersection with the
page’s Page.cropbox5.

• Changed in v1.18.13: Allow providing the image as the xref of an existing one.

Parameters
• rect (rect_like) – where to put the image. Must be finite and not empty.

• filename (str) – name of an image file (all formats supported by MuPDF – see
Supported Input Image Formats).

• stream (bytes,bytearray,io.BytesIO) – image in memory (all formats sup-
ported by MuPDF – see Supported Input Image Formats).

Changed in v1.14.13: io.BytesIO is now also supported.

• pixmap (Pixmap) – a pixmap containing the image.

• mask (bytes,bytearray,io.BytesIO) – (new in version v1.18.1) image in
memory – to be used as image mask (alpha values) for the base image. When spec-
ified, the base image must be provided as a filename or a stream – and must not be
an image that already has a mask.

• xref (int) – (New in v1.18.13) the xref of an image already present in the PDF. If
given, parameters filename, pixmap, stream, alpha and mask are ignored. The
page will simply receive a reference to the exsting image.

• alpha (int) – (Changed in v1.19.3) deprecated. No longer needed – ignored when
given.

• rotate (int) – (new in version v1.14.11) rotate the image. Must be an integer
multiple of 90 degrees. If you need a rotation by an arbitrary angle, consider con-
verting the image to a PDF (Document.convert_to_pdf()) first and then use
Page.show_pdf_page() instead.

5 The previous algorithm caused images to be shrunk to this intersection. Now the image can be anywhere on Page.mediabox, potentially
being invisible or only partially visible if the cropbox (representing the visible page part) is smaller.

6.14. Page 243

PyMuPDF Documentation, Release 1.21.1

• oc (int) – (new in v1.18.3) (xref) make image visibility dependent on this OCG or
OCMD. Ignored after the first of multiple insertions. The property is stored with the
generated PDF image object and therefore controls the image’s visibility throughout
the PDF.

• keep_proportion (bool) – (new in version v1.14.11) maintain the aspect ratio of
the image.

For a description of overlay see Common Parameters.

Changed in v1.18.13: Return xref of stored image.

Return type
int

Returns
The xref of the embedded image. This can be used as the xref argument for very sig-
nificant performance boosts, if the image is inserted again.

This example puts the same image on every page of a document:

>>> doc = fitz.open(...)
>>> rect = fitz.Rect(0, 0, 50, 50) # put thumbnail in upper left corner
>>> img = open("some.jpg", "rb").read() # an image file
>>> img_xref = 0 # first execution embeds the image
>>> for page in doc:

img_xref = page.insert_image(rect, stream=img,
xref=img_xref, 2nd time reuses existing image

)
>>> doc.save(...)

Note:
1. The method detects multiple insertions of the same image (like in above example) and will store its

data only on the first execution. This is even true (although less performant), if using the default
xref=0.

2. The method cannot detect if the same image had already been part of the file before opening it.

3. You can use this method to provide a background or foreground image for the page, like a copyright
or a watermark. Please remember, that watermarks require a transparent image if put in foreground
. . .

4. The image may be inserted uncompressed, e.g. if a Pixmap is used or if the image has an alpha chan-
nel. Therefore, consider using deflate=True when saving the file. In addition, there exist effective
ways to control the image size – even if transparency comes into play. Have a look at this section of
the documentation.

5. The image is stored in the PDF in its original quality. This may be much better than what you
ever need for your display. Consider decreasing the image size before insertion – e.g. by using
the pixmap option and then shrinking it or scaling it down (see Pixmap chapter). The PIL method
Image.thumbnail() can also be used for that purpose. The file size savings can be very significant.

6. Another efficient way to display the same image on multiple pages is another method:
show_pdf_page(). Consult Document.convert_to_pdf() for how to obtain intermediary PDFs
usable for that method. Demo script fitz-logo.py implements a fairly complete approach.

244 Chapter 6. Classes

https://pymupdf.readthedocs.io/en/latest/faq.html#how-to-add-images-to-a-pdf-page
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/fitz-logo.py

PyMuPDF Documentation, Release 1.21.1

replace_image(xref, filename=None, pixmap=None, stream=None)

• New in v1.21.0

Replace the image at xref with another one.

Parameters
• xref (int) – the xref of the image.

• filename – the filename of the new image.

• pixmap – the Pixmap of the new image.

• stream – the memory area containing the new image.

Arguments filename, pixmap, stream have the same meaning as in Page.insert_image(), especially
exactly one of these must be provided.

This is a global replacement: the new image will also be shown wherever the old one has been displayed
throughout the file.

This method mainly exists for technical purposes. Typical uses include replacing large images by smaller
versions, like a lower resolution, graylevel instead of colored, etc., or changing transparency.

delete_image(xref)

• New in v1.21.0

Delete the image at xref. This is slightly misleading: actually the image is being replaced with a small
transparent Pixmap using above Page.replace_image(). The visible effect however is equivalent.

Parameters
xref (int) – the xref of the image.

This is a global replacement: the image will disappear wherever the old one has been displayed throughout
the file.

get_text(opt, *, clip=None, flags=None, textpage=None, sort=False)

• Changed in v1.19.0: added textpage parameter

• Changed in v1.19.1: added sort parameter

• Changed in v1.19.6: added new constants for defining default flags per method.

Retrieves the content of a page in a variety of formats. This is a wrapper for TextPage methods by choosing
the output option as follows:

• “text” – TextPage.extractTEXT(), default

• “blocks” – TextPage.extractBLOCKS()

• “words” – TextPage.extractWORDS()

• “html” – TextPage.extractHTML()

• “xhtml” – TextPage.extractXHTML()

• “xml” – TextPage.extractXML()

• “dict” – TextPage.extractDICT()

• “json” – TextPage.extractJSON()

• “rawdict” – TextPage.extractRAWDICT()

• “rawjson” – TextPage.extractRAWJSON()

6.14. Page 245

PyMuPDF Documentation, Release 1.21.1

Parameters
• opt (str) – A string indicating the requested format, one of the above. A mixture

of upper and lower case is supported.

Changed in v1.16.3 Values “words” and “blocks” are now also accepted.

• clip (rect-like) – (new in v1.17.7) restrict extracted text to this rectangle. If
None, the full page is taken. Has no effect for options “html”, “xhtml” and “xml”.

• flags (int) – (new in v1.16.2) indicator bits to control whether to include images
or how text should be handled with respect to white spaces and ligatures. See
Text Extraction Flags for available indicators and Text Extraction Flags Defaults
for default settings.

• textpage – (new in v1.19.0) use a previously created TextPage. This reduces ex-
ecution time very significantly: by more than 50% and up to 95%, depending on
the extraction option. If specified, the ‘flags’ and ‘clip’ arguments are ignored, be-
cause they are textpage-only properties. If omitted, a new, temporary textpage will
be created.

• sort (bool) – (new in v1.19.1) sort the output by vertical, then horizontal coordi-
nates. In many cases, this should suffice to generate a “natural” reading order. Has
no effect on (X)HTML and XML. Output option “words” sorts by (y1, x0) of the
words’ bboxes. Similar is true for “blocks”, “dict”, “json”, “rawdict”, “rawjson”:
they all are sorted by (y1, x0) of the resp. block bbox. If specified for “text”, then
internally “blocks” is used.

Return type
str, list, dict

Returns
The page’s content as a string, a list or a dictionary. Refer to the corresponding TextPage
method for details.

Note:
1. You can use this method as a document conversion tool from any supported document type (not

only PDF!) to one of TEXT, HTML, XHTML or XML documents.

2. The inclusion of text via the clip parameter is decided on a by-character level: (changed in v1.18.2)
a character becomes part of the output, if its bbox is contained in clip. This deviates from the
algorithm used in redaction annotations: a character will be removed if its bbox intersects any
redaction annotation.

get_textbox(rect, textpage=None)

• New in v1.17.7

• Changed in v1.19.0: add textpage parameter

Retrieve the text contained in a rectangle.

Parameters
• rect (rect-like) – rect-like.

• textpage – a TextPage to use. If omitted, a new, temporary textpage will be cre-
ated.

246 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Returns
a string with interspersed linebreaks where necessary. Changed in v1.19.0: It is based
on dedicated code. A tyical use is checking the result of Page.search_for():

>>> rl = page.search_for("currency:")
>>> page.get_textbox(rl[0])
'Currency:'
>>>

get_textpage(clip=None, flags=3)

• New in v1.16.5

• Changed in v1.17.7: introduced clip parameter.

Create a TextPage for the page.

Parameters
• flags (in) – indicator bits controlling the content available for subsequent text

extractions and searches – see the parameter of Page.get_text().

• clip (rect-like) – (new in v1.17.7) restrict extracted text to this area.

Returns
TextPage

get_textpage_ocr(flags=3, language='eng', dpi=72, full=False)

• New in v.1.19.0

• Changed in v1.19.1: support full and partial OCRing a page.

Create a TextPage for the page that includes OCRed text. MuPDF will invoke Tesseract-OCR if this method
is used. Otherwise this is a normal TextPage object.

Parameters
• flags (in) – indicator bits controlling the content available for subsequent test

extractions and searches – see the parameter of Page.get_text().

• language (str) – the expected language(s). Use “+”-separated values if multiple
languages are expected, “eng+spa” for English and Spanish.

• dpi (int) – the desired resolution in dots per inch. Influences recognition quality
(and execution time).

• full (bool) – whether to OCR the full page, or just the displayed images.

Note: This method does not support a clip parameter – OCR will always happen for the complete page
rectangle.

Returns
a TextPage. Excution may be significantly longer than Page.get_textpage().

For a full page OCR, all text will have the font “GlyphlessFont” from Tesseract. In case
of partial OCR, normal text will keep its properties, and only text coming from images
will have the GlyphlessFont.

6.14. Page 247

PyMuPDF Documentation, Release 1.21.1

Note: OCRed text is only available to PyMuPDF’s text extractions and searches if
their textpage parameter specifies the output of this method.

This Jupyter notebook walks through an example for using OCR textpages.

get_drawings()

• New in v1.18.0

• Changed in v1.18.17

• Changed in v1.19.0: add “seqno” key, remove “clippings” key

• Changed in v1.19.1: “color” / “fill” keys now always are either are RGB tuples or None. This resolves
issues caused by exotic colorspaces.

• Changed in v1.19.2: add an indicator for the “orientation” of the area covered by an “re” item.

Return the draw commands of the page. These are instructions which draw lines, rectangles, quadruples
or curves, including properties like colors, transparency, line width and dashing, etc.

Returns
a list of dictionaries. Each dictionary item contains one or more single draw commands
belonging together: they have the same properties (colors, dashing, etc.). This is called
a “path” in PDF, but the method works for all document types.

The path dictionary has been designed to be compatible with class Shape. There are the following keys:

Key Value
closePath Same as the parameter in Shape.
color Stroke color (see Shape).
dashes Dashed line specification (see Shape).
even_odd Fill colors of area overlaps – same as the parameter in Shape.
fill Fill color (see Shape).
items List of draw commands: lines, rectangles, quads or curves.
lineCap Number 3-tuple, use its max value on output with Shape.
lineJoin Same as the parameter in Shape.
fill_opacity (new in v1.18.17) fill color transparency (see Shape).
stroke_opacity (new in v1.18.17) stroke color transparency (see Shape).
rect Page area covered by this path. Information only.
seqno (new in v1.19.0) command number when building page appearance
type (new in v1.18.17) type of this path.
width Stroke line width (see Shape).

• (Changed in v1.18.17) Key "opacity" has been replaced by the new keys
"fill_opacity" and "stroke_opacity". This is now compatible with the corre-
sponding parameters of Shape.finish().

Key "type" takes one of the following values:

• “f” – this is a fill-only path. Only key-values relevant for this operation have a mean-
ing, irrelevant ones have been added with default values for backward compatibility:
"color", "lineCap", "lineJoin", "width", "closePath", "dashes" and should
be ignored.

248 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF-Utilities/blob/master/jupyter-notebooks/partial-ocr.ipynb

PyMuPDF Documentation, Release 1.21.1

• “s” – this is a stroke-only path. Similar to previous, key "fill" is present with value
None.

• “fs” – this is a path performing combined fill and stroke operations.

Each item in path["items"] is one of the following:

• ("l", p1, p2) - a line from p1 to p2 (Point objects).

• ("c", p1, p2, p3, p4) - cubic Bézier curve from p1 to p4 (p2 and p3 are the con-
trol points). All objects are of type Point.

• ("re", rect, orientation) - a Rect. Changed in v1.18.17: Multiple rectan-
gles within the same path are now detected. Changed in v1.19.2: added integer
orientation which is 1 resp. -1 indicating whether the enclosed area is rotated left (1
= anti-clockwise), or resp. right7.

• ("qu", quad) - a Quad. New in v1.18.17, changed in v1.19.2: 3 or 4 consecutive lines
are detected to actually represent a Quad.

Note: Starting with v1.19.2, quads and rectangles are more reliably recognized as such.

Using class Shape, you should be able to recreate the original drawings on a separate (PDF)
page with high fidelity under normal, not too sophisticated circumstances. Please see the
following comments on restrictions. A coding draft can be found in section “Extractings
Drawings” of chapter FAQ.

Note:
• The visual appearance of a page may have been designed in a very complex way. For example in

PDF:

– Layers (Optional Content Groups) can control the visibility of items (drawings and other ob-
jects) depending on whatever condition: for example showing or suppressing a watermark
depending on the current output device (screen, paper, . . .), or option-based inclusion / omis-
sion of details in a technical document, and so on. Effects like these are ignored by the method
– it will unconditionally return all paths.

– Clipping paths are ignored by the method.

– Shadings (gradient colorization effects) are not supported.

• When a viewer software builds a page’s appearance, it will sequentially walk through a list of com-
mands (in PDF, those are stored in the /Contents object), containing instructions like “draw this
path, show this image, paint this text, etc.”. The key "seqno" (new in v1.19.0) is the command
number, that draws this path. You can use it to determine if objects cover other objects on the
page. For example, the rectangle of a “fill” path will cover objects drawn earlier – i.e. having a
smaller "seqno" – if the rectangles overlap. Please also see Page.get_bboxlog() and Page.
get_texttrace().

Note: The method is now based on the output of Page.get_cdrawings() – which is much faster, but
requires somewhat more attention processing its output.

7 In PDF, an area enclosed by some lines or curves can have a property called “orientation”. This is significant for switching on or off the fill
color of that area when there exist multiple area overlaps - see discussion in method Shape.finish() using the “non-zero winding number” rule.
While orientation of curves, quads, triangles and other shapes enclosed by lines always was detectable, this has been impossible for “re” (rectangle)
items in the past. Adding the orientation parameter now delivers the missing information.

6.14. Page 249

PyMuPDF Documentation, Release 1.21.1

get_cdrawings()

• New in v1.18.17

• Changed in v1.19.0: removed “clippings” key, added “seqno” key.

• Changed in v1.19.1: always generate RGB color tuples.

Extract the drawing paths on the page. Apart from following technical differences, functionally equivalent
to Page.get_drawings(), but much faster (factor 3 or more):

• Every path type only contains the relevant keys, e.g. a stroke path has no "fill" color key. See
comment in method Page.get_drawings().

• Coordinates are given as point_like, rect_like and quad_like tuples – not as Point, Rect,
Quad objects.

Note: If performance is a concern (e.g. because your page has tens of thousands of drawings), consider
using this method: Compared to versions earlier than 1.18.17, you should see much shorter response times.
We have seen pages that required 2 seconds then, now only need 200 ms with this method.

get_fonts(full=False)
PDF only: Return a list of fonts referenced by the page. Wrapper for Document.get_page_fonts().

get_images(full=False)
PDF only: Return a list of images referenced by the page. Wrapper for Document.get_page_images().

get_image_info(hashes=False, xrefs=False)

• New in v1.18.11

• Changed in v1.18.13: added image MD5 hashcode computation and xref search.

Return a list of meta information dictionaries for all images shown on the page. This works for all document
types. Technically, this is a subset of the dictionary output of Page.get_text(): the image binary content
and any text on the page are ignored.

Parameters
• hashes (bool) – New in v1.18.13: Compute the MD5 hashcode for each en-

countered image, which allows identifying image duplicates. This adds the key
"digest" to the output, whose value is a 16 byte bytes object.

• xrefs (bool) – New in v1.18.13: PDF only. Try to find the xref for each im-
age. Implies hashes=True. Adds the "xref" key to the dictionary. If not found,
the value is 0, which means, the image is either “inline” or otherwise undetectable.
Please note that this option has an extended response time, because the MD5 hash-
code will be computed at least two times for each image with an xref.

Return type
list[dict]

Returns
A list of dictionaries. This includes information for exactly those images, that are
shown on the page – including “inline images”. In contrast to images included in
Page.get_text(), image binary content is not loaded, which drastically reduces
memory usage. The dictionary layout is similar to that of image blocks in page.
get_text("dict").

250 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Key Value
number block number (int)
bbox image bbox on page, rect_like
width original image width (int)
height original image height (int)
cs-name colorspace name (str)
colorspace colorspace.n (int)
xres resolution in x-direction (int)
yres resolution in y-direction (int)
bpc bits per component (int)
size storage occupied by image (int)
digest MD5 hashcode (bytes), if hashes is true
xref image xref or 0, if xrefs is true
transform matrix transforming image rect to bbox, matrix_like

Multiple occurrences of the same image are always reported. You can detect duplicates
by comparing their digest values.

get_xobjects()

PDF only: Return a list of Form XObjects referenced by the page. Wrapper for Document.
get_page_xobjects().

get_image_rects(item, transform=False)
New in v1.18.13

PDF only: Return boundary boxes and transformation matrices of an embedded image. This is an improved
version of Page.get_image_bbox() with the following differences:

• There is no restriction on how the image is invoked (by the page or one of its Form XObjects). The
result is always complete and correct.

• The result is a list of Rect or (Rect, Matrix) objects – depending on transform. Each list item rep-
resents one location of the image on the page. Multiple occurrences might not be detectable by
Page.get_image_bbox().

• The method invokes Page.get_image_info() with xrefs=True and therefore has a noticeably
longer response time than Page.get_image_bbox().

Parameters
• item (list,str,int) – an item of the list Page.get_images(), or the reference

name entry of such an item (item[7]), or the image xref .

• transform (bool) – also return the matrix used to transform the image rectangle
to the bbox on the page. If true, then tuples (bbox, matrix) are returned.

Return type
list

Returns
Boundary boxes and respective transformation matrices for each image occurrence on
the page. If the item is not on the page, an empty list [] is returned.

get_image_bbox(item, transform=False)

• Changed in v1.18.11: return image transformation matrix

PDF only: Return boundary box and transformation matrix of an embedded image.

6.14. Page 251

PyMuPDF Documentation, Release 1.21.1

Parameters
• item (list,str) – an item of the list Page.get_images() with full=True spec-

ified, or the reference name entry of such an item, which is item[-3] (or item[7]
respectively).

• transform (bool) – (new in v1.18.11) also return the matrix used to transform the
image rectangle to the bbox on the page. Default is just the bbox. If true, then a
tuple (bbox, matrix) is returned.

Return type
Rect or (Rect, Matrix)

Returns
the boundary box of the image – optionally also its transformation matrix.

• (Changed in v1.16.7) – If the page in fact does not display this image, an infinite
rectangle is returned now. In previous versions, an exception was raised. Formally
invalid parameters still raise exceptions.

• (Changed in v1.17.0) – Only images referenced directly by the page are consid-
ered. This means that images occurring in embedded PDF pages are ignored and
an exception is raised.

• (Changed in v1.18.5) – Removed the restriction introduced in v1.17.0: any item of
the page’s image list may be specified.

• (Changed in v1.18.11) – Partially re-instated a restriction: only those images are
considered, that are either directly referenced by the page or by a Form XObject
directly referenced by the page.

• (Changed in v1.18.11) – Optionally also return the transformation matrix together
with the bbox as the tuple (bbox, transform).

Note:
1. Be aware that Page.get_images() may contain “dead” entries i.e. images, which the page does

not display. This is no error, but intended by the PDF creator. No exception will be raised in this
case, but an infinite rectangle is returned. You can avoid this from happening by executing Page.
clean_contents() before this method.

2. The image’s “transformation matrix” is defined as the matrix, for which the expression bbox /
transform == fitz.Rect(0, 0, 1, 1) is true, lookup details here: Image Transformation
Matrix.

get_svg_image(matrix=fitz.Identity, text_as_path=True)

Create an SVG image from the page. Only full page images are currently supported.

Parameters
• matrix (matrix_like) – a matrix, default is Identity.

• text_as_path (bool) – (new in v1.17.5) – controls how text is represented. True
outputs each character as a series of elementary draw commands, which leads to
a more precise text display in browsers, but a very much larger output for text-
oriented pages. Display quality for False relies on the presence of the referenced
fonts on the current system. For missing fonts, the internet browser will fall back

252 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

to some default – leading to unpleasant appearances. Choose False if you want to
parse the text of the SVG.

Returns
a UTF-8 encoded string that contains the image. Because SVG has XML syntax it can
be saved in a text file, the standard extension is .svg.

Note: In case of a PDF, you can circumvent the “full page image only” restriction by
modifying the page’s CropBox before using the method.

get_pixmap(*, matrix=fitz.Identity, dpi=None, colorspace=fitz.csRGB, clip=None, alpha=False,
annots=True)

• Changed in v1.19.2: added support of parameter dpi.

Create a pixmap from the page. This is probably the most often used method to create a Pixmap.

All parameters are keyword-only.

Parameters
• matrix (matrix_like) – default is Identity.

• dpi (int) – (new in v1.19.2) desired resolution in x and y direction. If not None,
the "matrix" parameter is ignored.

• colorspace (str or Colorspace) – The desired colorspace, one of “GRAY”, “RGB”
or “CMYK” (case insensitive). Or specify a Colorspace, ie. one of the predefined
ones: csGRAY , csRGB or csCMYK .

• clip (irect_like) – restrict rendering to the intersection of this area with the
page’s rectangle.

• alpha (bool) – whether to add an alpha channel. Always accept the default False
if you do not really need transparency. This will save a lot of memory (25% in
case of RGB . . . and pixmaps are typically large!), and also processing time. Also
note an important difference in how the image will be rendered: with True the
pixmap’s samples area will be pre-cleared with 0x00. This results in transparent
areas where the page is empty. With False the pixmap’s samples will be pre-cleared
with 0xff. This results in white where the page has nothing to show.

Changed in v1.14.17
The default alpha value is now False.

– Generated with alpha=True

– Generated with alpha=False

6.14. Page 253

PyMuPDF Documentation, Release 1.21.1

• annots (bool) – (new in vrsion 1.16.0) whether to also render annotations or to
suppress them. You can create pixmaps for annotations separately.

Return type
Pixmap

Returns
Pixmap of the page. For fine-controlling the generated image, the by far most important
parameter is matrix. E.g. you can increase or decrease the image resolution by using
Matrix(xzoom, yzoom). If zoom > 1, you will get a higher resolution: zoom=2 will
double the number of pixels in that direction and thus generate a 2 times larger image.
Non-positive values will flip horizontally, resp. vertically. Similarly, matrices also let
you rotate or shear, and you can combine effects via e.g. matrix multiplication. See the
Matrix section to learn more.

Note: The method will respect any page rotation and will not exceed the intersection of clip and Page.
cropbox. If you need the page’s mediabox (and if this is a different rectangle), you can use a snippet like
the following to achieve this:

In [1]: import fitz
In [2]: doc=fitz.open("demo1.pdf")
In [3]: page=doc[0]
In [4]: rotation = page.rotation
In [5]: cropbox = page.cropbox
In [6]: page.set_cropbox(page.mediabox)
In [7]: page.set_rotation(0)
In [8]: pix = page.get_pixmap()
In [9]: page.set_cropbox(cropbox)
In [10]: if rotation != 0:

...: page.set_rotation(rotation)

...:
In [11]:

annot_names()

• New in v1.16.10

PDF only: return a list of the names of annotations, widgets and links. Technically, these are the /NM
values of every PDF object found in the page’s /Annots array.

Return type
list

annot_xrefs()

254 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• New in v1.17.1

PDF only: return a list of the :data`xref` numbers of annotations, widgets and links – technically of all
entries found in the page’s /Annots array.

Return type
list

Returns
a list of items (xref, type) where type is the annotation type. Use the type to tell apart
links, fields and annotations, see Annotation Types.

load_annot(ident)

• New in v1.17.1

PDF only: return the annotation identified by ident. This may be its unique name (PDF /NM key), or its
xref .

Parameters
ident (str,int) – the annotation name or xref.

Return type
Annot

Returns
the annotation or None.

Note: Methods Page.annot_names(), Page.annot_xrefs() provide lists of names or xrefs, respec-
tively, from where an item may be picked and loaded via this method.

load_widget(xref)

• New in v1.19.6

PDF only: return the field identified by xref.

Parameters
xref (int) – the field’s xref.

Return type
Widget

Returns
the field or None.

Note: This is similar to the analogous method Page.load_annot() – except that here only the xref is
supported as identifier.

load_links()

Return the first link on a page. Synonym of property first_link .

Return type
Link

Returns
first link on the page (or None).

6.14. Page 255

PyMuPDF Documentation, Release 1.21.1

set_rotation(rotate)
PDF only: Set the rotation of the page.

Parameters
rotate (int) – An integer specifying the required rotation in degrees. Must be an
integer multiple of 90. Values will be converted to one of 0, 90, 180, 270.

show_pdf_page(rect, docsrc, pno=0, keep_proportion=True, overlay=True, oc=0, rotate=0, clip=None)

• Changed in v1.14.11: Parameter reuse_xref has been deprecated. Position the source rectangle
centered in target rectangle. Any rotation angle is now supported.

• Changed in v1.18.3: New parameter oc.

PDF only: Display a page of another PDF as a vector image (otherwise similar to Page.
insert_image()). This is a multi-purpose method. For example, you can use it to

• create “n-up” versions of existing PDF files, combining several input pages into one output page
(see example 4-up.py),

• create “posterized” PDF files, i.e. every input page is split up in parts which each create a separate
output page (see posterize.py),

• include PDF-based vector images like company logos, watermarks, etc., see svg-logo.py, which puts
an SVG-based logo on each page (requires additional packages to deal with SVG-to-PDF conver-
sions).

Parameters
• rect (rect_like) – where to place the image on current page. Must be finite and

its intersection with the page must not be empty.

• docsrc (Document) – source PDF document containing the page. Must be a dif-
ferent document object, but may be the same file.

• pno (int) – page number (0-based, in -∞ < pno < docsrc.page_count) to be
shown.

• keep_proportion (bool) – whether to maintain the width-height-ratio (default).
If false, all 4 corners are always positioned on the border of the target rectangle
– whatever the rotation value. In general, this will deliver distorted and /or non-
rectangular images.

• overlay (bool) – put image in foreground (default) or background.

• oc (int) – (new in v1.18.3) (xref) make visibility dependent on this OCG (optional
content group).

• rotate (float) – (new in v1.14.10) show the source rectangle rotated by some
angle. Changed in v1.14.11: Any angle is now supported.

• clip (rect_like) – choose which part of the source page to show. Default is the
full page, else must be finite and its intersection with the source page must not be
empty.

Note: In contrast to method Document.insert_pdf(), this method does not copy annotations, widgets
or links, so these are not included in the target6. But all its other resources (text, images, fonts, etc.) will

6 If you need to also see annotations or fields in the target page, you can try and convert the source PDF to another PDF using Document.
convert_to_pdf(). The underlying MuPDF function of that method will convert these objects to normal page content. Then use Page.
show_pdf_page() with the converted PDF page.

256 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/4-up.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/posterize.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/svg-logo.py

PyMuPDF Documentation, Release 1.21.1

be imported into the current PDF. They will therefore appear in text extractions and in get_fonts() and
get_images() lists – even if they are not contained in the visible area given by clip.

Example: Show the same source page, rotated by 90 and by -90 degrees:

>>> doc = fitz.open() # new empty PDF
>>> page=doc.new_page() # new page in A4 format
>>>
>>> # upper half page
>>> r1 = fitz.Rect(0, 0, page.rect.width, page.rect.height/2)
>>>
>>> # lower half page
>>> r2 = r1 + (0, page.rect.height/2, 0, page.rect.height/2)
>>>
>>> src = fitz.open("PyMuPDF.pdf") # show page 0 of this
>>>
>>> page.show_pdf_page(r1, src, 0, rotate=90)
>>> page.show_pdf_page(r2, src, 0, rotate=-90)
>>> doc.save("show.pdf")

new_shape()

PDF only: Create a new Shape object for the page.

Return type
Shape

Returns
a new Shape to use for compound drawings. See description there.

6.14. Page 257

PyMuPDF Documentation, Release 1.21.1

search_for(needle, *, clip=clip, quads=False, flags=TEXT_DEHYPHENATE |
TEXT_PRESERVE_WHITESPACE | TEXT_PRESERVE_LIGATURES, textpage=None)

• Changed in v1.18.2: added clip parameter. Remove hit_max parameter. Add default “dehyphen-
ate”.

• Changed in v1.19.0: added textpage parameter.

Search for needle on a page. Wrapper for TextPage.search().

Parameters
• needle (str) – Text to search for. May contain spaces. Upper / lower case is ig-

nored, but only works for ASCII characters: For example, “COMPÉTENCES” will
not be found if needle is “compétences” – “compÉtences” however will. Similar is
true for German umlauts and the like.

• clip (rect_like) – (New in v1.18.2) only search within this area.

• quads (bool) – Return object type Quad instead of Rect.

• flags (int) – Control the data extracted by the underlying TextPage. By default,
ligatures and white spaces are kept, and hyphenation8 is detected.

• textpage – (new in v1.19.0) use a previously created TextPage. This reduces exe-
cution time significantly. If specified, the ‘flags’ and ‘clip’ arguments are ignored.
If omitted, a temporary textpage will be created.

Return type
list

Returns
A list of Rect or Quad objects, each of which – normally! – surrounds one occurrence
of needle. However: if parts of needle occur on more than one line, then a separate item
is generated for each these parts. So, if needle = "search string", two rectangles
may be generated.

Changes in v1.18.2:
• There no longer is a limit on the list length (removal of the hit_max parameter).

• If a word is hyphenated at a line break, it will still be found. E.g. the needle
“method” will be found even if hyphenated as “meth-od” at a line break, and two
rectangles will be returned: one surrounding “meth” (without the hyphen) and an-
other one surrounding “od”.

Note: The method supports multi-line text marker annotations: you can use the full returned list as one
single parameter for creating the annotation.

Caution:
• There is a tricky aspect: the search logic regards contiguous multiple occurrences of needle

as one: assuming needle is “abc”, and the page contains “abc” and “abcabc”, then only two
rectangles will be returned, one for “abc”, and a second one for “abcabc”.

8 Hyphenation detection simply means that if the last character of a line is “-”, it will be assumed to be a continuation character. That character
will not be found by text searching with its default flag setting. Please take note, that a MuPDF line may not always be what you expect: words
separated by overly large gaps (e.g. caused by text justification) may constitute seperate MuPDF lines. If then any of these words ends with a hyphen,
it will only be found by text searching if hyphenation is switched off.

258 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• You can always use Page.get_textbox() to check what text actually is being surrounded by
each rectangle.

Note: A feature repeatedly asked for is supporting regular expressions when specifying the "needle"
string: There is no way to do this. If you need something in that direction, first extract text in the desired
format and then subselect the result by matching with some regex pattern. Here is an example for matching
words:

>>> pattern = re.compile(r"...") # the regex pattern
>>> words = page.get_text("words") # extract words on page
>>> matches = [w for w in words if pattern.search(w[4])]

The matches list will contain the words matching the given pattern. In the same way you can select
span["text"] from the output of page.get_text("dict").

set_mediabox(r)

• New in v1.16.13

• Changed in v1.19.4: remove all other rectangle definitions.

PDF only: Change the physical page dimension by setting mediabox in the page’s object definition.

Parameters
r (rect-like) – the new mediabox value.

Note: This method also removes the page’s other (optional) rectangles (cropbox, ArtBox, TrimBox and
Bleedbox) to prevent inconsistent situations. This will cause those to assume their default values.

Caution: For non-empty pages this may have undesired effects, because the location of all content
depends on this value and will therefore change position or even disappear.

set_cropbox(r)
PDF only: change the visible part of the page.

Parameters
r (rect_like) – the new visible area of the page. Note that this must be specified
in unrotated coordinates, not empty, nor infinite and be completely contained in the
Page.mediabox.

After execution (if the page is not rotated), Page.rect will equal this rectangle, but be shifted to the
top-left position (0, 0) if necessary. Example session:

>>> page = doc.new_page()
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>
>>> page.cropbox # cropbox and mediabox still equal
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>

(continues on next page)

6.14. Page 259

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> # now set cropbox to a part of the page
>>> page.set_cropbox(fitz.Rect(100, 100, 400, 400))
>>> # this will also change the "rect" property:
>>> page.rect
fitz.Rect(0.0, 0.0, 300.0, 300.0)
>>>
>>> # but mediabox remains unaffected
>>> page.mediabox
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>>
>>> # revert CropBox change
>>> # either set it to MediaBox
>>> page.set_cropbox(page.mediabox)
>>> # or 'refresh' MediaBox: will remove all other rectangles
>>> page.set_mediabox(page.mediabox)

set_artbox(r)

set_bleedbox(r)

set_trimbox(r)

• New in v1.19.4

PDF only: Set the resp. rectangle in the page object. For the meaning of these objects see Adobe PDF
References, page 77. Parameter and restrictions are the same as for Page.set_cropbox().

rotation

Contains the rotation of the page in degrees (always 0 for non-PDF types).

Type
int

cropbox_position

Contains the top-left point of the page’s /CropBox for a PDF, otherwise Point(0, 0).

Type
Point

cropbox

The page’s /CropBox for a PDF. Always the unrotated page rectangle is returned. For a non-PDF this
will always equal the page rectangle.

Note: In PDF, the relationship between /MediaBox, /CropBox and page rectangle may sometimes be
confusing, please do lookup the glossary for MediaBox.

Type
Rect

artbox

bleedbox

260 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

trimbox

The page’s /ArtBox, /BleedBox, /TrimBox, respectively. If not provided, defaulting to Page.cropbox.

Type
Rect

mediabox_size

Contains the width and height of the page’s Page.mediabox for a PDF, otherwise the bottom-right coor-
dinates of Page.rect.

Type
Point

mediabox

The page’s mediabox for a PDF, otherwise Page.rect.

Type
Rect

Note: For most PDF documents and for all other document types, page.rect == page.cropbox ==
page.mediabox is true. However, for some PDFs the visible page is a true subset of mediabox. Also, if
the page is rotated, its Page.rect may not equal Page.cropbox. In these cases the above attributes help
to correctly locate page elements.

transformation_matrix

This matrix translates coordinates from the PDF space to the MuPDF space. For example, in PDF /Rect
[x0 y0 x1 y1] the pair (x0, y0) specifies the bottom-left point of the rectangle – in contrast to MuPDF’s
system, where (x0, y0) specify top-left. Multiplying the PDF coordinates with this matrix will deliver the
(Py-) MuPDF rectangle version. Obviously, the inverse matrix will again yield the PDF rectangle.

Type
Matrix

rotation_matrix

derotation_matrix

These matrices may be used for dealing with rotated PDF pages. When adding / inserting anything to a
PDF page, the coordinates of the unrotated page are always used. These matrices help translating between
the two states. Example: if a page is rotated by 90 degrees – what would then be the coordinates of the
top-left Point(0, 0) of an A4 page?

>>> page.set_rotation(90) # rotate an ISO A4 page
>>> page.rect
Rect(0.0, 0.0, 842.0, 595.0)
>>> p = fitz.Point(0, 0) # where did top-left point land?
>>> p * page.rotation_matrix
Point(842.0, 0.0)
>>>

Type
Matrix

first_link

Contains the first Link of a page (or None).

6.14. Page 261

PyMuPDF Documentation, Release 1.21.1

Type
Link

first_annot

Contains the first Annot of a page (or None).

Type
Annot

first_widget

Contains the first Widget of a page (or None).

Type
Widget

number

The page number.

Type
int

parent

The owning document object.

Type
Document

rect

Contains the rectangle of the page. Same as result of Page.bound().

Type
Rect

xref

The page’s PDF xref . Zero if not a PDF.

Type
Rect

6.14.2 Description of get_links() Entries

Each entry of the Page.get_links() list is a dictionay with the following keys:

• kind: (required) an integer indicating the kind of link. This is one of LINK_NONE, LINK_GOTO, LINK_GOTOR,
LINK_LAUNCH, or LINK_URI. For values and meaning of these names refer to Link Destination Kinds.

• from: (required) a Rect describing the “hot spot” location on the page’s visible representation (where the cursor
changes to a hand image, usually).

• page: a 0-based integer indicating the destination page. Required for LINK_GOTO and LINK_GOTOR, else
ignored.

• to: either a fitz.Point, specifying the destination location on the provided page, default is fitz.Point(0, 0), or a
symbolic (indirect) name. If an indirect name is specified, page = -1 is required and the name must be defined
in the PDF in order for this to work. Required for LINK_GOTO and LINK_GOTOR, else ignored.

• file: a string specifying the destination file. Required for LINK_GOTOR and LINK_LAUNCH, else ignored.

262 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• uri: a string specifying the destination internet resource. Required for LINK_URI, else ignored. You should make
sure to start this string with an unambiguous substring, that classifies the subtype of the URL, like "http://",
"https://", "file://", "ftp://", "mailto:", etc. Otherwise your browser will try to interpret the text and
come to unwanted / unexpected conclusions about the intended URL type.

• xref : an integer specifying the PDF xref of the link object. Do not change this entry in any way. Required for
link deletion and update, otherwise ignored. For non-PDF documents, this entry contains -1. It is also -1 for all
entries in the get_links() list, if any of the links is not supported by MuPDF - see the note below.

6.14.3 Notes on Supporting Links

MuPDF’s support for links has changed in v1.10a. These changes affect link types LINK_GOTO and LINK_GOTOR .

6.14.3.1 Reading (pertains to method get_links() and the first_link property chain)

If MuPDF detects a link to another file, it will supply either a LINK_GOTOR or a LINK_LAUNCH link kind. In case
of LINK_GOTOR destination details may either be given as page number (eventually including position information),
or as an indirect destination.

If an indirect destination is given, then this is indicated by page = -1, and link.dest.dest will contain this name. The
dictionaries in the get_links() list will contain this information as the to value.

Internal links are always of kind LINK_GOTO. If an internal link specifies an indirect destination, it will always
be resolved and the resulting direct destination will be returned. Names are never returned for internal links, and
undefined destinations will cause the link to be ignored.

6.14.3.2 Writing

PyMuPDF writes (updates, inserts) links by constructing and writing the appropriate PDF object source. This makes
it possible to specify indirect destinations for LINK_GOTOR and LINK_GOTO link kinds (pre PDF 1.2 file formats
are not supported).

Warning: If a LINK_GOTO indirect destination specifies an undefined name, this link can later on not be found /
read again with MuPDF / PyMuPDF. Other readers however will detect it, but flag it as erroneous.

Indirect LINK_GOTOR destinations can in general of course not be checked for validity and are therefore always
accepted.

Example: How to insert a link pointing to another page in the same document
1. Determine the rectangle on the current page, where the link should be placed. This may be the bbox of an image

or some text.

2. Determine the target page number (“pno”, 0-based) and a Point on it, where the link should be directed to.

3. Create a dictionary d = {"kind": fitz.LINK_GOTO, "page": pno, "from": bbox, "to":
point}.

4. Execute page.insert_link(d).

6.14. Page 263

PyMuPDF Documentation, Release 1.21.1

6.14.4 Homologous Methods of Document and Page

This is an overview of homologous methods on the Document and on the Page level.

Document Level Page Level
Document.get_page_fonts(pno) Page.get_fonts()
Document.get_page_images(pno) Page.get_images()
Document.get_page_pixmap(pno, . . .) Page.get_pixmap()
Document.get_page_text(pno, . . .) Page.get_text()
Document.search_page_for(pno, . . .) Page.search_for()

The page number “pno” is a 0-based integer -∞ < pno < page_count.

Note: Most document methods (left column) exist for convenience reasons, and are just wrappers for: Docu-
ment[pno].<page method>. So they load and discard the page on each execution.

However, the first two methods work differently. They only need a page’s object definition statement - the page itself will
not be loaded. So e.g. Page.get_fonts() is a wrapper the other way round and defined as follows: page.get_fonts
== page.parent.get_page_fonts(page.number).

6.15 Pixmap

Pixmaps (“pixel maps”) are objects at the heart of MuPDF’s rendering capabilities. They represent plane rectangular
sets of pixels. Each pixel is described by a number of bytes (“components”) defining its color, plus an optional alpha
byte defining its transparency.

In PyMuPDF, there exist several ways to create a pixmap. Except the first one, all of them are available as overloaded
constructors. A pixmap can be created . . .

1. from a document page (method Page.get_pixmap())

2. empty, based on Colorspace and IRect information

3. from a file

4. from an in-memory image

5. from a memory area of plain pixels

6. from an image inside a PDF document

7. as a copy of another pixmap

Note: A number of image formats is supported as input for points 3. and 4. above. See section Supported Input Image
Formats.

Have a look at the FAQ section to see some pixmap usage “at work”.

Method / Attribute Short Description
Pixmap.clear_with() clear parts of the pixmap
Pixmap.color_count() determine used colors

continues on next page

264 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

Table 4 – continued from previous page
Method / Attribute Short Description
Pixmap.color_topusage() determine share of top used color
Pixmap.copy() copy parts of another pixmap
Pixmap.gamma_with() apply a gamma factor to the pixmap
Pixmap.invert_irect() invert the pixels of a given area
Pixmap.pdfocr_save() save the pixmap as an OCRed 1-page PDF
Pixmap.pdfocr_tobytes() save the pixmap as an OCRed 1-page PDF
Pixmap.pil_save() save as image using pillow
Pixmap.pil_tobytes() write to bytes object using pillow
Pixmap.pixel() return the value of a pixel
Pixmap.save() save the pixmap in a variety of formats
Pixmap.set_alpha() set alpha values
Pixmap.set_dpi() set the image resolution
Pixmap.set_origin() set pixmap x,y values
Pixmap.set_pixel() set color and alpha of a pixel
Pixmap.set_rect() set color and alpha of all pixels in a rectangle
Pixmap.shrink() reduce size keeping proportions
Pixmap.tint_with() tint the pixmap with a color
Pixmap.tobytes() return a memory area in a variety of formats
Pixmap.warp() return a pixmap made from a quad inside
Pixmap.alpha transparency indicator
Pixmap.colorspace pixmap’s Colorspace
Pixmap.digest MD5 hashcode of the pixmap
Pixmap.height pixmap height
Pixmap.interpolate interpolation method indicator
Pixmap.is_monochrome check if only black and white occur
Pixmap.is_unicolor check if only one color occurs
Pixmap.irect IRect of the pixmap
Pixmap.n bytes per pixel
Pixmap.samples_mv memoryview of pixel area
Pixmap.samples_ptr Python pointer to pixel area
Pixmap.samples bytes copy of pixel area
Pixmap.size pixmap’s total length
Pixmap.stride size of one image row
Pixmap.width pixmap width
Pixmap.x X-coordinate of top-left corner
Pixmap.xres resolution in X-direction
Pixmap.y Y-coordinate of top-left corner
Pixmap.yres resolution in Y-direction

Class API
class Pixmap

__init__(self, colorspace, irect, alpha)
New empty pixmap: Create an empty pixmap of size and origin given by the rectangle. So, irect.top_left
designates the top left corner of the pixmap, and its width and height are irect.width resp. irect.height. Note
that the image area is not initialized and will contain crap data – use eg. clear_with() or set_rect()
to be sure.

Parameters
• colorspace (Colorspace) – colorspace.

6.15. Pixmap 265

PyMuPDF Documentation, Release 1.21.1

• irect (irect_like) – The pixmap’s position and dimension.

• alpha (bool) – Specifies whether transparency bytes should be included. Default
is False.

__init__(self, colorspace, source)
Copy and set colorspace: Copy source pixmap converting colorspace. Any colorspace combination is
possible, but source colorspace must not be None.

Parameters
• colorspace (Colorspace) – desired target colorspace. This may also be None.

In this case, a “masking” pixmap is created: its Pixmap.samples will consist of
the source’s alpha bytes only.

• source (Pixmap) – the source pixmap.

__init__(self, source, mask)

• New in v1.18.18

Copy and add image mask: Copy source pixmap, add an alpha channel with transparency data from a
mask pixmap.

Parameters
• source (Pixmap) – pixmap without alpha channel.

• mask (Pixmap) – a mask pixmap. Must be a graysale pixmap.

__init__(self, source, width, height[, clip])
Copy and scale: Copy source pixmap, scaling new width and height values – the image will appear
stretched or shrunk accordingly. Supports partial copying. The source colorspace may be None.

Parameters
• source (Pixmap) – the source pixmap.

• width (float) – desired target width.

• height (float) – desired target height.

• clip (irect_like) – restrict the resulting pixmap to this region of the scaled
pixmap.

Note: If width or height do not represent integers (i.e. value.is_integer() != True), then the
resulting pixmap will have an alpha channel.

__init__(self, source, alpha=1)
Copy and add or drop alpha: Copy source and add or drop its alpha channel. Identical copy if alpha
equals source.alpha. If an alpha channel is added, its values will be set to 255.

Parameters
• source (Pixmap) – source pixmap.

• alpha (bool) – whether the target will have an alpha channel, default and manda-
tory if source colorspace is None.

Note: A typical use includes separation of color and transparency bytes in separate pixmaps. Some
applications require this like e.g. wx.Bitmap.FromBufferAndAlpha() of wxPython:

266 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

>>> # 'pix' is an RGBA pixmap
>>> pixcolors = fitz.Pixmap(pix, 0) # extract the RGB part (drop alpha)
>>> pixalpha = fitz.Pixmap(None, pix) # extract the alpha part
>>> bm = wx.Bitmap.FromBufferAndAlpha(pix.widht, pix.height, pixcolors.samples,
→˓ pixalpha.samples)

__init__(self, filename)
From a file: Create a pixmap from filename. All properties are inferred from the input. The origin of the
resulting pixmap is (0, 0).

Parameters
filename (str) – Path of the image file.

__init__(self, stream)

From memory: Create a pixmap from a memory area. All properties are inferred from the input. The
origin of the resulting pixmap is (0, 0).

Parameters
stream (bytes,bytearray,BytesIO) – Data containing a complete, valid image.
Could have been created by e.g. stream = bytearray(open(‘image.file’, ‘rb’).read()).
Type bytes is supported in Python 3 only, because bytes == str in Python 2 and the
method will interpret the stream as a filename.

Changed in version 1.14.13: io.BytesIO is now also supported.

__init__(self, colorspace, width, height, samples, alpha)
From plain pixels: Create a pixmap from samples. Each pixel must be represented by a number of bytes
as controlled by the colorspace and alpha parameters. The origin of the resulting pixmap is (0, 0). This
method is useful when raw image data are provided by some other program – see FAQ.

Parameters
• colorspace (Colorspace) – Colorspace of image.

• width (int) – image width

• height (int) – image height

• samples (bytes,bytearray,BytesIO) – an area containing all pixels of the im-
age. Must include alpha values if specified.

Changed in version 1.14.13: (1) io.BytesIO can now also be used. (2) Data are now
copied to the pixmap, so may safely be deleted or become unavailable.

• alpha (bool) – whether a transparency channel is included.

Note:
1. The following equation must be true: (colorspace.n + alpha) * width * height == len(samples).

2. Starting with version 1.14.13, the samples data are copied to the pixmap.

__init__(self, doc, xref)
From a PDF image: Create a pixmap from an image contained in PDF doc identified by its xref . All
pimap properties are set by the image. Have a look at extract-img1.py and extract-img2.py to see how this
can be used to recover all of a PDF’s images.

Parameters

6.15. Pixmap 267

https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img1.py
https://github.com/pymupdf/PyMuPDF/tree/master/demo/extract-img2.py

PyMuPDF Documentation, Release 1.21.1

• doc (Document) – an opened PDF document.

• xref (int) – the xref of an image object. For example, you can make a list of
images used on a particular page with Document.get_page_images(), which
also shows the xref numbers of each image.

clear_with([value[, irect]])
Initialize the samples area.

Parameters
• value (int) – if specified, values from 0 to 255 are valid. Each color byte of each

pixel will be set to this value, while alpha will be set to 255 (non-transparent) if
present. If omitted, then all bytes (including any alpha) are cleared to 0x00.

• irect (irect_like) – the area to be cleared. Omit to clear the whole pixmap.
Can only be specified, if value is also specified.

tint_with(red, green, blue)
Colorize (tint) a pixmap with a color provided as an integer triple (red, green, blue). Only colorspaces
CS_GRAY and CS_RGB are supported, others are ignored with a warning.

If the colorspace is CS_GRAY , (red + green + blue)/3 will be taken as the tint value.

Parameters
• red (int) – red component.

• green (int) – green component.

• blue (int) – blue component.

gamma_with(gamma)
Apply a gamma factor to a pixmap, i.e. lighten or darken it. Pixmaps with colorspace None are ignored
with a warning.

Parameters
gamma (float) – gamma = 1.0 does nothing, gamma < 1.0 lightens, gamma > 1.0
darkens the image.

shrink(n)
Shrink the pixmap by dividing both, its width and height by 2n.

Parameters
n (int) – determines the new pixmap (samples) size. For example, a value of 2 divides
width and height by 4 and thus results in a size of one 16th of the original. Values less
than 1 are ignored with a warning.

Note: Use this methods to reduce a pixmap’s size retaining its proportion. The pixmap is changed “in
place”. If you want to keep original and also have more granular choices, use the resp. copy constructor
above.

pixel(x, y)
New in version:: 1.14.5: Return the value of the pixel at location (x, y) (column, line).

Parameters
• x (int) – the column number of the pixel. Must be in range(pix.width).

• y (int) – the line number of the pixel, Must be in range(pix.height).

268 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Return type
list

Returns
a list of color values and, potentially the alpha value. Its length and content depend on
the pixmap’s colorspace and the presence of an alpha. For RGBA pixmaps the result
would e.g. be [r, g, b, a]. All items are integers in range(256).

set_pixel(x, y, color)
New in version 1.14.7: Manipulate the pixel at location (x, y) (column, line).

Parameters
• x (int) – the column number of the pixel. Must be in range(pix.width).

• y (int) – the line number of the pixel. Must be in range(pix.height).

• color (sequence) – the desired pixel value given as a sequence of integers in
range(256). The length of the sequence must equal Pixmap.n, which includes
any alpha byte.

set_rect(irect, color)
New in version 1.14.8: Set the pixels of a rectangle to a value.

Parameters
• irect (irect_like) – the rectangle to be filled with the value. The actual area is

the intersection of this parameter and Pixmap.irect. For an empty intersection
(or an invalid parameter), no change will happen.

• color (sequence) – the desired value, given as a sequence of integers in
range(256). The length of the sequence must equal Pixmap.n, which includes
any alpha byte.

Return type
bool

Returns
False if the rectangle was invalid or had an empty intersection with Pixmap.irect, else
True.

Note:
1. This method is equivalent to Pixmap.set_pixel() executed for each pixel in the rectangle, but is

obviously very much faster if many pixels are involved.

2. This method can be used similar to Pixmap.clear_with() to initialize a pixmap with a certain
color like this: pix.set_rect(pix.irect, (255, 255, 0)) (RGB example, colors the complete pixmap with
yellow).

set_origin(x, y)

• New in v1.17.7

Set the x and y values of the pixmap’s top-left point.

Parameters
• x (int) – x coordinate

• y (int) – y coordinate

6.15. Pixmap 269

PyMuPDF Documentation, Release 1.21.1

set_dpi(xres, yres)

• New in v1.16.17

• Changed in v1.18.0: When saving as a PNG image, these values will be stored now.

Set the resolution (dpi) in x and y direction.

Parameters
• xres (int) – resolution in x direction.

• yres (int) – resolution in y direction.

set_alpha(alphavalues, premultiply=1, opaque=None)

• Changed in v 1.18.13

Change the alpha values. The pixmap must have an alpha channel.

Parameters
• alphavalues (bytes,bytearray,BytesIO) – the new alpha values. If provided,

its length must be at least width * height. If omitted (None), all alpha values are
set to 255 (no transparency). Changed in version 1.14.13: io.BytesIO is now also
accepted.

• premultiply (bool) – New in v1.18.13: whether to premultiply color components
with the alpha value.

• opaque (list,tuple) – ignore the alpha value and set this color to fully transpar-
ent. A sequence of integers in range(256) with a length of Pixmap.n. Default
is None. For example, a typical choice for RGB would be opaque=(255, 255,
255) (white).

invert_irect([irect])
Invert the color of all pixels in IRect irect. Will have no effect if colorspace is None.

Parameters
irect (irect_like) – The area to be inverted. Omit to invert everything.

copy(source, irect)
Copy the irect part of the source pixmap into the corresponding area of this one. The two pixmaps may
have different dimensions and can each have CS_GRAY or CS_RGB colorspaces, but they currently must
have the same alpha property2. The copy mechanism automatically adjusts discrepancies between source
and target like so:

If copying from CS_GRAY to CS_RGB, the source gray-shade value will be put into each of the three rgb
component bytes. If the other way round, (r + g + b) / 3 will be taken as the gray-shade value of the target.

Between irect and the target pixmap’s rectangle, an “intersection” is calculated at first. This takes into
account the rectangle coordinates and the current attribute values Pixmap.x and Pixmap.y (which you
are free to modify for this purpose via Pixmap.set_origin()). Then the corresponding data of this
intersection are copied. If the intersection is empty, nothing will happen.

Parameters
• source (Pixmap) – source pixmap.

• irect (irect_like) – The area to be copied.
2 To also set the alpha property, add an additional step to this method by dropping or adding an alpha channel to the result.

270 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Note: Example: Suppose you have two pixmaps, pix1 and pix2 and you want to copy the lower right
quarter of pix2 to pix1 such that it starts at the top-left point of pix1. Use the following snippet:

>>> # safeguard: set top-left of pix1 and pix2 to (0, 0)
>>> pix1.set_origin(0, 0)
>>> pix2.set_origin(0, 0)
>>> # compute top-left coordinates of pix2 region to copy
>>> x1 = int(pix2.width / 2)
>>> y1 = int(pix2.height / 2)
>>> # shift top-left of pix2 such, that the to-be-copied
>>> # area starts at (0, 0):
>>> pix2.set_origin(-x1, -y1)
>>> # now copy ...
>>> pix1.copy(pix2, (0, 0, x1, y1))

save(filename, output=None)
Save pixmap as an image file. Depending on the output chosen, only some or all colorspaces are supported
and different file extensions can be chosen. Please see the table below. Since MuPDF v1.10a the savealpha
option is no longer supported and will be silently ignored.

Parameters
• filename (str,Path,file) – The file to save to. May be provided as a string, as

a pathlib.Path or as a Python file object. In the latter two cases, the filename is
taken from the resp. object. The filename’s extension determines the image format,
which can be overruled by the output parameter.

• output (str) – The requested image format. The default is the filename’s exten-
sion. If not recognized, png is assumed. For other possible values see Supported
Output Image Formats.

pdfocr_save(filename, compress=True, language='eng')

• New in v1.19.0

Perform text recognition using Tesseract and save the image as a 1-page PDF with an OCR text layer.

Parameters
• filename (str,fp) – identifies the file to save to. May be either a string or a

pointer to a file opened with “wb” (includes io.BytesIO() objects).

• compress (bool) – whether to compress the resulting PDF, default is True.

• language (str) – the languages occurring in the image. This must be specified
in Tesseract format. Default is “eng” for English. Use “+”-separated Tesseract
language codes for multiple languages, like “eng+spa” for English and Spanish.

