

DATABASE SYSTEMS

The Complete Book

DATABASE SYSTEMS
The Complete Book

Second Edition

Hector Garcia-Molina

Jeffrey D. Ullman

Jennifer Widom

Department of Computer Science
Stanford University

Upper Saddle River, New Jersey 07458

CD• ' l N O T I C E
n This work is protected by U.S. copyright laws and is provided solely

for the use of college instructors in reviewing course materials for
classroom use. Dissemination or sale of this work, or any part

• (including on the World Wide Web), is not permitted.

Editorial Director, Computer Science and Engineering: Marcia J. Horton
Executive Editor Tracy Dunkelberger
Editorial Assistant: Melinda Haggerty
Director of Marketing: Margaret Waples
Marketing Manager: Christopher Kelly
Senior Managing Editor: Scott Disanno
Production Editor: Irwin Zucker
Art Director: Jayne Conte
Cover Designer: Margaret Kenselaar
Cover Art: Tamara L Newman
Manufacturing Buyer: Lisa McDowell
Manufacturing Manager: Alan Fischer

© 2009,2002 by Pearson Education Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, NJ 07458

P E A R S O N

P re n tic o
H a ll

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard
to these programs or the documentation contained in this book. The author and publisher shall not be
liable in any event for incidental or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN D-13-bQb?Dl-fl
178-0-13-b0b?01-b

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educaci6n de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

Preface

This book covers the core of the material taught in the database sequence
at Stanford. The introductory course, CS145, uses the first twelve chapters,
and is designed for all students — those who want to use database systems
as well as those who want to get involved in database implementation. The
second course, CS245 on database implementation, covers most of the rest of
the book. However, some material is covered in more detail in special topics
courses. These include CS346 (implementation project), which concentrates on
query optimization as in Chapters 15 and 16. Also, CS345A, on data mining
and Web mining, covers the material in the last two chapters.

W hat’s N ew in the Second Edition
After a brief introduction in Chapter 1, we cover relational modeling in Chapters
2-4. Chapter 4 is devoted to high-level modeling. There, in addition to the
E /R model, we now cover UML (Unified Modeling Language). We also have
moved to Chapter 4 a shorter version of the material on ODL, treating it as a
design language for relational database schemas.

The material on functional and multivalued dependencies has been mod
ified and remains in Chapter 3. We have changed our viewpoint, so that a
functional dependency is assumed to have a set of attributes on the right. We
have also given explicitly certain algorithms, including the “chase,” that allow
us to manipulate dependencies. We have augmented our discussion of third
normal form to include the 3NF synthesis algorithm and to make clear what
the tradeoff between 3NF and BCNF is.

Chapter 5 contains the coverage of relational algebra from the previous
edition, and is joined by (part of) the treatment of Datalog from the old Chap
ter 10. The discussion of recursion in Datalog is either moved to the book’s
Web site or combined with the treatment of recursive SQL in Chapter 10 of
this edition.

Chapters 6-10 are devoted to aspects of SQL programming, and they repre
sent a reorganization and augmentation of the earlier book’s Chapters 6, 7, 8,
and parts of 10. The material on views and indexes has been moved to its own
chapter, number 8, and this material has been augmented with a discussion of

vi PREFACE

important new topics, including materialized views, and automatic selection of
indexes.

The new Chapter 9 is based on the old Chapter 8 (embedded SQL). It is
introduced by a new section on 3-tier architecture. It also includes an expanded
discussion of JDBC and new coverage of PHP.

Chapter 10 collects a number of advanced SQL topics. The discussion of
authorization from the old Chapter 8 has been moved here, as has the discussion
of recursive SQL from the old Chapter 10. Data cubes, from the old Chapter 20,
are now covered here. The rest of the chapter is devoted to the nested-relation
model (from the old Chapter 4) and object-relational features of SQL (from the
old Chapter 9).

Then, Chapters 11 and 12 cover XML and systems based on XML. Ex
cept for material at the end of the old Chapter 4, which has been moved to
Chapter 11, this material is all new. Chapter 11 covers modeling; it includes
expanded coverage of DTD’s, along with new material on XML Schema. Chap
ter 12 is devoted to programming, and it includes sections on XPath, XQuery,
and XSLT.

Chapter 13 begins the study of database implementation. It covers disk
storage and the file structures that are built on disks. This chapter is a con
densation of material that, in the first edition, occupied Chapters 11 and 12.

Chapter 14 covers index structures, including B-trees, hashing, and struc
tures for multidimensional indexes. This material also condenses two chapters,
13 and 14, from the first edition.

Chapters 15 and 16 cover query execution and query optimization, respec
tively. They are similar to the old chapters of the same numbers. Chapter 17
covers logging, and Chapter 18 covers concurrency control; these chapters are
also similar to the old chapters with the same numbers. Chapter 19 contains
additional topics on concurrency: recovery, deadlocks, and long transactions.
This material is a subset of the old Chapter 19.

Chapter 20 is on parallel and distributed databases. In addition to material
on parallel query execution from the old Chapter 15 and material on distributed
locking and commitment from the old Chapter 19, there are several new sec
tions on distributed query execution: the map-reduce framework for parallel
computation, peer-to-peer databases and their implementation of distributed
hash tables.

Chapter 21 covers information integration. In addition to material on this
subject from the old Chapter 20, we have added a section on local-as-view medi
ators and a section on entity resolution (finding records from several databases
that refer to the same entity, e.g., a person).

Chapter 22 is on data mining. Although there was some material on the
subject in the old Chapter 20, almost all of this chapter is new. It covers asso
ciation rules and frequent itemset mining, including both the famous A-Priori
Algorithm and certain efficiency improvements. Chapter 22 includes the key
techniques of shingling, minhashing, and locality-sensitive hashing for finding
similar items in massive databases, e.g., Web pages that quote substantially

PREFACE vii

from other Web pages. The chapter concludes with a study of clustering, espe
cially for massive datasets.

Chapter 23, all new, addresses two important ways in which the Internet
has impacted database technology. First is search engines, where we discuss
algorithms for crawling the Web, the well-known PageRank algorithm for eval
uating the importance of Web pages, and its extensions. This chapter also
covers data-stream-management systems. We discuss the stream data model
and SQL language extensions, and conclude with several interesting algorithms
for executing queries on streams.

Prerequisites
We have used the book at the “mezzanine” level, in a sequence of courses
taken both by undergraduates and by beginning graduate students. The formal
prerequisites for the course are Sophomore-level treatments of:

1. Data structures, algorithms, and discrete math, and

2. Software systems, software engineering, and programming languages.

Of this material, it is important that students have at least a rudimentary un
derstanding of such topics as: algebraic expressions and laws, logic, basic data
structures, object-oriented programming concepts, and programming environ
ments. However, we believe that adequate background is acquired by the Junior
year of a typical computer science program.

Exercises
The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Support on the World W ide Web
The book’s home page is

http://infolab.Stanford.edu/~ullman/dscb.html

You will find errata as we learn of them, and backup materials, including home-
works, projects, and exams. We shall also make available there the sections from
the first edition that have been removed from the second.

In addition, there is an accompanying set of on-line homeworks and pro
gramming labs using a technology developed by Gradiance Corp. See the sec
tion following the Preface for details about the GOAL system. GOAL service

viii PREFACE

can be purchased at http://w w w .prenliall.com /goal. Instructors who want
to use the system in their classes should contact their Prentice-Hall represen
tative or request instructor authorization through the above Web site.

There is a solutions manual for instructors available at

h t t p : //www.p re n h a ll. com/ullman

This page also gives you access to GOAL and all book materials.

Acknowledgements
We would like to thank Donald Kossmann for helpful discussions, especially con
cerning XML and its associated programming systems. Also, Bobbie Cochrane
assisted us in understanding trigger semantics for a earlier edition.

A large number of people have helped us, either with the development of this
book or its predecessors, or by contacting us with errata in the books and/or
other Web-based materials. It is our pleasure to acknowledge them all here.

Marc Abromowitz, Joseph H. Adamski, Brad Adelberg, Gleb Ashimov, Don
ald Aingworth, Teresa Almeida, Brian Babcock, Bruce Baker, Yunfan Bao,
Jonathan Becker, Margaret Benitez, Eberhard Bertsch, Larry Bonham, Phillip
Bonnet, David Brokaw, Ed Burns, Alex Butler, Karen Butler, Mike Carey,
Christopher Chan, Sudarshan Chawathe.

Also Per Christensen, Ed Chang, Surajit Chaudhuri, Ken Chen, Rada
Chirkova, Nitin Chopra, Lewis Church, Jr., Bobbie Cochrane, Michael Cole,
Alissa Cooper, Arturo Crespo, Linda DeMichiel, Matthew F. Dennis, Tom
Dienstbier, Pearl D’Souza, Oliver Duschka, Xavier Faz, Greg Fichtenholtz, Bart
Fisher, Simon Frettloeh, Jarl Friis.

Also John Fry, Chiping Fu, Tracy Fujieda, Prasanna Ganesan, Suzanne
Garcia, Mark Gjol, Manish Godara, Seth Goldberg, Jeff Goldblat, Meredith
Goldsmith, Luis Gravano, Gerard Guillemette, Himanshu Gupta, Petri Gyn-
ther, Zoltan Gyongyi, Jon Heggland, Rafael Hernandez, Masanori Higashihara,
Antti Hjelt, Ben Holtzman, Steve Huntsberry.

Also Sajid Hussain, Leonard Jacobson, Thulasiraman Jeyaraman, Dwight
Joe, Brian Jorgensen, Mathew P. Johnson, Sameh Kamel, Jawed Karim, Seth
Katz, Pedram Keyani, Victor Kimeli, Ed Knorr, Yeong-Ping Koh, David Koller,
Gyorgy Kovacs, Phillip Koza, Brian Kulman, Bill Labiosa, Sang Ho Lee, Young-
han Lee, Miguel Licona.

Also Olivier Lobry, Chao-Jun Lu, Waynn Lue, John Manz, Arun Marathe,
Philip Minami, Le-Wei Mo, Fabian Modoux, Peter Mork, Mark Mortensen,
Ramprakash Narayanaswami, Hankyung Na, Mor Naaman, Mayur Naik, Marie
Nilsson, Torbjorn Norbye, Chang-Min Oh, Mehul Patel, Soren Peen, Jian Pei.

Also Xiaobo Peng, Bert Porter, Limbek Reka, Prahash Ramanan, Nisheeth
Ranjan, Suzanne Rivoire, Ken Ross, Tim Roughgarten, Mema Roussopou-
los, Richard Scherl, Loren Shevitz, Shrikrishna Shrin, June Yoshiko Sison,

PREFACE ix

Man Cho A. So, Elizabeth Stinson, Qi Su, Ed Swierk, Catherine Tornabene,
Anders Uhl, Jonathan Ullman, Mayank Upadhyay.

Also Anatoly Varakin, Vassilis Vassalos, Krishna Venuturimilli, Vikram Vi-
jayaraghavan, Terje Viken, Qiang Wang, Steven Whang, Mike Wiacek, Kristian
Widjaja, Janet Wu, Sundar Yamunachari, Takeshi Yokukawa, Bing Yu, Min-Sig
Yun, Torben Zahle, Sandy Zhang.
The remaining errors are ours, of course.

H. G.-M.
J. D. U.
J. W.
Stanford, CA
March, 2008

X

GOAL

Gradiance Online Accelerated Learning (GOAL) is Pearson’s premier online
homework and assessment system. GOAL is designed to minimize student frus
tration while providing an interactive teaching experience outside the classroom.
(Visit www.prenhall.com/goal for a demonstration and additional information.)

With GOAL’s immediate feedback and book-specific hints and pointers,
students will have a more efficient and effective learning experience. GOAL
delivers immediate assessment and feedback via two kinds of assignments: mul
tiple choice homework exercises and interactive lab projects.

The homework consists of a set of multiple choice questions designed to test
student knowledge of a solved problem. When answers are graded as incorrect,
students are given a hint and directed back to a specific section in the course
textbook for helpful information. Note: Students that are not enrolled in a
class may want to enroll in a “Self-Study Course” that allows them to complete
the homework exercises on their own.

Unlike syntax checkers and compilers, GOAL’s lab projects check for both
syntactic and semantic errors. GOAL determines if the student’s program runs
but more importantly, when checked against a hidden data set, verifies that it
returns the correct result. By testing the code and providing immediate feed
back, GOAL lets you know exactly which concepts the students have grasped
and which ones need to be revisited.

In addition, the GOAL package specific to this book includes programming
exercises in SQL and XQuery. Submitted queries are tested for correctness and
incorrect results lead to examples of where the query goes wrong. Students can
try as many times as they like but writing queries that respond correctly to the
examples is not sufficient to get credit for the problem.

Instructors should contact their local Pearson Sales Representative for sales
and ordering information for the GOAL Student Access Code and textbook
value package.

About the Authors

HECTOR GARCIA-MOLINA is the L. Bosack and S. Lerner Professor of Com
puter Science and Electrical Engineering at Stanford University. His research
interests include digital libraries, information integration, and database applica
tion on the Internet. He was a recipient of the SIGMOD Innovations Award and
a member of PITAC (President’s Information-Technology Advisory Council).
He currently serves on the Board of Directors of Oracle Corp.

JEFFREY D. ULLMAN is the Stanford W. Ascherman Professor of Computer
Science (emeritus) at Stanford University. He is the author or co-author of
16 books, including Elements of ML Programming (Prentice Hall 1998). His
research interests include data mining, information integration, and electronic
education. He is a member of the National Academy of Engineering, and recip
ient of a Guggenheim Fellowship, the Karl V. Karlstrom Outstanding Educator
Award, the SIGMOD Contributions and Edgar F. Codd Innovations Awards,
and the Knuth Prize.

JENNIFER WIDOM is Professor of Computer Science and Electrical Engi
neering at Stanford University. Her research interests span many aspects of
nontraditional data management. She is an ACM Fellow and a member of the
National Academy of Engineering, she received the ACM SIGMOD Edgar F.
Codd Innovations Award in 2007 and was a Guggenheim Fellow in 2000, and she
has served on a variety of program committees, advisory boards, and editorial
boards.

Table of Contents

1 T h e W orlds o f D atabase S ystem s 1
1.1 The Evolution of Database Systems ... 1

1.1.1 Early Database Management S y s te m s 2
1.1.2 Relational Database S y s te m s ... 3
1.1.3 Smaller and Smaller S y s te m s ... 3
1.1.4 Bigger and Bigger S y s te m s ... 4
1.1.5 Information In te g ra tio n ... 4

1.2 Overview of a Database Management S y s te m 5
1.2.1 Data-Definition Language Commands 5
1.2.2 Overview of Query Processing... 5
1.2.3 Storage and Buffer M an ag em en t... 7
1.2.4 Transaction Processing.. 8
1.2.5 The Query Processor... 9

1.3 Outline of Database-System S tu d ie s ... 10
1.4 References for Chapter 1 ... 12

1 Relational Database Modeling 15

2 T he R elation a l M od el o f D ata 17
2.1 An Overview of Data M o d e ls .. 17

2.1.1 What is a Data M o d e l? ... 17
2.1.2 Important Data M o d e ls ... 18
2.1.3 The Relational Model in B rief... 18
2.1.4 The Semistructured Model in B rie f...................................... 19

2.1.5 Other Data M odels.. 20
2.1.6 Comparison of Modeling Approaches................................... 21

2.2 Basics of the Relational Model ...21
2.2.1 A ttribu tes.. 22
2.2.2 Schem as... 22
2.2.3 T u p les.. 22
2.2.4 Domains... 23
2.2.5 Equivalent Representations of a Relation 23

xiii

2.2.6 Relation In s tan c es ... 24
2.2.7 Keys of Relations.. 25
2.2.8 An Example Database S ch em a ... 26
2.2.9 Exercises for Section 2 .2 .. 28

2.3 Defining a Relation Schema in SQ L.. 29
2.3.1 Relations in S Q L .. 29
2.3.2 Data T y p e s .. 30
2.3.3 Simple Table Declarations... 31
2.3.4 Modifying Relation Schemas ... 33
2.3.5 Default V a lu e s ... 34
2.3.6 Declaring K e y s ... 34
2.3.7 Exercises for Section 2 .3 .. 36

2.4 An Algebraic Query Language .. 38
2.4.1 Why Do We Need a Special Query Language?...................38

2.4.2 What is an A lgebra?.. 38
2.4.3 Overview of Relational A lgebra... 39
2.4.4 Set Operations on Relations.. 39

2.4.5 Projection...41
2.4.6 Selection ...42

2.4.7 Cartesian P ro d u c t ... 43
2.4.8 Natural J o in s .. 43

2.4.9 Theta-Joins..45
2.4.10 Combining Operations to Form Q u e rie s47
2.4.11 Naming and Renaming...49

2.4.12 Relationships Among O perations.. 50
2.4.13 A Linear Notation for Algebraic E x p ressio n s...................51

2.4.14 Exercises for Section 2 .4 .. 52
2.5 Constraints on R elations.. 58

2.5.1 Relational Algebra as a Constraint L anguage...................59
2.5.2 Referential Integrity C o n stra in ts .. 59
2.5.3 Key Constraints .. 60
2.5.4 Additional Constraint E x am p les .. 61
2.5.5 Exercises for Section 2 .5 .. 62

2.6 Summary of Chapter 2 ... 63
2.7 References for Chapter 2 .. 65

3 Design T heory for R elational D atabases 67
3.1 Functional Dependencies.. 67

3.1.1 Definition of Functional Dependency.................................. 68
3.1.2 Keys of Relations.. 70
3.1.3 Superkeys... 71
3.1.4 Exercises for Section 3 .1 .. 71

3.2 Rules About Functional D ependencies... 72
3.2.1 Reasoning About Functional D ependencies...................... 72
3.2.2 The Splitting/Combining R u l e .. 73

xiv TABLE OF CONTENTS

TABLE OF CONTENTS xv

3.2.3 Trivial Functional Dependencies ... 74
3.2.4 Computing the Closure of A ttribu tes................................... 75
3.2.5 Why the Closure Algorithm W orks...................................... 77
3.2.6 The Transitive R u l e ... 79

3.2.7 Closing Sets of Functional Dependencies............................ 80
3.2.8 Projecting Functional D ependencies...................................81
3.2.9 Exercises for Section 3 .2 ...83

3.3 Design of Relational Database Schemas ...85
3.3.1 Anomalies..86
3.3.2 Decomposing Relations ...86
3.3.3 Boyce-Codd Normal F o rm ..88
3.3.4 Decomposition into BCN F..89
3.3.5 Exercises for Section 3 .3 ...92

3.4 Decomposition: The Good, Bad, and U gly93
3.4.1 Recovering Information from a Decomposition94
3.4.2 The Chase Test for Lossless J o i n ...96
3.4.3 Why the Chase W orks..99

3.4.4 Dependency P rese rv a tio n ..100
3.4.5 Exercises for Section 3 .4 ...102

3.5 Third Normal Form ..102
3.5.1 Definition of Third Normal F o rm ...102
3.5.2 The Synthesis Algorithm for 3NF Schemas103
3.5.3 Why the 3NF Synthesis Algorithm W o rk s 104
3.5.4 Exercises for Section 3 .5 ...105

3.6 Multivalued Dependencies..105
3.6.1 Attribute Independence and Its Consequent Redundancy 106

3.6.2 Definition of Multivalued D ependencies............................ 107
3.6.3 Reasoning About Multivalued Dependencies...................... 108
3.6.4 Fourth Normal F o rm ...110
3.6.5 Decomposition into Fourth Normal Form I l l
3.6.6 Relationships Among Normal F o rm s113
3.6.7 Exercises for Section 3 .6 ...113

3.7 An Algorithm for Discovering MVD’s ..115
3.7.1 The Closure and the C h a s e .. 115
3.7.2 Extending the Chase to MVD’s ..116
3.7.3 Why the Chase Works for MVD’s118
3.7.4 Projecting MVD’s .. 119
3.7.5 Exercises for Section 3 .7 ...120

3.8 Summary of Chapter 3 .. 121
3.9 References for Chapter 3 ... 122

4 High-Level D a tabase M odels 125
4.1 The Entity/Relationship M odel...126

4.1.1 Entity S e t s .. 126
4.1.2 A ttribu tes..126
4.1.3 R elationships... 127
4.1.4 Entity-Relationship D iagram s... 127
4.1.5 Instances of an E /R D iagram ... 128
4.1.6 Multiplicity of Binary E /R R elationsh ips......................... 129
4.1.7 Multiway R ela tionsh ips.. 130
4.1.8 Roles in R elationships..131
4.1.9 Attributes on R elationships.. 134
4.1.10 Converting Multiway Relationships to B in a ry134
4.1.11 Subclasses in the E /R M o d e l...135
4.1.12 Exercises for Section 4 .1 .. 138

4.2 Design Principles..140
4.2.1 Faithfulness.. 140
4.2.2 Avoiding R edundancy ..141
4.2.3 Simplicity Counts ..142
4.2.4 Choosing the Right Relationships...142
4.2.5 Picking the Right Kind of E lem ent......................................144
4.2.6 Exercises for Section 4 .2 .. 145

4.3 Constraints in the E /R M odel..148
4.3.1 Keys in the E /R M o d e l .. 148
4.3.2 Representing Keys in the E /R Model 149
4.3.3 Referential In te g r ity .. ■ ■ • • 150
4.3.4 Degree C onstraints..151
4.3.5 Exercises for Section 4 .3 .. 151

4.4 Weak Entity S e ts ..152
4.4.1 Causes of Weak Entity S e t s .. 152
4.4.2 Requirements for Weak Entity S e ts153
4.4.3 Weak Entity Set N o tation ... 155
4.4.4 Exercises for Section 4 .4 .. 156

4.5 From E /R Diagrams to Relational Designs......................................157
4.5.1 From Entity Sets to Relations...157
4.5.2 From E /R Relationships to Relations 158
4.5.3 Combining R elations...160
4.5.4 Handling Weak Entity S e t s .. 161
4.5.5 Exercises for Section 4 .5 ...163

4.6 Converting Subclass Structures to R elations.................................. 165
4.6.1 E/R-Style C onversion ..166
4.6.2 An Object-Oriented A p p ro a c h ..167
4.6.3 Using Null Values to Combine R elations............................ 168
4.6.4 Comparison of A p p ro ach es .. 169
4.6.5 Exercises for Section 4 .6 .. 171

4.7 Unified Modeling L anguage ...171

xvi TABLE OF CONTENTS

4.7.1 UML C la sse s ... 172
4.7.2 Keys for UML c la s s e s ..173
4.7.3 Associations...173
4.7.4 Self-Associations... 175
4.7.5 Association Classes.. 175
4.7.6 Subclasses in U M L .. 176
4.7.7 Aggregations and Compositions.. 177
4.7.8 Exercises for Section 4 .7 ...179

4.8 From UML Diagrams to R e la tio n s .. 179
4.8.1 UML-to-Relations Basics ... 179
4.8.2 From UML Subclasses to Relations......................................180

4.8.3 From Aggregations and Compositions to Relations 181
4.8.4 The UML Analog of Weak Entity S e ts 181
4.8.5 Exercises for Section 4 .8 ...183

4.9 Object Definition L anguage...183
4.9.1 Class D eclara tions..184
4.9.2 Attributes in O D L ..184
4.9.3 Relationships in O D L ..185
4.9.4 Inverse Relationships...186
4.9.5 Multiplicity of Relationships ... 186
4.9.6 Types in ODL .. 188
4.9.7 Subclasses in O D L ..190
4.9.8 Declaring Keys in O D L ...191
4.9.9 Exercises for Section 4 .9 ...192

4.10 From ODL Designs to Relational D e s ig n s193
4.10.1 From ODL Classes to Relations.. 193
4.10.2 Complex Attributes in C la s s e s .. 194
4.10.3 Representing Set-Valued Attributes195
4.10.4 Representing Other Type Constructors............................... 196
4.10.5 Representing ODL R elationships...198
4.10.6 Exercises for Section 4 .1 0 ... 198

4.11 Summary of Chapter 4 .. 200
4.12 References for Chapter 4 ... 202

II Relational Database Programming 203

5 A lgebraic and Logical Q uery Languages 205
5.1 Relational Operations on B a g s ...205

5.1.1 Why B a g s ? ...206
5.1.2 Union, Intersection, and Difference of B a g s 207
5.1.3 Projection of B a g s ..208
5.1.4 Selection on B ags... 209
5.1.5 Product of Bags ... 210
5.1.6 Joins of B a g s ... 210

TABLE OF CONTENTS xvii

TABLE OF CONTENTS

5.1.7 Exercises for Section 5 .1 .. 212
5.2 Extended Operators of Relational A lgebra......................................213

5.2.1 Duplicate E lim ination ..214
5.2.2 Aggregation O perators..214
5.2.3 G ro u p in g ..215
5.2.4 The Grouping O p e ra to r .. 216
5.2.5 Extending the Projection O perato r......................................217
5.2.6 The Sorting O p e ra to r ..219
5.2.7 Outerjoins... 219
5.2.8 Exercises for Section 5 .2 .. 222

5.3 A Logic for Relations... 222
5.3.1 Predicates and A to m s ..223
5.3.2 Arithmetic A to m s ..223
5.3.3 Datalog Rules and Q u e r ie s .. 224
5.3.4 Meaning of Datalog R u le s ... 225
5.3.5 Extensional and Intensional Predicates............................... 228
5.3.6 Datalog Rules Applied to B a g s ..228
5.3.7 Exercises for Section 5 .3 .. 230

5.4 Relational Algebra and D ata log ...230
5.4.1 Boolean Operations ...231
5.4.2 P rojection... 232
5.4.3 Selection ... 232
5.4.4 P ro d u c t.. 235
5.4.5 Jo in s ...235
5.4.6 Simulating Multiple Operations with D a ta lo g236

5.4.7 Comparison Between Datalog and Relational Algebra . . 238
5.4.8 Exercises for Section 5 .4 .. 238

5.5 Summary of Chapter 5 .. 240
5.6 References for Chapter 5 ...241

T he D atabase Language SQL 243
6.1 Simple Queries in S Q L ..244

6.1.1 Projection in S Q L ..246
6.1.2 Selection in S Q L ...248
6.1.3 Comparison of S tr in g s ..250
6.1.4 Pattern Matching in S Q L ... 250
6.1.5 Dates and T im e s ...251
6.1.6 Null Values and Comparisons Involving NULL...................252
6.1.7 The Truth-Value UNKNOWN... 253
6.1.8 Ordering the O u tp u t..................................255
6.1.9 Exercises for Section 6 .1 .. 256

6.2 Queries Involving More Than One R e la tio n258
6.2.1 Products and Joins in S Q L .. 259
6.2.2 Disambiguating Attributes .. 260
6.2.3 Tuple Variables.. 261

6.2.4 Interpreting Multirelation Q u e r ie s262
6.2.5 Union, Intersection, and Difference of Q ueries...................265
6.2.6 Exercises for Section 6 .2 .. 267

6.3 Subqueries.. 268
6.3.1 Subqueries that Produce Scalar Values............................... 269
6.3.2 Conditions Involving R e la tio n s ..270
6.3.3 Conditions Involving T uples.. 271
6.3.4 Correlated Subqueries..273
6.3.5 Subqueries in FROM C la u se s .. 274
6.3.6 SQL Join Expressions..275
6.3.7 Natural J o in s ... 276
6.3.8 Outerjoins..277
6.3.9 Exercises for Section 6 .3 .. 279

6.4 Full-Relation O perations...281
6.4.1 Eliminating Duplicates..281

6.4.2 Duplicates in Unions, Intersections, and Differences . . . 282
6.4.3 Grouping and Aggregation in S Q L283
6.4.4 Aggregation O perators..284
6.4.5 G ro u p in g ..285
6.4.6 Grouping, Aggregation, and Nulls287
6.4.7 HAVING C lauses.. 288
6.4.8 Exercises for Section 6 .4 .. 289

6.5 Database Modifications ...291
6.5.1 Insertion...291
6.5.2 D eletion...292
6.5.3 U p d a tes ...294
6.5.4 Exercises for Section 6 .5 .. 295

6.6 Transactions in S Q L ... 296
6.6.1 Serializability... 296
6.6.2 A tom icity ..298
6.6.3 Transactions ... 299
6.6.4 Read-Only Transactions.. 300
6.6.5 Dirty R eads.. 302
6.6.6 Other Isolation L eve ls ..304
6.6.7 Exercises for Section 6 .6 .. 306

6.7 Summary of Chapter 6 .. 307
6.8 References for Chapter 6 ...308

7 C on stra in ts and Triggers 311
7.1 Keys and Foreign K eys.. 311

7.1.1 Declaring Foreign-Key C onstrain ts......................................312
7.1.2 Maintaining Referential In teg rity ...313
7.1.3 Deferred Checking of C onstraints...315
7.1.4 Exercises for Section 7 .1 .. 318

7.2 Constraints on Attributes and Tuples... 319

TABLE OF CONTENTS xix

TABLE OF CONTENTS

7.2.1 Not-Null Constraints..319
7.2.2 Attribute-Based CHECK C onstraints..................................... 320
7.2.3 Tuple-Based CHECK C onstraints... 321

7.2.4 Comparison of Tuple- and Attribute-Based Constraints . 323
7.2.5 Exercises for Section 7 .2 ..323

7.3 Modification of C o n stra in ts 325
7.3.1 Giving Names to C onstra in ts .. 325
7.3.2 Altering Constraints on T a b le s ... 326
7.3.3 Exercises for Section 7 .3 ..327

7.4 A ssertions...328
7.4.1 Creating Assertions ..328
7.4.2 Using A ssertions..329
7.4.3 Exercises for Section 7 .4 ..330

7.5 T riggers..332
7.5.1 Triggers in SQL...332
7.5.2 The Options for Trigger D esign... 334
7.5.3 Exercises for Section 7 .5 ..337

7.6 Summary of Chapter 7 ... 339
7.7 References for Chapter 7 ..339

Views and Indexes 341
8.1 Virtual V iew s...341

8.1.1 Declaring Views .. 341
8.1.2 Querying Views...343
8.1.3 Renaming A ttributes..343
8.1.4 Exercises for Section 8 .1 ..344

8.2 Modifying V ie w s .. 344
8.2.1 View Removal ... 345
8.2.2 Updatable V iew s.. 345
8.2.3 Instead-Of Triggers on V iew s.. 347
8.2.4 Exercises for Section 8 .2 ..349

8.3 Indexes in S Q L ... 350
8.3.1 Motivation for Indexes...350
8.3.2 Declaring Indexes.. 351
8.3.3 Exercises for Section 8 .3 ..352

8.4 Selection of Indexes .. 352
8.4.1 A Simple Cost Model ...352
8.4.2 Some Useful Indexes..353
8.4.3 Calculating the Best Indexes to C reate...............................355
8.4.4 Automatic Selection of Indexes to C r e a te357
8.4.5 Exercises for Section 8 .4 ..359

8.5 Materialized V iew s... 359
8.5.1 Maintaining a Materialized V ie w .. 360
8.5.2 Periodic Maintenance of Materialized Views......................362
8.5.3 Rewriting Queries to Use Materialized V ie w s362

8.5.4 Automatic Creation of Materialized V iew s......................... 364
8.5.5 Exercises for Section 8 .5 ...365

8.6 Summary of Chapter 8 ...366
8.7 References for Chapter 8 ... 367

9 SQL in a Server E nvironm ent 369
9.1 The Three-Tier Architecture .. 369

9.1.1 The Web-Server T ie r ... 370
9.1.2 The Application T ie r... 371
9.1.3 The Database T i e r .. 372

9.2 The SQL Environm ent...372
9.2.1 Environments..373
9.2.2 Schem as... 374
9.2.3 Catalogs... 375
9.2.4 Clients and Servers in the SQL E n v ironm en t................... 375
9.2.5 Connections...376
9.2.6 Sessions... 377
9.2.7 M odules... 378

9.3 The SQL/Host-Language In te rface ...378
9.3.1 The Impedance Mismatch Problem380
9.3.2 Connecting SQL to the Host Language................................380
9.3.3 The DECLARE Section... 381
9.3.4 Using Shared Variables ...382
9.3.5 Single-Row Select S ta tem ents... 383
9.3.6 C u rs o rs ... 383
9.3.7 Modifications by C u rso r...386
9.3.8 Protecting Against Concurrent U p d a te s 387
9.3.9 Dynamic SQ L ..388
9.3.10 Exercises for Section 9 .3 ...390