Note: Will fail if Tesseract is not installed or if the environment variable “TESSDATA_PREFIX” is not
set to the tessdata folder name. This is what you would typically see on a Windows platform:

6.15. Pixmap 271

PyMuPDF Documentation, Release 1.21.1

>>> print(os.environ["TESSDATA_PREFIX"])
C:\Program Files\Tesseract-OCR\tessdata

Respectively on a Linux system:

>>> print(os.environ["TESSDATA_PREFIX"])
/usr/share/tesseract-ocr/4.00/tessdata

pdfocr_tobytes(compress=True, language='eng')

• New in v1.19.0

Perform text recognition using Tesseract and convert the image to a 1-page PDF with an OCR text layer.
Internally invokes Pixmap.pdfocr_save().

Returns
A 1-page PDF file in memory. Could be opened like doc=fitz.open("pdf", pix.
pdfocr_tobytes()), and text extractions could be performed on its page=doc[0].

Note: Another possible use is insertion into some pdf. The following snippet reads the
images of a folder and stores them as pages in a new PDF that contain an OCR text layer:

doc = fitz.open()
for imgfile in os.listdir(folder):

pix = fitz.Pixmap(imgfile)
imgpdf = fitz.open("pdf", pix.pdfocr_tobytes())
doc.insert_pdf(imgpdf)
pix = None
imgpdf.close()

doc.save("ocr-images.pdf")

tobytes(output='png')
New in version 1.14.5: Return the pixmap as a bytes memory object of the specified format – similar to
save().

Parameters
output (str) – The requested image format. The default is “png” for which this func-
tion equals tobytes(). For other possible values see Supported Output Image Formats.

Return type
bytes

pil_save(*args, **kwargs)

• New in v1.17.3

Write the pixmap as an image file using Pillow. Use this method for output unsupported by MuPDF.
Examples are

• Formats JPEG, JPX, J2K, WebP, etc.

• Storing EXIF information.

• If you do not provide dpi information, the values xres, yres stored with the pixmap are automatically
used.

272 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

A simple example: pix.pil_save("some.jpg", optimize=True, dpi=(150, 150)). For details
on other parameters see the Pillow documentation.

Note: (Changed in v1.18.0) Pixmap.save() now also sets dpi from xres / yres automatically, when
saving a PNG image.

If Pillow is not installed an ImportError exception is raised.

pil_tobytes(*args, **kwargs)

• New in v1.17.3

Return an image as a bytes object in the specified format using Pillow. For example stream = pix.
pil_tobytes(format="JPEG", optimize=True). Also see above. For details on other parameters
see the Pillow documentation. If Pillow is not installed, an ImportError exception is raised.

Return type
bytes

warp(quad, width, height)

• New in v1.19.3

Return a new pixmap by “warping” the quad such that the quad corners become the new pixmap’s corners.
The target pixmap’s irect will be (0, 0, width, height).

Parameters
• quad (quad_like) – a convex quad with coordinates inside Pixmap.irect (in-

cluding the border points).

• width (int) – desired resulting width.

• height (int) – desired resulting height.

Returns
A new pixmap where the quad corners are mapped to the pixmap corners in a clockwise
fashion: quad.ul -> irect.tl, quad.ur -> irect.tr, etc.

Return type

Pixmap

color_count(colors=False, clip=None)

• New in v1.19.2

• Changed in v1.19.3

Determine the pixmap’s unique colors and their count.

Parameters

6.15. Pixmap 273

PyMuPDF Documentation, Release 1.21.1

• colors (bool) – (changed in v1.19.3) If True return a dictionary of color pixels
and their usage count, else just the number of unique colors.

• clip (rect_like) – a rectangle inside Pixmap.irect. If provided, only those
pixels are considered. This allows inspecting sub-rectangles of a given pixmap
directly – instead of building sub-pixmaps.

Return type
dict or int

Returns
either the number of colors, or a dictionary with the items pixel: count. The pixel
key is a bytes object of length Pixmap.n.

Note: To recover the tuple of a pixel, use tuple(colors.keys()[i]) for the i-th
item.

• The response time depends on the pixmap’s samples size and may be more than a
second for very large pixmaps.

• Where applicable, pixels with different alpha values will be treated as different col-
ors.

color_topusage(clip=None)

• New in v1.19.3

Return the most frequently used color and its relative frequency.

Parameters
clip (rect_like) – a rectangle inside Pixmap.irect. If provided, only those pix-
els are considered. This allows inspecting sub-rectangles of a given pixmap directly –
instead of building sub-pixmaps.

Return type
tuple[float, bytes]

Returns
A tuple (ratio, pixel) where 0 < ratio <= 1 and pixel is the pixel value of the
color. Use this to decide if the image is “almost” unicolor: a response (0.95, b"\x00\
x00\x00") means that 95% of all pixels are black.

alpha

Indicates whether the pixmap contains transparency information.

Type
bool

digest

The MD5 hashcode (16 bytes) of the pixmap. This is a technical value used for unique identifications.

Type
bytes

colorspace

The colorspace of the pixmap. This value may be None if the image is to be treated as a so-called image
mask or stencil mask (currently happens for extracted PDF document images only).

Type
Colorspace

274 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

stride

Contains the length of one row of image data in Pixmap.samples. This is primarily used for calculation
purposes. The following expressions are true:

• len(samples) == height * stride

• width * n == stride

Type
int

is_monochrome

• New in v1.19.2

Is True for a gray pixmap which only has the colors black and white.

Type
bool

is_unicolor

• New in v1.19.2

Is True if all pixels are identical (any colorspace). Where applicable, pixels with different alpha values
will be treated as different colors.

Type
bool

irect

Contains the IRect of the pixmap.

Type
IRect

samples

The color and (if Pixmap.alpha is true) transparency values for all pixels. It is an area of width *
height * n bytes. Each n bytes define one pixel. Each successive n bytes yield another pixel in scanline
order. Subsequent scanlines follow each other with no padding. E.g. for an RGBA colorspace this means,
samples is a sequence of bytes like . . . , R, G, B, A, . . . , and the four byte values R, G, B, A define one pixel.

This area can be passed to other graphics libraries like PIL (Python Imaging Library) to do additional
processing like saving the pixmap in other image formats.

Note:
• The underlying data is typically a large memory area, from which a bytes copy is made for this

attribute . . . each time you access it: for example an RGB-rendered letter page has a samples size of
almost 1.4 MB. So consider assigning a new variable to it or use the memoryview version Pixmap.
samples_mv (new in v1.18.17).

• Any changes to the underlying data are available only after accessing this attribute again. This is
different from using the memoryview version.

Type
bytes

6.15. Pixmap 275

PyMuPDF Documentation, Release 1.21.1

samples_mv

• New in v1.18.17

Like Pixmap.samples, but in Python memoryview format. It is built pointing to the memory in the
pixmap – not from a copy of it. So its creation speed is independent from the pixmap size, and any
changes to pixels will be available immediately.

Copies like bytearray(pix.samples_mv), or bytes(pixmap.samples_mv) are equivalent to and can
be used in place of pix.samples.

We also have len(pix.samples) == len(pix.samples_mv).

Look at this example from a 2 MB JPEG: the memoryview is ten thousand times faster:

In [3]: %timeit len(pix.samples_mv)
367 ns ± 1.75 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [4]: %timeit len(pix.samples)
3.52 ms ± 57.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Type
memoryview

samples_ptr

• New in v1.18.17

Python pointer to the pixel area. This is a special integer format, which can be used by supporting appli-
cations (such as PyQt) to directly address the samples area and thus build their images extremely fast. For
example:

img = QtGui.QImage(pix.samples, pix.width, pix.height, format) # (1)
img = QtGui.QImage(pix.samples_ptr, pix.width, pix.height, format) # (2)

Both of the above lead to the same Qt image, but (2) can be many hundred times faster, because it avoids
an additional copy of the pixel area.

Type
int

size

Contains len(pixmap). This will generally equal len(pix.samples) plus some platform-specific value for
defining other attributes of the object.

Type
int

width

w

Width of the region in pixels.

Type
int

height

276 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

h

Height of the region in pixels.

Type
int

x

X-coordinate of top-left corner in pixels. Cannot directly be changed – use Pixmap.set_origin().

Type
int

y

Y-coordinate of top-left corner in pixels. Cannot directly be changed – use Pixmap.set_origin().

Type
int

n

Number of components per pixel. This number depends on colorspace and alpha. If colorspace is not
None (stencil masks), then Pixmap.n - Pixmap.aslpha == pixmap.colorspace.n is true. If colorspace is
None, then n == alpha == 1.

Type
int

xres

Horizontal resolution in dpi (dots per inch). Please also see resolution. Cannot directly be changed –
use Pixmap.set_dpi().

Type
int

yres

Vertical resolution in dpi (dots per inch). Please also see resolution. Cannot directly be changed – use
Pixmap.set_dpi().

Type
int

interpolate

An information-only boolean flag set to True if the image will be drawn using “linear interpolation”. If
False “nearest neighbour sampling” will be used.

Type
bool

6.15.1 Supported Input Image Formats

The following file types are supported as input to construct pixmaps: BMP, JPEG, GIF, TIFF, JXR, JPX, PNG,
PAM and all of the Portable Anymap family (PBM, PGM, PNM, PPM). This support is two-fold:

1. Directly create a pixmap with Pixmap(filename) or Pixmap(byterray). The pixmap will then have properties as
determined by the image.

2. Open such files with fitz.open(. . .). The result will then appear as a document containing one single page. Cre-
ating a pixmap of this page offers all the options available in this context: apply a matrix, choose colorspace and
alpha, confine the pixmap to a clip area, etc.

6.15. Pixmap 277

PyMuPDF Documentation, Release 1.21.1

SVG images are only supported via method 2 above, not directly as pixmaps. But remember: the result of this is a
raster image as is always the case with pixmaps1.

6.15.2 Supported Output Image Formats

A number of image output formats are supported. You have the option to either write an image directly to a file
(Pixmap.save()), or to generate a bytes object (Pixmap.tobytes()). Both methods accept a 3-letter string identi-
fying the desired format (Format column below). Please note that not all combinations of pixmap colorspace, trans-
parency support (alpha) and image format are possible.

Format Colorspaces alpha Extensions Description
pam gray, rgb, cmyk yes .pam Portable Arbitrary Map
pbm gray, rgb no .pbm Portable Bitmap
pgm gray, rgb no .pgm Portable Graymap
png gray, rgb yes .png Portable Network Graphics
pnm gray, rgb no .pnm Portable Anymap
ppm gray, rgb no .ppm Portable Pixmap
ps gray, rgb, cmyk no .ps Adobe PostScript Image
psd gray, rgb, cmyk yes .psd Adobe Photoshop Document

Note:
• Not all image file types are supported (or at least common) on all OS platforms. E.g. PAM and the Portable

Anymap formats are rare or even unknown on Windows.

• Especially pertaining to CMYK colorspaces, you can always convert a CMYK pixmap to an RGB pixmap with
rgb_pix = fitz.Pixmap(fitz.csRGB, cmyk_pix) and then save that in the desired format.

• As can be seen, MuPDF’s image support range is different for input and output. Among those supported both
ways, PNG is probably the most popular. We recommend using Pillow whenever you face a support gap.

• We also recommend using “ppm” formats as input to tkinter’s PhotoImage method like this: tkimg = tkin-
ter.PhotoImage(data=pix.tobytes(“ppm”)) (also see the tutorial). This is very fast (60 times faster than PNG)
and will work under Python 2 or 3.

6.16 Point

Point represents a point in the plane, defined by its x and y coordinates.
1 If you need a vector image from the SVG, you must first convert it to a PDF. Try Document.convert_to_pdf(). If this is not good enough,

look for other SVG-to-PDF conversion tools like the Python packages svglib, CairoSVG, Uniconvertor or the Java solution Apache Batik. Have a
look at our Wiki for more examples.

278 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq
https://pypi.org/project/svglib
https://pypi.org/project/cairosvg
https://sk1project.net/modules.php?name=Products&product=uniconvertor&op=download
https://github.com/apache/batik

PyMuPDF Documentation, Release 1.21.1

Attribute / Method Description
Point.distance_to() calculate distance to point or rect
Point.norm() the Euclidean norm
Point.transform() transform point with a matrix
Point.abs_unit same as unit, but positive coordinates
Point.unit point coordinates divided by abs(point)
Point.x the X-coordinate
Point.y the Y-coordinate

Class API
class Point

__init__(self)

__init__(self, x, y)

__init__(self, point)

__init__(self, sequence)

Overloaded constructors.

Without parameters, Point(0, 0) will be created.

With another point specified, a new copy will be crated, “sequence” is a Python sequence of
2 numbers (see Using Python Sequences as Arguments in PyMuPDF).

Parameters
• x (float) – x coordinate of the point

• y (float) – y coordinate of the point

distance_to(x[, unit])
Calculate the distance to x, which may be point_like or rect_like. The distance is given
in units of either pixels (default), inches, centimeters or millimeters.

Parameters
• x (point_like,rect_like) – to which to compute the distance.

• unit (str) – the unit to be measured in. One of “px”, “in”, “cm”, “mm”.

Return type
float

Returns
the distance to x. If this is rect_like, then the distance

• is the length of the shortest line connecting to one of the rectangle sides

• is calculated to the finite version of it

• is zero if it contains the point

6.16. Point 279

PyMuPDF Documentation, Release 1.21.1

norm()

• New in version 1.16.0

Return the Euclidean norm (the length) of the point as a vector. Equals result of function abs().

transform(m)

Apply a matrix to the point and replace it with the result.

Parameters
m (matrix_like) – The matrix to be applied.

Return type
Point

unit

Result of dividing each coordinate by norm(point), the distance of the point to (0,0). This is a vector of
length 1 pointing in the same direction as the point does. Its x, resp. y values are equal to the cosine, resp.
sine of the angle this vector (and the point itself) has with the x axis.

Type
Point

abs_unit

Same as unit above, replacing the coordinates with their absolute values.

Type
Point

x

The x coordinate

Type
float

y

The y coordinate

280 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Type
float

Note:
• This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also

refer to Using Python Sequences as Arguments in PyMuPDF.

• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

6.17 Quad

Represents a four-sided mathematical shape (also called “quadrilateral” or “tetragon”) in the plane, defined as a se-
quence of four Point objects ul, ur, ll, lr (conveniently called upper left, upper right, lower left, lower right).

Quads can be obtained as results of text search methods (Page.search_for()), and they are used to define text
marker annotations (see e.g. Page.add_squiggly_annot() and friends), and in several draw methods (like Page.
draw_quad() / Shape.draw_quad(), Page.draw_oval()/ Shape.draw_quad()).

Note:
• If the corners of a rectangle are transformed with a rotation, scale or translation Matrix, then the resulting quad

is rectangular (= congruent to a rectangle), i.e. all of its corners again enclose angles of 90 degrees. Property
Quad.is_rectangular checks whether a quad can be thought of being the result of such an operation.

• This is not true for all matrices: e.g. shear matrices produce parallelograms, and non-invertible matrices deliver
“degenerate” tetragons like triangles or lines.

• Attribute Quad.rect obtains the envelopping rectangle. Vice versa, rectangles now have attributes Rect.quad ,
resp. IRect.quad to obtain their respective tetragon versions.

Methods / Attributes Short Description
Quad.transform() transform with a matrix
Quad.morph() transform with a point and matrix
Quad.ul upper left point
Quad.ur upper right point
Quad.ll lower left point
Quad.lr lower right point
Quad.is_convex true if quad is a convex set
Quad.is_empty true if quad is an empty set
Quad.is_rectangular true if quad is congruent to a rectangle
Quad.rect smallest containing Rect
Quad.width the longest width value
Quad.height the longest height value

Class API
class Quad

__init__(self)

6.17. Quad 281

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

__init__(self, ul, ur, ll, lr)

__init__(self, quad)

__init__(self, sequence)
Overloaded constructors: “ul”, “ur”, “ll”, “lr” stand for point_like objects (the four corners), “sequence”
is a Python sequence with four point_like objects.

If “quad” is specified, the constructor creates a new copy of it.

Without parameters, a quad consisting of 4 copies of Point(0, 0) is created.

transform(matrix)
Modify the quadrilateral by transforming each of its corners with a matrix.

Parameters
matrix (matrix_like) – the matrix.

morph(fixpoint, matrix)
(New in version 1.17.0) “Morph” the quad with a matrix-like using a point-like as fixed point.

Parameters
• fixpoint (point_like) – the point.

• matrix (matrix_like) – the matrix.

Returns
a new quad (no operation if this is the infinite quad).

rect

The smallest rectangle containing the quad, represented by the blue area in the following picture.

Type
Rect

ul

Upper left point.

282 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Type
Point

ur

Upper right point.

Type
Point

ll

Lower left point.

Type
Point

lr

Lower right point.

Type
Point

is_convex

• New in version 1.16.1

Checks if for any two points of the quad, all points on their connecting line also belong to the quad.

Type
bool

is_empty

True if enclosed area is zero, which means that at least three of the four corners are on the same line. If
this is false, the quad may still be degenerate or not look like a tetragon at all (triangles, parallelograms,
trapezoids, . . .).

Type
bool

is_rectangular

True if all corner angles are 90 degrees. This implies that the quad is convex and not empty.

Type
bool

width

The maximum length of the top and the bottom side.

Type
float

height

The maximum length of the left and the right side.

Type
float

6.17. Quad 283

PyMuPDF Documentation, Release 1.21.1

6.17.1 Remark

This class adheres to the sequence protocol, so components can be dealt with via their indices, too. Also refer to Using
Python Sequences as Arguments in PyMuPDF.

6.17.2 Algebra and Containment Checks

Starting with v1.19.6, quads can be used in algebraic expressions like the other geometry object – the respective re-
strictions have been lifted. In particular, all the following combinations of containment checking are now possible:

{Point | IRect | Rect | Quad} in {IRect | Rect | Quad}

Please note the following interesting detail:

For a rectangle, only its top-left point belongs to it. Since v1.19.0, rectangles are defined to be “open”, such that its
bottom and its right edge do not belong to it – including the respective corners. But for quads there exists no such
notion like “openness”, so we have the following somewhat surprising implication:

>>> rect.br in rect
False
>>> # but:
>>> rect.br in rect.quad
True

6.18 Rect

Rect represents a rectangle defined by four floating point numbers x0, y0, x1, y1. They are treated as being coordinates
of two diagonally opposite points. The first two numbers are regarded as the “top left” corner P(x0,y0) and P(x1,y1) as the
“bottom right” one. However, these two properties need not coincide with their intuitive meanings – read on.

The following remarks are also valid for IRect objects:

• A rectangle in the sense of (Py-) MuPDF (and PDF) always has borders parallel to the x- resp. y-axis. A
general orthogonal tetragon is not a rectangle – in contrast to the mathematical definition.

• The constructing points can be (almost! – see below) anywhere in the plane – they need not even be different,
and e.g. “top left” need not be the geometrical “north-western” point.

• For any given quadruple of numbers, the geometrically “same” rectangle can be defined in four different
ways:

1. Rect(P(x0,y0), P(x1,y1))

2. Rect(P(x1,y1), P(x0,y0))

3. Rect(P(x0,y1), P(x1,y0))

4. Rect(P(x1,y0), P(x0,y1))

(Changed in v1.19.0) Hence some classification:

• A rectangle is called valid if x0 <= x1 and y0 <= y1 (i.e. the bottom right point is “south-eastern” to the top
left one), otherwise invalid. Of the four alternatives above, only the first is valid. Please take into account, that
in MuPDF’s coordinate system, the y-axis is oriented from top to bottom. Invalid rectangles have been called
infinite in earlier versions.

284 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

• A rectangle is called empty if x0 >= x1 or y0 >= y1. This implies, that invalid rectangles are also always
empty. And width (resp. height) is set to zero if x0 > x1 (resp. y0 > y1). In previous versions, a rectangle
was empty only if one of width or height was zero.

• Rectangle coordinates cannot be outside the number range from FZ_MIN_INF_RECT = -2147483648 to
FZ_MAX_INF_RECT = 2147483520. Both values have been chosen, because they are the smallest / largest 32bit
integers that survive C float conversion roundtrips. In previous versions there was no limit for coordinate values.

• There is exactly one “infinite” rectangle, defined by x0 = y0 = FZ_MIN_INF_RECT and x1 = y1 =
FZ_MAX_INF_RECT. It contains every other rectangle. It is mainly used for technical purposes – e.g. when a
function call should ignore a formally required rectangle argument. This rectangle is not empty.

• Rectangles are (semi-) open: The right and the bottom edges (including the resp. corners) are not considered
part of the rectangle. This implies, that only the top-left corner (x0, y0) can ever belong to the rectangle - the
other three corners never do. An empty rectangle contains no corners at all.

• Here is an overview of the changes.

Notion Versions < 1.19.0 Versions 1.19.*
empty x0 = x1 or y0 = y1 x0 >= x1 or y0 >= y1 – includes invalid rects
valid n/a x0 <= x1 and y0 <= y1
infinite all rects where x0 > x1 or y1

> y0
exactly one infinite rect / irect!

coordinate
values

all numbers FZ_MIN_INF_RECT <= number <=
FZ_MAX_INF_RECT

borders,
corners

are parts of the rectangle right and bottom corners and edges are outside

• There are new top level functions defining infinite and standard empty rectangles and quads, see
INFINITE_RECT() and friends.

6.18. Rect 285

PyMuPDF Documentation, Release 1.21.1

Methods / Attributes Short Description
Rect.contains() checks containment of point_likes and rect_likes
Rect.get_area() calculate rectangle area
Rect.include_point() enlarge rectangle to also contain a point
Rect.include_rect() enlarge rectangle to also contain another one
Rect.intersect() common part with another rectangle
Rect.intersects() checks for non-empty intersections
Rect.morph() transform with a point and a matrix
Rect.torect() the matrix that transforms to another rectangle
Rect.norm() the Euclidean norm
Rect.normalize() makes a rectangle valid
Rect.round() create smallest IRect containing rectangle
Rect.transform() transform rectangle with a matrix
Rect.bottom_left bottom left point, synonym bl
Rect.bottom_right bottom right point, synonym br
Rect.height rectangle height
Rect.irect equals result of method round()
Rect.is_empty whether rectangle is empty
Rect.is_valid whether rectangle is valid
Rect.is_infinite whether rectangle is infinite
Rect.top_left top left point, synonym tl
Rect.top_right top_right point, synonym tr
Rect.quad Quad made from rectangle corners
Rect.width rectangle width
Rect.x0 left corners’ x coordinate
Rect.x1 right corners’ x -coordinate
Rect.y0 top corners’ y coordinate
Rect.y1 bottom corners’ y coordinate

Class API
class Rect

__init__(self)

__init__(self, x0, y0, x1, y1)

__init__(self, top_left, bottom_right)

__init__(self, top_left, x1, y1)

__init__(self, x0, y0, bottom_right)

__init__(self, rect)

__init__(self, sequence)
Overloaded constructors: top_left, bottom_right stand for point_like objects, “sequence” is a Python
sequence type of 4 numbers (see Using Python Sequences as Arguments in PyMuPDF), “rect” means
another rect_like, while the other parameters mean coordinates.

If “rect” is specified, the constructor creates a new copy of it.

Without parameters, the empty rectangle Rect(0.0, 0.0, 0.0, 0.0) is created.

286 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

round()

Creates the smallest containing IRect. This is not the same as simply rounding the rectangle’s edges: The
top left corner is rounded upwards and to the left while the bottom right corner is rounded downwards and
to the right.

>>> fitz.Rect(0.5, -0.01, 123.88, 455.123456).round()
IRect(0, -1, 124, 456)

1. If the rectangle is empty, the result is also empty.

2. Possible paradox: The result may be empty, even if the rectangle is not empty! In such cases, the
result obviously does not contain the rectangle. This is because MuPDF’s algorithm allows for a
small tolerance (1e-3). Example:

>>> r = fitz.Rect(100, 100, 200, 100.001)
>>> r.is_empty # rect is NOT empty
False
>>> r.round() # but its irect IS empty!
fitz.IRect(100, 100, 200, 100)
>>> r.round().is_empty
True

Return type
IRect

transform(m)

Transforms the rectangle with a matrix and replaces the original. If the rectangle is empty or infinite, this
is a no-operation.

Parameters
m (Matrix) – The matrix for the transformation.

Return type
Rect

Returns
the smallest rectangle that contains the transformed original.

intersect(r)
The intersection (common rectangular area, largest rectangle contained in both) of the current rectangle
and r is calculated and replaces the current rectangle. If either rectangle is empty, the result is also empty.
If r is infinite, this is a no-operation. If the rectangles are (mathematically) disjoint sets, then the result is
invalid. If the result is valid but empty, then the rectangles touch each other in a corner or (part of) a side.

Parameters
r (Rect) – Second rectangle

include_rect(r)
The smallest rectangle containing the current one and r is calculated and replaces the current one. If
either rectangle is infinite, the result is also infinite. If one is empty, the other one will be taken as the
result.

Parameters
r (Rect) – Second rectangle

6.18. Rect 287

PyMuPDF Documentation, Release 1.21.1

include_point(p)
The smallest rectangle containing the current one and point p is calculated and replaces the current one.
The infinite rectangle remains unchanged. To create a rectangle containing a series of points, start with
(the empty) fitz.Rect(p1, p1) and successively include the remaining points.

Parameters
p (Point) – Point to include.

get_area([unit])
Calculate the area of the rectangle and, with no parameter, equals abs(rect). Like an empty rectangle, the
area of an infinite rectangle is also zero. So, at least one of fitz.Rect(p1, p2) and fitz.Rect(p2, p1) has a zero
area.

Parameters
unit (str) – Specify required unit: respective squares of px (pixels, default), in (inches),
cm (centimeters), or mm (millimeters).

Return type
float

contains(x)
Checks whether x is contained in the rectangle. It may be an IRect, Rect, Point or number. If x is an empty
rectangle, this is always true. If the rectangle is empty this is always False for all non-empty rectangles
and for all points. x in rect and rect.contains(x) are equivalent.

Parameters
x (rect_like or point_like.) – the object to check.

Return type
bool

intersects(r)
Checks whether the rectangle and a rect_like “r” contain a common non-empty Rect. This will always
be False if either is infinite or empty.

Parameters
r (rect_like) – the rectangle to check.

Return type
bool

torect(rect)

• New in version 1.19.3

Compute the matrix which transforms this rectangle to a given one.

Parameters
rect (rect_like) – the target rectangle. Must not be empty or infinite.

Return type
Matrix

Returns
a matrix mat such that self * mat = rect. Can for example be used to transform
between the page and the pixmap coordinates.

Note: Suppose you want to check whether any of the words “pixmap” is invisible,
because the text color equals the ambient color – e.g. white on white. We make a
pixmap and check the “color environment” of each word:

288 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

>>> # make a pixmap of the page
>>> pix = page.get_pixmap(dpi=150)
>>> # make a matrix that transforms to pixmap coordinates
>>> mat = page.rect.torect(pix.irect)
>>> # search for text locations
>>> rlist = page.search_for("pixmap")
>>> # check color environment of each occurrence
>>> # we will check for "almost unicolor"
>>> for r in rlist:

if pix.color_topusage(clip=r * mat)[0] > 0.95:
print("'pixmap' invisible here:", r)

>>>

Method Pixmap.color_topusage() computes the percentage of pixels showing the
same color.

morph(fixpoint, matrix)

• New in version 1.17.0

Return a new quad after applying a matrix to the rectangle using the fixed point fixpoint.

Parameters
• fixpoint (point_like) – the fixed point.

• matrix (matrix_like) – the matrix.

Returns
a new Quad. This a wrapper for the same-named quad method. If infinite, the infinite
quad is returned.

norm()

• New in version 1.16.0

Return the Euclidean norm of the rectangle treated as a vector of four numbers.

normalize()

Replace the rectangle with its valid version. This is done by shuffling the rectangle corners. After com-
pletion of this method, the bottom right corner will indeed be south-eastern to the top left one (but may
still be empty).

irect

Equals result of method round().

top_left

tl

Equals Point(x0, y0).

Type
Point

top_right

tr

Equals Point(x1, y0).

6.18. Rect 289

PyMuPDF Documentation, Release 1.21.1

Type
Point

bottom_left

bl

Equals Point(x0, y1).

Type
Point

bottom_right

br

Equals Point(x1, y1).

Type
Point

quad

The quadrilateral Quad(rect.tl, rect.tr, rect.bl, rect.br).

Type
Quad

width

Width of the rectangle. Equals max(x1 - x0, 0).

Return type
float

height

Height of the rectangle. Equals max(y1 - y0, 0).

Return type
float

x0

X-coordinate of the left corners.

Type
float

y0

Y-coordinate of the top corners.

Type
float

x1

X-coordinate of the right corners.

Type
float

y1

Y-coordinate of the bottom corners.

Type
float

290 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

is_infinite

True if this is the infinite rectangle.

Type
bool

is_empty

True if rectangle is empty.

Type
bool

is_valid

True if rectangle is valid.

Type
bool

Note:
• This class adheres to the Python sequence protocol, so components can be accessed via their index, too. Also

refer to Using Python Sequences as Arguments in PyMuPDF.

• Rectangles can be used with arithmetic operators – see chapter Operator Algebra for Geometry Objects.

6.19 Shape

This class allows creating interconnected graphical elements on a PDF page. Its methods have the same meaning and
name as the corresponding Page methods.

In fact, each Page draw method is just a convenience wrapper for (1) one shape draw method, (2) the Shape.finish()
method, and (3) the Shape.commit()method. For page text insertion, only the Shape.commit()method is invoked.
If many draw and text operations are executed for a page, you should always consider using a Shape object.

Several draw methods can be executed in a row and each one of them will contribute to one drawing. Once the drawing is
complete, the Shape.finish()method must be invoked to apply color, dashing, width, morphing and other attributes.

Draw methods of this class (and Shape.insert_textbox()) are logging the area they are covering in a rectangle
(Shape.rect). This property can for instance be used to set Page.cropbox_position.

Text insertions Shape.insert_text() and Shape.insert_textbox() implicitely execute a “finish” and there-
fore only require Shape.commit() to become effective. As a consequence, both include parameters for controlling
prperties like colors, etc.

6.19. Shape 291

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

Method / Attribute Description
Shape.commit() update the page’s contents
Shape.draw_bezier() draw a cubic Bezier curve
Shape.draw_circle() draw a circle around a point
Shape.draw_curve() draw a cubic Bezier using one helper point
Shape.draw_line() draw a line
Shape.draw_oval() draw an ellipse
Shape.draw_polyline() connect a sequence of points
Shape.draw_quad() draw a quadrilateral
Shape.draw_rect() draw a rectangle
Shape.draw_sector() draw a circular sector or piece of pie
Shape.draw_squiggle() draw a squiggly line
Shape.draw_zigzag() draw a zigzag line
Shape.finish() finish a set of draw commands
Shape.insert_text() insert text lines
Shape.insert_textbox() fit text into a rectangle
Shape.doc stores the page’s document
Shape.draw_cont draw commands since last Shape.finish()
Shape.height stores the page’s height
Shape.lastPoint stores the current point
Shape.page stores the owning page
Shape.rect rectangle surrounding drawings
Shape.text_cont accumulated text insertions
Shape.totalcont accumulated string to be stored in contents
Shape.width stores the page’s width

Class API
class Shape

__init__(self, page)
Create a new drawing. During importing PyMuPDF, the fitz.Page object is being given the convenience
method new_shape() to construct a Shape object. During instantiation, a check will be made whether we
do have a PDF page. An exception is otherwise raised.

Parameters
page (Page) – an existing page of a PDF document.

draw_line(p1, p2)
Draw a line from point_like objects p1 to p2.

Parameters
• p1 (point_like) – starting point

• p2 (point_like) – end point

Return type
Point

Returns
the end point, p2.

draw_squiggle(p1, p2, breadth=2)
Draw a squiggly (wavy, undulated) line from point_like objects p1 to p2. An integer number of full
wave periods will always be drawn, one period having a length of 4 * breadth. The breadth parameter will

292 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

be adjusted as necessary to meet this condition. The drawn line will always turn “left” when leaving p1
and always join p2 from the “right”.

Parameters
• p1 (point_like) – starting point

• p2 (point_like) – end point

• breadth (float) – the amplitude of each wave. The condition 2 * breadth <
abs(p2 - p1) must be true to fit in at least one wave. See the following picture,
which shows two points connected by one full period.

Return type
Point

Returns
the end point, p2.

Here is an example of three connected lines, forming a closed, filled triangle. Little arrows indicate the
stroking direction.

>>> import fitz
>>> doc=fitz.open()
>>> page=doc.new_page()
>>> r = fitz.Rect(100, 100, 300, 200)
>>> shape=page.new_shape()
>>> shape.draw_squiggle(r.tl, r.tr)
>>> shape.draw_squiggle(r.tr, r.br)
>>> shape.draw_squiggle(r.br, r.tl)
>>> shape.finish(color=(0, 0, 1), fill=(1, 1, 0))
>>> shape.commit()
>>> doc.save("x.pdf")

6.19. Shape 293

PyMuPDF Documentation, Release 1.21.1

Note: Waves drawn are not trigonometric (sine / cosine). If you need that, have a look at draw-sines.py.

draw_zigzag(p1, p2, breadth=2)
Draw a zigzag line from point_like objects p1 to p2. Otherwise works exactly like Shape.
draw_squiggle().

Parameters
• p1 (point_like) – starting point

• p2 (point_like) – end point

• breadth (float) – the amplitude of the movement. The condition 2 * breadth <
abs(p2 - p1) must be true to fit in at least one period.

Return type
Point

Returns
the end point, p2.

draw_polyline(points)
Draw several connected lines between points contained in the sequence points. This can be used for cre-
ating arbitrary polygons by setting the last item equal to the first one.

Parameters
points (sequence) – a sequence of point_like objects. Its length must at least be 2
(in which case it is equivalent to draw_line()).

Return type
Point

Returns
points[-1] – the last point in the argument sequence.

draw_bezier(p1, p2, p3, p4)
Draw a standard cubic Bézier curve from p1 to p4, using p2 and p3 as control points.

294 Chapter 6. Classes

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/demo/draw-sines.py

PyMuPDF Documentation, Release 1.21.1

All arguments are point_like s.

Return type
Point

Returns
the end point, p4.

Note: The points do not need to be different – experiment a bit with some of them being equal!

Example:

draw_oval(tetra)
Draw an “ellipse” inside the given tetragon (quadrilateral). If it is a square, a regular circle is drawn, a
general rectangle will result in an ellipse. If a quadrilateral is used instead, a plethora of shapes can be the
result.

The drawing starts and ends at the middle point of the line bottom-left -> top-left corners in an
anti-clockwise movement.

Parameters
tetra (rect_like,quad_like) – rect_like or quad_like.

Changed in version 1.14.5: Quads are now also supported.

Return type
Point

Returns
the middle point of line rect.bl -> rect.tl, or resp. quad.ll -> quad.ul. Look
at just a few examples here, or at the quad-show?.py scripts in the PyMuPDF-Utilities
repository.

6.19. Shape 295

PyMuPDF Documentation, Release 1.21.1

draw_circle(center, radius)
Draw a circle given its center and radius. The drawing starts and ends at point center - (radius, 0)
in an anti-clockwise movement. This point is the middle of the enclosing square’s left side.

This is a shortcut for draw_sector(center, start, 360, fullSector=False). To draw the same
circle in a clockwise movement, use -360 as degrees.

Parameters
• center (point_like) – the center of the circle.

• radius (float) – the radius of the circle. Must be positive.

Return type
Point

Returns

Point(center.x - radius, center.y).

draw_curve(p1, p2, p3)
A special case of draw_bezier(): Draw a cubic Bezier curve from p1 to p3. On each of the two lines p1 ->
p2 and p3 -> p2 one control point is generated. Both control points will therefore be on the same side
of the line p1 -> p3. This guaranties that the curve’s curvature does not change its sign. If the lines to
p2 intersect with an angle of 90 degrees, then the resulting curve is a quarter ellipse (resp. quarter circle,
if of same length).

All arguments are point_like.

Return type
Point

Returns
the end point, p3. The following is a filled quarter el-
lipse segment. The yellow area is oriented clockwise:

draw_sector(center, point, angle, fullSector=True)
Draw a circular sector, optionally connecting the arc to the circle’s center (like a piece of pie).

Parameters

296 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• center (point_like) – the center of the circle.

• point (point_like) – one of the two end points of the pie’s arc segment. The
other one is calculated from the angle.

• angle (float) – the angle of the sector in degrees. Used to calculate the other end
point of the arc. Depending on its sign, the arc is drawn anti-clockwise (postive) or
clockwise.

• fullSector (bool) – whether to draw connecting lines from the ends of the arc to
the circle center. If a fill color is specified, the full “pie” is colored, otherwise just
the sector.

Return type
Point

Returns
the other end point of the arc. Can be used as starting point for a fol-
lowing invocation to create logically connected pies charts. Examples:

draw_rect(rect)
Draw a rectangle. The drawing starts and ends at the top-left corner in an anti-clockwise movement.

Parameters
rect (rect_like) – where to put the rectangle on the page.

Return type
Point

Returns
top-left corner of the rectangle.

draw_quad(quad)
Draw a quadrilateral. The drawing starts and ends at the top-left corner (Quad.ul) in an anti-clockwise
movement. It is a shortcut of Shape.draw_polyline() with the argument (ul, ll, lr, ur, ul).

Parameters
quad (quad_like) – where to put the tetragon on the page.

Return type
Point

Returns
Quad.ul.

finish(width=1, color=None, fill=None, lineCap=0, lineJoin=0, dashes=None, closePath=True,
even_odd=False, morph=(fixpoint, matrix), stroke_opacity=1, fill_opacity=1, oc=0)

Finish a set of draw*() methods by applying Common Parameters to all of them.

It has no effect on Shape.insert_text() and Shape.insert_textbox().

The method also supports morphing the compound drawing using Point fixpoint and Matrix matrix.

6.19. Shape 297

PyMuPDF Documentation, Release 1.21.1

Parameters
• morph (sequence) – morph the text or the compound drawing around some arbi-

trary Point fixpoint by applying Matrix matrix to it. This implies that fixpoint is a
fixed point of this operation: it will not change its position. Default is no morphing
(None). The matrix can contain any values in its first 4 components, matrix.e ==
matrix.f == 0 must be true, however. This means that any combination of scaling,
shearing, rotating, flipping, etc. is possible, but translations are not.

• stroke_opacity (float) – (new in v1.18.1) set transparency for stroke colors.
Value < 0 or > 1 will be ignored. Default is 1 (intransparent).

• fill_opacity (float) – (new in v1.18.1) set transparency for fill colors. Default
is 1 (intransparent).

• even_odd (bool) – request the “even-odd rule” for filling operations. Default
is False, so that the “nonzero winding number rule” is used. These rules are
alternative methods to apply the fill color where areas overlap. Only with fairly
complex shapes a different behavior is to be expected with these rules. For an in-
depth explanation, see Adobe PDF References, pp. 137 ff. Here is an example to
demonstrate the difference.

• oc (int) – (new in v1.18.4) the xref number of an OCG or OCMD to make this
drawing conditionally displayable.

298 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Note: For each pixel in a shape, the following will happen:

1. Rule “even-odd” counts, how many areas contain the pixel. If this count is odd, the pixel is regarded
inside the shape, if it is even, the pixel is outside.

2. The default rule “nonzero winding” in addition looks at the “orientation” of each area containing
the pixel: it adds 1 if an area is drawn anti-clockwise and it subtracts 1 for clockwise areas. If the
result is zero, the pixel is regarded outside, pixels with a non-zero count are inside the shape.

Of the four shapes in above image, the top two each show three circles drawn in standard manner (anti-
clockwise, look at the arrows). The lower two shapes contain one (the top-left) circle drawn clockwise.
As can be seen, area orientation is irrelevant for the right column (even-odd rule).

insert_text(point, text, fontsize=11, fontname='helv', fontfile=None, set_simple=False,
encoding=TEXT_ENCODING_LATIN, color=None, lineheight=None, fill=None,
render_mode=0, border_width=1, rotate=0, morph=None, stroke_opacity=1, fill_opacity=1,
oc=0)

Insert text lines start at point.

6.19. Shape 299

PyMuPDF Documentation, Release 1.21.1

Parameters
• point (point_like) – the bottom-left position of the first character of text

in pixels. It is important to understand, how this works in conjunction with
the rotate parameter. Please have a look at the following picture. The small
red dots indicate the positions of point in each of the four possible cases.

• text (str/sequence) – the text to be inserted. May be specified as either a string
type or as a sequence type. For sequences, or strings containing line breaks n,
several lines will be inserted. No care will be taken if lines are too wide, but the
number of inserted lines will be limited by “vertical” space on the page (in the
sense of reading direction as established by the rotate parameter). Any rest of text
is discarded – the return code however contains the number of inserted lines.

• lineheight (float) – a factor to override the line height calculated from font
properties. If not None, a line height of fontsize * lineheight will be used.

• stroke_opacity (float) – (new in v1.18.1) set transparency for stroke colors.
Negative values and values > 1 will be ignored. Default is 1 (intransparent).

• fill_opacity (float) – (new in v1.18.1) set transparency for fill colors. Default
is 1 (intransparent). Use this value to control transparency of the text color. Stroke
opacity only affects the border line of characters.

• rotate (int) – determines whether to rotate the text. Acceptable values are multi-
ples of 90 degrees. Default is 0 (no rotation), meaning horizontal text lines oriented
from left to right. 180 means text is shown upside down from right to left. 90
means anti-clockwise rotation, text running upwards. 270 (or -90) means clock-
wise rotation, text running downwards. In any case, point specifies the bottom-left
coordinates of the first character’s rectangle. Multiple lines, if present, always fol-
low the reading direction established by this parameter. So line 2 is located above
line 1 in case of rotate = 180, etc.

• oc (int) – (new in v1.18.4) the xref number of an OCG or OCMD to make this text
conditionally displayable.

Return type
int

Returns
number of lines inserted.

For a description of the other parameters see Common Parameters.

300 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

insert_textbox(rect, buffer, fontsize=11, fontname='helv', fontfile=None, set_simple=False,
encoding=TEXT_ENCODING_LATIN, color=None, fill=None, render_mode=0,
border_width=1, expandtabs=8, align=TEXT_ALIGN_LEFT, rotate=0, morph=None,
stroke_opacity=1, fill_opacity=1, oc=0)

PDF only: Insert text into the specified rectangle. The text will be split into lines and words and then filled
into the available space, starting from one of the four rectangle corners, which depends on rotate. Line
feeds and multiple space will be respected.

Parameters
• rect (rect_like) – the area to use. It must be finite and not empty.

• buffer (str/sequence) – the text to be inserted. Must be specified as a string or
a sequence of strings. Line breaks are respected also when occurring in a sequence
entry.

• align (int) – align each text line. Default is 0 (left). Centered, right and justified
are the other supported options, see Text Alignment. Please note that the effect of
parameter value TEXT_ALIGN_JUSTIFY is only achievable with “simple” (single-
byte) fonts (including the PDF Base 14 Fonts).

• expandtabs (int) – controls handling of tab characters t using the
string.expandtabs() method per each line.

• stroke_opacity (float) – (new in v1.18.1) set transparency for stroke colors.
Negative values and values > 1 will be ignored. Default is 1 (intransparent).

• fill_opacity (float) – (new in v1.18.1) set transparency for fill colors. Default
is 1 (intransparent). Use this value to control transparency of the text color. Stroke
opacity only affects the border line of characters.

• rotate (int) – requests text to be rotated in the rectangle. This value must be a
multiple of 90 degrees. Default is 0 (no rotation). Effectively, four different values
are processed: 0, 90, 180 and 270 (= -90), each causing the text to start in a different
rectangle corner. Bottom-left is 90, bottom-right is 180, and -90 / 270 is top-right.
See the example how text is filled in a rectangle. This argument takes precedence
over morphing. See the second example, which shows text first rotated left by 90
degrees and then the whole rectangle rotated clockwise around is lower left corner.

• oc (int) – (new in v1.18.4) the xref number of an OCG or OCMD to make this text
conditionally displayable.

Return type
float

Returns
If positive or zero: successful execution. The value returned is the unused rectangle
line space in pixels. This may safely be ignored – or be used to optimize the rectangle,
position subsequent items, etc.

If negative: no execution. The value returned is the space deficit to store text lines.
Enlarge rectangle, decrease fontsize, decrease text amount, etc.

6.19. Shape 301

PyMuPDF Documentation, Release 1.21.1

For a description of the other parameters see Common Parameters.

commit(overlay=True)
Update the page’s contents with the accumulated drawings, followed by any text insertions. If text over-
laps drawings, it will be written on top of the drawings.

Warning: Do not forget to execute this method:
If a shape is not committed, it will be ignored and the page will not be changed!

The method will reset attributes Shape.rect, lastPoint, draw_cont, text_cont and totalcont.
Afterwards, the shape object can be reused for the same page.

Parameters
overlay (bool) – determine whether to put content in foreground (default) or back-
ground. Relevant only, if the page already has a non-empty contents object.

———- Attributes ———-
doc

For reference only: the page’s document.

Type
Document

page

For reference only: the owning page.

Type
Page

height

Copy of the page’s height

Type
float

width

Copy of the page’s width.

Type
float

302 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

draw_cont

Accumulated command buffer for draw methods since last finish. Every finish method will append its
commands to Shape.totalcont.

Type
str

text_cont

Accumulated text buffer. All text insertions go here. This buffer will be appended to totalcont Shape.
commit(), so that text will never be covered by drawings in the same Shape.

Type
str

rect

Rectangle surrounding drawings. This attribute is at your disposal and may be changed at any time.
Its value is set to None when a shape is created or committed. Every draw* method, and Shape.
insert_textbox() update this property (i.e. enlarge the rectangle as needed). Morphing operations,
however (Shape.finish(), Shape.insert_textbox()) are ignored.

A typical use of this attribute would be setting Page.cropbox_position to this value, when you are
creating shapes for later or external use. If you have not manipulated the attribute yourself, it should
reflect a rectangle that contains all drawings so far.

If you have used morphing and need a rectangle containing the morphed objects, use the following code:

>>> # assuming ...
>>> morph = (point, matrix)
>>> # ... recalculate the shape rectangle like so:
>>> shape.rect = (shape.rect - fitz.Rect(point, point)) * ~matrix + fitz.
→˓Rect(point, point)

Type
Rect

totalcont

Total accumulated command buffer for draws and text insertions. This will be used by Shape.commit().

Type
str

lastPoint

For reference only: the current point of the drawing path. It is None at Shape creation and after each finish()
and commit().

Type
Point

6.19. Shape 303

PyMuPDF Documentation, Release 1.21.1

6.19.1 Usage

A drawing object is constructed by shape = page.new_shape(). After this, as many draw, finish and text insertions
methods as required may follow. Each sequence of draws must be finished before the drawing is committed. The
overall coding pattern looks like this:

>>> shape = page.new_shape()
>>> shape.draw1(...)
>>> shape.draw2(...)
>>> ...
>>> shape.finish(width=..., color=..., fill=..., morph=...)
>>> shape.draw3(...)
>>> shape.draw4(...)
>>> ...
>>> shape.finish(width=..., color=..., fill=..., morph=...)
>>> ...
>>> shape.insert_text*
>>> ...
>>> shape.commit()
>>>

Note:
1. Each finish() combines the preceding draws into one logical shape, giving it common colors, line width, morph-

ing, etc. If closePath is specified, it will also connect the end point of the last draw with the starting point of the
first one.

2. To successfully create compound graphics, let each draw method use the end point of the previous one as its
starting point. In the above pseudo code, draw2 should hence use the returned Point of draw1 as its starting
point. Failing to do so, would automatically start a new path and finish() may not work as expected (but it won’t
complain either).

3. Text insertions may occur anywhere before the commit (they neither touch Shape.draw_cont nor Shape.
lastPoint). They are appended to Shape.totalcont directly, whereas draws will be appended by Shape.finish.

4. Each commit takes all text insertions and shapes and places them in foreground or background on the page – thus
providing a way to control graphical layers.

5. Only commit will update the page’s contents, the other methods are basically string manipulations.

6.19.2 Examples

1. Create a full circle of pieces of pie in different colors:

shape = page.new_shape() # start a new shape
cols = (...) # a sequence of RGB color triples
pieces = len(cols) # number of pieces to draw
beta = 360. / pieces # angle of each piece of pie
center = fitz.Point(...) # center of the pie
p0 = fitz.Point(...) # starting point
for i in range(pieces):

p0 = shape.draw_sector(center, p0, beta,
fullSector=True) # draw piece

(continues on next page)

304 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

now fill it but do not connect ends of the arc
shape.finish(fill=cols[i], closePath=False)

shape.commit() # update the page

Here is an example for 5 colors:

2. Create a regular n-edged polygon (fill yellow, red border). We use draw_sector() only to calculate the points on
the circumference, and empty the draw command buffer again before drawing the polygon:

shape = page.new_shape() # start a new shape
beta = -360.0 / n # our angle, drawn clockwise
center = fitz.Point(...) # center of circle
p0 = fitz.Point(...) # start here (1st edge)
points = [p0] # store polygon edges
for i in range(n): # calculate the edges

p0 = shape.draw_sector(center, p0, beta)
points.append(p0)

shape.draw_cont = "" # do not draw the circle sectors
shape.draw_polyline(points) # draw the polygon
shape.finish(color=(1,0,0), fill=(1,1,0), closePath=False)
shape.commit()

Here is the polygon for n = 7:

6.19. Shape 305

PyMuPDF Documentation, Release 1.21.1

6.19.3 Common Parameters

fontname (str)

In general, there are three options:

1. Use one of the standard PDF Base 14 Fonts. In this case, fontfile must not be specified and “Hel-
vetica” is used if this parameter is omitted, too.

2. Choose a font already in use by the page. Then specify its reference name prefixed with a slash “/”,
see example below.

3. Specify a font file present on your system. In this case choose an arbitrary, but new name for this
parameter (without “/” prefix).

If inserted text should re-use one of the page’s fonts, use its reference name appearing in Page.
get_fonts() like so:

Suppose the font list has the item [1024, 0, ‘Type1’, ‘NimbusMonL-Bold’, ‘R366’], then specify fontname
= “/R366”, fontfile = None to use font NimbusMonL-Bold.

fontfile (str)

File path of a font existing on your computer. If you specify fontfile, make sure you use a fontname not
occurring in the above list. This new font will be embedded in the PDF upon doc.save(). Similar to new
images, a font file will be embedded only once. A table of MD5 codes for the binary font contents is used
to ensure this.

set_simple (bool)

Fonts installed from files are installed as Type0 fonts by default. If you want to use 1-byte characters only,
set this to true. This setting cannot be reverted. Subsequent changes are ignored.

fontsize (float)

Font size of text.

dashes (str)

Causes lines to be drawn dashed. The general format is "[n m] p" of (up to) 3 floats denoting pixel
lengths. n is the dash length, m (optional) is the subsequent gap length, and p (the “phase” - required,
even if 0!) specifies how many pixels should be skipped before the dashing starts. If m is omitted, it
defaults to n.

A continuous line (no dashes) is drawn with "[] 0" or None or "". Examples:

• Specifying "[3 4] 0" means dashes of 3 and gaps of 4 pixels following each other.

• "[3 3] 0" and "[3] 0" do the same thing.

For (the rather complex) details on how to achieve sophisticated dashing effects, see Adobe PDF Refer-
ences, page 217.

color / fill (list, tuple)

306 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Stroke and fill colors can be specified as tuples or list of of floats from 0 to 1. These sequences must have a
length of 1 (GRAY), 3 (RGB) or 4 (CMYK). For GRAY colorspace, a single float instead of the unwieldy
(float,) or [float] is also accepted. Accept (default) or use None to not use the parameter.

To simplify color specification, method getColor() in fitz.utils may be used to get predefined RGB color
triples by name. It accepts a string as the name of the color and returns the corresponding triple. The
method knows over 540 color names – see section Color Database.

Please note that the term color usually means “stroke” color when used in conjunction with fill color.

If letting default a color parameter to None, then no resp. color selection command will be generated. If fill
and color are both None, then the drawing will contain no color specification. But it will still be “stroked”,
which causes PDF’s default color “black” be used by Adobe Acrobat and all other viewers.

stroke_opacity / fill_opacity (floats)

Both values are floats in range [0, 1]. Negative values or values > 1 will ignored (in most cases). Both set
the transparency such that a value 0.5 corresponds to 50% transparency, 0 means invisible and 1 means
intransparent. For e.g. a rectangle the stroke opacity applies to its border and fill opacity to its interior.

For text insertions (Shape.insert_text() and Shape.insert_textbox()), use fill_opacity for the
text. At first sight this seems surprising, but it becomes obvious when you look further down to ren-
der_mode: fill_opacity applies to the yellow and stroke_opacity applies to the blue color.

border_width (float)

Set the border width for text insertions. New in v1.14.9. Relevant only if the render mode argument is
used with a value greater zero.

render_mode (int)

New in version 1.14.9: Integer in range(8) which controls the text appearance (Shape.insert_text()
and Shape.insert_textbox()). See page 246 in Adobe PDF References. New in v1.14.9. These
methods now also differentiate between fill and stroke colors.

• For default 0, only the text fill color is used to paint the text. For backward compatibility, using the
color parameter instead also works.

• For render mode 1, only the border of each glyph (i.e. text character) is drawn with a thickness
as set in argument border_width. The color chosen in the color argument is taken for this, the fill
parameter is ignored.

• For render mode 2, the glyphs are filled and stroked, using both color parameters and the specified
border width. You can use this value to simulate bold text without using another font: choose the
same value for fill and color and an appropriate value for border_width.

• For render mode 3, the glyphs are neither stroked nor filled: the text becomes invisible.

The following examples use border_width=0.3, together with a fontsize of 15. Stroke color is blue and fill
color is some yellow.

6.19. Shape 307

PyMuPDF Documentation, Release 1.21.1

overlay (bool)

Causes the item to appear in foreground (default) or background.

morph (sequence)

Causes “morphing” of either a shape, created by the draw*() methods, or the text inserted by page methods
insert_textbox() / insert_text(). If not None, it must be a pair (fixpoint, matrix), where fixpoint is a Point
and matrix is a Matrix. The matrix can be anything except translations, i.e. matrix.e == matrix.f == 0
must be true. The point is used as a fixed point for the matrix operation. For example, if matrix is a rotation
or scaling, then fixpoint is its center. Similarly, if matrix is a left-right or up-down flip, then the mirroring
axis will be the vertical, respectively horizontal line going through fixpoint, etc.

Note: Several methods contain checks whether the to be inserted items will actually fit into the page
(like Shape.insert_text(), or Shape.draw_rect()). For the result of a morphing operation there is
however no such guaranty: this is entirely the rpogrammer’s responsibility.

lineCap (deprecated: “roundCap”) (int)

Controls the look of line ends. The default value 0 lets each line end at exactly the given coordinate in a
sharp edge. A value of 1 adds a semi-circle to the ends, whose center is the end point and whose diameter
is the line width. Value 2 adds a semi-square with an edge length of line width and a center of the line end.

Changed in version 1.14.15

lineJoin (int)

New in version 1.14.15: Controls the way how line connections look like. This may be either as a sharp
edge (0), a rounded join (1), or a cut-off edge (2, “butt”).

closePath (bool)

Causes the end point of a drawing to be automatically connected with the starting point (by a straight line).

308 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6.20 Story

• New in v1.21.0

Method / Attribute Short Description
Story.reset() “rewind” story output to its beginning
Story.place() compute story content to fit in provided rectangle
Story.draw() write the computed content to current page
Story.element_positions() callback function logging currently processed story content
Story.body the story’s underlying body
Story.write() places and draws Story to a DocumentWriter
Story.write_stabilized() iterative layout of html content to a DocumentWriter
Story.write_with_links() like write() but also creates PDF links
Story.write_stabilized_with_links() like write_stabilized() but also creates PDF links

Class API
class Story

__init__(self, html=None, user_css=None, em=12, archive=None)
Create a story, optionally providing HTML and CSS source. The HTML is parsed, and held within the
Story as a DOM (Document Object Model).

This structure may be modified: content (text, images) may be added, copied, modified or removed by
using methods of the Xml class.

When finished, the story can be written to any device; in typical usage the device may be provided by a
DocumentWriter to make new pages.

Here are some general remarks:

• The Story constructor parses and validates the provided HTML to create the DOM.

• PyMuPDF provides a number of ways to manipulate the HTML source by providing access to the
nodes of the underlying DOM. Documents can be completely built from ground up programmati-
cally, or the existing DOM can be modified pretty arbitrarily. For details of this interface, please see
the Xml class.

• If no (or no more) changes to the DOM are required, the story is ready to be laid out and to be fed
to a series of devices (typically devices provided by a DocumentWriter to produce new pages).

• The next step is to place the story and write it out. This can either be done directly, by looping
around calling place() and draw(), or alternatively, the looping can handled for you using the write()
or write_stabilised() methods. Which method you choose is largely a matter of taste.

– To work in the first of these styles, the following loop should be used:

1. Obtain a suitable device to write to; typically by requesting a new, empty page from a
DocumentWriter.

2. Determine one or more rectangles on the page, that should receive story data. Note that
not every page needs to have the same set of rectangles.

3. Pass each rectangle to the story to place it, learning what part of that rectangle has been
filled, and whether there is more story data that did not fit. This step can be repeated
several times with adjusted rectangles until the caller is happy with the results.

4. Optionally, at this point, we can request details of where interesting items have been
placed, by calling the element_positions() method. Items are deemed to be interesting

6.20. Story 309

PyMuPDF Documentation, Release 1.21.1

if their integer heading attribute is a non-zero (corresponding to HTML tags h1 - h6), if
their id attribute is not None (corresponding to HTML tag id), or if their href attribute
is not None (responding to HTML tag href). This can conveniently be used for automatic
generation of a Table of Contents, an index of images or the like.

5. Next, draw that rectangle out to the device with the draw() method.

6. If the most recent call to place() indicated that all the story data had fitted, stop now.

7. Otherwise, we can loop back. If there are more rectangles to be placed on the current
device (page), we jump back to step 3 - if not, we jump back to step 1 to get a new device.

– Alternatively, in the case where you are using a DocumentWriter, the write() or
write_stabilized() methods can be used. These handle all the looping for you, in exchange for
being provided with callbacks that control the behaviour (notably a callback that enumerates
the rectangles/pages to use).

• Which part of the story will land on which rectangle / which page, is fully under control of the Story
object and cannot be predicted.

• Images may be part of a story. They will be placed together with any surrounding text.

• Multiple stories may - independently from each other - write to the same page. For example, one
may have separate stories for page header, page footer, regular text, comment boxes, etc.

Parameters
• html (str) – HTML source code. If omitted, a basic minimum is generated (see

below).

• user_css (str) – CSS source code. If provided, must contain valid CSS specifi-
cations.

• em (float) – the default text font size.

• archive – an Archive from which to load resources for rendering. Currently sup-
ported resource types are images and text fonts. If omitted, the story will not try to
look up any such data and may thus produce incomplete output.

Note: Instead of an actual archive, valid arguments for creating an Archive can
also be provided – in which case an archive will temporarily be constructed. So, in-
stead of story = fitz.Story(archive=fitz.Archive("myfolder")), one
can also shorter write story = fitz.Story(archive="myfolder").

place(where)
Calculate that part of the story’s content, that will fit in the provided rectangle. The method maintains a
pointer which part of the story’s content has already been written and upon the next invocation resumes
from that pointer’s position.

Parameters
where (rect_like) – layout the current part of the content to fit into this rectangle.
This must be a sub-rectangle of the page’s MediaBox.

Return type
tuple[bool, rect_like]

Returns
a bool (int) more and a rectangle filled. If more == 0, all content of the story has been

310 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

written, otherwise more is waiting to be written to subsequent rectangles / pages. Rect-
angle filled is the part of where that has actually been filled.

draw(dev, matrix=None)
Write the content part prepared by Story.place() to the page.

Parameters
• dev – the Device created by dev = writer.begin_page(mediabox). The device knows

how to call all MuPDF functions needed to write the content.

• matrix (matrix_like) – a matrix for transforming content when writing to the
page. An example may be writing rotated text. The default means no transformation
(i.e. the Identity matrix).

element_positions(function, args=None)
Let the Story provide positioning information about certain HTML elements once their place on the current
page has been computed - i.e. invoke this method directly after Story.place().

Parameters
• function – a Python function taking a ElementPostion instance, which will be

invoked by this method to process positioning information.

• args (dict) – an optional dictionary with any additional information that should
be added to the ElementPosition instance passed to function. Like for example
the current output page number. Every key in this dictionary must be a string that
conforms to the rules for a valid Python identifier. The complete set of information
is explained below.

reset()

Rewind the story’s document to the beginning for starting over its output.

body

The body part of the story’s DOM. Even if html=None has been used at story creation, the following
minimum HTML source will always be available:

<html>
<head></head>
<body></body>

</html>

This attribute contains the Xml node of body. All relevant content for PDF production is contained between
“<body>” and “</body>”.

write(writer, rectfn, positionfn=None, pagefn=None)
Places and draws Story to a DocumentWriter. Avoids the need for calling code to implement a loop that
calls Story.place() and Story.draw() etc, at the expense of having to provide at least the rectfn() callback.

Parameters
• writer – a DocumentWriter or None.

• rectfn – a callable taking (rect_num: int, filled: Rect) and returning (mediabox,
rect, ctm):

mediabox:
None or rect for new page.

rect:
The next rect into which content should be placed.

6.20. Story 311

PyMuPDF Documentation, Release 1.21.1

ctm:
None or a Matrix.

• positionfn – None, or a callable taking (position: ElementPosition): position:

An ElementPosition with an extra .page_num member.

Typically called multiple times as we generate elements that are headings or have
an id.

• pagefn – None, or a callable taking (page_num, mediabox, dev, after); called at
start (after=0) and end (after=1) of each page.

static write_stabilized(writer, contentfn, rectfn, user_css=None, em=12, positionfn=None,
pagefn=None, archive=None, add_header_ids=True)

Static method that does iterative layout of html content to a DocumentWriter.

For example this allows one to add a table of contents section while ensuring that page numbers are patched
up until stable.

Repeatedly creates a new Story from (contentfn(), user_css, em, archive) and lays it out with internal call
to Story.write(); uses a None writer and extracts the list of ElementPosition’s which is passed to the next
call of contentfn().

When the html from contentfn() becomes unchanged, we do a final iteration using writer.

Parameters
• writer – A DocumentWriter.

• contentfn – A function taking a list of ElementPositions and returning a string
containing html. The returned html can depend on the list of positions, for example
with a table of contents near the start.

• rectfn – A callable taking (rect_num: int, filled: Rect) and returning (mediabox,
rect, ctm):

mediabox:
None or rect for new page.

rect:
The next rect into which content should be placed.

ctm:
A Matrix.

• pagefn – None, or a callable taking (page_num, medibox, dev, after); called at start
(after=0) and end (after=1) of each page.

• archive – .

• add_header_ids – If true, we add unique ids to all header tags that don’t already
have an id. This can help automatic generation of tables of contents.

Returns:
None.

write_with_links(rectfn, positionfn=None, pagefn=None)
Similar to write() except that we don’t have a writer arg and we return a PDF Document in which links
have been created for each internal html link.

312 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

static write_stabilized_with_links(contentfn, rectfn, user_css=None, em=12, positionfn=None,
pagefn=None, archive=None, add_header_ids=True)

Similar to write_stabilized() except that we don’t have a writer arg and instead return a PDF Document in
which links have been created for each internal html link.

6.20.1 Element Positioning CallBack function

The callback function can be used to log information about story output. The function’s access to the information is
read-only: it has no way to influence the story’s output.

A typical loop for executing a story with using this method would look like this:

HTML = """
<html>

<head></head>
<body>

<h1>Header level 1</h1>
<h2>Header level 2</h2>
<p>Hello MuPDF!</p>

</body>
</html>
"""
MEDIABOX = fitz.paper_rect("letter") # size of a page
WHERE = MEDIABOX + (36, 36, -36, -36) # leave borders of 0.5 inches
story = fitz.Story(html=HTML) # make the story
writer = fitz.DocumentWriter("test.pdf") # make the writer
pno = 0 # current page number
more = 1 # will be set to 0 when done
while more: # loop until all story content is processed

dev = writer.begin_page(MEDIABOX) # make a device to write on the page
more, filled = story.place(WHERE) # compute content positions on page
story.element_positions(recorder, {"page": pno}) # provide page number in addition
story.draw(dev)
writer.end_page()
pno += 1 # increase page number

writer.close() # close output file

def recorder(elpos):
pass

6.20.1.1 Attributes of the ElementPosition class

The parameter passed to the recorder function is an object with the following attributes:

• elpos.depth (int) – depth of this element in the box structure.

• elpos.heading (int) – the header level, 0 if no header, 1-6 for h1 - h6.

• elpos.href (str) – value of the ``href`attribute, or None if not defined.

• elpos.id (str) – value of the id attribute, or None if not defined.

• elpos.rect (tuple) – element position on page.

• elpos.text (str) – immediate text of the element.

6.20. Story 313

PyMuPDF Documentation, Release 1.21.1

• elpos.open_close (int bit field) – bit 0 set: opens element, bit 1 set: closes element. Relevant for elements
that may contain other elements and thus may not immediately be closed after being created / opened.

• elpos.rect_num (int) – count of rectangles filled by the story so far.

• elpos.page_num (int) – page number; only present when using fitz.Story.write*() functions.

6.21 TextPage

This class represents text and images shown on a document page. All MuPDF document types are supported.

The usual ways to create a textpage are DisplayList.get_textpage() and Page.get_textpage(). Because there
is a limited set of methods in this class, there exist wrappers in Page which are handier to use. The last column of this
table shows these corresponding Page methods.

For a description of what this class is all about, see Appendix 2.

Method Description page get_text or search method
extractText() extract plain text “text”
extractTEXT() synonym of previous “text”
extractBLOCKS() plain text grouped in blocks “blocks”
extractWORDS() all words with their bbox “words”
extractHTML() page content in HTML format “html”
extractXHTML() page content in XHTML format “xhtml”
extractXML() page text in XML format “xml”
extractDICT() page content in dict format “dict”
extractJSON() page content in JSON format “json”
extractRAWDICT() page content in dict format “rawdict”
extractRAWJSON() page content in JSON format “rawjson”
search() Search for a string in the page Page.search_for()

Class API
class TextPage

extractText()

extractTEXT()

Return a string of the page’s complete text. The text is UTF-8 unicode and in the same sequence as specified
at the time of document creation.

Return type
str

extractBLOCKS()

Textpage content as a list of text lines grouped by block. Each list items looks like this:

(x0, y0, x1, y1, "lines in the block", block_no, block_type)

The first four entries are the block’s bbox coordinates, block_type is 1 for an image block, 0 for text.
block_no is the block sequence number. Multiple text lines are joined via line breaks.

For an image block, its bbox and a text line with some image meta information is included – not the image
content.

314 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

This is a high-speed method with just enough information to output plain text in desired reading sequence.

Return type
list

extractWORDS()

Textpage content as a list of single words with bbox information. An item of this list looks like this:

(x0, y0, x1, y1, "word", block_no, line_no, word_no)

Everything delimited by spaces is treated as a “word”. This is a high-speed method which e.g. allows
extracting text from within given areas or recovering the text reading sequence.

Return type
list

extractHTML()

Textpage content as a string in HTML format. This version contains complete formatting and positioning
information. Images are included (encoded as base64 strings). You need an HTML package to interpret
the output in Python. Your internet browser should be able to adequately display this information, but see
Controlling Quality of HTML Output.

Return type
str

extractDICT()

Textpage content as a Python dictionary. Provides same information detail as HTML. See below for the
structure.

Return type
dict

extractJSON()

Textpage content as a JSON string. Created by json.dumps(TextPage.extractDICT()). It is included
for backlevel compatibility. You will probably use this method ever only for outputting the result to some
file. The method detects binary image data and converts them to base64 encoded strings.

Return type
str

extractXHTML()

Textpage content as a string in XHTML format. Text information detail is comparable with
extractTEXT(), but also contains images (base64 encoded). This method makes no attempt to re-create
the original visual appearance.

Return type
str

extractXML()

Textpage content as a string in XML format. This contains complete formatting information about every
single character on the page: font, size, line, paragraph, location, color, etc. Contains no images. You need
an XML package to interpret the output in Python.

Return type
str

extractRAWDICT()

Textpage content as a Python dictionary – technically similar to extractDICT(), and it contains that
information as a subset (including any images). It provides additional detail down to each character, which
makes using XML obsolete in many cases. See below for the structure.

6.21. TextPage 315

PyMuPDF Documentation, Release 1.21.1

Return type
dict

extractRAWJSON()

Textpage content as a JSON string. Created by json.dumps(TextPage.extractRAWDICT()). You will
probably use this method ever only for outputting the result to some file. The method detects binary image
data and converts them to base64 encoded strings.

Return type
str

search(needle, quads=False)

• Changed in v1.18.2

Search for string and return a list of found locations.

Parameters
• needle (str) – the string to search for. Upper and lower cases will all match if

needle consists of ASCII letters only – it does not yet work for “Ä” versus “ä”, etc.

• quads (bool) – return quadrilaterals instead of rectangles.

Return type
list

Returns
a list of Rect or Quad objects, each surrounding a found needle occurrence. As the search
string may contain spaces, its parts may be found on different lines. In this case, more
than one rectangle (resp. quadrilateral) are returned. (Changed in v1.18.2) The method
now supports dehyphenation, so it will find e.g. “method”, even if it was hyphenated
in two parts “meth-” and “od” across two lines. The two returned rectangles will contain
“meth” (no hyphen) and “od”.

Note: Overview of changes in v1.18.2:
1. The hit_max parameter has been removed: all hits are always returned.

2. The rect parameter of the TextPage is now respected: only text inside this area is examined. Only
characters with fully contained bboxes are considered. The wrapper method Page.search_for()
correspondingly supports a clip parameter.

3. Hyphenated words are now found.

4. Overlapping rectangles in the same line are now automatically joined. We assume that such sepa-
rations are an artifact created by multiple marked content groups, containing parts of the same search
needle.

Example Quad versus Rect: when searching for needle “pymupdf”, then the corresponding entry will either
be the blue rectangle, or, if quads was specified, the quad Quad(ul, ur, ll, lr).

316 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

rect

The rectangle associated with the text page. This either equals the rectangle of the creating page or the
clip parameter of Page.get_textpage() and text extration / searching methods.

Note: The output of text searching and most text extractions is restricted to this rectangle. (X)HTML
and XML output will however always extract the full page.

6.21.1 Structure of Dictionary Outputs

Methods TextPage.extractDICT(), TextPage.extractJSON(), TextPage.extractRAWDICT(), and
TextPage.extractRAWJSON() return dictionaries, containing the page’s text and image content. The dictio-
nary structures of all four methods are almost equal. They strive to map the text page’s information hierarchy of
blocks, lines, spans and characters as precisely as possible, by representing each of these by its own sub-dictionary:

• A page consists of a list of block dictionaries.
• A (text) block consists of a list of line dictionaries.
• A line consists of a list of span dictionaries.
• A span either consists of the text itself or, for the RAW variants, a list of character dictionaries.
• RAW variants: a character is a dictionary of its origin, bbox and unicode.

All PyMuPDF geometry objects herein (points, rectangles, matrices) are represented by there “like” formats: a
rect_like tuple is used instead of a Rect, etc. The reasons for this are performance and memory considerations:

• This code is written in C, where Python tuples can easily be generated. The geometry objects on the other hand
are defined in Python source only. A conversion of each Python tuple into its corresponding geometry object
would add significant – and largely unnecessary – execution time.

• A 4-tuple needs about 168 bytes, the corresponding Rect 472 bytes - almost three times the size. A “dict”
dictionary for a text-heavy page contains 300+ bbox objects – which thus require about 50 KB storage as 4-
tuples versus 140 KB as Rect objects. A “rawdict” output for such a page will however contain 4 to 5 thousand
bboxes, so in this case we talk about 750 KB versus 2 MB.

6.21. TextPage 317

PyMuPDF Documentation, Release 1.21.1

Please also note, that only bboxes (= rect_like 4-tuples) are returned, whereas a TextPage actually has the full
position information – in Quad format. The reason for this decision is again a memory consideration: a quad_like
needs 488 bytes (3 times the size of a rect_like). Given the mentioned amounts of generated bboxes, returning
quad_like information would have a significant impact.

In the vast majority of cases, we are dealing with horizontal text only, where bboxes provide entirely sufficient infor-
mation.

In addition, the full quad information is not lost: it can be recovered as needed for lines, spans, and characters by
using the appropriate function from the following list:

• recover_quad() – the quad of a complete span

• recover_span_quad() – the quad of a character subset of a span

• recover_line_quad() – the quad of a line

• recover_char_quad() – the quad of a character

As mentioned, using these functions is ever only needed, if the text is not written horizontally – line["dir"] !=
(1, 0) – and you need the quad for text marker annotations (Page.add_highlight_annot() and friends).

6.21.1.1 Page Dictionary

Key Value
width width of the clip rectangle (float)
height height of the clip rectangle (float)
blocks list of block dictionaries

318 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

6.21.1.2 Block Dictionaries

Block dictionaries come in two different formats for image blocks and for text blocks.
• (Changed in v1.18.0) – new dict key number, the block number.

• (Changed in v1.18.11) – new dict key transform, the image transformation matrix for image blocks.

• (Changed in v1.18.11) – new dict key size, the size of the image in bytes for image blocks.

Image block:

Key Value
type 1 = image (int)
bbox image bbox on page (rect_like)
number block count (int)
ext image type (str), as file extension, see below
width original image width (int)
height original image height (int)
colorspace colorspace component count (int)
xres resolution in x-direction (int)
yres resolution in y-direction (int)
bpc bits per component (int)
transform matrix transforming image rect to bbox (matrix_like)
size size of the image in bytes (int)
image image content (bytes)

Possible values of the “ext” key are “bmp”, “gif”, “jpeg”, “jpx” (JPEG 2000), “jxr” (JPEG XR), “png”, “pnm”, and
“tiff”.

Note:
1. An image block is generated for all and every image occurrence on the page. Hence there may be duplicates,

if an image is shown at different locations.

2. TextPage and corresponding method Page.get_text() are available for all document types. Only for PDF
documents, methods Document.get_page_images() / Page.get_images() offer some overlapping func-
tionality as far as image lists are concerned. But both lists may or may not contain the same items. Any
differences are most probably caused by one of the following:

• “Inline” images (see page 214 of the Adobe PDF References) of a PDF page are contained in a textpage,
but do not appear in Page.get_images().

• Annotations may also contain images – these will not appear in Page.get_images().

• Image blocks in a textpage are generated for every image location – whether or not there are any duplicates.
This is in contrast to Page.get_images(), which will list each image only once (per reference name).

• Images mentioned in the page’s object definition will always appear in Page.get_images()1. But it
may happen, that there is no “display” command in the page’s contents (erroneously or on purpose). In
this case the image will not appear in the textpage.

3. The image’s “transformation matrix” is defined as the matrix, for which the expression bbox / transform ==
fitz.Rect(0, 0, 1, 1) is true, lookup details here: Image Transformation Matrix.

1 Image specifications for a PDF page are done in a page’s (sub-) dictionary, called “/Resources”. Resource dictionaries can be inherited
from the page’s parent object (usually the catalog). The PDF creator may e.g. define one /Resources on file level, naming all images and all fonts
ever used by any page. In these cases, Page.get_images() and Page.get_fonts() will return the same lists for all pages.

6.21. TextPage 319

PyMuPDF Documentation, Release 1.21.1

Text block:

Key Value
type 0 = text (int)
bbox block rectangle, rect_like
number block count (int)
lines list of text line dictionaries

6.21.1.3 Line Dictionary

Key Value
bbox line rectangle, rect_like
wmode writing mode (int): 0 = horizontal, 1 = vertical
dir writing direction, point_like
spans list of span dictionaries

The value of key “dir” is the unit vector dir = (cosine, sine) of the angle, which the text has relative to the
x-axis. See the following picture: The word in each quadrant (counter-clockwise from top-right to bottom-right) is
rotated by 30, 120, 210 and 300 degrees respectively.

320 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

6.21.1.4 Span Dictionary

Spans contain the actual text. A line contains more than one span only, if it contains text with different font properties.

• Changed in version 1.14.17 Spans now also have a bbox key (again).

• Changed in version 1.17.6 Spans now also have an origin key.

Key Value
bbox span rectangle, rect_like
origin the first character’s origin, point_like
font font name (str)
ascender ascender of the font (float)
descender descender of the font (float)
size font size (float)
flags font characteristics (int)
color text color in sRGB format (int)
text (only for extractDICT()) text (str)
chars (only for extractRAWDICT()) list of character dictionaries

(New in version 1.16.0): “color” is the text color encoded in sRGB (int) format, e.g. 0xFF0000 for red. There are
functions for converting this integer back to formats (r, g, b) (PDF with float values from 0 to 1) sRGB_to_pdf(), or
(R, G, B), sRGB_to_rgb() (with integer values from 0 to 255).

(New in v1.18.5): “ascender” and “descender” are font properties, provided relative to fontsize 1. Note that descender
is a negative value. The following picture shows the relationship to other values and properties.

These numbers may be used to compute the minimum height of a character (or span) – as opposed to the standard
height provided in the “bbox” values (which actually represents the line height). The following code recalculates the
span bbox to have a height of fontsize exactly fitting the text inside:

>>> a = span["ascender]
>>> d = span["descender"]
>>> r = fitz.Rect(span["bbox"])
>>> o = fitz.Point(span["origin"]) # its y-value is the baseline
>>> r.y1 = o.y - span["size"] * d / (a - d)
>>> r.y0 = r.y1 - span["size"]
>>> # r now is a rectangle of height 'fontsize'

6.21. TextPage 321

PyMuPDF Documentation, Release 1.21.1

Caution: The above calculation may deliver a larger height! This may e.g. happen for OCRed documents,
where the risk of all sorts of text artifacts is high. MuPDF tries to come up with a reasonable bbox height, inde-
pendently from the fontsize found in the PDF. So please ensure that the height of span["bbox"] is larger than
span["size"].

Note: You may request PyMuPDF to do all of the above automatically by executing fitz.TOOLS.
set_small_glyph_heights(True). This sets a global parameter so that all subsequent text searches and text ex-
tractions are based on reduced glyph heights, where meaningful.

The following shows the original span rectangle in red and the rectangle with re-computed height in blue.

“flags” is an integer, which represents font properties except for the first bit 0. They are to be interpreted like this:

• bit 0: superscripted (20) – not a font property, detected by MuPDF code.

• bit 1: italic (21)

• bit 2: serifed (22)

• bit 3: monospaced (23)

• bit 4: bold (24)

Test these characteristics like so:

>>> if flags & 2**1: print("italic")
>>> # etc.

Bits 1 thru 4 are font properties, i.e. encoded in the font program. Please note, that this information is not necessarily
correct or complete: fonts quite often contain wrong data here.

6.21.1.5 Character Dictionary for extractRAWDICT()

Key Value
origin character’s left baseline point, point_like
bbox character rectangle, rect_like
c the character (unicode)

This image shows the relationship between a character’s bbox and its quad:

322 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6.22 TextWriter

• New in v1.16.18

This class represents a MuPDF text object. The basic idea is to decouple (1) text preparation, and (2) text output to
PDF pages.

During preparation, a text writer stores any number of text pieces (“spans”) together with their positions and individual
font information. The output of the writer’s prepared content may happen multiple times to any PDF page with a
compatible page size.

A text writer is an elegant alternative to methods Page.insert_text() and friends:

• Improved text positioning: Choose any point where insertion of text should start. Storing text returns the
“cursor position” after the last character of the span.

• Free font choice: Each text span has its own font and fontsize. This lets you easily switch when composing a
larger text.

• Automatic fallback fonts: If a character is not supported by the chosen font, alternative fonts are automatically
searched. This significantly reduces the risk of seeing unprintable symbols in the output (“TOFUs” – looking
like a small rectangle). PyMuPDF now also comes with the universal font “Droid Sans Fallback Regular”,
which supports all Latin characters (incuding Cyrillic and Greek), and all CJK characters (Chinese, Japanese,
Korean).

• Cyrillic and Greek Support: The PDF Base 14 Fonts have integrated support of Cyrillic and Greek characters
without specifying encoding. Your text may be a mixture of Latin, Greek and Cyrillic.

• Transparency support: Parameter opacity is supported. This offers a handy way to create watermark-style text.

• Justified text: Supported for any font – not just simple fonts as in Page.insert_textbox().

• Reusability: A TextWriter object exists independent from PDF pages. It can be written multiple times, either to
the same or to other pages, in the same or in different PDFs, choosing different colors or transparency.

Using this object entails three steps:

1. When created, a TextWriter requires a fixed page rectangle in relation to which it calculates text positions. A
text writer can write to pages of this size only.

2. Store text in the TextWriter using methods TextWriter.append(), TextWriter.appendv() and
TextWriter.fill_textbox() as often as is desired.

3. Output the TextWriter object on some PDF page(s).

Note:
• Starting with version 1.17.0, TextWriters do support text rotation via the morph parameter of TextWriter.
write_text().

• There also exists Page.write_text() which combines one or more TextWriters and jointly writes them to a
given rectangle and with a given rotation angle – much like Page.show_pdf_page().

6.22. TextWriter 323

PyMuPDF Documentation, Release 1.21.1

Method / Attribute Short Description
append() Add text in horizontal write mode
appendv() Add text in vertical write mode
fill_textbox() Fill rectangle (horizontal write mode)
write_text() Output TextWriter to a PDF page
color Text color (can be changed)
last_point Last written character ends here
opacity Text opacity (can be changed)
rect Page rectangle used by this TextWriter
text_rect Area occupied so far

Class API
class TextWriter

__init__(self, rect, opacity=1, color=None)

Parameters
• rect (rect-like) – rectangle internally used for text positioning computations.

• opacity (float) – sets the transparency for the text to store here. Values outside
the interval [0, 1) will be ignored. A value of e.g. 0.5 means 50% transparency.

• color (float,sequ) – the color of the text. All colors are specified as floats 0
<= color <= 1. A single float represents some gray level, a sequence implies the
colorspace via its length.

append(pos, text, font=None, fontsize=11, language=None, right_to_left=False, small_caps=0)

• Changed in v1.18.9

• Changed in v1.18.15

Add some new text in horizontal writing.

Parameters
• pos (point_like) – start position of the text, the bottom left point of the first

character.

• text (str) – a string of arbitrary length. It will be written starting at position “pos”.

• font – a Font. If omitted, fitz.Font("helv") will be used.

• fontsize (float) – the fontsize, a positive number, default 11.

• language (str) – the language to use, e.g. “en” for English. Meaningful values
should be compliant with the ISO 639 standards 1, 2, 3 or 5. Reserved for future
use: currently has no effect as far as we know.

• right_to_left (bool) – (New in v1.18.9) whether the text should be written from
right to left. Applicable for languages like Arabian or Hebrew. Default is False.
If True, any Latin parts within the text will automatically converted. There are
no other consequences, i.e. TextWriter.last_point will still be the rightmost
character, and there neither is any alignment taking place. Hence you may want to
use TextWriter.fill_textbox() instead.

• small_caps (bool) – (New in v1.18.15) look for the character’s Small Capital ver-
sion in the font. If present, take that value instead. Otherwise the original character

324 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

(this font or the fallback font) will be taken. The fallback font will never return small
caps. For example, this snippet:

>>> doc = fitz.open()
>>> page = doc.new_page()
>>> text = "PyMuPDF: the Python bindings for MuPDF"
>>> font = fitz.Font("figo") # choose a font with small caps
>>> tw = fitz.TextWriter(page.rect)
>>> tw.append((50,100), text, font=font, small_caps=True)
>>> tw.write_text(page)
>>> doc.ez_save("x.pdf")

will produce this PDF text:

Returns
text_rect and last_point. (Changed in v1.18.0:) Raises an exception for an unsup-
ported font – checked via Font.is_writable.

appendv(pos, text, font=None, fontsize=11, language=None, small_caps=0)
Changed in v1.18.15

Add some new text in vertical, top-to-bottom writing.

Parameters
• pos (point_like) – start position of the text, the bottom left point of the first

character.

• text (str) – a string. It will be written starting at position “pos”.

• font – a Font. If omitted, fitz.Font("helv") will be used.

• fontsize (float) – the fontsize, a positive float, default 11.

• language (str) – the language to use, e.g. “en” for English. Meaningful values
should be compliant with the ISO 639 standards 1, 2, 3 or 5. Reserved for future
use: currently has no effect as far as we know.

• small_caps (bool) – (New in v1.18.15) see append().

Returns
text_rect and last_point. (Changed in v1.18.0:) Raises an exception for an unsup-
ported font – checked via Font.is_writable.

fill_textbox(rect, text, *, pos=None, font=None, fontsize=11, align=0, right_to_left=False, warn=None,
small_caps=0)

• Changed in 1.17.3: New parameter pos to specify where to start writing within rectangle.

• Changed in v1.18.9: Return list of lines which do not fit in rectangle. Support writing right-to-left
(e.g. Arabian, Hebrew).

• Changed in v1.18.15: Prefer small caps if supported by the font.

Fill a given rectangle with text in horizontal writing mode. This is a convenience method to use as an
alternative for append().

Parameters
• rect (rect_like) – the area to fill. No part of the text will appear outside of this.

6.22. TextWriter 325

PyMuPDF Documentation, Release 1.21.1

• text (str,sequ) – the text. Can be specified as a (UTF-8) string or a list / tuple
of strings. A string will first be converted to a list using splitlines(). Every list item
will begin on a new line (forced line breaks).

• pos (point_like) – (new in v1.17.3) start storing at this point. Default is a point
near rectangle top-left.

• font – the Font, default fitz.Font(“helv”).

• fontsize (float) – the fontsize.

• align (int) – text alignment. Use one of TEXT_ALIGN_LEFT,
TEXT_ALIGN_CENTER, TEXT_ALIGN_RIGHT or TEXT_ALIGN_JUSTIFY.

• right_to_left (bool) – (New in v1.18.9) whether the text should be written from
right to left. Applicable for languages like Arabian or Hebrew. Default is False. If
True, any Latin parts are automatically reverted. You must still set the alignment (if
you want right alignment), it does not happen automatically – the other alignment
options remain available as well.

• warn (bool) – on text overflow do nothing, warn, or raise an exception. Overflow
text will never be written. Changed in v1.18.9:

– Default is None.

– The list of overflow lines will be returned.

• small_caps (bool) – (New in v1.18.15) see append().

Return type
list

Returns
New in v1.18.9 – List of lines that did not fit in the rectangle. Each item is a tuple (text,
length) containing a string and its length (on the page).

Note: Use these methods as often as is required – there is no technical limit (except memory constraints of your
system). You can also mix append() and text boxes and have multiple of both. Text positioning is exclusively
controlled by the insertion point. Therefore there is no need to adhere to any order. (Changed in v1.18.0:) Raise
an exception for an unsupported font – checked via Font.is_writable.

write_text(page, opacity=None, color=None, morph=None, overlay=True, oc=0, render_mode=0)
Write the TextWriter text to a page, which is the only mandatory parameter. The other parameters can be
used to temporarily override the values used when the TextWriter was created.

Parameters
• page – write to this Page.

• opacity (float) – override the value of the TextWriter for this output.

• color (sequ) – override the value of the TextWriter for this output.

• morph (sequ) – modify the text appearance by applying a matrix to it. If provided,
this must be a sequence (fixpoint, matrix) with a point-like fixpoint and a matrix-like
matrix. A typical example is rotating the text around fixpoint.

• overlay (bool) – put in foreground (default) or background.

• oc (int) – (new in v1.18.4) the xref of an OCG or OCMD.

326 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

• render_mode (int) – The PDF Tr operator value. Values: 0 (default), 1, 2, 3

(invisible).

text_rect

The area currently occupied.

Return type
Rect

last_point

The “cursor position” – a Point – after the last written character (its bottom-right).

Return type
Point

opacity

The text opacity (modifyable).

Return type
float

color

The text color (modifyable).

Return type
float,tuple

rect

The page rectangle for which this TextWriter was created. Must not be modified.

Return type
Rect

Note: To see some demo scripts dealing with TextWriter, have a look at this repository.

1. Opacity and color apply to all the text in this object.

2. If you need different colors / transpareny, you must create a separate TextWriter. Whenever you determine
the color should change, simply append the text to the respective TextWriter using the previously returned
last_point as position for the new text span.

3. Appending items or text boxes can occur in arbitrary order: only the position parameter controls where text
appears.

4. Font and fontsize can freely vary within the same TextWriter. This can be used to let text with different properties
appear on the same displayed line: just specify pos accordingly, and e.g. set it to last_point of the previously
added item.

6.22. TextWriter 327

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/textwriter

PyMuPDF Documentation, Release 1.21.1

5. You can use the pos argument of TextWriter.fill_textbox() to set the position of the first text character.
This allows filling the same textbox with contents from different TextWriter objects, thus allowing for multiple
colors, opacities, etc.

6. MuPDF does not support all fonts with this feature, e.g. no Type3 fonts. Starting with v1.18.0 this can be checked
via the font attribute Font.is_writable. This attribute is also checked when using TextWriter methods.

6.23 Tools

This class is a collection of utility methods and attributes, mainly around memory management. To simplify and speed
up its use, it is automatically instantiated under the name TOOLS when PyMuPDF is imported.

Method / Attribute Description
Tools.gen_id() generate a unique identifyer
Tools.store_shrink() shrink the storables cache1

Tools.mupdf_warnings() return the accumulated MuPDF warnings
Tools.mupdf_display_errors() return the accumulated MuPDF warnings
Tools.reset_mupdf_warnings() empty MuPDF messages on STDOUT
Tools.set_aa_level() set the anti-aliasing values
Tools.set_annot_stem() set the prefix of new annotation / link ids
Tools.set_small_glyph_heights() search and extract using small bbox heights
Tools.set_subset_fontnames() control suppression of subset fontname tags
Tools.show_aa_level() return the anti-aliasing values
Tools.unset_quad_corrections() disable PyMuPDF-specific code
Tools.fitz_config configuration settings of PyMuPDF
Tools.store_maxsize maximum storables cache size
Tools.store_size current storables cache size

Class API
class Tools

gen_id()

A convenience method returning a unique positive integer which will increase by 1 on every invocation.
Example usages include creating unique keys in databases - its creation should be faster than using times-
tamps by an order of magnitude.

Note: MuPDF has dropped support for this in v1.14.0, so we have re-implemented a similar function with
the following differences:

• It is not part of MuPDF’s global context and not threadsafe (not an issue because we do not support
threads in PyMuPDF anyway).

• It is implemented as int. This means that the maximum number is sys.maxsize. Should this number
ever be exceeded, the counter starts over again at 1.

1 This memory area is internally used by MuPDF, and it serves as a cache for objects that have already been read and interpreted, thus improving
performance. The most bulky object types are images and also fonts. When an application starts up the MuPDF library (in our case this happens as
part of import fitz), it must specify a maximum size for this area. PyMuPDF’s uses the default value (256 MB) to limit memory consumption. Use
the methods here to control or investigate store usage. For example: even after a document has been closed and all related objects have been deleted,
the store usage may still not drop down to zero. So you might want to enforce that before opening another document.

328 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

Return type
int

Returns
a unique positive integer.

set_annot_stem(stem=None)

• New in v1.18.6

Set or inquire the prefix for the id of new annotations, fields or links.

Parameters
stem (str) – if omitted, the current value is returned, default is “fitz”. Annotations,
fields / widgets and links technically are subtypes of the same type of object (/Annot) in
PDF documents. An /Annot object may be given a unique identifier within a page. For
each of the applicable subtypes, PyMuPDF generates identifiers “stem-Annn”, “stem-
Wnnn” or “stem-Lnnn” respectively. The number “nnn” is used to enforce the required
uniqueness.

Return type
str

Returns
the current value.

set_small_glyph_heights(on=None)

• New in v1.18.5

Set or inquire reduced bbox heights in text extract and text search methods.

Parameters
on (bool) – if omitted or None, the current setting is returned. For other values the bool()
function is applied to set a global variable. If True, Page.search_for() and Page.
get_text() methods return character, span, line or block bboxes that have a height of
font size. If False (standard setting when PyMuPDF is imported), bbox height will be
based on font properties and normally equal line height.

Return type
bool

Returns
True or False.

Note: Text extraction options “xml”, “xhtml” and “html”, which directly wrap MuPDF code, are not
influenced by this.

set_subset_fontnames(on=None)

• New in v1.18.9

Control suppression of subset fontname tags in text extractions.

Parameters
on (bool) – if omitted / None, the current setting is returned. Arguments evaluat-
ing to True or False set a global variable. If True, options “dict”, “json”, “raw-
dict” and “rawjson” will return e.g. "NOHSJV+Calibri-Light", otherwise only
"Calibri-Light" (the default). The setting remains in effect until changed again.

6.23. Tools 329

PyMuPDF Documentation, Release 1.21.1

Return type
bool

Returns
True or False.

Note: Except mentioned above, no other text extraction variants are influenced by this. This is especially
true for the options “xml”, “xhtml” and “html”, which are based on MuPDF code. They extract the font
name "Calibri-Light", or even just the family name – Calibri in this example.

unset_quad_corrections(on=None)

• New in v1.18.10

Enable / disable PyMuPDF-specific code, that tries to rebuild valid character quads when encountering
nonsense in Page.get_text() text extractions. This code depends on certain font properties (ascender
and descender), which do not exist in rare situations and cause segmentation faults when trying to access
them. This method sets a global parameter in PyMuPDF, which suppresses execution of this code.

Parameters
on (bool) – if omitted or None, the current setting is returned. For other values the
bool() function is applied to set a global variable. If True, PyMuPDF will not try to
access the resp. font properties and use values ascender=0.8 and descender=-0.2
instead.

Return type
bool

Returns
True or False.

store_shrink(percent)
Reduce the storables cache by a percentage of its current size.

Parameters
percent (int) – the percentage of current size to free. If 100+ the store will be emptied,
if zero, nothing will happen. MuPDF’s caching strategy is “least recently used”, so low-
usage elements get deleted first.

Return type
int

Returns
the new current store size. Depending on the situation, the size reduction may be larger
than the requested percentage.

show_aa_level()

• New in version 1.16.14

Return the current anti-aliasing values. These values control the rendering quality of graphics and text
elements.

Return type
dict

Returns
A dictionary with the following initial content: {'graphics': 8, 'text': 8,
'graphics_min_line_width': 0.0}.

330 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

set_aa_level(level)

• New in version 1.16.14

Set the new number of bits to use for anti-aliasing. The same value is taken currently for graphics and text
rendering. This might change in a future MuPDF release.

Parameters
level (int) – an integer ranging between 0 and 8. Value outside this range will be
silently changed to valid values. The value will remain in effect throughout the current
session or until changed again.

reset_mupdf_warnings()

• New in version 1.16.0

Empty MuPDF warnings message buffer.

mupdf_display_errors(value=None)

• New in version 1.16.8

Show or set whether MuPDF errors should be displayed.

Parameters
value (bool) – if not a bool, the current setting is returned. If true, MuPDF errors
will be shown on sys.stderr, otherwise suppressed. In any case, messages continue to be
stored in the warnings store. Upon import of PyMuPDF this value is True.

Returns
True or False

mupdf_warnings(reset=True)

• New in version 1.16.0

Return all stored MuPDF messages as a string with interspersed line-breaks.

Parameters
reset (bool) – (new in version 1.16.7) whether to automatically empty the store.

fitz_config

A dictionary containing the actual values used for configuring PyMuPDF and MuPDF. Also refer to the
installation chapter. This is an overview of the keys, each of which describes the status of a support aspect.

6.23. Tools 331

PyMuPDF Documentation, Release 1.21.1

Key Support included for . . .
plotter-g Gray colorspace rendering
plotter-rgb RGB colorspace rendering
plotter-cmyk CMYK colorspcae rendering
plotter-n overprint rendering
pdf PDF documents
xps XPS documents
svg SVG documents
cbz CBZ documents
img IMG documents
html HTML documents
epub EPUB documents
jpx JPEG2000 images
js JavaScript
tofu all TOFU fonts
tofu-cjk CJK font subset (China, Japan, Korea)
tofu-cjk-ext CJK font extensions
tofu-cjk-lang CJK font language extensions
tofu-emoji TOFU emoji fonts
tofu-historic TOFU historic fonts
tofu-symbol TOFU symbol fonts
tofu-sil TOFU SIL fonts
icc ICC profiles
py-memory using Python memory management2
base14 Base-14 fonts (should always be true)

For an explanation of the term “TOFU” see this Wikipedia article.:

In [1]: import fitz
In [2]: TOOLS.fitz_config
Out[2]:
{'plotter-g': True,
'plotter-rgb': True,
'plotter-cmyk': True,
'plotter-n': True,
'pdf': True,
'xps': True,
'svg': True,
'cbz': True,
'img': True,
'html': True,
'epub': True,
'jpx': True,
'js': True,
'tofu': False,
'tofu-cjk': True,
'tofu-cjk-ext': False,
'tofu-cjk-lang': False,
'tofu-emoji': False,

(continues on next page)

2 By default PyMuPDF and MuPDF use malloc()/free() for dynamic memory management. One can instead force them to use the Python
allocation functions PyMem_New()/PyMem_Del(), by modifying fitz/fitz.i to do #define JM_MEMORY 1 and rebuilding PyMuPDF.

332 Chapter 6. Classes

https://en.wikipedia.org/wiki/Noto_fonts

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

'tofu-historic': False,
'tofu-symbol': False,
'tofu-sil': False,
'icc': True,
'py-memory': False,
'base14': True}

Return type
dict

store_maxsize

Maximum storables cache size in bytes. PyMuPDF is generated with a value of 268’435’456 (256 MB,
the default value), which you should therefore always see here. If this value is zero, then an “unlimited”
growth is permitted.

Return type
int

store_size

Current storables cache size in bytes. This value may change (and will usually increase) with every use of
a PyMuPDF function. It will (automatically) decrease only when Tools.store_maxize is going to be
exceeded: in this case, MuPDF will evict low-usage objects until the value is again in range.

Return type
int

6.23.1 Example Session

::

>>> import fitz
print the maximum and current cache sizes
>>> fitz.TOOLS.store_maxsize
268435456
>>> fitz.TOOLS.store_size
0
>>> doc = fitz.open("demo1.pdf")
pixmap creation puts lots of object in cache (text, images, fonts),
apart from the pixmap itself
>>> pix = doc[0].get_pixmap(alpha=False)
>>> fitz.TOOLS.store_size
454519
release (at least) 50% of the storage
>>> fitz.TOOLS.store_shrink(50)
13471
>>> fitz.TOOLS.store_size
13471
get a few unique numbers
>>> fitz.TOOLS.gen_id()
1
>>> fitz.TOOLS.gen_id()
2

(continues on next page)

6.23. Tools 333

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> fitz.TOOLS.gen_id()
3
close document and see how much cache is still in use
>>> doc.close()
>>> fitz.TOOLS.store_size
0
>>>

6.24 Widget

This class represents a PDF Form field, also called a “widget”. Throughout this documentation, we are using these terms
synonymously. Fields technically are a special case of PDF annotations, which allow users with limited permissions to
enter information in a PDF. This is primarily used for filling out forms.

Like annotations, widgets live on PDF pages. Similar to annotations, the first widget on a page is accessible via Page.
first_widget and subsequent widgets can be accessed via the Widget.next property.

(Changed in version 1.16.0) MuPDF no longer treats widgets as a subset of general annotations. Consequently, Page.
first_annot and Annot.next() will deliver non-widget annotations exclusively, and be None if only form fields
exist on a page. Vice versa, Page.first_widget and Widget.next() will only show widgets. This design decision
is purely internal to MuPDF; technically, links, annotations and fields have a lot in common and also continue to share
the better part of their code within (Py-) MuPDF.

Class API
class Widget

button_states()

New in version 1.18.15

Return the names of On / Off (i.e. selected / clicked or not) states a button field may have.
While the ‘Off’ state usually is also named like so, the ‘On’ state is often given a name relating
to the functional context, for example ‘Yes’, ‘Female’, etc.

This method helps finding out the possible values of field_value in these cases.

returns
a dictionary with the names of ‘On’ and ‘Off’ for the normal and the pressed-
down appearance of button widgets. Example:

>>> print(field.field_name, field.button_states())
Gender Second person {'down': ['Male', 'Off'], 'normal': [
→˓'Male', 'Off']}

update()

After any changes to a widget, this method must be used to store them in the PDF1.

reset()

Reset the field’s value to its default – if defined – or remove it. Do not forget to issue update() afterwards.

1 If you intend to re-access a new or updated field (e.g. for making a pixmap), make sure to reload the page first. Either close and re-open the
document, or load another page first, or simply do page = doc.reload_page(page).

334 Chapter 6. Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

next

Point to the next form field on the page. The last widget returns None.

border_color

A list of up to 4 floats defining the field’s border color. Default value is None which causes border style
and border width to be ignored.

border_style

A string defining the line style of the field’s border. See Annot.border. Default is “s” (“Solid”) – a
continuous line. Only the first character (upper or lower case) will be regarded when creating a widget.

border_width

A float defining the width of the border line. Default is 1.

border_dashes

A list/tuple of integers defining the dash properties of the border line. This is only meaningful if bor-
der_style == “D” and border_color is provided.

choice_values

Python sequence of strings defining the valid choices of list boxes and combo boxes. For these widget
types, this property is mandatory and must contain at least two items. Ignored for other types.

field_name

A mandatory string defining the field’s name. No checking for duplicates takes place.

field_label

An optional string containing an “alternate” field name. Typically used for any notes, help on field usage,
etc. Default is the field name.

field_value

The value of the field.

field_flags

An integer defining a large amount of properties of a field. Be careful when changing this attribute as this
may change the field type.

field_type

A mandatory integer defining the field type. This is a value in the range of 0 to 6. It cannot be changed
when updating the widget.

field_type_string

A string describing (and derived from) the field type.

fill_color

A list of up to 4 floats defining the field’s background color.

button_caption

The caption string of a button-type field.

is_signed

A bool indicating the signing status of a signature field, else None.

rect

The rectangle containing the field.

text_color

A list of 1, 3 or 4 floats defining the text color. Default value is black ([0, 0, 0]).

6.24. Widget 335

PyMuPDF Documentation, Release 1.21.1

text_font

A string defining the font to be used. Default and replacement for invalid values is “Helv”. For valid font
reference names see the table below.

text_fontsize

A float defining the text fontsize. Default value is zero, which causes PDF viewer software to dynamically
choose a size suitable for the annotation’s rectangle and text amount.

text_maxlen

An integer defining the maximum number of text characters. PDF viewers will (should) not accept a longer
text.

text_type

An integer defining acceptable text types (e.g. numeric, date, time, etc.). For reference only for the time
being – will be ignored when creating or updating widgets.

xref

The PDF xref of the widget.

script

• New in version 1.16.12

JavaScript text (unicode) for an action associated with the widget, or None. This is the only script action
supported for button type widgets.

script_stroke

• New in version 1.16.12

JavaScript text (unicode) to be performed when the user types a key-stroke into a text field or combo box
or modifies the selection in a scrollable list box. This action can check the keystroke for validity and reject
or modify it. None if not present.

script_format

• New in version 1.16.12

JavaScript text (unicode) to be performed before the field is formatted to display its current value. This
action can modify the field’s value before formatting. None if not present.

script_change

• New in version 1.16.12

JavaScript text (unicode) to be performed when the field’s value is changed. This action can check the new
value for validity. None if not present.

script_calc

• New in version 1.16.12

JavaScript text (unicode) to be performed to recalculate the value of this field when that of another field
changes. None if not present.

Note:
1. For adding or changing one of the above scripts, just put the appropriate JavaScript source code in the

widget attribute. To remove a script, set the respective attribute to None.
2. Button fields only support script. Other script entries will automatically be set to None.

336 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

6.24.1 Standard Fonts for Widgets

Widgets use their own resources object /DR. A widget resources object must at least contain a /Font object. Widget
fonts are independent from page fonts. We currently support the 14 PDF base fonts using the following fixed reference
names, or any name of an already existing field font. When specifying a text font for new or changed widgets, either
choose one in the first table column (upper and lower case supported), or one of the already existing form fonts. In the
latter case, spelling must exactly match.

To find out already existing field fonts, inspect the list Document.FormFonts.

Reference Base14 Fontname
CoBI Courier-BoldOblique
CoBo Courier-Bold
CoIt Courier-Oblique
Cour Courier
HeBI Helvetica-BoldOblique
HeBo Helvetica-Bold
HeIt Helvetica-Oblique
Helv Helvetica (default)
Symb Symbol
TiBI Times-BoldItalic
TiBo Times-Bold
TiIt Times-Italic
TiRo Times-Roman
ZaDb ZapfDingbats

You are generally free to use any font for every widget. However, we recommend using ZaDb (“ZapfDingbats”) and
fontsize 0 for check boxes: typical viewers will put a correctly sized tickmark in the field’s rectangle, when it is clicked.

6.24.2 Supported Widget Types

PyMuPDF supports the creation and update of many, but not all widget types.

• text (PDF_WIDGET_TYPE_TEXT)

• push button (PDF_WIDGET_TYPE_BUTTON)

• check box (PDF_WIDGET_TYPE_CHECKBOX)

• combo box (PDF_WIDGET_TYPE_COMBOBOX)

• list box (PDF_WIDGET_TYPE_LISTBOX)

• radio button (PDF_WIDGET_TYPE_RADIOBUTTON): PyMuPDF does not currently support groups of (intercon-
nected) buttons, where setting one automatically unsets the other buttons in the group. The widget object also
does not reflect the presence of a button group. Setting or unsetting happens via values True and False and will
always work without affecting other radio buttons.

• signature (PDF_WIDGET_TYPE_SIGNATURE) read only.

6.24. Widget 337

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

6.25 Xml

• New in v1.21.0

This represents an HTML or an XML node. It is a helper class intended to access the DOM (Document Object Model)
content of a Story object.

There is no need to ever directly construct an Xml object: after creating a Story, simply take Story.body – which is
an Xml node – and use it to navigate your way through the story’s DOM.

Method / Attribute Description
add_bullet_list() add a ul tag - bulleted list, context manager.
add_codeblock() add a pre tag, context manager.
add_description_list() add a dl tag, context manager.
add_division() add a div tag (renamed from “section”), context manager.
add_header() add a header tag (one of h1 to h6), context manager.
add_horizontal_line() add a hr tag.
add_image() add a img tag.
add_link() add a a tag.
add_number_list() add a ol tag, context manager.
add_paragraph() add a p tag.
add_span() add a span tag, context manager.
add_subscript() add subscript text(sub tag) - inline element, treated like text.
add_superscript() add subscript text (sup tag) - inline element, treated like text.
add_code() add code text (code tag) - inline element, treated like text.
add_var() add code text (code tag) - inline element, treated like text.
add_samp() add code text (code tag) - inline element, treated like text.
add_kbd() add code text (code tag) - inline element, treated like text.
add_text() add a text string. Line breaks \n are honored as br tags.
set_align() sets the alignment using a CSS style spec. Only works for block-level tags.
set_attribute() sets an arbitrary key to some value (which may be empty).
set_bgcolor() sets the background color. Only works for block-level tags.
set_bold() sets bold on or off or to some string value.
set_color() sets text color.
set_columns() sets the number of columns. Argument may be any valid number or string.
set_font() sets the font-family, e.g. “sans-serif”.
set_fontsize() sets the font size. Either a float or a valid HTML/CSS string.
set_id() sets a id. A check for uniqueness is performed.
set_italic() sets italic on or off or to some string value.
set_leading() set inter-block text distance (-mupdf-leading), only works on block-level nodes.
set_lineheight() set height of a line. Float like 1.5, which sets to 1.5 * fontsize.
set_margins() sets the margin(s), float or string with up to 4 values.
set_pagebreak_after() insert a page break after this node.
set_pagebreak_before() insert a page break before this node.
set_properties() set any or all desired properties in one call.
add_style() set (add) some “style” attribute not supported by its own set_ method.
add_class() set (add) some “class” attribute.
set_text_indent() set indentation for first textblock line. Only works for block-level nodes.
tagname either the HTML tag name like p or None if a text node.
text either the node’s text or None if a tag node.
is_text check if the node is a text.
first_child contains the first node one level below this one (or None).

continues on next page

338 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

Table 5 – continued from previous page
Method / Attribute Description
last_child contains the last node one level below this one (or None).
next the next node at the same level (or None).
previous the previous node at the same level.
root the top node of the DOM, which hence has the tagname html.

Class API
class Xml

add_bullet_list()

Add an ul tag - bulleted list, context manager. See ul.

add_codeblock()

Add a pre tag, context manager. See pre.

add_description_list()

Add a dl tag, context manager. See dl.

add_division()

Add a div tag, context manager. See div.

add_header(value)
Add a header tag (one of h1 to h6), context manager. See headings.

Parameters
value (int) – a value 1 - 6.

add_horizontal_line()

Add a hr tag. See hr.

add_image(name, width=None, height=None)
Add an img tag. This causes the inclusion of the named image in the DOM.

Parameters
• name (str) – the filename of the image. This must be the member name of some

entry of the Archive parameter of the Story constructor.

• width – if provided, either an absolute (int) value, or a percentage string like “30%”.
A percentage value refers to the width of the specified where rectangle in Story.
place(). If this value is provided and height is omitted, the image will be in-
cluded keeping its aspect ratio.

• height – if provided, either an absolute (int) value, or a percentage string like
“30%”. A percentage value refers to the height of the specified where rectangle in
Story.place(). If this value is provided and width is omitted, the image’s aspect
ratio will be honored.

add_link(href, text=None)
Add an a tag - inline element, treated like text.

Parameters
• href (str) – the URL target.

• text (str) – the text to display. If omitted, the href text is shown instead.

6.25. Xml 339

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ul
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/pre
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dl
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Heading_Elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/hr

PyMuPDF Documentation, Release 1.21.1

add_number_list()

Add an ol tag, context manager.

add_paragraph()

Add a p tag, context manager.

add_span()

Add a span tag, context manager. See span

add_subscript(text)
Add “subscript” text(sub tag) - inline element, treated like text.

add_superscript(text)
Add “superscript” text (sup tag) - inline element, treated like text.

add_code(text)
Add “code” text (code tag) - inline element, treated like text.

add_var(text)
Add “variable” text (var tag) - inline element, treated like text.

add_samp(text)
Add “sample output” text (samp tag) - inline element, treated like text.

add_kbd(text)
Add “keyboard input” text (kbd tag) - inline element, treated like text.

add_text(text)
Add a text string. Line breaks \n are honored as br tags.

set_align(value)
Set the text alignment. Only works for block-level tags.

Parameters
value – either one of the Text Alignment or the text-align values.

set_attribute(key, value=None)
Set an arbitrary key to some value (which may be empty).

Parameters
• key (str) – the name of the attribute.

• value (str) – the (optional) value of the attribute.

get_attributes()

Retrieve all attributes of the current nodes as a dictionary.

Returns
a dictionary with the attributes and their values of the node.

get_attribute_value(key)
Get the attribute value of key.

Parameters
key (str) – the name of the attribute.

Returns
a string with the value of key.