9.4 Stored P ro c e d u re s ...391
9.4.1 Creating PSM Functions and Procedures 391
9.4.2 Some Simple Statement Forms in P S M392
9.4.3 Branching S ta tem en ts ..394
9.4.4 Queries in P S M ...395
9.4.5 Loops in PSM ...396
9.4.6 For-Loops.. 398
9.4.7 Exceptions in P S M .. 400
9.4.8 Using PSM Functions and P ro ced u res402
9.4.9 Exercises for Section 9 .4 ...402

9.5 Using a Call-Level In terface ... 404
9.5.1 Introduction to S Q L /C L I..405
9.5.2 Processing S ta tem en ts.. 407
9.5.3 Fetching Data From a Query R e s u l t408
9.5.4 Passing Parameters to Q u e r ie s .. 410
9.5.5 Exercises for Section 9 .5 ...412

TABLE OF CONTENTS xxi

9.6 J D B C .. 412
9.6.1 Introduction to J D B C ..412
9.6.2 Creating Statements in JD B C ...413
9.6.3 Cursor Operations in JD B C415

9.6.4 Parameter P ass in g 416
9.6.5 Exercises for Section 9 .6 .. 416

9.7 P H P ... 416
9.7.1 PHP B asics .. 417
9.7.2 A rrays..418
9.7.3 The PEAR DB L ib ra r y .. 419
9.7.4 Creating a Database Connection Using D B419
9.7.5 Executing SQL S ta te m e n ts .. 419
9.7.6 Cursor Operations in PHP .. 420
9.7.7 Dynamic SQL in P H P ..421
9.7.8 Exercises for Section 9 .7 ...422

9.8 Summary of Chapter 9 .. 422
9.9 References for Chapter 9 ...423

10 A dvanced Topics in R elational D atabases 425
10.1 Security and User Authorization in S Q L ...425

10.1.1 P riv ileges..426
10.1.2 Creating Privileges..427
10.1.3 The Privilege-Checking Process..428
10.1.4 Granting Privileges..430
10.1.5 Grant Diagrams ...431
10.1.6 Revoking Privileges ...433
10.1.7 Exercises for Section 1 0 .1 ... 436

10.2 Recursion in S Q L ..437
10.2.1 Defining Recursive Relations in S Q L437
10.2.2 Problematic Expressions in Recursive SQL440
10.2.3 Exercises for Section 1 0 .2 ... 443

10.3 The Object-Relational M o d e l..445
10.3.1 From Relations to Object-Relations 445
10.3.2 Nested R ela tio n s...446
10.3.3 References..447
10.3.4 Object-Oriented Versus Object-Relational......................... 449
10.3.5 Exercises for Section 1 0 .3 ... 450

10.4 User-Defined Types in S Q L ...451
10.4.1 Defining Types in SQ L ..451
10.4.2 Method Declarations in UDT’s ..452
10.4.3 Method Definitions..453
10.4.4 Declaring Relations with a U D T ...454
10.4.5 References..454
10.4.6 Creating Object ID’s for T ables..455
10.4.7 Exercises for Section 1 0 .4 ... 457

xxii TABLE OF CONTENTS

TABLE OF CONTENTS xxiii

10.5 Operations on Object-Relational D a t a .. 457
10.5.1 Following References...457
10.5.2 Accessing Components of Tuples with a U D T458
10.5.3 Generator and Mutator F u n c tio n s460
10.5.4 Ordering Relationships on UDT’s ...461
10.5.5 Exercises for Section 1 0 .5 ..463

10.6 On-Line Analytic Processing ..464
10.6.1 OLAP and Data W arehouses... 465
10.6.2 OLAP Applications ...465
10.6.3 A Multidimensional View of OLAP D a t a 466
10.6.4 Star Schem as... 467
10.6.5 Slicing and D ic in g .. 469
10.6.6 Exercises for Section 1 0 .6 ... 472

10.7 Data C u b e s ... 473
10.7.1 The Cube O p e ra to r ...473
10.7.2 The Cube Operator in S Q L .. 475
10.7.3 Exercises for Section 1 0 .7 ..477

10.8 Summary of Chapter 1 0 ... 478
10.9 References for Chapter 1 0 .. 480

III Modeling and Programming for Semistructured
Data 481

11 T he S em istruc tu red -D ata M odel 483
11.1 Semistructured D a ta ..483

11.1.1 Motivation for the Semistructured-Data M o d e l................483
11.1.2 Semistructured Data R epresentation...................................484
11.1.3 Information Integration Via Semistructured D a ta486
11.1.4 Exercises for Section 1 1 .1 ..487

11.2 X M L ..488
11.2.1 Semantic T a g s .. 488
11.2.2 XML With and Without a Schem a......................................489
11.2.3 Well-Formed X M L .. 489
11.2.4 A ttribu tes..490
11.2.5 Attributes That Connect E lem ents......................................491
11.2.6 Namespaces...493
11.2.7 XML and D atabases...493
11.2.8 Exercises for Section 1 1 .2 ..495

11.3 Document Type D efinitions...495
11.3.1 The Form of a D T D ...495
11.3.2 Using a D T D ... 499
11.3.3 Attribute L i s t s .. 499
11.3.4 Identifiers and References..500
11.3.5 Exercises for Section 1 1 .3 ..502

xxiv TABLE OF CONTENTS

11A XML S chem a...502
11.4.1 The Form of an XML Schema.. 502
11.4.2 E le m e n ts .. 503
11.4.3 Complex T ypes... 504
11.4.4 A ttributes.. 506
11.4.5 Restricted Simple T ypes..507
11.4.6 Keys in XML S ch em a...509
11.4.7 Foreign Keys in XML Schema.. 510
11.4.8 Exercises for Section 1 1 .4 ...512

11.5 Summary of Chapter 1 1 ..514
11.6 References for Chapter 1 1 ...515

12 P rogram m ing Languages for XML 517
12.1 X P a th ...517

12.1.1 The XPath Data M o d e l..518
12.1.2 Document N odes..519
12.1.3 Path Expressions..519
12.1.4 Relative Path Expressions...521
12.1.5 Attributes in Path Expressions... 521
12.1.6 A xes..521
12.1.7 Context of Expressions...522
12.1.8 W ildcards.. 523
12.1.9 Conditions in Path Expressions... 523
12.1.10Exercises for Section 1 2 .1 ...526

12.2 X Q u e ry ..528
12.2.1 XQuery B a s ic s ...530
12.2.2 FLWR Expressions...530
12.2.3 Replacement of Variables by Their V alues.........................534
12.2.4 Joins in X Q u e ry ..536
12.2.5 XQuery Comparison O perators... 537
12.2.6 Elimination of D uplicates...538
12.2.7 Quantification in X Q u ery ...539
12.2.8 Aggregations.. 540
12.2.9 Branching in XQuery Expressions 540
12.2.10 Ordering the Result of a Q uery ... 541
12.2.11 Exercises for Section 1 2 .2 ...543

12.3 Extensible Stylesheet Language... 544
12.3.1 XSLT B a s ic s .. 544
12.3.2 Tem plates.. 544
12.3.3 Obtaining Values From XML D a ta 545
12.3.4 Recursive Use of Tem plates..546
12.3.5 Iteration in XSLT ...549
12.3.6 Conditionals in X S L T ...551
12.3.7 Exercises for Section 1 2 .3 ...551

12.4 Summary of Chapter 1 2 ..553

TABLE OF CONTENTS xxv

12.5 References for Chapter 1 2 .. 554

IV Database System Implementation 555

13 Secondary S torage M anagem ent 557
13.1 The Memory Hierarchy ... 557

13.1.1 The Memory H ie ra rc h y ...557
13.1.2 Transfer of Data Between L e v e ls ...560
13.1.3 Volatile and Nonvolatile S to r a g e ...560
13.1.4 Virtual Memory ... 560
13.1.5 Exercises for Section 1 3 .1 ..561

13.2 D isks..562
13.2.1 Mechanics of D isk s .. 562
13.2.2 The Disk C o n tro lle r...564
13.2.3 Disk Access C haracteristics.. 564
13.2.4 Exercises for Section 1 3 .2567

13.3 Accelerating Access to Secondary S to ra g e568
13.3.1 The I/O Model of Computation ...568
13.3.2 Organizing Data by Cylinders... 569
13.3.3 Using Multiple D isks...570
13.3.4 Mirroring D isks.. 571
13.3.5 Disk Scheduling and the Elevator Algorithm571
13.3.6 Prefetching and Large-Scale B uffering 573
13.3.7 Exercises for Section 1 3 .3 ... 573

13.4 Disk F a ilu re s 575
13.4.1 Intermittent F ailures...576
13.4.2 C hecksum s...576
13.4.3 Stable S to r a g e .. 577
13.4.4 Error-Handling Capabilities of Stable S to rage...................578
13.4.5 Recovery from Disk Crashes.. 578
13.4.6 Mirroring as a Redundancy Technique............................... 579
13.4.7 Parity B lo ck s..580
13.4.8 An Improvement: RAID 5 ..583
13.4.9 Coping With Multiple Disk C ra s h e s584
13.4.10Exercises for Section 1 3 .4 ..587

13.5 Arranging Data on D is k ... 590
13.5.1 Fixed-Length R eco rd s ..590
13.5.2 Packing Fixed-Length Records into Blocks......................... 592
13.5.3 Exercises for Section 1 3 .5 ... 593

13.6 Representing Block and Record A ddresses......................................593
13.6.1 Addresses in Client-Server System s......................................593
13.6.2 Logical and Structured Addresses...595
13.6.3 Pointer Swizzling... 596
13.6.4 Returning Blocks to D i s k ..600

xxvi TABLE OF CONTENTS

13.6.5 Pinned Records and B lo ck s ..600
13.6.6 Exercises for Section 1 3 .6 ...602

13.7 Variable-Length Data and R eco rd s ..603
13.7.1 Records With Variable-Length Fields 604
13.7.2 Records With Repeating F ie ld s ..605
13.7.3 Variable-Format Records ...607
13.7.4 Records That Do Not Fit in a B lo ck 608
13.7.5 BLOBs ..608
13.7.6 Column S to r e s ... 609
13.7.7 Exercises for Section 1 3 .7 ...610

13.8 Record Modifications...612
13.8.1 Insertion..612
13.8.2 D eletion..614
13.8.3 Update ..615
13.8.4 Exercises for Section 1 3 .8 ...615

13.9 Summary of Chapter 1 3 .. 615
13.10References for Chapter 1 3 ... 617

14 Index S truc tu res 619
14.1 Index-Structure B asics..620

14.1.1 Sequential F iles..621
14.1.2 Dense Indexes...621
14.1.3 Sparse In d e x e s ... 622
14.1.4 Multiple Levels of In d e x ..623
14.1.5 Secondary In d e x es ... 624
14.1.6 Applications of Secondary In d e x es 625
14.1.7 Indirection in Secondary In d ex es.. 626
14.1.8 Document Retrieval and Inverted In d ex es.........................628
14.1.9 Exercises for Section 1 4 .1 ...631

14.2 B -T re e s .. 633
14.2.1 The Structure of B -trees..634
14.2.2 Applications of B-trees...637
14.2.3 Lookup in B -T rees... 639
14.2.4 Range Q u e r ie s ... 639
14.2.5 Insertion Into B -T rees...640
14.2.6 Deletion From B-Trees...642
14.2.7 Efficiency of B -Trees.. 645
14.2.8 Exercises for Section 1 4 .2 ...646

14.3 Hash Tables..648
14.3.1 Secondary-Storage Hash T ables... 649
14.3.2 Insertion Into a Hash T a b le ..649
14.3.3 Hash-Table D ele tio n .. 650
14.3.4 Efficiency of Hash Table In d e x e s .. 651
14.3.5 Extensible Hash Tables ..652
14.3.6 Insertion Into Extensible Hash T a b le s 653

TABLE OF CONTENTS xxvii

14.3.7 Linear Hash Tables..655
14.3.8 Insertion Into Linear Hash Tables657
14.3.9 Exercises for Section 1 4 .3 ..659

14.4 Multidimensional In d e x e s .. 661
14.4.1 Applications of Multidimensional In d e x e s 661

14.4.2 Executing Range Queries Using Conventional Indexes . . 663
14.4.3 Executing Nearest-Neighbor Queries Using Conventional

In d e x e s ...664
14.4.4 Overview of Multidimensional Index S tructu res664

14.5 Hash Structures for Multidimensional D a t a665
14.5.1 Grid F ile s ..665
14.5.2 Lookup in a Grid F i l e ..666
14.5.3 Insertion Into Grid F ile s ...667
14.5.4 Performance of Grid F ile s ... 669
14.5.5 Partitioned Hash F unctions.. 671

14.5.6 Comparison of Grid Files and Partitioned Hashing 673
14.5.7 Exercises for Section 1 4 .5 ..673

14.6 Tree Structures for Multidimensional D a ta675
14.6.1 Multiple-Key Indexes ..675
14.6.2 Performance of Multiple-Key Indexes...................................676
14.6.3 kd-T rees...677
14.6.4 Operations on fed-Trees...679
14.6.5 Adapting fed-Trees to Secondary Storage............................ 681
14.6.6 Quad T re e s ...681
14.6.7 R -T re e s ...683
14.6.8 Operations on R -Trees..684
14.6.9 Exercises for Section 1 4 .6 ..686

14.7 Bitmap Indexes...688
14.7.1 Motivation for Bitmap In d e x e s .. 689
14.7.2 Compressed B itm aps...691
14.7.3 Operating on Run-Length-Encoded Bit-Vectors................693
14.7.4 Managing Bitmap Indexes..693
14.7.5 Exercises for Section 1 4 .7 ..695

14.8 Summary of Chapter 1 4 ... 695
14.9 References for Chapter 1 4 .. 697

15 Q uery E xecu tion 701
15.1 Introduction to Physical-Query-Plan O p era to rs 703

15.1.1 Scanning Tables ... 703
15.1.2 Sorting While Scanning T a b le s .. 704
15.1.3 The Computation Model for Physical O p e ra to rs704
15.1.4 Parameters for Measuring Costs ...705
15.1.5 I/O Cost for Scan O p e ra to rs ... 706

15.1.6 Iterators for Implementation of Physical Operators 707
15.2 One-Pass Algorithms... 709

xxviii TABLE OF CONTENTS

15.2.1 One-Pass Algorithms for Tuple-at-a-Time Operations . . 711
15.2.2 One-Pass Algorithms for Unary, Full-Relation Operations 712

15.2.3 One-Pass Algorithms for Binary O perations......................715
15.2.4 Exercises for Section 1 5 .2 ... 718

15.3 Nested-Loop J o i n s .. 718
15.3.1 Tuple-Based Nested-Loop J o i n ..719
15.3.2 An Iterator for Tuple-Based Nested-Loop Join719
15.3.3 Block-Based Nested-Loop Join A lgorithm 719
15.3.4 Analysis of Nested-Loop J o i n ...721
15.3.5 Summary of Algorithms so F a r ..722
15.3.6 Exercises for Section 1 5 .3 ... 722

15.4 Two-Pass Algorithms Based on Sorting ...723
15.4.1 Two-Phase, Multiway Merge-Sort...723
15.4.2 Duplicate Elimination Using S o rtin g 725
15.4.3 Grouping and Aggregation Using S o r t in g 726
15.4.4 A Sort-Based Union A lgorithm ..726
15.4.5 Sort-Based Intersection and Difference............................... 727
15.4.6 A Simple Sort-Based Join A lgorithm 728
15.4.7 Analysis of Simple Sort-Join ...729
15.4.8 A More Efficient Sort-Based J o in ...729
15.4.9 Summary of Sort-Based A lg o rith m s.................................. 730
15.4.10Exercises for Section 1 5 .4 ... 730

15.5 Two-Pass Algorithms Based on H ash in g ...732
15.5.1 Partitioning Relations by H a sh in g 732

15.5.2 A Hash-Based Algorithm for Duplicate Elimination . . . 732
15.5.3 Hash-Based Grouping and Aggregation 733
15.5.4 Hash-Based Union, Intersection, and Difference................734
15.5.5 The Hash-Join A lgorithm ... 734
15.5.6 Saving Some Disk I/O ’s .. 735
15.5.7 Summary of Hash-Based A lgorithm s.................................. 737
15.5.8 Exercises for Section 1 5 .5 ... 738

15.6 Index-Based A lgorithm s...739
15.6.1 Clustering and Nonclustering Indexes 739
15.6.2 Index-Based S elec tio n ... 740
15.6.3 Joining by Using an Index ... 742
15.6.4 Joins Using a Sorted I n d e x .. 743
15.6.5 Exercises for Section 1 5 .6 ... 745

15.7 Buffer Management.. 746
15.7.1 Buffer Management A rchitecture...746
15.7.2 Buffer Management Strategies ..747

15.7.3 The Relationship Between Physical Operator Selection
and Buffer M anagem ent.. 750

15.7.4 Exercises for Section 1 5 .7 ... 751
15.8 Algorithms Using More Than Two P a s s e s752

15.8.1 Multipass Sort-Based Algorithms...752

TABLE OF CONTENTS xxix

15.8.2 Performance of Multipass, Sort-Based Algorithms 753
15.8.3 Multipass Hash-Based A lg o rith m s......................................754

15.8.4 Performance of Multipass Hash-Based Algorithms 754
15.8.5 Exercises for Section 1 5 .8 ... 755

15.9 Summary of Chapter 1 5 ... 756
15.10References for Chapter 1 5 ..757

16 T h e Q uery C om piler 759
16.1 Parsing and Preprocessing.. 760

16.1.1 Syntax Analysis and Parse T re e s ...760
16.1.2 A Grammar for a Simple Subset of S Q L 761
16.1.3 The Preprocessor... 764
16.1.4 Preprocessing Queries Involving V iew s............................... 765
16.1.5 Exercises for Section 1 6 .1 ... 767

16.2 Algebraic Laws for Improving Query Plans768
16.2.1 Commutative and Associative L a w s768
16.2.2 Laws Involving Selection...770
16.2.3 Pushing Selections..772
16.2.4 Laws Involving P ro jection ... 774
16.2.5 Laws About Joins and P r o d u c ts ...776
16.2.6 Laws Involving Duplicate E lim in a tio n 777
16.2.7 Laws Involving Grouping and Aggregation......................... 777
16.2.8 Exercises for Section 16.2 ..780

16.3 From Parse Trees to Logical Query P l a n s781
16.3.1 Conversion to Relational A lgebra...782
16.3.2 Removing Subqueries From Conditions............................... 783
16.3.3 Improving the Logical Query P l a n788
16.3.4 Grouping Associative/Commutative O p e ra to rs790
16.3.5 Exercises for Section 1 6 .3 ... 791

16.4 Estimating the Cost of O p era tio n s......................792
16.4.1 Estimating Sizes of Intermediate Relations 793
16.4.2 Estimating the Size of a P rojection......................................794
16.4.3 Estimating the Size of a Selection...794
16.4.4 Estimating the Size of a J o i n ... 797
16.4.5 Natural Joins With Multiple Join A ttr ib u te s799
16.4.6 Joins of Many R elations...800
16.4.7 Estimating Sizes for Other O perations............................... 801
16.4.8 Exercises for Section 1 6 .4 ... 802

16.5 Introduction to Cost-Based Plan Selection......................................803
16.5.1 Obtaining Estimates for Size Param eters............................ 804
16.5.2 Computation of S ta tis tic s ... 807

16.5.3 Heuristics for Reducing the Cost of Logical Query Plans . 808
16.5.4 Approaches to Enumerating Physical P l a n s810
16.5.5 Exercises for Section 1 6 .5 ... 813

16.6 Choosing an Order for Jo in s ...814

X X X TABLE OF CONTENTS

16.6.1 Significance of Left and Right Join A rg u m e n ts815
16.6.2 Join T rees ... 815
16.6.3 Left-Deep Join T rees .. 816

16.6.4 Dynamic Programming to Select a Join Order and Grouping819
16.6.5 Dynamic Programming With More Detailed Cost Functions823
16.6.6 A Greedy Algorithm for Selecting a Join O rd e r824
16.6.7 Exercises for Section 1 6 .6 ... 825

16.7 Completing the Physical-Query-Plan...826
16.7.1 Choosing a Selection M e th o d ...827
16.7.2 Choosing a Join M ethod.. 829
16.7.3 Pipelining Versus M aterialization...830
16.7.4 Pipelining Unary O p e ra tio n s ...830
16.7.5 Pipelining Binary O perations...830
16.7.6 Notation for Physical Query P la n s834
16.7.7 Ordering of Physical O p e ra tio n s ...837
16.7.8 Exercises for Section 1 6 .7 ... 838

16.8 Summary of Chapter 1 6 ...839
16.9 References for Chapter 1 6 ..841

17 Coping W ith System Failures 843
17.1 Issues and Models for Resilient O p era tio n843

17.1.1 Failure M odes...844
17.1.2 More About T ransactions... 845
17.1.3 Correct Execution of T ransactions..................................... 846
17.1.4 The Primitive Operations of T ransactions.........................848
17.1.5 Exercises for Section 1 7 .1 ... 851

17.2 Undo Logging... 851
17.2.1 Log Records.. 851
17.2.2 The Undo-Logging Rules ... 853
17.2.3 Recovery Using Undo Logging ..855
17.2.4 Checkpointing ..857
17.2.5 Nonquiescent Checkpointing..858
17.2.6 Exercises for Section 1 7 .2 ... 862

17.3 Redo Logging... 863
17.3.1 The Redo-Logging R u l e .. 863
17.3.2 Recovery With Redo Logging...864
17.3.3 Checkpointing a Redo Log... 866
17.3.4 Recovery With a Checkpointed Redo L o g 867
17.3.5 Exercises for Section 1 7 .3 ... 868

17.4 Undo/Redo L ogg ing ...869
17.4.1 The Undo/Redo R u les ... 870
17.4.2 Recovery With Undo/Redo L o gg in g 870
17.4.3 Checkpointing an Undo/Redo L o g872
17.4.4 Exercises for Section 1 7 .4 ... 874

17.5 Protecting Against Media F a ilu re s .. 875

TABLE OF CONTENTS xxxi

17.5.1 The Archive...875
17.5.2 Nonquiescent A rch iv ing ...875
17.5.3 Recovery Using an Archive and L o g878
17.5.4 Exercises for Section 1 7 .5 ..879

17.6 Summary of Chapter 1 7 ... 879
17.7 References for Chapter 1 7 .. 881

18 C oncurrency C on tro l 883
18.1 Serial and Serializable S ch ed u les ..884

18.1.1 S chedules..884
18.1.2 Serial Schedules.. 885
18.1.3 Serializable S chedu les..886
18.1.4 The Effect of Transaction S em antics...................................887
18.1.5 A Notation for Transactions and S ched u les...................... 889
18.1.6 Exercises for Section 1 8 .1 ..889

18.2 Conflict-Serializability.. 890
18.2.1 Conflicts...890

18.2.2 Precedence Graphs and a Test for Conflict-Serializability 892
18.2.3 Why the Precedence-Graph Test W o rk s 894
18.2.4 Exercises for Section 1 8 .2 ..895

18.3 Enforcing Serializability by Locks897
18.3.1 L o c k s .. 898
18.3.2 The Locking Scheduler..900
18.3.3 Two-Phase Locking ...900
18.3.4 Why Two-Phase Locking W o r k s ...901
18.3.5 Exercises for Section 1 8 .3 ... 903

18.4 Locking Systems With Several Lock M o d e s905
18.4.1 Shared and Exclusive L ocks.. 905
18.4.2 Compatibility Matrices ...907
18.4.3 Upgrading L o ck s ... 908
18.4.4 Update Locks..909
18.4.5 Increment L o c k s ... 911
18.4.6 Exercises for Section 1 8 .4 ..913

18.5 An Architecture for a Locking Scheduler...915
18.5.1 A Scheduler That Inserts Lock Actions 915
18.5.2 The Lock T ab le.. 918
18.5.3 Exercises for Section 1 8 .5 ..921

18.6 Hierarchies of Database E lem ents..921
18.6.1 Locks With Multiple G ranularity ...921
18.6.2 Warning L o c k s .. 922
18.6.3 Phantoms and Handling Insertions C o rre c tly926
18.6.4 Exercises for Section 1 8 .6 ..927

18.7 The Tree P ro to c o l ...927
18.7.1 Motivation for Tree-Based Locking......................................927
18.7.2 Rules for Access to Tree-Structured D a t a 928

xxxii TABLE OF CONTENTS

18.7.3 Why the Tree Protocol W orks...929
18.7.4 Exercises for Section 1 8 .7 ... 932

18.8 Concurrency Control by Tim estam ps...933
18.8.1 Timestamps..934
18.8.2 Physically Unrealizable Behaviors934
18.8.3 Problems With Dirty D a t a .. 935
18.8.4 The Rules for Timestamp-Based Scheduling......................937
18.8.5 Multiversion T im estam ps... 939
18.8.6 Timestamps Versus Locking..941
18.8.7 Exercises for Section 1 8 .8 ... 942

18.9 Concurrency Control by Validation.. 942
18.9.1 Architecture of a Validation-Based S cheduler...................942
18.9.2 The Validation Rules.. 943

18.9.3 Comparison of Three Concurrency-Control Mechanisms . 946
18.9.4 Exercises for Section 1 8 .9 ... 948

18.10Summary of Chapter 1 8 ...948
18.11 References for Chapter 1 8 ..950

19 M ore A bou t T ransaction M anagem ent 953
19.1 Serializability and Recoverability... 953

19.1.1 The Dirty-Data Problem.. 954
19.1.2 Cascading Rollback .. 955
19.1.3 Recoverable Schedules... 956
19.1.4 Schedules That Avoid Cascading Rollback.........................957
19.1.5 Managing Rollbacks Using Locking..................................... 957
19.1.6 Group C o m m it..959
19.1.7 Logical Logging..960
19.1.8 Recovery From Logical Logs.. 963
19.1.9 Exercises for Section 1 9 .1 ... 965

19.2 D eadlocks..966
19.2.1 Deadlock Detection by Timeout ...967
19.2.2 The Waits-For G r a p h ... 967
19.2.3 Deadlock Prevention by Ordering E lem en ts...................... 970
19.2.4 Detecting Deadlocks by T im estam ps.................................. 970
19.2.5 Comparison of Deadlock-Management M ethods................972
19.2.6 Exercises for Section 1 9 .2 ... 974

19.3 Long-Duration Transactions.. 975
19.3.1 Problems of Long Transactions..976
19.3.2 Sagas ... 978
19.3.3 Compensating Transactions..979
19.3.4 Why Compensating Transactions W o r k 980
19.3.5 Exercises for Section 1 9 .3 ... 981

19.4 Summary of Chapter 1 9 ...982
19.5 References for Chapter 1 9 ..983

TABLE OF CONTENTS xxxiii

20 P ara lle l and D is tr ib u ted D atabases 985
20.1 Parallel Algorithms on R e la tio n s ..985

20.1.1 Models of Parallelism ..986
20.1.2 Tuple-at-a-Time Operations in Parallel............................... 989
20.1.3 Parallel Algorithms for Full-Relation O p e ra tio n s989
20.1.4 Performance of Parallel A lgorithms......................................990

20.1.5 Exercises for Section 20.1 .. 993
20.2 The Map-Reduce Parallelism Framework...993

20.2.1 The Storage M odel.. 993
20.2.2 The Map F u n ctio n .. 994
20.2.3 The Reduce Function ..995

20.2.4 Exercises for Section 20.2 .. 996
20.3 Distributed D a tab ases .. 997

20.3.1 Distribution of D a t a ...997
20.3.2 Distributed Transactions...998
20.3.3 Data R eplication... 999

20.3.4 Exercises for Section 20.3 .. 1000
20.4 Distributed Query P rocessing..1000

20.4.1 The Distributed Join Problem .. 1000
20.4.2 Semijoin R eductions...1001
20.4.3 Joins of Many R elations...1002
20.4.4 Acyclic H ypergraphs...1003
20.4.5 Full Reducers for Acyclic Hypergraphs................................1005
20.4.6 Why the Full-Reducer Algorithm W orks............................ 1006

20.4.7 Exercises for Section 20.4 .. 1007
20.5 Distributed C o m m it ... 1008

20.5.1 Supporting Distributed Atomicity1008
20.5.2 Two-Phase C o m m it ...1009
20.5.3 Recovery of Distributed Transactions...................................1011
20.5.4 Exercises for Section 2 0 .5 ..1013

20.6 Distributed L o c k in g ..1014
20.6.1 Centralized Lock S ystem s... 1015

20.6.2 A Cost Model for Distributed Locking Algorithms 1015
20.6.3 Locking Replicated E lem en ts ... 1016
20.6.4 Primary-Copy Locking..1017
20.6.5 Global Locks From Local Locks.. 1017
20.6.6 Exercises for Section 2 0 .6 ..1019

20.7 Peer-to-Peer Distributed Search...1020
20.7.1 Peer-to-Peer N etw orks..1020
20.7.2 The Distributed-Hashing P ro b le m1021
20.7.3 Centralized Solutions for Distributed H ashing...................1022
20.7.4 Chord C ircles..1022
20.7.5 Links in Chord C ircles..1024
20.7.6 Search Using Finger T a b le s .. 1024
20.7.7 Adding New N odes.. 1027

xxxiv TABLE OF CONTENTS

20.7.8 When a Peer Leaves the N etw ork...1030
20.7.9 When a Peer F a i l s ..1030

20.7.10Exercises for Section 20.7 ... 1031
20.8 Summary of Chapter 20 ... 1031
20.9 References for Chapter 20 .. 1033

V Other Issues in Management of Massive Data 1035

21 In fo rm atio n In teg ra tio n 1037
21.1 Introduction to Information In te g ra tio n ...1037

21.1.1 Why Information Integration? .. 1038
21.1.2 The Heterogeneity P ro b lem .. 1040

21.2 Modes of Information Integration... 1041
21.2.1 Federated Database Systems ... 1042
21.2.2 Data Warehouses... 1043
21.2.3 M ediators..1046
21.2.4 Exercises for Section 2 1 .2 ..1048

21.3 Wrappers in Mediator-Based Systems ..1049
21.3.1 Templates for Query P a tte rn s ... 1050
21.3.2 Wrapper G enerato rs...1051
21.3.3 F il te rs .. 1052
21.3.4 Other Operations at the Wrapper1053
21.3.5 Exercises for Section 2 1 .3 ..1054

21.4 Capability-Based O ptim ization ...1056
21.4.1 The Problem of Limited Source Capabilities...................... 1056
21.4.2 A Notation for Describing Source Capabilities...................1057
21.4.3 Capability-Based Query-Plan Selection............................... 1058
21.4.4 Adding Cost-Based O ptim ization...1060
21.4.5 Exercises for Section 2 1 .4 ..1060

21.5 Optimizing Mediator Q u e rie s ..1061
21.5.1 Simplified Adornment N o tation .. 1061
21.5.2 Obtaining Answers for Subgoals ...1062
21.5.3 The Chain A lg o rith m ..1063
21.5.4 Incorporating Union Views at the M ed ia to r......................1067
21.5.5 Exercises for Section 2 1 .5 ... 1068

21.6 Local-as-View M ediators... 1069
21.6.1 Motivation for LAV M e d ia to rs ..1069
21.6.2 Terminology for LAV Mediation ...1070
21.6.3 Expanding Solutions...1071
21.6.4 Containment of Conjunctive Q ueries...................................1073
21.6.5 Why the Containment-Mapping Test W orks...................... 1075
21.6.6 Finding Solutions to a Mediator Q uery............................... 1076
21.6.7 Why the LMSS Theorem H olds.. 1077
21.6.8 Exercises for Section 2 1 .6 ..1078

TABLE OF CONTENTS X X X V

21.7 Entity Resolution..1078
21.7.1 Deciding Whether Records Represent a Common Entity . 1079

21.7.2 Merging Similar Records...1081
21.7.3 Useful Properties of Similarity and Merge Functions . . .1082

21.7.4 The R-Swoosh Algorithm for ICAR Records...................... 1083
21.7.5 Why R-Swoosh W o rk s..1086
21.7.6 Other Approaches to Entity R e so lu tio n 1086
21.7.7 Exercises for Section 2 1 .7 ... 1087

21.8 Summary of Chapter 2 1 ... 1089
21.9 References for Chapter 2 1 ..1091

22 D a ta M ining 1093
22.1 Frequent-Itemset M ining... 1093

22.1.1 The Market-Basket M odel..1094
22.1.2 Basic D efinitions... 1095
22.1.3 Association Rules... 1097
22.1.4 The Computation Model for Frequent I te m se ts1098

22.1.5 Exercises for Section 22.1 .. 1099
22.2 Algorithms for Finding Frequent I te m s e ts1100

22.2.1 The Distribution of Frequent I tem se ts1100
22.2.2 The Naive Algorithm for Finding Frequent Itemsets . . . 1101

22.2.3 The A-Priori A lgorithm ...1102
22.2.4 Implementation of the A-Priori A lgorithm 1104
22.2.5 Making Better Use of Main M em ory1105
22.2.6 When to Use the PCY Algorithm...1106
22.2.7 The Multistage Algorithm ..1107

22.2.8 Exercises for Section 2 2 .2 1109
22.3 Finding Similar I t e m s .. 1110

22.3.1 The Jaccard Measure of S im ilarity1110
22.3.2 Applications of Jaccard S im ila rity1110
22.3.3 M inhashing...1112
22.3.4 Minhashing and Jaccard Distance1113
22.3.5 Why Minhashing W orks...1113
22.3.6 Implementing M inhashing..1114
22.3.7 Exercises for Section 2 2 .3 ..1115

22.4 Locality-Sensitive H ashing.. 1116
22.4.1 Entity Resolution as an Example of LSH 1117
22.4.2 Locality-Sensitive Hashing of S ignatures............................ 1118

22.4.3 Combining Minhashing and Locality-Sensitive Hashing . . 1121
22.4.4 Exercises for Section 2 2 .4 ..1122

22.5 Clustering of Large-Scale D a t a ...1123
22.5.1 Applications of C lustering..1123
22.5.2 Distance M easures.. 1125
22.5.3 Agglomerative C lu ste rin g ..1128
22.5.4 fc-Means A lgorithm s...1130

xxxvi TABLE OF CONTENTS

22.5.5 &-Means for Large-Scale D a ta ...1132
22.5.6 Processing a Memory Load of P o in ts 1133
22.5.7 Exercises for Section 2 2 .5 ...1136

22.6 Summary of Chapter 2 2 .. 1137
22.7 References for Chapter 2 2 ... 1139

23 D atabase System s and th e Internet 1141
23.1 The Architecture of a Search E n g in e ...1141

23.1.1 Components of a Search Engine..1142
23.1.2 Web Crawlers...1143
23.1.3 Query Processing in Search E n g in e s 1146
23.1.4 Ranking P a g e s ..1146

23.2 PageRank for Identifying Important Pages..................................... 1147
23.2.1 The Intuition Behind PageRank .. 1147
23.2.2 Recursive Formulation of PageRank — First T r y 1148
23.2.3 Spider Traps and Dead E n d s ...1150

23.2.4 PageRank Accounting for Spider Traps and Dead Ends . 1153
23.2.5 Exercises for Section 2 3 .2 ... 1154

23.3 Topic-Specific PageRank.. 1156
23.3.1 Teleport S e t s ...1156
23.3.2 Calculating A Topic-Specific P a g e R a n k 1158
23.3.3 Link Spam ..1159
23.3.4 Topic-Specific PageRank and Link Spam 1160
23.3.5 Exercises for Section 2 3 .3 ...1161

23.4 Data S tream s... 1161
23.4.1 Data-Stream-Management System s..................................... 1162
23.4.2 Stream A pplications.. 1163
23.4.3 A Data-Stream Data M odel..1164
23.4.4 Converting Streams Into R elations..................................... 1165
23.4.5 Converting Relations Into S tream s..................................... 1166
23.4.6 Exercises for Section 2 3 .4 ...1168

23.5 Data Mining of S tre a m s.. 1169
23.5.1 Motivation ..1169
23.5.2 Counting B its ...1171
23.5.3 Counting the Number of Distinct E lem en ts1175
23.5.4 Exercises for Section 2 3 .5 ...1176

23.6 Summary of Chapter 2 3 .. 1177
23.7 References for Chapter 2 3 ... 1179

Index 1183

DATABASE SYSTEMS

The Complete Book

Chapter 1

The Worlds of Database
Systems

Databases today are essential to every business. Whenever you visit a major
Web site — Google, Yahoo!, Amazon.com, or thousands of smaller sites that
provide information — there is a database behind the scenes serving up the
information you request. Corporations maintain all their important records in
databases. Databases are likewise found at the core of many scientific investi
gations. They represent the data gathered by astronomers, by investigators of
the human genome, and by biochemists exploring properties of proteins, among
many other scientific activities.