340 Chapter 6. Classes

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span
https://developer.mozilla.org/en-US/docs/Web/CSS/text-align

PyMuPDF Documentation, Release 1.21.1

remove_attribute(key)
Remove the attribute key from the node.

Parameters
key (str) – the name of the attribute.

set_bgcolor(value)
Sets the background color. Only works for block-level tags.

Parameters
value – either an RGB value like (255, 0, 0) (for “red”) or a valid background-color
value.

set_bold(value)
Sets bold on or off or to some string value.

Parameters
value – True, False or a valid font-weight value.

set_color(value)
Set the color of the text following.

Parameters
value – either an RGB value like (255, 0, 0) (for “red”) or a valid color value.

set_columns(value)
Sets the number of columns.

Parameters
value – a valid columns value.

Note: Currently ignored - supported in a future MuPDF version.

set_font(value)
Set the font-family.

Parameters
value (str) – e.g. “sans-serif”.

set_fontsize(value)
Set the font size for text following.

Parameters
value – a float or a valid font-size value.

set_id(unqid)
Sets a id. This serves as a unique identification of the node within the DOM. Use it to easily locate the
node to inspect or modify it. A check for uniqueness is performed.

Parameters
unqid (str) – id string of the node.

set_italic(value)
Sets italic on or off or to some string value for the text following it.

Parameters
value – True, False or some valid font-style value.

6.25. Xml 341

https://developer.mozilla.org/en-US/docs/Web/CSS/background-color
https://developer.mozilla.org/en-US/docs/Web/CSS/font-weight
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value
https://developer.mozilla.org/en-US/docs/Web/CSS/columns
https://developer.mozilla.org/en-US/docs/Web/CSS/font-size
https://developer.mozilla.org/en-US/docs/Web/CSS/font-style

PyMuPDF Documentation, Release 1.21.1

set_leading(value)
Set inter-block text distance (-mupdf-leading), only works on block-level nodes.

Parameters
value (float) – the distance in points to the previous block.

set_lineheight(value)
Set height of a line.

Parameters
value – a float like 1.5 (which sets to 1.5 * fontsize), or some valid line-height value.

set_margins(value)
Sets the margin(s).

Parameters
value – float or string with up to 4 values. See CSS documentation.

set_pagebreak_after()

Insert a page break after this node.

set_pagebreak_before()

Insert a page break before this node.

set_properties(align=None, bgcolor=None, bold=None, color=None, columns=None, font=None,
fontsize=None, indent=None, italic=None, leading=None, lineheight=None,
margins=None, pagebreak_after=False, pagebreak_before=False, unqid=None,
cls=None)

Set any or all desired properties in one call. The meaning of argument values equal the values of the
corresponding set_ methods.

Note: The properties set by this method are directly attached to the node, whereas every set_ method
generates a new span below the current node that has the respective property. So to e.g. “globally” set
some property for the body, this method must be used.

add_style(value)
Set (add) some style attribute not supported by its own set_ method.

Parameters
value (str) – any valid CSS style value.

add_class(value)
Set (add) some “class” attribute.

Parameters
value (str) – the name of the class. Must have been defined in either the HTML or the
CSS source of the DOM.

set_text_indent(value)
Set indentation for the first textblock line. Only works for block-level nodes.

Parameters
value – a valid text-indent value. Please note that negative values do not work.

append_child(node)
Append a child node. This is a low-level method used by other methods like Xml.add_paragraph().

342 Chapter 6. Classes

https://developer.mozilla.org/en-US/docs/Web/CSS/line-height
https://developer.mozilla.org/en-US/docs/Web/CSS/margin
https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent

PyMuPDF Documentation, Release 1.21.1

Parameters
node – the Xml node to append.

create_text_node(text)
Create direct text for the current node

Parameters
text (str) – the text to append.

Return type
Xml

Returns
the created element.

create_element(tag)
Create a new node with a given tag. This a low-level method used by other methods like Xml.
add_paragraph().

Parameters
tag (str) – the element tag.

Return type
Xml

Returns
the created element. To actually bind it to the DOM, use Xml.append_child().

insert_before(elem)

Insert the given element elem before this node.

Parameters
elem – some Xml element.

insert_after(elem)

Insert the given element elem after this node.

Parameters
elem – some Xml element.

clone()

Make a copy of this node, which then may be appended (using Xml.append_child()) or inserted (using
one of Xml.insert_before(), Xml.insert_after()) in this DOM.

Returns
the clone (Xml) of the current node.

remove()

Remove this node from the DOM.

debug()

For debugging purposes, print this node’s structure in a simplified form.

find(tag, att, match)
Under the current node, find a node with the given tag, atribute att and value match.

Parameters
• tag (str) – restrict search to this tag. May be None for unrestricted search.

• att (str) – check this attribute.

• match (str) – the desired attribute value to match.

6.25. Xml 343

PyMuPDF Documentation, Release 1.21.1

Return type
Xml.

Returns
None if nothing found, otherwise the first matching node.

find_next(tag, att, match)
Continue a previous Xml.find() with the same values.

Return type
Xml.

Returns
None if none more found, otherwise the next matching node.

tagname

Either the HTML tag name like p or None if a text node.

text

Either the node’s text or None if a tag node.

is_text

Check if a text node.

first_child

Contains the first node one level below this one (or None).

last_child

Contains the last node one level below this one (or None).

next

The next node at the same level (or None).

previous

The previous node at the same level.

root

The top node of the DOM, which hence has the tagname html.

6.25.1 Setting Text properties

In HTML tags can be nested such that innermost text inherits properties from the tag enveloping its parent tag. For
example <p>some bold text<i>this is bold and italic</i>regular text</p>.

To achieve the same effect, methods like Xml.set_bold() and Xml.set_italic() each open a temporary span with
the desired property underneath the current node.

In addition, these methods return there parent node, so they can be concatenated with each other.

344 Chapter 6. Classes

PyMuPDF Documentation, Release 1.21.1

6.25.2 Context Manager support

The standard way to add nodes to a DOM is this:

body = story.body
para = body.add_paragraph() # add a paragraph
para.set_bold() # text that follows will be bold
para.add_text("some bold text")
para.set_italic() # text that follows will additionally be italic
para.add_txt("this is bold and italic")
para.set_italic(False).set_bold(False) # all following text will be regular
para.add_text("regular text")

Methods that are flagged as “context managers” can conveniently be used in this way:

body = story.body
with body.add_paragraph() as para:

para.set_bold().add_text("some bold text")
para.set_italic().add_text("this is bold and italic")
para.set_italic(False).set_bold(False).add_text("regular text")
para.add_text("more regular text")

6.25. Xml 345

https://discord.gg/TSpYGBW4eq
https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

346 Chapter 6. Classes

CHAPTER

SEVEN

OPERATOR ALGEBRA FOR GEOMETRY OBJECTS

Instances of classes Point, IRect, Rect, Quad and Matrix are collectively also called “geometry” objects.

They all are special cases of Python sequences, see Using Python Sequences as Arguments in PyMuPDF for more
background.

We have defined operators for these classes that allow dealing with them (almost) like ordinary numbers in terms of
addition, subtraction, multiplication, division, and some others.

This chapter is a synopsis of what is possible.

7.1 General Remarks

1. Operators can be either binary (i.e. involving two objects) or unary.

2. The resulting type of binary operations is either a new object of the left operand’s class or a bool.

3. The result of unary operations is either a new object of the same class, a bool or a float.

4. The binary operators +, -, *, / are defined for all classes. They roughly do what you would expect – except, that
the second operand . . .

• may always be a number which then performs the operation on every component of the first one,

• may always be a numeric sequence of the same length (2, 4 or 6) – we call such sequences point_like,
rect_like, quad_like or matrix_like, respectively.

5. Rectangles support additional binary operations: intersection (operator “&”), union (operator “|”) and con-
tainment checking.

6. Binary operators fully support in-place operations, so expressions like a /= b are valid if b is numeric or
“a_like”.

7.2 Unary Operations

Oper. Result
bool(OBJ) is false exactly if all components of OBJ are zero
abs(OBJ) the rectangle area – equal to norm(OBJ) for the other tyes
norm(OBJ) square root of the component squares (Euclidean norm)
+OBJ new copy of OBJ
-OBJ new copy of OBJ with negated components
~m inverse of matrix “m”, or the null matrix if not invertible

347

PyMuPDF Documentation, Release 1.21.1

7.3 Binary Operations

For every geometry object “a” and every number “b”, the operations “a ° b” and “a °= b” are always defined for the
operators +, -, *, /. The respective operation is simply executed for each component of “a”. If the second operand is
not a number, then the following is defined:

Oper. Result
a+b,
a-b

component-wise execution, “b” must be “a-like”.

a*m,
a/m

“a” can be a point, rectangle or matrix, but “m” must be matrix_like. “a/m” is treated as “a*~m” (see
note below for non-invertible matrices). If “a” is a point or a rectangle, then “a.transform(m)” is executed.
If “a” is a matrix, then matrix concatenation takes place.

a&b intersection rectangle: “a” must be a rectangle and “b” rect_like. Delivers the largest rectangle con-
tained in both operands.

a|b union rectangle: “a” must be a rectangle, and “b” may be point_like or rect_like. Delivers the smallest
rectangle containing both operands.

b in
a

if “b” is a number, then b in tuple(a) is returned. If “b” is point_like, rect_like or quad_like,
then “a” must be a rectangle, and a.contains(b) is returned.

a
==
b

True if bool(a-b) is False (“b” may be “a-like”).

Note: Please note an important difference to usual arithmetics:

Matrix multiplication is not commutative, i.e. in general we have m*n != n*m for two matrices. Also, there are non-
zero matrices which have no inverse, for example m = Matrix(1, 0, 1, 0, 1, 0). If you try to divide by any of
these, you will receive a ZeroDivisionError exception using operator “/”, e.g. for the expression fitz.Identity
/ m. But if you formulate fitz.Identity * ~m, the result will be fitz.Matrix() (the null matrix).

Admittedly, this represents an inconsistency, and we are considering to remove it. For the time being, you can choose
to avoid an exception and check whether ~m is the null matrix, or accept a potential ZeroDivisionError by using fitz.
Identity / m.

Note:
• With these conventions, all the usual algebra rules apply. For example, arbitrarily using brackets (among objects

of the same class!) is possible: if r1, r2 are rectangles and m1, m2 are matrices, you can do this (r1 + r2) *
m1 * m2.

• For all objects of the same class, a + b + c == (a + b) + c == a + (b + c) is true.

• For matrices in addition the following is true: (m1 + m2) * m3 == m1 * m3 + m2 * m3 (distributivity prop-
erty).

• But the sequence of applying matrices is important: If r is a rectangle and m1, m2 are matrices, then –
caution!:

– r * m1 * m2 == (r * m1) * m2 != r * (m1 * m2)

348 Chapter 7. Operator Algebra for Geometry Objects

PyMuPDF Documentation, Release 1.21.1

7.4 Some Examples

7.4.1 Manipulation with numbers

For the usual arithmetic operations, numbers are always allowed as second operand. In addition, you can formulate "x
in OBJ", where x is a number. It is implemented as "x in tuple(OBJ)":

>>> fitz.Rect(1, 2, 3, 4) + 5
fitz.Rect(6.0, 7.0, 8.0, 9.0)
>>> 3 in fitz.Rect(1, 2, 3, 4)
True
>>>

The following will create the upper left quarter of a document page rectangle:

>>> page.rect
Rect(0.0, 0.0, 595.0, 842.0)
>>> page.rect / 2
Rect(0.0, 0.0, 297.5, 421.0)
>>>

The following will deliver the middle point of a line that connects two points p1 and p2:

>>> p1 = fitz.Point(1, 2)
>>> p2 = fitz.Point(4711, 3141)
>>> mp = (p1 + p2) / 2
>>> mp
Point(2356.0, 1571.5)
>>>

7.4.2 Manipulation with “like” Objects

The second operand of a binary operation can always be “like” the left operand. “Like” in this context means “a
sequence of numbers of the same length”. With the above examples:

>>> p1 + p2
Point(4712.0, 3143.0)
>>> p1 + (4711, 3141)
Point(4712.0, 3143.0)
>>> p1 += (4711, 3141)
>>> p1
Point(4712.0, 3143.0)
>>>

To shift a rectangle for 5 pixels to the right, do this:

>>> fitz.Rect(100, 100, 200, 200) + (5, 0, 5, 0) # add 5 to the x coordinates
Rect(105.0, 100.0, 205.0, 200.0)
>>>

Points, rectangles and matrices can be transformed with matrices. In PyMuPDF, we treat this like a “multiplication”
(or resp. “division”), where the second operand may be “like” a matrix. Division in this context means “multiplication
with the inverted matrix”:

7.4. Some Examples 349

PyMuPDF Documentation, Release 1.21.1

>>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
>>> n = fitz.Matrix(6, 5, 4, 3, 2, 1)
>>> p = fitz.Point(1, 2)
>>> p * m
Point(12.0, 16.0)
>>> p * (1, 2, 3, 4, 5, 6)
Point(12.0, 16.0)
>>> p / m
Point(2.0, -2.0)
>>> p / (1, 2, 3, 4, 5, 6)
Point(2.0, -2.0)
>>>
>>> m * n # matrix multiplication
Matrix(14.0, 11.0, 34.0, 27.0, 56.0, 44.0)
>>> m / n # matrix division
Matrix(2.5, -3.5, 3.5, -4.5, 5.5, -7.5)
>>>
>>> m / m # result is equal to the Identity matrix
Matrix(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
>>>
>>> # look at this non-invertible matrix:
>>> m = fitz.Matrix(1, 0, 1, 0, 1, 0)
>>> ~m
Matrix(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
>>> # we try dividing by it in two ways:
>>> p = fitz.Point(1, 2)
>>> p * ~m # this delivers point (0, 0):
Point(0.0, 0.0)
>>> p / m # but this is an exception:
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
p / m

File "... /site-packages/fitz/fitz.py", line 869, in __truediv__
raise ZeroDivisionError("matrix not invertible")

ZeroDivisionError: matrix not invertible
>>>

As a specialty, rectangles support additional binary operations:

• intersection – the common area of rectangle-likes, operator “&”

• inclusion – enlarge to include a point-like or rect-like, operator “|”

• containment check – whether a point-like or rect-like is inside

Here is an example for creating the smallest rectangle enclosing given points:

>>> # first define some point-likes
>>> points = []
>>> for i in range(10):

for j in range(10):
points.append((i, j))

>>>
>>> # now create a rectangle containing all these 100 points
>>> # start with an empty rectangle

(continues on next page)

350 Chapter 7. Operator Algebra for Geometry Objects

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> r = fitz.Rect(points[0], points[0])
>>> for p in points[1:]: # and include remaining points one by one

r |= p
>>> r # here is the to be expected result:
Rect(0.0, 0.0, 9.0, 9.0)
>>> (4, 5) in r # this point-like lies inside the rectangle
True
>>> # and this rect-like is also inside
>>> (4, 4, 5, 5) in r
True
>>>

7.4. Some Examples 351

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

352 Chapter 7. Operator Algebra for Geometry Objects

CHAPTER

EIGHT

LOW LEVEL FUNCTIONS AND CLASSES

Contains a number of functions and classes for the experienced user. To be used for special needs or performance
requirements.

8.1 Functions

The following are miscellaneous functions and attributes on a fairly low-level technical detail.

Some functions provide detail access to PDF structures. Others are stripped-down, high performance versions of other
functions which provide more information.

Yet others are handy, general-purpose utilities.

Function Short Description
Annot.apn_bbox PDF only: bbox of the appearance object
Annot.apn_matrix PDF only: the matrix of the appearance object
Page.is_wrapped check whether contents wrapping is present
adobe_glyph_names() list of glyph names defined in Adobe Glyph List
adobe_glyph_unicodes() list of unicodes defined in Adobe Glyph List
Annot.clean_contents() PDF only: clean the annot’s contents object
Annot.set_apn_bbox() PDF only: set the bbox of the appearance object
Annot.set_apn_matrix() PDF only: set the matrix of the appearance object
ConversionHeader() return header string for get_text methods
ConversionTrailer() return trailer string for get_text methods
Document.del_xml_metadata() PDF only: remove XML metadata
Document.get_char_widths() PDF only: return a list of glyph widths of a font
Document.get_new_xref() PDF only: create and return a new xref entry
Document.is_stream() PDF only: check whether an xref is a stream object
Document.xml_metadata_xref() PDF only: return XML metadata xref number
Document.xref_length() PDF only: return length of xref table
EMPTY_IRECT() return the (standard) empty / invalid rectangle
EMPTY_QUAD() return the (standard) empty / invalid quad
EMPTY_RECT() return the (standard) empty / invalid rectangle
get_pdf_now() return the current timestamp in PDF format
get_pdf_str() return PDF-compatible string
get_text_length() return string length for a given font & fontsize
glyph_name_to_unicode() return unicode from a glyph name
image_profile() return a dictionary of basic image properties
INFINITE_IRECT() return the (only existing) infinite rectangle

continues on next page

353

PyMuPDF Documentation, Release 1.21.1

Table 1 – continued from previous page
Function Short Description
INFINITE_QUAD() return the (only existing) infinite quad
INFINITE_RECT() return the (only existing) infinite rectangle
make_table() split rectangle in sub-rectangles
Page.clean_contents() PDF only: clean the page’s contents objects
Page.get_bboxlog() list of rectangles that envelop text, drawing or image objects
Page.get_contents() PDF only: return a list of content xref numbers
Page.get_displaylist() create the page’s display list
Page.get_text_blocks() extract text blocks as a Python list
Page.get_text_words() extract text words as a Python list
Page.get_texttrace() low-level text information
Page.read_contents() PDF only: get complete, concatenated /Contents source
Page.run() run a page through a device
Page.set_contents() PDF only: set page’s contents to some xref
Page.wrap_contents() wrap contents with stacking commands
css_for_pymupdf_font() create CSS source for a font in package pymupdf_fonts
paper_rect() return rectangle for a known paper format
paper_size() return width, height for a known paper format
paper_sizes() dictionary of pre-defined paper formats
planish_line() matrix to map a line to the x-axis
recover_char_quad() compute the quad of a char (“rawdict”)
recover_line_quad() compute the quad of a subset of line spans
recover_quad() compute the quad of a span (“dict”, “rawdict”)
recover_quad() return the quad for a text span (“dict” / “rawdict”)
recover_span_quad() compute the quad of a subset of span characters
sRGB_to_pdf() return PDF RGB color tuple from an sRGB integer
sRGB_to_rgb() return (R, G, B) color tuple from an sRGB integer
unicode_to_glyph_name() return glyph name from a unicode
fitz_fontdescriptors dictionary of available supplement fonts
TESSDATA_PREFIX a copy of os.environ["TESSDATA_PREFIX"]
pdfcolor dictionary of almost 500 RGB colors in PDF format.

paper_size(s)
Convenience function to return width and height of a known paper format code. These values are
given in pixels for the standard resolution 72 pixels = 1 inch.

Currently defined formats include ‘A0’ through ‘A10’, ‘B0’ through ‘B10’, ‘C0’ through ‘C10’,
‘Card-4x6’, ‘Card-5x7’, ‘Commercial’, ‘Executive’, ‘Invoice’, ‘Ledger’, ‘Legal’, ‘Legal-13’,
‘Letter’, ‘Monarch’ and ‘Tabloid-Extra’, each in either portrait or landscape format.

A format name must be supplied as a string (case in sensitive), optionally suffixed with “-L” (land-
scape) or “-P” (portrait). No suffix defaults to portrait.

Parameters
s (str) – any format name from above in upper or lower case, like “A4” or “letter-
l”.

Return type
tuple

Returns
(width, height) of the paper format. For an unknown format (-1, -1) is returned.
Examples: fitz.paper_size(“A4”) returns (595, 842) and fitz.paper_size(“letter-l”)
delivers (792, 612).

354 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.21.1

paper_rect(s)
Convenience function to return a Rect for a known paper format.

Parameters
s (str) – any format name supported by paper_size().

Return type
Rect

Returns
fitz.Rect(0, 0, width, height) with width, height=fitz.paper_size(s).

>>> import fitz
>>> fitz.paper_rect("letter-l")
fitz.Rect(0.0, 0.0, 792.0, 612.0)
>>>

sRGB_to_pdf(srgb)
New in v1.17.4

Convenience function returning a PDF color triple (red, green, blue) for a given sRGB color integer
as it occurs in Page.get_text() dictionaries “dict” and “rawdict”.

Parameters
srgb (int) – an integer of format RRGGBB, where each color component is an
integer in range(255).

Returns
a tuple (red, green, blue) with float items in intervall 0 <= item <= 1 representing
the same color. Example sRGB_to_pdf(0xff0000) = (1, 0, 0) (red).

sRGB_to_rgb(srgb)
New in v1.17.4

Convenience function returning a color (red, green, blue) for a given sRGB color integer.

Parameters
srgb (int) – an integer of format RRGGBB, where each color component is an
integer in range(255).

Returns
a tuple (red, green, blue) with integer items in range(256) representing the same
color. Example sRGB_to_pdf(0xff0000) = (255, 0, 0) (red).

glyph_name_to_unicode(name)
New in v1.18.0

Return the unicode number of a glyph name based on the Adobe Glyph List.
Parameters

name (str) – the name of some glyph. The function is based on the Adobe Glyph
List.

8.1. Functions 355

https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt
https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt

PyMuPDF Documentation, Release 1.21.1

Return type
int

Returns
the unicode. Invalid name entries return 0xfffd (65533).

Note: A similar functionality is provided by package fontTools in its agl sub-package.

unicode_to_glyph_name(ch)
New in v1.18.0

Return the glyph name of a unicode number, based on the Adobe Glyph List.
Parameters

ch (int) – the unicode given by e.g. ord("ß"). The function is based on the
Adobe Glyph List.

Return type
str

Returns
the glyph name. E.g. fitz.unicode_to_glyph_name(ord("Ä")) returns
'Adieresis'.

Note: A similar functionality is provided by package fontTools: in its agl sub-package.

adobe_glyph_names()

New in v1.18.0

Return a list of glyph names defined in the Adobe Glyph List.
Return type

list

Returns
list of strings.

Note: A similar functionality is provided by package fontTools in its agl sub-package.

adobe_glyph_unicodes()

New in v1.18.0

Return a list of unicodes for there exists a glyph name in the Adobe Glyph List.
Return type

list

Returns
list of integers.

356 Chapter 8. Low Level Functions and Classes

https://pypi.org/project/fonttools/
https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt
https://pypi.org/project/fonttools/
https://pypi.org/project/fonttools/

PyMuPDF Documentation, Release 1.21.1

Note: A similar functionality is provided by package fontTools in its agl sub-package.

css_for_pymupdf_font(fontcode, *, CSS=None, archive=None, name=None)
New in v1.21.0

Utility function for use with “Story” applications.
Create CSS @font-face items for the given fontcode in pymupdf-fonts. Creates a CSS font-family
for all fonts starting with string “fontcode”.

The font naming convention in package pymupdf-fonts is “fontcode<sf>”, where the suffix “sf” is
one of “” (empty), “it”/”i”, “bo”/”b” or “bi”. These suffixes thus represent the regular, italic, bold
or bold-italic variants of that font.

For example, font code “notos” refers to fonts

• “notos” - “Noto Sans Regular”

• “notosit” - “Noto Sans Italic”

• “notosbo” - “Noto Sans Bold”

• “notosbi” - “Noto Sans Bold Italic”

The function creates (up to) four CSS @font-face definitions and collectively assigns the
font-family name “notos” to them (or the “name” value if provided). Associated font buffers
are placed / added to the provided archive.

To use the font in the Python API for Story, execute .set_font(fontcode) (or “name” if given).
The correct font weight or style will automatically be selected as required.

For example to replace the “sans-serif” HTML standard (i.e. Helvetica) with the above “notos”,
execute the following. Whenever “sans-serif” is used (whether explicitely or implicitely), the Noto
Sans fonts will be selected.

CSS = fitz.css_for_pymupdf_font("notos", name="sans-serif", archive=...)

Expects and returns the CSS source, with the new CSS definitions appended.

Parameters
• fontcode (str) – one of the font codes present in package pymupdf-fonts

(usually) representing the regular version of the font family.

• CSS (str) – any already existing CSS source, or None. The function will
append its new definitions to this. This is the string that must be used as
user_css when creating the Story.

• archive – Archive, mandatory. All font binaries (i.e. up to four) found for
“fontcode” will be added to the archive. This is the archive that must be used
as archive when creating the Story.

• name (str) – the name under which the “fontcode” fonts should be found. If
omitted, “fontcode” will be used.

Return type
str

Returns
Modified CSS, with appended @font-face statements for each font variant
of fontcode. Fontbuffers associated with “fontcode” will have been added

8.1. Functions 357

https://pypi.org/project/fonttools/
https://pypi.org/project/pymupdf-fonts/

PyMuPDF Documentation, Release 1.21.1

to ‘archive’. The function will automatically find up to 4 font variants.
All pymupdf-fonts (that are no special purpose like math or music, etc.)
have regular, bold, italic and bold-italic variants. To see currently available
font codes check fitz.fitz_fontdescriptors.keys(). This will show
something like dict_keys(['cascadia', 'cascadiai', 'cascadiab',
'cascadiabi', 'figbo', 'figo', 'figbi', 'figit', 'fimbo',
'fimo', 'spacembo', 'spacembi', 'spacemit', 'spacemo',
'math', 'music', 'symbol1', 'symbol2', 'notosbo', 'notosbi',
'notosit', 'notos', 'ubuntu', 'ubuntubo', 'ubuntubi',
'ubuntuit', 'ubuntm', 'ubuntmbo', 'ubuntmbi', 'ubuntmit'])`.

Here is a complete snippet for using the “Noto Sans” font instead of “Helvetica”:

arch = fitz.Archive()
CSS = fitz.css_for_pymupdf_font("notos", name="sans-serif", archive=arch)
story = fitz.Story(user_css=CSS, archive=arch)

recover_quad(line_dir, span)
New in v1.18.9

Convenience function returning the quadrilateral envelopping the text of a text span, as returned by
Page.get_text() using the “dict” or “rawdict” options.

Parameters
• line_dict (tuple) – the value line["dir"] of the span’s line.

• span (dict) – the span sub-dictionary.

Returns
the quadrilateral of the span’s text.

make_table(rect, cols=1, rows=1)
New in v1.17.4

Convenience function to split a rectangle into sub-rectangles. Returns a list of rows lists, each con-
taining cols Rect items. Each sub-rectangle can then be addressed by its row and column index.

Parameters
• rect (rect_like) – the rectangle to split.

• cols (int) – the desired number of columns.

• rows (int) – the desired number of rows.

Returns
a list of Rect objects of equal size, whose union equals rect. Here is the layout of
a 3x4 table created by cell = fitz.make_table(rect, cols=4, rows=3):

358 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.21.1

planish_line(p1, p2)

• New in version 1.16.2)*

Return a matrix which maps the line from p1 to p2 to the x-axis such that p1 will become (0,0) and
p2 a point with the same distance to (0,0).

Parameters
• p1 (point_like) – starting point of the line.

• p2 (point_like) – end point of the line.

Return type
Matrix

Returns
a matrix which combines a rotation and a translation:

>>> p1 = fitz.Point(1, 1)
>>> p2 = fitz.Point(4, 5)
>>> abs(p2 - p1) # distance of points
5.0
>>> m = fitz.planish_line(p1, p2)
>>> p1 * m
Point(0.0, 0.0)
>>> p2 * m
Point(5.0, -5.960464477539063e-08)
>>> # distance of the resulting points
>>> abs(p2 * m - p1 * m)
5.0

paper_sizes()

A dictionary of pre-defines paper formats. Used as basis for paper_size().

fitz_fontdescriptors

• New in v1.17.5

A dictionary of usable fonts from repository pymupdf-fonts. Items are keyed by their reserved font-
name and provide information like this:

8.1. Functions 359

https://pypi.org/project/pymupdf-fonts/

PyMuPDF Documentation, Release 1.21.1

In [2]: fitz.fitz_fontdescriptors.keys()
Out[2]: dict_keys(['figbo', 'figo', 'figbi', 'figit', 'fimbo', 'fimo',
'spacembo', 'spacembi', 'spacemit', 'spacemo', 'math', 'music', 'symbol1',
'symbol2'])
In [3]: fitz.fitz_fontdescriptors["fimo"]
Out[3]:
{'name': 'Fira Mono Regular',
'size': 125712,
'mono': True,
'bold': False,
'italic': False,
'serif': True,
'glyphs': 1485}

If pymupdf-fonts is not installed, the dictionary is empty.

The dictionary keys can be used to define a Font via e.g. font = fitz.Font("fimo") – just like
you can do it with the builtin fonts “Helvetica” and friends.

TESSDATA_PREFIX

• New in v1.19.4

Copy of os.environ["TESSDATA_PREFIX"] for convenient checking whether there is integrated
Tesseract OCR support.

If this attribute is None, Tesseract-OCR is either not installed, or the environment variable is not set
to point to Tesseract’s language support folder.

Note: This variable is now checked before OCR functions are tried. This prevents verbose messages
from MuPDF.

pdfcolor

• New in v1.19.6

Contains about 500 RGB colors in PDF format with the color name as key. To see what is there, you
can obviously look at fitz.pdfcolor.keys().

Examples:

• fitz.pdfcolor["red"] = (1.0, 0.0, 0.0)

• fitz.pdfcolor["skyblue"] = (0.5294117647058824, 0.807843137254902,
0.9215686274509803)

• fitz.pdfcolor["wheat"] = (0.9607843137254902, 0.8705882352941177, 0.
7019607843137254)

360 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.21.1

get_pdf_now()

Convenience function to return the current local timestamp in PDF compatible format, e.g.
D:20170501121525-04’00’ for local datetime May 1, 2017, 12:15:25 in a timezone 4 hours west-
ward of the UTC meridian.

Return type
str

Returns
current local PDF timestamp.

get_text_length(text, fontname='helv', fontsize=11, encoding=TEXT_ENCODING_LATIN)

• New in version 1.14.7

Calculate the length of text on output with a given builtin font, fontsize and encoding.

Parameters
• text (str) – the text string.

• fontname (str) – the fontname. Must be one of either the PDF Base 14
Fonts or the CJK fonts, identified by their “reserved” fontnames (see table in
:meth.`Page.insert_font`).

• fontsize (float) – the fontsize.

• encoding (int) – the encoding to use. Besides 0 = Latin, 1 = Greek and
2 = Cyrillic (Russian) are available. Relevant for Base-14 fonts “Helvetica”,
“Courier” and “Times” and their variants only. Make sure to use the same
value as in the corresponding text insertion.

Return type
float

Returns
the length in points the string will have (e.g. when used in Page.
insert_text()).

Note: This function will only do the calculation – it won’t insert font nor text.

Note: The Font class offers a similar method, Font.text_length(), which supports Base-14
fonts and any font with a character map (CMap, Type 0 fonts).

Warning: If you use this function to determine the required rectangle width for the (Page or
Shape) insert_textbox methods, be aware that they calculate on a by-character level. Because
of rounding effects, this will mostly lead to a slightly larger number: sum([fitz.get_text_length(c)
for c in text]) > fitz.get_text_length(text). So either (1) do the same, or (2) use something like
fitz.get_text_length(text + “’”) for your calculation.

8.1. Functions 361

PyMuPDF Documentation, Release 1.21.1

get_pdf_str(text)
Make a PDF-compatible string: if the text contains code points ord(c) > 255, then it will be converted
to UTF-16BE with BOM as a hexadecimal character string enclosed in “<>” brackets like <feff. . .>.
Otherwise, it will return the string enclosed in (round) brackets, replacing any characters outside the
ASCII range with some special code. Also, every “(”, “)” or backslash is escaped with a backslash.

Parameters
text (str) – the object to convert

Return type
str

Returns
PDF-compatible string enclosed in either () or <>.

image_profile(stream)

• New in v1.16.7

• Changed in v1.19.5: also return natural image orientation extracted from EXIF data if present.

Show important properties of an image provided as a memory area. Its main purpose is to avoid
using other Python packages just to determine them.

Parameters
stream (bytes|bytearray|BytesIO|file) – an image either in memory or an
opened file. A memory resident image maybe any of the formats bytes, bytearray
or io.BytesIO.

Return type
dict

Returns
No exception is ever raised: in case of error, the empty dictionary {} is returned.
Otherwise, there are the following items:

In [2]: fitz.image_profile(open("nur-ruhig.jpg", "rb").
→˓read())
Out[2]:
{'width': 439,
'height': 501,
'orientation': 0, # natural orientation (from EXIF)
'transform': (1.0, 0.0, 0.0, 1.0, 0.0, 0.0), # orientation␣
→˓matrix
'xres': 96,
'yres': 96,
'colorspace': 3,
'bpc': 8,
'ext': 'jpeg',
'cs-name': 'DeviceRGB'}

There is the following relation to Exif information encoded in orientation, and
correspondingly in the transform matrix-like (quoted from MuPDF documen-
tation, ccw = counter-clockwise):

0. Undefined

362 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.21.1

1. 0 degree ccw rotation. (Exif = 1)

2. 90 degree ccw rotation. (Exif = 8)

3. 180 degree ccw rotation. (Exif = 3)

4. 270 degree ccw rotation. (Exif = 6)

5. flip on X. (Exif = 2)

6. flip on X, then rotate ccw by 90 degrees. (Exif = 5)

7. flip on X, then rotate ccw by 180 degrees. (Exif = 4)

8. flip on X, then rotate ccw by 270 degrees. (Exif = 7)

Note:
• For some “exotic” images (FAX encodings, RAW formats and the like), this

method will not work and return None. You can however still work with
such images in PyMuPDF, e.g. by using Document.extract_image() or
create pixmaps via Pixmap(doc, xref). These methods will automatically
convert exotic images to the PNG format before returning results.

• You can also get the properties of images embedded in a PDF, via
their xref . In this case make sure to extract the raw stream:
fitz.image_profile(doc.xref_stream_raw(xref)).

• Images as returned by the image blocks of Page.get_text() using “dict”
or “rawdict” options are also supported.

ConversionHeader("text", filename="UNKNOWN")
Return the header string required to make a valid document out of page text outputs.

Parameters
• output (str) – type of document. Use the same as the output parameter of

get_text().

• filename (str) – optional arbitrary name to use in output types “json” and
“xml”.

Return type
str

ConversionTrailer(output)
Return the trailer string required to make a valid document out of page text outputs. See Page.
get_text() for an example.

Parameters
output (str) – type of document. Use the same as the output parameter of
get_text().

Return type
str

8.1. Functions 363

PyMuPDF Documentation, Release 1.21.1

Document.del_xml_metadata()

Delete an object containing XML-based metadata from the PDF. (Py-) MuPDF does not support
XML-based metadata. Use this if you want to make sure that the conventional metadata dictionary
will be used exclusively. Many thirdparty PDF programs insert their own metadata in XML format
and thus may override what you store in the conventional dictionary. This method deletes any such
reference, and the corresponding PDF object will be deleted during next garbage collection of the
file.

Document.xml_metadata_xref()

Return the XML-based metadata xref of the PDF if present – also refer to Document.
del_xml_metadata(). You can use it to retrieve the content via Document.xref_stream() and
then work with it using some XML software.

Return type
int

Returns
xref of PDF file level XML metadata – or 0 if none exists.

Page.run(dev, transform)

Run a page through a device.

Parameters
• dev (Device) – Device, obtained from one of the Device constructors.

• transform (Matrix) – Transformation to apply to the page. Set it to Identity
if no transformation is desired.

Page.get_bboxlog()

• New in v1.19.0

Returns
a list of rectangles that envelop text, image or drawing objects. Each item is a tuple
(type, (x0, y0, x1, y1)) where the second tuple consists of rectangle coordinates,
and type is one of the following values:

• "fill-text" – normal text (painted without character borders)

• "stroke-text" – text showing character borders only

• "ignore-text" – text that should not be displayed (e.g. as used by OCR
text layers)

• "fill-path" – drawing with fill color (and no border)

• "stroke-path" – drawing with border (and no fill color)

• "fill-image" – displays an image

• "fill-shade" – display a shading

364 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.21.1

The item sequence represents the sequence in which these commands are exe-
cuted to build the page’s appearance. Therefore, if an item’s bbox intersects or
contains that of a previous item, then the previous item may be (partially) covered
/ hidden.

So this list is useful to detect such situations. An item’s index in this list equals
the value of "seqno" keys you will find in the dictionaries returned by Page.
get_drawings() and Page.get_texttrace().

Page.get_texttrace()

• New in v1.18.16

• Changed in v1.19.0: added key “seqno”.

• Changed in v1.19.1: stroke and fill colors now always are either RGB or GRAY

• Changed in v1.19.3: span and character bboxes are now also correct if dir != (1, 0).

Return low-level text information of the page. The method is available for all document types. The
result is a list of Python dictionaries with the following content:

{
'ascender': 0.83251953125, # font ascender (1)
'bbox': (458.14019775390625, # span bbox x0 (7)

749.4671630859375, # span bbox y0
467.76458740234375, # span bbox x1
757.5071411132812), # span bbox y1

'bidi': 0, # bidirectional level (1)
'chars': (# char information, tuple[tuple]

(45, # unicode (4)
16, # glyph id (font dependent)
(458.14019775390625, # origin.x (1)
755.3758544921875), # origin.y (1)
(458.14019775390625, # char bbox x0 (6)
749.4671630859375, # char bbox y0
462.9649963378906, # char bbox x1
757.5071411132812)), # char bbox y1
(...), # more characters

),
'color': (0.0,), # text color, tuple[float] (1)
'colorspace': 1, # number of colorspace components␣

→˓(1)
'descender': -0.30029296875, # font descender (1)
'dir': (1.0, 0.0), # writing direction (1)
'flags': 12, # font flags (1)
'font': 'CourierNewPSMT', # font name (1)
'linewidth': 0.4019999980926514, # current line width value (3)
'opacity': 1.0, # alpha value of the text (5)
'seqno': 246, # sequence number (8)
'size': 8.039999961853027, # font size (1)
'spacewidth': 4.824785133358091, # width of space char
'type': 0, # span type (2)
'wmode': 0 # writing mode (1)

}

8.1. Functions 365

PyMuPDF Documentation, Release 1.21.1

Details:

1. Information above tagged with “(1)” has the same meaning and value as explained in TextPage.

• Please note that the font flags value will never contain a superscript flag bit: the de-
tection of superscripts is done within MuPDF TextPage code – it is not a property of any
font.

• Also note, that the text color is encoded as the usual tuple of floats 0 <= f <= 1 – not in
sRGB format. Depending on span["type"], interpret this as fill color or stroke color.

2. There are 3 text span types:

• 0: Filled text – equivalent to PDF text rendering mode 0 (0 Tr, the default in PDF), only
each character’s “inside” is shown.

• 1: Stroked text – equivalent to 1 Tr, only the character borders are shown.

• 3: Ignored text – equivalent to 3 Tr (hidden text).

3. Line width in this context is important only for processing span["type"] != 0: it deter-
mines the thickness of the character’s border line. This value may not be provided at all with
the text data. In this case, a value of 5% of the fontsize (span["size"] * 0,05) is gener-
ated. Often, an “artificial” bold text in PDF is created by 2 Tr. There is no equivalent span
type for this case. Instead, respective text is represented by two consecutive spans – which are
identical in every aspect, except for their types, which are 0, resp 1. It is your responsibility
to handle this type of situation - in Page.get_text(), MuPDF is doing this for you.

4. For data compactness, the character’s unicode is provided here. Use built-in function chr()
for the character itself.

5. The alpha / opacity value of the span’s text, 0 <= opacity <= 1, 0 is invisible text, 1 (100%)
is intransparent. Depending in span["type"], interpret this value as fill opacity or, resp.
stroke opacity.

6. (Changed in v1.19.0) This value is equal or close to char["bbox"] of “rawdict”. In particu-
lar, the bbox height value is always computed as if “small glyph heights” had been requested.

7. (New in v1.19.0) This is the union of all character bboxes.

8. (New in v1.19.0) Enumerates the commands that build up the page’s appearance. Can be used
to find out whether text is effectively hidden by objects, whch are painted “later”, or over some
object. So if there is a drawing or image with a higher sequence number, whose bbox overlaps
(parts of) this text span, one may assume that such an object hides the resp. text. Different
text spans have identical sequence numbers if they were created in one go.

Here is a list of similarities and differences of page.get_texttrace() compared to page.
get_text("rawdict"):

• The method is up to twice as fast, compared to “rawdict” extraction. Depends on the amount
of text.

• The returned data is very much smaller in size – although it provides more information.

• Additional types of text invisibility can be detected: opacity = 0 or type > 1 or overlapping
bbox of an object with a higher sequence number.

• If MuPDF returns unicode 0xFFFD (65533) for unrecognized characters, you may still be able
to deduct desired information from the glyph id.

• The span["chars"] contains no spaces, except the document creator has explicitely coded
them. They will never be generated like it happens in Page.get_text() methods. To
provide some help for doing your own computations here, the width of a space character is

366 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.21.1

given. This value is derived from the font where possible. Otherwise the value of a fallback
font is taken.

• There is no effort to organize text like it happens for a TextPage (the hierarchy of blocks, lines,
spans, and characters). Characters are simply extracted in sequence, one by one, and put in a
span. Whenever any of the span’s characteristics changes, a new span is started. So you may
find characters with different origin.y values in the same span (which means they would
appear in different lines). You cannot assume, that span characters are sorted in any particular
order – you must make sense of the info yourself, taking span["dir"], span["wmode"],
etc. into account.

• Ligatures are represented like this:
– MuPDF handles the following ligatures: “fi”, “ff”, “fl”, “ft”, “st”, “ffi”, and “ffl”

(only the first 3 are mostly ever used). If the page contains e.g. ligature “fi”, you
will find the following two character items subsequent to each other:

(102, glyph, (x, y), (x0, y0, x1, y1)) # 102 = ord("f")
(105, -1, (x, y), (x0, y0, x0, y1)) # 105 = ord("i"),␣
→˓empty bbox!

– This means that the bbox of the first ligature character is the area containing the
complete, compound glyph. Subsequent ligature components are recognizable by
their glyph value -1 and a bbox of width zero.

– You may want to replace those 2 or 3 char tuples by one, that represents the ligature
itself. Use the following mapping of ligatures to unicodes:

∗ "ff" -> 0xFB00

∗ "fi" -> 0xFB01

∗ "fl" -> 0xFB02

∗ "ffi" -> 0xFB03

∗ "ffl" -> 0xFB04

∗ "ft" -> 0xFB05

∗ "st" -> 0xFB06

So you may want to replace the two example tuples above by the following
single one: (0xFB01, glyph, (x, y), (x0, y0, x1, y1)) (there is
usually no need to lookup the correct glyph id for 0xFB01 in the resp. font,
but you may execute font.has_glyph(0xFB01) and use its return value).

• Changed in v1.19.3: Similar to other text extraction methods, the character and span
bboxes envelop the character quads. To recover the quads, follow the same methods
recover_quad(), recover_char_quad() or :meth:´recover_span_quad` as explained in
Structure of Dictionary Outputs. Use either None or span["dir"] for the writing direction.

Page.wrap_contents()

Put string pair “q” / “Q” before, resp. after a page’s /Contents object(s) to ensure that any “geometry”
changes are local only.

Use this method as an alternative, minimalistic version of Page.clean_contents(). Its advantage
is a small footprint in terms of processing time and impact on the data size of incremental saves.
Multiple executions of this method are no problem and have no functional impact: b"q q contents
Q Q" is treated like b"q contents Q".

8.1. Functions 367

PyMuPDF Documentation, Release 1.21.1

Page.is_wrapped

Indicate whether Page.wrap_contents() may be required for object insertions in standard PDF
geometry. Note that this is a quick, basic check only: a value of False may still be a false alarm. But
nevertheless executing Page.wrap_contents() will have no negative side effects.

Return type
bool

Page.get_text_blocks(flags=None)
Deprecated wrapper for TextPage.extractBLOCKS(). Use Page.get_text()with the “blocks”
option instead.

Return type
list[tuple]

Page.get_text_words(flags=None)
Deprecated wrapper for TextPage.extractWORDS(). Use Page.get_text() with the “words”
option instead.

Return type
list[tuple]

Page.get_displaylist()

Run a page through a list device and return its display list.

Return type
DisplayList

Returns
the display list of the page.

Page.get_contents()

PDF only: Retrieve a list of xref of contents objects of a page. May be empty or contain multi-
ple integers. If the page is cleaned (Page.clean_contents()), it will be one entry at most. The
“source” of each /Contents object can be individually read by Document.xref_stream() using an
item of this list. Method Page.read_contents() in contrast walks through this list and concate-
nates the corresponding sources into one bytes object.

Return type
list[int]

Page.set_contents(xref)
PDF only: Let the page’s /Contents key point to this xref. Any previously used contents objects
will be ignored and can be removed via garbage collection.

368 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.21.1

Page.clean_contents(sanitize=True)

• Changed in v1.17.6

PDF only: Clean and concatenate all contents objects associated with this page. “Cleaning” in-
cludes syntactical corrections, standardizations and “pretty printing” of the contents stream. Dis-
crepancies between contents and resources objects will also be corrected if sanitize is true. See
Page.get_contents() for more details.

Changed in version 1.16.0 Annotations are no longer implicitely cleaned by this method. Use
Annot.clean_contents() separately.

Parameters
sanitize (bool) – (new in v1.17.6) if true, synchronization between resources
and their actual use in the contents object is snychronized. For example, if a font
is not actually used for any text of the page, then it will be deleted from the /
Resources/Font object.

Warning: This is a complex function which may generate large amounts of new data and
render old data unused. It is not recommended using it together with the incremental save
option. Also note that the resulting singleton new /Contents object is uncompressed. So you
should save to a new file using options “deflate=True, garbage=3”.

Page.read_contents()

New in version 1.17.0. Return the concatenation of all contents objects associated with the page
– without cleaning or otherwise modifying them. Use this method whenever you need to parse this
source in its entirety whithout having to bother how many separate contents objects exist.

Return type
bytes

Annot.clean_contents(sanitize=True)
Clean the contents streams associated with the annotation. This is the same type of action which
Page.clean_contents() performs – just restricted to this annotation.

Document.get_char_widths(xref=0, limit=256)
Return a list of character glyphs and their widths for a font that is present in the document. A font
must be specified by its PDF cross reference number xref . This function is called automatically
from Page.insert_text() and Page.insert_textbox(). So you should rarely need to do this
yourself.

Parameters
• xref (int) – cross reference number of a font embedded in the PDF. To find

a font xref , use e.g. doc.get_page_fonts(pno) of page number pno and take
the first entry of one of the returned list entries.

• limit (int) – limits the number of returned entries. The default of 256 is
enforced for all fonts that only support 1-byte characters, so-called “simple
fonts” (checked by this method). All PDF Base 14 Fonts are simple fonts.

8.1. Functions 369

PyMuPDF Documentation, Release 1.21.1

Return type
list

Returns
a list of limit tuples. Each character c has an entry (g, w) in this list with an index
of ord(c). Entry g (integer) of the tuple is the glyph id of the character, and float
w is its normalized width. The actual width for some fontsize can be calculated
as w * fontsize. For simple fonts, the g entry can always be safely ignored. In all
other cases g is the basis for graphically representing c.

This function calculates the pixel width of a string called text:

def pixlen(text, widthlist, fontsize):
try:

return sum([widthlist[ord(c)] for c in text]) * fontsize
except IndexError:

raise ValueError:("max. code point found: %i, increase limit" %␣
→˓ord(max(text)))

Document.is_stream(xref)

• New in version 1.14.14

PDF only: Check whether the object represented by xref is a stream type. Return is False if not
a PDF or if the number is outside the valid xref range.

Parameters
xref (int) – xref number.

Returns
True if the object definition is followed by data wrapped in keyword pair stream,
endstream.

Document.get_new_xref()

Increase the xref by one entry and return that number. This can then be used to insert a new object.

Return type
int :returns: the number of the new xref entry. Please note, that only a new entry
in the PDF’s cross reference table is created. At this point, there will not yet exist
a PDF object associated with it. To create an (empty) object with this number use
doc.update_xref(xref, "<<>>").

Document.xref_length()

Return length of xref table.

Return type
int

Returns
the number of entries in the xref table.

370 Chapter 8. Low Level Functions and Classes

PyMuPDF Documentation, Release 1.21.1

recover_quad(line_dir, span)
Compute the quadrilateral of a text span extracted via options “dict” or “rawdict” of Page.
get_text().

Parameters
• line_dir (tuple) – line["dir"] of the owning line. Use None for a span

from Page.get_texttrace().

• span (dict) – the span.

Returns
the Quad of the span, usable for text marker annotations (‘Highlight’, etc.).

recover_char_quad(line_dir, span, char)
Compute the quadrilateral of a text character extracted via option “rawdict” of Page.get_text().

Parameters
• line_dir (tuple) – line["dir"] of the owning line. Use None for a span

from Page.get_texttrace().

• span (dict) – the span.

• char (dict) – the character.

Returns
the Quad of the character, usable for text marker annotations (‘Highlight’, etc.).

recover_span_quad(line_dir, span, chars=None)
Compute the quadrilateral of a subset of characters of a span extracted via option “rawdict” of Page.
get_text().

Parameters
• line_dir (tuple) – line["dir"] of the owning line. Use None for a span

from Page.get_texttrace().

• span (dict) – the span.

• chars (list) – the characters to consider. If omitted, identical to
recoer_span(). If given, the selected extraction option must be “rawdict”.

Returns
the Quad of the selected characters, usable for text marker annotations (‘High-
light’, etc.).

recover_line_quad(line, spans=None)
Compute the quadrilateral of a subset of spans of a text line extracted via options “dict” or “rawdict”
of Page.get_text().

Parameters
• line (dict) – the line.

• spans (list) – a sub-list of line["spans"]. If omitted, the full line quad
will be returned.

8.1. Functions 371

PyMuPDF Documentation, Release 1.21.1

Returns
the Quad of the selected line spans, usable for text marker annotations (‘High-
light’, etc.).

INFINITE_QUAD()

INFINITE_RECT()

INFINITE_IRECT()

Return the (unique) infinite rectangle Rect(-2147483648.0, -2147483648.0, 2147483520.
0, 2147483520.0), resp. the IRect and Quad counterparts. It is the largest possible rectangle: all
valid rectangles are contained in it.

EMPTY_QUAD()

EMPTY_RECT()

EMPTY_IRECT()

Return the “standard” empty and invalid rectangle Rect(2147483520.0, 2147483520.0,
-2147483648.0, -2147483648.0) resp. quad. Its top-left and bottom-right point values are
reversed compared to the infinite rectangle. It will e.g. be used to indicate empty bboxes in page.
get_text("dict") dictionaries. There are however infinitely many empty or invalid rectangles.

8.2 Device

The different format handlers (pdf, xps, etc.) interpret pages to a “device”. Devices are the basis for everything that
can be done with a page: rendering, text extraction and searching. The device type is determined by the selected
construction method.

Class API
class Device

__init__(self, object, clip)
Constructor for either a pixel map or a display list device.

Parameters
• object (Pixmap or DisplayList) – either a Pixmap or a DisplayList.

• clip (IRect) – An optional IRect for Pixmap devices to restrict rendering to a cer-
tain area of the page. If the complete page is required, specify None. For display
list devices, this parameter must be omitted.

__init__(self, textpage, flags=0)
Constructor for a text page device.

Parameters
• textpage (TextPage) – TextPage object

• flags (int) – control the way how text is parsed into the text page. Currently 3
options can be coded into this parameter, see Text Extraction Flags. To set these
options use something like flags=0 | TEXT_PRESERVE_LIGATURES |

372 Chapter 8. Low Level Functions and Classes

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

8.3 Working together: DisplayList and TextPage

Here are some instructions on how to use these classes together.

In some situations, performance improvements may be achievable, when you fall back to the detail level explained here.

8.3.1 Create a DisplayList

A DisplayList represents an interpreted document page. Methods for pixmap creation, text extraction and text search
are – behind the curtain – all using the page’s display list to perform their tasks. If a page must be rendered several
times (e.g. because of changed zoom levels), or if text search and text extraction should both be performed, overhead
can be saved, if the display list is created only once and then used for all other tasks.

>>> dl = page.get_displaylist() # create the display list

You can also create display lists for many pages “on stack” (in a list), may be during document open, during idling
times, or you store it when a page is visited for the first time (e.g. in GUI scripts).

Note, that for everything what follows, only the display list is needed – the corresponding Page object could have been
deleted.

8.3.2 Generate Pixmap

The following creates a Pixmap from a DisplayList. Parameters are the same as for Page.get_pixmap().

>>> pix = dl.get_pixmap() # create the page's pixmap

The execution time of this statement may be up to 50% shorter than that of Page.get_pixmap().

8.3.3 Perform Text Search

With the display list from above, we can also search for text.

For this we need to create a TextPage.

>>> tp = dl.get_textpage() # display list from above
>>> rlist = tp.search("needle") # look up "needle" locations
>>> for r in rlist: # work with the found locations, e.g.

pix.invert_irect(r.irect) # invert colors in the rectangles

8.3. Working together: DisplayList and TextPage 373

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

8.3.4 Extract Text

With the same TextPage object from above, we can now immediately use any or all of the 5 text extraction methods.

Note: Above, we have created our text page without argument. This leads to a default argument of 3 (ligatures and
white-space are preserved), IAW images will not be extracted – see below.

>>> txt = tp.extractText() # plain text format
>>> json = tp.extractJSON() # json format
>>> html = tp.extractHTML() # HTML format
>>> xml = tp.extractXML() # XML format
>>> xml = tp.extractXHTML() # XHTML format

8.3.5 Further Performance improvements

8.3.5.1 Pixmap

As explained in the Page chapter:

If you do not need transparency set alpha = 0 when creating pixmaps. This will save 25% memory (if RGB, the most
common case) and possibly 5% execution time (depending on the GUI software).

8.3.5.2 TextPage

If you do not need images extracted alongside the text of a page, you can set the following option:

>>> flags = fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE
>>> tp = dl.get_textpage(flags)

This will save ca. 25% overall execution time for the HTML, XHTML and JSON text extractions and hugely reduce
the amount of storage (both, memory and disk space) if the document is graphics oriented.

If you however do need images, use a value of 7 for flags:

>>> flags = fitz.TEXT_PRESERVE_LIGATURES | fitz.TEXT_PRESERVE_WHITESPACE | fitz.TEXT_
→˓PRESERVE_IMAGES

374 Chapter 8. Low Level Functions and Classes

https://discord.gg/TSpYGBW4eq
https://discord.gg/TSpYGBW4eq

CHAPTER

NINE

GLOSSARY

matrix_like

A Python sequence of 6 numbers.

rect_like

A Python sequence of 4 numbers.

irect_like

A Python sequence of 4 integers.

point_like

A Python sequence of 2 numbers.

quad_like

A Python sequence of 4 point_like items.

inheritable

A number of values in a PDF can inherited by objects further down in a parent-child relationship. The mediabox
(physical size) of pages may for example be specified only once or in some node(s) of the pagetree and will
then be taken as value for all kids, that do not specify their own value.

MediaBox

A PDF array of 4 floats specifying a physical page size – (inheritable, mandatory). This rectangle should
contain all other PDF – optional – page rectangles, which may be specified in addition: CropBox, TrimBox,
ArtBox and BleedBox. Please consult Adobe PDF References for details. The MediaBox is the only rectangle,
for which there is no difference between MuPDF and PDF coordinate systems: Page.mediabox will always
show the same coordinates as the /MediaBox key in a page’s object definition. For all other rectangles, MuPDF
transforms coordinates such that the top-left corner is the point of reference. This can sometimes be confusing
– you may for example encounter a situation like this one:

• The page definition contains the following identical values: /MediaBox [36 45 607.5 765], /
CropBox [36 45 607.5 765].

• PyMuPDF accordingly shows page.mediabox = Rect(36.0, 45.0, 607.5, 765.0).
• BUT: page.cropbox = Rect(36.0, 0.0, 607.5, 720.0), because the two y-coordinates have been

transformed (45 subtracted from both of them).

CropBox

A PDF array of 4 floats specifying a page’s visible area – (inheritable, optional). It is the default for TrimBox,
ArtBox and BleedBox. If not present, it defaults to MediaBox. This value is not affected if the page is rotated
– in contrast to Page.rect. Also, other than the page rectangle, the top-left corner of the cropbox may or may
not be (0, 0).

catalog

A central PDF dictionary – also called the “root” – containing document-wide parameters and pointers to
many other information. Its xref is returned by Document.pdf_catalog().

375

PyMuPDF Documentation, Release 1.21.1

trailer

More precisely, the PDF trailer contains information in dictionary format. It is ususally located at the file’s
end. In this dictionary, you will find things like the xrefs of the catalog and the metadata, the number of xref
numbers, etc. Here is the definition of the PDF spec:

“The trailer of a PDF file enables an application reading the file to quickly find the cross-reference table and
certain special objects. Applications should read a PDF file from its end.”

To access the trailer in PyMuPDF, use the usual methods Document.xref_object(), Document.
xref_get_key() and Document.xref_get_keys() with -1 instead of a positive xref number.

contents

A content stream is a PDF object with an attached stream , whose data consists of a sequence of instructions
describing the graphical elements to be painted on a page, see “Stream Objects” on page 19 of Adobe PDF
References. For an overview of the mini-language used in these streams, see chapter “Operator Summary” on
page 643 of the Adobe PDF References. A PDF page can have none to many contents objects. If it has none,
the page is empty (but still may show annotations). If it has several, they will be interpreted in sequence as if
their instructions had been present in one such object (i.e. like in a concatenated string). It should be noted
that there are more stream object types which use the same syntax: e.g. appearance dictionaries associated with
annotations and Form XObjects.

PyMuPDF provides a number of methods to deal with contents of PDF pages:
• Page.read_contents() – reads and concatenates all page contents into one bytes object.
• Page.clean_contents() – a wrapper of a MuPDF function that reads, concatenates and syntax-cleans

all page contents. After this, only one /Contents object will exist. In addition, page resources will
have been synchronized with it such that it will contain exactly those images, fonts and other objects that
the page actually references.

• Page.get_contents() – return a list of xref numbers of a page’s contents objects. May be empty.
Use Document.xref_stream() with one of these xrefs to read the resp. contents section.

• Page.set_contents() – set a page’s /Contents key to the provided xref number.

resources

A dictionary containing references to any resources (like images or fonts) required by a PDF page (required,
inheritable, Adobe PDF References p. 81) and certain other objects (Form XObjects). This dictionary appears
as a sub-dictionary in the object definition under the key /Resources. Being an inheritable object type, there may
exist “parent” resources for all pages or certain subsets of pages.

dictionary

A PDF object type, which is somewhat comparable to the same-named Python notion: “A dictionary object
is an associative table containing pairs of objects, known as the dictionary’s entries. The first element of each
entry is the key and the second element is the value. The key must be a name (. . .). The value can be any kind
of object, including another dictionary. A dictionary entry whose value is null (. . .) is equivalent to an absent
entry.” (Adobe PDF References p. 18).

Dictionaries are the most important object type in PDF. Here is an example (describing a page):

<<
/Contents 40 0 R % value: an indirect object
/Type/Page % value: a name object
/MediaBox[0 0 595.32 841.92] % value: an array object
/Rotate 0 % value: a number object
/Parent 12 0 R % value: an indirect object
/Resources<< % value: a dictionary object

/ExtGState<</R7 26 0 R>>
/Font<<

/R8 27 0 R/R10 21 0 R/R12 24 0 R/R14 15 0 R
(continues on next page)

376 Chapter 9. Glossary

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

/R17 4 0 R/R20 30 0 R/R23 7 0 R /R27 20 0 R
>>

/ProcSet[/PDF/Text] % value: array of two name objects
>>

/Annots[55 0 R] % value: array, one entry (indirect object)
>>

Contents, Type, MediaBox, etc. are keys, 40 0 R, Page, [0 0 595.32 841.92], etc. are the respective values. The
strings “<<” and “>>” are used to enclose object definitions.

This example also shows the syntax of nested dictionary values: Resources has an object as its value, which in
turn is a dictionary with keys like ExtGState (with the value <</R7 26 0 R>>, which is another dictionary), etc.

page

A PDF page is a dictionary object which defines one page in a PDF, see Adobe PDF References p. 71.

pagetree

The pages of a document are accessed through a structure known as the page tree, which defines the ordering
of pages in the document. The tree structure allows PDF consumer applications, using only limited memory,
to quickly open a document containing thousands of pages. The tree contains nodes of two types: intermediate
nodes, called page tree nodes, and leaf nodes, called page objects. (Adobe PDF References p. 75).

While it is possible to list all page references in just one array, PDFs with many pages are often created using
balanced tree structures (“page trees”) for faster access to any single page. In relation to the total number of
pages, this can reduce the average page access time by page number from a linear to some logarithmic order of
magnitude.

For fast page access, MuPDF can use its own array in memory – independently from what may or may not be
present in the document file. This array is indexed by page number and therefore much faster than even the access
via a perfectly balanced page tree.

object

Similar to Python, PDF supports the notion object, which can come in eight basic types: boolean values (“true”
or “false”), integer and real numbers, strings (always enclosed in brackets – either “()”, or “<>” to indicate hex-
adecimal), names (must always start with a “/”, e.g. /Contents), arrays (enclosed in brackets “[]”), dictionaries
(enclosed in brackets “<<>>”), streams (enclosed by keywords “stream” / “endstream”), and the null object
(“null”) (Adobe PDF References p. 13). Objects can be made identifyable by assigning a label. This label is
then called indirect object. PyMuPDF supports retrieving definitions of indirect objects via their cross reference
number via Document.xref_object().

stream

A PDF dictionary object type which is followed by a sequence of bytes, similar to Python bytes. “However,
a PDF application can read a stream incrementally, while a string must be read in its entirety. Furthermore, a
stream can be of unlimited length, whereas a string is subject to an implementation limit. For this reason, objects
with potentially large amounts of data, such as images and page descriptions, are represented as streams.” “A
stream consists of a dictionary followed by zero or more bytes bracketed between the keywords stream and
endstream”:

nnn 0 obj
<<

dictionary definition
>>
stream
(zero or more bytes)

(continues on next page)

377

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

endstream
endobj

See Adobe PDF References p. 19. PyMuPDF supports retrieving stream content via Document.
xref_stream(). Use Document.is_stream() to determine whether an object is of stream type.

unitvector

A mathematical notion meaning a vector of norm (“length”) 1 – usually the Euclidean norm is implied. In
PyMuPDF, this term is restricted to Point objects, see Point.unit.

xref

Abbreviation for cross-reference number: this is an integer unique identification for objects in a PDF. There
exists a cross-reference table (which may physically consist of several separate segments) in each PDF, which
stores the relative position of each object for quick lookup. The cross-reference table is one entry longer than
the number of existing object: item zero is reserved and must not be used in any way. Many PyMuPDF classes
have an xref attribute (which is zero for non-PDFs), and one can find out the total number of objects in a PDF
via Document.xref_length() - 1.

resolution

Images and Pixmap objects may contain resolution information provided as “dots per inch”, dpi, in each direction
(horizontal and vertical). When MuPDF reads an image form a file or from a PDF object, it will parse this
information and put it in Pixmap.xres, Pixmap.yres, respectively. When it finds not meaningful information
in the input (like non-positive values or values exceeding 4800), it will use “sane” defaults instead. The usual
default value is 96, but it may also be 72 in some cases (e.g. for JPX images).

OCPD

Optional content properties dictionary - a sub dictionary of the PDF catalog. The central place to store
optional content information, which is identified by the key /OCProperties. This dictionary has two required and
one optional entry: (1) /OCGs, required, an array listing all optional content groups, (2) /D, required, the default
optional content configuration dictionary (OCCD), (3) /Configs, optional, an array of alternative OCCDs.

OCCD

Optional content configuration dictionary - a PDF dictionary inside the PDF OCPD. It stores a setting of ON
/ OFF states of OCGs and how they are presented to a PDF viewer program. Selecting a configuration is quick
way to achieve temporary mass visibility state changes. After opening a PDF, the /D configuration of the OCPD
is always activated. Viewer should offer a way to switch between the /D, or one of the optional configurations
contained in array /Configs.

OCG

Optional content group – a dictionary object used to control the visibility of other PDF objects like images
or annotations. Independently on which page they are defined, objects with the same OCG can simultaneously
be shown or hidden by setting their OCG to ON or OFF. This can be achieved via the user interface provided by
many PDF viewers (Adobe Acrobat), or programmatically.

OCMD

Optional content membership dictionary – a dictionary object which can be used like an OCG : it has a visibility
state. The visibility of an OCMD is computed: it is a logical expression, which uses the state of one or more
OCGs to produce a boolean value. The expression’s result is interpreted as ON (true) or OFF (false).

ligature

Some frequent character combinations are represented by their own special glyphs in more advanced fonts. Typ-
ical examples are “fi”, “fl”, “ffi” and “ffl”. These compounds are called ligatures. In PyMuPDF text extractions,
there is the option to either return the corresponding unicode unchanged, or split ligatures up into their constituent
parts: “fi” ==> “f” + “i”, etc.

378 Chapter 9. Glossary

https://discord.gg/TSpYGBW4eq

CHAPTER

TEN

CONSTANTS AND ENUMERATIONS

Constants and enumerations of MuPDF as implemented by PyMuPDF. Each of the following variables is accessible as
fitz.variable.

10.1 Constants

Base14_Fonts

Predefined Python list of valid PDF Base 14 Fonts.
Return type

list

csRGB

Predefined RGB colorspace fitz.Colorspace(fitz.CS_RGB).
Return type

Colorspace

csGRAY

Predefined GRAY colorspace fitz.Colorspace(fitz.CS_GRAY).
Return type

Colorspace

csCMYK

Predefined CMYK colorspace fitz.Colorspace(fitz.CS_CMYK).
Return type

Colorspace

CS_RGB

1 – Type of Colorspace is RGBA
Return type

int

CS_GRAY

2 – Type of Colorspace is GRAY
Return type

int

CS_CMYK

3 – Type of Colorspace is CMYK
Return type

int

379

PyMuPDF Documentation, Release 1.21.1

VersionBind

‘x.xx.x’ – version of PyMuPDF (these bindings)
Return type

string

VersionFitz

‘x.xxx’ – version of MuPDF
Return type

string

VersionDate

ISO timestamp YYYY-MM-DD HH:MM:SS when these bindings were built.
Return type

string

Note: The docstring of fitz contains information of the above which can be retrieved like so: print(fitz.__doc__), and
should look like: PyMuPDF 1.10.0: Python bindings for the MuPDF 1.10 library, built on 2016-11-30 13:09:13.

version

(VersionBind, VersionFitz, timestamp) – combined version information where timestamp is the generation point
in time formatted as “YYYYMMDDhhmmss”.

Return type
tuple

10.2 Document Permissions

Code Permitted Action
PDF_PERM_PRINT Print the document
PDF_PERM_MODIFY Modify the document’s contents
PDF_PERM_COPY Copy or otherwise extract text and graphics
PDF_PERM_ANNOTATE Add or modify text annotations and interactive form fields
PDF_PERM_FORM Fill in forms and sign the document
PDF_PERM_ACCESSIBILITY Obsolete, always permitted
PDF_PERM_ASSEMBLE Insert, rotate, or delete pages, bookmarks, thumbnail images
PDF_PERM_PRINT_HQ High quality printing

10.3 PDF encryption method codes

Code Meaning
PDF_ENCRYPT_KEEP do not change
PDF_ENCRYPT_NONE remove any encryption
PDF_ENCRYPT_RC4_40 RC4 40 bit
PDF_ENCRYPT_RC4_128 RC4 128 bit
PDF_ENCRYPT_AES_128 Advanced Encryption Standard 128 bit
PDF_ENCRYPT_AES_256 Advanced Encryption Standard 256 bit
PDF_ENCRYPT_UNKNOWN unknown

380 Chapter 10. Constants and Enumerations

PyMuPDF Documentation, Release 1.21.1

10.4 Font File Extensions

The table show file extensions you should use when saving fontfile buffers extracted from a PDF. This string is returned
by Document.get_page_fonts(), Page.get_fonts() and Document.extract_font().

Ext Description
ttf TrueType font
pfa Postscript for ASCII font (various subtypes)
cff Type1C font (compressed font equivalent to Type1)
cid character identifier font (postscript format)
otf OpenType font
n/a not extractable, e.g. PDF Base 14 Fonts, Type 3 fonts and others

10.5 Text Alignment

TEXT_ALIGN_LEFT

0 – align left.

TEXT_ALIGN_CENTER

1 – align center.

TEXT_ALIGN_RIGHT

2 – align right.

TEXT_ALIGN_JUSTIFY

3 – align justify.

10.6 Text Extraction Flags

Option bits controlling the amount of data, that are parsed into a TextPage – this class is mainly used only internally in
PyMuPDF.

For the PyMuPDF programmer, some combination (using Python’s | operator, or simply use +) of these values are
aggregated in the flags integer, a parameter of all text search and text extraction methods. Depending on the individual
method, different default combinations of the values are used. Please use a value that meets your situation. Especially
make sure to switch off image extraction unless you really need them. The impact on performance and memory is
significant!

TEXT_PRESERVE_LIGATURES

1 – If set, ligatures are passed through to the application in their original form. Otherwise ligatures are expanded
into their constituent parts, e.g. the ligature “ffi” is expanded into three eparate characters f, f and i. Default is
“on” in PyMuPDF. MuPDF supports the following 7 ligatures: “ff”, “fi”, “fl”, “ffi”, “ffl”, , “ft”, “st”.

TEXT_PRESERVE_WHITESPACE

2 – If set, whitespace is passed through. Otherwise any type of horizontal whitespace (including horizontal tabs)
will be replaced with space characters of variable width. Default is “on” in PyMuPDF.

TEXT_PRESERVE_IMAGES

4 – If set, then images will be stored in the TextPage. This causes the presence of (usually large!) binary image
content in the output of text extractions of types “blocks”, “dict”, “json”, “rawdict”, “rawjson”, “html”, and

10.4. Font File Extensions 381

PyMuPDF Documentation, Release 1.21.1

“xhtml” and is the default there. If used with “blocks” however, only image metadata will be returned, not the
image itself.

TEXT_INHIBIT_SPACES

8 – If set, Mupdf will not try to add missing space characters where there are large gaps between characters. In
PDF, the creator often does not insert spaces to point to the next character’s position, but will provide the direct
location address. The default in PyMuPDF is “off” – so spaces will be generated.

TEXT_DEHYPHENATE

16 – Ignore hyphens at line ends and join with next line. Used internally with the text search functions. However,
it is generally available: if on, text extractions will return joined text lines (or spans) with the ending hyphen
of the first line eliminated. So two separate spans “first meth-” and “od leads to wrong results” on different
lines will be joined to one span “first method leads to wrong results” and correspondingly updated bboxes:
the characters of the resulting span will no longer have identical y-coordinates.

TEXT_PRESERVE_SPANS

32 – Generate a new line for every span. Not used (“off”) in PyMuPDF, but available for your use. Every line in
“dict”, “json”, “rawdict”, “rawjson” will contain exactly one span.

TEXT_MEDIABOX_CLIP

64 – If set, characters entirely outside a page’s mediabox will be ignored. This is default in PyMuPDF.

The following constants represent the default combinations of the above for text extraction and searching:

TEXTFLAGS_TEXT

TEXTFLAGS_WORDS

TEXTFLAGS_BLOCKS

TEXTFLAGS_DICT

TEXTFLAGS_RAWDICT

TEXTFLAGS_HTML

TEXTFLAGS_XHTML

TEXTFLAGS_XML

TEXTFLAGS_SEARCH

10.7 Link Destination Kinds

Possible values of linkDest.kind (link destination kind).

LINK_NONE

0 – No destination. Indicates a dummy link.
Return type

int

LINK_GOTO

1 – Points to a place in this document.
Return type

int

382 Chapter 10. Constants and Enumerations

PyMuPDF Documentation, Release 1.21.1

LINK_URI

2 – Points to a URI – typically a resource specified with internet syntax.
Return type

int

LINK_LAUNCH

3 – Launch (open) another file (of any “executable” type).
Return type

int

LINK_NAMED

4 – points to a named location.
Return type

int

LINK_GOTOR

5 – Points to a place in another PDF document.
Return type

int

10.8 Link Destination Flags

Note: The rightmost byte of this integer is a bit field, so test the truth of these bits with the & operator.

LINK_FLAG_L_VALID

1 (bit 0) Top left x value is valid
Return type

bool

LINK_FLAG_T_VALID

2 (bit 1) Top left y value is valid
Return type

bool

LINK_FLAG_R_VALID

4 (bit 2) Bottom right x value is valid
Return type

bool

LINK_FLAG_B_VALID

8 (bit 3) Bottom right y value is valid
Return type

bool

LINK_FLAG_FIT_H

16 (bit 4) Horizontal fit
Return type

bool

LINK_FLAG_FIT_V

32 (bit 5) Vertical fit
Return type

bool

10.8. Link Destination Flags 383

PyMuPDF Documentation, Release 1.21.1

LINK_FLAG_R_IS_ZOOM

64 (bit 6) Bottom right x is a zoom figure
Return type

bool

10.9 Annotation Related Constants

See chapter 8.4.5, pp. 615 of the Adobe PDF References for details.

10.9.1 Annotation Types

These identifiers also cover links and widgets: the PDF specification technically handles them all in the same way,
whereas MuPDF (and PyMuPDF) treats them as three basically different types of objects.

PDF_ANNOT_TEXT 0
PDF_ANNOT_LINK 1 # <=== Link object in PyMuPDF
PDF_ANNOT_FREE_TEXT 2
PDF_ANNOT_LINE 3
PDF_ANNOT_SQUARE 4
PDF_ANNOT_CIRCLE 5
PDF_ANNOT_POLYGON 6
PDF_ANNOT_POLY_LINE 7
PDF_ANNOT_HIGHLIGHT 8
PDF_ANNOT_UNDERLINE 9
PDF_ANNOT_SQUIGGLY 10
PDF_ANNOT_STRIKE_OUT 11
PDF_ANNOT_REDACT 12
PDF_ANNOT_STAMP 13
PDF_ANNOT_CARET 14
PDF_ANNOT_INK 15
PDF_ANNOT_POPUP 16
PDF_ANNOT_FILE_ATTACHMENT 17
PDF_ANNOT_SOUND 18
PDF_ANNOT_MOVIE 19
PDF_ANNOT_RICH_MEDIA 20
PDF_ANNOT_WIDGET 21 # <=== Widget object in PyMuPDF
PDF_ANNOT_SCREEN 22
PDF_ANNOT_PRINTER_MARK 23
PDF_ANNOT_TRAP_NET 24
PDF_ANNOT_WATERMARK 25
PDF_ANNOT_3D 26
PDF_ANNOT_PROJECTION 27
PDF_ANNOT_UNKNOWN -1

384 Chapter 10. Constants and Enumerations

PyMuPDF Documentation, Release 1.21.1

10.9.2 Annotation Flag Bits

PDF_ANNOT_IS_INVISIBLE 1 << (1-1)
PDF_ANNOT_IS_HIDDEN 1 << (2-1)
PDF_ANNOT_IS_PRINT 1 << (3-1)
PDF_ANNOT_IS_NO_ZOOM 1 << (4-1)
PDF_ANNOT_IS_NO_ROTATE 1 << (5-1)
PDF_ANNOT_IS_NO_VIEW 1 << (6-1)
PDF_ANNOT_IS_READ_ONLY 1 << (7-1)
PDF_ANNOT_IS_LOCKED 1 << (8-1)
PDF_ANNOT_IS_TOGGLE_NO_VIEW 1 << (9-1)
PDF_ANNOT_IS_LOCKED_CONTENTS 1 << (10-1)

10.9.3 Annotation Line Ending Styles

PDF_ANNOT_LE_NONE 0
PDF_ANNOT_LE_SQUARE 1
PDF_ANNOT_LE_CIRCLE 2
PDF_ANNOT_LE_DIAMOND 3
PDF_ANNOT_LE_OPEN_ARROW 4
PDF_ANNOT_LE_CLOSED_ARROW 5
PDF_ANNOT_LE_BUTT 6
PDF_ANNOT_LE_R_OPEN_ARROW 7
PDF_ANNOT_LE_R_CLOSED_ARROW 8
PDF_ANNOT_LE_SLASH 9

10.10 Widget Constants

10.10.1 Widget Types (field_type)

PDF_WIDGET_TYPE_UNKNOWN 0
PDF_WIDGET_TYPE_BUTTON 1
PDF_WIDGET_TYPE_CHECKBOX 2
PDF_WIDGET_TYPE_COMBOBOX 3
PDF_WIDGET_TYPE_LISTBOX 4
PDF_WIDGET_TYPE_RADIOBUTTON 5
PDF_WIDGET_TYPE_SIGNATURE 6
PDF_WIDGET_TYPE_TEXT 7

10.10. Widget Constants 385

PyMuPDF Documentation, Release 1.21.1

10.10.2 Text Widget Subtypes (text_format)

PDF_WIDGET_TX_FORMAT_NONE 0
PDF_WIDGET_TX_FORMAT_NUMBER 1
PDF_WIDGET_TX_FORMAT_SPECIAL 2
PDF_WIDGET_TX_FORMAT_DATE 3
PDF_WIDGET_TX_FORMAT_TIME 4

10.10.3 Widget flags (field_flags)

Common to all field types:

PDF_FIELD_IS_READ_ONLY 1
PDF_FIELD_IS_REQUIRED 1 << 1
PDF_FIELD_IS_NO_EXPORT 1 << 2

Text widgets:

PDF_TX_FIELD_IS_MULTILINE 1 << 12
PDF_TX_FIELD_IS_PASSWORD 1 << 13
PDF_TX_FIELD_IS_FILE_SELECT 1 << 20
PDF_TX_FIELD_IS_DO_NOT_SPELL_CHECK 1 << 22
PDF_TX_FIELD_IS_DO_NOT_SCROLL 1 << 23
PDF_TX_FIELD_IS_COMB 1 << 24
PDF_TX_FIELD_IS_RICH_TEXT 1 << 25

Button widgets:

PDF_BTN_FIELD_IS_NO_TOGGLE_TO_OFF 1 << 14
PDF_BTN_FIELD_IS_RADIO 1 << 15
PDF_BTN_FIELD_IS_PUSHBUTTON 1 << 16
PDF_BTN_FIELD_IS_RADIOS_IN_UNISON 1 << 25

Choice widgets:

PDF_CH_FIELD_IS_COMBO 1 << 17
PDF_CH_FIELD_IS_EDIT 1 << 18
PDF_CH_FIELD_IS_SORT 1 << 19
PDF_CH_FIELD_IS_MULTI_SELECT 1 << 21
PDF_CH_FIELD_IS_DO_NOT_SPELL_CHECK 1 << 22
PDF_CH_FIELD_IS_COMMIT_ON_SEL_CHANGE 1 << 26

10.11 PDF Standard Blend Modes

For an explanation see Adobe PDF References, page 324:

PDF_BM_Color "Color"
PDF_BM_ColorBurn "ColorBurn"
PDF_BM_ColorDodge "ColorDodge"
PDF_BM_Darken "Darken"

(continues on next page)

386 Chapter 10. Constants and Enumerations

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

PDF_BM_Difference "Difference"
PDF_BM_Exclusion "Exclusion"
PDF_BM_HardLight "HardLight"
PDF_BM_Hue "Hue"
PDF_BM_Lighten "Lighten"
PDF_BM_Luminosity "Luminosity"
PDF_BM_Multiply "Multiply"
PDF_BM_Normal "Normal"
PDF_BM_Overlay "Overlay"
PDF_BM_Saturation "Saturation"
PDF_BM_Screen "Screen"
PDF_BM_SoftLight "Softlight"

10.12 Stamp Annotation Icons

MuPDF has defined the following icons for rubber stamp annotations:

STAMP_Approved 0
STAMP_AsIs 1
STAMP_Confidential 2
STAMP_Departmental 3
STAMP_Experimental 4
STAMP_Expired 5
STAMP_Final 6
STAMP_ForComment 7
STAMP_ForPublicRelease 8
STAMP_NotApproved 9
STAMP_NotForPublicRelease 10
STAMP_Sold 11
STAMP_TopSecret 12
STAMP_Draft 13

10.12. Stamp Annotation Icons 387

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

388 Chapter 10. Constants and Enumerations

CHAPTER

ELEVEN

COLOR DATABASE

Since the introduction of methods involving colors (like Page.draw_circle()), a requirement may be to have access
to predefined colors.

The fabulous GUI package wxPython has a database of over 540 predefined RGB colors, which are given more or less
memorizable names. Among them are not only standard names like “green” or “blue”, but also “turquoise”, “skyblue”,
and 100 (not only 50 . . .) shades of “gray”, etc.

We have taken the liberty to copy this database (a list of tuples) modified into PyMuPDF and make its colors available
as PDF compatible float triples: for wxPython’s (“WHITE”, 255, 255, 255) we return (1, 1, 1), which can be directly
used in color and fill parameters. We also accept any mixed case of “wHiTe” to find a color.

11.1 Function getColor()

As the color database may not be needed very often, one additional import statement seems acceptable to get access to
it:

>>> # "getColor" is the only method you really need
>>> from fitz.utils import getColor
>>> getColor("aliceblue")
(0.9411764705882353, 0.9725490196078431, 1.0)
>>> #
>>> # to get a list of all existing names
>>> from fitz.utils import getColorList
>>> cl = getColorList()
>>> cl
['ALICEBLUE', 'ANTIQUEWHITE', 'ANTIQUEWHITE1', 'ANTIQUEWHITE2', 'ANTIQUEWHITE3',
'ANTIQUEWHITE4', 'AQUAMARINE', 'AQUAMARINE1'] ...
>>> #
>>> # to see the full integer color coding
>>> from fitz.utils import getColorInfoList
>>> il = getColorInfoList()
>>> il
[('ALICEBLUE', 240, 248, 255), ('ANTIQUEWHITE', 250, 235, 215),
('ANTIQUEWHITE1', 255, 239, 219), ('ANTIQUEWHITE2', 238, 223, 204),
('ANTIQUEWHITE3', 205, 192, 176), ('ANTIQUEWHITE4', 139, 131, 120),
('AQUAMARINE', 127, 255, 212), ('AQUAMARINE1', 127, 255, 212)] ...

389

https://wxpython.org/

PyMuPDF Documentation, Release 1.21.1

11.2 Printing the Color Database

If you want to actually see how the many available colors look like, use scripts colordbRGB.py or colordbHSV.py in
the examples directory. They create PDFs (already existing in the same directory) with all these colors. Their only
difference is sorting order: one takes the RGB values, the other one the Hue-Saturation-Values as sort criteria. This is
a screen print of what these files look like.

390 Chapter 11. Color Database

https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/colordbRGB.py
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples/colordbHSV.py
https://discord.gg/TSpYGBW4eq

CHAPTER

TWELVE

APPENDIX 1: DETAILS ON TEXT EXTRACTION

This chapter provides background on the text extraction methods of PyMuPDF.

Information of interest are

• what do they provide?

• what do they imply (processing time / data sizes)?

12.1 General structure of a TextPage

TextPage is one of (Py-) MuPDF’s classes. It is normally created (and destroyed again) behind the curtain, when Page
text extraction methods are used, but it is also available directly and can be used as a persistent object. Other than its
name suggests, images may optionally also be part of a text page:

<page>
<text block>

<line>

<char>
<image block>

A text page consists of blocks (= roughly paragraphs).

A block consists of either lines and their characters, or an image.

A line consists of spans.

A span consists of adjacent characters with identical font properties: name, size, flags and color.

12.2 Plain Text

Function TextPage.extractText() (or Page.get_text(“text”)) extracts a page’s plain text in original order as spec-
ified by the creator of the document.

An example output:

>>> print(page.get_text("text"))
Some text on first page.

391

PyMuPDF Documentation, Release 1.21.1

Note: The output may not equal an accustomed “natural” reading order. However, you can request a reordering
following the scheme “top-left to bottom-right” by executing page.get_text(“text”, sort=True).

12.3 BLOCKS

Function TextPage.extractBLOCKS() (or Page.get_text(“blocks”)) extracts a page’s text blocks as a list of items
like:

(x0, y0, x1, y1, "lines in block", block_no, block_type)

Where the first 4 items are the float coordinates of the block’s bbox. The lines within each block are concatenated by
a new-line character.

This is a high-speed method, which by default also extracts image meta information: Each image appears as a block
with one text line, which contains meta information. The image itself is not shown.

As with simple text output above, the sort argument can be used as well to obtain a reading order.

Example output:

>>> print(page.get_text("blocks", sort=False))
[(50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375,
'Some text on first page.', 0, 0)]

12.4 WORDS

Function TextPage.extractWORDS() (or Page.get_text(“words”)) extracts a page’s text words as a list of items like:

(x0, y0, x1, y1, "word", block_no, line_no, word_no)

Where the first 4 items are the float coordinates of the words’s bbox. The last three integers provide some more infor-
mation on the word’s whereabouts.

This is a high-speed method. As with the previous methods, argument sort=True will reorder the words.

Example output:

>>> for word in page.get_text("words", sort=False):
print(word)

(50.0, 88.17500305175781, 78.73200225830078, 103.28900146484375,
'Some', 0, 0, 0)
(81.79000091552734, 88.17500305175781, 99.5219955444336, 103.28900146484375,
'text', 0, 0, 1)
(102.57999420166016, 88.17500305175781, 114.8119888305664, 103.28900146484375,
'on', 0, 0, 2)
(117.86998748779297, 88.17500305175781, 135.5909881591797, 103.28900146484375,
'first', 0, 0, 3)
(138.64898681640625, 88.17500305175781, 166.1709747314453, 103.28900146484375,
'page.', 0, 0, 4)

392 Chapter 12. Appendix 1: Details on Text Extraction

PyMuPDF Documentation, Release 1.21.1

12.5 HTML

TextPage.extractHTML() (or Page.get_text(“html”) output fully reflects the structure of the page’s TextPage – much
like DICT / JSON below. This includes images, font information and text positions. If wrapped in HTML header and
trailer code, it can readily be displayed by an internet browser. Our above example:

>>> for line in page.get_text("html").splitlines():
print(line)

<div id="page0" style="position:relative;width:300pt;height:350pt;
background-color:white">
<p style="position:absolute;white-space:pre;margin:0;padding:0;top:88pt;
left:50pt"><span style="font-family:Helvetica,sans-serif;
font-size:11pt">Some text on first page.</p>
</div>

12.6 Controlling Quality of HTML Output

While HTML output has improved a lot in MuPDF v1.12.0, it is not yet bug-free: we have found problems in the areas
font support and image positioning.

• HTML text contains references to the fonts used of the original document. If these are not known to the browser
(a fat chance!), it will replace them with others; the results will probably look awkward. This issue varies greatly
by browser – on my Windows machine, MS Edge worked just fine, whereas Firefox looked horrible.

• For PDFs with a complex structure, images may not be positioned and / or sized correctly. This seems to be the
case for rotated pages and pages, where the various possible page bbox variants do not coincide (e.g. MediaBox
!= CropBox). We do not know yet, how to address this – we filed a bug at MuPDF’s site.

To address the font issue, you can use a simple utility script to scan through the HTML file and replace font references.
Here is a little example that replaces all fonts with one of the PDF Base 14 Fonts: serifed fonts will become “Times”,
non-serifed “Helvetica” and monospaced will become “Courier”. Their respective variations for “bold”, “italic”, etc.
are hopefully done correctly by your browser:

import sys
filename = sys.argv[1]
otext = open(filename).read() # original html text string
pos1 = 0 # search start poition
font_serif = "font-family:Times" # enter ...
font_sans = "font-family:Helvetica" # ... your choices ...
font_mono = "font-family:Courier" # ... here
found_one = False # true if search successfull

while True:
pos0 = otext.find("font-family:", pos1) # start of a font spec
if pos0 < 0: # none found - we are done

break
pos1 = otext.find(";", pos0) # end of font spec
test = otext[pos0 : pos1] # complete font spec string
testn = "" # the new font spec string
if test.endswith(",serif"): # font with serifs?

testn = font_serif # use Times instead
(continues on next page)

12.5. HTML 393

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

elif test.endswith(",sans-serif"): # sans serifs font?
testn = font_sans # use Helvetica

elif test.endswith(",monospace"): # monospaced font?
testn = font_mono # becomes Courier

if testn != "": # any of the above found?
otext = otext.replace(test, testn) # change the source
found_one = True
pos1 = 0 # start over

if found_one:
ofile = open(filename + ".html", "w")
ofile.write(otext)
ofile.close()

else:
print("Warning: could not find any font specs!")

12.7 DICT (or JSON)

TextPage.extractDICT() (or Page.get_text(“dict”, sort=False)) output fully reflects the structure of a TextPage and
provides image content and position detail (bbox – boundary boxes in pixel units) for every block, line and span. Images
are stored as bytes for DICT output and base64 encoded strings for JSON output.

For a visuallization of the dictionary structure have a look at Structure of Dictionary Outputs.

Here is how this looks like:

{
"width": 300.0,
"height": 350.0,
"blocks": [{

"type": 0,
"bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375),
"lines": ({

"wmode": 0,
"dir": (1.0, 0.0),
"bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375),
"spans": ({

"size": 11.0,
"flags": 0,
"font": "Helvetica",
"color": 0,
"origin": (50.0, 100.0),
"text": "Some text on first page.",
"bbox": (50.0, 88.17500305175781, 166.1709747314453, 103.28900146484375)

})
}]

}]
}

394 Chapter 12. Appendix 1: Details on Text Extraction

PyMuPDF Documentation, Release 1.21.1

12.8 RAWDICT (or RAWJSON)

TextPage.extractRAWDICT() (or Page.get_text(“rawdict”, sort=False)) is an information superset of DICT and
takes the detail level one step deeper. It looks exactly like the above, except that the “text” items (string) in the spans
are replaced by the list “chars”. Each “chars” entry is a character dict. For example, here is what you would see in
place of item “text”: “Text in black color.” above:

"chars": [{
"origin": (50.0, 100.0),
"bbox": (50.0, 88.17500305175781, 57.336997985839844, 103.28900146484375),
"c": "S"

}, {
"origin": (57.33700180053711, 100.0),
"bbox": (57.33700180053711, 88.17500305175781, 63.4530029296875, 103.28900146484375),
"c": "o"

}, {
"origin": (63.4530029296875, 100.0),
"bbox": (63.4530029296875, 88.17500305175781, 72.61600494384766, 103.28900146484375),
"c": "m"

}, {
"origin": (72.61600494384766, 100.0),
"bbox": (72.61600494384766, 88.17500305175781, 78.73200225830078, 103.

→˓28900146484375),
"c": "e"

}, {
"origin": (78.73200225830078, 100.0),
"bbox": (78.73200225830078, 88.17500305175781, 81.79000091552734, 103.

→˓28900146484375),
"c": " "

< ... deleted ... >
}, {

"origin": (163.11297607421875, 100.0),
"bbox": (163.11297607421875, 88.17500305175781, 166.1709747314453, 103.

→˓28900146484375),
"c": "."

}],

12.9 XML

The TextPage.extractXML() (or Page.get_text(“xml”)) version extracts text (no images) with the detail level of
RAWDICT:

>>> for line in page.get_text("xml").splitlines():
print(line)

<page id="page0" width="300" height="350">
<block bbox="50 88.175 166.17098 103.289">
<line bbox="50 88.175 166.17098 103.289" wmode="0" dir="1 0">

<char quad="50 88.175 57.336999 88.175 50 103.289 57.336999 103.289" x="50"
y="100" color="#000000" c="S"/>

(continues on next page)

12.8. RAWDICT (or RAWJSON) 395

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

<char quad="57.337 88.175 63.453004 88.175 57.337 103.289 63.453004 103.289" x="57.337"
y="100" color="#000000" c="o"/>
<char quad="63.453004 88.175 72.616008 88.175 63.453004 103.289 72.616008 103.289" x="63.
→˓453004"
y="100" color="#000000" c="m"/>
<char quad="72.616008 88.175 78.732 88.175 72.616008 103.289 78.732 103.289" x="72.616008
→˓"
y="100" color="#000000" c="e"/>
<char quad="78.732 88.175 81.79 88.175 78.732 103.289 81.79 103.289" x="78.732"
y="100" color="#000000" c=" "/>

... deleted ...

<char quad="163.11298 88.175 166.17098 88.175 163.11298 103.289 166.17098 103.289" x=
→˓"163.11298"
y="100" color="#000000" c="."/>

</line>
</block>
</page>

Note: We have successfully tested lxml to interpret this output.

12.10 XHTML

TextPage.extractXHTML() (or Page.get_text(“xhtml”)) is a variation of TEXT but in HTML format, containing the
bare text and images (“semantic” output):

<div id="page0">
<p>Some text on first page.</p>
</div>

12.11 Text Extraction Flags Defaults

• New in version 1.16.2: Method Page.get_text() supports a keyword parameter flags (int) to control the
amount and the quality of extracted data. The following table shows the defaults settings (flags parameter omitted
or None) for each extraction variant. If you specify flags with a value other than None, be aware that you must
set all desired options. A description of the respective bit settings can be found in Text Extraction Flags.

• New in v1.19.6: The default combinations in the following table are now available as Python constants:
TEXTFLAGS_TEXT, TEXTFLAGS_WORDS, TEXTFLAGS_BLOCKS, TEXTFLAGS_DICT, TEXTFLAGS_RAWDICT,
TEXTFLAGS_HTML, TEXTFLAGS_XHTML, TEXTFLAGS_XML, and TEXTFLAGS_SEARCH . You can now easily mod-
ify a default flag, e.g.

– include images in a “blocks” output:

flags = TEXTFLAGS_BLOCKS | TEXT_PRESERVE_IMAGES

– exclude images from a “dict” output:

396 Chapter 12. Appendix 1: Details on Text Extraction

https://pypi.org/project/lxml/

PyMuPDF Documentation, Release 1.21.1

flags = TEXTFLAGS_DICT & ~TEXT_PRESERVE_IMAGES

– set dehyphenation off in text searches:

flags = TEXTFLAGS_SEARCH & ~TEXT_DEHYPHENATE

Indicator text html xhtml xml dict rawdict words blocks search
preserve ligatures 1 1 1 1 1 1 1 1 1
preserve whitespace 1 1 1 1 1 1 1 1 1
preserve images n/a 1 1 n/a 1 1 n/a 0 0
inhibit spaces 0 0 0 0 0 0 0 0 0
dehyphenate 0 0 0 0 0 0 0 0 1
clip to mediabox 1 1 1 1 1 1 1 1 1

• search refers to the text search function.

• “json” is handled exactly like “dict” and is hence left out.

• “rawjson” is handled exactly like “rawdict” and is hence left out.

• An “n/a” specification means a value of 0 and setting this bit never has any effect on the output (but an adverse
effect on performance).

• If you are not interested in images when using an output variant which includes them by default, then by all
means set the respective bit off: You will experience a better performance and much lower space requirements.

To show the effect of TEXT_INHIBIT_SPACES have a look at this example:

>>> print(page.get_text("text"))
H a l l o !
Mo r e t e x t
i s f o l l o w i n g
i n E n g l i s h
. . . l e t ' s s e e
w h a t h a p p e n s .
>>> print(page.get_text("text", flags=fitz.TEXT_INHIBIT_SPACES))
Hallo!
More text
is following
in English
... let's see
what happens.
>>>

12.12 Performance

The text extraction methods differ significantly both: in terms of information they supply, and in terms of resource
requirements and runtimes. Generally, more information of course means, that more processing is required and a
higher data volume is generated.

Note: Especially images have a very significant impact. Make sure to exclude them (via the flags parameter) whenever
you do not need them. To process the below mentioned 2’700 total pages with default flags settings required 160 seconds
across all extraction methods. When all images where excluded, less than 50% of that time (77 seconds) were needed.

12.12. Performance 397

PyMuPDF Documentation, Release 1.21.1

To begin with, all methods are very fast in relation to other products out there in the market. In terms of processing
speed, we are not aware of a faster (free) tool. Even the most detailed method, RAWDICT, processes all 1’310 pages
of the Adobe PDF References in less than 5 seconds (simple text needs less than 2 seconds here).

The following table shows average relative speeds (“RSpeed”, baseline 1.00 is TEXT), taken across ca. 1400 text-heavy
and 1300 image-heavy pages.

Method RSpeed Comments no images
TEXT 1.00 no images, plain text, line breaks 1.00
BLOCKS 1.00 image bboxes (only), block level text with bboxes, line breaks 1.00
WORDS 1.02 no images, word level text with bboxes 1.02
XML 2.72 no images, char level text, layout and font details 2.72
XHTML 3.32 base64 images, span level text, no layout info 1.00
HTML 3.54 base64 images, span level text, layout and font details 1.01
DICT 3.93 binary images, span level text, layout and font details 1.04
RAWDICT 4.50 binary images, char level text, layout and font details 1.68

As mentioned: when excluding image extraction (last column), the relative speeds are changing drastically: except
RAWDICT and XML, the other methods are almost equally fast, and RAWDICT requires 40% less execution time
than the now slowest XML.

Look at chapter Appendix 1 for more performance information.

398 Chapter 12. Appendix 1: Details on Text Extraction

https://discord.gg/TSpYGBW4eq

CHAPTER

THIRTEEN

APPENDIX 2: CONSIDERATIONS ON EMBEDDED FILES

This chapter provides some background on embedded files support in PyMuPDF.

13.1 General

Starting with version 1.4, PDF supports embedding arbitrary files as part (“Embedded File Streams”) of a PDF docu-
ment file (see chapter “7.11.4 Embedded File Streams”, pp. 103 of the Adobe PDF References).

In many aspects, this is comparable to concepts also found in ZIP files or the OLE technique in MS Windows. PDF
embedded files do, however, not support directory structures as does the ZIP format. An embedded file can in turn
contain embedded files itself.

Advantages of this concept are that embedded files are under the PDF umbrella, benefitting from its permissions /
password protection and integrity aspects: all data, which a PDF may reference or even may be dependent on, can be
bundled into it and so form a single, consistent unit of information.

In addition to embedded files, PDF 1.7 adds collections to its support range. This is an advanced way of storing and
presenting meta information (i.e. arbitrary and extensible properties) of embedded files.

13.2 MuPDF Support

After adding initial support for collections (portfolios) and /EmbeddedFiles in MuPDF version 1.11, this support was
dropped again in version 1.15.

As a consequence, the cli utility mutool no longer offers access to embedded files.

PyMuPDF – having implemented an /EmbeddedFiles API in response in its version 1.11.0 – was therefore forced to
change gears starting with its version 1.16.0 (we never published a MuPDF v1.15.x compatible PyMuPDF).

We are now maintaining our own code basis supporting embedded files. This code makes use of basic MuPDF dictio-
nary and array functions only.

399

PyMuPDF Documentation, Release 1.21.1

13.3 PyMuPDF Support

We continue to support the full old API with respect to embedded files – with only minor, cosmetic changes.

There even also is a new function, which delivers a list of all names under which embedded data are resgistered in a
PDF, Document.embfile_names().

400 Chapter 13. Appendix 2: Considerations on Embedded Files

https://discord.gg/TSpYGBW4eq

CHAPTER

FOURTEEN

APPENDIX 3: ASSORTED TECHNICAL INFORMATION

This section deals with various technical topics, that are not necessarily related to each other.

14.1 Image Transformation Matrix

Starting with version 1.18.11, the image transformation matrix is returned by some methods for text and image extrac-
tion: Page.get_text() and Page.get_image_bbox().

The transformation matrix contains information about how an image was transformed to fit into the rectangle (its
“boundary box” = “bbox”) on some document page. By inspecting the image’s bbox on the page and this matrix, one
can determine for example, whether and how the image is displayed scaled or rotated on a page.

The relationship between image dimension and its bbox on a page is the following:

1. Using the original image’s width and height,
• define the image rectangle imgrect = fitz.Rect(0, 0, width, height)

• define the “shrink matrix” shrink = fitz.Matrix(1/width, 0, 0, 1/height, 0, 0).

2. Transforming the image rectangle with its shrink matrix, will result in the unit rectangle: imgrect * shrink
= fitz.Rect(0, 0, 1, 1).

3. Using the image transformation matrix “transform”, the following steps will compute the bbox:

imgrect = fitz.Rect(0, 0, width, height)
shrink = fitz.Matrix(1/width, 0, 0, 1/height, 0, 0)
bbox = imgrect * shrink * transform

4. Inspecting the matrix product shrink * transform will reveal all information about what happened to the
image rectangle to make it fit into the bbox on the page: rotation, scaling of its sides and translation of its origin.
Let us look at an example:

>>> imginfo = page.get_images()[0] # get an image item on a page
>>> imginfo
(5, 0, 439, 501, 8, 'DeviceRGB', '', 'fzImg0', 'DCTDecode')
>>> #--
>>> # define image shrink matrix and rectangle
>>> #--
>>> shrink = fitz.Matrix(1 / 439, 0, 0, 1 / 501, 0, 0)
>>> imgrect = fitz.Rect(0, 0, 439, 501)
>>> #--

(continues on next page)

401

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

>>> # determine image bbox and transformation matrix:
>>> #--
>>> bbox, transform = page.get_image_bbox("fzImg0", transform=True)
>>> #--
>>> # confirm equality - permitting rounding errors
>>> #--
>>> bbox
Rect(100.0, 112.37525939941406, 300.0, 287.624755859375)
>>> imgrect * shrink * transform
Rect(100.0, 112.375244140625, 300.0, 287.6247253417969)
>>> #--
>>> shrink * transform
Matrix(0.0, -0.39920157194137573, 0.3992016017436981, 0.0, 100.0, 287.6247253417969)
>>> #--
>>> # the above shows:
>>> # image sides are scaled by same factor ~0.4,
>>> # and the image is rotated by 90 degrees clockwise
>>> # compare this with fitz.Matrix(-90) * 0.4
>>> #--

14.2 PDF Base 14 Fonts

The following 14 builtin font names must be supported by every PDF viewer application. They are available as a
dictionary, which maps their full names amd their abbreviations in lower case to the full font basename. Whereever a
fontname must be provided in PyMuPDF, any key or value from the dictionary may be used:

In [2]: fitz.Base14_fontdict
Out[2]:
{'courier': 'Courier',
'courier-oblique': 'Courier-Oblique',
'courier-bold': 'Courier-Bold',
'courier-boldoblique': 'Courier-BoldOblique',
'helvetica': 'Helvetica',
'helvetica-oblique': 'Helvetica-Oblique',
'helvetica-bold': 'Helvetica-Bold',
'helvetica-boldoblique': 'Helvetica-BoldOblique',
'times-roman': 'Times-Roman',
'times-italic': 'Times-Italic',
'times-bold': 'Times-Bold',
'times-bolditalic': 'Times-BoldItalic',
'symbol': 'Symbol',
'zapfdingbats': 'ZapfDingbats',
'helv': 'Helvetica',
'heit': 'Helvetica-Oblique',
'hebo': 'Helvetica-Bold',
'hebi': 'Helvetica-BoldOblique',
'cour': 'Courier',
'coit': 'Courier-Oblique',
'cobo': 'Courier-Bold',

(continues on next page)

402 Chapter 14. Appendix 3: Assorted Technical Information

PyMuPDF Documentation, Release 1.21.1

(continued from previous page)

'cobi': 'Courier-BoldOblique',
'tiro': 'Times-Roman',
'tibo': 'Times-Bold',
'tiit': 'Times-Italic',
'tibi': 'Times-BoldItalic',
'symb': 'Symbol',
'zadb': 'ZapfDingbats'}

In contrast to their obligation, not all PDF viewers support these fonts correctly and completely – this is especially true
for Symbol and ZapfDingbats. Also, the glyph (visual) images will be specific to every reader.

To see how these fonts can be used – including the CJK built-in fonts – look at the table in Page.insert_font().

14.3 Adobe PDF References

This PDF Reference manual published by Adobe is frequently quoted throughout this documentation. It can be viewed
and downloaded from here.

Note: For a long time, an older version was also available under this link. It seems to be taken off of the web site in
October 2021. Earlier (pre 1.19.*) versions of the PyMuPDF documentation used to refer to this document. We have
undertaken an effort to replace referrals to the current specification above.

14.4 Using Python Sequences as Arguments in PyMuPDF

When PyMuPDF objects and methods require a Python list of numerical values, other Python sequence types are also
allowed. Python classes are said to implement the sequence protocol, if they have a __getitem__() method.

This basically means, you can interchangeably use Python list or tuple or even array.array, numpy.array and bytearray
types in these cases.

For example, specifying a sequence "s" in any of the following ways

• s = [1, 2] – a list

• s = (1, 2) – a tuple

• s = array.array("i", (1, 2)) – an array.array

• s = numpy.array((1, 2)) – a numpy array

• s = bytearray((1, 2)) – a bytearray

will make it usable in the following example expressions:

• fitz.Point(s)

• fitz.Point(x, y) + s

• doc.select(s)

14.3. Adobe PDF References 403

https://opensource.adobe.com/dc-acrobat-sdk-docs/standards/pdfstandards/pdf/PDF32000_2008.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

PyMuPDF Documentation, Release 1.21.1

Similarly with all geometry objects Rect, IRect, Matrix and Point.

Because all PyMuPDF geometry classes themselves are special cases of sequences, they (with the exception of Quad
– see below) can be freely used where numerical sequences can be used, e.g. as arguments for functions like list(),
tuple(), array.array() or numpy.array(). Look at the following snippet to see this work.

>>> import fitz, array, numpy as np
>>> m = fitz.Matrix(1, 2, 3, 4, 5, 6)
>>>
>>> list(m)
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
>>>
>>> tuple(m)
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
>>>
>>> array.array("f", m)
array('f', [1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
>>>
>>> np.array(m)
array([1., 2., 3., 4., 5., 6.])

Note: Quad is a Python sequence object as well and has a length of 4. Its items however are point_like – not
numbers. Therefore, the above remarks do not apply.

14.5 Ensuring Consistency of Important Objects in PyMuPDF

PyMuPDF is a Python binding for the C library MuPDF. While a lot of effort has been invested by MuPDF’s creators
to approximate some sort of an object-oriented behavior, they certainly could not overcome basic shortcomings of the
C language in that respect.

Python on the other hand implements the OO-model in a very clean way. The interface code between PyMuPDF and
MuPDF consists of two basic files: fitz.py and fitz_wrap.c. They are created by the excellent SWIG tool for each new
version.

When you use one of PyMuPDF’s objects or methods, this will result in excution of some code in fitz.py, which in turn
will call some C code compiled with fitz_wrap.c.

Because SWIG goes a long way to keep the Python and the C level in sync, everything works fine, if a certain set of
rules is being strictly followed. For example: never access a Page object, after you have closed (or deleted or set to
None) the owning Document. Or, less obvious: never access a page or any of its children (links or annotations) after
you have executed one of the document methods select(), delete_page(), insert_page() . . . and more.

But just no longer accessing invalidated objects is actually not enough: They should rather be actively deleted entirely,
to also free C-level resources (meaning allocated memory).

The reason for these rules lies in the fact that there is a hierachical 2-level one-to-many relationship between a document
and its pages and also between a page and its links / annotations. To maintain a consistent situation, any of the above
actions must lead to a complete reset – in Python and, synchronously, in C.

SWIG cannot know about this and consequently does not do it.

The required logic has therefore been built into PyMuPDF itself in the following way.

404 Chapter 14. Appendix 3: Assorted Technical Information

PyMuPDF Documentation, Release 1.21.1

1. If a page “loses” its owning document or is being deleted itself, all of its currently existing annotations and links
will be made unusable in Python, and their C-level counterparts will be deleted and deallocated.

2. If a document is closed (or deleted or set to None) or if its structure has changed, then similarly all currently
existing pages and their children will be made unusable, and corresponding C-level deletions will take place.
“Structure changes” include methods like select(), delePage(), insert_page(), insert_pdf() and so on: all of these
will result in a cascade of object deletions.

The programmer will normally not realize any of this. If he, however, tries to access invalidated objects, exceptions
will be raised.

Invalidated objects cannot be directly deleted as with Python statements like del page or page = None, etc. Instead,
their __del__ method must be invoked.

All pages, links and annotations have the property parent, which points to the owning object. This is the property that
can be checked on the application level: if obj.parent == None then the object’s parent is gone, and any reference to
its properties or methods will raise an exception informing about this “orphaned” state.

A sample session:

>>> page = doc[n]
>>> annot = page.first_annot
>>> annot.type # everything works fine
[5, 'Circle']
>>> page = None # this turns 'annot' into an orphan
>>> annot.type
<... omitted lines ...>
RuntimeError: orphaned object: parent is None
>>>
>>> # same happens, if you do this:
>>> annot = doc[n].first_annot # deletes the page again immediately!
>>> annot.type # so, 'annot' is 'born' orphaned
<... omitted lines ...>
RuntimeError: orphaned object: parent is None

This shows the cascading effect:

>>> doc = fitz.open("some.pdf")
>>> page = doc[n]
>>> annot = page.first_annot
>>> page.rect
fitz.Rect(0.0, 0.0, 595.0, 842.0)
>>> annot.type
[5, 'Circle']
>>> del doc # or doc = None or doc.close()
>>> page.rect
<... omitted lines ...>
RuntimeError: orphaned object: parent is None
>>> annot.type
<... omitted lines ...>
RuntimeError: orphaned object: parent is None

Note: Objects outside the above relationship are not included in this mechanism. If you e.g. created a table of contents
by toc = doc.get_toc(), and later close or change the document, then this cannot and does not change variable toc in
any way. It is your responsibility to refresh such variables as required.

14.5. Ensuring Consistency of Important Objects in PyMuPDF 405

PyMuPDF Documentation, Release 1.21.1

14.6 Design of Method Page.show_pdf_page()

14.6.1 Purpose and Capabilities

The method displays an image of a (“source”) page of another PDF document within a specified rectangle of the current
(“containing”, “target”) page.

• In contrast to Page.insert_image(), this display is vector-based and hence remains accurate across zooming
levels.

• Just like Page.insert_image(), the size of the display is adjusted to the given rectangle.

The following variations of the display are currently supported:

• Bool parameter keep_proportion controls whether to maintain the aspect ratio (default) or not.

• Rectangle parameter clip restricts the visible part of the source page rectangle. Default is the full page.

• float rotation rotates the display by an arbitrary angle (degrees). If the angle is not an integer multiple of 90, only
2 of the 4 corners may be positioned on the target border if also keep_proportion is true.

• Bool parameter overlay controls whether to put the image on top (foreground, default) of current page content
or not (background).

Use cases include (but are not limited to) the following:

1. “Stamp” a series of pages of the current document with the same image, like a company logo or a watermark.

2. Combine arbitrary input pages into one output page to support “booklet” or double-sided printing (known as
“4-up”, “n-up”).

3. Split up (large) input pages into several arbitrary pieces. This is also called “posterization”, because you e.g. can
split an A4 page horizontally and vertically, print the 4 pieces enlarged to separate A4 pages, and end up with an
A2 version of your original page.