The power of databases comes from a body of knowledge and technology
that has developed over several decades and is embodied in specialized soft
ware called a database management system, or DBMS, or more colloquially a
“database system.” A DBMS is a powerful tool for creating and managing large
amounts of data efficiently and allowing it to persist over long periods of time,
safely. These systems are among the most complex types of software available.
In this book, we shall learn how to design databases, how to write programs
in the various languages associated with a DBMS, and how to implement the
DBMS itself.

1.1 The Evolution of Database System s
What is a database? In essence a database is nothing more than a collection of
information that exists over a long period of time, often many years. In common
parlance, the term database refers to a collection of data that is managed by a
DBMS. The DBMS is expected to:

1. Allow users to create new databases and specify their schemas (logical
structure of the data), using a specialized data-definition language.

1

2 CHAPTER 1. THE WORLDS OF DATABASE SYSTEM S

2. Give users the ability to query the data (a “query” is database lingo for
a question about the data) and modify the data, using an appropriate
language, often called a query language or data-manipulation language.

3. Support the storage of very large amounts of data — many terabytes or
more — over a long period of time, allowing efficient access to the data
for queries and database modifications.

4. Enable durability, the recovery of the database in the face of failures,
errors of many kinds, or intentional misuse.

5. Control access to data from many users at once, without allowing unex
pected interactions among users (called isolation) and without actions on
the data to be performed partially but not completely (called atomicity).

1.1.1 Early Database Management Systems
The first commercial database management systems appeared in the late 1960’s.
These systems evolved from file systems, which provide some of item (3) above;
file systems store data over a long period of time, and they allow the storage of
large amounts of data. However, file systems do not generally guarantee that
data cannot be lost if it is not backed up, and they don’t support efficient access
to data items whose location in a particular file is not known.

Further, file systems do not directly support item (2), a query language for
the data in files. Their support for (1) — a schema for the data — is limited to
the creation of directory structures for files. Item (4) is not always supported
by file systems; you can lose data that has not been backed up. Finally, file
systems do not satisfy (5). While they allow concurrent access to files by several
users or processes, a file system generally will not prevent situations such as
two users modifying the same file at about the same time, so the changes made
by one user fail to appear in the file.

The first important applications of DBMS’s were ones where data was com
posed of many small items, and many queries or modifications were made.
Examples of these applications are:

1. Banking systems: maintaining accounts and making sure that system
failures do not cause money to disappear.

2. Airline reservation systems: these, like banking systems, require assurance
that data will not be lost, and they must accept very large volumes of
small actions by customers.

3. Corporate record keeping: employment and tax records, inventories, sales
records, and a great variety of other types of information, much of it
critical.

The early DBMS’s required the programmer to visualize data much as it
was stored. These database systems used several different data models for

1.1. THE EVOLUTION OF DATABASE SYSTEM S 3

describing the structure of the information in a database, chief among them
the “hierarchical” or tree-based model and the graph-based “network” model.
The latter was standardized in the late 1960’s through a report of CODASYL
(Committee on Data Systems and Languages).1

A problem with these early models and systems was that they did not sup
port high-level query languages. For example, the CODASYL query language
had statements that allowed the user to jump from data element to data ele
ment, through a graph of pointers among these elements. There was consider
able effort needed to write such programs, even for very simple queries.

1.1.2 Relational Database Systems
Following a famous paper written by Ted Codd in 1970,2 database systems
changed significantly. Codd proposed that database systems should present
the user with a view of data organized as tables called relations. Behind the
scenes, there might be a complex data structure that allowed rapid response
to a variety of queries. But, unlike the programmers for earlier database sys
tems, the programmer of a relational system would not be concerned with the
storage structure. Queries could be expressed in a very high-level language,
which greatly increased the efficiency of database programmers. We shall cover
the relational model of database systems throughout most of this book. SQL
(“Structured Query Language”), the most important query language based on
the relational model, is covered extensively.

By 1990, relational database systems were the norm. Yet the database field
continues to evolve, and new issues and approaches to the management of data
surface regularly. Object-oriented features have infilrated the relational model.
Some of the largest databases are organized rather differently from those using
relational methodology. In the balance of this section, we shall consider some
of the modern trends in database systems.

1.1.3 Smaller and Smaller Systems
Originally, DBMS’s were large, expensive software systems running on large
computers. The size was necessary, because to store a gigabyte of data required
a large computer system. Today, hundreds of gigabytes fit on a single disk,
and it is quite feasible to run a DBMS on a personal computer. Thus, database
systems based on the relational model have become available for even very small
machines, and they are beginning to appear as a common tool for computer
applications, much as spreadsheets and word processors did before them.

Another important trend is the use of documents, often tagged using XML
(extensible Modeling Language). Large collections of small documents can

1 C O D A S Y L D ata B ase Task Group A p ril 1971 Report, A CM , New York.
2C odd , E . F ., “A re la tional m odel for large shared d a ta banks,” C om m . A C M , 13:6,

pp. 377-387, 1970.

4 CHAPTER 1. THE WORLDS OF DATABASE SYSTEM S

serve as a database, and the methods of querying and manipulating them are
different from those used in relational systems.

1.1.4 Bigger and Bigger Systems
On the other hand, a gigabyte is not that much data any more. Corporate
databases routinely store terabytes (1012 bytes). Yet there are many databases
that store petabytes (101S bytes) of data and serve it all to users. Some impor
tant examples:

1. Google holds petabytes of data gleaned from its crawl of the Web. This
data is not held in a traditional DBMS, but in specialized structures
optimized for search-engine queries.

2. Satellites send down petabytes of information for storage in specialized
systems.

3. A picture is actually worth way more than a thousand words. You can
store 1000 words in five or six thousand bytes. Storing a picture typi
cally takes much more space. Repositories such as Flickr store millions
of pictures and support search of those pictures. Even a database like
Amazon’s has millions of pictures of products to serve.

4. And if still pictures consume space, movies consume much more. An hour
of video requires at least a gigabyte. Sites such as YouTube hold hundreds
of thousands, or millions, of movies and make them available easily.

5. Peer-to-peer file-sharing systems use large networks of conventional com
puters to store and distribute data of various kinds. Although each node
in the network may only store a few hundred gigabytes, together the
database they embody is enormous.

1.1.5 Information Integration
To a great extent, the old problem of building and maintaining databases has
become one of information integration: joining the information contained in
many related databases into a whole. For example, a large company has many
divisions. Each division may have built its own database of products or em
ployee records independently of other divisions. Perhaps some of these divisions
used to be independent companies, which naturally had their own way of doing
things. These divisions may use different DBMS’s and different structures for
information. They may use different terms to mean the same thing or the same
term to mean different things. To make matters worse, the existence of legacy
applications using each of these databases makes it almost impossible to scrap
them, ever.

As a result, it has become necessary with increasing frequency to build struc
tures on top of existing databases, with the goal of integrating the information

1.2. OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 5

distributed among them. One popular approach is the creation of data ware
houses, where information from many legacy databases is copied periodically,
with the appropriate translation, to a central database. Another approach is
the implementation of a mediator, or “middleware,” whose function is to sup
port an integrated model of the data of the various databases, while translating
between this model and the actual models used by each database.

1.2 Overview of a Database Management
System

In Fig. 1.1 we see an outline of a complete DBMS. Single boxes represent system
components, while double boxes represent in-memory data structures. The solid
lines indicate control and data flow, while dashed lines indicate data flow only.
Since the diagram is complicated, we shall consider the details in several stages.
First, at the top, we suggest that there are two distinct sources of commands
to the DBMS:

1. Conventional users and application programs that ask for data or modify
data.

2. A database administrator: a person or persons responsible for the struc
ture or schema of the database.

1.2.1 Data-Definition Language Commands
The second kind of command is the simpler to process, and we show its trail
beginning at the upper right side of Fig. 1.1. For example, the database admin
istrator, or DBA, for a university registrar’s database might decide that there
should be a table or relation with columns for a student, a course the student
has taken, and a grade for that student in that course. The DBA might also
decide that the only allowable grades are A, B, C, D, and F. This structure
and constraint information is all part of the schema of the database. It is
shown in Fig. 1.1 as entered by the DBA, who needs special authority to ex
ecute schema-altering commands, since these can have profound effects on the
database. These schema-altering data-definition language (DDL) commands
are parsed by a DDL processor and passed to the execution engine, which then
goes through the index/file/record manager to alter the metadata, that is, the
schema information for the database.

1.2.2 Overview of Query Processing
The great majority of interactions with the DBMS follow the path on the left
side of Fig. 1.1. A user or an application program initiates some action, using
the data-manipulation language (DML). This command does not affect the
schema of the database, but may affect the content of the database (if the

CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

D^t^bdsc
User/application administrator

Figure 1.1: Database management system components

OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 7

action is a modification command) or will extract data from the database (if the
action is a query). DML statements are handled by two separate subsystems,
as follows.

A nsw ering th e Q uery

The query is parsed and optimized by a query compiler. The resulting query
plan, or sequence of actions the DBMS will perform to answer the query, is
passed to the execution engine. The execution engine issues a sequence of
requests for small pieces of data, typically records or tuples of a relation, to a
resource manager that knows about data files (holding relations), the format
and size of records in those files, and index files, which help find elements of
data files quickly.

The requests for data are passed to the buffer manager. The buffer man
ager’s task is to bring appropriate portions of the data from secondary storage
(disk) where it is kept permanently, to the main-memory buffers. Normally, the
page or “disk block” is the unit of transfer between buffers and disk.

The buffer manager communicates with a storage manager to get data from
disk. The storage manager might involve operating-system commands, but
more typically, the DBMS issues commands directly to the disk controller.

T ransaction P rocessin g

Queries and other DML actions are grouped into transactions, which are units
that must be executed atomically and in isolation from one another. Any query
or modification action can be a transaction by itself. In addition, the execu
tion of transactions must be durable, meaning that the effect of any completed
transaction must be preserved even if the system fails in some way right after
completion of the transaction. We divide the transaction processor into two
major parts:

1. A concurrency-control manager, or scheduler, responsible for assuring
atomicity and isolation of transactions, and

2. A logging and recovery manager, responsible for the durability of trans
actions.

1.2.3 Storage and Buffer Management
The data of a database normally resides in secondary storage; in today’s com
puter systems “secondary storage” generally means magnetic disk. However, to
perform any useful operation on data, that data must be in main memory. It
is the job of the storage manager to control the placement of data on disk and
its movement between disk and main memory.

In a simple database system, the storage manager might be nothing more
than the file system of the underlying operating system. However, for efficiency

8 CHAPTER 1. THE WORLDS OF DATABASE SYSTEM S

purposes, DBMS’s normally control storage on the disk directly, at least under
some circumstances. The storage manager keeps track of the location of files
on the disk and obtains the block or blocks containing a file on request from
the buffer manager.

The buffer manager is responsible for partitioning the available main mem
ory into buffers, which are page-sized regions into which disk blocks can be
transferred. Thus, all DBMS components that need information from the disk
will interact with the buffers and the buffer manager, either directly or through
the execution engine. The kinds of information that various components may
need include:

1. Data: the contents of the database itself.

2. Metadata: the database schema that describes the structure of, and con
straints on, the database.

3. Log Records: information about recent changes to the database; these
support durability of the database.

4. Statistics: information gathered and stored by the DBMS about data
properties such as the sizes of, and values in, various relations or other
components of the database.

5. Indexes: data structures that support efficient access to the data.

1.2.4 Transaction Processing
It is normal to group one or more database operations into a transaction, which
is a unit of work that must be executed atomically and in apparent isolation
from other transactions. In addition, a DBMS offers the guarantee of durability:
that the work of a completed transaction will never be lost. The transaction
manager therefore accepts transaction commands from an application, which
tell the transaction manager when transactions begin and end, as well as infor
mation about the expectations of the application (some may not wish to require
atomicity, for example). The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is
logged separately on disk. The log manager follows one of several policies
designed to assure that no matter when a system failure or “crash” occurs,
a recovery manager will be able to examine the log of changes and restore
the database to some consistent state. The log manager initially writes
the log in buffers and negotiates with the buffer manager to make sure that
buffers are written to disk (where data can survive a crash) at appropriate
times.

2. Concurrency control: Transactions must appear to execute in isolation.
But in most systems, there will in truth be many transactions executing

OVERVIEW OF A DATABASE M ANAGEM ENT SYSTEM 9

The ACID Properties of Transactions

Properly implemented transactions are commonly said to meet the “ACID
test,” where:

• “A” stands for “atomicity,” the all-or-nothing execution of trans
actions.

• “I” stands for “isolation,” the fact that each transaction must appear
to be executed as if no other transaction is executing at the same
time.

• “D” stands for “durability,” the condition that the effect on the
database of a transaction must never be lost, once the transaction
has completed.

The remaining letter, “C,” stands for “consistency.” That is, all databases
have consistency constraints, or expectations about relationships among
data elements (e.g., account balances may not be negative after a trans
action finishes). Transactions are expected to preserve the consistency of
the database.

at once. Thus, the scheduler (concurrency-control manager) must assure
that the individual actions of multiple transactions are executed in such
an order that the net effect is the same as if the transactions had in
fact executed in their entirety, one-at-a-time. A typical scheduler does
its work by maintaining locks on certain pieces of the database. These
locks prevent two transactions from accessing the same piece of data in
ways that interact badly. Locks are generally stored in a main-memory
lock table, as suggested by Fig. 1.1. The scheduler affects the execution of
queries and other database operations by forbidding the execution engine
from accessing locked parts of the database.

3. Deadlock resolution: As transactions compete for resources through the
locks that the scheduler grants, they can get into a situation where none
can proceed because each needs something another transaction has. The
transaction manager has the responsibility to intervene and cancel (“roll
back” or “abort”) one or more transactions to let the others proceed.

1.2.5 The Query Processor
The portion of the DBMS that most affects the performance that the user sees
is the query processor. In Fig. 1.1 the query processor is represented by two
components:

1 0 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

1. The query compiler, which translates the query into an internal form called
a query plan. The latter is a sequence of operations to be performed on
the data. Often the operations in a query plan are implementations of
“relational algebra” operations, which are discussed in Section 2.4. The
query compiler consists of three major units:

(a) A query parser, which builds a tree structure from the textual form
of the query.

(b) A query preprocessor, which performs semantic checks on the query
(e.g., making sure all relations mentioned by the query actually ex
ist), and performing some tree transformations to turn the parse tree
into a tree of algebraic operators representing the initial query plan.

(c) A query optimizer, which transforms the initial query plan into the
best available sequence of operations on the actual data.

The query compiler uses metadata and statistics about the data to decide
which sequence of operations is likely to be the fastest. For example, the
existence of an index, which is a specialized data structure that facilitates
access to data, given values for one or more components of that data, can
make one plan much faster than another.

2. The execution engine, which has the responsibility for executing each of
the steps in the chosen query plan. The execution engine interacts with
most of the other components of the DBMS, either directly or through
the buffers. It must get the data from the database into buffers in order
to manipulate that data. It needs to interact with the scheduler to avoid
accessing data that is locked, and with the log manager to make sure that
all database changes are properly logged.

1.3 Outline of Database-System Studies
We divide the study of databases into five parts. This section is an outline of
what to expect in each of these units.

Part I: R elational D atabase M odeling

The relational model is essential for a study of database systems. After ex
amining the basic concepts, we delve into the theory of relational databases.
That study includes functional dependencies, a formal way of stating that one
kind of data is uniquely determined by another. It also includes normalization,
the process whereby functional dependencies and other formal dependencies are
used to improve the design of a relational database.

We also consider high-level design notations. These mechanisms include the
Entity-Relationship (E/R) model, Unified Modeling Language (UML), and Ob
ject Definition Language (ODL). Their purpose is to allow informal exploration
of design issues before we implement the design using a relational DBMS.

1.3. OUTLINE OF DATABASE-SYSTEM STUDIES 11

Part II: R elation al D atabase P rogram m ing

We then take up the m atter of how relational databases are queried and modi
fied. After an introduction to abstract programming languages based on algebra
and logic (Relational Algebra and Datalog, respectively), we turn our atten
tion to the standard language for relational databases: SQL. We study both
the basics and important special topics, including constraint specifications and
triggers (active database elements), indexes and other structures to enhance
performance, forming SQL into transactions, and security and privacy of data
in SQL.

We also discuss how SQL is used in complete systems. It is typical to
combine SQL with a conventional or host language and to pass data between
the database and the conventional program via SQL calls. We discuss a number
of ways to make this connection, including embedded SQL, Persistent Stored
Modules (PSM), Call-Level Interface (CLI), Java Database Interconnectivity
(JDBC), and PHP.

Part III: S em istructured D ata M od elin g and P rogram m ing

The pervasiveness of the Web has put a premium on the management of hierar
chically structured data, because the standards for the Web are based on nested,
tagged elements (semistructured data). We introduce XML and its schema-
defining notations: Document Type Definitions (DTD) and XML Schema. We
also examine three query languages for XML: XPATH, XQuery, and Extensible
Stylesheet Language Transform (XSLT).

Part IV: D atabase S ystem Im p lem en tation

We begin with a study of storage management: how disk-based storage can be
organized to allow efficient access to data. We explain the commonly used B-
tree, a balanced tree of disk blocks and other specialized schemes for managing
multidimensional data.

We then turn our attention to query processing. There are two parts to
this study. First, we need to learn query execution: the algorithms used to
implement the operations from which queries are built. Since data is typically
on disk, the algorithms are somewhat different from what one would expect
were they to study the same problems but assuming that data were in main
memory. The second step is query compiling. Here, we study how to select an
efficient query plan from among all the possible ways in which a given query
can be executed.

Then, we study transaction processing. There are several threads to follow.
One concerns logging: maintaining reliable records of what the DBMS is doing,
in order to allow recovery in the event of a crash. Another thread is scheduling:
controlling the order of events in transactions to assure the ACID properties.
We also consider how to deal with deadlocks, and the modifications to our algo
rithms that are needed when a transaction is distributed over many independent

1 2 CHAPTER 1. THE WORLDS OF DATABASE SYSTEM S

sites.

Part V: M odern D atabase S ystem Issues

In this part, we take up a number of the ways in which database-system tech
nology is relevant beyond the realm of conventional, relational DBMS’s. We
consider how search engines work, and the specialized data structures that make
their operation possible. We look at information integration, and methodolo
gies for making databases share their data seamlessly. Data mining is a study
that includes a number of interesting and important algorithms for processing
large amounts of data in complex ways. Data-stream systems deal with data
that arrives at the system continuously, and whose queries are answered contin
uously and in a timely fashion. Peer-to-peer systems present many challenges
for management of distributed data held by independent hosts.

1.4 References for Chapter 1
Today, on-line searchable bibliographies cover essentially all recent papers con
cerning database systems. Thus, in this book, we shall not try to be exhaustive
in our citations, but rather shall mention only the papers of historical impor
tance and major secondary sources or useful surveys. A searchable index of
database research papers was constructed by Michael Ley [5], and has recently
been expanded to include references from many fields. Alf-Christian Achilles
maintains a searchable directory of many indexes relevant to the database field
[3],

While many prototype implementations of database systems contributed to
the technology of the field, two of the most widely known are the System R
project at IBM Almaden Research Center [4] and the INGRES project at Berke
ley [7]. Each was an early relational system and helped establish this type of
system as the dominant database technology. Many of the research papers that
shaped the database field are found in [6].

The 2003 “Lowell report” [1] is the most recent in a series of reports on
database-system research and directions. It also has references to earlier reports
of this type.

You can find more about the theory of database systems than is covered
here from [2] and [8].

1. S. Abiteboul et al., “The Lowell database research self-assessment,” Comm.
AC M 48:5 (2005), pp. 111-118. http://research.microsoft.com/~gray
/lowell/LowellDatabaseResearchSelfAssessment.htm

2. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-
Wesley, Reading, MA, 1995.

3. http://liinwww.ira.uka.de/bibliography/Database.

1.4. REFERENCES FOR CHAPTER 1 13

4. M. M. Astrahan et al., “System R: a relational approach to database
management,” ACM Trans, on Database Systems 1:2, pp. 97-137, 1976.

5. h ttp ://w w w .in fo rm a tik .u n i- tr ie r .d e /~ le y /d b /in d e x .h tm l. A mir
ror site is found at h ttp ://w w w .acm .org /sigm od/db lp /db /index .h tm l.

6. M. Stonebraker and J. M. Hellerstein (eds.), Readings in Database Sys
tems, Morgan-Kaufmann, San Francisco, 1998.

7. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and imple
mentation of INGRES,” ACM Trans, on Database Systems 1:3, pp. 189-
222, 1976.

8. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol
umes I and II, Computer Science Press, New York, 1988, 1989.

Part I

Relational Database
Modeling

15

Chapter 2

The Relational M odel of
Data

This chapter introduces the most important model of data: the two-dimensional
table, or “relation.” We begin with an overview of data models in general. We
give the basic terminology for relations and show how the model can be used to
represent typical forms of data. We then introduce a portion of the language
SQL — that part used to declare relations and their structure. The chapter
closes with an introduction to relational algebra. We see how this notation
serves as both a query language — the aspect of a data model that enables us
to ask questions about the data — and as a constraint language — the aspect
of a data model that lets us restrict the data in the database in various ways.

2.1 An Overview of Data M odels
The notion of a “data model” is one of the most fundamental in the study of
database systems. In this brief summary of the concept, we define some basic
terminology and mention the most important data models.

2.1.1 W hat is a Data Model?
A data model is a notation for describing data or information. The description
generally consists of three parts:

1. Structure of the data. You may be familiar with tools in programming
languages such as C or Java for describing the structure of the data used by
a program: arrays and structures (“structs”) or objects, for example. The
data structures used to implement data in the computer are sometimes
referred to, in discussions of database systems, as a physical data model,
although in fact they are far removed from the gates and electrons that
truly serve as the physical implementation of the data. In the database

17

18 CHAPTER 2. THE RELATIONAL MODEL OF DATA

world, data models are at a somewhat higher level than data structures,
and are sometimes referred to as a conceptual model to emphasize the
difference in level. We shall see examples shortly.

2. Operations on the data. In programming languages, operations on the
data are generally anything that can be programmed. In database data
models, there is usually a limited set of operations that can be performed.
We are generally allowed to perform a limited set of queries (operations
that retrieve information) and modifications (operations that change the
database). This limitation is not a weakness, but a strength. By limiting
operations, it is possible for programmers to describe database operations
at a very high level, yet have the database management system implement
the operations efficiently. In comparison, it is generally impossible to
optimize programs in conventional languages like C, to the extent that an
inefficient algorithm (e.g., bubblesort) is replaced by a more efficient one
(e.g., quicksort).

3. Constraints on the data. Database data models usually have a way to
describe limitations on what the data can be. These constraints can range
from the simple (e.g., “a day of the week is an integer between 1 and 7”
or “a movie has at most one title”) to some very complex limitations that
we shall discuss in Sections 7.4 and 7.5.

2.1.2 Important Data Models
Today, the two data models of preeminent importance for database systems are:

1. The relational model, including object-relational extensions.

2. The semistructured-data model, including XML and related standards.

The first, which is present in all commercial database management systems,
is the subject of this chapter. The semistructured model, of which XML is
the primary manifestation, is an added feature of most relational DBMS’s, and
appears in a number of other contexts as well. We turn to this data model
starting in Chapter 11.

2.1.3 The Relational Model in Brief
The relational model is based on tables, of which Fig. 2.1 is an example. We
shall discuss this model beginning in Section 2.2. This relation, or table, de
scribes movies: their title, the year in which they were made, their length in
minutes, and the genre of the movie. We show three particular movies, but you
should imagine that there are many more rows to this table — one row for each
movie ever made, perhaps.

The structure portion of the relational model might appear to resemble an
array of structs in C, where the column headers are the field names, and each

2.1. A N OVERVIEW OF DATA MODELS 19

title year length genre

Gone With the Wind 1939 231 drama
Stair Wars 1977 124 sciFi
Wayne’s World 1992 95 comedy

Figure 2.1: An example relation

of the rows represent the values of one struct in the array. However, it must be
emphasized that this physical implementation is only one possible way the table
could be implemented in physical data structures. In fact, it is not the normal
way to represent relations, and a large portion of the study of database systems
addresses the right ways to implement such tables. Much of the distinction
comes from the scale of relations — they are not normally implemented as
main-memory structures, and their proper physical implementation must take
into account the need to access relations of very large size that are resident on
disk.

The operations normally associated with the relational model form the “re
lational algebra,” which we discuss beginning in Section 2.4. These operations
are table-oriented. As an example, we can ask for all those rows of a relation
that have a certain value in a certain column. For example, we can ask of the
table in Fig. 2.1 for all the rows where the genre is “comedy.”

The constraint portion of the relational data model will be touched upon
briefly in Section 2.5 and covered in more detail in Chapter 7. However, as a
brief sample of what kinds of constraints are generally used, we could decide
that there is a fixed list of genres for movies, and that the last column of every
row must have a value that is on this list. Or we might decide (incorrectly,
it turns out) that there could never be two movies with the same title, and
constrain the table so that no two rows could have the same string in the first
component.

2.1.4 The Semistructured Model in Brief
Semistructured data resembles trees or graphs, rather than tables or arrays.
The principal manifestation of this viewpoint today is XML, a way to represent
data by hierarchically nested tagged elements. The tags, similar to those used
in HTML, define the role played by different pieces of data, much as the column
headers do in the relational model. For example, the same data as in Fig. 2.1
might appear in an XML “document” as in Fig. 2.2.

The operations on semistructured data usually involve following paths in
the implied tree from an element to one or more of its nested subelements, then
to subelements nested within those, and so on. For example, starting at the
outer <Movies> element (the entire document in Fig. 2.2), we might move to
each of its nested <Movie> elements, each delimited by the tag <Movie> and
matching </Movie> tag, and from each <Movie> element to its nested <Genre>

2 0 CHAPTER 2. THE RELATIONAL MODEL OF DATA

<Movies>
<Movie title="Gone With the Wind">

<Year>1939</Year>
<Length>231</Length>
<Genre>drama</Genre>

</Movie>
<Movie title="Star Wars">

<Year>1977</Year>
<Length>124</Length>
<Genre>sciFi</Genre>

</Movie>
<Movie title="Wayne’s World">

<Year>1992</Year>
<Length>95</Length>
<Genre> comedy</Genre>

</Movie>
</Movies>

Figure 2.2: Movie data as XML

element, to see which movies belong to the “comedy” genre.
Constraints on the structure of data in this model often involve the data

type of values associated with a tag. For instance, are the values associated
with the <Length> tag integers or can they be arbitrary character strings?
Other constraints determine which tags can appear nested within which other
tags. For example, must each <Movie> element have a <Length> element nested
within it? What other tags, besides those shown in Fig. 2.2 might be used within
a <Movie> element? Can there be more than one genre for a movie? These and
other matters will be taken up in Section 11.2.

2.1.5 Other Data Models
There are many other models that are, or have been, associated with DBMS’s.
A modern trend is to add object-oriented features to the relational model. There
are two effects of object-orientation on relations:

1. Values can have structure, rather than being elementary types such as
integer or strings, as they were in Fig. 2.1.

2. Relations can have associated methods.

In a sense, these extensions, called the object-relational model, are analogous to
the way structs in C were extended to objects in C ++. We shall introduce the
object-relational model in Section 10.3.

2.2. BASICS OF THE RELATIONAL MODEL 2 1

There are even database models of the purely object-oriented kind. In these,
the relation is no longer the principal data-structuring concept, but becomes
only one option among many structures. We discuss an object-oriented database
model in Section 4.9.

There are several other models that were used in some of the earlier DBMS’s,
but that have now fallen out of use. The hierarchical model was, like semistruc
tured data, a tree-oriented model. Its drawback was that unlike more modern
models, it really operated at the physical level, which made it impossible for
programmers to write code at a conveniently high level. Another such model
was the network model, which was a graph-oriented, physical-level model. In
truth, both the hierarchical model and today’s semistructured models, allow
full graph structures, and do not limit us strictly to trees. However, the gener
ality of graphs was built directly into the network model, rather than favoring
trees as these other models do.

2.1.6 Comparison of Modeling Approaches
Even from our brief example, it appears that semistructured models have more
flexibility than relations. This difference becomes even more apparent when
we discuss, as we shall, how full graph structures are embedded into tree-like,
semistructured models. Nevertheless, the relational model is still preferred in
DBMS’s, and we should understand why. A brief argument follows.