14.6.2 Technical Implementation

This is done using PDF “Form XObjects”, see section 8.10 on page 217 of Adobe PDF References. On execution of
a Page.show_pdf_page(rect, src, pno, . . .), the following things happen:

1. The resources and contents objects of page pno in document src are copied over to the current document,
jointly creating a new Form XObject with the following properties. The PDF xref number of this object is
returned by the method.

a. /BBox equals /Mediabox of the source page

b. /Matrix equals the identity matrix [1 0 0 1 0 0]

c. /Resources equals that of the source page. This involves a “deep-copy” of hierarchically nested
other objects (including fonts, images, etc.). The complexity involved here is covered by
MuPDF’s grafting1 technique functions.

1 MuPDF supports “deep-copying” objects between PDF documents. To avoid duplicate data in the target, it uses so-called “graftmaps”, like a
form of scratchpad: for each object to be copied, its xref number is looked up in the graftmap. If found, copying is skipped. Otherwise, the new
xref is recorded and the copy takes place. PyMuPDF makes use of this technique in two places so far: Document.insert_pdf() and Page.
show_pdf_page(). This process is fast and very efficient, because it prevents multiple copies of typically large and frequently referenced data, like
images and fonts. However, you may still want to consider using garbage collection (option 4) in any of the following cases:

1. The target PDF is not new / empty: grafting does not check for resources that already existed (e.g. images, fonts) in the target document before

406 Chapter 14. Appendix 3: Assorted Technical Information

PyMuPDF Documentation, Release 1.21.1

d. This is a stream object type, and its stream is an exact copy of the combined data of the source
page’s /Contents objects.

This step is only executed once per shown source page. Subsequent displays of the same page only
create pointers (done in next step) to this object.

2. A second Form XObject is then created which the target page uses to invoke the display. This object has the
following properties:

a. /BBox equals the /CropBox of the source page (or clip).

b. /Matrix represents the mapping of /BBox to the target rectangle.

c. /XObject references the previous XObject via the fixed name fullpage.

d. The stream of this object contains exactly one fixed statement: /fullpage Do.

3. The resources and contents objects of the target page are now modified as follows.

a. Add an entry to the /XObject dictionary of /Resources with the name fzFrm<n> (with n chosen such that
this entry is unique on the page).

b. Depending on overlay, prepend or append a new object to the page’s /Contents array, containing the state-
ment q /fzFrm<n> Do Q.

14.7 Redirecting Error and Warning Messages

Since MuPDF version 1.16 error and warning messages can be redirected via an official plugin.

PyMuPDF will put error messages to sys.stderr prefixed with the string “mupdf:”. Warnings are internally stored and
can be accessed via fitz.TOOLS.mupdf_warnings(). There also is a function to empty this store.

opening it.
2. Using Page.show_pdf_page() for more than one source document: each grafting occurs within one source PDF only, not across multiple.

So if e.g. the same image exists in pages from different source PDFs, then this will not be detected until garbage collection.

14.7. Redirecting Error and Warning Messages 407

https://discord.gg/TSpYGBW4eq

PyMuPDF Documentation, Release 1.21.1

408 Chapter 14. Appendix 3: Assorted Technical Information

CHAPTER

FIFTEEN

CHANGE LOG

Changes in Version 1.21.1 (2022-12-13)
• This release uses MuPDF-1.21.1.

• Bug fixes:

– Fixed #2110: Fully embedded font is extracted only partially if it occupies more than one object

– Fixed #2094: Rectangle Detection Logic

– Fixed #2088: Destination point not set for named links in toc

– Fixed #2087: Image with Filter “[/FlateDecode/JPXDecode]” not extracted

– Fixed #2086: Document.save() owner_pw & user_pw has buffer overflow bug

– Fixed #2076: Segfault in fitz.py

– Fixed #2057: Document.save garbage parameter not working in PyMuPDF 1.21.0

– Fixed #2051: Missing DPI Parameter

– Fixed #2048: Invalid size of TextPage and bbox with newest version 1.21.0

– Fixed #2045: SystemError: <built-in function Page_get_texttrace> returned a result with an error set

– Fixed #2039: 1.21.0 fails to build against system libmupdf

– Fixed #2036: Archive::Archive defined twice

• Other

– Swallow “&zoom=nan” in link uri strings.

– Add new Page utility methods Page.replace_image() and Page.delete_image().

• Documentation:

– #2040: Added note about test failure with non-default build of MuPDF, to tests/README.md.

– #2037: In docs/installation.rst, mention incompatibility with chocolatey.org on Windows.

– #2061: Fixed description of Annot.file_info.

– #2065: Show how to insert internal PDF link.

– Improved description of building from source without an sdist.

– Added information about running tests.

– #2084: Fixed broken link to PyMuPDF-Utilities.

Changes in Version 1.21.0 (2022-11-8)

409

https://github.com/pymupdf/PyMuPDF/issues/2110
https://github.com/pymupdf/PyMuPDF/issues/2094
https://github.com/pymupdf/PyMuPDF/issues/2088
https://github.com/pymupdf/PyMuPDF/issues/2087
https://github.com/pymupdf/PyMuPDF/issues/2086
https://github.com/pymupdf/PyMuPDF/issues/2076
https://github.com/pymupdf/PyMuPDF/issues/2057
https://github.com/pymupdf/PyMuPDF/issues/2051
https://github.com/pymupdf/PyMuPDF/issues/2048
https://github.com/pymupdf/PyMuPDF/issues/2045
https://github.com/pymupdf/PyMuPDF/issues/2039
https://github.com/pymupdf/PyMuPDF/issues/2036
https://github.com/pymupdf/PyMuPDF/issues/2040
https://github.com/pymupdf/PyMuPDF/issues/2037
https://github.com/pymupdf/PyMuPDF/issues/2061
https://github.com/pymupdf/PyMuPDF/issues/2065
https://github.com/pymupdf/PyMuPDF/issues/2084

PyMuPDF Documentation, Release 1.21.1

• This release uses MuPDF-1.21.0.

• New feature: Stories.

• Added wheels for Python-3.11.

• Bug fixes:

– Fixed #1701: Broken custom image insertion.

– Fixed #1854: Document.delete_pages() declines keyword arguments.

– Fixed #1868: Access Violation Error at page.apply_redactions().

– Fixed #1909: Adding text with fontname=”Helvetica” can silently fail.

– Fixed #1913: draw_rect(): does not respect width if color is not specified.

– Fixed #1917: subset_fonts(): make it possible to silence the stdout.

– Fixed #1936: Rectangle detection can be incorrect producing wrong output.

– Fixed #1945: Segmentation fault when saving with clean=True.

– Fixed #1965: pdfocr_save() Hard Crash.

– Fixed #1971: Segmentation fault when using get_drawings().

– Fixed #1946: block_no and block_type switched in get_text() docs.

– Fixed #2013: AttributeError: ‘Widget’ object has no attribute ‘_annot’ in delete widget.

• Misc changes to core code:

– Fixed various compiler warnings and a sequence-point bug.

– Added support for Memento builds.

– Fixed leaks detected by Memento in test suite.

– Fixed handling of exceptions in set_name() and set_rect().

– Allow build with latest MuPDF, for regular testing of PyMuPDF master.

– Cope with new MuPDF exceptions when setting rect for some Annot types.

– Reduced cosmetic differences between MuPDF’s config.h and PyMuPDF’s _config.h.

– Cope with various changes to MuPDF API.

• Other:

– Fixed various broken links and typos in docs.

– Mention install of swig-python on MacOS for #875.

– Added (untested) wheels for macos-arm64.

Changes in Version 1.20.2
• This release uses MuPDF-1.20.3.

• Fixed #1787. Fix linking issues on Unix systems.

• Fixed #1824. SegFault when applying redactions overlapping a transparent image. (Fixed in MuPDF-1.20.3.)

• Improvements to documentation:

– Improved information about building from source in docs/installation.rst.

– Clarified memory allocation setting JM_MEMORY` in ``docs/tools.rst.

410 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/issues/1701
https://github.com/pymupdf/PyMuPDF/issues/1854
https://github.com/pymupdf/PyMuPDF/issues/1868
https://github.com/pymupdf/PyMuPDF/issues/1909
https://github.com/pymupdf/PyMuPDF/issues/1913
https://github.com/pymupdf/PyMuPDF/issues/1917
https://github.com/pymupdf/PyMuPDF/issues/1936
https://github.com/pymupdf/PyMuPDF/issues/1945
https://github.com/pymupdf/PyMuPDF/issues/1965
https://github.com/pymupdf/PyMuPDF/issues/1971
https://github.com/pymupdf/PyMuPDF/issues/1946
https://github.com/pymupdf/PyMuPDF/issues/2013
https://github.com/pymupdf/PyMuPDF/issues/1787
https://github.com/pymupdf/PyMuPDF/issues/1824

PyMuPDF Documentation, Release 1.21.1

– Fixed link to PDF Reference manual in docs/app3.rst.

– Fixed building of html documentation on OpenBSD.

– Moved old docs/faq.rst into separate docs/recipes-* files.

• Removed some unused files and directories:

– installation/

– docs/wheelnames.txt

Changes in Version 1.20.1
• Fixed #1724. Fix for building on FreeBSD.

• Fixed #1771. linkDest() had a broken call to re.match(), introduced in 1.20.0.

• Fixed #1751. get_drawings() and get_cdrawings() previously always returned with closePath=False.

• Fixed #1645. Default FreeText annotation text color is now black.

• Improvements to sphinx-generated documentation:

– Use readthedocs theme with enhancements.

– Renamed the .txt files to have .rst suffixes.

Changes in Version 1.20.0
This release uses MuPDF-1.20.0, released 2022-06-15.

• Cope with new MuPDF link uri format, changed from #<int>,<int>,<int> to
#page=<int>&zoom=<float>,<float>,<float>.

• In tests/test_insertpdf.py, use new reference output joined-1.20.pdf. We also check that new output
values are approximately the same as the old ones.

• Fixed #1738. Leak of pdf_graft_map. Also fixed a SEGV issue that this seemed to expose, caused by incorrect
freeing of underlying fz_document.

• Fixed #1733. Fixed ownership of Annotation.get_pixmap().

Changes to build/release process:

• If pip builds from source because an appropriate wheel is not available, we no longer require MuPDF to be pre-
installed. Instead the required MuPDF source is embedded in the sdist and automatically built into PyMuPDF.

• Various changes to setup.py to download the required MuPDF release as required. See comments at start of
setup.py for details.

• Added .github/workflows/build_wheels.yml to control building of wheels on Github.

Changes in Version 1.19.6
• Fixed #1620. The TextPage created by Page.get_textpage() will now be freed correctly (removed memory

leak).

• Fixed #1601. Document open errors should now be more concise and easier to interpret. In the course of this,
two PyMuPDF-specific Python exceptions have been added:

– EmptyFileError – raised when trying to create a Document (fitz.open()) from an empty file or zero-
length memory.

– FileDataError – raised when MuPDF encounters irrecoverable document structure issues.

411

https://github.com/pymupdf/PyMuPDF/issues/1724
https://github.com/pymupdf/PyMuPDF/issues/1771
https://github.com/pymupdf/PyMuPDF/issues/1751
https://github.com/pymupdf/PyMuPDF/issues/1645
https://github.com/pymupdf/PyMuPDF/issues/1738
https://github.com/pymupdf/PyMuPDF/issues/1733
https://github.com/pymupdf/PyMuPDF/issues/1620
https://github.com/pymupdf/PyMuPDF/issues/1601

PyMuPDF Documentation, Release 1.21.1

• Added Page.load_widget() given a PDF field’s xref.

• Added Dictionary pdfcolor which provide the about 500 colors defined as PDF color values with the lower
case color name as key.

• Added algebra functionality to the Quad class. These objects can now also be added and subtracted among
themselves, and be multiplied by numbers and matrices.

• Added new constants defining the default text extraction flags for more comfortable handling. Their naming
convention is like TEXTFLAGS_WORDS for page.get_text("words"). See Text Extraction Flags Defaults.

• Changed Page.annots() and Page.widgets() to detect and prevent reloading the page (illegally) inside the
iterator loops via Document.reload_page(). Doing this brings down the interpretor. Documented clean ways
to do annotation and widget mass updates within properly designed loops.

• Changed several internal utility functions to become standalone (“SWIG inline”) as opposed to be part of the
Tools class. This, among other things, increases the performance of geometry object creation.

• Changed Document.update_stream() to always accept stream updates - whether or not the dictionary object
behind the xref already is a stream. Thus the former new parameter is now ignored and will be removed in
v1.20.0.

Changes in Version 1.19.5
• Fixed #1518. A limited “fix”: in some cases, rectangles and quadrupels were not correctly encoded to support

re-drawing by Shape.

• Fixed #1521. This had the same ultimate reason behind issue #1510.

• Fixed #1513. Some Optional Content functions did not support non-ASCII characters.

• Fixed #1510. Support more soft-mask image subtypes.

• Fixed #1507. Immunize against items in the outlines chain, that are "null" objects.

• Fixed re-opened #1417. (“too many open files”). This was due to insufficient calls to MuPDF’s
fz_drop_document(). This also fixes #1550.

• Fixed several undocumented issues in relation to incorrectly setting the text span origin point_like.

• Fixed undocumented error computing the character bbox in method Page.get_texttrace() when text is
flipped (as opposed to just rotated).

• Added items to the dictionary returned by image_properties(): orientation and transform report the
natural image orientation (EXIF data).

• Added method Document.xref_copy(). It will make a given target PDF object an exact copy of a source
object.

Changes in Version 1.19.4
• Fixed #1505. Immunize against circular outline items.

• Fixed #1484. Correct CropBox coordinates are now returned in all situations.

• Fixed #1479.

• Fixed #1474. TextPage objects are now properly deleted again.

• Added Page methods and attributes for PDF /ArtBox, /BleedBox, /TrimBox.

• Added global attribute TESSDATA_PREFIX for easy checking of OCR support.

412 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/issues/1518
https://github.com/pymupdf/PyMuPDF/issues/1521
https://github.com/pymupdf/PyMuPDF/issues/1513
https://github.com/pymupdf/PyMuPDF/issues/1510
https://github.com/pymupdf/PyMuPDF/issues/1507
https://github.com/pymupdf/PyMuPDF/issues/1417
https://github.com/pymupdf/PyMuPDF/issues/1550
https://github.com/pymupdf/PyMuPDF/issues/1505
https://github.com/pymupdf/PyMuPDF/issues/1484
https://github.com/pymupdf/PyMuPDF/issues/1479
https://github.com/pymupdf/PyMuPDF/issues/1474

PyMuPDF Documentation, Release 1.21.1

• Changed Document.xref_set_key() such that dictionary keys will physically be removed if set to value
"null".

• Changed Document.extract_font() to optionally return a dictionary (instead of a tuple).

Changes in Version 1.19.3
This patch version implements minor improvements for Pixmap and also some important fixes.

• Fixed #1351. Reverted code that introduced the memory growth in v1.18.15.

• Fixed #1417. Developped circumvention for growth of open file handles using Document.insert_pdf().

• Fixed #1418. Developped circumvention for memory growth using Document.insert_pdf().

• Fixed #1430. Developped circumvention for mass pixmap generations of document pages.

• Fixed #1433. Solves a bbox error for some Type 3 font in PyMuPDF text processing.

• Added Pixmap.color_topusage() to determine the share of the most frequently used color. Solves #1397.

• Added Pixmap.warp() which makes a new pixmap from a given arbitrary convex quad inside the pixmap.

• Added Annot.irt_xref and Annot.set_irt_xref() to inquire or set the /IRT (“In Responde To”) property
of an annotation. Implements #1450.

• Added Rect.torect() and IRect.torect() which compute a matrix that transforms to a given other rect-
angle.

• Changed Pixmap.color_count() to also return the count of each color.

• Changed Page.get_texttrace() to also return correct span and character bboxes if span["dir"] != (1,
0).

Changes in Version 1.19.2
This patch version implements minor improvements for Page.get_drawings() and also some important fixes.

• Fixed #1388. Fixed intermittent memory corruption when insert or updating annotations.

• Fixed #1375. Inconsistencies between line numbers as returned by the “words” and the “dict” options of Page.
get_text() have been corrected.

• Fixed #1364. The check for being a "rawdict" span in recover_span_quad() now works correctly.

• Fixed #1342. Corrected the check for rectangle infiniteness in Page.show_pdf_page().

• Changed Page.get_drawings(), Page.get_cdrawings() to return an indicator on the area orientation cov-
ered by a rectangle. This implements #1355. Also, the recognition rate for rectangles and quads has been sig-
nificantly improved.

• Changed all text search and extraction methods to set the new flags option TEXT_MEDIABOX_CLIP to ON by
default. That bit causes the automatic suppression of all characters that are completely outside a page’s mediabox
(in as far as that notion is supported for a document type). This eliminates the need for using clip=page.rect
or similar for omitting text outside the visible area.

• Added parameter "dpi" to Page.get_pixmap() and Annot.get_pixmap(). When given, parameter
"matrix" is ignored, and a Pixmap with the desired dots per inch is created.

• Added attributes Pixmap.is_monochrome and Pixmap.is_unicolor allowing fast checks of pixmap prop-
erties. Addresses #1397.

• Added method Pixmap.color_count() to determine the unique colors in the pixmap.

413

https://github.com/pymupdf/PyMuPDF/discussions/1351
https://github.com/pymupdf/PyMuPDF/discussions/1417
https://github.com/pymupdf/PyMuPDF/discussions/1418
https://github.com/pymupdf/PyMuPDF/discussions/1430
https://github.com/pymupdf/PyMuPDF/discussions/1433
https://github.com/pymupdf/PyMuPDF/discussions/1397
https://github.com/pymupdf/PyMuPDF/discussions/1450
https://github.com/pymupdf/PyMuPDF/discussions/1388
https://github.com/pymupdf/PyMuPDF/discussions/1375
https://github.com/pymupdf/PyMuPDF/issues/1342
https://github.com/pymupdf/PyMuPDF/issues/1364
https://github.com/pymupdf/PyMuPDF/issues/1355
https://github.com/pymupdf/PyMuPDF/discussions/1397

PyMuPDF Documentation, Release 1.21.1

• Added boolean parameter "compress" to PDF document method Document.update_stream(). Addresses /
enables solution for #1408.

Changes in Version 1.19.1
This is the first patch version to support MuPDF v1.19.0. Apart from one bug fix, it includes important improvements
for OCR support and the option to sort extracted text to the standard reading order “from top-left to bottom-right”.

• Fixed #1328. “words” text extraction again returns correct (x0, y0) coordinates.

• Changed Page.get_textpage_ocr(): it now supports parameter dpi to control OCR quality. It is also pos-
sible to choose whether the full page should be OCRed or only the images displayed by the page.

• Changed Page.get_drawings() and Page.get_cdrawings() to automatically convert colors to RGB color
tuples. Implements #1332. Similar change was applied to Page.get_texttrace().

• Changed Page.get_text() to support a parameter sort. If set to True the output is conveniently sorted.

Changes in Version 1.19.0
This is the first version supporting MuPDF 1.19.*, published 2021-10-05. It introduces many new features compared
to the previous version 1.18.*.

PyMuPDF has now picked up integrated Tesseract OCR support, which was already present in MuPDF v1.18.0.

• Supported images can be OCRed via their Pixmap which results in a 1-page PDF with a text layer.

• All supported document pages (i.e. not only PDFs), can be OCRed using specialized text extraction methods.
The result is a mixture of standard and OCR text (depending on which part of the page was deemed to require
OCRing) that can be searched and extracted without restrictions.

• All this requires an independent installation of Tesseract. MuPDF actually (only) needs the location of Tesseract’s
"tessdata" folder, where its language support data are stored. This location must be available as environment
variable TESSDATA_PREFIX.

A new MuPDF feature is journalling PDF updates, which is also supported by this PyMuPDF version. Changes may
be logged, rolled back or replayed, allowing to implement a whole new level of control over PDF document integrity –
similar to functions present in modern database systems.

A third feature (unrelated to the new MuPDF version) includes the ability to detect when page objects cover or hide
each other. It is now e.g. possible to see that text is covered by a drawing or an image.

• Changed terminology and meaning of important geometry concepts: Rectangles are now characterized as finite,
valid or empty, while the definitions of these terms have also changed. Rectangles specifically are now thought
of being “open”: not all corners and sides are considered part of the retangle. Please do read the Rect section for
details.

• Added new parameter “no_new_id” to Document.save() / Document.tobytes()methods. Use it to suppress
updating the second item of the document /ID which in PDF indicates that the original file has been updated. If
the PDF has no /ID at all yet, then no new one will be created either.

• Added a journalling facility for PDF updates. This allows logging changes, undoing or redoing them, or saving
the journal for later use. Refer to Document.journal_enable() and friends.

• Added new Pixmap methods Pixmap.pdfocr_save() and Pixmap.pdfocr_tobytes(), which generate a
1-page PDF containing the pixmap as PNG image with OCR text layer.

• Added Page.get_textpage_ocr()which executes optical character recognition for the page, then extracts the
results and stores them together with “normal” page content in a TextPage. Use or reuse this object in subsequent
text extractions and text searches to avoid multiple efforts. The existing text search and text extraction methods
have been extended to support a separately created textpage – see next item.

414 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/discussions/1408
https://github.com/pymupdf/PyMuPDF/issues/1328
https://github.com/pymupdf/PyMuPDF/discussions/1332

PyMuPDF Documentation, Release 1.21.1

• Added a new parameter textpage to text extraction and text search methods. This allows reuse of a previously
created TextPage and thus achieves significant runtime benefits – which is especially important for the new OCR
features. But “normal” text extractions can definitely also benefit.

• Added Page.get_texttrace(), a technical method delivering low-level text character properties. It was
present before as a private method, but the author felt it now is mature enough to be officially available. It
specifically includes a “sequence number” which indicates the page appearance build operation that painted the
text.

• Added Page.get_bboxlog()which delivers the list of rectangles of page objects like text, images or drawings.
Its significance lies in its sequence: rectangles intersecting areas with a lower index are covering or hiding them.

• Changed methods Page.get_drawings() and Page.get_cdrawings() to include a “sequence number” in-
dicating the page appearance build operation that created the drawing.

• Fixed #1311. Field values in comboboxes should now be handled correctly.

• Fixed #1290. Error was caused by incorrect rectangle emptiness check, which is fixed due to new geometry logic
of this version.

• Fixed #1286. Text alignment for redact annotations is working again.

• Fixed #1287. Infinite loop issue for non-Windows systems when applying some redactions has been resolved.

• Fixed #1284. Text layout destruction after applying redactions in some cases has been resolved.

Changes in Version 1.18.18 / 1.18.19
• Fixed issue #1266. Failure to set Pixmap.samples in important cases, was hotfixed in a new version 1.18.19.

• Fixed issue #1257. Removing the read-only flag from PDF fields is now possible.

• Fixed issue #1252. Now correctly specifying the zoom value for PDF link annotations.

• Fixed issue #1244. Now correctly computing the transform matrix in Page.get_image__bbox().

• Fixed issue #1241. Prevent returning artifact characters in Page.get_textbox(), which happened in certain
constellations.

• Fixed issue #1234. Avoid creating infinite rectangles in corner cases – Page.get_drawings(), Page.
get_cdrawings().

• Added test data and test scripts to the source PyPI source distribution.

Changes in Version 1.18.17
Focus of this version are major performance improvements of selected functions.

• Fixed issue #1199. Using a non-existing page number in Document.get_page_images() and friends will no
longer lead to segfaults.

• Changed Page.get_drawings() to now differentiate between “stroke”, “fill” and combined paths. Paths con-
taining more than one rectangle (i.e. “re” items) are now supported. Extracting “clipped” paths is now available
as an option.

• Added Page.get_cdrawings(), performance-optimized version of Page.get_drawings().

• Added Pixmap.samples_mv, memoryview of a pixmap’s pixel area. Does not copy and thus always accesses
the current state of that area.

• Added Pixmap.samples_ptr, Python “pointer” to a pixmap’s pixel area. Allows much faster creation (factor
800+) of Qt images.

415

https://github.com/pymupdf/PyMuPDF/issues/1311
https://github.com/pymupdf/PyMuPDF/issues/1290
https://github.com/pymupdf/PyMuPDF/issues/1286
https://github.com/pymupdf/PyMuPDF/issues/1287
https://github.com/pymupdf/PyMuPDF/issues/1284
https://github.com/pymupdf/PyMuPDF/issues/1266
https://github.com/pymupdf/PyMuPDF/issues/1257
https://github.com/pymupdf/PyMuPDF/issues/1252
https://github.com/pymupdf/PyMuPDF/issues/1244
https://github.com/pymupdf/PyMuPDF/issues/1241
https://github.com/pymupdf/PyMuPDF/issues/1234
https://github.com/pymupdf/PyMuPDF/issues/1199

PyMuPDF Documentation, Release 1.21.1

Changes in Version 1.18.16
• Fixed issue #1184. Existing PDF widget fonts in a PDF are now accepted (i.e. not forcedly changed to a Base-14

font).

• Fixed issue #1154. Text search hits should now be correct when clip is specified.

• Fixed issue #1152.

• Fixed issue #1146.

• Added Link.flags and Link.set_flags() to the Link class. Implements enhancement requests #1187.

• Added option to simulate TextWriter.fill_textbox() output for predicting the number of lines, that a given
text would occupy in the textbox.

• Added text output support as subcommand gettext to the fitz CLI module. Most importantly, original physical
text layout reproduction is now supported.

Changes in Version 1.18.15
• Fixed issue #1088. Removing an annotation’s fill color should now work again both ways, using the
fill_color=[] argument in Annot.update() as well as fill=[] in Annot.set_colors().

• Fixed issue #1081. Document.subset_fonts(): fixed an error which created wrong character widths for some
fonts.

• Fixed issue #1078. Page.get_text() and other methods related to text extraction: changed the default value
of the TextPage flags parameter. All whitespace and ligatures are now preserved.

• Fixed issue #1085. The old snake_cased alias of fitz.detTextlength is now defined correctly.

• Changed Document.subset_fonts() will now correctly prefix font subsets with an appropriate six letter
uppercase tag, complying with the PDF specification.

• Added new method Widget.button_states() which returns the possible values that a button-type field can
have when being set to “on” or “off”.

• Added support of text with Small Capital letters to the Font and TextWriter classes. This is reflected by an
additional bool parameter small_caps in various of their methods.

Changes in Version 1.18.14
• Finished implementing new, “snake_cased” names for methods and properties, that were “camelCased” and

awkward in many aspects. At the end of this documentation, there is section Deprecated Names with more
background and a mapping of old to new names.

• Fixed issue #1053. Page.insert_image(): when given, include image mask in the hash computation.

• Fixed issue #1043. Added Pixmap.getPNGdata to the aliases of Pixmap.tobytes().

• Fixed an internal error when computing the envelopping rectangle of drawn paths as returned by Page.
get_drawings().

• Fixed an internal error occasionally causing loops when outputting text via TextWriter.fill_textbox().

• Added Font.char_lengths(), which returns a tuple of character widths of a string.

• Added more ways to specify pages in Document.delete_pages(). Now a sequence (list, tuple or range) can
be specified, and the Python del statement can be used. In the latter case, Python slices are also accepted.

416 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/issues/1184
https://github.com/pymupdf/PyMuPDF/issues/1154
https://github.com/pymupdf/PyMuPDF/issues/1152
https://github.com/pymupdf/PyMuPDF/issues/1146
https://github.com/pymupdf/PyMuPDF/issues/1187
https://github.com/pymupdf/PyMuPDF/issues/1088
https://github.com/pymupdf/PyMuPDF/issues/1081
https://github.com/pymupdf/PyMuPDF/issues/1078
https://github.com/pymupdf/PyMuPDF/issues/1085
https://github.com/pymupdf/PyMuPDF/issues/1053
https://github.com/pymupdf/PyMuPDF/issues/1043

PyMuPDF Documentation, Release 1.21.1

• Changed Document.del_toc_item(), which disables a single item of the TOC: previously, the title text was
removed. Instead, now the complete item will be shown grayed-out by supporting viewers.

Changes in Version 1.18.13
• Fixed issue #1014.

• Fixed an internal memory leak when computing image bboxes – Page.get_image_bbox().

• Added support for low-level access and modification of the PDF trailer. Applies to Document.
xref_get_keys(), Document.xref_get_key(), and Document.xref_set_key().

• Added documentation for maintaining private entries in PDF metadata.

• Added documentation for handling transparent image insertions, Page.insert_image().

• Added Page.get_image_rects(), an improved version of Page.get_image_bbox().

• Changed Document.delete_pages() to support various ways of specifying pages to delete. Implements
#1042.

• Changed Page.insert_image() to also accept the xref of an existing image in the file. This allows “copying”
images between pages, and extremely fast mutiple insertions.

• Changed Page.insert_image() to also accept the integer parameter alpha. To be used for performance
improvements.

• Changed Pixmap.set_alpha() to support new parameters for pre-multiplying colors with their alpha values
and setting a specific color to fully transparent (e.g. white).

• Changed Document.embfile_add() to automatically set creation and modification date-time. Correspond-
ingly, Document.embfile_upd() automatically maintains modification date-time (/ModDate PDF key), and
Document.embfile_info() correspondingly reports these data. In addition, the embedded file’s associated
“collection item” is included via its xref . This supports the development of PDF portfolio applications.

Changes in Version 1.18.11 / 1.18.12
• Fixed issue #972. Improved layout of source distribution material.

• Fixed issue #962. Stabilized Linux distribution detection for generating PyMuPDF from sources.

• Added: Page.get_xobjects() delivers the result of Document.get_page_xobjects().

• Added: Page.get_image_info() delivers meta information for all images shown on the page.

• Added: Tools.mupdf_display_warnings() allows setting on / off the display of MuPDF-generated warn-
ings. The default is off.

• Added: Document.ez_save() convenience alias of Document.save() with some different defaults.

• Changed: Image extractions of document pages now also contain the image’s transformation matrix. This
concerns Page.get_image_bbox() and the DICT, JSON, RAWDICT, and RAWJSON variants of Page.
get_text().

Changes in Version 1.18.10
• Fixed issue #941. Added old aliases for DisplayList.get_pixmap() and DisplayList.get_textpage().

• Fixed issue #929. Stabilized removal of JavaScript objects with Document.scrub().

• Fixed issue #927. Removed a loop in the reworked TextWriter.fill_textbox().

417

https://github.com/pymupdf/PyMuPDF/issues/1014
https://github.com/pymupdf/PyMuPDF/issues/1042
https://github.com/pymupdf/PyMuPDF/issues/972
https://github.com/pymupdf/PyMuPDF/issues/962
https://github.com/pymupdf/PyMuPDF/issues/941
https://github.com/pymupdf/PyMuPDF/issues/929
https://github.com/pymupdf/PyMuPDF/issues/927

PyMuPDF Documentation, Release 1.21.1

• Changed Document.xref_get_keys() and Document.xref_get_key() to also allow accessing the PDF
trailer dictionary. This can be done by using -1 as the xref number argument.

• Added a number of functions for reconstructing the quads for text lines, spans and characters extracted by Page.
get_text() options “dict” and “rawdict”. See recover_quad() and friends.

• Added Tools.unset_quad_corrections() to suppress character quad corrections (occasionally required for
erroneous fonts).

Changes in Version 1.18.9
• Fixed issue #888. Removed ambiguous statements concerning PyMuPDF’s license, which is now clearly stated

to be GNU AGPL V3.

• Fixed issue #895.

• Fixed issue #896. Since v1.17.6 PyMuPDF suppresses the font subset tags and only reports the base fontname
in text extraction outputs “dict” / “json” / “rawdict” / “rawjson”. Now a new global parameter can request the
old behaviour, Tools.set_subset_fontnames().

• Fixed issue #885. Pixmap creation now also works with filenames given as pathlib.Paths.

• Changed Document.subset_fonts(): Text is not rewritten any more and should therefore retain all its
origial properties – like being hidden or being controlled by Optional Content mechanisms.

• Changed TextWriter output to also accept text in right to left mode (Arabian, Hebrew): TextWriter.
fill_textbox(), TextWriter.append(). These methods now accept a new boolean parameter right_to_left,
which is False by default. Implements #897.

• Changed TextWriter.fill_textbox() to return all lines of text, that did not fit in the given rectangle. Also
changed the default of the warn parameter to no longer print a warning message in overflow situations.

• Added a utility function recover_quad(), which computes the quadrilateral of a span. This function can be
used for correctly marking text extracted with the “dict” or “rawdict” options of Page.get_text().

Changes in Version 1.18.8
This is a bug fix version only. We are publishing early because of the potentially widely used functions.

• Fixed issue #881. Fixed a memory leak in Page.insert_image()when inserting images from files or memory.

• Fixed issue #878. pathlib.Path objects should now correctly handle file path hierarchies.

Changes in Version 1.18.7
• Added an experimental Document.subset_fonts()which reduces the size of eligible fonts based on their use

by text in the PDF. Implements #855.

• Implemented request #870: Document.convert_to_pdf() now also supports PDF documents.

• Renamed Document.write to Document.tobytes() for greater clarity. But the deprecated name remains
available for some time.

• Implemented request #843: Document.tobytes() now supports linearized PDF output. Document.save()
now also supports writing to Python file objects. In addition, the open function now also supports Python file
objects.

• Fixed issue #844.

• Fixed issue #838.

418 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/issues/888
https://github.com/pymupdf/PyMuPDF/issues/895
https://github.com/pymupdf/PyMuPDF/issues/896
https://github.com/pymupdf/PyMuPDF/issues/885
https://github.com/pymupdf/PyMuPDF/issues/897
https://github.com/pymupdf/PyMuPDF/issues/881
https://github.com/pymupdf/PyMuPDF/issues/878
https://github.com/pymupdf/PyMuPDF/discussions/855
https://github.com/pymupdf/PyMuPDF/pull/870
https://github.com/pymupdf/PyMuPDF/Discussions/843
https://github.com/pymupdf/PyMuPDF/issues/844
https://github.com/pymupdf/PyMuPDF/issues/838

PyMuPDF Documentation, Release 1.21.1

• Fixed issue #823. More logic for better support of OCRed text output (Tesseract, ABBYY).

• Fixed issue #818.

• Fixed issue #814.

• Added Document.get_page_labels() which returns a list of page label definitions of a PDF.

• Added Document.has_annots() and Document.has_links() to check whether these object types are
present anywhere in a PDF.

• Added expert low-level functions to simplify inquiry and modification of PDF object sources: Document.
xref_get_keys() lists the keys of object xref , Document.xref_get_key() returns type and content of
a key, and Document.xref_set_key() modifies the key’s value.

• Added parameter thumbnails to Document.scrub() to also allow removing page thumbnail images.

• Improved documentation for how to add valid text marker annotations for non-horizontal text.

We continued the process of renaming methods and properties from “mixedCase” to “snake_case”. Documentation
usually mentions the new names only, but old, deprecated names remain available for some time.

Changes in Version 1.18.6
• Fixed issue #812.

• Fixed issue #793. Invalid document metadata previously prevented opening some documents at all. This error
has been removed.

• Fixed issue #792. Text search and text extraction will make no rectangle containment checks at all if the default
clip=None is used.

• Fixed issue #785.

• Fixed issue #780. Corrected a parameter check error.

• Fixed issue #779. Fixed typo

• Added an option to set the desired line height for text boxes. Implements #804.

• Changed text position retrieval to better cope with Tesseract’s glyphless font. Implements #803.

• Added an option to choose the prefix of new annotations, fields and links for providing unique annotation ids.
Implements request #807.

• Added getting and setting color and text properties for Table of Contents items for PDFs. Implements #779.

• Added PDF page label handling: Page.get_label() returns the page label, Document.
get_page_numbers() return all page numbers having a specified label, and Document.set_page_labels()
adds or updates a PDF’s page label definition.

Note: This version introduces Python type hinting. The goal is to provide each parameter and the return value of
all functions and methods with type information. This still is work in progress although the majority of functions has
already been handled.

Changes in Version 1.18.5
Apart from several fixes, this version also focusses on several minor, but important feature improvements. Among the
latter is a more precise computation of proper line heights and insertion points for writing / inserting text. As opposed
to using font-agnostic constants, these values are now taken from the font’s properties.

419

https://github.com/pymupdf/PyMuPDF/issues/823
https://github.com/pymupdf/PyMuPDF/issues/818
https://github.com/pymupdf/PyMuPDF/issues/814
https://github.com/pymupdf/PyMuPDF/issues/812
https://github.com/pymupdf/PyMuPDF/issues/793
https://github.com/pymupdf/PyMuPDF/issues/792
https://github.com/pymupdf/PyMuPDF/issues/785
https://github.com/pymupdf/PyMuPDF/issues/780
https://github.com/pymupdf/PyMuPDF/issues/779
https://github.com/pymupdf/PyMuPDF/issues/804
https://github.com/pymupdf/PyMuPDF/issues/803
https://github.com/pymupdf/PyMuPDF/issues/807
https://github.com/pymupdf/PyMuPDF/issues/779

PyMuPDF Documentation, Release 1.21.1

Also note that this is the first version which does no longer provide pregenerated wheels for Python versions older than
3.6. PIP also discontinues support for these by end of this year 2020.

• Fixed issue #771. By using “small glyph heights” option, the full page text can be extracted.

• Fixed issue #768.

• Fixed issue #750.

• Fixed issue #739. The “dict”, “rawdict” and corresponding JSON output variants now have two new span keys:
"ascender" and "descender". These floats represent special font properties which can be used to compute
bboxes of spans or characters of exactly fontsize height (as opposed to the default line height). An example
algorithm is shown in section “Span Dictionary” here. Also improved the detection and correction of ill-specified
ascender / descender values encountered in some fonts.

• Added a new, experimental Tools.set_small_glyph_heights() – also in response to issue #739. This
method sets or unsets a global parameter to always compute bboxes with fontsize height. If “on”, text searching
and all text extractions will returned rectangles, bboxes and quads with a smaller height.

• Fixed issue #728.

• Changed fill color logic of ‘Polyline’ annotations: this parameter now only pertains to line end symbols – the
annotation itself can no longer have a fill color. Also addresses issue #727.

• Changed Page.getImageBbox() to also compute the bbox if the image is contained in an XObject.

• Changed Shape.insertTextbox(), resp. Page.insertTextbox(), resp. TextWriter.fillTextbox() to
respect font’s properties “ascender” / “descender” when computing line height and insertion point. This should
no longer lead to line overlaps for multi-line output. These methods used to ignore font specifics and used constant
values instead.

Changes in Version 1.18.4
This version adds several features to support PDF Optional Content. Among other things, this includes OCMDs (Op-
tional Content Membership Dictionaries) with the full scope of “visibility expressions” (PDF key /VE), text insertions
(including the TextWriter class) and drawings.

• Fixed issue #727. Freetext annotations now support an uncolored rectangle when fill_color=None.

• Fixed issue #726. UTF-8 encoding errors are now handled for HTML / XML Page.getText() output.

• Fixed issue #724. Empty values are no longer stored in the PDF /Info metadata dictionary.

• Added new methods Document.set_oc() and Document.get_oc() to set or get optional content references
for existing image and form XObjects. These methods are similar to the same-named methods of Annot.

• Added Document.set_ocmd(), Document.get_ocmd() for handling OCMDs.

• Added Optional Content support for text insertion and drawing.

• Added new method Page.deleteWidget(), which deletes a form field from a page. This is analogous to
deleting annotations.

• Added support for Popup annotations. This includes defining the Popup rectangle and setting the Popup to
open or closed. Methods / attributes Annot.set_popup(), Annot.set_open(), Annot.has_popup, Annot.
is_open, Annot.popup_rect, Annot.popup_xref .

Other changes:

• The naming of methods and attributes in PyMuPDF is far from being satisfactory: we have CamelCases,
mixedCases and lower_case_with_underscores all over the place. With the Annot as the first candidate, we
have started an activity to clean this up step by step, converting to lower case with underscores for methods and
attributes while keeping UPPERCASE for the constants.

420 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/issues/771
https://github.com/pymupdf/PyMuPDF/issues/768
https://github.com/pymupdf/PyMuPDF/issues/750
https://github.com/pymupdf/PyMuPDF/issues/739
https://pymupdf.readthedocs.io/en/latest/textpage.html#dictionary-structure-of-extractdict-and-extractrawdict
https://github.com/pymupdf/PyMuPDF/issues/739
https://github.com/pymupdf/PyMuPDF/issues/728
https://github.com/pymupdf/PyMuPDF/issues/727
https://github.com/pymupdf/PyMuPDF/issues/727
https://github.com/pymupdf/PyMuPDF/issues/726
https://github.com/pymupdf/PyMuPDF/issues/724

PyMuPDF Documentation, Release 1.21.1

– Old names will remain available to prevent code breaks, but they will no longer be mentioned in the
documentation.

– New methods and attributes of all classes will be named according to the new standard.

Changes in Version 1.18.3
As a major new feature, this version introduces support for PDF’s Optional Content concept.

• Fixed issue #714.

• Fixed issue #711.

• Fixed issue #707: if a PDF user password, but no owner password is supplied nor present, then the user password
is also used as the owner password.

• Fixed expand and deflate parameters of methods Document.save() and Document.write(). Individual
image and font compression should now finally work. Addresses issue #713.

• Added a support of PDF optional content. This includes several new Document methods for inquiring and
setting optional content status and adding optional content configurations and groups. In addition, images, form
XObjects and annotations now can be bound to optional content specifications. Resolved issue #709.

Changes in Version 1.18.2
This version contains some interesting improvements for text searching: any number of search hits is now returned and
the hit_max parameter was removed. The new clip parameter in addition allows to restrict the search area. Searching
now detects hyphenations at line breaks and accordingly finds hyphenated words.

• Fixed issue #575: if using quads=False in text searching, then overlapping rectangles on the same line are
joined. Previously, parts of the search string, which belonged to different “marked content” items, each generated
their own rectangle – just as if occurring on separate lines.

• Added Document.isRepaired, which is true if the PDF was repaired on open.

• Added Document.setXmlMetadata() which either updates or creates PDF XML metadata. Implements issue
#691.

• Added Document.getXmlMetadata() returns PDF XML metadata.

• Changed creation of PDF documents: they will now always carry a PDF identification (/ID field) in the docu-
ment trailer. Implements issue #691.

• Changed Page.searchFor(): a new parameter clip is accepted to restrict the search to this rectangle. Cor-
respondingly, the attribute TextPage.rect is now respected by TextPage.search().

• Changed parameter hit_max in Page.searchFor() and TextPage.search() is now obsolete: methods will
return all hits.

• Changed character selection criteria in Page.getText(): a character is now considered to be part of a clip
if its bbox is fully contained. Before this, a non-empty intersection was sufficient.

• Changed Document.scrub() to support a new option redact_images. This addresses issue #697.

Changes in Version 1.18.1
• Fixed issue #692. PyMuPDF now detects and recovers from more cyclic resource dependencies in PDF pages

and for the first time reports them in the MuPDF warnings store.

• Fixed issue #686.

421

https://github.com/pymupdf/PyMuPDF/issues/714
https://github.com/pymupdf/PyMuPDF/issues/711
https://github.com/pymupdf/PyMuPDF/issues/707
https://github.com/pymupdf/PyMuPDF/issues/713
https://github.com/pymupdf/PyMuPDF/issues/709
https://github.com/pymupdf/PyMuPDF/issues/575
https://github.com/pymupdf/PyMuPDF/issues/691
https://github.com/pymupdf/PyMuPDF/issues/691
https://github.com/pymupdf/PyMuPDF/issues/697
https://github.com/pymupdf/PyMuPDF/issues/692
https://github.com/pymupdf/PyMuPDF/issues/686

PyMuPDF Documentation, Release 1.21.1

• Added opacity options for the Shape class: Stroke and fill colors can now be set to some transparency
value. This means that all Page draw methods, methods Page.insertText(), Page.insertTextbox(),
Shape.finish(), Shape.insertText(), and Shape.insertTextbox() support two new parameters:
stroke_opacity and fill_opacity.

• Added new parameter mask to Page.insertImage() for optionally providing an external image mask. Re-
solves issue #685.

• Added Annot.soundGet() for extracting the sound of an audio annotation.

Changes in Version 1.18.0
This is the first PyMuPDF version supporting MuPDF v1.18. The focus here is on extending PyMuPDF’s own func-
tionality – apart from bug fixing. Subsequent PyMuPDF patches may address features new in MuPDF.

• Fixed issue #519. This upstream bug occurred occasionally for some pages only and seems to be fixed now:
page layout should no longer be ruined in these cases.

• Fixed issue #675.

– Unsuccessful storage allocations should now always lead to exceptions (circumvention of an upstream bug
intermittently crashing the interpreter).

– Pixmap size is now based on size_t instead of int in C and should be correct even for extremely large
pixmaps.

• Fixed issue #668. Specification of dashes for PDF drawing insertion should now correctly reflect the PDF spec.

• Fixed issue #669. A major source of memory leakage in Page.insert_pdf() has been removed.

• Added keyword “images” to Page.apply_redactions() for fine-controlling the handling of images.

• Added Annot.getText() and Annot.getTextbox(), which offer the same functionality as the Page versions.

• Added key “number” to the block dictionaries of Page.getText() / Annot.getText() for options “dict” and
“rawdict”.

• Added glyph_name_to_unicode() and unicode_to_glyph_name(). Both functions do not really connect
to a specific font and are now independently available, too. The data are now based on the Adobe Glyph List.

• Added convenience functions adobe_glyph_names() and adobe_glyph_unicodes() which return the re-
spective available data.

• Added Page.getDrawings() which returns details of drawing operations on a document page. Works for all
document types.

• Improved performance of Document.insert_pdf(). Multiple object copies are now also suppressed across
multiple separate insertions from the same source. This saves time, memory and target file size. Previously this
mechanism was only active within each single method execution. The feature can also be suppressed with the
new method bool parameter final=1, which is the default.

• For PNG images created from pixmaps, the resolution (dpi) is now automatically set from the respective Pixmap.
xres and Pixmap.yres values.

Changes in Version 1.17.7
• Fixed issue #651. An upstream bug causing interpreter crashes in corner case redaction processings was fixed

by backporting MuPDF changes from their development repo.

• Fixed issue #645. Pixmap top-left coordinates can be set (again) by their own method, Pixmap.set_origin().

• Fixed issue #622. Page.insertImage() again accepts a rect_like parameter.

422 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/issues/685
https://github.com/pymupdf/PyMuPDF/issues/519
https://github.com/pymupdf/PyMuPDF/issues/675
https://github.com/pymupdf/PyMuPDF/issues/668
https://github.com/pymupdf/PyMuPDF/issues/669
https://github.com/adobe-type-tools/agl-aglfn/blob/master/glyphlist.txt
https://github.com/pymupdf/PyMuPDF/issues/651
https://github.com/pymupdf/PyMuPDF/issues/645
https://github.com/pymupdf/PyMuPDF/issues/622

PyMuPDF Documentation, Release 1.21.1

• Added severeal new methods to improve and speed-up table of contents (TOC) handling. Among other things,
TOC items can now changed or deleted individually – without always replacing the complete TOC. Furthermore,
access to some PDF page attributes is now possible without first loading the page. This has a very significant
impact on the performance of TOC manipulation.

• Added an option to Document.insert_pdf() which allows displaying progress messages. Adresses #640.

• Added Page.getTextbox() which extracts text contained in a rectangle. In many cases, this should obsolete
writing your own script for this type of thing.

• Added new clip parameter to Page.getText() to simplify and speed up text extraction of page sub areas.

• Added TextWriter.appendv() to add text in vertical write mode. Addresses issue #653

Changes in Version 1.17.6
• Fixed issue #605

• Fixed issue #600 – text should now be correctly positioned also for pages with a CropBox smaller than MediaBox.

• Added text span dictionary key origin which contains the lower left coordinate of the first character in that
span.

• Added attribute Font.buffer, a bytes copy of the font file.

• Added parameter sanitize to Page.cleanContents(). Allows switching of sanitization, so only syntax clean-
ing will be done.

Changes in Version 1.17.5
• Fixed issue #561 – second go: certain TextWriter usages with many alternating fonts did not work correctly.

• Fixed issue #566.

• Fixed issue #568.

• Fixed – opacity is now correctly taken from the TextWriter object, if not given in TextWriter.writeText().

• Added a new global attribute fitz_fontdescriptors. Contains information about usable fonts from reposi-
tory pymupdf-fonts.

• Added Font.valid_codepoints() which returns an array of unicode codepoints for which the font has a
glyph.

• Added option text_as_path to Page.getSVGimage(). this implements #580. Generates much smaller SVG
files with parseable text if set to False.

Changes in Version 1.17.4
• Fixed issue #561. Handling of more than 10 Font objects on one page should now work correctly.

• Fixed issue #562. Annotation pixmaps are no longer derived from the page pixmap, thus avoiding unintended
inclusion of page content.

• Fixed issue #559. This MuPDF bug is being temporarily fixed with a pre-version of MuPDF’s next release.

• Added utility function repair_mono_font() for correcting displayed character spacing for some mono-spaced
fonts.

• Added utility method Document.need_appearances() for fine-controlling Form PDF behavior. Addresses
issue #563.

423

https://github.com/pymupdf/PyMuPDF/issues/640
https://github.com/pymupdf/PyMuPDF/issues/653
https://github.com/pymupdf/PyMuPDF/issues/605
https://github.com/pymupdf/PyMuPDF/issues/600
https://github.com/pymupdf/PyMuPDF/issues/561
https://github.com/pymupdf/PyMuPDF/issues/566
https://github.com/pymupdf/PyMuPDF/issues/568
https://github.com/pymupdf/pymupdf-fonts
https://github.com/pymupdf/PyMuPDF/issues/580
https://github.com/pymupdf/PyMuPDF/issues/561
https://github.com/pymupdf/PyMuPDF/issues/562
https://github.com/pymupdf/PyMuPDF/issues/559
https://github.com/pymupdf/PyMuPDF/issues/563

PyMuPDF Documentation, Release 1.21.1

• Added utility function sRGB_to_pdf() to recover the PDF color triple for a given color integer in sRGB format.

• Added utility function sRGB_to_rgb() to recover the (R, G, B) color triple for a given color integer in sRGB
format.

• Added utility function make_table() which delivers table cells for a given rectangle and desired numbers of
columns and rows.

• Added support for optional fonts in repository pymupdf-fonts.

Changes in Version 1.17.3
• Fixed an undocumented issue, which prevented fully cleaning a PDF page when using Page.cleanContents().

• Fixed issue #540. Text extraction for EPUB should again work correctly.

• Fixed issue #548. Documentation now includes LINK_NAMED.

• Added new parameter to control start of text in TextWriter.fillTextbox(). Implements #549.

• Changed documentation of Page.add_redact_annot() to explain the usage of non-builtin fonts.

Changes in Version 1.17.2
• Fixed issue #533.

• Added options to modify ‘Redact’ annotation appearance. Implements #535.

Changes in Version 1.17.1
• Fixed issue #520.

• Fixed issue #525. Vertices for ‘Ink’ annots should now be correct.

• Fixed issue #524. It is now possible to query and set rotation for applicable annotation types.

Also significantly improved inline documentation for better support of interactive help.

Changes in Version 1.17.0
This version is based on MuPDF v1.17. Following are highlights of new and changed features:

• Added extended language support for annotations and widgets: a mixture of Latin, Greece, Russian, Chinese,
Japanese and Korean characters can now be used in ‘FreeText’ annotations and text widgets. No special arrange-
ment is required to use it.

• Faster page access is implemented for documents supporting a “chapter” structure. This applies to EPUB docu-
ments currently. This comes with several new Document methods and changes for Document.loadPage() and
the “indexed” page access doc[n]: In addition to specifying a page number as before, a tuple (chaper, pno) can
be specified to identify the desired page.

• Changed: Improved support of redaction annotations: images overlapped by redactions are permanantly mod-
ified by erasing the overlap areas. Also links are removed if overlapped by redactions. This is now fully in sync
with PDF specifications.

Other changes:

• Changed TextWriter.writeText() to support the “morph” parameter.

• Added methods Rect.morph(), IRect.morph(), and Quad.morph(), which return a new Quad.

424 Chapter 15. Change Log

https://github.com/pymupdf/pymupdf-fonts
https://github.com/pymupdf/PyMuPDF/issues/540
https://github.com/pymupdf/PyMuPDF/issues/548
https://github.com/pymupdf/PyMuPDF/issues/549
https://github.com/pymupdf/PyMuPDF/issues/533
https://github.com/pymupdf/PyMuPDF/issues/535
https://github.com/pymupdf/PyMuPDF/issues/520
https://github.com/pymupdf/PyMuPDF/issues/525
https://github.com/pymupdf/PyMuPDF/issues/524

PyMuPDF Documentation, Release 1.21.1

• Changed Page.add_freetext_annot() to support text alignment via a new “align” parameter.

• Fixed issue #508. Improved image rectangle calculation to hopefully deliver correct values in most if not all
cases.

• Fixed issue #502.

• Fixed issue #500. Document.convertToPDF() should no longer cause memory leaks.

• Fixed issue #496. Annotations and widgets / fields are now added or modified using the coordinates of the
unrotated page. This behavior is now in sync with other methods modifying PDF pages.

• Added Page.rotationMatrix and Page.derotationMatrix to support coordinate transformations between
the rotated and the original versions of a PDF page.

Potential code breaking changes:

• The private method Page._getTransformation() has been removed. Use the public Page.
transformationMattrix instead.

Changes in Version 1.16.18
This version introduces several new features around PDF text output. The motivation is to simplify this task, while at
the same time offering extending features.

One major achievement is using MuPDF’s capabilities to dynamically choosing fallback fonts whenever a character can-
not be found in the current one. This seemlessly works for Base-14 fonts in combination with CJK fonts (China, Japan,
Korea). So a text may contain any combination of characters from the Latin, Greek, Russian, Chinese, Japanese and
Korean languages.

• Fixed issue #493. Pixmap(doc, xref) should now again correctly resemble the loaded image object.

• Fixed issue #488. Widget names are now modifyable.

• Added new class Font which represents a font.

• Added new class TextWriter which serves as a container for text to be written on a page.

• Added Page.writeText() to write one or more TextWriter objects to the page.

Changes in Version 1.16.17
• Fixed issue #479. PyMuPDF should now more correctly report image resolutions. This applies to both, images

(either from images files or extracted from PDF documents) and pixmaps created from images.

• Added Pixmap.set_dpi() which sets the image resolution in x and y directions.

Changes in Version 1.16.16
• Fixed issue #477.

• Fixed issue #476.

• Changed annotation line end symbol coloring and fixed an error coloring the interior of ‘Polyline’ /’Polygon’
annotations.

Changes in Version 1.16.14
• Changed text marker annotations to accept parameters beyond just quadrilaterals such that now text lines be-

tween two given points can be marked.

425

https://github.com/pymupdf/PyMuPDF/issues/508
https://github.com/pymupdf/PyMuPDF/issues/502
https://github.com/pymupdf/PyMuPDF/issues/500
https://github.com/pymupdf/PyMuPDF/issues/496
https://github.com/pymupdf/PyMuPDF/issues/493
https://github.com/pymupdf/PyMuPDF/issues/488
https://github.com/pymupdf/PyMuPDF/issues/479
https://github.com/pymupdf/PyMuPDF/issues/477
https://github.com/pymupdf/PyMuPDF/issues/476

PyMuPDF Documentation, Release 1.21.1

• Added Document.scrub() which removes potentially sensitive data from a PDF. Implements #453.

• Added Annot.blendMode() which returns the blend mode of annotations.

• Added Annot.setBlendMode() to set the annotation’s blend mode. This resolves issue #416.

• Changed Annot.update() to accept additional parameters for setting blend mode and opacity.

• Added advanced graphics features to control the anti-aliasing values, Tools.set_aa_level(). Resolves
#467

• Fixed issue #474.

• Fixed issue #466.

Changes in Version 1.16.13
• Added Document.getPageXObjectList() which returns a list of Form XObjects of the page.

• Added Page.setMediaBox() for changing the physical PDF page size.

• Added Page methods which have been internal before: Page.cleanContents() (= Page.
_cleanContents()), Page.getContents() (= Page._getContents()), Page.getTransformation()
(= Page._getTransformation()).

Changes in Version 1.16.12
• Fixed issue #447

• Fixed issue #461.

• Fixed issue #397.

• Fixed issue #463.

• Added JavaScript support to PDF form fields, thereby fixing #454.

• Added a new annotation method Annot.delete_responses(), which removes ‘Popup’ and response annota-
tions referring to the current one. Mainly serves data protection purposes.

• Added a new form field method Widget.reset(), which resets the field value to its default.

• Changed and extended handling of redactions: images and XObjects are removed if contained in a redaction
rectangle. Any partial only overlaps will just be covered by the redaction background color. Now an overlay text
can be specified to be inserted in the rectangle area to take the place the deleted original text. This resolves
#434.

Changes in Version 1.16.11
• Added Support for redaction annotations via method Page.add_redact_annot() and Page.
apply_redactions().

• Fixed issue #426 (“PolygonAnnotation in 1.16.10 version”).

• Fixed documentation only issues #443 and #444.

Changes in Version 1.16.10
• Fixed issue #421 (“annot.set_rect(rect) has no effect on text Annotation”)

• Fixed issue #417 (“Strange behavior for page.deleteAnnot on 1.16.9 compare to 1.13.20”)

426 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/issues/453
https://github.com/pymupdf/PyMuPDF/issues/416
https://github.com/pymupdf/PyMuPDF/issues/467
https://github.com/pymupdf/PyMuPDF/issues/474
https://github.com/pymupdf/PyMuPDF/issues/466
https://github.com/pymupdf/PyMuPDF/issues/447
https://github.com/pymupdf/PyMuPDF/issues/461
https://github.com/pymupdf/PyMuPDF/issues/397
https://github.com/pymupdf/PyMuPDF/issues/463
https://github.com/pymupdf/PyMuPDF/issues/454
https://github.com/pymupdf/PyMuPDF/issues/434
https://github.com/pymupdf/PyMuPDF/issues/443
https://github.com/pymupdf/PyMuPDF/issues/444

PyMuPDF Documentation, Release 1.21.1

• Fixed issue #415 (“Annot.setOpacity throws mupdf warnings”)

• Changed all “add annotation / widget” methods to store a unique name in the /NM PDF key.

• Changed Annot.setInfo() to also accept direct parameters in addition to a dictionary.

• Changed Annot.info to now also show the annotation’s unique id (/NM PDF key) if present.

• Added Page.annot_names() which returns a list of all annotation names (/NM keys).

• Added Page.load_annot() which loads an annotation given its unique id (/NM key).

• Added Document.reload_page() which provides a new copy of a page after finishing any pending updates to
it.

Changes in Version 1.16.9
• Fixed #412 (“Feature Request: Allow controlling whether TOC entries should be collapsed”)

• Fixed #411 (“Seg Fault with page.firstWidget”)

• Fixed #407 (“Annot.setOpacity trouble”)

• Changed methods Annot.setBorder(), Annot.setColors(), Link.setBorder(), and Link.
setColors() to also accept direct parameters, and not just cumbersome dictionaries.

Changes in Version 1.16.8
• Added several new methods to the Document class, which make dealing with PDF low-level struc-

tures easier. I also decided to provide them as “normal” methods (as opposed to private ones starting
with an underscore “_”). These are Document.xrefObject(), Document.xrefStream(), Document.
xrefStreamRaw(), Document.PDFTrailer(), Document.PDFCatalog(), Document.metadataXML(),
Document.updateObject(), Document.updateStream().

• Added Tools.mupdf_disply_errors() which sets the display of mupdf errors on sys.stderr.

• Added a commandline facility. This a major new feature: you can now invoke several utility functions via
“python -m fitz . . . ”. It should obsolete the need for many of the most trivial scripts. Please refer to Module fitz.

Changes in Version 1.16.7
Minor changes to better synchronize the binary image streams of TextPage image blocks and Document.
extractImage() images.

• Fixed issue #394 (“PyMuPDF Segfaults when using TOOLS.mupdf_warnings()”).

• Changed redirection of MuPDF error messages: apart from writing them to Python sys.stderr, they are now also
stored with the MuPDF warnings.

• Changed Tools.mupdf_warnings() to automatically empty the store (if not deactivated via a parameter).

• Changed Page.getImageBbox() to return an infinite rectangle if the image could not be located on the page
– instead of raising an exception.

Changes in Version 1.16.6
• Fixed issue #390 (“Incomplete deletion of annotations”).

• Changed Page.searchFor() / Document.searchPageFor() to also support the flags parameter, which con-
trols the data included in a TextPage.

427

PyMuPDF Documentation, Release 1.21.1

• Changed Document.getPageImageList(), Document.getPageFontList() and their Page counterparts to
support a new parameter full. If true, the returned items will contain the xref of the Form XObject where the
font or image is referenced.

Changes in Version 1.16.5
More performance improvements for text extraction.

• Fixed second part of issue #381 (see item in v1.16.4).

• Added Page.getTextPage(), so it is no longer required to create an intermediate display list for text extrac-
tions. Page level wrappers for text extraction and text searching are now based on this, which should improve
performance by ca. 5%.

Changes in Version 1.16.4
• Fixed issue #381 (“TextPage.extractDICT . . . failed . . . after upgrading . . . to 1.16.3”)

• Added method Document.pages() which delivers a generator iterator over a page range.

• Added method Page.links() which delivers a generator iterator over the links of a page.

• Added method Page.annots() which delivers a generator iterator over the annotations of a page.

• Added method Page.widgets() which delivers a generator iterator over the form fields of a page.

• Changed Document.is_form_pdf to now contain the number of widgets, and False if not a PDF or this number
is zero.

Changes in Version 1.16.3
Minor changes compared to version 1.16.2. The code of the “dict” and “rawdict” variants of Page.getText() has been
ported to C which has greatly improved their performance. This improvement is mostly noticeable with text-oriented
documents, where they now should execute almost two times faster.

• Fixed issue #369 (“mupdf: cmsCreateTransform failed”) by removing ICC colorspace support.

• Changed Page.getText() to accept additional keywords “blocks” and “words”. These will deliver the results
of Page.getTextBlocks() and Page.getTextWords(), respectively. So all text extraction methods are now
available via a uniform API. Correspondingly, there are now new methods TextPage.extractBLOCKS() and
TextPage.extractWords().

• Changed Page.getText() to default bit indicator TEXT_INHIBIT_SPACES to off. Insertion of additional
spaces is not suppressed by default.

Changes in Version 1.16.2
• Changed text extraction methods of Page to allow detail control of the amount of extracted data.

• Added planish_line() which maps a given line (defined as a pair of points) to the x-axis.

• Fixed an issue (w/o Github number) which brought down the interpreter when encountering certain non-UTF-8
encodable characters while using Page.getText() with te “dict” option.

• Fixed issue #362 (“Memory Leak with getText(‘rawDICT’)”).

Changes in Version 1.16.1

428 Chapter 15. Change Log

PyMuPDF Documentation, Release 1.21.1

• Added property Quad.is_convex which checks whether a line is contained in the quad if it connects two points
of it.

• Changed Document.insert_pdf() to now allow dropping or including links and annotations independently
during the copy. Fixes issue #352 (“Corrupt PDF data and . . . ”), which seemed to intermittently occur when
using the method for some problematic PDF files.

• Fixed a bug which, in matrix division using the syntax “m1/m2”, caused matrix “m1” to be replaced by the
result instead of delivering a new matrix.

• Fixed issue #354 (“SyntaxWarning with Python 3.8”). We now always use “==” for literals (instead of the “is”
Python keyword).

• Fixed issue #353 (“mupdf version check”), to no longer refuse the import when there are only patch level devi-
ations from MuPDF.

Changes in Version 1.16.0
This major new version of MuPDF comes with several nice new or changed features. Some of them imply programming
API changes, however. This is a synopsis of what has changed:

• PDF document encryption and decryption is now fully supported. This includes setting permissions, pass-
words (user and owner passwords) and the desired encryption method.

• In response to the new encryption features, PyMuPDF returns an integer (ie. a combination of bits) for document
permissions, and no longer a dictionary.

• Redirection of MuPDF errors and warnings is now natively supported. PyMuPDF redirects error messages from
MuPDF to sys.stderr and no longer buffers them. Warnings continue to be buffered and will not be displayed.
Functions exist to access and reset the warnings buffer.

• Annotations are now only supported for PDF.

• Annotations and widgets (form fields) are now separate object chains on a page (although widgets technically
still are PDF annotations). This means, that you will never encounter widgets when using Page.firstAnnot
or Annot.next(). You must use Page.firstWidget and Widget.next() to access form fields.

• As part of MuPDF’s changes regarding widgets, only the following four fonts are supported, when adding or
changing form fields: Courier, Helvetica, Times-Roman and ZapfDingBats.

List of change details:

• Added Document.can_save_incrementally() which checks conditions that are preventing use of option
incremental=True of Document.save().

• Added Page.firstWidget which points to the first field on a page.

• Added Page.getImageBbox() which returns the rectangle occupied by an image shown on the page.

• Added Annot.setName() which lets you change the (icon) name field.

• Added outputting the text color in Page.getText(): the “dict”, “rawdict” and “xml” options now also show
the color in sRGB format.

• Changed Document.permissions to now contain an integer of bool indicators – was a dictionary before.

• Changed Document.save(), Document.write(), which now fully support password-based decryption and
encryption of PDF files.

• Changed the names of all Python constants related to annotations and widgets. Please make sure to consult the
Constants and Enumerations chapter if your script is dealing with these two classes. This decision goes back
to the dropped support for non-PDF annotations. The old names (starting with “ANNOT_*” or “WIDGET_*”)
will be available as deprecated synonyms.

429

PyMuPDF Documentation, Release 1.21.1

• Changed font support for widgets: only Cour (Courier), Helv (Helvetica, default), TiRo (Times-Roman) and
ZaDb (ZapfDingBats) are accepted when adding or changing form fields. Only the plain versions are possible
– not their italic or bold variations. Reading widgets, however will show its original font.

• Changed the name of the warnings buffer to Tools.mupdf_warnings() and the function to empty this buffer
is now called Tools.reset_mupdf_warnings().

• Changed Page.getPixmap(), Document.get_page_pixmap(): a new bool argument annots can now be
used to suppress the rendering of annotations on the page.

• Changed Page.add_file_annot() and Page.add_text_annot() to enable setting an icon.

• Removed widget-related methods and attributes from the Annot object.

• Removed Document attributes openErrCode, openErrMsg, and Tools attributes / methods stderr, reset_stderr,
stdout, and reset_stdout.

• Removed thirdparty zlib dependency in PyMuPDF: there are now compression functions available in MuPDF.
Source installers of PyMuPDF may now omit this extra installation step.

No version published for MuPDF v1.15.0

Changes in Version 1.14.20 / 1.14.21
• Changed text marker annotations to support multiple rectangles / quadrilaterals. This fixes issue #341 (“Question

: How to addhighlight so that a string spread across more than a line is covered by one highlight?”) and similar
(#285).

• Fixed issue #331 (“Importing PyMuPDF changes warning filtering behaviour globally”).

Changes in Version 1.14.19
• Fixed issue #319 (“InsertText function error when use custom font”).

• Added new method Document.get_sigflags() which returns information on whether a PDF is signed. Re-
solves issue #326 (“How to detect signature in a form pdf?”).

Changes in Version 1.14.17
• Added Document.fullcopyPage() to make full page copies within a PDF (not just copied references as
Document.copyPage() does).

• Changed Page.getPixmap(), Document.get_page_pixmap() now use alpha=False as default.

• Changed text extraction: the span dictionary now (again) contains its rectangle under the bbox key.

• Changed Document.movePage() and Document.copyPage() to use direct functions instead of wrapping
Document.select() – similar to Document.delete_page() in v1.14.16.

Changes in Version 1.14.16
• Changed Document methods around PDF /EmbeddedFiles to no longer use MuPDF’s “portfolio” functions.

That support will be dropped in MuPDF v1.15 – therefore another solution was required.

• Changed Document.embfile_Count() to be a function (was an attribute).

• Added new method Document.embfile_Names() which returns a list of names of embedded files.

430 Chapter 15. Change Log

PyMuPDF Documentation, Release 1.21.1

• Changed Document.delete_page() and Document.delete_pages() to internally no longer use
Document.select(), but instead use functions to perform the deletion directly. As it has turned out, the
Document.select() method yields invalid outline trees (tables of content) for very complex PDFs and so-
phisticated use of annotations.

Changes in Version 1.14.15
• Fixed issues #301 (“Line cap and Line join”), #300 (“How to draw a shape without outlines”) and #298

(“utils.updateRect exception”). These bugs pertain to drawing shapes with PyMuPDF. Drawing shapes with-
out any border is fully supported. Line cap styles and line line join style are now differentiated and support all
possible PDF values (0, 1, 2) instead of just being a bool. The previous parameter roundCap is deprecated in
favor of lineCap and lineJoin and will be deleted in the next release.

• Fixed issue #290 (“Memory Leak with getText(‘rawDICT’)”). This bug caused memory not being (completely)
freed after invoking the “dict”, “rawdict” and “json” versions of Page.getText().

Changes in Version 1.14.14
• Added new low-level function ImageProperties() to determine a number of characteristics for an image.

• Added new low-level function Document.is_stream(), which checks whether an object is of stream type.

• Changed low-level functions Document._getXrefString() and Document._getTrailerString() now by
default return object definitions in a formatted form which makes parsing easy.

Changes in Version 1.14.13
• Changed methods working with binary input: while ever supporting bytes and bytearray objects, they now also

accept io.BytesIO input, using their getvalue() method. This pertains to document creation, embedded files,
FileAttachment annotations, pixmap creation and others. Fixes issue #274 (“Segfault when using BytesIO as a
stream for insertImage”).

• Fixed issue #278 (“Is insertImage(keep_proportion=True) broken?”). Images are now correctly presented when
keeping aspect ratio.

Changes in Version 1.14.12
• Changed the draw methods of Page and Shape to support not only RGB, but also GRAY and CMYK colorspaces.

This solves issue #270 (“Is there a way to use CMYK color to draw shapes?”). This change also applies to text
insertion methods of Shape, resp. Page.

• Fixed issue #269 (“AttributeError in Document.insert_page()”), which occurred when using Document.
insert_page() with text insertion.

Changes in Version 1.14.11
• Changed Page.show_pdf_page() to always position the source rectangle centered in the target. This method

now also supports rotation by arbitrary angles. The argument reuse_xref has been deprecated: prevention of
duplicates is now handled internally.

• Changed Page.insertImage() to support rotated display of the image and keeping the aspect ratio. Only
rotations by multiples of 90 degrees are supported here.

431

PyMuPDF Documentation, Release 1.21.1

• Fixed issue #265 (“TypeError: insertText() got an unexpected keyword argument ‘idx’”). This issue only oc-
curred when using Document.insert_page() with also inserting text.

Changes in Version 1.14.10
• Changed Page.show_pdf_page() to support rotation of the source rectangle. Fixes #261 (“Cannot rotate

insterted pages”).

• Fixed a bug in Page.insertImage() which prevented insertion of multiple images provided as streams.

Changes in Version 1.14.9
• Added new low-level method Document._getTrailerString(), which returns the trailer object of a PDF.

This is much like Document._getXrefString() except that the PDF trailer has no / needs no xref to identify
it.

• Added new parameters for text insertion methods. You can now set stroke and fill colors of glyphs (text charac-
ters) independently, as well as the thickness of the glyph border. A new parameter render_mode controls the use
of these colors, and whether the text should be visible at all.

• Fixed issue #258 (“Copying image streams to new PDF without size increase”): For JPX images embedded in a
PDF, Document.extractImage() will now return them in their original format. Previously, the MuPDF base
library was used, which returns them in PNG format (entailing a massive size increase).

• Fixed issue #259 (“Morphing text to fit inside rect”). Clarified use of get_text_length() and removed extra
line breaks for long words.

Changes in Version 1.14.8
• Added Pixmap.set_rect() to change the pixel values in a rectangle. This is also an alternative to setting the

color of a complete pixmap (Pixmap.clear_with()).

• Fixed an image extraction issue with JBIG2 (monochrome) encoded PDF images. The issue occurred in Page.
getText() (parameters “dict” and “rawdict”) and in Document.extractImage() methods.

• Fixed an issue with not correctly clearing a non-alpha Pixmap (Pixmap.clear_with()).

• Fixed an issue with not correctly inverting colors of a non-alpha Pixmap (Pixmap.invert_irect()).

Changes in Version 1.14.7
• Added Pixmap.set_pixel() to change one pixel value.

• Added documentation for image conversion in the FAQ.

• Added new function get_text_length() to determine the string length for a given font.

• Added Postscript image output (changed Pixmap.save() and Pixmap.tobytes()).

• Changed Pixmap.save() and Pixmap.tobytes() to ensure valid combinations of colorspace, alpha and out-
put format.

• Changed Pixmap.save(): the desired format is now inferred from the filename.

• Changed FreeText annotations can now have a transparent background - see Annot.update().

Changes in Version 1.14.5

432 Chapter 15. Change Log

PyMuPDF Documentation, Release 1.21.1

• Changed: Shape methods now strictly use the transformation matrix of the Page – instead of “manually” calcu-
lating locations.

• Added method Pixmap.pixel() which returns the pixel value (a list) for given pixel coordinates.

• Added method Pixmap.tobytes()which returns a bytes object representing the pixmap in a variety of formats.
Previously, this could be done for PNG outputs only (Pixmap.tobytes()).

• Changed: output of methods Pixmap.save() and (the new) Pixmap.tobytes()may now also be PSD (Adobe
Photoshop Document).

• Added method Shape.drawQuad() which draws a Quad. This actually is a shorthand for a Shape.
drawPolyline() with the edges of the quad.

• Changed method Shape.drawOval(): the argument can now be either a rectangle (rect_like) or a quadri-
lateral (quad_like).

Changes in Version 1.14.4
• Fixes issue #239 “Annotation coordinate consistency”.

Changes in Version 1.14.3
This patch version contains minor bug fixes and CJK font output support.

• Added support for the four CJK fonts as PyMuPDF generated text output. This pertains to methods Page.
insertFont(), Shape.insertText(), Shape.insertTextbox(), and corresponding Page methods. The
new fonts are available under “reserved” fontnames “china-t” (traditional Chinese), “china-s” (simplified Chi-
nese), “japan” (Japanese), and “korea” (Korean).

• Added full support for the built-in fonts ‘Symbol’ and ‘Zapfdingbats’.

• Changed: The 14 standard fonts can now each be referenced by a 4-letter abbreviation.

Changes in Version 1.14.1
This patch version contains minor performance improvements.

• Added support for Document filenames given as pathlib object by using the Python str() function.

Changes in Version 1.14.0
To support MuPDF v1.14.0, massive changes were required in PyMuPDF – most of them purely technical, with little
visibility to developers. But there are also quite a lot of interesting new and improved features. Following are the
details:

• Added “ink” annotation.

• Added “rubber stamp” annotation.

• Added “squiggly” text marker annotation.

• Added new class Quad (quadrilateral or tetragon) – which represents a general four-sided shape in the plane. The
special subtype of rectangular, non-empty tetragons is used in text marker annotations and as returned objects in
text search methods.

• Added a new option “decrypt” to Document.save() and Document.write(). Now you can keep encryption
when saving a password protected PDF.

433

PyMuPDF Documentation, Release 1.21.1

• Added suppression and redirection of unsolicited messages issued by the underlying C-library MuPDF. Consult
Redirecting Error and Warning Messages for details.

• Changed: Changes to annotations now always require Annot.update() to become effective.

• Changed free text annotations to support the full Latin character set and range of appearance options.

• Changed text searching, Page.searchFor(), to optionally return Quad instead Rect objects surrounding each
search hit.

• Changed plain text output: we now add a n to each line if it does not itself end with this character.

• Fixed issue 211 (“Something wrong in the doc”).

• Fixed issue 213 (“Rewritten outline is displayed only by mupdf-based applications”).

• Fixed issue 214 (“PDF decryption GONE!”).

• Fixed issue 215 (“Formatting of links added with pyMuPDF”).

• Fixed issue 217 (“extraction through json is failing for my pdf”).

Behind the curtain, we have changed the implementation of geometry objects: they now purely exist in Python and no
longer have “shadow” twins on the C-level (in MuPDF). This has improved processing speed in that area by more than
a factor of two.

Because of the same reason, most methods involving geometry parameters now also accept the corresponding Python
sequence. For example, in method “page.show_pdf_page(rect, . . .)” parameter rect may now be any rect_like
sequence.

We also invested considerable effort to further extend and improve the FAQ chapter.

Changes in Version 1.13.19
This version contains some technical / performance improvements and bug fixes.

• Changed memory management: for Python 3 builds, Python memory management is exclusively used across
all C-level code (i.e. no more native malloc() in MuPDF code or PyMuPDF interface code). This leads to
improved memory usage profiles and also some runtime improvements: we have seen > 2% shorter runtimes for
text extractions and pixmap creations (on Windows machines only to date).

• Fixed an error occurring in Python 2.7, which crashed the interpreter when using TextPage.
extractRAWDICT() (= Page.getText(“rawdict”)).

• Fixed an error occurring in Python 2.7, when creating link destinations.

• Extended the FAQ chapter with more examples.

Changes in Version 1.13.18
• Added method TextPage.extractRAWDICT(), and a corresponding new string parameter “rawdict” to method
Page.getText(). It extracts text and images from a page in Python dict form like TextPage.extractDICT(),
but with the detail level of TextPage.extractXML(), which is position information down to each single char-
acter.

Changes in Version 1.13.17
• Fixed an error that intermittently caused an exception in Page.show_pdf_page(), when pages from many

different source PDFs were shown.

434 Chapter 15. Change Log

PyMuPDF Documentation, Release 1.21.1

• Changed method Document.extractImage() to now return more meta information about the extracted im-
gage. Also, its performance has been greatly improved. Several demo scripts have been changed to make use of
this method.

• Changed method Document._getXrefStream() to now return None if the object is no stream and no longer
raise an exception if otherwise.

• Added method Document._deleteObject() which deletes a PDF object identified by its xref . Only to be
used by the experienced PDF expert.

• Added a method paper_rect() which returns a Rect for a supplied paper format string. Example:
fitz.paper_rect(“letter”) = fitz.Rect(0.0, 0.0, 612.0, 792.0).

• Added a FAQ chapter to this document.

Changes in Version 1.13.16
• Added support for correctly setting transparency (opacity) for certain annotation types.

• Added a tool property (Tools.fitz_config) showing the configuration of this PyMuPDF version.

• Fixed issue #193 (‘insertText(overlay=False) gives “cannot resize a buffer with shared storage” error’) by avoid-
ing read-only buffers.

Changes in Version 1.13.15
• Fixed issue #189 (“cannot find builtin CJK font”), so we are supporting builtin CJK fonts now (CJK = China,

Japan, Korea). This should lead to correctly generated pixmaps for documents using these languages. This
change has consequences for our binary file size: it will now range between 8 and 10 MB, depending on the OS.

• Fixed issue #191 (“Jupyter notebook kernel dies after ca. 40 pages”), which occurred when modifying the
contents of an annotation.

Changes in Version 1.13.14
This patch version contains several improvements, mainly for annotations.

• Changed Annot.lineEnds is now a list of two integers representing the line end symbols. Previously was a
dict of strings.

• Added support of line end symbols for applicable annotations. PyMuPDF now can generate these annotations
including the line end symbols.

• Added Annot.setLineEnds() adds line end symbols to applicable annotation types (‘Line’, ‘PolyLine’, ‘Poly-
gon’).

• Changed technical implementation of Page.insertImage() and Page.show_pdf_page(): they now create
there own contents objects, thereby avoiding changes of potentially large streams with consequential compression
/ decompression efforts and high change volumes with incremental updates.

Changes in Version 1.13.13
This patch version contains several improvements for embedded files and file attachment annotations.

• Added Document.embfile_Upd() which allows changing file content and metadata of an embedded file. It
supersedes the old method Document.embfile_SetInfo() (which will be deleted in a future version). Content
is automatically compressed and metadata may be unicode.

435

PyMuPDF Documentation, Release 1.21.1

• Changed Document.embfile_Add() to now automatically compress file content. Accompanying metadata
can now be unicode (had to be ASCII in the past).

• Changed Document.embfile_Del() to now automatically delete all entries having the supplied identifying
name. The return code is now an integer count of the removed entries (was None previously).

• Changed embedded file methods to now also accept or show the PDF unicode filename as additional parameter
ufilename.

• Added Page.add_file_annot() which adds a new file attachment annotation.

• Changed Annot.fileUpd() (file attachment annot) to now also accept the PDF unicode ufilename parameter.
The description parameter desc correctly works with unicode. Furthermore, all parameters are optional, so
metadata may be changed without also replacing the file content.

• Changed Annot.fileInfo() (file attachment annot) to now also show the PDF unicode filename as parameter
ufilename.

• Fixed issue #180 (“page.getText(output=’dict’) return invalid bbox”) to now also work for vertical text.

• Fixed issue #185 (“Can’t render the annotations created by PyMuPDF”). The issue’s cause was the minimalistic
MuPDF approach when creating annotations. Several annotation types have no /AP (“appearance”) object when
created by MuPDF functions. MuPDF, SumatraPDF and hence also PyMuPDF cannot render annotations with-
out such an object. This fix now ensures, that an appearance object is always created together with the annotation
itself. We still do not support line end styles.

Changes in Version 1.13.12
• Fixed issue #180 (“page.getText(output=’dict’) return invalid bbox”). Note that this is a circumvention of an

MuPDF error, which generates zero-height character rectangles in some cases. When this happens, this fix
ensures a bbox height of at least fontsize.

• Changed for ListBox and ComboBox widgets, the attribute list of selectable values has been renamed to Widget.
choice_values.

• Changed when adding widgets, any missing of the PDF Base 14 Fonts is automatically added to the PDF. Widget
text fonts can now also be chosen from existing widget fonts. Any specified field values are now honored and
lead to a field with a preset value.

• Added Annot.updateWidget() which allows changing existing form fields – including the field value.

Changes in Version 1.13.11
While the preceeding patch subversions only contained various fixes, this version again introduces major new features:

• Added basic support for PDF widget annotations. You can now add PDF form fields of types Text, CheckBox,
ListBox and ComboBox. Where necessary, the PDF is tranformed to a Form PDF with the first added widget.

• Fixed issues #176 (“wrong file embedding”), #177 (“segment fault when invoking page.getText()”)and #179
(“Segmentation fault using page.getLinks() on encrypted PDF”).

Changes in Version 1.13.7
• Added support of variable page sizes for reflowable documents (e-books, HTML, etc.): new parameters rect and

fontsize in Document creation (open), and as a separate method Document.layout().

• Added Annot creation of many annotations types: sticky notes, free text, circle, rectangle, line, polygon, polyline
and text markers.

436 Chapter 15. Change Log

PyMuPDF Documentation, Release 1.21.1

• Added support of annotation transparency (Annot.opacity, Annot.setOpacity()).

• Changed Annot.vertices: point coordinates are now grouped as pairs of floats (no longer as separate floats).

• Changed annotation colors dictionary: the two keys are now named “stroke” (formerly “common”) and “fill”.

• Added Document.isDirty which is True if a PDF has been changed in this session. Reset to False on each
Document.save() or Document.write().

Changes in Version 1.13.6
• Fix #173: for memory-resident documents, ensure the stream object will not be garbage-collected by Python

before document is closed.

Changes in Version 1.13.5
• New low-level method Page._setContents() defines an object given by its xref to serve as the contents

object.

• Changed and extended PDF form field support: the attribute widget_text has been renamed to Annot.
widget_value. Values of all form field types (except signatures) are now supported. A new attribute Annot.
widget_choices contains the selectable values of listboxes and comboboxes. All these attributes now contain
None if no value is present.

Changes in Version 1.13.4
• Document.convertToPDF() now supports page ranges, reverted page sequences and page rotation. If the doc-

ument already is a PDF, an exception is raised.

• Fixed a bug (introduced with v1.13.0) that prevented Page.insertImage() for transparent images.

Changes in Version 1.13.3
Introduces a way to convert any MuPDF supported document to a PDF. If you ever wanted PDF versions of your
XPS, EPUB, CBZ or FB2 files – here is a way to do this.

• Document.convertToPDF() returns a Python bytes object in PDF format. Can be opened like normal in
PyMuPDF, or be written to disk with the “.pdf” extension.

Changes in Version 1.13.2
The major enhancement is PDF form field support. Form fields are annotations of type (19, ‘Widget’). There is a new
document method to check whether a PDF is a form. The Annot class has new properties describing field details.

• Document.is_form_pdf is true if object type /AcroForm and at least one form field exists.

• Annot.widget_type, Annot.widget_text and Annot.widget_name contain the details of a form field (i.e.
a “Widget” annotation).

Changes in Version 1.13.1

437

PyMuPDF Documentation, Release 1.21.1

• TextPage.extractDICT() is a new method to extract the contents of a document page (text and images). All
document types are supported as with the other TextPage extract*() methods. The returned object is a dictio-
nary of nested lists and other dictionaries, and exactly equal to the JSON-deserialization of the old TextPage.
extractJSON(). The difference is that the result is created directly – no JSON module is used. Because the user
needs no JSON module to interpet the information, it should be easier to use, and also have a better performance,
because it contains images in their original binary format – they need not be base64-decoded.

• Page.getText() correspondingly supports the new parameter value “dict” to invoke the above method.

• TextPage.extractJSON() (resp. Page.getText(“json”)) is still supported for convenience, but its use is ex-
pected to decline.

Changes in Version 1.13.0
This version is based on MuPDF v1.13.0. This release is “primarily a bug fix release”.

In PyMuPDF, we are also doing some bug fixes while introducing minor enhancements. There only very minimal
changes to the user’s API.

• Document construction is more flexible: the new filetype parameter allows setting the document type. If specified,
any extension in the filename will be ignored. More completely addresses issue #156. As part of this, the
documentation has been reworked.

• Changes to Pixmap constructors:
– Colorspace conversion no longer allows dropping the alpha channel: source and target alpha will

now always be the same. We have seen exceptions and even interpreter crashes when using alpha
= 0.

– As a replacement, the simple pixmap copy lets you choose the target alpha.

• Document.save() again offers the full garbage collection range 0 thru 4. Because of a bug in xref maintenance,
we had to temporarily enforce garbage > 1. Finally resolves issue #148.

• Document.save() now offers to “prettify” PDF source via an additional argument.

• Page.insertImage() has the additional stream -parameter, specifying a memory area holding an image.

• Issue with garbled PNGs on Linux systems has been resolved (“Problem writing PNG” #133).

Changes in Version 1.12.4
This is an extension of 1.12.3.

• Fix of issue #147: methods Document.getPageFontlist() and Document.getPageImagelist() now also
show fonts and images contained in resources nested via “Form XObjects”.

• Temporary fix of issue #148: Saving to new PDF files will now automatically use garbage = 2 if a lower value is
given. Final fix is to be expected with MuPDF’s next version. At that point we will remove this circumvention.

• Preventive fix of illegally using stencil / image mask pixmaps in some methods.

• Method Document.getPageFontlist() now includes the encoding name for each font in the list.

• Method Document.getPageImagelist() now includes the decode method name for each image in the list.

Changes in Version 1.12.3
This is an extension of 1.12.2.

438 Chapter 15. Change Log

https://github.com/pymupdf/PyMuPDF/issues/156
https://github.com/pymupdf/PyMuPDF/issues/148
https://github.com/pymupdf/PyMuPDF/issues/133
https://github.com/pymupdf/PyMuPDF/issues/147
https://github.com/pymupdf/PyMuPDF/issues/148

PyMuPDF Documentation, Release 1.21.1

• Many functions now return None instead of 0, if the result has no other meaning than just indicating successful
execution (Document.close(), Document.save(), Document.select(), Pixmap.save() and many oth-
ers).

Changes in Version 1.12.2
This is an extension of 1.12.1.

• Method Page.show_pdf_page() now accepts the new clip argument. This specifies an area of the source page
to which the display should be restricted.

• New Page.CropBox and Page.MediaBox have been included for convenience.

Changes in Version 1.12.1
This is an extension of version 1.12.0.

• New method Page.show_pdf_page() displays another’s PDF page. This is a vector image and therefore re-
mains precise across zooming. Both involved documents must be PDF.

• New method Page.getSVGimage() creates an SVG image from the page. In contrast to the raster image of a
pixmap, this is a vector image format. The return is a unicode text string, which can be saved in a .svg file.

• Method Page.getTextBlocks() now accepts an additional bool parameter “images”. If set to true (default
is false), image blocks (metadata only) are included in the produced list and thus allow detecting areas with
rendered images.

• Minor bug fixes.

• “text” result of Page.getText() concatenates all lines within a block using a single space character. MuPDF’s
original uses “\n” instead, producing a rather ragged output.

• New properties of Page objects Page.MediaBoxSize and Page.CropBoxPosition provide more information
about a page’s dimensions. For non-PDF files (and for most PDF files, too) these will be equal to Page.rect.
bottom_right, resp. Page.rect.top_left. For example, class Shape makes use of them to correctly position
its items.

Changes in Version 1.12.0
This version is based on and requires MuPDF v1.12.0. The new MuPDF version contains quite a number of changes –
most of them around text extraction. Some of the changes impact the programmer’s API.

• Outline.saveText() and Outline.saveXML() have been deleted without replacement. You probably haven’t
used them much anyway. But if you are looking for a replacement: the output of Document.get_toc() can
easily be used to produce something equivalent.

• Class TextSheet does no longer exist.

• Text “spans” (one of the hierarchy levels of TextPage) no longer contain positioning information (i.e. no “bbox”
key). Instead, spans now provide the font information for its text. This impacts our JSON output variant.

• HTML output has improved very much: it now creates valid documents which can be displayed by browsers to
produce a similar view as the original document.

• There is a new output format XHTML, which provides text and images in a browser-readable format. The
difference to HTML output is, that no effort is made to reproduce the original layout.

• All output formats of Page.getText() now support creating complete, valid documents, by wrapping them
with appropriate header and trailer information. If you are interested in using the HTML output, please make
sure to read Controlling Quality of HTML Output.

439

PyMuPDF Documentation, Release 1.21.1

• To support finding text positions, we have added special methods that don’t need detours like
TextPage.extractJSON() or TextPage.extractXML(): use Page.getTextBlocks() or resp. Page.
getTextWords() to create lists of text blocks or resp. words, which are accompanied by their rectangles. This
should be much faster than the standard text extraction methods and also avoids using additional packages for
interpreting their output.

Changes in Version 1.11.2
This is an extension of v1.11.1.

• New Page.insertFont() creates a PDF /Font object and returns its object number.

• New Document.extractFont() extracts the content of an embedded font given its object number.

• Methods FontList(. . .) items no longer contain the PDF generation number. This value never had any signifi-
cance. Instead, the font file extension is included (e.g. “pfa” for a “PostScript Font for ASCII”), which is more
valuable information.

• Fonts other than “simple fonts” (Type1) are now also supported.

• New options to change Pixmap size:

– Method Pixmap.shrink() reduces the pixmap proportionally in place.

– A new Pixmap copy constructor allows scaling via setting target width and height.

Changes in Version 1.11.1
This is an extension of v1.11.0.

• New class Shape. It facilitates and extends the creation of image shapes on PDF pages. It contains multiple
methods for creating elementary shapes like lines, rectangles or circles, which can be combined into more com-
plex ones and be given common properties like line width or colors. Combined shapes are handled as a unit and
e.g. be “morphed” together. The class can accumulate multiple complex shapes and put them all in the page’s
foreground or background – thus also reducing the number of updates to the page’s contents object.

• All Page draw methods now use the new Shape class.

• Text insertion methods insertText() and insertTextBox() now support morphing in addition to text rotation. They
have become part of the Shape class and thus allow text to be freely combined with graphics.

• A new Pixmap constructor allows creating pixmap copies with an added alpha channel. A new method also
allows directly manipulating alpha values.

• Binary algebraic operations with geometry objects (matrices, rectangles and points) now generally also support
lists or tuples as the second operand. You can add a tuple (x, y) of numbers to a Point. In this context, such
sequences are called “point_like” (resp. matrix_like, rect_like).

• Geometry objects now fully support in-place operators. For example, p /= m replaces point p with p * 1/m for a
number, or p * ~m for a matrix_like object m. Similarly, if r is a rectangle, then r |= (3, 4) is the new rectangle
that also includes fitz.Point(3, 4), and r &= (1, 2, 3, 4) is its intersection with fitz.Rect(1, 2, 3, 4).

Changes in Version 1.11.0
This version is based on and requires MuPDF v1.11.

Though MuPDF has declared it as being mostly a bug fix version, one major new feature is indeed contained: support
of embedded files – also called portfolios or collections. We have extended PyMuPDF functionality to embrace this up
to an extent just a little beyond the mutool utility as follows.

440 Chapter 15. Change Log

PyMuPDF Documentation, Release 1.21.1

• The Document class now support embedded files with several new methods and one new property:

– embfile_Info() returns metadata information about an entry in the list of embedded files. This is more than
mutool currently provides: it shows all the information that was used to embed the file (not just the entry’s
name).

– embfile_Get() retrieves the (decompressed) content of an entry into a bytes buffer.

– embfile_Add(. . .) inserts new content into the PDF portfolio. We (in contrast to mutool) restrict this to
entries with a new name (no duplicate names allowed).

– embfile_Del(. . .) deletes an entry from the portfolio (function not offered in MuPDF).

– embfile_SetInfo() – changes filename or description of an embedded file.

– embfile_Count – contains the number of embedded files.

• Several enhancements deal with streamlining geometry objects. These are not connected to the new MuPDF
version and most of them are also reflected in PyMuPDF v1.10.0. Among them are new properties to identify
the corners of rectangles by name (e.g. Rect.bottom_right) and new methods to deal with set-theoretic questions
like Rect.contains(x) or IRect.intersects(x). Special effort focussed on supporting more “Pythonic” language
constructs: if x in rect . . . is equivalent to rect.contains(x).

• The Rect chapter now has more background on empty amd infinite rectangles and how we handle them. The
handling itself was also updated for more consistency in this area.

• We have started basic support for generation of PDF content:

– Document.insert_page() adds a new page into a PDF, optionally containing some text.

– Page.insertImage() places a new image on a PDF page.

– Page.insertText() puts new text on an existing page

• For FileAttachment annotations, content and name of the attached file can extracted and changed.

Changes in Version 1.10.0
MuPDF v1.10 Impact
MuPDF version 1.10 has a significant impact on our bindings. Some of the changes also affect the API – in other words,
you as a PyMuPDF user.

• Link destination information has been reduced. Several properties of the linkDest class no longer contain valuable
information. In fact, this class as a whole has been deleted from MuPDF’s library and we in PyMuPDF only
maintain it to provide compatibilty to existing code.

• In an effort to minimize memory requirements, several improvements have been built into MuPDF v1.10:

– A new config.h file can be used to de-select unwanted features in the C base code. Using this feature we
have been able to reduce the size of our binary _fitz.o / _fitz.pyd by about 50% (from 9 MB to 4.5 MB).
When UPX-ing this, the size goes even further down to a very handy 2.3 MB.

– The alpha (transparency) channel for pixmaps is now optional. Letting alpha default to False significantly
reduces pixmap sizes (by 20% – CMYK, 25% – RGB, 50% – GRAY). Many Pixmap constructors therefore
now accept an alpha boolean to control inclusion of this channel. Other pixmap constructors (e.g. those for
file and image input) create pixmaps with no alpha alltogether. On the downside, save methods for pixmaps
no longer accept a savealpha option: this channel will always be saved when present. To minimize code
breaks, we have left this parameter in the call patterns – it will just be ignored.

• DisplayList and TextPage class constructors now require the mediabox of the page they are referring to (i.e. the
page.bound() rectangle). There is no way to construct this information from other sources, therefore a source

441

PyMuPDF Documentation, Release 1.21.1

code change cannot be avoided in these cases. We assume however, that not many users are actually employing
these rather low level classes explixitely. So the impact of that change should be minor.

Other Changes compared to Version 1.9.3
• The new Document method write() writes an opened PDF to memory (as opposed to a file, like save() does).

• An annotation can now be scaled and moved around on its page. This is done by modifying its rectangle.

• Annotations can now be deleted. Page contains the new method deleteAnnot().

• Various annotation attributes can now be modified, e.g. content, dates, title (= author), border, colors.

• Method Document.insert_pdf() now also copies annotations of source pages.

• The Pages class has been deleted. As documents can now be accessed with page numbers as indices (like doc[n]
= doc.loadPage(n)), and document object can be used as iterators, the benefit of this class was too low to maintain
it. See the following comments.

• loadPage(n) / doc[n] now accept arbitrary integers to specify a page number, as long as n < pageCount. So, e.g.
doc[-500] is always valid and will load page (-500) % pageCount.

• A document can now also be used as an iterator like this: for page in doc: . . .<do something with “page”>
This will yield all pages of doc as page.

• The Pixmap method getSize() has been replaced with property size. As before Pixmap.size == len(Pixmap) is
true.

• In response to transparency (alpha) being optional, several new parameters and properties have been added to
Pixmap and Colorspace classes to support determining their characteristics.

• The Page class now contains new properties firstAnnot and firstLink to provide starting points to the respec-
tive class chains, where firstLink is just a mnemonic synonym to method loadLinks() which continues to exist.
Similarly, the new property rect is a synonym for method bound(), which also continues to exist.

• Pixmap methods samplesRGB() and samplesAlpha() have been deleted because pixmaps can now be created
without transparency.

• Rect now has a property irect which is a synonym of method round(). Likewise, IRect now has property rect to
deliver a Rect which has the same coordinates as floats values.

• Document has the new method searchPageFor() to search for a text string. It works exactly like the corresponding
Page.searchFor() with page number as additional parameter.

Changes in Version 1.9.3
This version is also based on MuPDF v1.9a. Changes compared to version 1.9.2:

• As a major enhancement, annotations are now supported in a similar way as links. Annotations can be displayed
(as pixmaps) and their properties can be accessed.

• In addition to the document select() method, some simpler methods can now be used to manipulate a PDF:

– copyPage() copies a page within a document.

– movePage() is similar, but deletes the original.

– delete_page() deletes a page

– delete_pages() deletes a page range

• rotation or setRotation() access or change a PDF page’s rotation, respectively.

• Available but undocumented before, IRect, Rect, Point and Matrix support the len() method and their coordinate
properties can be accessed via indices, e.g. IRect.x1 == IRect[2].

442 Chapter 15. Change Log

PyMuPDF Documentation, Release 1.21.1

• For convenience, documents now support simple indexing: doc.loadPage(n) == doc[n]. The index may however
be in range -pageCount < n < pageCount, such that doc[-1] is the last page of the document.

Changes in Version 1.9.2
This version is also based on MuPDF v1.9a. Changes compared to version 1.9.1:

• fitz.open() (no parameters) creates a new empty PDF document, i.e. if saved afterwards, it must be given a .pdf
extension.

• Document now accepts all of the following formats (Document and open are synonyms):

– open(),

– open(filename) (equivalent to open(filename, None)),

– open(filetype, area) (equivalent to open(filetype, stream = area)).

Type of memory area stream may be bytes or bytearray. Thus, e.g. area = open(“file.pdf”, “rb”).read() may be
used directly (without first converting it to bytearray).

• New method Document.insert_pdf() (PDFs only) inserts a range of pages from another PDF.

• Document objects doc now support the len() function: len(doc) == doc.pageCount.

• New method Document.getPageImageList() creates a list of images used on a page.

• New method Document.getPageFontList() creates a list of fonts referenced by a page.

• New pixmap constructor fitz.Pixmap(doc, xref) creates a pixmap based on an opened PDF document and an xref
number of the image.

• New pixmap constructor fitz.Pixmap(cspace, spix) creates a pixmap as a copy of another one spix with the col-
orspace converted to cspace. This works for all colorspace combinations.

• Pixmap constructor fitz.Pixmap(colorspace, width, height, samples) now allows samples to also be bytes, not
only bytearray.

Changes in Version 1.9.1
This version of PyMuPDF is based on MuPDF library source code version 1.9a published on April 21, 2016.

Please have a look at MuPDF’s website to see which changes and enhancements are contained herein.

Changes in version 1.9.1 compared to version 1.8.0 are the following:

• New methods get_area() for both fitz.Rect and fitz.IRect

• Pixmaps can now be created directly from files using the new constructor fitz.Pixmap(filename).

• The Pixmap constructor fitz.Pixmap(image) has been extended accordingly.

• fitz.Rect can now be created with all possible combinations of points and coordinates.

• PyMuPDF classes and methods now all contain __doc__ strings, most of them created by SWIG automatically.
While the PyMuPDF documentation certainly is more detailed, this feature should help a lot when programming
in Python-aware IDEs.

• A new document method of getPermits() returns the permissions associated with the current access to the docu-
ment (print, edit, annotate, copy), as a Python dictionary.

• The identity matrix fitz.Identity is now immutable.

443

PyMuPDF Documentation, Release 1.21.1

• The new document method select(list) removes all pages from a document that are not contained in the list. Pages
can also be duplicated and re-arranged.

• Various improvements and new members in our demo and examples collections. Perhaps most prominently:
PDF_display now supports scrolling with the mouse wheel, and there is a new example program wxTableExtract
which allows to graphically identify and extract table data in documents.

• fitz.open() is now an alias of fitz.Document().

• New pixmap method tobytes() which will return a bytearray formatted as a PNG image of the pixmap.

• New pixmap method samplesRGB() providing a samples version with alpha bytes stripped off (RGB colorspaces
only).

• New pixmap method samplesAlpha() providing the alpha bytes only of the samples area.

• New iterator fitz.Pages(doc) over a document’s set of pages.

• New matrix methods invert() (calculate inverted matrix), concat() (calculate matrix product), pretranslate() (per-
form a shift operation).

• New IRect methods intersect() (intersection with another rectangle), translate() (perform a shift operation).

• New Rect methods intersect() (intersection with another rectangle), transform() (transformation with a matrix),
include_point() (enlarge rectangle to also contain a point), include_rect() (enlarge rectangle to also contain an-
other one).

• Documented Point.transform() (transform a point with a matrix).

• Matrix, IRect, Rect and Point classes now support compact, algebraic formulations for manipulating such objects.

• Incremental saves for changes are possible now using the call pattern doc.save(doc.name, incremental=True).

• A PDF’s metadata can now be deleted, set or changed by document method set_metadata(). Supports incremental
saves.

• A PDF’s bookmarks (or table of contents) can now be deleted, set or changed with the entries of a list using
document method set_toc(list). Supports incremental saves.

444 Chapter 15. Change Log

https://discord.gg/TSpYGBW4eq

CHAPTER

SIXTEEN

DEPRECATED NAMES

The original naming convention for methods and properties has been “camelCase”. Since its creation around 2013,
a tremendous increase of functionality has happened in PyMuPDF – and with it a corresponding increase in classes,
methods and properties. In too many cases, this has led to non-intuitive, illogical and ugly names, difficult to memorize
or guess.

A few versions ago, I therefore decided to shift gears and switch to a “snake_cased” naming standard. This was a major
effort, which needed a step-wise approach. I think am done with it now (version 1.18.14).

The following list maps deprecated names to their new versions. For example, property pageCount became
page_count in the Document class. There also are less obvious name changes, e.g. method getPNGdata was re-
named to tobytes in the Pixmap class.

Names of classes (camel case) and package-wide constants (the majority is upper case) remain untouched.

Old names will remain available as deprecated aliases through MuPDF version 1.19.0 and be removed in the version
that follows it - probably version 1.20.0, but this depends on upstream decisions (MuPDF).

Starting with version 1.19.0, we will issue deprecation warnings on sys.stderr like Deprecation: 'newPage'
removed from class 'Document' after v1.19.0 - use 'new_page'.when aliased methods are being used.
Using a deprecated property will not cause this type of warning.

Starting immediately, all deprecated objects (methods and properties) will show a copy of the original’s docstring,
prefixed with the deprecation message, for example:

>>> print(fitz.Document.pageCount.__doc__)
*** Deprecated and removed in version following 1.19.0 - use 'page_count'. ***
Number of pages.
>>> print(fitz.Document.newPage.__doc__)
*** Deprecated and removed in version following 1.19.0 - use 'new_page'. ***
Create and return a new page object.

Args:
pno: (int) insert before this page. Default: after last page.
width: (float) page width in points. Default: 595 (ISO A4 width).
height: (float) page height in points. Default 842 (ISO A4 height).

Returns:
A Page object.

There is a utility script alias-changer.py which can be used to do mass-renames in your scripts. It accepts either a
single file or a folder as argument. If a folder is supplied, all its Python files and those of its subfolders are changed.
Optionally, backups of the scripts can be taken.

Deprecated names are not separately documented. The following list will help you find the documentation of the
original.

445

https://github.com/pymupdf/PyMuPDF-Utilities/alias-changer.py

PyMuPDF Documentation, Release 1.21.1

Note: This is automatically generated. One or two items refer to yet undocumented methods - please simply ignore
them.