Because databases are large, efficiency of access to data and efficiency of
modifications to that data are of great importance. Also very important is ease
of use — the productivity of programmers who use the data. Surprisingly, both
goals can be achieved with a model, particularly the relational model, that:

1. Provides a simple, limited approach to structuring data, yet is reasonably
versatile, so anything can be modeled.

2. Provides a limited, yet useful, collection of operations on data.

Together, these limitations turn into features. They allow us to implement
languages, such as SQL, that enable the programmer to express their wishes at
a very high level. A few lines of SQL can do the work of thousands of lines of
C, or hundreds of lines of the code that had to be written to access data under
earlier models such as network or hierarchical. Yet the short SQL programs,
because they use a strongly limited sets of operations, can be optimized to run
as fast, or faster than the code written in alternative languages.

2.2 Basics of the Relational M odel
The relational model gives us a single way to represent data: as a two-dimen
sional table called a relation. Figure 2.1, which we copy here as Fig. 2.3, is an
example of a relation, which we shall call Movies. The rows each represent a

2 2 CHAPTER 2. THE RELATIONAL MODEL OF DATA

movie, and the columns each represent a property of movies. In this section,
we shall introduce the most important terminology regarding relations, and
illustrate them with the Movies relation.

title year length genre
Gone With the Wind 1939 231 drama
Star Wars 1977 124 sciFi
Wayne’s World 1992 95 comedy

Figure 2.3: The relation Movies

2.2.1 Attributes
The columns of a relation are named by attributes-, in Fig. 2.3 the attributes are
t i t l e , year, length , and genre. Attributes appear at the tops of the columns.
Usually, an attribute describes the meaning of entries in the column below. For
instance, the column with attribute leng th holds the length, in minutes, of
each movie.

2.2.2 Schemas
The name of a relation and the set of attributes for a relation is called the
schema for that relation. We show the schema for the relation with the relation
name followed by a parenthesized list of its attributes. Thus, the schema for
relation Movies of Fig. 2.3 is

M o v ie s (title , y ea r, len g th , genre)

The attributes in a relation schema are a set, not a list. However, in order to
talk about relations we often must specify a “standard” order for the attributes.
Thus, whenever we introduce a relation schema with a list of attributes, as
above, we shall take this ordering to be the standard order whenever we display
the relation or any of its rows.

In the relational model, a database consists of one or more relations. The
set of schemas for the relations of a database is called a relational database
schema, or just a database schema.

2.2.3 Tuples
The rows of a relation, other than the header row containing the attribute
names, are called tuples. A tuple has one component for each attribute of
the relation. For instance, the first of the three tuples in Fig. 2.3 has the
four components Gone With th e Wind, 1939, 231, and drama for attributes
t i t l e , year, length , and genre, respectively. When we wish to write a tuple

2.2. BASICS OF THE RELATIONAL MODEL 23

Conventions for Relations and Attributes

We shall generally follow the convention that relation names begin with a
capital letter, and attribute names begin with a lower-case letter. However,
later in this book we shall talk of relations in the abstract, where the names
of attributes do not matter. In that case, we shall use single capital letters
for both relations and attributes, e.g., R (A ,B ,C) for a generic relation
with three attributes.

in isolation, not as part of a relation, we normally use commas to separate
components, and we use parentheses to surround the tuple. For example,

(Gone With the Wind, 1939, 231, drama)

is the first tuple of Fig. 2.3. Notice that when a tuple appears in isolation, the
attributes do not appear, so some indication of the relation to which the tuple
belongs must be given. We shall always use the order in which the attributes
were listed in the relation schema.

2.2.4 Domains
The relational model requires that each component of each tuple be atomic;
that is, it must be of some elementary type such as integer or string. It is not
permitted for a value to be a record structure, set, list, array, or any other type
that reasonably can have its values broken into smaller components.

It is further assumed that associated with each attribute of a relation is a
domain, that is, a particular elementary type. The components of any tuple of
the relation must have, in each component, a value that belongs to the domain of
the corresponding column. For example, tuples of the Movies relation of Fig. 2.3
must have a first component that is a string, second and third components that
are integers, and a fourth component whose value is a string.

It is possible to include the domain, or data type, for each attribute in
a relation schema. We shall do so by appending a colon and a type after
attributes. For example, we could represent the schema for the Movies relation
as:

Movies(title:string, year:integer, length:integer, genre:string)

2.2.5 Equivalent Representations of a Relation
Relations are sets of tuples, not lists of tuples. Thus the order in which the
tuples of a relation are presented is immaterial. For example, we can list the
three tuples of Fig. 2.3 in any of their six possible orders, and the relation is
“the same” as Fig. 2.3.

24 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Moreover, we can reorder the attributes of the relation as we choose, without
changing the relation. However, when we reorder the relation schema, we must
be careful to remember that the attributes are column headers. Thus, when we
change the order of the attributes, we also change the order of their columns.
When the columns move, the components of tuples change their order as well.
The result is that each tuple has its components permuted in the same way as
the attributes are permuted.

For example, Fig. 2.4 shows one of the many relations that could be obtained
from Fig. 2.3 by permuting rows and columns. These two relations are consid
ered “the same.” More precisely, these two tables are different presentations of
the same relation.

year genre title length
1977 sc iF i S ta r Wars 124
1992 comedy Wayne’s World 95
1939 drama Gone With th e Wind 231

Figure 2.4: Another presentation of the relation Movies

2.2.6 Relation Instances

A relation about movies is not static; rather, relations change over time. We
expect to insert tuples for new movies, as these appear. We also expect changes
to existing tuples if we get revised or corrected information about a movie, and
perhaps deletion of tuples for movies that are expelled from the database for
some reason.

It is less common for the schema of a relation to change. However, there are
situations where we might want to add or delete attributes. Schema changes,
while possible in commercial database systems, can be very expensive, because
each of perhaps millions of tuples needs to be rewritten to add or delete com
ponents. Also, if we add an attribute, it may be difficult or even impossible to
generate appropriate values for the new component in the existing tuples.

We shall call a set of tuples for a given relation an instance of that relation.
For example, the three tuples shown in Fig. 2.3 form an instance of relation
Movies. Presumably, the relation Movies has changed over time and will con
tinue to change over time. For instance, in 1990, Movies did not contain the
tuple for Wayne ’ s World. However, a conventional database system maintains
only one version of any relation: the set of tuples that are in the relation “now.”
This instance of the relation is called the current instance}

1 D atabases th a t m a in ta in h isto rica l versions o f d a ta as it ex isted in p as t tim es are called
tem poral databases.

2.2. BASICS OF THE RELATIONAL MODEL 25

2.2.7 Keys of Relations
There are many constraints on relations that the relational model allows us to
place on database schemas. We shall defer much of the discussion of constraints
until Chapter 7. However, one kind of constraint is so fundamental that we shall
introduce it here: key constraints. A set of attributes forms a key for a relation
if we do not allow two tuples in a relation instance to have the same values in
all the attributes of the key.

E xam ple 2 .1 : We can declare that the relation Movies has a key consisting
of the two attributes t i t l e and year. That is, we don’t believe there could
ever be two movies that had both the same title and the same year. Notice
that t i t l e by itself does not form a key, since sometimes “remakes” of a movie
appear. For example, there are three movies named King Kong, each made in
a different year. It should also be obvious that year by itself is not a key, since
there are usually many movies made in the same year. □

We indicate the attribute or attributes that form a key for a relation by
underlining the key attribute(s). For instance, the Movies relation could have
its schema written as:

Movies(t i t l e , ye a r , len g th , genre)

Remember that the statement that a set of attributes forms a key for a
relation is a statement about all possible instances of the relation, not a state
ment about a single instance. For example, looking only at the tiny relation of
Fig. 2.3, we might imagine that genre by itself forms a key, since we do not see
two tuples that agree on the value of their genre components. However, we can
easily imagine that if the relation instance contained more movies, there would
be many dramas, many comedies, and so on. Thus, there would be distinct
tuples that agreed on the genre component. As a consequence, it would be
incorrect to assert that genre is a key for the relation Movies.

While we might be sure that t i t l e and year can serve as a key for Movies,
many real-world databases use artificial keys, doubting that it is safe to make
any assumption about the values of attributes outside their control. For ex
ample, companies generally assign employee ID’s to all employees, and these
ID’s are carefully chosen to be unique numbers. One purpose of these ID’s is
to make sure that in the company database each employee can be distinguished
from all others, even if there are several employees with the same name. Thus,
the employee-ID attribute can serve as a key for a relation about employees.

In US corporations, it is normal for every employee to have a Social-Security
number. If the database has an attribute that is the Social-Security number,
then this attribute can also serve as a key for employees. Note that there is
nothing wrong with there being several choices of key, as there would be for
employees having both employee ID’s and Social-Security numbers.

The idea of creating an attribute whose purpose is to serve as a key is quite
widespread. In addition to employee ID’s, we find student ID’s to distinguish

26 CHAPTER 2. THE RELATIONAL MODEL OF DATA

students in a university. We find drivers’ license numbers and automobile reg
istration numbers to distinguish drivers and automobiles, respectively. You
undoubtedly can find more examples of attributes created for the primary pur
pose of serving as keys.

Movies(
t i t l e :s t r in g ,
ye a r : in te g e r ,
le n g th : in te g e r ,
g e n re :s tr in g ,
studioName: s t r in g ,
producerC#: in teg e r

)
M ovieStar(

name:s t r in g ,
ad d ress: s t r in g ,
gender: ch a r,
b i r th d a te :date

)
S ta rs In (

m ovieT itle: s t r in g ,
movieYear: in te g e r ,
starN am e:string

)
MovieExec(

nam e:string ,
ad d ress : s tr in g ,
c e r t# : in te g e r ,
netW orth: in teg e r

)
S tu d io (

name:s t r in g ,
ad d ress: s t r in g ,
presC#: in teg e r

)

Figure 2.5: Example database schema about movies

2.2.8 An Example Database Schema
We shall close this section with an example of a complete database schema.
The topic is movies, and it builds on the relation Movies that has appeared so
far in examples. The database schema is shown in Fig. 2.5. Here are the things
we need to know to understand the intention of this schema.

2.2. BASICS OF THE RELATIONAL MODEL 27

Movies

This relation is an extension of the example relation we have been discussing
so far. Remember that its key is title and year together. We have added
two new attributes; studioName tells us the studio that owns the movie, and
producerC# is an integer that represents the producer of the movie in a way
that we shall discuss when we talk about the relation MovieExec below.

MovieStar

This relation tells us something about stars. The key is name, the name of the
movie star. It is not usual to assume names of persons are unique and therefore
suitable as a key. However, movie stars are different; one would never take a
name that some other movie star had used. Thus, we shall use the convenient
fiction that movie-star names are unique. A more conventional approach would
be to invent a serial number of some sort, like social-security numbers, so that
we could assign each individual a unique number and use that attribute as the
key. We take that approach for movie executives, as we shall see. Another
interesting point about the MovieStar relation is that we see two new data
types. The gender can be a single character, M or F. Also, birthdate is of type
“date,” which might be a character string of a special form.

Starsln

This relation connects movies to the stars of that movie, and likewise connects a
star to the movies in which they appeared. Notice that movies are represented
by the key for Movies — the title and year — although we have chosen differ
ent attribute names to emphasize that attributes movieTitle and movieYear
represent the movie. Likewise, stars are represented by the key for MovieStar,
with the attribute called starName. Finally, notice that all three attributes
are necessary to form a key. It is perfectly reasonable to suppose that relation
Starsln could have two distinct tuples that agree in any two of the three at
tributes. For instance, a star might appear in two movies in one year, giving
rise to two tuples that agreed in movieYear and starName, but disagreed in
movieTitle.

MovieExec

This relation tells us about movie executives. It contains their name, address,
and networth as data about the executive. However, for a key we have invented
“certificate numbers” for all movie executives, including producers (as appear
in the relation Movies) and studio presidents (as appear in the relation Studio,
below). These are integers; a different one is assigned to each executive.

28 CHAPTER 2. THE RELATIONAL MODEL OF DATA

acctNo type balance
12345 savings 12000
23456 checking 1000
34567 savings 25

The relation Accounts

firstName lastName idNo account
Robbie Banks 901-222 12345
Lena Hand 805-333 12345
Lena Hand 805-333 23456

The relation Customers

Figure 2.6: Two relations of a banking database

Studio
This relation tells about movie studios. We rely on no two studios having the
same name, and therefore use name as the key. The other attributes are the
address of the studio and the certificate number for the president of the studio.
We assume that the studio president is surely a movie executive and therefore
appears in MovieExec.

2.2.9 Exercises for Section 2.2
E xercise 2 .2 .1 : In Fig. 2.6 are instances of two relations that might constitute
part of a banking database. Indicate the following:

a) The attributes of each relation.

b) The tuples of each relation.

c) The components of one tuple from each relation.

d) The relation schema for each relation.

e) The database schema.

f) A suitable domain for each attribute.

g) Another equivalent way to present each relation.

2.3. DEFINING A RELATION SCHEMA IN SQL 29

E xercise 2.2 .2: In Section 2.2.7 we suggested that there are many examples
of attributes that are created for the purpose of serving as keys of relations.
Give some additional examples.

E xercise 2 .2 .3 : How many different ways (considering orders of tuples and
attributes) are there to represent a relation instance if that instance has:

a) Three attributes and three tuples, like the relation Accounts of Fig. 2.6?

b) Four attributes and five tuples?

c) n attributes and m tuples?

2.3 Defining a Relation Schema in SQL
SQL (pronounced “sequel”) is the principal language used to describe and ma
nipulate relational databases. There is a current standard for SQL, called SQL-
99. Most commercial database management systems implement something sim
ilar, but not identical to, the standard. There are two aspects to SQL:

1. The Data-Definition sublanguage for declaring database schemas and

2. The Data-Manipulation sublanguage for querying (asking questions a-
bout) databases and for modifying the database.

The distinction between these two sublanguages is found in most languages;
e.g., C or Java have portions that declare data and other portions that are
executable code. These correspond to data-definition and data-manipulation,
respectively.

In this section we shall begin a discussion of the data-definition portion
of SQL. There is more on the subject in Chapter 7, especially the m atter of
constraints on data. The data-manipulation portion is covered extensively in
Chapter 6 .

2.3.1 Relations in SQL
SQL makes a distinction between three kinds of relations:

1. Stored relations, which are called tables. These are the kind of relation
we deal with ordinarily — a relation that exists in the database and that
can be modified by changing its tuples, as well as queried.

2. Views, which are relations defined by a computation. These relations are
not stored, but are constructed, in whole or in part, when needed. They
are the subject of Section 8.1.

30 CHAPTER 2. THE RELATIONAL MODEL OF DATA

3. Temporary tables, which are constructed by the SQL language processor
when it performs its job of executing queries and data modifications.
These relations are then thrown away and not stored.

In this section, we shall learn how to declare tables. We do not treat the dec
laration and definition of views here, and temporary tables are never declared.
The SQL CREATE TABLE statement declares the schema for a stored relation. It
gives a name for the table, its attributes, and their data types. It also allows
us to declare a key, or even several keys, for a relation. There are many other
features to the CREATE TABLE statement, including many forms of constraints
that can be declared, and the declaration of indexes (data structures that speed
up many operations on the table) but we shall leave those for the appropriate
time.

2.3.2 Data Types
To begin, let us introduce the primitive data types that are supported by SQL
systems. All attributes must have a data type.

1. Character strings of fixed or varying length. The type CHAR(n) denotes
a fixed-length string of up to n characters. VARCHAR(n) also denotes a
string of up to n characters. The difference is implementation-dependent;
typically CHAR implies that short strings are padded to make n characters,
while VARCHAR implies that an endmarker or string-length is used. SQL
permits reasonable coercions between values of character-string types.
Normally, a string is padded by trailing blanks if it becomes the value
of a component that is a fixed-length string of greater length. For ex
ample, the string ’foo’ ,2 if it became the value of a component for an
attribute of type CHAR(5), would assume the value ’foo ’ (with two
blanks following the second o).

2. Bit strings of fixed or varying length. These strings are analogous to fixed
and varying-length character strings, but their values are strings of bits
rather than characters. The type BIT (n) denotes bit strings of length n,
while BIT VARYING (n) denotes bit strings of length up to n.

3. The type BOOLEAN denotes an attribute whose value is logical. The possi
ble values of such an attribute are TRUE, FALSE, and — although it would
surprise George Boole — UNKNOWN.

4. The type INT or INTEGER (these names are synonyms) denotes typical
integer values. The type SHORTINT also denotes integers, but the number
of bits permitted may be less, depending on the implementation (as with
the types int and short int in C).

2N otice th a t in SQ L, strings are su rrounded by single-quotes, n o t double-quotes as in m any
o th er program m ing languages.

2.3. DEFINING A RELATION SCHEMA IN SQL 31

Dates and Times in SQL

Different SQL implementations may provide many different representa
tions for dates and times, but the following is the SQL standard repre
sentation. A date value is the keyword DATE followed by a quoted string
of a special form. For example, DATE ’1948-05-14’ follows the required
form. The first four characters are digits representing the year. Then come
a hyphen and two digits representing the month. Finally there is another
hyphen and two digits representing the day. Note that single-digit months
and days are padded with a leading 0 .

A time value is the keyword TIME and a quoted string. This string has
two digits for the hour, on the military (24-hour) clock. Then come a colon,
two digits for the minute, another colon, and two digits for the second. If
fractions of a second are desired, we may continue with a decimal point and
as many significant digits as we like. For instance, TIME ’ 15:00:02.5 ’
represents the time at which all students will have left a class that ends
at 3 PM: two and a half seconds past three o’clock.

5. Floating-point numbers can be represented in a variety of ways. We may
use the type FLOAT or REAL (these are synonyms) for typical floating
point numbers. A higher precision can be obtained with the type DOUBLE
PRECISION; again the distinction between these types is as in C. SQL also
has types that are real numbers with a fixed decimal point. For exam
ple, DECIMAL(n,d) allows values that consist of n decimal digits, with the
decimal point assumed to be d positions from the right. Thus, 0123.45
is a possible value of type DECIMAL(6,2). NUMERIC is almost a synonym
for DECIMAL, although there are possible implementation-dependent dif
ferences.

6. Dates and times can be represented by the data types DATE and TIME,
respectively (see the box on “Dates and Times in SQL”). These values
are essentially character strings of a special form. We may, in fact, coerce
dates and times to string types, and we may do the reverse if the string
“makes sense” as a date or time.

2.3.3 Simple Table Declarations
The simplest form of declaration of a relation schema consists of the key
words CREATE TABLE followed by the name of the relation and a parenthesized,
comma-separated list of the attribute names and their types.

E xam ple 2 .2 : The relation Movies with the schema given in Fig. 2.5 can be
declared as in Fig. 2.7. The title is declared as a string of (up to) 100 characters.

32 CHAPTER 2. THE RELATIONAL MODEL OF DATA

CREATE TABLE Movies (
t i t l e CHAR(IOO),
year INT,
leng th INT,
genre CHAR(10),
studioName CHAR(30),
producerC# INT

);

Figure 2.7: SQL declaration of the table Movies

The year and length attributes are each integers, and the genre is a string of
(up to) 10 characters. The decision to allow up to 100 characters for a title
is arbitrary, but we don’t want to limit the lengths of titles too strongly, or
long titles would be truncated to fit. We have assumed that 10 characters are
enough to represent a genre of movie; again, that is an arbitrary choice, one
we could regret if we had a genre with a long name. Likewise, we have chosen
30 characters as sufficient for the studio name. The certificate number for the
producer of the movie is another integer. □

Exam ple 2.3: Figure 2.8 is a SQL declaration of the relation MovieStar from
Fig. 2.5. It illustrates some new options for data types. The name of this table
is MovieStar, and it has four attributes. The first two attributes, name and
address, have each been declared to be character strings. However, with the
name, we have made the decision to use a fixed-length string of 30 characters,
padding a name out with blanks at the end if necessary and truncating a name
to 30 characters if it is longer. In contrast, we have declared addresses to be
variable-length character strings of up to 255 characters.3 It is not clear that
these two choices are the best possible, but we use them to illustrate the two
major kinds of string data types.

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
gender CHAR(l),
b ir th d a te DATE

);

Figure 2.8: Declaring the relation schema for the MovieStar relation

3T h e num ber 255 is no t th e resu lt of som e weird notion of w hat typical addresses look like.
A single byte can store integers betw een 0 and 255, so it is possible to represent a varying-
length character strin g of up to 255 bytes by a single byte for the count o f characters p lus the
bytes to store the strin g itself. Com m ercial system s generally su p p o rt longer varying-length
strings, however.

2.3. DEFINING A RELATION SCHEMA IN SQL 33

The gender attribute has values that are a single letter, M or F. Thus, we
can safely use a single character as the type of this attribute. Finally, the
b ir th d a te attribute naturally deserves the data type DATE. □

2.3.4 Modifying Relation Schemas
We now know how to declare a table. But what if we need to change the schema
of the table after it has been in use for a long time and has many tuples in its
current instance? We can remove the entire table, including all of its current
tuples, or we could change the schema by adding or deleting attributes.

We can delete a relation R by the SQL statement:

DROP TABLE R;

Relation R is no longer part of the database schema, and we can no longer
access any of its tuples.

More frequently than we would drop a relation that is part of a long-lived
database, we may need to modify the schema of an existing relation. These
modifications are done by a statement that begins with the keywords ALTER
TABLE and the name of the relation. We then have several options, the most
important of which are

1. ADD followed by an attribute name and its data type.

2. DROP followed by an attribute name.

E xam ple 2 .4 : Thus, for instance, we could modify the MovieStar relation by
adding an attribute phone with:

ALTER TABLE MovieStar ADD phone CHAR(16);

As a result, the MovieStar schema now has five attributes: the four mentioned
in Fig. 2.8 and the attribute phone, which is a fixed-length string of 16 bytes.
In the actual relation, tuples would all have components for phone, but we
know of no phone numbers to put there. Thus, the value of each of these
components is set to the special null value, NULL. In Section 2.3.5, we shall see
how it is possible to choose another “default” value to be used instead of NULL
for unknown values.

As another example, the ALTER TABLE statement:

ALTER TABLE MovieStar DROP b ir th d a te ;

deletes the b ir th d a te attribute. As a result, the schema for MovieStar no
longer has that attribute, and all tuples of the current MovieStar instance
have the component for b ir th d a te deleted. □

34 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2.3.5 Default Values
When we create or modify tuples, we sometimes do not have values for all
components. For instance, we mentioned in Example 2.4 that when we add a
column to a relation schema, the existing tuples do not have a known value, and
it was suggested that NULL could be used in place of a “real” value. However,
there are times when we would prefer to use another choice of default value, the
value that appears in a column if no other value is known.

In general, any place we declare an attribute and its data type, we may add
the keyword DEFAULT and an appropriate value. That value is either NULL or
a constant. Certain other values that are provided by the system, such as the
current time, may also be options.

Example 2.5: Let us consider Example 2.3. We might wish to use the char
acter ? as the default for an unknown gender, and we might also wish to use
the earliest possible date, DATE ’0000-00-00’ for an unknown birthdate. We
could replace the declarations of gender and birthdate in Fig. 2.8 by:

gender CHAR(l) DEFAULT ’?’,
birthdate DATE DEFAULT DATE ’0000-00-00’

As another example, we could have declared the default value for new at
tribute phone to be ’u n l i s te d ’ when we added this attribute in Example 2.4.
In that case,

ALTER TABLE MovieStar ADD phone CHAR(16) DEFAULT ’unlisted’;

would be the appropriate ALTER TABLE statement. □

2.3.6 Declaring Keys
There are two ways to declare an attribute or set of attributes to be a key in
the CREATE TABLE statement that defines a stored relation.

1. We may declare one attribute to be a key when that attribute is listed in
the relation schema.

2. We may add to the list of items declared in the schema (which so far
have only been attributes) an additional declaration that says a particular
attribute or set of attributes forms the key.

If the key consists of more than one attribute, we have to use method (2). If
the key is a single attribute, either method may be used.

There are two declarations that may be used to indicate keyness:

a) PRIMARY KEY, or
b) UNIQUE.

2.3. DEFINING A RELATION SCHEMA IN SQL 35

The effect of declaring a set of attributes 5 to be a key for relation R either
using PRIMARY KEY or UNIQUE is the following:

• Two tuples in R cannot agree on all of the attributes in set 5, unless one
of them is NULL. Any attem pt to insert or update a tuple that violates
this rule causes the DBMS to reject the action that caused the violation.

In addition, if PRIMARY KEY is used, then attributes in S are not allowed to
have NULL as a value for their components. Again, any attem pt to violate this
rule is rejected by the system. NULL is permitted if the set S is declared UNIQUE,
however. A DBMS may make other distinctions between the two terms, if it
wishes.

E xam ple 2 .6 : Let us reconsider the schema for relation MovieStar. Since no
star would use the name of another star, we shall assume that name by itself
forms a key for this relation. Thus, we can add this fact to the line declaring
name. Figure 2.9 is a revision of Fig. 2.8 that reflects this change. We could
also substitute UNIQUE for PRIMARY KEY in this declaration. If we did so, then
two or more tuples could have NULL as the value of name, but there could be no
other duplicate values for this attribute.

CREATE TABLE MovieStar (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(l),
b i r th d a te DATE

);

Figure 2.9: Making name the key

Alternatively, we can use a separate definition of the key. The resulting
schema declaration would look like Fig. 2.10. Again, UNIQUE could replace
PRIMARY KEY. □

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
gender CHAR(l),
b i r th d a te DATE,
PRIMARY KEY (name)

) ;

Figure 2.10: A separate declaration of the key

36 CHAPTER 2. THE RELATIONAL MODEL OF DATA

E xam ple 2 .7 : In Example 2.6, the form of either Fig. 2.9 or Fig. 2.10 is
acceptable, because the key is a single attribute. However, in a situation where
the key has more than one attribute, we must use the style of Fig. 2.10. For
instance, the relation Movie, whose key is the pair of attributes t i t l e and year,
must be declared as in Fig. 2.11. However, as usual, UNIQUE is an option to
replace PRIMARY KEY. □

CREATE TABLE Movies (
t i t l e CHAR(100),
year INT,
len g th INT,
genre CHAR(IO),
studioName CHAR(30),
producerC# INT,
PRIMARY KEY (t i t l e , year)

Figure 2.11: Making t i t l e and year be the key of Movies

2.3.7 Exercises for Section 2.3
E xercise 2 .3 .1 : In this exercise we introduce one of our running examples of
a relational database schema. The database schema consists of four relations,
whose schemas are:

Product(m aker, model, type)
PC(model, speed, ram, hd, p rice)
Laptop(model, speed, ram, hd, screen , p ric e)
P rin ter(m o d e l, co lo r, ty p e , p rice)

The Product relation gives the manufacturer, model number and type (PC,
laptop, or printer) of various products. We assume for convenience that model
numbers are unique over all manufacturers and product types; that assumption
is not realistic, and a real database would include a code for the manufacturer
as part of the model number. The PC relation gives for each model number
that is a PC the speed (of the processor, in gigahertz), the amount of RAM (in
megabytes), the size of the hard disk (in gigabytes), and the price. The Laptop
relation is similar, except that the screen size (in inches) is also included. The
P r in te r relation records for each printer model whether the printer produces
color output (true, if so), the process type (laser or ink-jet, typically), and the
price.

Write the following declarations:

a) A suitable schema for relation Product.

2.3. DEFINING A RELATION SCHEMA IN SQL 37

b) A suitable schema for relation PC.

c) A suitable schema for relation Laptop.

d) A suitable schema for relation P r in te r .

e) An alteration to your P r in te r schema from (d) to delete the attribute
co lo r.

f) An alteration to your Laptop schema from (c) to add the attribute od
(optical-disk type, e.g., cd or dvd). Let the default value for this attribute
be ’none’ if the laptop does not have an optical disk.

E xercise 2 .3 .2 : This exercise introduces another running example, concerning
World War II capital ships. It involves the following relations:

C la s s e s (c la s s , ty p e , coun try , numGuns, b o re , d isp lacem ent)
Ships(name, c la s s , launched)
B attles(nam e, d ate)
Outcom es(ship, b a t t l e , r e s u l t)

Ships are built in “classes” from the same design, and the class is usually named
for the first ship of that class. The relation C lasses records the name of the
class, the type (’b b ’ for battleship or ’b e ’ for battlecruiser), the country that
built the ship, the number of main guns, the bore (diameter of the gun barrel,
in inches) of the main guns, and the displacement (weight, in tons). Relation
Ships records the name of the ship, the name of its class, and the year in which
the ship was launched. Relation B a tt le s gives the name and date of battles
involving these ships, and relation Outcomes gives the result (sunk, damaged,
or ok) for each ship in each battle.

Write the following declarations:

a) A suitable schema for relation C lasses.

b) A suitable schema for relation Ships.

c) A suitable schema for relation B a ttle s .

d) A suitable schema for relation Outcomes.

e) An alteration to your C lasses relation from (a) to delete the attribute
bore.

f) An alteration to your Ships relation from (b) to include the attribute
yard giving the shipyard where the ship was built.

38 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2.4 An Algebraic Query Language
In this section, we introduce the data-manipulation aspect of the relational
model. Recall that a data model is not just structure; it needs a way to query
the data and to modify the data. To begin our study of operations on relations,
we shall learn about a special algebra, called relational algebra, that consists of
some simple but powerful ways to construct new relations from given relations.
When the given relations are stored data, then the constructed relations can be
answers to queries about this data.

Relational algebra is not used today as a query language in commercial
DBMS’s, although some of the early prototypes did use this algebra directly.
Rather, the “real” query language, SQL, incorporates relational algebra at its
center, and many SQL programs are really “syntactically sugared” expressions
of relational algebra. Further, when a DBMS processes queries, the first thing
that happens to a SQL query is that it gets translated into relational algebra
or a very similar internal representation. Thus, there are several good reasons
to start out learning this algebra.

2.4.1 Why Do We Need a Special Query Language?
Before introducing the operations of relational algebra, one should ask why, or
whether, we need a new kind of programming languages for databases. Won’t
conventional languages like C or Java suffice to ask and answer any computable
question about relations? After all, we can represent a tuple of a relation by a
struct (in C) or an object (in Java), and we can represent relations by arrays
of these elements.

The surprising answer is that relational algebra is useful because it is less
powerful than C or Java. That is, there are computations one can perform in
any conventional language that one cannot perform in relational algebra. An
example is: determine whether the number of tuples in a relation is even or
odd. By limiting what we can say or do in our query language, we get two huge
rewards — ease of programming and the ability of the compiler to produce
highly optimized code — that we discussed in Section 2.1.6.

2.4.2 What is an Algebra?
An algebra, in general, consists of operators and atomic operands. For in
stance, in the algebra of arithmetic, the atomic operands are variables like x
and constants like 15. The operators are the usual arithmetic ones: addition,
subtraction, multiplication, and division. Any algebra allows us to build ex
pressions by applying operators to atomic operands and/or other expressions
of the algebra. Usually, parentheses are needed to group operators and their
operands. For instance, in arithmetic we have expressions such as (x + y)* z or
((x + 7)/(2/ - 3)) + x.

2.4. A N ALGEBRAIC QUERY LANGUAGE 39

Relational algebra is another example of an algebra. Its atomic operands
are:

1. Variables that stand for relations.

2 . Constants, which are finite relations.

We shall next see the operators of relational algebra.

2.4.3 Overview of Relational Algebra
The operations of the traditional relational algebra fall into four broad classes:

a) The usual set operations — union, intersection, and difference — applied
to relations.

b) Operations that remove parts of a relation: “selection” eliminates some
rows (tuples), and “projection” eliminates some columns.

c) Operations that combine the tuples of two relations, including “Cartesian
product,” which pairs the tuples of two relations in all possible ways, and
various kinds of “join” operations, which selectively pair tuples from two
relations.

d) An operation called “renaming” that does not affect the tuples of a re
lation, but changes the relation schema, i.e., the names of the attributes
and/or the name of the relation itself.

We generally shall refer to expressions of relational algebra as queries.

2.4.4 Set Operations on Relations
The three most common operations on sets are union, intersection, and differ
ence. We assume the reader is familiar with these operations, which are defined
as follows on arbitrary sets R and 5:

• R U S, the union of R and S, is the set of elements that are in R or 5 or
both. An element appears only once in the union even if it is present in
both R and S.

• R n S, the intersection of R and 5, is the set of elements that are in both
R and S.

• R - S, the difference of R and S, is the set of elements that are in R but
not in S. Note that R — S is different from S — R; the latter is the set of
elements that are in S but not in R.

When we apply these operations to relations, we need to put some conditions
on R and S:

40 CHAPTER 2. THE RELATIONAL MODEL OF DATA

1. R and S must have schemas with identical sets of attributes, and the
types (domains) for each attribute must be the same in R and S.

2. Before we compute the set-theoretic union, intersection, or difference of
sets of tuples, the columns of R and S must be ordered so that the order
of attributes is the same for both relations.

Sometimes we would like to take the union, intersection, or difference of
relations that have the same number of attributes, with corresponding domains,
but that use different names for their attributes. If so, we may use the renaming
operator to be discussed in Section 2.4.11 to change the schema of one or both
relations and give them the same set of attributes.

name address gender birthdate
Carrie Fisher 123 Maple St., Hollywood F 9/9/99
Mark Hamill 456 Oak Rd., Brentwood M 8/8/88

Relation R

name address gender birthdate
Carrie Fisher 123 Maple St., Hollywood F 9/9/99
Harrison Ford 789 Palm Dr., Beverly Hills M 7/7/77

Relation S

Figure 2.12: Two relations

Exam ple 2.8: Suppose we have the two relations R and S, whose schemas
are both that of relation MovieStar Section 2.2.8. Current instances of R and
S are shown in Fig. 2.12. Then the union R U S is

name address gender birthdate
Carrie Fisher 123 Maple St., Hollywood F 9/9/99
Mark Hamill 456 Oak Rd., Brentwood M 8/8/88
Harrison Ford 789 Palm Dr., Beverly Hills M 7/7/77

Note that the two tuples for Carrie Fisher from the two relations appear only
once in the result.

The intersection R fl 5 is

name_________ | address___________________| gender \ birthdate
Carrie Fisher | 123 Maple St., Hollywood | F | 9/9/99

Now, only the Carrie Fisher tuple appears, because only it is in both relations.
The difference R — S is

2.4. A N ALGEBRAIC QUERY LANGUAGE 41

name______ | address______________ | gender | birthdate

Mark Hamill | 456 Oak Rd., Brentwood | M | 8/8/88

That is, the Fisher and Hamill tuples appear in R and thus are candidates for
R — S. However, the Fisher tuple also appears in S and so is not in R — S. □

2.4.5 Projection
The projection operator is used to produce from a relation R a new relation
that has only some of R ’s columns. The value of expression , a 2 ,. . . ,A n (R) is
a relation that has only the columns for attributes A i ,A 2 , . . . , An of R. The
schema for the resulting value is the set of attributes {A i ,A 2, . . . , An}, which
we conventionally show in the order listed.

title year length genre studioName producerC#

Star Weirs 1977 124 sciFi Fox 12345
Galaxy Quest 1999 104 comedy DreamWorks 67890
Wayne’s World 1992 95 comedy Paramount 99999

Figure 2.13: The relation Movies

Example 2.9: Consider the relation Movies with the relation schema de
scribed in Section 2.2.8. An instance of this relation is shown in Fig. 2.13. We
can project this relation onto the first three attributes with the expression:

'K title ,y e a r ,len g th (Movies)
The resulting relation is

title year length

Star Wars 1977 124
Galaxy Quest 1999 104
Wayne’s World 1992 95

As another example, we can project onto the attribute genre with the ex
pression ngenre(Movies). The result is the single-column relation

genre

sciFi
comedy

Notice that there are only two tuples in the resulting relation, since the last two
tuples of Fig. 2.13 have the same value in their component for attribute genre,
and in the relational algebra of sets, duplicate tuples are always eliminated. □

42 CHAPTER 2. THE RELATIONAL MODEL OF DATA

A Note About Data Quality :-)

While we have endeavored to make example data as accurate as possible,
we have used bogus values for addresses and other personal information
about movie stars, in order to protect the privacy of members of the acting
profession, many of whom are shy individuals who shun publicity.

2.4.6 Selection
The selection operator, applied to a relation R, produces a new relation with a
subset of R ’s tuples. The tuples in the resulting relation are those that satisfy
some condition C that involves the attributes of R. We denote this operation
ac{R)- The schema for the resulting relation is the same as R ’s schema, and
we conventionally show the attributes in the same order as we use for R.

C is a conditional expression of the type with which we are familiar from
conventional programming languages; for example, conditional expressions fol
low the keyword i f in programming languages such as C or Java. The only
difference is that the operands in condition C are either constants or attributes
of R. We apply C to each tuple t of R by substituting, for each attribute A
appearing in condition C, the component of t for attribute A. If after substi
tuting for each attribute of C the condition C is true, then t is one of the tuples
that appear in the result of ac(R); otherwise t is not in the result.

E xam ple 2.10: Let the relation Movies be as in Fig. 2.13. Then the value of
expression aiength>ioo (Movies) is

title year length genre studioName producerC#
Star Weirs 1977 124 sciFi Fox 12345
Galaxy Quest 1999 104 comedy DreamWorks 67890

The first tuple satisfies the condition length > 100 because when we substitute
for length the value 124 found in the component of the first tuple for attribute
length, the condition becomes 124 > 100. The latter condition is true, so we
accept the first tuple. The same argument explains why the second tuple of
Fig. 2.13 is in the result.

The third tuple has a leng th component 95. Thus, when we substitute for
length we get the condition 95 > 100, which is false. Hence the last tuple of
Fig. 2.13 is not in the result. □

E xam ple 2.11: Suppose we want the set of tuples in the relation Movies that
represent Fox movies at least 100 minutes long. We can get these tuples with
a more complicated condition, involving the AND of two sub conditions. The
expression is

& leng th> 100 AND s tu d io Name—* Fox’ (Movies)

The tuple

title_______| year \ length \ genre \ studioName | producerC#
Star Wars | 1977 | 124 | sciFi | Fox | 12345

is the only one in the resulting relation. □

2.4.7 Cartesian Product
The Cartesian product (or cross-product, or just product) of two sets R and
S is the set of pairs that can be formed by choosing the first element of the
pair to be any element of R and the second any element of S. This product
is denoted R x S. When R and S are relations, the product is essentially the
same. However, since the members of R and S are tuples, usually consisting
of more than one component, the result of pairing a tuple from R with a tuple
from S is a longer tuple, with one component for each of the components of the
constituent tuples. By convention, the components from R (the left operand)
precede the components from S in the attribute order for the result.

The relation schema for the resulting relation is the union of the schemas
for R and S. However, if R and S should happen to have some attributes in
common, then we need to invent new names for at least one of each pair of
identical attributes. To disambiguate an attribute A that is in the schemas of
both R and 5, we use R.A for the attribute from R and S.A for the attribute
from S.

Exam ple 2.12: For conciseness, let us use an abstract example that illustrates
the product operation. Let relations R and S have the schemas and tuples
shown in Fig. 2.14(a) and (b). Then the product R x S consists of the six
tuples shown in Fig. 2.14(c). Note how we have paired each of the two tuples of
R with each of the three tuples of S. Since B is an attribute of both schemas,
we have used R.B and S.B in the schema for R x S. The other attributes are
unambiguous, and their names appear in the resulting schema unchanged. □

2.4.8 Natural Joins
More often than we want to take the product of two relations, we find a need to
join them by pairing only those tuples that match in some way. The simplest
sort of match is the natural join of two relations R and 5, denoted R x S, in
which we pair only those tuples from R and S that agree in whatever attributes
are common to the schemas of R and S. More precisely, let A \ , A 2 , . . . , An be
all the attributes that are in both the schema of R and the schema of S. Then
a tuple r from R and a tuple s from S are successfully paired if and only if r
and s agree on each of the attributes A i, A 2 , ■ ■ ■ , An.

If the tuples r and s are successfully paired in the join R tx S, then the
result of the pairing is a tuple, called the joined tuple, with one component for
each of the attributes in the union of the schemas of R and S. The joined tuple

2.4. A N ALGEBRAIC QUERY LANGUAGE 43

44 CHAPTER 2. THE RELATIONAL MODEL OF DATA

A B
1 2

3 4

(a) Relation R

B C D
2 5 6
4 7 8
9 10 11

(b) Relation S

A R.B S.B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

(c) Result R x S

Figure 2.14: Two relations and their Cartesian product

agrees with tuple r in each attribute in the schema of R, and it agrees with
s in each attribute in the schema of S. Since r and s are successfully paired,
the joined tuple is able to agree with both these tuples on the attributes they
have in common. The construction of the joined tuple is suggested by Fig. 2.15.
However, the order of the attributes need not be that convenient; the attributes
of R and 5 can appear in any order.

Exam ple 2.13: The natural join of the relations R and 5 from Fig. 2.14(a)
and (b) is

A B c D
1 2 5 6
3 4 7 8

The only attribute common to R and S is B. Thus, to pair successfully, tuples
need only to agree in their B components. If so, the resulting tuple has com
ponents for attributes A (from R), B (from either R or S), C (from S), and D
(from S).

2.4. A N ALGEBRAIC QUERY LANGUAGE 45

R________ S

Figure 2.15: Joining tuples

In this example, the first tuple of R successfully pairs with only the first
tuple of 5; they share the value 2 on their common attribute B. This pairing
yields the first tuple of the result: (1,2,5,6). The second tuple of R pairs
successfully only with the second tuple of S, and the pairing yields (3 ,4 ,7 ,8).
Note that the third tuple of S does not pair with any tuple of R and thus has
no effect on the result of R tx S. A tuple that fails to pair with any tuple of
the other relation in a join is said to be a dangling tuple. □

E xam ple 2.14: The previous example does not illustrate all the possibilities
inherent in the natural join operator. For example, no tuple paired successfully
with more than one tuple, and there was only one attribute in common to the
two relation schemas. In Fig. 2.16 we see two other relations, U and V, that
share two attributes between their schemas: B and C. We also show an instance
in which one tuple joins with several tuples.

For tuples to pair successfully, they must agree in both the B and C com
ponents. Thus, the first tuple of U joins with the first two tuples of V, while
the second and third tuples of U join with the third tuple of V. The result of
these four pairings is shown in Fig. 2.16(c). □

2.4.9 Theta-Joins
The natural join forces us to pair tuples using one specific condition. While this
way, equating shared attributes, is the most common basis on which relations
are joined, it is sometimes desirable to pair tuples from two relations on some
other basis. For that purpose, we have a related notation called the theta-
join. Historically, the “theta” refers to an arbitrary condition, which we shall
represent by C rather than 9.

The notation for a theta-join of relations R and S based on condition C is
R ix c S. The result of this operation is constructed as follows:

1. Take the product of R and S.

2. Select from the product only those tuples that satisfy the condition C.

46 CHAPTER 2. THE RELATIONAL MODEL OF DATA

A B C
1 2 3
6 7 8
9 7 8

(a) Relation U

B c D
2 3 4
2 3 5
7 8 10

(b) Relation V

A B C D
1 2 3 4
1 2 3 5
6 7 8 10
9 7 8 10

(c) Result U xi V

Figure 2.16: Natural join of relations

As with the product operation, the schema for the result is the union of the
schemas of R and S, with “R ” or “S.” prefixed to attributes if necessary to
indicate from which schema the attribute came.

Exam ple 2.15: Consider the operation U ^ a < d V, where U and V are the
relations from Fig. 2.16(a) and (b). We must consider all nine pairs of tuples,
one from each relation, and see whether the A component from the [/-tuple
is less than the D component of the F-tuple. The first tuple of U, with an A
component of 1, successfully pairs with each of the tuples from V. However, the
second and third tuples from U, with A components of 6 and 9, respectively,
pair successfully with only the last tuple of V . Thus, the result has only five
tuples, constructed from the five successful pairings. This relation is shown in
Fig. 2.17. □

Notice that the schema for the result in Fig. 2.17 consists of all six attributes,
with U and V prefixed to their respective occurrences of attributes B and C to
distinguish them. Thus, the theta-join contrasts with natural join, since in the
latter common attributes are merged into one copy. Of course it makes sense to

2.4. A N ALGEBRAIC Q UERY LANG UAGE 47

A U.B U.C V.B V.C D
1 2 3 2 3 4
1 2 3 2 3 5
1 2 3 7 8 10
6 7 8 7 8 10
9 7 8 7 8 10

Figure 2.17: Result of U ixi a < d V

do so in the case of the natural join, since tuples don’t pair unless they agree in
their common attributes. In the case of a theta-join, there is no guarantee that
compared attributes will agree in the result, since they may not be compared
with =.

E xam ple 2.16: Here is a theta-join on the same relations U and V that has
a more complex condition:

u IX A < D AND U . B ^ V . B V

That is, we require for successful pairing not only that the A component of the
[/-tuple be less than the D component of the V-tuple, but that the two tuples
disagree on their respective B components. The tuple

A | U.B | U.C | V.B | V.C 1 D
1 | 2 |~~3 ["7 |~8 | 10

is the only one to satisfy both conditions, so this relation is the result of the
theta-join above. □

2.4.10 Combining Operations to Form Queries
If all we could do was to write single operations on one or two relations as
queries, then relational algebra would not be nearly as useful as it is. However,
relational algebra, like all algebras, allows us to form expressions of arbitrary
complexity by applying operations to the result of other operations.

One can construct expressions of relational algebra by applying operators
to subexpressions, using parentheses when necessary to indicate grouping of
operands. It is also possible to represent expressions as expression trees; the
latter often are easier for us to read, although they are less convenient as a
machine-readable notation.

E xam ple 2.17: Suppose we want to know, from our running Movies relation,
“What are the titles and years of movies made by Fox that are at least 100
minutes long?” One way to compute the answer to this query is:

1. Select those Movies tuples that have length > 100.

48 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2. Select those Movies tuples that have studioName = ’Fox’.

3. Compute the intersection of (1) and (2).

4. Project the relation from (3) onto attributes t i t l e and year.

K . ,title, year

n

C length >= 100

Movies Movies

Figure 2.18: Expression tree for a relational algebra expression

In Fig. 2.18 we see the above steps represented as an expression tree. Ex
pression trees are evaluated bottom-up by applying the operator at an interior
node to the arguments, which are the results of its children. By proceeding
bottom-up, we know that the arguments will be available when we need them.
The two selection nodes correspond to steps (1) and (2). The intersection node
corresponds to step (3), and the projection node is step (4).

Alternatively, we could represent the same expression in a conventional,
linear notation, with parentheses. The formula

ovies) n GstudioName= * Fox ’ (Movies))71"title ^y ea r

represents the same expression.
Incidentally, there is often more than one relational algebra expression that

represents the same computation. For instance, the above query could also be
written by replacing the intersection by logical AND within a single selection
operation. That is,

7Tt i t le ,y e a r (^ le n g th > 100 AND s tu d io N a m e = >F o x i (Movies)^

is an equivalent form of the query. □

2.4. A N ALGEBRAIC QUERY LANGUAGE 49

Equivalent Expressions and Query Optimization

All database systems have a query-answering system, and many of them
are based on a language that is similar in expressive power to relational
algebra. Thus, the query asked by a user may have many equivalent ex
pressions (expressions that produce the same answer whenever they are
given the same relations as operands), and some of these may be much
more quickly evaluated. An important job of the query “optimizer” dis
cussed briefly in Section 1.2.5 is to replace one expression of relational
algebra by an equivalent expression that is more efficiently evaluated.

2.4.11 Naming and Renaming

In order to control the names of the attributes used for relations that are con
structed by applying relational-algebra operations, it is often convenient to
use an operator that explicitly renames relations. We shall use the operator
Ps(Ai,A2,-.. ,a„)(R) to rename a relation R. The resulting relation has exactly
the same tuples as R, but the name of the relation is S. Moreover, the at
tributes of the result relation S are named Ai, A 2 , . .. ,A n , in order from the
left. If we only want to change the name of the relation to S and leave the
attributes as they are in R, we can just say ps(R)-

E xam ple 2 .1 8 : In Example 2.12 we took the product of two relations R and
S from Fig. 2.14(a) and (b) and used the convention that when an attribute
appears in both operands, it is renamed by prefixing the relation name to it.
Suppose, however, that we do not wish to call the two versions of B by names
R .B and S.B; rather we want to continue to use the name B for the attribute
that comes from R, and we want to use X as the name of the attribute B
coming from S. We can rename the attributes of S so the first is called X . The
result of the expression p s (x , c ,D) (S) is a relation named S that looks just like
the relation 5 from Fig. 2.14, but its first column has attribute X instead of B.

A B X C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

Figure 2.19: R x pS(x,c,D){S)

50 CHAPTER 2. THE RELATIONAL MODEL OF DATA

When we take the product of R with this new relation, there is no conflict
of names among the attributes, so no further renaming is done. That is, the
result of the expression R x P s (x , c , D) (S) is the relation R x S from Fig. 2.14(c),
except that the five columns are labeled A, B, X , C, and D, from the left. This
relation is shown in Fig. 2.19.

As an alternative, we could take the product without renaming, as we did
in Example 2 .12, and then rename the result. The expression

yields the same relation as in Fig. 2.19, with the same set of attributes. But
this relation has a name, RS, while the result relation in Fig. 2.19 has no name.
□

2.4.12 Relationships Among Operations
Some of the operations that we have described in Section 2.4 can be expressed
in terms of other relational-algebra operations. For example, intersection can
be expressed in terms of set difference:

That is, if R and S are any two relations with the same schema, the intersection
of R and S can be computed by first subtracting 5 from R to form a relation
T consisting of all those tuples in R but not S. We then subtract T from R,
leaving only those tuples of R that are also in S.

The two forms of join are also expressible in terms of other operations.
Theta-join can be expressed by product and selection:

The natural join of R and S can be expressed by starting with the product
R x S . We then apply the selection operator with a condition C of the form

R.Ax = S.Ai AND R.A2 = S.A2 AND • • • AND R.An = S.An

where A i , A 2, . . . , An are all the attributes appearing in the schemas of both R
and S. Finally, we must project out one copy of each of the equated attributes.
Let L be the list of attributes in the schema of R followed by those attributes
in the schema of S that are not also in the schema of R. Then

E xam ple 2.19: The natural join of the relations U and V from Fig. 2.16 can
be written in terms of product, selection, and projection as:

P r s (a , b , x , c , d) (R x S)

R r \ S = R - (R - S)

R ix c S = ac(R x S)

7TA ,U .B ,U .C ,D \ c r u .B = V .B AND U .G = V .c { U X V

2.4. A N ALGEBRAIC QUERY LANGUAGE 51

That is, we take the product U x V. Then we select for equality between each
pair of attributes with the same name — B and C in this example. Finally,
we project onto all the attributes except one of the B ’s and one of the C ’s; we
have chosen to eliminate the attributes of V whose names also appear in the
schema of U.

For another example, the theta-join of Example 2.16 can be written

a A < D AND U .B j: V .B { U X V)

That is, we take the product of the relations U and V and then apply the
condition that appeared in the theta-join. □

The rewriting rules mentioned in this section are the only “redundancies”
among the operations that we have introduced. The six remaining operations —
union, difference, selection, projection, product, and renaming — form an in
dependent set, none of which can be written in terms of the other five.

2.4.13 A Linear Notation for Algebraic Expressions
In Section 2.4.10 we used an expression tree to represent a complex expression
of relational algebra. An alternative is to invent names for the temporary
relations that correspond to the interior nodes of the tree and write a sequence
of assignments that create a value for each. The order of the assignments is
flexible, as long as the children of a node N have had their values created before
we attempt to create the value for N itself.

The notation we shall use for assignment statements is:

1. A relation name and parenthesized list of attributes for that relation. The
name Answer will be used conventionally for the result of the final step;
i.e., the name of the relation at the root of the expression tree.

2. The assignment symbol :=.

3. Any algebraic expression on the right. We can choose to use only one
operator per assignment, in which case each interior node of the tree gets
its own assignment statement. However, it is also permissible to combine
several algebraic operations in one right side, if it is convenient to do so.

E xam ple 2.20: Consider the tree of Fig. 2.18. One possible sequence of as
signments to evaluate this expression is:

R(t,y,l,i,s,p) := criength>ioo (Movies)
S (t ,y, 1, i , s ,p) := <JgtudioName=’¥ojL’ (Movies)
T(t,y,l,i,s,p) := R n S
Answer (title, year) := 71"̂ (T)

52 CHAPTER 2. THE RELATIONAL MODEL OF DATA

The first step computes the relation of the interior node labeled u i e n g th > 100 in
Fig. 2.18, and the second step computes the node labeled (T3tu d io N a m e = ’Fox’-
Notice that we get renaming “for free,” since we can use any attributes and
relation name we wish for the left side of an assignment. The last two steps
compute the intersection and the projection in the obvious way.

It is also permissible to combine some of the steps. For instance, we could
combine the last two steps and write:

R(t,y,l,i,s,p) := aiength>ioo (Movies)
S (t, y , 1, i , S , p) (J s tu d io N a m e —’ Fox’ (Movies)
Answer (title, year) := ir^yCR fl S)

We could even substitute for R and S in the last line and write the entire
expression in one line. □

2.4.14 Exercises for Section 2.4
Exercise 2 .4 .1: This exercise builds upon the products schema of Exercise
2.3.1. Recall that the database schema consists of four relations, whose schemas
are:

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Some sample data for the relation Product is shown in Fig. 2.20. Sample
data for the other three relations is shown in Fig. 2.21. Manufacturers and
model numbers have been “sanitized,” but the data is typical of products on
sale at the beginning of 2007.

Write expressions of relational algebra to answer the following queries. You
may use the linear notation of Section 2.4.13 if you wish. For the data of Figs.
2.20 and 2.21, show the result of your query. However, your answer should work
for arbitrary data, not just the data of these figures.

a) What PC models have a speed of at least 3.00?

b) Which manufacturers make laptops with a hard disk of at least 100GB?

c) Find the model number and price of all products (of any type) made by
manufacturer B.

d) Find the model numbers of all color laser printers.

e) Find those manufacturers that sell Laptops, but not PC’s.

! f) Find those hard-disk sizes that occur in two or more PC’s.

2.4. A N ALGEBRAIC QUERY LANGUAGE 53

maker model type

A 1001 pc
A 1002 pc
A 1003 pc
A 2004 laptop
A 2005 laptop
A 2006 laptop
B 1004 pc
B 1005 pc
B 1006 pc
B 2007 laptop
C 1007 pc
D 1008 pc
D 1009 pc
D 1010 pc
D 3004 printer
D 3005 printer
E 1011 pc
E 1012 pc
E 1013 pc
E 2001 laptop
E 2002 laptop
E 2003 laptop
E 3001 printer
E 3002 printer
E 3003 printer
F 2008 laptop
F 2009 laptop
G 2010 laptop
H 3006 printer
H 3007 printer

Figure 2.20: Sample data for Product

CHAPTER 2. THE RELATIONAL MODEL OF DATA

model speed ram hd price
1001 2 .6 6 1024 250 2114
1002 2 .1 0 512 250 995
1003 1.42 512 80 478
1004 2.80 1024 250 649
1005 3.20 512 250 630
1006 3.20 1024 320 1049
1007 2 .2 0 1024 200 510
1008 2 .2 0 2048 250 770
1009 2 .0 0 1024 250 650
1010 2.80 2048 300 770
1011 1.86 2048 160 959
1012 2.80 1024 160 649
1013 3.06 512 80 529

(a) Sample data for relation PC

model speed ram hd screen price
2001 2 .0 0 2048 240 20 .1 3673
2002 1.73 1024 80 17.0 949
2003 1.80 512 60 15.4 549
2004 2 .0 0 512 60 13.3 1150
2005 2.16 1024 120 17.0 2500
2006 2 .0 0 2048 80 15.4 1700
2007 1.83 1024 120 13.3 1429
2008 1.60 1024 100 15.4 900
2009 1.60 512 80 14.1 680
2010 2 .0 0 2048 160 15.4 2300

(b) Sample data for relation Laptop

model color type price
3001 tru e in k -j e t 99
3002 fa ls e la s e r 239
3003 tru e la s e r 899
3004 tru e in k - je t 120
3005 fa lse la se r 120
3006 tru e in k - je t 100
3007 tru e la s e r 200

(c) Sample data for relation P rin te r

Figure 2.21: Sample data for relations of Exercise 2.4.1

2.4. AN ALGEBRAIC QUERY LANGUAGE 55

! g) Find those pairs of PC models that have both the same speed and RAM.
A pair should be listed only once; e.g., list (i, j) but not (j, i).

!! h) Find those manufacturers of at least two different computers (PC’s or
laptops) with speeds of at least 2.80.

!! i) Find the manufacturer(s) of the computer (PC or laptop) with the highest
available speed.

!! j) Find the manufacturers of PC’s with at least three different speeds.

!! k) Find the manufacturers who sell exactly three different models of PC.

Exercise 2 .4 .2 : Draw expression trees for each of your expressions of Exer
cise 2.4.1.

E xercise 2 .4 .3 : This exercise builds upon Exercise 2.3.2 concerning World
War II capital ships. Recall it involves the following relations:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

Figures 2.22 and 2.23 give some sample data for these four relations.4 Note
that, unlike the data for Exercise 2.4.1, there are some “dangling tuples” in this
data, e.g., ships mentioned in Outcomes that are not mentioned in Ships.

Write expressions of relational algebra to answer the following queries. You
may use the linear notation of Section 2.4.13 if you wish. For the data of Figs.
2.22 and 2.23, show the result of your query. However, your answer should work
for arbitrary data, not just the data of these figures.

a) Give the class names and countries of the classes that carried guns of at
least 16-inch bore.

b) Find the ships launched prior to 1921.

c) Find the ships sunk in the battle of the Denmark Strait.

d) The treaty of Washington in 1921 prohibited capital ships heavier than
35,000 tons. List the ships that violated the treaty of Washington.

e) List the name, displacement, and number of guns of the ships engaged in
the battle of Guadalcanal.

f) List all the capital ships mentioned in the database. (Remember that all
these ships may not appear in the Ships relation.)

4Source: J . N. W estw ood, F ighting Ships o f W orld W ar II, Follett P ub lish ing , Chicago,
1975 an d R . C. S tern , US B attlesh ips in A ction , S q u ad ron /S ignal P ub lica tions, C a rro llton ,
T X , 1980.

56 CHAPTER 2. THE RELATIONAL MODEL OF DATA

class type country numGuns bore displacement

Bismarck bb Germany 8 15 42000
Iowa bb USA 9 16 46000
Kongo be Japan 8 14 32000
North Carolina bb USA 9 16 37000
Renown be Gt. Britain 6 15 32000
Revenge bb Gt. Britain 8 15 29000
Tennessee bb USA 12 14 32000
Yamato bb Japan 9 18 65000

(a) Sample data for relation Classes

name date

Denmark Strait 5/24-27/41
Guadalcanal 11/15/42
North Cape 12/26/43
Surigao Strait 10/25/44

(b) Sample data for relation Battles
ship battle result

Arizona Pearl Harbor sunk
Bismarck Denmark Strait sunk
California Surigao Strait ok
Duke of York North Cape ok
Fuso Surigao Strait sunk
Hood Denmark Strait sunk
King George V Denmark Strait ok
Kirishima Guadalcanal sunk
Prince of Wales Denmark Strait damaged
Rodney Denmark Strait ok
Scharnhorst North Cape sunk
South Dakota Guadalcanal damaged
Tennessee Surigao Strait ok
Washington Guadalcanal ok
West Virginia Surigao Strait ok
Yamashiro Surigao Strait sunk

(c) Sample data for relation Outcomes

Figure 2.22: Data for Exercise 2.4.3

2.4. A N ALGEBRAIC QUERY LANGUAGE 57

name class launched
California Tennessee 1921
Haruna Kongo 1915
Hiei Kongo 1914
Iowa Iowa 1943
Kirishima Kongo 1915
Kongo Kongo 1913
Missouri Iowa 1944
Musashi Yamato 1942
New Jersey Iowa 1943
North Carolina North Carolina 1941
Ramillies Revenge 1917
Renown Renown 1916
Repulse Renown 1916
Resolution Revenge 1916
Revenge Revenge 1916
Royal Oak Revenge 1916
Royal Sovereign Revenge 1916
Tennessee Tennessee 1920
Washington North Carolina 1941
Wisconsin Iowa 1944
Yamato Yamato 1941

Figure 2.23: Sample data for relation Ships

! g) Find the classes that had only one ship as a member of that class.

! h) Find those countries that had both battleships and battlecruisers.

! i) Find those ships that “lived to fight another day”; they were damaged in
one battle, but later fought in another.

Exercise 2 .4 .4 : Draw expression trees for each of your expressions of Exer
cise 2.4.3.

Exercise 2 .4 .5 : What is the difference between the natural join R ix S and
the theta-join R \ x c S where the condition C is that R.A = S.A for each
attribute A appearing in the schemas of both R and S'!

Exercise 2 .4 .6 : An operator on relations is said to be monotone if whenever
we add a tuple to one of its arguments, the result contains all the tuples that
it contained before adding the tuple, plus perhaps more tuples. Which of the
operators described in this section are monotone? For each, either explain why
it is monotone or give an example showing it is not.

58 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Exercise 2.4.7: Suppose relations R and S have n tuples and m tuples, re
spectively. Give the minimum and maximum numbers of tuples that the results
of the following expressions can have.

a) R U S.

b) R t x S .

c) ac(R) x S, for some condition C.

d) 7tl (R) — S, for some list of attributes L.

Exercise 2 .4 .8: The semijoin of relations R and S, written R IX S, is the set
of tuples t in R such that there is at least one tuple in S that agrees with t in
all attributes that R and S have in common. Give three different expressions
of relational algebra that are equivalent to R X S.

Exercise 2.4.9: The antisemijoin R X S is the set of tuples t in R that do
not agree with any tuple of S in the attributes common to R and 5. Give an
expression of relational algebra equivalent to R t x S.

Exercise 2.4.10: Let R be a relation with schema

(A i ,A 2, . . . ,A n,B i,B2 , ■.. ,B m)

and let 5 be a relation with schema (i? i,# 2,• • ■ , Bm); that is, the attributes
of S are a subset of the attributes of R. The quotient of R and S, denoted
R-i- S, is the set of tuples t over attributes A i , A2, . . . ,A n (i.e., the attributes
of R that are not attributes of S) such that for every tuple s in S, the tuple
ts, consisting of the components of t for A i ,A 2, . . . ,A n and the components
of s for B lyB 2, . . . , B rn, is a member of R. Give an expression of relational
algebra, using the operators we have defined previously in this section, that is
equivalent to R-r- S.

2.5 Constraints on Relations
We now take up the third important aspect of a data model: the ability to
restrict the data that may be stored in a database. So far, we have seen only one
kind of constraint, the requirement that an attribute or attributes form a key
(Section 2.3.6). These and many other kinds of constraints can be expressed in
relational algebra. In this section, we show how to express both key constraints
and “referential-integrity” constraints; the latter require that a value appearing
in one column of one relation also appear in some other column of the same
or a different relation. In Chapter 7, we see how SQL database systems can
enforce the same sorts of constraints as we can express in relational algebra.

2.5. CONSTRAINTS ON RELATIONS 59

2.5.1 Relational Algebra as a Constraint Language
There are two ways in which we can use expressions of relational algebra to
express constraints.

1. If R is an expression of relational algebra, then R = 0 is a constraint
that says “The value of R must be empty,” or equivalently “There are no
tuples in the result of R.”

2. If R and S are expressions of relational algebra, then R C S is a constraint
that says “Every tuple in the result of R must also be in the result of 5 .”
Of course the result of S may contain additional tuples not produced by
R.

These ways of expressing constraints are actually equivalent in what they
can express, but sometimes one or the other is clearer or more succinct. That
is, the constraint R C S could just as well have been written R — 5 = 0. To
see why, notice that if every tuple in R is also in S, then surely R — S is empty.
Conversely, if R — S contains no tuples, then every tuple in R must be in S (or
else it would be in R — S) .

On the other hand, a constraint of the first form, R = 0, could just as
well have been written R C 0. Technically, 0 is not an expression of relational
algebra, but since there are expressions that evaluate to 0, such as R — R, there
is no harm in using 0 as a relational-algebra expression.

In the following sections, we shall see how to express significant constraints
in one of these two styles. As we shall see in Chapter 7, it is the first style —
equal-to-the-emptyset — that is most commonly used in SQL programming.
However, as shown above, we are free to think in terms of set-containment if
we wish and later convert our constraint to the equal-to-the-emptyset style.

2.5.2 Referential Integrity Constraints
A common kind of constraint, called a referential integrity constraint, asserts
that a value appearing in one context also appears in another, related context.
For example, in our movies database, should we see a Starsln tuple that has
person p in the starName component, we would expect that p appears as the
name of some star in the MovieStar relation. If not, then we would question
whether the listed “star” really was a star.

In general, if we have any value v as the component in attribute A of some
tuple in one relation R, then because of our design intentions we may expect
that v will appear in a particular component (say for attribute B) of some tuple
of another relation S. We can express this integrity constraint in relational
algebra as tta(R) Q b {S), or equivalently, tta(R) — ^ b (S) = 0.