• _isWrapped – Page.is_wrapped

• addCaretAnnot – Page.add_caret_annot()

• addCircleAnnot – Page.add_circle_annot()

• addFileAnnot – Page.add_file_annot()

• addFreetextAnnot – Page.add_freetext_annot()

• addHighlightAnnot – Page.add_highlight_annot()

• addInkAnnot – Page.add_ink_annot()

• addLineAnnot – Page.add_line_annot()

• addPolygonAnnot – Page.add_polygon_annot()

• addPolylineAnnot – Page.add_polyline_annot()

• addRectAnnot – Page.add_rect_annot()

• addRedactAnnot – Page.add_redact_annot()

• addSquigglyAnnot – Page.add_squiggly_annot()

• addStampAnnot – Page.add_stamp_annot()

• addStrikeoutAnnot – Page.add_strikeout_annot()

• addTextAnnot – Page.add_text_annot()

• addUnderlineAnnot – Page.add_underline_annot()

• addWidget – Page.add_widget()

• chapterCount – Document.chapter_count

• chapterPageCount – Document.chapter_page_count()

• cleanContents – Page.clean_contents()

• clearWith – Pixmap.clear_with()

• convertToPDF – Document.convert_to_pdf()

• copyPage – Document.copy_page()

• copyPixmap – Pixmap.copy()

• CropBox – Page.cropbox

• CropBoxPosition – Page.cropbox_position

• deleteAnnot – Page.delete_annot()

• deleteLink – Page.delete_link()

• deletePage – Document.delete_page()

• deletePageRange – Document.delete_pages()

• deleteWidget – Page.delete_widget()

• derotationMatrix – Page.derotation_matrix

446 Chapter 16. Deprecated Names

PyMuPDF Documentation, Release 1.21.1

• drawBezier – Page.draw_bezier()

• drawBezier – Shape.draw_bezier()

• drawCircle – Page.draw_circle()

• drawCircle – Shape.draw_circle()

• drawCurve – Page.draw_curve()

• drawCurve – Shape.draw_curve()

• drawLine – Page.draw_line()

• drawLine – Shape.draw_line()

• drawOval – Page.draw_oval()

• drawOval – Shape.draw_oval()

• drawPolyline – Page.draw_polyline()

• drawPolyline – Shape.draw_polyline()

• drawQuad – Page.draw_quad()

• drawQuad – Shape.draw_quad()

• drawRect – Page.draw_rect()

• drawRect – Shape.draw_rect()

• drawSector – Page.draw_sector()

• drawSector – Shape.draw_sector()

• drawSquiggle – Page.draw_squiggle()

• drawSquiggle – Shape.draw_squiggle()

• drawZigzag – Page.draw_zigzag()

• drawZigzag – Shape.draw_zigzag()

• embeddedFileAdd – Document.embfile_add()

• embeddedFileCount – Document.embfile_count()

• embeddedFileDel – Document.embfile_del()

• embeddedFileGet – Document.embfile_get()

• embeddedFileInfo – Document.embfile_info()

• embeddedFileNames – Document.embfile_names()

• embeddedFileUpd – Document.embfile_upd()

• extractFont – Document.extract_font()

• extractImage – Document.extract_image()

• fileGet – Annot.get_file()

• fileUpd – Annot.update_file()

• fillTextbox – TextWriter.fill_textbox()

• findBookmark – Document.find_bookmark()

• firstAnnot – Page.first_annot

447

PyMuPDF Documentation, Release 1.21.1

• firstLink – Page.first_link

• firstWidget – Page.first_widget

• fullcopyPage – Document.fullcopy_page()

• gammaWith – Pixmap.gamma_with()

• getArea – Rect.get_area()

• getArea – IRect.get_area()

• getCharWidths – Document.get_char_widths()

• getContents – Page.get_contents()

• getDisplayList – Page.get_displaylist()

• getDrawings – Page.get_drawings()

• getFontList – Page.get_fonts()

• getImageBbox – Page.get_image_bbox()

• getImageData – Pixmap.tobytes()

• getImageList – Page.get_images()

• getLinks – Page.get_links()

• getOCGs – Document.get_ocgs()

• getPageFontList – Document.get_page_fonts()

• getPageImageList – Document.get_page_images()

• getPagePixmap – Document.get_page_pixmap()

• getPageText – Document.get_page_text()

• getPageXObjectList – Document.get_page_xobjects()

• getPDFnow – get_pdf_now()

• getPDFstr – get_pdf_str()

• getPixmap – Page.get_pixmap()

• getPixmap – Annot.get_pixmap()

• getPixmap – DisplayList.get_pixmap()

• getPNGData – Pixmap.tobytes()

• getPNGdata – Pixmap.tobytes()

• getRectArea – Rect.get_area()

• getRectArea – IRect.get_area()

• getSigFlags – Document.get_sigflags()

• getSVGimage – Page.get_svg_image()

• getText – Page.get_text()

• getText – Annot.get_text()

• getTextBlocks – Page.get_text_blocks()

• getTextbox – Page.get_textbox()

448 Chapter 16. Deprecated Names

PyMuPDF Documentation, Release 1.21.1

• getTextbox – Annot.get_textbox()

• getTextLength – get_text_length()

• getTextPage – Page.get_textpage()

• getTextPage – Annot.get_textpage()

• getTextPage – DisplayList.get_textpage()

• getTextWords – Page.get_text_words()

• getToC – Document.get_toc()

• getXmlMetadata – Document.get_xml_metadata()

• ImageProperties – image_properties()

• includePoint – Rect.include_point()

• includePoint – IRect.include_point()

• includeRect – Rect.include_rect()

• includeRect – IRect.include_rect()

• insertFont – Page.insert_font()

• insertImage – Page.insert_image()

• insertLink – Page.insert_link()

• insertPage – Document.insert_page()

• insertPDF – Document.insert_pdf()

• insertText – Page.insert_text()

• insertText – Shape.insert_text()

• insertTextbox – Page.insert_textbox()

• insertTextbox – Shape.insert_textbox()

• invertIRect – Pixmap.invert_irect()

• isConvex – Quad.is_convex

• isDirty – Document.is_dirty

• isEmpty – Rect.is_empty

• isEmpty – IRect.is_empty

• isEmpty – Quad.is_empty

• isFormPDF – Document.is_form_pdf

• isInfinite – Rect.is_infinite

• isInfinite – IRect.is_infinite

• isPDF – Document.is_pdf

• isRectangular – Quad.is_rectangular

• isRectilinear – Matrix.is_rectilinear

• isReflowable – Document.is_reflowable

• isRepaired – Document.is_repaired

449

PyMuPDF Documentation, Release 1.21.1

• isStream – Document.is_stream()

• lastLocation – Document.last_location

• lineEnds – Annot.line_ends

• loadAnnot – Page.load_annot()

• loadLinks – Page.load_links()

• loadPage – Document.load_page()

• makeBookmark – Document.make_bookmark()

• MediaBox – Page.mediabox

• MediaBoxSize – Page.mediabox_size

• metadataXML – Document.xref_xml_metadata()

• movePage – Document.move_page()

• needsPass – Document.needs_pass

• newPage – Document.new_page()

• newShape – Page.new_shape()

• nextLocation – Document.next_location()

• pageCount – Document.page_count

• pageCropBox – Document.page_cropbox()

• pageXref – Document.page_xref()

• PaperRect – paper_rect()

• PaperSize – paper_size()

• paperSizes – paper_sizes

• PDFCatalog – Document.pdf_catalog()

• PDFTrailer – Document.pdf_trailer()

• pillowData – Pixmap.pil_tobytes()

• pillowWrite – Pixmap.pil_save()

• planishLine – planish_line()

• preRotate – Matrix.prerotate()

• preScale – Matrix.prescale()

• preShear – Matrix.preshear()

• preTranslate – Matrix.pretranslate()

• previousLocation – Document.prev_location()

• readContents – Page.read_contents()

• resolveLink – Document.resolve_link()

• rotationMatrix – Page.rotation_matrix

• searchFor – Page.search_for()

• searchPageFor – Document.search_page_for()

450 Chapter 16. Deprecated Names

PyMuPDF Documentation, Release 1.21.1

• setAlpha – Pixmap.set_alpha()

• setBlendMode – Annot.set_blendmode()

• setBorder – Annot.set_border()

• setColors – Annot.set_colors()

• setCropBox – Page.set_cropbox()

• setFlags – Annot.set_flags()

• setInfo – Annot.set_info()

• setLanguage – Document.set_language()

• setLineEnds – Annot.set_line_ends()

• setMediaBox – Page.set_mediabox()

• setMetadata – Document.set_metadata()

• setName – Annot.set_name()

• setOC – Annot.set_oc()

• setOpacity – Annot.set_opacity()

• setOrigin – Pixmap.set_origin()

• setPixel – Pixmap.set_pixel()

• setRect – Annot.set_rect()

• setRect – Pixmap.set_rect()

• setResolution – Pixmap.set_dpi()

• setRotation – Page.set_rotation()

• setToC – Document.set_toc()

• setXmlMetadata – Document.set_xml_metadata()

• showPDFpage – Page.show_pdf_page()

• soundGet – Annot.get_sound()

• tintWith – Pixmap.tint_with()

• transformationMatrix – Page.transformation_matrix

• updateLink – Page.update_link()

• updateObject – Document.update_object()

• updateStream – Document.update_stream()

• wrapContents – Page.wrap_contents()

• writeImage – Pixmap.save()

• writePNG – Pixmap.save()

• writeText – Page.write_text()

• writeText – TextWriter.write_text()

• xrefLength – Document.xref_length()

• xrefObject – Document.xref_object()

451

PyMuPDF Documentation, Release 1.21.1

• xrefStream – Document.xref_stream()

• xrefStreamRaw – Document.xref_stream_raw()

452 Chapter 16. Deprecated Names

https://discord.gg/TSpYGBW4eq
https://discord.gg/TSpYGBW4eq

INDEX

Symbols
__init__() (Archive method), 148
__init__() (Colorspace method), 150
__init__() (Device method), 372
__init__() (DisplayList method), 151
__init__() (Document method), 155
__init__() (DocumentWriter method), 200
__init__() (IRect method), 209
__init__() (Matrix method), 218
__init__() (Pixmap method), 265–267
__init__() (Point method), 279
__init__() (Quad method), 281, 282
__init__() (Rect method), 286
__init__() (Shape method), 292
__init__() (Story method), 309
__init__() (TextWriter method), 324
_isWrapped, 446

A
a (Matrix attribute), 219
abs_unit (Point attribute), 280
add() (Archive method), 149
add_bullet_list() (Xml method), 339
add_caret_annot() (Page method), 229
add_circle_annot() (Page method), 231
add_class() (Xml method), 342
add_code() (Xml method), 340
add_codeblock() (Xml method), 339
add_description_list() (Xml method), 339
add_division() (Xml method), 339
add_file_annot

examples, 22
add_file_annot() (Page method), 230
add_freetext_annot

align, 230
border_color, 230
color, 230
fill_color, 230
fontname, 230
fontsize, 230
rect, 230
rotate, 230

text_color, 230
add_freetext_annot() (Page method), 230
add_header() (Xml method), 339
add_highlight_annot() (Page method), 233
add_horizontal_line() (Xml method), 339
add_image() (Xml method), 339
add_ink_annot() (Page method), 231
add_kbd() (Xml method), 340
add_layer() (Document method), 158
add_line_annot() (Page method), 231
add_link() (Xml method), 339
add_number_list() (Xml method), 339
add_ocg() (Document method), 158
add_paragraph() (Xml method), 340
add_polygon_annot() (Page method), 233
add_polyline_annot() (Page method), 233
add_rect_annot() (Page method), 231
add_redact_annot() (Page method), 232
add_samp() (Xml method), 340
add_span() (Xml method), 340
add_squiggly_annot() (Page method), 233
add_stamp_annot() (Page method), 235
add_strikeout_annot() (Page method), 233
add_style() (Xml method), 342
add_subscript() (Xml method), 340
add_superscript() (Xml method), 340
add_text() (Xml method), 340
add_text_annot() (Page method), 229
add_underline_annot() (Page method), 233
add_var() (Xml method), 340
add_widget() (Page method), 235
addCaretAnnot, 446
addCircleAnnot, 446
addFileAnnot, 446
addFreetextAnnot, 446
addHighlightAnnot, 446
addInkAnnot, 446
addLineAnnot, 446
addPolygonAnnot, 446
addPolylineAnnot, 446
addRectAnnot, 446
addRedactAnnot, 446

453

PyMuPDF Documentation, Release 1.21.1

addSquigglyAnnot, 446
addStampAnnot, 446
addStrikeoutAnnot, 446
addTextAnnot, 446
addUnderlineAnnot, 446
addWidget, 446
adobe_glyph_names(), 356
adobe_glyph_unicodes(), 356
align

add_freetext_annot, 230
insert_textbox, 239, 300

alpha
Annot.get_pixmap, 136
DisplayList.get_pixmap, 152
get_pixmap, 253

alpha (Pixmap attribute), 274
Annot (built-in class), 136
Annot.get_pixmap

alpha, 136
colorspace, 136
dpi, 136
matrix, 136

Annot.get_text
blocks, 136
clip, 136
dict, 136
flags, 136
html, 136
json, 136
rawdict, 136
text, 136
words, 136
xhtml, 136
xml, 136

Annot.update
blend_mode, 142
border_color, 142
cross_out, 142
fill_color, 142
fontsize, 142
rotate, 142
text_color, 142

Annot.update_file
buffer, 143
desc, 143
filename, 143
ufilename, 143

annot_names() (Page method), 254
annot_xrefs() (Page method), 254
annots

Document.insert_pdf, 181
get_pixmap, 253

annots() (Page method), 238
append() (TextWriter method), 324

append_child() (Xml method), 342
appendv() (TextWriter method), 325
apply_redactions() (Page method), 236
Archive (built-in class), 148
artbox (Page attribute), 260
ascender (Font attribute), 207
attach

embed file, 62
authenticate() (Document method), 162

B
b (Matrix attribute), 220
Base14_Fonts (built-in variable), 379
bbox (Font attribute), 207
begin_page() (DocumentWriter method), 200
bl (IRect attribute), 211
bl (Rect attribute), 290
bleedbox (Page attribute), 260
blend_mode

Annot.update, 142
blendmode (Annot attribute), 139
blocks

Annot.get_text, 136
Page.get_text, 245

body (Story attribute), 311
border (Annot attribute), 146
border (Link attribute), 214
border_color

add_freetext_annot, 230
Annot.update, 142

border_color (Widget attribute), 335
border_dashes (Widget attribute), 335
border_style (Widget attribute), 335
border_width

insert_text, 239, 297
insert_textbox, 239, 300

border_width (Widget attribute), 335
bottom_left (IRect attribute), 211
bottom_left (Rect attribute), 290
bottom_right (IRect attribute), 211
bottom_right (Rect attribute), 290
bound() (Page method), 229
br (IRect attribute), 211
br (Rect attribute), 290
breadth

draw_squiggle, 240, 292
draw_zigzag, 240, 294

buffer
Annot.update_file, 143

buffer (Font attribute), 206
button_caption (Widget attribute), 335
button_states() (Widget method), 334

454 Index

PyMuPDF Documentation, Release 1.21.1

C
c (Matrix attribute), 220
can_save_incrementally() (Document method), 178
catalog (built-in variable), 375
chapter_count (Document attribute), 197
chapter_page_count() (Document method), 164
chapterCount, 446
chapterPageCount, 446
char_lengths() (Font method), 206
choice_values (Widget attribute), 335
clean_contents() (Annot method), 369
clean_contents() (Page method), 368
cleanContents, 446
clear_with() (Pixmap method), 268
clearWith, 446
clip

Annot.get_text, 136
DisplayList.get_pixmap, 152
get_pixmap, 253
get_textpage, 247
Page.get_text, 245
search_for, 257
show_pdf_page, 256

clone() (Xml method), 343
close() (Document method), 187
close() (DocumentWriter method), 200
closePath

draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297

color
add_freetext_annot, 230
Document.insert_page, 182
draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297

insert_text, 239, 297
insert_textbox, 239, 300

color (TextWriter attribute), 327
color_count() (Pixmap method), 273
color_topusage() (Pixmap method), 274
colors (Annot attribute), 145
colors (Link attribute), 214
colorspace

Annot.get_pixmap, 136
DisplayList.get_pixmap, 152
get_pixmap, 253

Colorspace (built-in class), 150
colorspace (Pixmap attribute), 274
commit

overlay, 302
commit() (Shape method), 302
concat() (Matrix method), 219
contains() (IRect method), 210
contains() (Rect method), 288
contents (built-in variable), 376
ConversionHeader(), 363
ConversionTrailer(), 363
convert_to_pdf

examples, 19
convert_to_pdf() (Document method), 167
convertToPDF, 446
copy

examples, 27, 28
copy() (Pixmap method), 270
copy_page() (Document method), 184
copyPage, 446
copyPixmap, 446
create_element() (Xml method), 343
create_text_node() (Xml method), 343
CropBox, 446
CropBox (built-in variable), 375
cropbox (Page attribute), 260
cropbox_position (Page attribute), 260
CropBoxPosition, 446
cross_out

Annot.update, 142
CS_CMYK (built-in variable), 379
CS_GRAY (built-in variable), 379
CS_RGB (built-in variable), 379
csCMYK (built-in variable), 379
csGRAY (built-in variable), 379
csRGB (built-in variable), 379
css_for_pymupdf_font(), 357

D
d (Matrix attribute), 220
dashes

draw_bezier, 240
draw_circle, 240

Index 455

PyMuPDF Documentation, Release 1.21.1

draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297

debug() (Xml method), 343
del_toc_item() (Document method), 177
del_xml_metadata() (Document method), 363
delete

pages, 62
delete_annot() (Page method), 235
delete_image

xref, 245
delete_image() (Page method), 245
delete_link() (Page method), 237
delete_page() (Document method), 183
delete_pages() (Document method), 183
delete_responses() (Annot method), 141
delete_widget() (Page method), 236
deleteAnnot, 446
deleteLink, 446
deletePage, 446
deletePageRange, 446
deleteWidget, 446
derotation_matrix (Page attribute), 261
derotationMatrix, 446
desc

Annot.update_file, 143
Document.embfile_add, 185
Document.embfile_upd, 187

descender (Font attribute), 207
dest (Link attribute), 215
dest (linkDest attribute), 216
dest (Outline attribute), 226
Device (built-in class), 372
dict

Annot.get_text, 136
Page.get_text, 245

dictionary (built-in variable), 376
digest (Pixmap attribute), 274
DisplayList (built-in class), 151
DisplayList.get_pixmap

alpha, 152
clip, 152
colorspace, 152
matrix, 152

distance_to() (Point method), 279
doc (Shape attribute), 302
Document

filename, 155
filetype, 155
fontsize, 155
open, 155
rect, 155
stream, 155

Document (built-in class), 155
Document.convert_to_pdf

from_page, 167
rotate, 167
to_page, 167

Document.embfile_add
desc, 185
filename, 185
ufilename, 185

Document.embfile_upd
desc, 187
filename, 187
ufilename, 187

Document.insert_page
color, 182
fontfile, 182
fontname, 182
fontsize, 182
height, 182
width, 182

Document.insert_pdf
annots, 181
from_page, 181
links, 181
rotate, 181
show_progress, 181
start_at, 181
to_page, 181

Document.layout
fontsize, 175
height, 175
rect, 175
width, 175

Document.new_page
height, 182
width, 182

DocumentWriter (built-in class), 200
down (Outline attribute), 225
dpi

Annot.get_pixmap, 136
get_pixmap, 253
get_textpage_ocr, 247

draw() (Story method), 311
draw_bezier

closePath, 240
color, 240
dashes, 240
fill, 240

456 Index

PyMuPDF Documentation, Release 1.21.1

fill_opacity, 240
lineCap, 240
lineJoin, 240
morph, 240
oc, 240
overlay, 240
stroke_opacity, 240
width, 240

draw_bezier() (Page method), 240
draw_bezier() (Shape method), 294
draw_circle

closePath, 240
color, 240
dashes, 240
fill, 240
fill_opacity, 240
lineCap, 240
lineJoin, 240
morph, 240
oc, 240
overlay, 240
stroke_opacity, 240
width, 240

draw_circle() (Page method), 240
draw_circle() (Shape method), 295
draw_cont (Shape attribute), 302
draw_curve

closePath, 241
color, 241
dashes, 241
fill, 241
fill_opacity, 241
lineCap, 241
lineJoin, 241
morph, 241
oc, 241
overlay, 241
stroke_opacity, 241
width, 241

draw_curve() (Page method), 241
draw_curve() (Shape method), 296
draw_line

closePath, 240
color, 240
dashes, 240
fill, 240
fill_opacity, 240
lineCap, 240
lineJoin, 240
morph, 240
oc, 240
overlay, 240
stroke_opacity, 240
width, 240

draw_line() (Page method), 240
draw_line() (Shape method), 292
draw_oval

closePath, 240
color, 240
dashes, 240
fill, 240
fill_opacity, 240
lineCap, 240
lineJoin, 240
morph, 240
oc, 240
overlay, 240
stroke_opacity, 240
width, 240

draw_oval() (Page method), 240
draw_oval() (Shape method), 295
draw_polyline

closePath, 240
color, 240
dashes, 240
fill, 240
fill_opacity, 240
lineCap, 240
lineJoin, 240
morph, 240
oc, 240
overlay, 240
stroke_opacity, 240
width, 240

draw_polyline() (Page method), 240
draw_polyline() (Shape method), 294
draw_quad

closePath, 241
color, 241
dashes, 241
fill, 241
fill_opacity, 241
lineCap, 241
lineJoin, 241
morph, 241
oc, 241
overlay, 241
stroke_opacity, 241
width, 241

draw_quad() (Page method), 241
draw_quad() (Shape method), 297
draw_rect

closePath, 241
color, 241
dashes, 241
fill, 241
fill_opacity, 241
lineCap, 241

Index 457

PyMuPDF Documentation, Release 1.21.1

lineJoin, 241
morph, 241
oc, 241
overlay, 241
stroke_opacity, 241
width, 241

draw_rect() (Page method), 241
draw_rect() (Shape method), 297
draw_sector

closePath, 240
color, 240
dashes, 240
fill, 240
fill_opacity, 240
fullSector, 240, 296
lineCap, 240
lineJoin, 240
morph, 240
oc, 240
overlay, 240
stroke_opacity, 240
width, 240

draw_sector() (Page method), 240
draw_sector() (Shape method), 296
draw_squiggle

breadth, 240, 292
closePath, 240
color, 240
dashes, 240
fill, 240
fill_opacity, 240
lineCap, 240
lineJoin, 240
morph, 240
oc, 240
overlay, 240
stroke_opacity, 240
width, 240

draw_squiggle() (Page method), 240
draw_squiggle() (Shape method), 292
draw_zigzag

breadth, 240, 294
closePath, 240
color, 240
dashes, 240
fill, 240
fill_opacity, 240
lineCap, 240
lineJoin, 240
morph, 240
oc, 240
overlay, 240
stroke_opacity, 240
width, 240

draw_zigzag() (Page method), 240
draw_zigzag() (Shape method), 294
drawBezier, 447
drawCircle, 447
drawCurve, 447
drawLine, 447
drawOval, 447
drawPolyline, 447
drawQuad, 447
drawRect, 447
drawSector, 447
drawSquiggle, 447
drawZigzag, 447

E
e (Matrix attribute), 220
element_positions() (Story method), 311
embed

file, attach, 62
PDF, picture, 22

embeddedFileAdd, 447
embeddedFileCount, 447
embeddedFileDel, 447
embeddedFileGet, 447
embeddedFileInfo, 447
embeddedFileNames, 447
embeddedFileUpd, 447
embfile_add

examples, 22, 25
embfile_add() (Document method), 185
embfile_count() (Document method), 186
embfile_del() (Document method), 186
embfile_get() (Document method), 186
embfile_info() (Document method), 186
embfile_names() (Document method), 187
embfile_upd() (Document method), 187
EMPTY_IRECT(), 372
EMPTY_QUAD(), 372
EMPTY_RECT(), 372
encoding

insert_font, 241
insert_text, 239, 297
insert_textbox, 239, 300

end_page() (DocumentWriter method), 200
entry_list (Archive attribute), 150
even_odd

finish, 297
examples

add_file_annot, 22
convert_to_pdf, 19
copy, 27, 28
embfile_add, 22, 25
extract_image, 20
insert_image, 22, 25

458 Index

PyMuPDF Documentation, Release 1.21.1

invert_irect, 28
JPEG, 25
PhotoImage, 25
Photoshop, 25
Postscript, 25
save, 25, 28
set_rect, 28
show_pdf_page, 22, 25
tobytes, 25

expandtabs
insert_textbox, 239, 300

extract
image non-PDF, 19
image PDF, 20
table, 33
text rectangle, 32

extract_font() (Document method), 192
extract_image

examples, 20
extract_image() (Document method), 190
extractBLOCKS() (TextPage method), 314
extractDICT() (TextPage method), 315
extractFont, 447
extractHTML() (TextPage method), 315
extractImage, 447
extractJSON() (TextPage method), 315
extractRAWDICT() (TextPage method), 315
extractRAWJSON() (TextPage method), 316
extractTEXT() (TextPage method), 314
extractText() (TextPage method), 314
extractWORDS() (TextPage method), 315
extractXHTML() (TextPage method), 315
extractXML() (TextPage method), 315
ez_save() (Document method), 180

F
f (Matrix attribute), 220
field_flags (Widget attribute), 335
field_label (Widget attribute), 335
field_name (Widget attribute), 335
field_type (Widget attribute), 335
field_type_string (Widget attribute), 335
field_value (Widget attribute), 335
file

attach embed, 62
file extension

wrong, 61
file_info (Annot attribute), 142
fileGet, 447
filename

Annot.update_file, 143
Document, 155
Document.embfile_add, 185
Document.embfile_upd, 187

insert_image, 243
open, 155
replace_image, 244

fileSpec (linkDest attribute), 216
filetype

Document, 155
open, 155

fileUpd, 447
fill

draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297
insert_text, 239, 297
insert_textbox, 239, 300

fill_color
add_freetext_annot, 230
Annot.update, 142

fill_color (Widget attribute), 335
fill_opacity

draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297
insert_text, 239, 297
insert_textbox, 239

fill_textbox() (TextWriter method), 325
fillTextbox, 447
find() (Xml method), 343
find_bookmark() (Document method), 164
find_next() (Xml method), 344
findBookmark, 447
finish

closePath, 297
color, 297
dashes, 297
even_odd, 297
fill, 297

Index 459

PyMuPDF Documentation, Release 1.21.1

fill_opacity, 297
lineCap, 297
lineJoin, 297
morph, 297
oc, 297
stroke_opacity, 297
width, 297

finish() (Shape method), 297
first_annot (Page attribute), 262
first_child (Xml attribute), 344
first_link (Page attribute), 261
first_widget (Page attribute), 262
firstAnnot, 447
firstLink, 448
firstWidget, 448
fitz_config (Tools attribute), 331
fitz_fontdescriptors, 359
flags

Annot.get_text, 136
get_textpage, 247
get_textpage_ocr, 247
Page.get_text, 245
search_for, 257

flags (Annot attribute), 144
flags (Font attribute), 207
flags (Link attribute), 214
flags (linkDest attribute), 216
Font (built-in class), 201
fontbuffer

insert_font, 241
fontfile

Document.insert_page, 182
insert_font, 241
insert_text, 239, 297
insert_textbox, 239, 300

fontname
add_freetext_annot, 230
Document.insert_page, 182
insert_font, 241
insert_text, 239, 297
insert_textbox, 239, 300

fontsize
add_freetext_annot, 230
Annot.update, 142
Document, 155
Document.insert_page, 182
Document.layout, 175
insert_text, 239, 297
insert_textbox, 239, 300
open, 155

FormFonts (Document attribute), 197
from_page

Document.convert_to_pdf, 167
Document.insert_pdf, 181

full
get_textpage_ocr, 247

fullcopy_page() (Document method), 184
fullcopyPage, 448
fullSector

draw_sector, 240, 296

G
gamma_with() (Pixmap method), 268
gammaWith, 448
gen_id() (Tools method), 328
get_area() (IRect method), 209
get_area() (Rect method), 288
get_attribute_value() (Xml method), 340
get_attributes() (Xml method), 340
get_bboxlog() (Page method), 364
get_cdrawings() (Page method), 249
get_char_widths() (Document method), 369
get_contents() (Page method), 368
get_displaylist() (Page method), 368
get_drawings() (Page method), 248
get_file() (Annot method), 143
get_fonts() (Page method), 250
get_image_bbox

transform, 251
get_image_bbox() (Page method), 251
get_image_info

hashes, 250
xrefs, 250

get_image_info() (Page method), 250
get_image_rects

transform, 251
get_image_rects() (Page method), 251
get_images() (Page method), 250
get_label() (Page method), 237
get_layer() (Document method), 160
get_layers() (Document method), 157
get_links() (Page method), 238
get_new_xref() (Document method), 370
get_oc() (Annot method), 138
get_oc() (Document method), 157
get_ocgs() (Document method), 160
get_ocmd() (Document method), 159
get_page_fonts() (Document method), 174
get_page_images() (Document method), 173
get_page_labels() (Document method), 163
get_page_numbers() (Document method), 163
get_page_pixmap() (Document method), 172
get_page_text() (Document method), 175
get_page_xobjects() (Document method), 172
get_pdf_now(), 360
get_pdf_str(), 361
get_pixmap

alpha, 253

460 Index

PyMuPDF Documentation, Release 1.21.1

annots, 253
clip, 253
colorspace, 253
dpi, 253
matrix, 253

get_pixmap() (Annot method), 136
get_pixmap() (DisplayList method), 152
get_pixmap() (Page method), 253
get_sigflags() (Document method), 185
get_sound() (Annot method), 143
get_svg_image

matrix, 252
get_svg_image() (Page method), 252
get_text() (Annot method), 136
get_text() (Page method), 245
get_text_blocks() (Page method), 368
get_text_length(), 361
get_text_words() (Page method), 368
get_textbox

rect, 246
textpage, 246

get_textbox() (Annot method), 137
get_textbox() (Page method), 246
get_textpage

clip, 247
flags, 247

get_textpage() (DisplayList method), 152
get_textpage() (Page method), 247
get_textpage_ocr

dpi, 247
flags, 247
full, 247
language, 247

get_textpage_ocr() (Page method), 247
get_texttrace() (Page method), 365
get_toc() (Document method), 168
get_xml_metadata() (Document method), 176
get_xobjects() (Page method), 251
getArea, 448
getCharWidths, 448
getContents, 448
getDisplayList, 448
getDrawings, 448
getFontList, 448
getImageBbox, 448
getImageData, 448
getImageList, 448
getLinks, 448
getOCGs, 448
getPageFontList, 448
getPageImageList, 448
getPagePixmap, 448
getPageText, 448
getPageXObjectList, 448

getPDFnow, 448
getPDFstr, 448
getPixmap, 448
getPNGData, 448
getPNGdata, 448
getRectArea, 448
getSigFlags, 448
getSVGimage, 448
getText, 448
getTextBlocks, 448
getTextbox, 448, 449
getTextLength, 449
getTextPage, 449
getTextWords, 449
getToC, 449
getXmlMetadata, 449
glyph_advance() (Font method), 204
glyph_bbox() (Font method), 205
glyph_count (Font attribute), 207
glyph_name_to_unicode(), 355
glyph_name_to_unicode() (Font method), 204

H
h (Pixmap attribute), 276
has_annots() (Document method), 193
has_entry() (Archive method), 149
has_glyph() (Font method), 203
has_links() (Document method), 193
has_popup (Annot attribute), 146
hashes

get_image_info, 250
height

Document.insert_page, 182
Document.layout, 175
Document.new_page, 182
open, 155

height (IRect attribute), 212
height (Pixmap attribute), 276
height (Quad attribute), 283
height (Rect attribute), 290
height (Shape attribute), 302
html

Annot.get_text, 136
Page.get_text, 245

I
image

non-PDF, extract, 19
PDF, extract, 20
resolution, 17
SVG, vector, 25

image_profile(), 362
ImageProperties, 449
include_point() (Rect method), 287

Index 461

PyMuPDF Documentation, Release 1.21.1

include_rect() (Rect method), 287
includePoint, 449
includeRect, 449
INFINITE_IRECT(), 372
INFINITE_QUAD(), 372
INFINITE_RECT(), 372
info (Annot attribute), 144
inheritable (built-in variable), 375
insert_after() (Xml method), 343
insert_before() (Xml method), 343
insert_font

encoding, 241
fontbuffer, 241
fontfile, 241
fontname, 241
set_simple, 241

insert_font() (Page method), 241
insert_image

examples, 22, 25
filename, 243
keep_proportion, 243
mask, 243
oc, 243
overlay, 243
pixmap, 243
rotate, 243
stream, 243
xref, 243

insert_image() (Page method), 243
insert_link() (Page method), 237
insert_page() (Document method), 182
insert_pdf() (Document method), 181
insert_text

border_width, 239, 297
color, 239, 297
encoding, 239, 297
fill, 239, 297
fill_opacity, 239, 297
fontfile, 239, 297
fontname, 239, 297
fontsize, 239, 297
morph, 239, 297
oc, 239, 297
overlay, 239
render_mode, 239, 297
rotate, 239, 297
stroke_opacity, 239, 297

insert_text() (Page method), 239
insert_text() (Shape method), 299
insert_textbox

align, 239, 300
border_width, 239, 300
color, 239, 300
encoding, 239, 300

expandtabs, 239, 300
fill, 239, 300
fill_opacity, 239
fontfile, 239, 300
fontname, 239, 300
fontsize, 239, 300
morph, 239, 300
oc, 239, 300
overlay, 239
render_mode, 239, 300
rotate, 239, 300
stroke_opacity, 239

insert_textbox() (Page method), 239
insert_textbox() (Shape method), 300
insertFont, 449
insertImage, 449
insertLink, 449
insertPage, 449
insertPDF, 449
insertText, 449
insertTextbox, 449
interpolate (Pixmap attribute), 277
intersect() (IRect method), 210
intersect() (Rect method), 287
intersects() (IRect method), 210
intersects() (Rect method), 288
invert() (Matrix method), 219
invert_irect

examples, 28
invert_irect() (Pixmap method), 270
invertIRect, 449
IRect (built-in class), 209
irect (Pixmap attribute), 275
irect (Rect attribute), 289
irect_like (built-in variable), 375
irt_xref (Annot attribute), 145
is_closed (Document attribute), 195
is_convex (Quad attribute), 283
is_dirty (Document attribute), 195
is_empty (IRect attribute), 212
is_empty (Quad attribute), 283
is_empty (Rect attribute), 291
is_encrypted (Document attribute), 196
is_external (Outline attribute), 225
is_form_pdf (Document attribute), 195
is_infinite (IRect attribute), 212
is_infinite (Rect attribute), 290
is_monochrome (Pixmap attribute), 275
is_open (Annot attribute), 146
is_open (Outline attribute), 225
is_pdf (Document attribute), 195
is_rectangular (Quad attribute), 283
is_rectilinear (Matrix attribute), 220
is_reflowable (Document attribute), 195

462 Index

PyMuPDF Documentation, Release 1.21.1

is_repaired (Document attribute), 196
is_signed (Widget attribute), 335
is_stream() (Document method), 370
is_text (Xml attribute), 344
is_unicolor (Pixmap attribute), 275
is_valid (Rect attribute), 291
is_wrapped (Page attribute), 368
is_writable (Font attribute), 208
isConvex, 449
isDirty, 449
isEmpty, 449
isExternal (Link attribute), 214
isFormPDF, 449
isInfinite, 449
isMap (linkDest attribute), 216
isPDF, 449
isRectangular, 449
isRectilinear, 449
isReflowable, 449
isRepaired, 449
isStream, 450
isUri (linkDest attribute), 216

J
journal_can_do() (Document method), 194
journal_enable() (Document method), 193
journal_load() (Document method), 194
journal_op_name() (Document method), 194
journal_position() (Document method), 194
journal_redo() (Document method), 194
journal_save() (Document method), 194
journal_start_op() (Document method), 193
journal_stop_op() (Document method), 194
journal_undo() (Document method), 194
JPEG

examples, 25
json

Annot.get_text, 136
Page.get_text, 245

K
keep_proportion

insert_image, 243
show_pdf_page, 256

kind (linkDest attribute), 216

L
language

get_textpage_ocr, 247
last_child (Xml attribute), 344
last_location (Document attribute), 197
last_point (TextWriter attribute), 327
lastLocation, 450
lastPoint (Shape attribute), 303

layer_ui_configs() (Document method), 161
layout() (Document method), 175
ligature (built-in variable), 378
line_ends (Annot attribute), 145
lineCap

draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297

lineEnds, 450
lineJoin

draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297

Link (built-in class), 213
LINK_FLAG_B_VALID (built-in variable), 383
LINK_FLAG_FIT_H (built-in variable), 383
LINK_FLAG_FIT_V (built-in variable), 383
LINK_FLAG_L_VALID (built-in variable), 383
LINK_FLAG_R_IS_ZOOM (built-in variable), 383
LINK_FLAG_R_VALID (built-in variable), 383
LINK_FLAG_T_VALID (built-in variable), 383
LINK_GOTO (built-in variable), 382
LINK_GOTOR (built-in variable), 383
LINK_LAUNCH (built-in variable), 383
LINK_NAMED (built-in variable), 383
LINK_NONE (built-in variable), 382
LINK_URI (built-in variable), 382
linkDest (built-in class), 216
links

Document.insert_pdf, 181
links() (Page method), 238
ll (Quad attribute), 283
load_annot() (Page method), 255
load_links() (Page method), 255
load_page() (Document method), 165
load_widget() (Page method), 255

Index 463

PyMuPDF Documentation, Release 1.21.1

loadAnnot, 450
loadLinks, 450
loadPage, 450
lr (Quad attribute), 283
lt (linkDest attribute), 216

M
make_bookmark() (Document method), 164
make_table(), 358
makeBookmark, 450
mask

insert_image, 243
matrix

Annot.get_pixmap, 136
DisplayList.get_pixmap, 152
get_pixmap, 253
get_svg_image, 252

Matrix (built-in class), 218
matrix_like (built-in variable), 375
MediaBox, 450
MediaBox (built-in variable), 375
mediabox (Page attribute), 261
mediabox_size (Page attribute), 261
MediaBoxSize, 450
metadata (Document attribute), 196
metadataXML, 450
morph

draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297
insert_text, 239, 297
insert_textbox, 239, 300

morph() (IRect method), 210
morph() (Quad method), 282
morph() (Rect method), 289
move_page() (Document method), 184
movePage, 450
mupdf_display_errors() (Tools method), 331
mupdf_warnings() (Tools method), 331

N
n (Colorspace attribute), 150
n (Pixmap attribute), 277
name (Colorspace attribute), 150
name (Document attribute), 197

name (Font attribute), 207
named (linkDest attribute), 216
need_appearances() (Document method), 185
needs_pass (Document attribute), 196
needsPass, 450
new_page() (Document method), 182
new_shape() (Page method), 257
newPage, 450
newShape, 450
newWindow (linkDest attribute), 216
next (Annot attribute), 144
next (Link attribute), 215
next (Outline attribute), 225
next (Widget attribute), 334
next (Xml attribute), 344
next_location() (Document method), 165
nextLocation, 450
non-PDF

extract image, 19
norm() (IRect method), 211
norm() (Matrix method), 218
norm() (Point method), 279
norm() (Rect method), 289
normalize() (IRect method), 211
normalize() (Rect method), 289
number (Page attribute), 262

O
object (built-in variable), 377
oc

draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297
insert_image, 243
insert_text, 239, 297
insert_textbox, 239, 300

OCCD (built-in variable), 378
OCG (built-in variable), 378
OCMD (built-in variable), 378
OCPD (built-in variable), 378
opacity (Annot attribute), 143
opacity (TextWriter attribute), 327
open

Document, 155
filename, 155

464 Index

PyMuPDF Documentation, Release 1.21.1

filetype, 155
fontsize, 155
height, 155
rect, 155
stream, 155
width, 155

Outline (built-in class), 225
outline (Document attribute), 195
outline_xref() (Document method), 177
overlay

commit, 302
draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
insert_image, 243
insert_text, 239
insert_textbox, 239
show_pdf_page, 256

P
Page (built-in class), 229
page (built-in variable), 377
page (linkDest attribute), 217
page (Outline attribute), 225
page (Shape attribute), 302
Page.get_text

blocks, 245
clip, 245
dict, 245
flags, 245
html, 245
json, 245
rawdict, 245
sort, 245
text, 245
textpage, 245
words, 245
xhtml, 245
xml, 245

page_count (Document attribute), 197
page_cropbox() (Document method), 166
page_xref() (Document method), 166
pageCount, 450
pageCropBox, 450
pages

delete, 62

rearrange, 62
pages() (Document method), 167
pagetree (built-in variable), 377
pageXref, 450
paper_rect(), 355
paper_size(), 354
paper_sizes(), 359
PaperRect, 450
PaperSize, 450
paperSizes, 450
parent (Annot attribute), 143
parent (Page attribute), 262
Partial Pixmaps, 18
PDF

extract image, 20
picture embed, 22

pdf_catalog() (Document method), 188
pdf_trailer() (Document method), 188
PDFCatalog, 450
pdfcolor, 360
pdfocr_save() (Pixmap method), 271
pdfocr_tobytes() (Pixmap method), 272
PDFTrailer, 450
permissions (Document attribute), 196
PhotoImage

examples, 25
Photoshop

examples, 25
picture

embed PDF, 22
pil_save() (Pixmap method), 272
pil_tobytes() (Pixmap method), 273
pillowData, 450
pillowWrite, 450
pixel() (Pixmap method), 268
pixmap

insert_image, 243
replace_image, 244

Pixmap (built-in class), 265
place() (Story method), 310
planish_line(), 358
planishLine, 450
Point (built-in class), 279
point_like (built-in variable), 375
popup_rect (Annot attribute), 146
popup_xref (Annot attribute), 145
Postscript

examples, 25
preRotate, 450
prerotate() (Matrix method), 218
preScale, 450
prescale() (Matrix method), 219
preShear, 450
preshear() (Matrix method), 219

Index 465

PyMuPDF Documentation, Release 1.21.1

preTranslate, 450
pretranslate() (Matrix method), 219
prev_location() (Document method), 165
previous (Xml attribute), 344
previousLocation, 450

Q
Quad (built-in class), 281
quad (IRect attribute), 211
quad (Rect attribute), 290
quad_like (built-in variable), 375
quads

search_for, 257

R
rawdict

Annot.get_text, 136
Page.get_text, 245

rb (linkDest attribute), 217
read_contents() (Page method), 369
read_entry() (Archive method), 149
readContents, 450
reading order

text, 32
rearrange

pages, 62
recover_char_quad(), 371
recover_line_quad(), 371
recover_quad(), 358, 370
recover_span_quad(), 371
rect

add_freetext_annot, 230
Document, 155
Document.layout, 175
get_textbox, 246
open, 155

rect (Annot attribute), 144
Rect (built-in class), 286
rect (DisplayList attribute), 152
rect (IRect attribute), 211
rect (Link attribute), 214
rect (Page attribute), 262
rect (Quad attribute), 282
rect (Shape attribute), 303
rect (TextPage attribute), 317
rect (TextWriter attribute), 327
rect (Widget attribute), 335
rect_like (built-in variable), 375
rectangle

extract text, 32
reload_page() (Document method), 166
remove() (Xml method), 343
remove_attribute() (Xml method), 340
render_mode

insert_text, 239, 297
insert_textbox, 239, 300

replace_image
filename, 244
pixmap, 244
stream, 244
xref, 244

replace_image() (Page method), 244
reset() (Story method), 311
reset() (Widget method), 334
reset_mupdf_warnings() (Tools method), 331
resolution

image, 17
zoom, 17

resolution (built-in variable), 378
resolveLink, 450
resources (built-in variable), 376
root (Xml attribute), 344
rotate

add_freetext_annot, 230
Annot.update, 142
Document.convert_to_pdf, 167
Document.insert_pdf, 181
insert_image, 243
insert_text, 239, 297
insert_textbox, 239, 300
set_rotation, 255
show_pdf_page, 256

rotation (Annot attribute), 144
rotation (Page attribute), 260
rotation_matrix (Page attribute), 261
rotationMatrix, 450
round() (Rect method), 286
run() (DisplayList method), 151
run() (Page method), 364

S
samples (Pixmap attribute), 275
samples_mv (Pixmap attribute), 275
samples_ptr (Pixmap attribute), 276
save

examples, 25, 28
save() (Document method), 179
save() (Pixmap method), 271
save_snapshot() (Document method), 195
saveIncr() (Document method), 181
script (Widget attribute), 336
script_calc (Widget attribute), 336
script_change (Widget attribute), 336
script_format (Widget attribute), 336
script_stroke (Widget attribute), 336
scrub() (Document method), 178
search() (TextPage method), 316
search_for

466 Index

PyMuPDF Documentation, Release 1.21.1

clip, 257
flags, 257
quads, 257
textpage, 257

search_for() (Page method), 257
search_page_for() (Document method), 181
searchFor, 450
searchPageFor, 450
select() (Document method), 175
set_aa_level() (Tools method), 330
set_align() (Xml method), 340
set_alpha() (Pixmap method), 270
set_annot_stem() (Tools method), 329
set_artbox() (Page method), 260
set_attribute() (Xml method), 340
set_bgcolor() (Xml method), 341
set_bleedbox() (Page method), 260
set_blendmode() (Annot method), 139
set_bold() (Xml method), 341
set_border() (Annot method), 141
set_border() (Link method), 213
set_color() (Xml method), 341
set_colors() (Annot method), 141
set_colors() (Link method), 213
set_columns() (Xml method), 341
set_contents() (Page method), 368
set_cropbox() (Page method), 259
set_dpi() (Pixmap method), 269
set_flags() (Annot method), 141
set_flags() (Link method), 214
set_font() (Xml method), 341
set_fontsize() (Xml method), 341
set_id() (Xml method), 341
set_info() (Annot method), 137
set_irt_xref() (Annot method), 138
set_italic() (Xml method), 341
set_layer() (Document method), 160
set_layer_ui_config() (Document method), 161
set_leading() (Xml method), 341
set_line_ends() (Annot method), 138
set_lineheight() (Xml method), 342
set_margins() (Xml method), 342
set_mediabox() (Page method), 259
set_metadata() (Document method), 175
set_name() (Annot method), 140
set_oc() (Annot method), 138
set_oc() (Document method), 157
set_ocmd() (Document method), 158
set_opacity() (Annot method), 139
set_open() (Annot method), 138
set_origin() (Pixmap method), 269
set_page_labels() (Document method), 163
set_pagebreak_after() (Xml method), 342
set_pagebreak_before() (Xml method), 342

set_pixel() (Pixmap method), 269
set_popup() (Annot method), 139
set_properties() (Xml method), 342
set_rect

examples, 28
set_rect() (Annot method), 140
set_rect() (Pixmap method), 269
set_rotation

rotate, 255
set_rotation() (Annot method), 140
set_rotation() (Page method), 255
set_simple

insert_font, 241
set_small_glyph_heights() (Tools method), 329
set_subset_fontnames() (Tools method), 329
set_text_indent() (Xml method), 342
set_toc() (Document method), 176
set_toc_item() (Document method), 177
set_trimbox() (Page method), 260
set_xml_metadata() (Document method), 176
setAlpha, 451
setBlendMode, 451
setBorder, 451
setColors, 451
setCropBox, 451
setFlags, 451
setInfo, 451
setLanguage, 451
setLineEnds, 451
setMediaBox, 451
setMetadata, 451
setName, 451
setOC, 451
setOpacity, 451
setOrigin, 451
setPixel, 451
setRect, 451
setResolution, 451
setRotation, 451
setToC, 451
setXmlMetadata, 451
Shape (built-in class), 292
show_aa_level() (Tools method), 330
show_pdf_page

clip, 256
examples, 22, 25
keep_proportion, 256
overlay, 256
rotate, 256

show_pdf_page() (Page method), 256
show_progress

Document.insert_pdf, 181
showPDFpage, 451
shrink() (Pixmap method), 268

Index 467

PyMuPDF Documentation, Release 1.21.1

size (Pixmap attribute), 276
sort

Page.get_text, 245
soundGet, 451
sRGB_to_pdf(), 355
sRGB_to_rgb(), 355
start_at

Document.insert_pdf, 181
store_maxsize (Tools attribute), 333
store_shrink() (Tools method), 330
store_size (Tools attribute), 333
Story (built-in class), 309
stream

Document, 155
insert_image, 243
open, 155
replace_image, 244

stream (built-in variable), 377
stride (Pixmap attribute), 275
stroke_opacity

draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297
insert_text, 239, 297
insert_textbox, 239

subset_fonts() (Document method), 193
SVG

vector image, 25
switch_layer() (Document method), 158

T
table

extract, 33
tagname (Xml attribute), 344
TESSDATA_PREFIX, 360
text

Annot.get_text, 136
Page.get_text, 245
reading order, 32
rectangle, extract, 32

text (Xml attribute), 344
TEXT_ALIGN_CENTER (built-in variable), 381
TEXT_ALIGN_JUSTIFY (built-in variable), 381
TEXT_ALIGN_LEFT (built-in variable), 381
TEXT_ALIGN_RIGHT (built-in variable), 381

text_color
add_freetext_annot, 230
Annot.update, 142

text_color (Widget attribute), 335
text_cont (Shape attribute), 303
TEXT_DEHYPHENATE (built-in variable), 382
text_font (Widget attribute), 335
text_fontsize (Widget attribute), 336
TEXT_INHIBIT_SPACES (built-in variable), 382
text_length() (Font method), 205
text_maxlen (Widget attribute), 336
TEXT_MEDIABOX_CLIP (built-in variable), 382
TEXT_PRESERVE_IMAGES (built-in variable), 381
TEXT_PRESERVE_LIGATURES (built-in variable), 381
TEXT_PRESERVE_SPANS (built-in variable), 382
TEXT_PRESERVE_WHITESPACE (built-in variable), 381
text_rect (TextWriter attribute), 327
text_type (Widget attribute), 336
TEXTFLAGS_BLOCKS (built-in variable), 382
TEXTFLAGS_DICT (built-in variable), 382
TEXTFLAGS_HTML (built-in variable), 382
TEXTFLAGS_RAWDICT (built-in variable), 382
TEXTFLAGS_SEARCH (built-in variable), 382
TEXTFLAGS_TEXT (built-in variable), 382
TEXTFLAGS_WORDS (built-in variable), 382
TEXTFLAGS_XHTML (built-in variable), 382
TEXTFLAGS_XML (built-in variable), 382
textpage

get_textbox, 246
Page.get_text, 245
search_for, 257

TextPage (built-in class), 314
TextWriter (built-in class), 324
tint_with() (Pixmap method), 268
tintWith, 451
title (Outline attribute), 225
tl (IRect attribute), 211
tl (Rect attribute), 289
to_page

Document.convert_to_pdf, 167
Document.insert_pdf, 181

tobytes
examples, 25

tobytes() (Document method), 181
tobytes() (Pixmap method), 272
Tools (built-in class), 328
top_left (IRect attribute), 211
top_left (Rect attribute), 289
top_right (IRect attribute), 211
top_right (Rect attribute), 289
torect() (IRect method), 210
torect() (Rect method), 288
totalcont (Shape attribute), 303
tr (IRect attribute), 211

468 Index

PyMuPDF Documentation, Release 1.21.1

tr (Rect attribute), 289
trailer (built-in variable), 375
transform

get_image_bbox, 251
get_image_rects, 251

transform() (Point method), 280
transform() (Quad method), 282
transform() (Rect method), 287
transformation_matrix (Page attribute), 261
transformationMatrix, 451
trimbox (Page attribute), 260
type (Annot attribute), 144

U
ufilename

Annot.update_file, 143
Document.embfile_add, 185
Document.embfile_upd, 187

ul (Quad attribute), 282
unicode_to_glyph_name(), 356
unicode_to_glyph_name() (Font method), 205
unit (Point attribute), 280
unitvector (built-in variable), 378
unset_quad_corrections() (Tools method), 330
update() (Annot method), 142
update() (Widget method), 334
update_file() (Annot method), 143
update_link() (Page method), 237
update_object() (Document method), 189
update_stream() (Document method), 189
updateLink, 451
updateObject, 451
updateStream, 451
ur (Quad attribute), 283
uri (Link attribute), 214
uri (linkDest attribute), 217
uri (Outline attribute), 225

V
valid_codepoints() (Font method), 203
vector

image SVG, 25
version (built-in variable), 380
VersionBind (built-in variable), 379
VersionDate (built-in variable), 380
VersionFitz (built-in variable), 380
vertices (Annot attribute), 145

W
w (Pixmap attribute), 276
warp() (Pixmap method), 273
Widget (built-in class), 334
widgets() (Page method), 239
width

Document.insert_page, 182
Document.layout, 175
Document.new_page, 182
draw_bezier, 240
draw_circle, 240
draw_curve, 241
draw_line, 240
draw_oval, 240
draw_polyline, 240
draw_quad, 241
draw_rect, 241
draw_sector, 240
draw_squiggle, 240
draw_zigzag, 240
finish, 297
open, 155

width (IRect attribute), 211
width (Pixmap attribute), 276
width (Quad attribute), 283
width (Rect attribute), 290
width (Shape attribute), 302
words

Annot.get_text, 136
Page.get_text, 245

wrap_contents() (Page method), 367
wrapContents, 451
write() (Story method), 311
write_stabilized() (Story static method), 312
write_stabilized_with_links() (Story static

method), 312
write_text() (Page method), 239
write_text() (TextWriter method), 326
write_with_links() (Story method), 312
writeImage, 451
writePNG, 451
writeText, 451
wrong

file extension, 61

X
x (Pixmap attribute), 277
x (Point attribute), 280
x0 (IRect attribute), 212
x0 (Rect attribute), 290
x1 (IRect attribute), 212
x1 (Rect attribute), 290
xhtml

Annot.get_text, 136
Page.get_text, 245

xml
Annot.get_text, 136
Page.get_text, 245

Xml (built-in class), 339
xml_metadata_xref() (Document method), 364

Index 469

PyMuPDF Documentation, Release 1.21.1

xref
delete_image, 245
insert_image, 243
replace_image, 244

xref (Annot attribute), 145
xref (built-in variable), 378
xref (Link attribute), 215
xref (Page attribute), 262
xref (Widget attribute), 336
xref_copy() (Document method), 190
xref_get_key() (Document method), 170
xref_get_keys() (Document method), 169
xref_length() (Document method), 370
xref_object() (Document method), 188
xref_set_key() (Document method), 171
xref_stream() (Document method), 188
xref_stream_raw() (Document method), 188
xref_xml_metadata() (Document method), 193
xrefLength, 451
xrefObject, 451
xrefs

get_image_info, 250
xrefStream, 452
xrefStreamRaw, 452
xres (Pixmap attribute), 277

Y
y (Pixmap attribute), 277
y (Point attribute), 280
y0 (IRect attribute), 212
y0 (Rect attribute), 290
y1 (IRect attribute), 212
y1 (Rect attribute), 290
yres (Pixmap attribute), 277

Z
zoom, 17

resolution, 17

470 Index

	Introduction
	Note on the Name fitz
	License and Copyright
	Covered Version

	Installation
	Installation when a suitable wheel is not available
	Notes
	Install from source without using an sdist
	Running tests
	Enabling Integrated OCR Support

	Tutorial
	Importing the Bindings
	Opening a Document
	Some Document Methods and Attributes
	Accessing Meta Data
	Working with Outlines
	Working with Pages
	Inspecting the Links, Annotations or Form Fields of a Page
	Rendering a Page
	Saving the Page Image in a File
	Displaying the Image in GUIs
	wxPython
	Tkinter
	PyQt4, PyQt5, PySide

	Extracting Text and Images
	Searching for Text

	Working with Stories
	PDF Maintenance
	Modifying, Creating, Re-arranging and Deleting Pages
	Joining and Splitting PDF Documents
	Embedding Data
	Saving

	Closing
	Further Reading

	Recipes
	Recipes: Images
	How to Make Images from Document Pages
	How to Increase Image Resolution
	How to Create Partial Pixmaps (Clips)
	How to Zoom a Clip to a GUI Window
	How to Create or Suppress Annotation Images
	How to Extract Images: Non-PDF Documents
	How to Extract Images: PDF Documents
	How to Handle Image Masks
	How to Make one PDF of all your Pictures (or Files)
	How to Create Vector Images
	How to Convert Images
	How to Use Pixmaps: Glueing Images
	How to Use Pixmaps: Making a Fractal
	How to Interface with NumPy
	How to Add Images to a PDF Page

	Recipes: Text
	How to Extract all Document Text
	How to Extract Text from within a Rectangle
	How to Extract Text in Natural Reading Order
	How to Extract Tables from Documents
	How to Mark Extracted Text
	How to Mark Searched Text
	How to Mark Non-horizontal Text
	How to Analyze Font Characteristics
	How to Insert Text
	How to Write Text Lines
	How to Fill a Text Box
	How to Use Non-Standard Encoding

	Recipes: Annotations
	How to Add and Modify Annotations
	How to Use FreeText
	Using Buttons and JavaScript
	How to Use Ink Annotations

	Recipes: Drawing and Graphics
	Extracting Drawings

	Recipes: Multiprocessing
	Recipes: General
	How to Open with a Wrong File Extension
	How to Embed or Attach Files
	How to Delete and Re-Arrange Pages
	How to Join PDFs
	How to Add Pages
	How To Dynamically Clean Up Corrupt PDFs
	How to Split Single Pages
	How to Combine Single Pages
	How to Convert Any Document to PDF
	How to Deal with Messages Issued by MuPDF
	How to Deal with PDF Encryption

	Recipes: Common Issues and their Solutions
	Changing Annotations: Unexpected Behaviour
	Problem
	Cause
	Solutions

	Misplaced Item Insertions on PDF Pages
	Problem
	Cause
	Solutions

	Missing or Unreadable Extracted Text
	Problem: no text is extracted
	Cause
	Solution
	Problem: unreadable text
	Cause
	Solution

	Recipes: Low-Level Interfaces
	How to Iterate through the xref Table
	How to Handle Object Streams
	How to Handle Page Contents
	How to Access the PDF Catalog
	How to Access the PDF File Trailer
	How to Access XML Metadata
	How to Extend PDF Metadata
	How to Read and Update PDF Objects

	Recipes: Journalling
	Example Session 1
	Example Session 2

	Recipes: Stories
	How to add a line of text with some formatting
	How to use images
	Reading external HTML and CSS for a Story
	How to output database content with Story templates
	How to integrate with existing PDFs
	How to make multi-columned layouts and access fonts from package pymupdf-fonts
	How make a layout which wraps around a predefined “no go area” layout
	How to output a table
	How to create a simple grid layout
	How to generate a Table of Contents
	How to display a list from JSON data
	Using the alternative Story.write*() functions
	How to do basic layout with Story.write()
	How to do iterative layout for a table of contents with Story.write_stabilized()
	How to do iterative layout and create PDF links with Story.write_stabilized_links()

	Module fitz
	Invocation
	Cleaning and Copying
	Extracting Fonts and Images
	Joining PDF Documents
	Low Level Information
	Embedded Files Commands
	Information
	Extraction
	Deletion
	Insertion
	Updates
	Copying

	Text Extraction

	Classes
	Annot
	Annotation Icons in MuPDF
	Example

	Archive
	Colorspace
	DisplayList
	Document
	set_metadata() Example
	set_toc() Demonstration
	insert_pdf() Examples
	Other Examples

	DocumentWriter
	Font
	Identity
	IRect
	Link
	linkDest
	Matrix
	Examples
	Shifting
	Flipping
	Shearing
	Rotating

	Outline
	Page
	Modifying Pages
	Description of get_links() Entries
	Notes on Supporting Links
	Reading (pertains to method get_links() and the first_link property chain)
	Writing

	Homologous Methods of Document and Page

	Pixmap
	Supported Input Image Formats
	Supported Output Image Formats

	Point
	Quad
	Remark
	Algebra and Containment Checks

	Rect
	Shape
	Usage
	Examples
	Common Parameters

	Story
	Element Positioning CallBack function
	Attributes of the ElementPosition class

	TextPage
	Structure of Dictionary Outputs
	Page Dictionary
	Block Dictionaries
	Line Dictionary
	Span Dictionary
	Character Dictionary for extractRAWDICT()

	TextWriter
	Tools
	Example Session

	Widget
	Standard Fonts for Widgets
	Supported Widget Types

	Xml
	Setting Text properties
	Context Manager support

	Operator Algebra for Geometry Objects
	General Remarks
	Unary Operations
	Binary Operations
	Some Examples
	Manipulation with numbers
	Manipulation with “like” Objects

	Low Level Functions and Classes
	Functions
	Device
	Working together: DisplayList and TextPage
	Create a DisplayList
	Generate Pixmap
	Perform Text Search
	Extract Text
	Further Performance improvements
	Pixmap
	TextPage

	Glossary
	Constants and Enumerations
	Constants
	Document Permissions
	PDF encryption method codes
	Font File Extensions
	Text Alignment
	Text Extraction Flags
	Link Destination Kinds
	Link Destination Flags
	Annotation Related Constants
	Annotation Types
	Annotation Flag Bits
	Annotation Line Ending Styles

	Widget Constants
	Widget Types (field_type)
	Text Widget Subtypes (text_format)
	Widget flags (field_flags)

	PDF Standard Blend Modes
	Stamp Annotation Icons

	Color Database
	Function getColor()
	Printing the Color Database

	Appendix 1: Details on Text Extraction
	General structure of a TextPage
	Plain Text
	BLOCKS
	WORDS
	HTML
	Controlling Quality of HTML Output
	DICT (or JSON)
	RAWDICT (or RAWJSON)
	XML
	XHTML
	Text Extraction Flags Defaults
	Performance

	Appendix 2: Considerations on Embedded Files
	General
	MuPDF Support
	PyMuPDF Support

	Appendix 3: Assorted Technical Information
	Image Transformation Matrix
	PDF Base 14 Fonts
	Adobe PDF References
	Using Python Sequences as Arguments in PyMuPDF
	Ensuring Consistency of Important Objects in PyMuPDF
	Design of Method Page.show_pdf_page()
	Purpose and Capabilities
	Technical Implementation

	Redirecting Error and Warning Messages

	Change Log
	Deprecated Names
	Index