E xam ple 2.21: Consider the two relations from our running movie database:

Movies(title, year, length, genre, studioName, producerC#)
MovieExec(name, address, cert#, netWorth)

60 CHAPTER 2. THE RELATIONAL MODEL OF DATA

We might reasonably assume that the producer of every movie would have to
appear in the MovieExec relation. If not, there is something wrong, and we
would at least want a system implementing a relational database to inform us
that we had a movie with a producer of which the database had no knowledge.

To be more precise, the producerC# component of each Movies tuple must
also appear in the cert# component of some MovieExec tuple. Since executives
are uniquely identified by their certificate numbers, we would thus be assured
that the movie’s producer is found among the movie executives. We can express
this constraint by the set-containment

7tproducerC#(.Movies) C ̂ cert#(MovieExec)

The value of the expression on the left is the set of all certificate numbers ap
pearing in producerC# components of Movies tuples. Likewise, the expression
on the right’s value is the set of all certificates in the cert# component of
MovieExec tuples. Our constraint says that every certificate in the former set
must also be in the latter set. □

Exam ple 2.22: We can similarly express a referential integrity constraint
where the “value” involved is represented by more than one attribute. For
instance, we may want to assert that any movie mentioned in the relation

Starsln(movieTitle, movieYear, starName)

also appears in the relation

Movies(title, year, length, genre, studioName, producerC#)

Movies are represented in both relations by title-year pairs, because we agreed
that one of these attributes alone was not sufficient to identify a movie. The
constraint

^ m o v ie T i t le , m o v ieyear(StarsIn) C 7Ttitle, year(Movies)

expresses this referential integrity constraint by comparing the title-year pairs
produced by projecting both relations onto the appropriate lists of components.
□

2.5.3 Key Constraints
The same constraint notation allows us to express far more than referential
integrity. Here, we shall see how we can express algebraically the constraint
that a certain attribute or set of attributes is a key for a relation.

E xam ple 2.23: Recall that name is the key for relation

MovieStar(name, address, gender, birthdate)

2.5. CONSTRAINTS ON RELATIONS 61

That is, no two tuples agree on the name component. We shall express alge
braically one of several implications of this constraint: that if two tuples agree
on name, then they must also agree on address. Note that in fact these “two”
tuples, which agree on the key name, must be the same tuple and therefore
certainly agree in all attributes.

The idea is that if we construct all pairs of MovieStar tuples (£1,(2), we
must not find a pair that agree in the name component and disagree in the
address component. To construct the pairs we use a Cartesian product, and
to search for pairs that violate the condition we use a selection. We then assert
the constraint by equating the result to 0 .

To begin, since we are taking the product of a relation with itself, we need
to rename at least one copy, in order to have names for the attributes of the
product. For succinctness, let us use two new names, MSI and MS2, to refer
to the MovieStar relation. Then the requirement can be expressed by the
algebraic constraint:

& M S l.n a m e = M S £ .n a m e AND M S l.a d d r e s s ^ M S S .a d d r e s s i^ SI X MS2) = 0

In the above, MSI in the product MSI x MS2 is shorthand for the renaming:

P M S l(n a m e ,a d d r e ss ,g e n d e r ,b ir th d a te) (MovieStar)

and MS2 is a similar renaming of MovieStar. □

2.5.4 Additional Constraint Examples
There are many other kinds of constraints that we can express in relational
algebra and that are useful for restricting database contents. A large family
of constraints involve the permitted values in a context. For example, the fact
that each attribute has a type constrains the values of that attribute. Often
the constraint is quite straightforward, such as “integers only” or “character
strings of length up to 30.” Other times we want the values that may appear in
an attribute to be restricted to a small enumerated set of values. Other times,
there are complex limitations on the values that may appear. We shall give two
examples, one of a simple domain constraint for an attribute, and the second a
more complicated restriction.

E xam ple 2.24: Suppose we wish to specify that the only legal values for the
gender attribute of MovieStar are ’ F ’ and ’ M ’. We can express this constraint
algebraically by:

& g e n d e r ^ ’ F’ AND g e n d e r ^ ’M” (MovieStar) = 0

That is, the set of tuples in MovieStar whose gender component is equal to
neither ’ F ’ nor ’ M ’ is empty. □

62 CHAPTER 2. THE RELATIONAL MODEL OF DATA

Exam ple 2.25: Suppose we wish to require that one must have a net worth
of at least $10,000,000 to be the president of a movie studio. We can express
this constraint algebraically as follows. First, we need to theta-join the two
relations

MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

using the condition that presC# from Studio and ce rt# from MovieExec are
equal. That join combines pairs of tuples consisting of a studio and an executive,
such that the executive is the president of the studio. If we select from this
relation those tuples where the net worth is less than ten million, we have a set
that, according to our constraint, must be empty. Thus, we may express the
constraint as:

^ nc.t VV’ur’/./jCl0000000 (Studio XI p r e s C # = c e r t # MovieExec) 0

An alternative way to express the same constraint is to compare the set
of certificates that represent studio presidents with the set of certificates that
represent executives with a net worth of at least $10,000,000; the former must
be a subset of the latter. The containment

'K p r e s C # (Studio) C 7 7 (^ n c t W o r th > J 0 0 0 0 0 0 0 (MoVieEx6c)̂

expresses the above idea. □

2.5.5 Exercises for Section 2.5
Exercise 2 .5 .1: Express the following constraints about the relations of Ex
ercise 2.3.1, reproduced here:

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

You may write your constraints either as containments or by equating an ex
pression to the empty set. For the data of Exercise 2.4.1, indicate any violations
to your constraints.

a) A PC with a processor speed less than 2.00 must not sell for more than
$500.

b) A laptop with a screen size less than 15.4 inches must have at least a 100
gigabyte hard disk or sell for less than $1000.

! c) No manufacturer of PC’s may also make laptops.

2.6. SUMMARY OF CHAPTER 2 63

I! d) A manufacturer of a PC must also make a laptop with at least as great a
processor speed.

! e) If a laptop has a larger main memory than a PC, then the laptop must
also have a higher price than the PC.

Exercise 2 .5 .2 : Express the following constraints in relational algebra. The
constraints are based on the relations of Exercise 2.3.2:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

You may write your constraints either as containments or by equating an ex
pression to the empty set. For the data of Exercise 2.4.3, indicate any violations
to your constraints.

a) No class of ships may have guns with larger than 16-inch bore.

b) If a class of ships has more than 9 guns, then their bore must be no larger
than 14 inches.

! c) No class may have more than 2 ships.

! d) No country may have both battleships and battlecruisers.

!! e) No ship with more than 9 guns may be in a battle with a ship having
fewer than 9 guns that was sunk.

! E xercise 2 .5 .3 : Suppose R and S are two relations. Let C be the referen
tial integrity constraint that says: whenever R has a tuple with some values
v i , V2 , • ■. , vn in particular attributes A \ , , . . . , An, there must be a tuple of S
that has the same values v i ,v 2 , . . . , vn in particular attributes B i , S 2, ■ ■ ■ , Bn.
Show how to express constraint C in relational algebra.

! E xercise 2 .5 .4 : Another algebraic way to express a constraint is Ei = E 2 ,
where both Ei and E 2 are relational-algebra expressions. Can this form of
constraint express more than the two forms we discussed in this section?

2.6 Summary of Chapter 2
♦ Data Models: A data model is a notation for describing the structure of

the data in a database, along with the constraints on that data. The data
model also normally provides a notation for describing operations on that
data: queries and data modifications.

♦ Relational Model: Relations axe tables representing information. Columns
are headed by attributes; each attribute has an associated domain, or
data type. Rows are called tuples, and a tuple has one component for
each attribute of the relation.

♦ Schemas: A relation name, together with the attributes of that relation
and their types, form the relation schema. A collection of relation schemas
forms a database schema. Particular data for a relation or collection of
relations is called an instance of that relation schema or database schema.

♦ Keys: An important type of constraint on relations is the assertion that
an attribute or set of attributes forms a key for the relation. No two
tuples of a relation can agree on all attributes of the key, although they
can agree on some of the key attributes.

♦ Semistructured Data Model: In this model, data is organized in a tree or
graph structure. XML is an important example of a semistructured data
model.

♦ SQL: The language SQL is the principal query language for relational
database systems. The current standard is called SQL-99. Commercial
systems generally vary from this standard but adhere to much of it.

♦ Data Definition: SQL has statements to declare elements of a database
schema. The CREATE TABLE statement allows us to declare the schema
for stored relations (called tables), specifying the attributes, their types,
default values, and keys.

♦ Altering Schemas: We can change parts of the database schema with an
ALTER statement. These changes include adding and removing attributes
from relation schemas and changing the default value associated with an
attribute. We may also use a DROP statement to completely eliminate
relations or other schema elements.

♦ Relational Algebra: This algebra underlies most query languages for the
relational model. Its principal operators are union, intersection, differ
ence, selection, projection, Cartesian product, natural join, theta-join,
and renaming.

♦ Selection and Projection: The selection operator produces a result con
sisting of all tuples of the argument relation that satisfy the selection
condition. Projection removes undesired columns from the argument re
lation to produce the result.

♦ Joins: We join two relations by comparing tuples, one from each relation.
In a natural join, we splice together those pairs of tuples that agree on all
attributes common to the two relations. In a theta-join, pairs of tuples
are concatenated if they meet a selection condition associated with the
theta-join.

64 CHAPTER 2. THE RELATIONAL MODEL OF DATA

2.7. REFERENCES FOR CHAPTER 2 65

♦ Constraints in Relational Algebra: Many common kinds of constraints can
be expressed as the containment of one relational algebra expression in
another, or as the equality of a relational algebra expression to the empty
set.

2.7 References for Chapter 2
The classic paper by Codd on the relational model is [1]. This paper introduces
relational algebra, as well. The use of relational algebra to describe constraints
is from [2], References for SQL are given in the bibliographic notes for Chap
ter 6 .

The semistructured data model is from [3]. XML is a standard developed
by the World-Wide-Web Consortium. The home page for information about
XML is [4],

1. E. F. Codd, “A relational model for large shared data banks,” Comm.
ACM 13:6, pp. 377-387, 1970.

2. J.-M. Nicolas, “Logic for improving integrity checking in relational data
bases,” Acta Informatica 18:3, pp. 227-253, 1982.

3. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object ex
change across heterogeneous information sources,” IEEE Intl. Conf. on
Data Engineering, pp. 251-260, March 1995.

4. World-Wide-Web Consortium, http://www.w3.org/XML/

Chapter 3

Design Theory for
Relational Databases

There are many ways we could go about designing a relational database schema
for an application. In Chapter 4 we shall see several high-level notations for
describing the structure of data and the ways in which these high-level designs
can be converted into relations. We can also examine the requirements for a
database and define relations directly, without going through a high-level inter
mediate stage. Whatever approach we use, it is common for an initial relational
schema to have room for improvement, especially by eliminating redundancy.
Often, the problems with a schema involve trying to combine too much into
one relation.

Fortunately, there is a well developed theory for relational databases: “de
pendencies,” their implications for what makes a good relational database
schema, and what we can do about a schema if it has flaws. In this chapter,
we first identify the problems that are caused in some relation schemas by the
presence of certain dependencies; these problems are referred to as “anomalies.”

Our discussion starts with “functional dependencies,” a generalization of the
idea of a key for a relation. We then use the notion of functional dependencies
to define normal forms for relation schemas. The impact of this theory, called
“normalization,” is that we decompose relations into two or more relations when
that will remove anomalies. Next, we introduce “multivalued dependencies,”
which intuitively represent a condition where one or more attributes of a relation
are independent from one or more other attributes. These dependencies also
lead to normal forms and decomposition of relations to eliminate redundancy.

3.1 Functional Dependencies
There is a design theory for relations that lets us examine a design carefully
and make improvements based on a few simple principles. The theory begins by

67

6 8 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

having us state the constraints that apply to the relation. The most common
constraint is the “functional dependency,” a statement of a type that generalizes
the idea of a key for a relation, which we introduced in Section 2.5.3. Later in
this chapter, we shall see how this theory gives us simple tools to improve our
designs by the process of “decomposition” of relations: the replacement of one
relation by several, whose sets of attributes together include all the attributes
of the original.

3.1.1 Definition of Functional Dependency
A functional dependency (FD) on a relation R is a statement of the form “If two
tuples of R agree on all of the attributes A-i,A2. . . . ,A„ (i.e., the tuples have
the same values in their respective components for each of these attributes),
then they must also agree on all of another list of attributes B±, B 2 , ■ ■ ■ , B m.
We write this FD formally as Ai A 2 ■ ■ ■ An B 1 B 2 ■ ■ ■ B m and say that

“A i ,A 2 , . . . , An functionally determine Bi, B 2 , . ■ ■ , B m”

Figure 3.1 suggests what this FD tells us about any two tuples t and u in the
relation R. However, the 4̂’s and B's can be anywhere; it is not necessary for
the A’s and B ’s to appear consecutively or for the A’s to precede the B ’s.

If t and Then they
u agree m ust agree
here, here

Figure 3.1: The effect of a functional dependency on two tuples.

If we can be sure every instance of a relation R will be one in which a given
FD is true, then we say that R satisfies the FD. It is important to remember
that when we say that R satisfies an FD / , we are asserting a constraint on R,
not just saying something about one particular instance of R.

It is common for the right side of an FD to be a single attribute. In fact,
we shall see that the one functional dependency A 1 A 2 ■ ■ ■ An —> B 1 B 2 ■ • ■ B m is
equivalent to the set of FD’s:

A i A2 ■ • ■ A n — > B i
A\ A 2 • • - An —> B 2

A 1 A 2 ■ ■ ■ A n —¥ B m

3.1. FUNCTIONAL DEPENDENCIES 69

title year length genre studioN am e starN am e

Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone With the Wind 1939 231 drama MGM Vivien Leigh
Wayne’s World 1992 95 comedy Paramount Dana Carvey
Wayne’s World 1992 95 comedy Paramount Mike Meyers

Figure 3.2: An instance of the relation Moviesl(title, year, length,
genre, studioName, starName)

E xam ple 3 .1 : Let us consider the relation

Moviesl(title, year, length, genre, studioName, starName)

an instance of which is shown in Fig. 3.2. While related to our running Movies
relation, it has additional attributes, which is why we call it “Moviesl” in
stead of “Movies.” Notice that this relation tries to “do too much.” It holds
information that in our running database schema was attributed to three dif
ferent relations: Movies, S tudio, and S ta rs ln . As we shall see, the schema for
Moviesl is not a good design. But to see what is wrong with the design, we
must first determine the functional dependencies that hold for the relation. We
claim that the following FD holds:

title year —> length genre studioName

Informally, this FD says that if two tuples have the same value in their
title components, and they also have the same value in their year compo
nents, then these two tuples must also have the same values in their length
components, the same values in their genre components, and the same values
in their studioName components. This assertion makes sense, since we believe
that it is not possible for there to be two movies released in the same year
with the same title (although there could be movies of the same title released
in different years). This point was discussed in Example 2.1. Thus, we expect
that given a title and year, there is a unique movie. Therefore, there is a unique
length for the movie, a unique genre, and a unique studio.

On the other hand, we observe that the statement

title year —> starName

is false; it is not a functional dependency. Given a movie, it is entirely possible
that there is more than one star for the movie listed in our database. Notice
that even had we been lazy and only listed one star for Star Wars and one star
for Wayne’s World (just as we only listed one of the many stars for Gone With
the Wind), this FD would not suddenly become true for the relation Moviesl.

70 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

The reason is that the FD says something about all possible instances of the
relation, not about one of its instances. The fact that we could have an instance
with multiple stars for a movie rules out the possibility that title and year
functionally determine starName. □

3.1.2 Keys of Relations
We say a set of one or more attributes {A i ,A 2 , . . . , An} is a key for a relation
R if:

1. Those attributes functionally determine all other attributes of the rela
tion. That is, it is impossible for two distinct tuples of R to agree on all
of A i , A 2 , . . . , A n.

2. No proper subset of { A i ,A 2 , . . . , An} functionally determines all other
attributes of R; i.e., a key must be minimal.

When a key consists of a single attribute A, we often say that A (rather than
{,4}) is a key.

Example 3.2: Attributes {title, year, starName} form a key for the relation
Moviesl of Fig. 3.2. First, we must show that they functionally determine all
the other attributes. That is, suppose two tuples agree on these three attributes:
title, year, and starName. Because they agree on title and year, they must
agree on the other attributes — length, genre, and studioName — as we
discussed in Example 3.1. Thus, two different tuples cannot agree on all of
title, year, and starName; they would in fact be the same tuple.

Now, we must argue that no proper subset of {title, year, starName}
functionally determines all other attributes. To see why, begin by observing
that title and year do not determine starName, because many movies have
more than one star. Thus, {title, year} is not a key.

{year, starName} is not a key because we could have a star in two movies
in the same year; therefore

year starName —» title
is not an FD. Also, we claim that {title, starName} is not a key, because two
movies with the same title, made in different years, occasionally have a star in
common.1 □

Sometimes a relation has more than one key. If so, it is common to desig
nate one of the keys as the primary key. In commercial database systems, the
choice of primary key can influence some implementation issues such as how
the relation is stored on disk. However, the theory of FD’s gives no special role
to “primary keys.”

1 Since we asserted in an earlier book th a t th e re were no known exam ples o f th is phe
nom enon, several people have show n us we were w rong. I t ’s an in teresting challenge to
discover s ta rs th a t appeared in two versions of th e sam e movie.

3.1. FUNCTIONAL DEPENDENCIES 71

W hat Is “Functional” About Functional
Dependencies?

A 1 A 2 ■ ■ ■ An —» B is called a “functional” dependency because in principle
there is a function that takes a list of values, one for each of attributes
A i ,A 2 , . . . , A n and produces a unique value (or no value at all) for B.
For instance, in the Moviesl relation, we can imagine a function that
takes a string like "Star Wars" and an integer like 1977 and produces the
unique value of length, namely 124, that appears in the relation Moviesl.
However, this function is not the usual sort of function that we meet in
mathematics, because there is no way to compute it from first principles.
That is, we cannot perform some operations on strings like "Star Wars"
and integers like 1977 and come up with the correct length. Rather, the
function is only computed by lookup in the relation. We look for a tuple
with the given title and year values and see what value that tuple has
for length.

3.1.3 Superkeys
A set of attributes that contains a key is called a superkey, short for “superset
of a key.” Thus, every key is a superkey. However, some superkeys are not
(minimal) keys. Note that every superkey satisfies the first condition of a key: it
functionally determines all other attributes of the relation. However, a superkey
need not satisfy the second condition: minimality.

E xam ple 3 .3 : In the relation of Example 3.2, there are many superkeys. Not
only is the key

{title, year, starName}

a superkey, but any superset of this set of attributes, such as

{title, year, starName, length, studioName}

is a superkey. □

3.1.4 Exercises for Section 3.1
E xercise 3 .1 .1 : Consider a relation about people in the United States, includ
ing their name, Social Security number, street address, city, state, ZIP code,
area code, and phone number (7 digits). What FD’s would you expect to hold?
What are the keys for the relation? To answer this question, you need to know
something about the way these numbers are assigned. For instance, can an area

72 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Other Key Terminology

In some books and articles one finds different terminology regarding keys.
One can find the term “key” used the way we have used the term “su
perkey,” that is, a set of attributes that functionally determine all the
attributes, with no requirement of minimality. These sources typically use
the term “candidate key” for a key that is minimal — that is, a “key” in
the sense we use the term.

code straddle two states? Can a ZIP code straddle two area codes? Can two
people have the same Social Security number? Can they have the same address
or phone number?

E xercise 3 .1 .2 : Consider a relation representing the present position of mole
cules in a closed container. The attributes are an ID for the molecule, the x, y,
and z coordinates of the molecule, and its velocity in the x, y, and z dimensions.
What FD’s would you expect to hold? What are the keys?

E xercise 3 .1 .3 : Suppose R is a relation with attributes A 1,A 2, . . . , A n. As a
function of n, tell how many superkeys R has, if:

a) The only key is Ai.

b) The only keys are Ai and Ai-

c) The only keys are { y l i ,^ } and {Ag,Ai}.

d) The only keys are { ^ 1, ^ 2} and

3.2 Rules About Functional Dependencies
In this section, we shall learn how to reason about FD’s. That is, suppose we
are told of a set of FD’s that a relation satisfies. Often, we can deduce that the
relation must satisfy certain other FD’s. This ability to discover additional FD’s
is essential when we discuss the design of good relation schemas in Section 3.3.

3.2.1 Reasoning About Functional Dependencies
Let us begin with a motivating example that will show us how we can infer a
functional dependency from other given FD’s.

E xam ple 3 .4 : If we are told that a relation R(A, B, C) satisfies the FD’s
A —> B and B —> C, then we can deduce that R also satisfies the FD A —> C.
How does that reasoning go? To prove that A C, we must consider two
tuples of R that agree on A and prove they also agree on C.

3.2. RULES ABOU T FUNCTIONAL DEPENDENCIES 73

Let the tuples agreeing on attribute A be (a, 61, C i) and (0 , 62, 02). Since R
satisfies A B , and these tuples agree on A, they must also agree on B. That
is, 61 = 62, and the tuples are really (a,b,Ci) and (0 , 6, 02), where 6 is both 61
and 62. Similarly, since R satisfies B C, and the tuples agree on B, they
agree on C. Thus, c\ = C2; i.e., the tuples do agree on C. We have proved
that any two tuples of R that agree on A also agree on C, and that is the FD
A ^ C . □

FD’s often can be presented in several different ways, without changing the
set of legal instances of the relation. We say:

• Two sets of FD’s 5 and T are equivalent if the set of relation instances
satisfying S is exactly the same as the set of relation instances satisfying
T.

• More generally, a set of FD’s S follows from a set of FD’s T if every
relation instance that satisfies all the FD’s in T also satisfies all the FD’s
in S.

Note then that two sets of FD’s S and T are equivalent if and only if S follows
from T, and T follows from S.

In this section we shall see several useful rules about FD’s. In general, these
rules let us replace one set of FD’s by an equivalent set, or to add to a set of
FD’s others that follow from the original set. An example is the transitive rule
that lets us follow chains of FD’s, as in Example 3.4. We shall also give an
algorithm for answering the general question of whether one FD follows from
one or more other FD’s.

3.2.2 The Splitting/Combining Rule
Recall that in Section 3.1.1 we commented that the FD:

A i A2 ■ • • A n —> Bi B 2 ■ ■ ■ B m

was equivalent to the set of FD’s:

A1A2 ■ ■ ■ An —»• B\, A1A2 • ■ ■ An -* B2, .. . , A1A2 ■ ■ ■ An —> Bm

That is, we may split attributes on the right side so that only one attribute
appears on the right of each FD. Likewise, we can replace a collection of FD’s
having a common left side by a single FD with the same left side and all the
right sides combined into one set of attributes. In either event, the new set of
FD’s is equivalent to the old. The equivalence noted above can be used in two
ways.

• We can replace an FD A \A 2 -- -A n —> B \B 2 ■ ■ ■ B m by a set of FD’s
A iA 2 ■ ■ ■ An —s> Bi for i = 1,2, . . . ,m. This transformation we call the
splitting rule.

74 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

• We can replace a set of FD’s A 1 A 2 ■ ■ ■ An Bi for i = 1,2, . . . , m by the
single FD A± A 2 ■ ■ ■ A n —> B 1 B 2 ■ ■ ■ B m. We call this transformation the
combining rule.

E xam ple 3.5 : In Example 3.1 the set of FD’s:

title year —► length
title year —> genre
title year —¥ studioName

is equivalent to the single FD:

title year —► length genre studioName
that we asserted there. □

The reason the splitting and combining rules axe true should be obvious.
Suppose we have two tuples that agree in A i ,A 2 , . . . ,A n. As a single FD,
we would assert “then the tuples must agree in all of B i ,B 2, . . . ,B m.” As
individual FD’s, we assert “then the tuples agree in B\, and they agree in B 2,
and, . . . , and they agree in B m.” These two conclusions say exactly the same
thing.

One might imagine that splitting could be applied to the left sides of FD’s
as well as to right sides. However, there is no splitting rule for left sides, as the
following example shows.

E xam ple 3.6 : Consider one of the FD’s such as:

title year —t length
for the relation Moviesl in Example 3.1. If we try to split the left side into

title —> length
year length

then we get two false FD’s. That is, t i t l e does not functionally determine
length , since there can be several movies with the same title (e.g., King Kong)
but of different lengths. Similarly, year does not functionally determine length,
because there are certainly movies of different lengths made in any one year.
□

3.2.3 Trivial Functional Dependencies
A constraint of any kind on a relation is said to be trivial if it holds for every
instance of the relation, regardless of what other constraints are assumed. When
the constraints are FD’s, it is easy to tell whether an FD is trivial. They are
the FD’s Ai A 2 ■ ■ ■ An — ByB2 ■ ■ ■ B m such that

{B 1,B 2 ,. . . ,B m} C {A i ,A 2, . . . ,A n}

That is, a trivial FD has a right side that is a subset of its left side. For example,

3.2. RULES ABOUT FUNCTIONAL DEPENDENCIES 75

title year —¥ title

is a trivial FD, as is

title —¥ title

Every trivial FD holds in every relation, since it says that “two tuples that
agree in all of Ai, A 2 , . . . ,A n agree in a subset of them.” Thus, we may assume
any trivial FD, without having to justify it on the basis of what FD’s are
asserted for the relation.

There is an intermediate situation in which some, but not all, of the at
tributes on the right side of an FD are also on the left. This FD is not trivial,
but it can be simplifed by removing from the right side of an FD those attributes
that appear on the left. That is:

• The FD A 1 A 2 ■ ■ ■ A„ B iB 2 ■ ■ ■ B m is equivalent to

A 1 A 2 ■ ■ ■ A n —> C 1 C 2 ■ ■ ■ C k

where the C ’s are all those B ’s that are not also .4’s.

We call this rule, illustrated in Fig. 3.3, the trivial-dependency rule.

If t and Then they
u agree m ust agree
on the A’s on the 5 s

So surely
they agree
on the C s

Figure 3.3: The trivial-dependency rule

3.2.4 Computing the Closure of Attributes
Before proceeding to other rules, we shall give a general principle from which
all true rules follow. Suppose { A i ,A 2 , . . . , A n} is a set of attributes and S

76 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

is a set of FD’s. The closure of { A i ,A 2 , . . . , A n} under the FD’s in S is the
set of attributes B such that every relation that satisfies all the FD’s in set
S also satisfies A 1A 2 ---A„ —► B. That is, A iA 2 ■ ■ ■ An -» B follows from
the FD’s of S. We denote the closure of a set of attributes A\ A 2 ■ ■ • A n by
{ A i ,A 2 , . . . ,A n}+. Note that A i ,A 2, . . . ,A n are always in { A \ ,A 2 , . . . ,A n}+
because the FD Ai A 2 • ■ • An ► Ai is trivial when i is one of 1,2, . . . , n.

Figure 3.4: Computing the closure of a set of attributes

Figure 3.4 illustrates the closure process. Starting with the given set of
attributes, we repeatedly expand the set by adding the right sides of FD’s as
soon as we have included their left sides. Eventually, we cannot expand the set
any further, and the resulting set is the closure. More precisely:

A lgorithm 3.7: Closure of a Set of Attributes.

INPUT: A set of attributes { A i ,A 2 , . . . , An} and a set of FD’s S.

OUTPUT: The closure { A i ,A 2 , . . . ,A n}+.

1. If necessary, split the FD’s of 5, so each FD in S has a single attribute
on the right.

2. Let X be a set of attributes that eventually will become the closure.
Initialize X to be { ^ 1, ^ 2, . . . , A n}.

3. Repeatedly search for some FD

Bi B 2 ■ ■ ■ B m C

such that all of £?i, B 2, . . . , Bm are in the set of attributes X , but C is not.
Add C to the set X and repeat the search. Since X can only grow, and
the number of attributes of any relation schema must be finite, eventually
nothing more can be added to X , and this step ends.

3.2. RULES ABOUT FUNCTIONAL DEPENDENCIES 77

4. The set X , after no more attributes can be added to it, is the correct
value of {A i ,A 2, . . . , A„}+.

□

E xam ple 3 .8 : Let us consider a relation with attributes A, B, C, D, E, and
F. Suppose that this relation has the FD’s A B —>• C, B C -» AD, D —» E, and
C F —> B. What is the closure of {A, B}, that is, { A ,B } +?

First, split B C —> AD into B C —> A and B C —> D. Then, start with
X — {A, B}. First, notice that both attributes on the left side of FD A B —» C
are in X , so we may add the attribute C, which is on the right side of that FD.
Thus, after one iteration of Step 3, X becomes {A ,B ,C } .

Next, we see that the left sides of BC ->• A and B C —» D are now contained
in X , so we may add to X the attributes A and D. A is already there, but
D is not, so X next becomes {A ,B ,C ,D } . At this point, we may use the FD
D -> E to add E to X , which is now {A, B, C, D, E}. No more changes to X
are possible. In particular, the FD CF —> B can not be used, because its left
side never becomes contained in X . Thus, { A ,B } + — {A ,B ,C ,D ,E }. □

By computing the closure of any set of -attributes, we can test whether
any given FD A i A 2 ■ ■ • An -¥ B follows from a set of FD’s S. First compute
{j4i, A 2, . . . , A n}+ using the set of FD’s S. If B is in {A i ,A 2, . . . , A n}+, then
A \A 2 ■■■An -> B does follow from S, and if B is not in {A i ,A 2, . . . , A n}+, then
this FD does not follow from S. More generally, A \A 2 -- ■ An —*• B \B 2 ■ ■ ■ B m
follows from set of FD’s S if and only if all of B\, B 2, . . . , B m are in

{ A i ,A 2, . . . , A n}+

E xam ple 3 .9 : Consider the relation and FD’s of Example 3.8. Suppose we
wish to test whether A B -* D follows from these FD’s. We compute {A, B}+ ,
which is {A ,B ,C ,D ,E } , as we saw in that example. Since D is a member of
the closure, we conclude that A B —>• D does follow.

On the other hand, consider the FD D —¥ A. To test whether this FD follows
from the given FD’s, first compute {D }+. To do so, we start with X = {D}.
We can use the FD D —► E to add E to the set X . However, then we are stuck.
We cannot find any other FD whose left side is contained in X — {D ,E }, so
{D}+ = {D, E}. Since A is not a member of {D, E}, we conclude that D A
does not follow. □

3.2.5 W hy the Closure Algorithm Works
In this section, we shall show why Algorithm 3.7 correctly decides whether or
not an FD A\ A 2 ■ ■ • An -> B follows from a given set of FD’s S. There are two
parts to the proof:

1. We must prove that Algorithm 3.7 does not claim too much. That is, we
must show that if A\ A2 ■ • ■ A„ —> B is asserted by the closure test (i.e.,

78 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

B is in {A i ,A 2, • • ■ > A n}+), then A i A 2 ■ ■ ■ A n -» B holds in any relation
that satisfies all the FD’s in S.

2. We must prove that Algorithm 3.7 does not fail to discover a FD that
truly follows from the set of FD’s S.

W hy th e C losure A lgorithm C laim s on ly True F D ’s

We can prove by induction on the number of times that we apply the growing
operation of Step 3 that for every attribute D in X , the FD A \A 2 ■ ■ ■ A„ —> D
holds. That is, every relation R satisfying all of the FD’s in S also satisfies
A 1 A 2 ■ ■ ■ An —> D.

BASIS: The basis case is when there are zero steps. Then D must be one of
A 1,A 2, . . . , A n. and surely AiA% ■ ■ ■ An -¥ D holds in any relation, because it
is a trivial FD.

INDUCTION: For the induction, suppose D was added when we used the FD
Bi B2 ■ ■ ■ B m —>■ D of S. We know by the inductive hypothesis that R satisfies
A 1A2 ---A„ —> B \B 2 - ■ -Bm. Now, suppose two tuples of R agree on all of
A l t A2, . . . , A n. Then since R satisfies A iA 2 ■■■ An -¥ B \B 2 ■ • • B m, the two
tuples must agree on all of B i , B 2, . . . , B m. Since R satisfies B \B 2 • ■ ■ Bm —>■ D,
we also know these two tuples agree on D. Thus, R satisfies A iA 2 ■ ■ ■ An —l D.

W hy the Closure A lgorith m 'd iscovers A ll True F D ’s

Suppose A \A 2 • • • A„ B were an FD that Algorithm 3.7 says does not follow
from set S. That is, the closure of {Ai, A2, . . . ,A„} using set of FD’s S does
not include B. We must show that FD A i A 2 ■ ■ ■ A n —> B really doesn’t follow
from S. That is, we must show that there is at least one relation instance that
satisfies all the FD’s in S, and yet does not satisfy A \A 2 ■ ■ ■ A n B.

This instance I is actually quite simple to construct; it is shown in Fig. 3.5.
I has only two tuples: t and s. The two tuples agree in all the attributes
of {A i ,A 2,. .. , An}+, and they disagree in all the other attributes. We must
show first that I satisfies all the FD’s of S, and then that it does not satisfy
A \A 2 ■ ■ ■ A n —> B.

{A i ,A 2, . . . , An}+ Other Attributes
~J: 1 1 1 ••• 1 1 0 0 0 0 0

s: 1 1 1 • ■ • 1 1 1 1 1 • • • 1 1

Figure 3.5: An instance I satisfying S but not A \A 2 ■ ■ ■ A n B

Suppose there were some FD C\C2 ■ ■ ■ Ck —> D in set S (after splitting
right sides) that instance I does not satisfy. Since I has only two tuples, t
and s, those must be the two tuples that violate C\C2 ■ ■ -Ck -* D. That is, t
and s agree in all the attributes of {Ci, C2, . . . , Ck}, yet disagree on D. If we

3.2. RULES ABOU T FUNCTIONAL DEPENDENCIES 79

examine Fig. 3.5 we see that all of C\ , C2, .. ■ ,Ck must be among the attributes
of {A i ,A 2, . . . ,A n}+, because those are the only attributes on which t and s
agree. Likewise, D must be among the other attributes, because only on those
attributes do t and s disagree.

But then we did not compute the closure correctly. CiC2 ---Ck ->■ D should
have been applied when X was { A i ,A 2, . . . ,A n} to add D to X . We conclude
that C\C2 ■■ -Ck —► D cannot exist; i.e., instance I satisfies S.

Second, we must show that I does not satisfy A \A 2 ■ ■ ■ A n —> B. However,
this part is easy. Surely, A \ ,A 2, . . . , A n are among the attributes on which t and
s agree. Also, we know that B is not in {A \ , A2, . . . , An}+, so B is one of the
attributes on which t and s disagree. Thus, I does not satisfy A \A 2 •■■An -¥ B.
We conclude that Algorithm 3.7 asserts neither too few nor too many FD’s; it
asserts exactly those FD’s that do follow from S.

3.2.6 The Transitive Rule
The transitive rule lets us cascade two FD’s, and generalizes the observation of
Example 3.4.

• If A\A% • ■ • A n B i B 2 ■ ■ ■ B m and B \B 2 ■ ■ ■ B m -»• C\C2 ---Ck hold in
relation R, then Ai A 2 ■ ■ ■ A„ —>■ C\ C2 • ■ ■ Ck also holds in R.

If some of the C ’s are among the A’s, we may eliminate them from the right
side by the trivial-dependencies rulev

To see why the transitive rule holds, apply the test of Section 3.2.4. To
test whether A iA 2 ■ ■ ■ A n —> C\C2 ■ ■ ■ Cu holds, we need to compute the closure
{Ai, A 2, . . . , A n}+ with respect to the two given FD’s.

The FD A i A 2 ■ ■ ■ An —> B \B 2 ■ ■ ■ Bm tells us that all of B i ,B 2, . . . , B m are
in {A i ,A 2, . . . , A n}+. Then, we can use the FD B i B 2 ■ ■ ■ B m —¥ C\C2 ■ ■ ■ Ck
to add C i,C 2, . . . ,Ck to {A i ,A 2, . . . , An}+. Since all the C ’s are in

{ A i ,A 2, . . . ,A n}+

we conclude that A \A 2 ■ ■ • A n -»■ C\ C2 ■ ■ ■ Ck holds for any relation that satisfies
both A i A2 ■ • • An —¥ B \B 2 • • • B m and B \B 2 ■ ■ ■ Bm CiC2 • • ■ Ck-

E xam ple 3.10: Here is another version of the Movies relation that includes
both the studio of the movie and some information about that studio.

title year length genre studioName studioAddr
Star Wars 1977 124 sciFi Fox Hollywood
Eight Below 2005 120 drama Disney Buena Vista
Wayne’s World 1992 95 comedy Paramount Hollywood
Two of the FD’s that we might reasonably claim to hold are:

title year -» studioName
studioName —> studioAddr

80 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Closures and Keys

Notice that {Ai,A<2 , . . . ,A„}+ is the set of all attributes of a relation if
and only if A \ ,A 2 , . . . ,A„ is a superkey for the relation. For only then
does A i ,A 2 , . . . , An functionally determine all the other attributes. We
can test if A i ,A 2, . . . , An is a key for a relation by checking first that
{A i ,A 2 , . . . , An}+ is all attributes, and then checking that, for no set X
formed by removing one attribute from {A i ,A 2 , . . . , An}, is X + the set
of all attributes.

The first is justified because there can be only one movie with a given title
and year, and there is only one studio that owns a given movie. The second is
justified because studios have unique addresses.

The transitive rule allows us to combine the two FD’s above to get a new
FD:

title year —> studioAddr
This FD says that a title and year (i.e., a movie) determines an address — the
address of the studio owning the movie. □

3.2.7 Closing Sets of Functional Dependencies
Sometimes we have a choice of which FD’s we use to represent the full set of
FD’s for a relation. If we are given a set of FD’s S (such as the FD’s that hold
in a given relation), then any set of FD’s equivalent to S is said to be a basis
for S. To avoid some of the explosion of possible bases, we shall limit ourselves
to considering only bases whose FD’s have singleton right sides. If we have any
basis, we can apply the splitting rule to make the right sides be singletons. A
minimal basis for a relation is a basis B that satisfies three conditions:

1. All the FD’s in B have singleton right sides.

2. If any FD is removed from B, the result is no longer a basis.

3. If for any FD in B we remove one or more attributes from the left side of
F, the result is no longer a basis.

Notice that no trivial FD can be in a minimal basis, because it could be removed
by rule (2).

Exam ple 3 .1 1 : Consider a relation R{A, B, C) such that each attribute func
tionally determines the other two attributes. The full set of derived FD’s thus
includes six FD’s with one attribute on the left and one on the right; A -»■ B,
A -¥ C, B A, B -¥ C, C A, and C B. It also includes the three

3.2. RULES ABOU T FUNCTIONAL DEPENDENCIES 81

A Complete Set of Inference Rules

If we want to know whether one FD follows from some given FD’s, the
closure computation of Section 3.2.4 will always serve. However, it is
interesting to know that there is a set of rules, called Armstrong’s axioms,
from which it is possible to derive any FD that follows from a given set.
These axioms are:

1. Reflexivity. If {B 1,B 2, . . . , B m} C {A i ,A 2, . .. , An}, then
Ai A2 ■ ■ ■ An —> B i B 2 ■ ■ ■ B m. These are what we have called triv
ial FD’s.

2. Augmentation. If A \A 2 • • • A n -4 B%B2 ■ • ■ B m, then

A iA 2 ■ ■ ■ AnC iC 2 ■ ■ ■ Ck —> B iB 2 ■ ■ ■ B mC iC 2 ■ ■ ■ Ck

for any set of attributes C\, C2, . . . ,Ck- Since some of the C ’s may
also be j4’s or B ’s or both, we should eliminate from the left side
duplicate attributes and do the same for the right side.

3. Transitivity. If

A\ A2 * * * An B \B 2 ■ ■ ■ B m and B \B 2 • ■ ■ B m C\C2 • • - Ck

then A i A 2 ■ ■ ■ A n —¥ C±C2 ■ ■ ■ Ck-

nontrivial FD’s with two attributes on the left: A B —> C, AC —¥ B, and
BC —¥ A. There are also FD’s with more than one attribute on the right, such
as A BC, and trivial FD’s such as A -> A.

Relation R and its FD’s have several minimal bases. One is

{A -> B, B A, B C, C ->• B}

Another is {̂ 4 -¥ B, B C, C —» A}. There are several other minimal bases
for R, and we leave their discovery as an exercise. □

3.2.8 Projecting Functional Dependencies
When we study design of relation schemas, we shall also have need to answer
the following question about FD’s. Suppose we have a relation R with set of
FD’s S, and we project R by computing Ri — itl(R), for some list of attributes
R. What FD’s hold in i?i?

The answer is obtained in principle by computing the projection of functional
dependencies S, which is all FD’s that:

82 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

a) Follow from S, and

b) Involve only attributes of R \ .

Since there may be a large number of such FD’s, and many of them may be
redundant (i.e., they follow from other such FD’s), we are free to simplify that
set of FD’s if we wish. However, in general, the calculation of the FD’s for
Ri is exponential in the number of attributes of R\. The simple algorithm is
summarized below.

A lgorithm 3 .1 2 : Projecting a Set of Functional Dependencies.

INPUT: A relation R and a second relation Ri computed by the projection
Ri = nL(R). Also, a set of FD’s 5 that hold in R.

OUTPUT: The set of FD’s that hold in Ri.

M ETHOD:

1. Let T be the eventual output set of FD’s. Initially, T is empty.

2. For each set of attributes X that is a subset of the attributes of Ri,
compute X +. This computation is performed with respect to the set of
FD’s S, and may involve attributes that are in the schema of R but not
R\. Add to T all nontrivial FD’s X A such that A is both in X + and
an attribute of R\.

3. Now, T is a basis for the FD’s that hold in Ri, but may not be a minimal
basis. We may construct a minimal basis by modifying T as follows:

(a) If there is an FD F in T that follows from the other FD’s in T,
remove F from T.

(b) Let Y —» B be an FD in T, with at least two attributes in Y, and let
Z be Y with one of its attributes removed. If Z -> B follows from
the FD’s in T (including Y —> B), then replace Y -» B by Z B.

(c) Repeat the above steps in all possible ways until no more changes to
T can be made.

□

E xam ple 3 .13: Suppose R(A, B, C, D) has FD’s A —► B, B C, and C D.
Suppose also that we wish to project out the attribute B, leaving a relation
Ri(A,C,D). In principle, to find the FD’s for R \ , we need to take the closure
of all eight subsets of {A, C, D}, using the full set of FD’s, including those
involving B. However, there are some obvious simplifications we can make.

• Closing the empty set and the set of all attributes cannot yield a nontrivial
FD.

3.2. RULES ABOU T FUNCTIONAL DEPENDENCIES 83

• If we already know that the closure of some set X is all attributes, then
we cannot discover any new FD’s by closing supersets of X .

Thus, we may start with the closures of the singleton sets, and then move
on to the doubleton sets if necessary. For each closure of a set X , we add the
FD X E for each attribute E that is in X + and in the schema of Ri, but
not in X .

First, {^4}+ = {A ,B ,C ,D } . Thus, A —> C and A —» D hold in R\. Note
that A —> B is true in R, but makes no sense in R,\ because B is not an attribute
of Ri.

Next, we consider {C'}+ = {C,D}, from which we get the additional FD
C -» D for Ri. Since {D}+ = {£>}, we can add no more FD’s, and are done
with the singletons.

Since {A}+ includes all attributes of R i , there is no point in considering any
superset of {A}. The reason is that whatever FD we could discover, for instance
AC -» D, follows from an FD with only A on the left side: A —> D in this case.
Thus, the only doubleton whose closure we need to take is {C, D }+ — {C ,D }.
This observation allows us to add nothing. We are done with the closures, and
the FD’s we have discovered are A C, A D, and C D.

If we wish, we can observe that A —> D follows from the other two by
transitivity. Therefore a simpler, equivalent set of FD’s for R\ is A —> C and
C —> D. This set is, in fact, a minimal basis for the FD’s of R \ . □

3.2.9 Exercises for Section 3.2
E xercise 3 .2 .1 : Consider a relation with schema R (A ,B ,C ,D) and FD’s
A B —̂ C , C —̂ D , and D — A.

a) What are all the nontrivial FD’s that follow from the given FD’s? You
should restrict yourself to FD’s with single attributes on the right side.

b) What are all the keys of R?

c) What are all the superkeys for R that are not keys?

E xercise 3 .2 .2 : Repeat Exercise 3.2.1 for the following schemas and sets of
FD’s:

i) S(A, B, C, D) with FD’s A -> B, B ->■ C, and B -» D.

ii) T(A, B, C, D) with FD’s A B -*■ C, B C ->■ D, CD ->■ A, and AD ->■ B.

in) U(A, B, C, D) with FD’s A -> B, B ->■ C, C -»• D, and D A.

E xercise 3 .2 .3 : Show that the following rules hold, by using the closure test
of Section 3.2.4.

a) Augmenting left sides. If A 1 A 2 ■ ■ ■ A n —¥ B is an FD, and C is another
attribute, then A 1 A 2 ■ ■ ■ A nC B follows.

84 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

b) Full augmentation. If A iA 2 ■ ■ ■ An -» B is an FD, and C is another at
tribute, then A 1 A 2 ■ ■ ■ AnC —>■ BC follows. Note: from this rule, the
“augmentation” rule mentioned in the box of Section 3.2.7 on “A Com
plete Set of Inference Rules” can easily be proved.

c) Pseudotransitivity. Suppose FD’s A 1 A 2 ■ ■ ■ A„ —» B 1 B 2 • ■ ■ B m and

C i C f - C k - t D

hold, and the B ’s are each among the C ’s. Then

A\ Ai • ■ ■ AnE\ E 2 • • ■ Ej —¥ D

holds, where the E ’s are all those of the C ’s that are not found among
the B ’s.

d) Addition. If FD’s A 1 A 2 ■ ■ ■ An —¥ B 1 B 2 ■ ■ • B m and

C1C 2 • • • Ck —̂ D 1 D 2 • ■ ■ Dj

hold, then FD A 1 A 2 * • • A nC\C2 ' ■ * Ck —̂ B 1 B 2 ■ * * B7nI)j D 2 • * • Dj also
holds. In the above, we should remove one copy of any attribute that
appears among both the A’s and C’s or among both the B ’s and D ’s.

! Exercise 3.2.4: Show that each of the following are not valid rules about FD’s
by giving example relations that satisfy the given FD’s (following the “if”) but
not the FD that allegedly follows (after the “then”).

a) If A —> B then B —> A.

b) If AB -¥ C and A C, then B -> C .

c) If AB C, then A —> C or B —► C.

! Exercise 3.2.5: Show that if a relation has no attribute that is functionally
determined by all the other attributes, then the relation has no nontrivial FD’s
at all.

! Exercise 3.2.6: Let X and Y be sets of attributes. Show that if X C Y, then
X + C Y+, where the closures are taken with respect to the same set of FD’s.

! Exercise 3.2.7: Prove that (X+)+ = X +.

! Exercise 3.2.8: We say a set of attributes X is closed (with respect to a given
set of FD’s) if X + = X . Consider a relation with schema R{A, B, C, D) and an
unknown set of FD’s. If we are told which sets of attributes are closed, we can
discover the FD’s. What are the FD’s if:

a) All sets of the four attributes are closed.

3.3. DESIGN OF RELATIONAL DATABASE SCHEMAS 85

b) The only closed sets are 0 and {A, B ,C ,D }.

c) The closed sets are 0, {A,B}, and {A, B ,C , D}.

! E xercise 3 .2 .9 : Find all the minimal bases for the FD’s and relation of Ex
ample 3.11.

! E xercise 3 .2 .10: Suppose we have relation R (A ,B ,C ,D ,E) , with some set
of FD’s, and we wish to project those FD’s onto relation S(A, B, C). Give the
FD’s that hold in S if the FD’s for R are:

a) A B —̂ D E , C —̂ E , D —̂ (7, and E —̂ A.

b) A —¥ D : BD — E, AC —¥ E, and D E —̂ B.

c) A B —¥ D , AC —¥ E, B C —¥ D , D —̂ A , and E — B.

d) A ->■ B, B C, C D, D -> E, and E A.

In each case, it is sufficient to give a minimal basis for the full set of FD’s of S.

!! Exercise 3 .2 .11: Show that if an FD F follows from some given FD’s, then
we can prove F from the given FD’s using Armstrong’s axioms (defined in the
box “A Complete Set of Inference Rules” in Section 3.2.7). Hint: Examine
Algorithm 3.7 and show how each step of that algorithm can be mimicked by
inferring some FD’s by Armstrong’s axioms.

3.3 Design of Relational Database Schemas
Careless selection of a relational database schema can lead to redundancy and
related anomalies. For instance, consider the relation in Fig. 3.2, which we
reproduce here as Fig. 3.6. Notice that the length and genre for Star Wars
and Wayne’s World are each repeated, once for each star of the movie. The
repetition of this information is redundant. It also introduces the potential for
several kinds of errors, as we shall see.

In this section, we shall tackle the problem of design of good relation schemas
in the following stages:

1. We first explore in more detail the problems that arise when our schema
is poorly designed.

2. Then, we introduce the idea of “decomposition,” breaking a relation
schema (set of attributes) into two smaller schemas.

3. Next, we introduce “Boyce-Codd normal form,” or “BCNF,” a condition
on a relation schema that eliminates these problems.

4. These points are tied together when we explain how to assure the BCNF
condition by decomposing relation schemas.

86 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

title year length genre studioName starNam e

Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Hark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone With the Wind 1939 231 drama MGM Vivien Leigh
Wayne’s World 1992 95 comedy Paramount Dana Carvey
Wayne’s World 1992 95 comedy Paramount Mike Meyers

Figure 3.6: The relation Moviesl exhibiting anomalies

3.3.1 Anomalies
Problems such as redundancy that occur when we try to cram too much into a
single relation axe called anomalies. The principal kinds of anomalies that we
encounter are:

1. Redundancy. Information may be repeated unnecessarily in several tuples.
Examples are the length and genre for movies in Fig. 3.6.

2. Update Anomalies. We may change information in one tuple but leave
the same information unchanged in another. For example, if we found
that Star Wars is really 125 minutes long, we might carelessly change the
length in the first tuple of Fig. 3.6 but not in the second or third tuples.
You might argue that one should never be so careless, but it is possible
to redesign relation Moviesl so that the risk of such mistakes does not
exist.

3. Deletion Anomalies. If a set of values becomes empty, we may lose other
information as a side effect. For example, should we delete Vivien Leigh
from the set of stars of Gone With the Wind, then we have no more stars
for that movie in the database. The last tuple for Gone With the Wind
in the relation Moviesl would disappear, and with it information that it
is 231 minutes long and a drama.

3.3.2 Decomposing Relations
The accepted way to eliminate these anomalies is to decompose relations. De
composition of R involves splitting the attributes of R to make the schemas of
two new relations. After describing the decomposition process, we shall show
how to pick a decomposition that eliminates anomalies.

Given a relation R(A \ , A 2 , . ■ ■ ,A n), we may decompose R into two relations
S (B i ,B 2 , . . . , Bm) and T(Ci, C2, . . . , Ck) such that:

1. {Ai ,A2, . . . , An} = {Bi , B2 , ■ ■ ■ , Bm} U {Ci, C2 , ■ • • , Ck}-

3. T - ircu c 2,...,ck(R)-

Example 3.14: Let us decompose the Moviesl relation of Fig. 3.6. Our choice,
whose merit will be seen in Section 3.3.3, is to use:

1. A relation called Movies2, whose schema is all the attributes except for
starName.

2. A relation called Movies3, whose schema consists of the attributes title,
year, and starName.

The projection of Moviesl onto these two new schemas is shown in Fig, 3.7.
□

3.3. DESIGN OF RELATIONAL DATABASE SCHEMAS 87

title year length genre studioName
Star Wars 1977 124 sciFi Fox
Gone With the Wind 1939 231 drama MGM
Wayne’s World 1992 95 comedy Paramount

(b) The relation Movies2.

title year starName
Star Wars 1977 Carrie Fisher
Star Weirs 1977 Mark Hamill
Star Wars 1977 Harrison Ford
Gone With the Wind 1939 Vivien Leigh
Wayne’s World 1992 Dana Carvey
Wayne’s World 1992 Mike Meyers

(b) The relation Movies3.

Figure 3.7: Projections of relation Moviesl

Notice how this decomposition eliminates the anomalies we mentioned in
Section 3.3.1. The redundancy has been eliminated; for example, the length
of each film appears only once, in relation Movies2. The risk of an update
anomaly is gone. For instance, since we only have to change the length of Star
Wars in one tuple of Movies2, we cannot wind up with two different lengths
for that movie.

Finally, the risk of a deletion anomaly is gone. If we delete all the stars
for Gone With the Wind, say, that deletion makes the movie disappear from
Movies3. But all the other information about the movie can still be found in
Movies2.

88 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

It might appear that Movies3 still has redundancy, since the title and year
of a movie can appear several times. However, these two attributes form a key
for movies, and there is no more succinct way to represent a movie. Moreover,
Movies3 does not offer an opportunity for an update anomaly. For instance, one
might suppose that if we changed to 2008 the year in the Carrie Fisher tuple,
but not the other two tuples for Star Wars, then there would be an update
anomaly. However, there is nothing in our assumed FD’s that prevents there
being a different movie named Star Wars in 2008, and Carrie Fisher may star
in that one as well. Thus, we do not want to prevent changing the year in one
Star Wars tuple, nor is such a change necessarily incorrect.

3.3.3 Boyce-Codd Normal Form
The goal of decomposition is to replace a relation by several that do not exhibit
anomalies. There is, it turns out, a simple condition under which the anomalies
discussed above can be guaranteed not to exist. This condition is called Boyce-
Codd normal form, or BCNF.

• A relation R is in BCNF if and only if: whenever there is a nontrivial FD
A iA 2 ■ • • An -* B iB 2 ■ ■ ■ B m for R, it is the case that {Ai, A2, . . . , An} is
a superkey for R.

That is, the left side of every nontrivial FD must be a superkey. Recall that
a superkey need not be minimal. Thus, an equivalent statement of the BCNF
condition is that the left side of every nontrivial FD must contain a key.

Exam ple 3.15 : Relation Moviesl, as in Fig. 3.6, is not in BCNF. To see why,
we first need to determine what sets of attributes are keys. We argued in Ex
ample 3.2 why {title, year, starName} is a key. Thus, any set of attributes
containing these three is a superkey. The same arguments we followed in Ex
ample 3.2 can be used to explain why no set of attributes that does not include
all three of title, year, and starName could be a superkey. Thus, we assert
that {title, year, starName} is the only key for Moviesl.

However, consider the FD

title year —> length genre studioName

which holds in Moviesl according to our discussion in Example 3.2.
Unfortunately, the left side of the above FD is not a superkey. In particular,

we know that title and year do not functionally determine the sixth attribute,
starName. Thus, the existence of this FD violates the BCNF condition and tells
us Moviesl is not in BCNF. □

Exam ple 3.16: On the other hand, Movies2 of Fig. 3.7 is in BCNF. Since

title year —¥ length genre studioName

3.3. DESIGN OF RELATIONAL DATABASE SCHEMAS 89

holds in this relation, and we have argued that neither t i t l e nor year by itself
functionally determines any of the other attributes, the only key for Movies2
is { t i t l e , year}. Moreover, the only nontrivial FD’s must have at least t i t l e
and year on the left side, and therefore their left sides must be superkeys. Thus,
Movles2 is in BCNF. □

E xam ple 3 .17: We claim that any two-attribute relation is in BCNF. We
need to examine the possible nontrivial FD’s with a single attribute on the
right. There are not too many cases to consider, so let us consider them in
turn. In what follows, suppose that the attributes are A and B.

1. There are no nontrivial FD’s. Then surely the BCNF condition must hold,
because only a nontrivial FD can violate this condition. Incidentally, note
that {A, B } is the only key in this case.

2. A —¥ B holds, but B -4 - A does not hold. In this case, A is the only key,
and each nontrivial FD contains A on the left (in fact the left can only
be A). Thus there is no violation of the BCNF condition.

3. B ->• A holds, but A ->• B does not hold. This case is symmetric to
case (2).

4. Both A —» B and B -> A hold. Then both A and B are keys. Surely
any FD has at least one of these on the left, so there can be no BCNF
violation.

It is worth noticing from case (4) above that there may be more than one
key for a relation. Further, the BCNF condition only requires that some key be
contained in the left side of any nontrivial FD, not that all keys are contained in
the left side. Also observe that a relation with two attributes, each functionally
determining the other, is not completely implausible. For example, a company
may assign its employees unique employee ID’s and also record their Social
Security numbers. A relation with attributes empID and ssNo would have each
attribute functionally determining the other. Put another way, each attribute
is a key, since we don’t expect to find two tuples that agree on either attribute.
□

3.3.4 Decomposition into BCNF
By repeatedly choosing suitable decompositions, we can break any relation
schema into a collection of subsets of its attributes with the following important
properties:

1. These subsets are the schemas of relations in BCNF.

2. The data in the original relation is represented faithfully by the data in the
relations that are the result of the decomposition, in a sense to be made
precise in Section 3.4.1. Roughly, we need to be able to reconstruct the
original relation instance exactly from the decomposed relation instances.

90 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Example 3.17 suggests that perhaps all we have to do is break a relation schema
into two-attribute subsets, and the result is surely in BCNF. However, such
an arbitrary decomposition will not satisfy condition (2), as we shall see in
Section 3.4.1. In fact, we must be more careful and use the violating FD’s to
guide our decomposition.

The decomposition strategy we shall follow is to look for a nontrivial FD
A 1 A 2 ■■■ A n -¥ B 1 B 2 ■ ■ ■ Bm that violates BCNF; i.e., { A i,A 2, . . . , An} is not a
superkey. We shall add to the right side as many attributes as are functionally
determined by {A i,A 2 , . . . ,A n}. This step is not mandatory, but it often
reduces the total amount of work done, and we shall include it in our algorithm.
Figure 3.8 illustrates how the attributes are broken into two overlapping relation
schemas. One is all the attributes involved in the violating FD, and the other
is the left side of the FD plus all the attributes not involved in the FD, i.e., all
the attributes except those B ’s that are not /Ts.

Figure 3.8: Relation schema decomposition based on a BCNF violation

Exam ple 3.18: Consider our running example, the Moviesl relation of Fig.
3.6. We saw in Example 3.15 that

title year —> length genre studioName

is a BCNF violation. In this case, the right side already includes all the at
tributes functionally determined by title and year, so we shall use this BCNF
violation to decompose Moviesl into:

1. The schema {title, year, length, genre, studioName} consisting of all
the attributes on either side of the FD.

2. The schema {title, year, starName} consisting of the left side of the FD
plus all attributes of Moviesl that do not appear in either side of the FD
(only starName, in this case).

Notice that these schemas are the ones selected for relations Movies2 and
Movies3 in Example 3.14. We observed in Example 3.16 that Movies2 is in
BCNF. Movies3 is also in BCNF; it has no nontrivial FD’s. □

3.3. DESIGN OF RELATIONAL DATABASE SCHEMAS 91

In Example 3.18, one judicious application of the decomposition rule is
enough to produce a collection of relations that are in BCNF. In general, that
is not the case, as the next example shows.

E xam ple 3 .19 : Consider a relation with schema

{title, year, studioName, president, presAddr}
That is, each tuple of this relation tells about a movie, its studio, the president
of the studio, and the address of the president of the studio. Three FD’s that
we would assume in this relation are

title year —» studioName
studioName —» president
president —¥ presAddr

By closing sets of these five attributes, we discover that {title, year} is the
only key for this relation. Thus the last two FD’s above violate BCNF. Suppose
we choose to decompose starting with

studioName -> president

First, we add to the right side of this functional dependency any other attributes
in the closure of studioName. That closure includes presAddr, so our final
choice of FD for the decomposition is:

studioName —> president presAddr

The decomposition based on this FD yields the following two relation schemas.

{title, year, studioName}
{studioName, president, presAddr}

If we use Algorithm 3.12 to project FD’s, we determine that the FD’s for
the first relation has a basis:

title year —¥ studioName

while the second has:

studioName —¥ president
president —¥ presAddr

The sole key for the first relation is { t i t l e , year}, and it is therefore in BCNF.
However, the second has {studioName} for its only key but also has the FD:

president —¥ presAddr

which is a BCNF violation. Thus, we must decompose again, this time using
the above FD. The resulting three relation schemas, all in BCNF, are:

92 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

{title, year, studioName}
{studioName, president}
{president, presAddr}

□

In general, we must keep applying the decomposition rule as many times as
needed, until all our relations are in BCNF. We can be sure of ultimate success,
because every time we apply the decomposition rule to a relation R, the two
resulting schemas each have fewer attributes than that of R. As we saw in
Example 3.17, when we get down to two attributes, the relation is sure to be
in BCNF; often relations with larger sets of attributes are also in BCNF. The
strategy is summarized below.

A lgorithm 3.20: BCNF Decomposition Algorithm.

INPUT: A relation Ro with a set of functional dependencies So-

OUTPUT: A decomposition of Ro into a collection of relations, all of which are
in BCNF.

METHOD: The following steps can be applied recursively to any relation R and
set of FD’s S . Initially, apply them with R = Ro and S = Sq.

1. Check whether R is in BCNF. If so, nothing more needs to be done.
Return {J?} as the answer.

2. If there are BCNF violations, let one be X Y . Use Algorithm 3.7 to
compute X +. Choose Ri = X + as one relation schema and let R? have
attributes X and those attributes of R that are not in X +.

3. Use Algorithm 3.12 to compute the sets of FD’s for R\ and R%-, let these
be Si and S2, respectively.

4. Recursively decompose Ri and R 2 using this algorithm. Return the union
of the results of these decompositions.

□

3.3.5 Exercises for Section 3.3
Exercise 3.3.1: For each of the following relation schemas and sets of FD’s:

a) R(A, B, C, D) with FD’s AB —► C, C -> D, and D A.

b) R (A ,B ,C ,D) with FD’s B —> C and B D.

c) R{A, B, C, D) with FD’s AB -+ C ,B C ->■ D, CD ->■ A, and AD B.

d) R(A, B, C, D) with FD’s A B, B C, C ->• D, and D A.

3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 93

e) R(A, B , C, D, E) with FD’s A B —̂ C , D E —¥ C , and B —¥ D.

f) R(A, B, C, D, E) with FD’s A B —¥ C , C —̂ D, D —¥ B , and D —¥ E.

do the following:

i) Indicate all the BCNF violations. Do not forget to consider FD’s that are
not in the given set, but follow from them. However, it is not necessary
to give violations that have more than one attribute on the right side.

ii) Decompose the relations, as necessary, into collections of relations that
are in BCNF.

E xercise 3 .3 .2 : We mentioned in Section 3.3.4 that we would exercise our
option to expand the right side of an FD that is a BCNF violation if possible.
Consider a relation R whose schema is the set of attributes {.4, B, C, D] with
FD’s A -¥ B and A -¥ C. Either is a BCNF violation, because the only key
for R is {A, D}. Suppose we begin by decomposing R according to A -¥ B. Do
we ultimately get the same result as if we first expand the BCNF violation to
A -¥ B C ? Why or why not?

! E xercise 3 .3 .3 : Let R be as in Exercise 3.3.2, but let the FD’s be A -¥ B and
B —¥ C. Again compare decomposing using A —¥ B first against decomposing
by A -¥ B C first.

! E xercise 3 .3 .4 : Suppose we have a relation schema R(A, B , C) with FD A —¥
B. Suppose also that we decide to decompose this schema into S (A ,B) and
T (B , C). Give an example of an instance of relation R whose projection onto
S and T and subsequent rejoining as in Section 3.4.1 does not yield the same
relation instance. That is, tta,b (R) x ^ b ,c (R) / R-

3.4 Decomposition: The Good, Bad, and Ugly
So far, we observed that before we decompose a relation schema into BCNF,
it can exhibit anomalies; after we decompose, the resulting relations do not
exhibit anomalies. T hat’s the “good.” But decomposition can also have some
bad, if not downright ugly, consequences. In this section, we shall consider
three distinct properties we would like a decomposition to have.

1. Elimination of Anomalies by decomposition as in Section 3.3.

2. Recoverability of Information. Can we recover the original relation from
the tuples in its decomposition?

3. Preservation of Dependencies. If we check the projected FD’s in the rela
tions of the decomposition, can we can be sure that when we reconstruct
the original relation from the decomposition by joining, the result will
satisfy the original FD’s?

94 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

It turns out that the BCNF decomposition of Algorithm 3.20 gives us (1) and
(2), but does not necessarily give us all three. In Section 3.5 we shall see another
way to pick a decomposition that gives us (2) and (3) but does not necessarily
give us (1). In fact, there is no way to get all three at once.

3.4.1 Recovering Information from a Decomposition
Since we learned that every two-attribute relation is in BCNF, why did we
have to go through the trouble of Algorithm 3.20? Why not just take any
relation R and decompose it into relations, each of whose schemas is a pair of
R ’s attributes? The answer is that the data in the decomposed relations, even
if their tuples were each the projection of a relation instance of R, might not
allow us to join the relations of the decomposition and get the instance of R
back. If we do get R back, then we say the decomposition has a lossless join.

However, if we decompose using Algorithm 3.20, where all decompositions
are motivated by a BCNF-violating FD, then the projections of the original
tuples can be joined again to produce all and only the original tuples. We shall
consider why here. Then, in Section 3.4.2 we shall give an algorithm called the
“chase,” for testing whether the projection of a relation onto any decomposition
allows us to recover the relation by rejoining.

To simplify the situation, consider a relation R{A, B, C) and an FD B —► C
that is a BCNF violation. The decomposition based on the FD B -» C separates
the attributes into relations R\{A, B) and R 2 (B ,C).

Let t be a tuple of R. We may write t = (a, b, c), where a, b, and c are the
components of t for attributes A, B, and C, respectively. Tuple t projects as
(a, b) in R 1 (A ,B) — ka,b{R) and as (6, c) in R 2 (B ,C) = kb,c(R)- When we
compute the natural join Ri ix R2, these two projected tuples join, because
they agree on the common B component (they both have b there). They give
us t = (a. b, c). the tuple we started with, in the join. That is, regardless of
what tuple t we started with, we can always join its projections to get t back.

However, getting back those tuples we started with is not enough to assure
that the original relation R is truly represented by the decomposition. Consider
what happens if there are two tuples of R, say t = (a,b,c) and v = (d,b,e).
When we project t onto R,\ (A. B) we get u = (a, b), and when we project v onto
R 2 (B,C) we get w = (b,e). These tuples also match in the natural join, and
the resulting tuple is x — (a,b,e). Is it possible that a: is a bogus tuple? That
is, could (a, b, e) not be a tuple of R ?

Since we assume the FD B -¥ C for relation R, the answer is “no.” Recall
that this FD says any two tuples of R that agree in their B components must
also agree in their C components. Since t and v agree in their B components,
they also agree on their C components. That means c — e; i.e., the two values
we supposed were different are really the same. Thus, tuple (a, b, e) of R is
really (a, b, c); that is, x = t.

Since t is in R. it must be that x is in R. Put another way, as long as FD
B —»■ C holds, the joining of two projected tuples cannot produce a bogus tuple.

3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 95

Rather, every tuple produced by the natural join is guaranteed to be a tuple of
R.

This argument works in general. We assumed A, B , and C were each
single attributes, but the same argument would apply if they were any sets
of attributes X , Y and Z. That is, if Y —> Z holds in R, whose attributes are
X U Y U Z, then R = nxuy(R) cx k y u z (R) -

We may conclude:

• If we decompose a relation according to Algorithm 3.20, then the original
relation can be recovered exactly by the natural join.

To see why, we argued above that at any one step of the recursive decomposition,
a relation is equal to the join of its projections onto the two components. If
those components are decomposed further, they can also be recovered by the
natural join from their decomposed relations. Thus, an easy induction on the
number of binary decomposition steps says that the original relation is always
the natural join of whatever relations it is decomposed into. We can also prove
that the natural join is associative and commutative, so the order in which we
perform the natural join of the decomposition components does not matter.

The FD Y -» Z, or its symmetric FD Y X , is essential. Without one of
these FD’s, we might not be able to recover the original relation. Here is an
example.

E xam ple 3 .21: Suppose we have the relation R(A, B , C) as above, but neither
of the FD’s B A nor B —> C holds. Then R might consist of the two tuples

A B C
1 2 3
4 2 5

The projections of R onto the relations with schemas {A. B } and {B, C]
are R i = ttab(R) =

A B
1 2
4 2

and R -2 — ttbc(R) —

B C
2 3
2 5

respectively. Since all four tuples share the same 5-value, 2 , each tuple of one
relation joins with both tuples of the other relation. When we try to reconstruct
R by the natural join of the projected relations, we get R 3 — R i cxi R 2 —

96 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Is Join the Only Way to Recover?

We have assumed that the only possible way we could reconstruct a rela
tion from its projections is to use the natural join. However, might there
be some other algorithm to reconstruct the original relation that would
work even in cases where the natural join fails? There is in fact no such
other way. In Example 3.21, the relations R and R 3 are different instances,
yet have exactly the same projections onto {̂ 4, B} and {B, C}, namely the
instances we called Ri and R 2 , respectively. Thus, given Ri and R 2 , no
algorithm whatsoever can tell whether the original instance was R or R 3 .

Moreover, this example is not unusual. Given any decomposition of
a relation with attributes I U F U Z into relations with schemas X U Y
and Y U Z, where neither Y —► X nor Y —> Z holds, we can construct
an example similar to Example 3.21 where the original instance cannot be
determined from its projections.

A B C
1 2 3
1 2 5
4 2 3
4 2 5

That is, we get “too much” ; we get two bogus tuples, (1,2,5) and (4,2,3), that
were not in the original relation R. □

3.4.2 The Chase Test for Lossless Join
In Section 3.4.1 we argued why a particular decomposition, that of R (A ,B ,C)
into {A ,B } and {B ,C }, with a particular FD, B —► C, had a lossless join.
Now, consider a more general situation. We have decomposed relation R into
relations with sets of attributes S \ ,S 2 ,--- ,S k■ We have a given set of FD’s
F that hold in R. Is it true that if we project R onto the relations of the
decomposition, then we can recover R by taking the natural join of all these
relations? That is, is it true that 7TSj (R) ix 7rs2 (R) tx • • • m -KSk (R) = R? Three
important things to remember are:

• The natural join is associative and commutative. It does not matter in
what order we join the projections; we shall get the same relation as a
result. In particular, the result is the set of tuples t such that for all
i — 1 , 2 t projected onto the set of attributes St is a tuple in
7rs;(-R).

3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 97

• Any tuple t in R is surely in ns1(R) 1x1 71 s 2 (R) tx •• • cx nsk (R) ■ The
reason is that the projection of t onto Si is surely in 7rs; (R) for each i,
and therefore by our first point above, t is in the result of the join.

• As a consequence, 7̂ (R) m 7t,s 2 (R) tx • • • ix i r s k (R) — R when the FD’s
in F hold for R if and only if every tuple in the join is also in R. That is,
the membership test is all we need to verify that the decomposition has
a lossless join.

The chase test for a lossless join is just an organized way to see whether a
tuple t in 7T.SJ(R) tx its2 {R) xj • • • tx nsk(R) can be proved, using the FD’s in
F, also to be a tuple in R. If t is in the join, then there must be tuples in R,
say h , t 2 , ■ ■ ■ ,tk, such that t is the join of the projections of each ti onto the
set of attributes Si, for * = 1 ,2 ,... , k. We therefore know that ti agrees with t
on the attributes of Si, but ti has unknown values in its components not in 5,.

We draw a picture of what we know, called a tableau. Assuming R has
attributes A ,B , . . . we use a ,b ,... for the components of t. For ti, we use the
same letter as t in the components that are in Si, but we subscript the letter
with i if the component is not in i. In that way, ti will agree with t for the
attributes of S», but have a unique value — one that can appear nowhere else
in the tableau — for other attributes.

E xam ple 3 .22: Suppose we have relation R (A ,B ,C ,D), which we have de
composed into relations with sets of attributes Si — {A ,D }, S 2 = {A ,C }, and
S3 — {B ,C ,D }. Then the tableau for this decomposition is shown in Fig. 3.9.

A B C D
a bi Cl d
a 62 c d2
a 3 b c d

Figure 3.9: Tableau for the decomposition of R into {A ,D }, {A ,C }, and
{B ,C ,D }

The first row corresponds to set of attributes A and D. Notice that the
components for attributes A and D are the unsubscripted letters a and d.
However, for the other attributes, b and c, we add the subscript 1 to indicate that
they are arbitrary values. This choice makes sense, since the tuple (a , b i , C i , d)
represents a tuple of R that contributes to t = (a, b, c, d) by being projected onto
{A, D} and then joined with other tuples. Since the B- and C-components of
this tuple are projected out, we know nothing yet about what values the tuple
had for those attributes.

Similarly, the second row has the unsubscripted letters in attributes A and
C, while the subscript 2 is used for the other attributes. The last row has the
unsubscripted letters in components for {B, C, D} and subscript 3 on a. Since

98 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

each row uses its own number as a subscript, the only symbols that can appear
more than once are the unsubscripted letters. □

Remember that our goal is to use the given set of FD’s F to prove that t is
really in R. In order to do so, we “chase” the tableau by applying the FD’s in
F to equate symbols in the tableau whenever we can. If we discover that one of
the rows is actually the same as t (that is, the row becomes all unsubscripted
symbols), then we have proved that any tuple t in the join of the projections
was actually a tuple of R.

To avoid confusion, when equating two symbols, if one of them is unsub
scripted, make the other be the same. However, if we equate two symbols, both
with their own subscript, then you can change either to be the other. However,
remember that when equating symbols, you must change all occurrences of one
to be the other, not just some of the occurences.

E xam ple 3 .2 3 : Let us continue with the decomposition of Example 3.22, and
suppose the given FD’s are A —>■ B, B —► C, and CD —¥ A. Start with the
tableau of Fig. 3.9. Since the first two rows agree in their A-components, the FD
A —¥ B tells us they must also agree in their 5-components. That is, b\ = b2.
We can replace either one with the other, since they are both subscripted. Let
us replace b2 by &i. Then the resulting tableau is:

A B C D
a bi Cl d
a bi c d2

a-3 b c d

Now, we see that the first two rows have equal B-values, and so we may use
the FD B —¥ C to deduce that their C-components, ci and c, are the same.
Since c is unsubscripted, we replace Ci by c, leaving:

A B C D
a bi c d
a bi c d2

a3 b c d

Next, we observe that the first and third rows agree in both columns C and
D. Thus, we may apply the FD CD —¥ A to deduce that these rows also have
the same A-value; that is, a — a3. We replace a3 by a, giving us:

A B C D
a bi c d
a b 1 c d2

a b c d

3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 99

At this point, we see that the last row has become equal to t, that is,
(a,b ,c,d). We have proved that if R satisfies the FD’s A ->■ B, B ->• C, and
CD A, then whenever we project onto {A. D}, {A, C \, and {B ,C ,D } and
rejoin, what we get must have been in R. In particular, what we get is the same
as the tuple of R that we projected onto {B ,C ,D }. □

3.4.3 W hy the Chase Works
There are two issues to address:

1. When the chase results in a row that matches the tuple t (i.e., the tableau
is shown to have a row with all unsubscripted variables), why must the
join be lossless?

2. When, after applying FD’s whenever we can, we still find no row of all
unsubscripted variables, why must the join not be lossless?

Question (1) is easy to answer. The chase process itself is a proof that one
of the projected tuples from R must in fact be the tuple t that is produced by
the join. We also know that every tuple in R is sure to come back if we project
and join. Thus, the chase has proved that the result of projection and join is
exactly R.

For the second question, suppose that we eventually derive a tableau without
an unsubscripted row, and that this tableau does not allow us to apply any of
the FD’s to equate any symbols. Then think of the tableau as an instance of the
relation R. It obviously satisfies the given FD’s, because none can be applied
to equate symbols. We know that the ith row has unsubscripted symbols in the
attributes of Si, the *th relation of the decomposition. Thus, when we project
this relation onto the S i’s and take the natural join, we get the tuple with all
unsubscripted variables. This tuple is not in R, so we conclude that the join is
not lossless.

E xam ple 3.24: Consider the relation R (A ,B ,C ,D) with the FD B — AD
and the proposed decomposition {A, B}, {B, C}, and {C, D}. Here is the initial
tableau:

A B C D
a b Cl di
0 ,2 b c
0.3 fa c d

When we apply the lone FD, we deduce that a = and d\ = (fa. Thus, the
final tableau is:

A B C D
a b Cl di
a b c di
03 &3 c d

100 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

No more changes can be made because of the given FD’s, and there is no
row that is fully unsubscripted. Thus, this decomposition does not have a
lossless join. We can verify that fact by treating the above tableau as a relation
with three tuples. When we project onto {A ,B }, we get {(a, 6)}, (03, 63)}.
The projection onto {B ,C } is {(6, ci), (6, c), (63, 0)}, and the projection onto
{C, D} is (cr,di), (c, di), (c, d)}. If we join the first two projections, we get
{(a, 6, ci), (a, 6, c), (03, 63, 0)}. Joining this relation with the third projection
gives {(0 , 6, ci,d i), (a,b,c,di), (a,b,c,d), (a3 ,b3 ,c ,d i), (o3, 63, c, d)}. Notice
that this join has two more tuples than R, and in particular it has the tuple
(a, 6, c, d), as it must. □

3.4.4 Dependency Preservation
We mentioned that it is not possible, in some cases, to decompose a relation into
BCNF relations that have both the lossless-join and dependency-preservation
properties. Below is an example where we need to make a tradeoff between
preserving dependencies and BNCF.

Exam ple 3.25: Suppose we have a relation Bookings with attributes:

1. t i t l e , the name of a movie.

2 . th e a te r , the name of a theater where the movie is being shown.

3. c ity , the city where the theater is located.

The intent behind a tuple (m ,t,c) is that the movie with title m is currently
being shown at theater t in city c.

We might reasonably assert the following FD’s:

th e a te r —> c i ty
t i t l e c i ty -» th e a te r

The first says that a theater is located in one city. The second is not obvious
but is based on the common practice of not booking a movie into two theaters
in the same city. We shall assert this FD if only for the sake of the example.

Let us first find the keys. No single attribute is a key. For example, t i t l e
is not a key because a movie can play in several theaters at once and in several
cities at once.2 Also, th e a te r is not a key, because although th e a te r function
ally determines c ity , there are multiscreen theaters that show many movies
at once. Thus, th e a te r does not determine t i t l e . Finally, c i ty is not a key
because cities usually have more than one theater and more than one movie
playing.

2In th is exam ple we assum e th a t th e re are no t two “cu rren t” movies w ith th e sam e title ,
even though we have previously recognized th a t th e re could be two m ovies w ith th e sam e
tit le m ade in different years.

3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 1 0 1

On the other hand, two of the three sets of two attributes are keys. Clearly
{ t i t l e , c ity } is a key because of the given FD that says these attributes
functionally determine th e a te r .

It is also true that { th ea te r, t i t l e } is a key, because its closure includes
c i ty due to the given FD th e a te r —¥ c i ty . The remaining pair of attributes,
c i ty and th e a te r , do not functionally determine t i t l e , because of multiscreen
theaters, and are therefore not a key. We conclude that the only two keys are

{ t i t l e , c ity }
{ th ea te r, t i t l e }

Now we immediately see a BCNF violation. We were given functional de
pendency th e a te r —¥ c ity , but its left side, th e a te r , is not a superkey. We
are therefore tempted to decompose, using this BCNF-violating FD, into the
two relation schemas:

{ th ea te r, c ity }
{ th ea te r, t i t l e }

There is a problem with this decomposition, concerning the FD

t i t l e c i ty —̂ th ea te r

There could be current relations for the decomposed schemas that satisfy the
FD th e a te r —> c i ty (which can be checked in the relation { th ea te r, c ity})
but that, when joined, yield a relation not satisfying t i t l e c i ty —̂ thea ter.
For instance, the two relations

theater city

Guild
Park

Menlo
Menlo

Park
Park

and

theater title

Guild Antz
Park Antz

are permissible according to the FD’s that apply to each of the above relations,
but when we join them we get two tuples

theater city title

Guild Menlo Park Antz
Park Menlo Park Antz

that violate the FD t i t l e c i ty —¥ th e a te r . □

102 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

3.4.5 Exercises for Section 3.4
Exercise 3.4.1: Let R(A, B, C, D, E) be decomposed into relations with the
following three sets of attributes: {A, B, C}, {B, C, D}, and {A, C, E). For each
of the following sets of FD’s, use the chase test to tell whether the decomposition
of R is lossless. For those that are not lossless, give an example of an instance
of R that returns more than R when projected onto the decomposed relations
and rejoined.

a) B —̂ E and CE —¥ A.

b) AC -» E and BC D.

c) A >■ D , D —̂ E , and B —̂ D.

d) A —>■ D , CD —> E , and E —̂ D.

Exercise 3.4.2: For each of the sets of FD’s in Exercise 3.4.1, are dependencies
preserved by the decomposition?

3.5 Third Normal Form
The solution to the problem illustrated by Example 3.25 is to relax our BCNF
requirement slightly, in order to allow the occasional relation schema that can
not be decomposed into BCNF relations without our losing the ability to check
the FD’s. This relaxed condition is called “third normal form.” In this section
we shall give the requirements for third normal form, and then show how to
do a decomposition in a manner quite different from Algorithm 3.20, in order
to obtain relations in third normal form that have both the lossless-join and
dependency-preservation properties.

3.5.1 Definition of Third Normal Form
A relation R is in third normal form (3NF) if:

• Whenever Ai A2 ■ ■ ■ A„ —>■ B iB 2 ■ ■ ■ Bm is a nontrivial FD, either

{A i ,A 2, . . . ,A„}

is a superkey, or those of B%, B 2 , . . . , B m that are not among the A’s, are
each a member of some key (not necessarily the same key).

An attribute that is a member of some key is often said to be prime. Thus, the
3NF condition can be stated as “for each nontrivial FD, either the left side is a
superkey, or the right side consists of prime attributes only.”

Note that the difference between this 3NF condition and the BCNF condi
tion is the clause “is a member of some key (i.e., prime).” This clause “excuses”
an FD like th e a te r —> c i ty in Example 3.25, because the right side, c ity , is
prime.

3.5. THIRD NORMAL FORM 103

Other Normal Forms

If there is a “third normal form,” what happened to the first two “nor
mal forms”? They indeed were defined, but today there is little use for
them. First normal form is simply the condition that every component
of every tuple is an atomic value. Second normal form is a less restrictive
verison of 3NF. There is also a “fourth normal form” that we shall meet
in Section 3.6.

3.5.2 The Synthesis Algorithm for 3NF Schemas
We can now explain and justify how we decompose a relation R into a set of
relations such that:

a) The relations of the decomposition are all in 3NF.

b) The decomposition has a lossless join.

c) The decomposition has the dependency-preservation property.

A lgorithm 3.26: Synthesis of Third-Normal-Form Relations With a Lossless
Join and Dependency Preservation.

INPUT: A relation R and a set F of functional dependencies that hold for R.

OUTPUT: A decomposition of R into a collection of relations, each of which is
in 3NF. The decomposition has the lossless-join and dependency-preservation
properties.

M E T H O D : Perform the following steps:

1. Find a minimal basis for F, say G.

2. For each functional dependency X —> A in G, use X A as the schema of
one of the relations in the decomposition.

3. If none of the relation schemas from Step 2 is a superkey for R, add
another relation whose schema is a key for R.

□

E xam ple 3.27: Consider the relation R (A ,B ,C ,D ,E) with FD’s A B —>■ C,
C -»■ B, and A ->■ D. To start, notice that the given FD’s are their own
minimal basis. To check, we need to do a bit of work. First, we need to verify
that we cannot eliminate any of the given dependencies. That is, we show,
using Algorithm 3.7, that no two of the FD’s imply the third. For example,
we must take the closure of {A, B}, the left side of the first FD, using only the

104 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

second and third FD’s, C —» B and A —> D. This closure includes D but not
C, so we conclude that the first FD AB —>• C is not implied by the second and
third FD’s. We get a similar conclusion if we try to drop the second or third
FD.

We must also verify that we cannot eliminate any attributes from a left
side. In this simple case, the only possibility is that we could eliminate A or
B from the first FD. For example, if we eliminate A, we would be left with
B —► C. We must show that B C is not implied by the three original FD’s,
A B C, C B, and A —> D. With these FD’s, the closure of {5} is just B,
so B —> C does not follow. A similar conclusion is drawn if we try to drop B
from A B -> C. Thus, we have our minimal basis.

We start the 3NF synthesis by taking the attributes of each FD as a relation
schema. That is, we get relations S i(A ,B ,C), S 2 {B, C). and Sz{A,D). It is
never necessary to use a relation whose schema is a proper subset of another
relation’s schema, so we can drop

We must also consider whether we need to add a relation whose schema is
a key. In this example, R has two keys: {A ,B ,E } and {A ,C ,E }, as you can
verify. Neither of these keys is a subset of the schemas chosen so far. Thus, we
must add one of them, say Sn(A ,B ,E). The final decomposition of R is thus
S i(A ,B ,C), Ss (A,D), and S4 (A ,B ,E). □

3.5.3 Why the 3NF Synthesis Algorithm Works
We need to show three things: that the lossless-join and dependency-preser
vation properties hold, and that all the relations of the decomposition are in
3NF.

1. Lossless Join. Start with a relation of the decomposition whose set of
attributes K is a superkey. Consider the sequence of FD’s that are used
in Algorithm 3.7 to expand K to become K +. Since i f is a superkey,
we know K + is all the attributes. The same sequence of FD applications
on the tableau cause the subscripted symbols in the row corresponding
to K to be equated to unsubscripted symbols in the same order as the
attributes were added to the closure. Thus, the chase test concludes that
the decomposition is lossless.

2. Dependency Preservation. Each FD of the minimal basis has all its at
tributes in some relation of the decomposition. Thus, each dependency
can be checked in the decomposed relations.

3. Third Normal Form. If we have to add a relation whose schema is a key,
then this relation is surely in 3NF. The reason is that all attributes of this
relation are prime, and thus no violation of 3NF could be present in this
relation. For the relations whose schemas are derived from the FD’s of a
minimal basis, the proof that they are in 3NF is beyond the scope of this
book. The argument involves showing that a 3NF violation implies that
the basis is not minimal.

3.6. MULTIVALUED DEPENDENCIES 105

3.5.4 Exercises for Section 3.5
E xercise 3 .5 .1 : For each of the relation schemas and sets of FD’s of Exer
cise 3.3.1:

i) Indicate all the 3NF violations.

ii) Decompose the relations, as necessary, into collections of relations that
are in 3NF.

Exercise 3 .5 .2 : Consider the relation Courses(C ,T ,H ,R ,S ,G), whose at
tributes may be thought of informally as course, teacher, hour, room, student,
and grade. Let the set of FD’s for Courses be C —>■ T, H R —> C, H T -»• R,
H S -¥ R, and C S ->• G. Intuitively, the first says that a course has a unique
teacher, and the second says that only one course can meet in a given room at
a given hour. The third says that a teacher can be in only one room at a given
hour, and the fourth says the same about students. The last says that students
get only one grade in a course.

a) What are all the keys for Courses?

b) Verify that the given FD’s are their own minimal basis.

c) Use the 3NF synthesis algorithm to find a lossless-join, dependency-pres-
erving decomposition of R into 3NF relations. Are any of the relations
not in BCNF?

Exercise 3 .5 .3 : Consider a relation Stocks(B , O, I, S, Q, D), whose attributes
may be thought of informally as broker, office (of the broker), investor, stock,
quantity (of the stock owned by the investor), and dividend (of the stock). Let
the set of FD’s for Stocks be S —> D, I B, IS ^ Q, and B —> O. Repeat
Exercise 3.5.2 for the relation Stocks.

E xercise 3 .5 .4 : Verify, using the chase, that the decomposition of Exam
ple 3.27 has a lossless join.

!! Exercise 3 .5 .5 : Suppose we modified Algorithm 3.20 (BNCF decomposition)
so that instead of decomposing a relation R whenever R was not in BCNF, we
only decomposed R if it was not in 3NF. Provide a counterexample to show that
this modified algorithm would not necessarily produce a 3NF decomposition
with dependency preservation.

3.6 M ultivalued Dependencies
A “multivalued dependency” is an assertion that two attributes or sets of a t
tributes are independent of one another. This condition is, as we shall see,
a generalization of the notion of a functional dependency, in the sense that

106 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

every FD implies the corresponding multivalued dependency. However, there
are some situations involving independence of attribute sets that cannot be
explained as FD’s. In this section we shall explore the cause of multivalued
dependencies and see how they can be used in database schema design.

3.6.1 Attribute Independence and Its Consequent
Redundancy

There are occasional situations where we design a relation schema and find it is
in BCNF, yet the relation has a kind of redundancy that is not related to FD’s.
The most common source of redundancy in BCNF schemas is an attempt to
put two or more set-valued properties of the key into a single relation.

Exam ple 3.28: In this example, we shall suppose that stars may have several
addresses, which we break into street and city components. The set of addresses
is one of the set-valued properties this relation will store. The second set-valued
property of stars that we shall put into this relation is the set of titles and years
of movies in which the star appeared. Then Fig. 3.10 is a typical instance of
this relation.

name street city title year
C. Fisher 123 Maple St. Hollywood Star Wars 1977
C. Fisher 5 Locust Ln. Malibu Star Wars 1977
C. Fisher 123 Maple St. Hollywood Empire Strikes Back 1980
C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980
C. Fisher 123 Maple St. Hollywood Return of the Jedi 1983
C. Fisher 5 Locust Ln. Malibu Return of the Jedi 1983

Figure 3.10: Sets of addresses independent from movies

We focus in Fig. 3.10 on Carrie Fisher’s two hypothetical addresses and her
three best-known movies. There is no reason to associate an address with one
movie and not another. Thus, the only way to express the fact that addresses
and movies are independent properties of stars is to have each address appear
with each movie. But when we repeat address and movie facts in all combi
nations, there is obvious redundancy. For instance, Fig. 3.10 repeats each of
Carrie Fisher’s addresses three times (once for each of her movies) and each
movie twice (once for each address).

Yet there is no BCNF violation in the relation suggested by Fig. 3.10. There
are, in fact, no nontrivial FD’s at all. For example, attribute c ity is not
functionally determined by the other four attributes. There might be a star
with two homes that had the same street address in different cities. Then there
would be two tuples that agreed in all attributes but c ity and disagreed in
c ity . Thus,

3.6. MULTIVALUED DEPENDENCIES 107

name street title year —> city
is not an FD for our relation. We leave it to the reader to check that none of
the five attributes is functionally determined by the other four. Since there are
no nontrivial FD’s, it follows that all five attributes form the only key and that
there are no BCNF violations. □

3.6.2 Definition of Multivalued Dependencies
A multivalued dependency (abbreviated MVD) is a statement about some rela
tion R that when you fix the values for one set of attributes, then the values in
certain other attributes are independent of the values of all the other attributes
in the relation. More precisely, we say the MVD

A 1 A 2 ■ ■ ■ An —>4 B 1 B 2 ■ ■ ■ B m

holds for a relation R if when we restrict ourselves to the tuples of R that have
particular values for each of the attributes among the ,4’s, then the set of values
we find among the B ’s is independent of the set of values we find among the
attributes of R that are not among the ,4’s or B ’s. Still more precisely, we say
this MVD holds if

For each pair of tuples t and u of relation R that agree on all the
j4’s, we can find in R some tuple v that agrees:

1. With both t and u on the A’s,
2. With t on the B ’s, and
3. With u on all attributes of R that axe not among the A's or

B ’s.

Note that we can use this rule with t and u interchanged, to infer the existence
of a fourth tuple w that agrees with u on the B ’s and with t on the other
attributes. As a consequence, for any fixed values of the A’s, the associated
values of the B ’s and the other attributes appear in all possible combinations
in different tuples. Figure 3.11 suggests how v relates to t and u when an MVD
holds. However, the 4̂’s and B ’s to not have to appear consecutively.

In general, we may assume that the .4’s and B ’s (left side and right side) of
an MVD are disjoint. However, as with FD’s, it is permissible to add some of
the A's to the right side if we wish.

E xam ple 3.29: In Example 3.28 we encountered an MVD that in our notation
is expressed:

name —H street city
That is, for each star’s name, the set of addresses appears in conjunction with
each of the star’s movies. For an example of how the formal definition of this
MVD applies, consider the first and fourth tuples from Fig. 3.10:

108 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Figure 3.11: A multivalued dependency guarantees that v exists

name street city title year
C. Fisher 123 Maple St. Hollywood Star Wars 1977
C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980

If we let the first tuple be t and the second be u, then the MVD asserts
that we must also find in R the tuple that has name C. F isher, a street and
city that agree with the first tuple, and other attributes (t i t l e and year) that
agree with the second tuple. There is indeed such a tuple; it is the third tuple
of Fig. 3.10.

Similarly, we could let t be the second tuple above and u be the first. Then
the MVD tells us that there is a tuple of R that agrees with the second in
attributes name, s t r e e t , and c ity and with the first in name, t i t l e , and year.
This tuple also exists; it is the second tuple of Fig. 3.10. □

3.6.3 Reasoning About Multivalued Dependencies
There are a number of rules about MVD’s that are similar to the rules we
learned for FD’s in Section 3.2. For example, MVD’s obey

• Trivial MVD’s. The MVD

Ai A 2 • • • An — B\ B 2 • • • Bm

holds in any relation if {Bi, B 2 , . . . , B m} C {Ai, A 2 , . . . , A n}.

• The transitive rule, which says that if Ai A 2 ■ ■ ■ A n —H B iB 2 ■ • ■ B m and
B 1 B 2 - ■■ B m —>-> C1C2 • • • Ck hold for some relation, then so does

A 1 A 2 ■ ■ ■ A n —h C1 C2 • • • Ck

Any C ’s that are also 4̂’s must be deleted from the right side.

3.6. MULTIVALUED DEPENDENCIES 109

On the other hand, MVD’s do not obey the splitting part of the splitting/com
bining rule, as the following example shows.

E xam ple 3 .30 : Consider again Fig. 3.10, where we observed the MVD:

name —H s t r e e t c i ty

If the splitting rule applied to MVD’s, we would expect

name —H s t r e e t

also to be true. This MVD says that each star’s street addresses are indepen
dent of the other attributes, including c ity . However, that statement is false.
Consider, for instance, the first two tuples of Fig. 3.10. The hypothetical MVD
would allow us to infer that the tuples with the streets interchanged:

name street city title year
C. Fisher 5 Locust Ln. Hollywood Star Wars 1977
C. Fisher 123 Maple St. Malibu Star Wars 1977

were in the relation. But these are not true tuples, because, for instance, the
home on 5 Locust Ln. is in Malibu, not Hollywood. □

However, there are several new rules dealing with MVD’s that we can learn.

• FD Promotion. Every FD is an MVD. That is, if

A 1 A 2 • • • A n —»• B 1 B 2 ■ ■ ■ B m

then A\ A 2 • ■ ■ An —>-> B \ B 2 • ■ ■ B m.

To see why, suppose R is some relation for which the FD

A 1 A 2 ■ • ■ A n —¥ B 1 B 2 ■ • • B m

holds, and suppose t and u are tuples of R that agree on the A’s. To show
that the MVD A 1 A 2 ■ ■ ■ An —H- B 1 B 2 ■ ■ ■ B m holds, we have to show that R
also contains a tuple v that agrees with t and u on the A’s, with t on the B ’s,
and with u on all other attributes. But v can be u. Surely u agrees with t and
u on the .4’s, because we started by assuming that these two tuples agree on
the j4’s. The FD A 1 A 2 ■ ■■ A n —> B iB ^ - - B m assures us that u agrees with t
on the S ’s. And of course u agrees with itself on the other attributes. Thus,
whenever an FD holds, the corresponding MVD holds.

• Complementation Rule. If A 1 A 2 ■ • ■ A n —B- B 1 B 2 ■ ■ ■ Bm is an MVD for
relation R, then R also satisfies A 1 A 2 ■ ■ ■ A„ -++ C1 C2 ■ ■ ■ Ck, where the
C ’s are all attributes of R not among the A.’s and B ’s.

110 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

That is, swapping the B ’s between two tuples that agree in the v4’s has the
same effect as swapping the C s.

E xam ple 3.31: Again consider the relation of Fig. 3.10, for which we asserted
the MVD:

name —»-> s t r e e t c ity

The complementation rule says that

name — t i t l e year

must also hold in this relation, because t i t l e and year are the attributes not
mentioned in the first MVD. The second MVD intuitively means that each star
has a set of movies starred in, which are independent of the star’s addresses.
□

An MVD whose right side is a subset of the left side is trivial — it holds
in every relation. However, an interesting consequence of the complementation
rule is that there are some other MVD’s that are trivial, but that look distinctly
nontrivial.

• More Trivial MVD’s. If all the attributes of relation R are

{ Ai , A2 , . . . , A n, Bi , B2, - - . , Bm}

then A 1 A 2 ■ ■ ■ An -h- B 1 B 2 ■ ■ ■ Bm holds in R.

To see why these additional trivial MVD’s hold, notice that if we take two
tuples that agree in A i , A 2 , . . . , An and swap their components in attributes
B i,B 2 ,- .- ,B m, we get the same two tuples back, although in the opposite
order.

3.6.4 Fourth Normal Form
The redundancy that we found in Section 3.6.1 to be caused by MVD’s can be
eliminated if we use these dependencies for decomposition. In this section we
shall introduce a new normal form, called “fourth normal form.” In this normal
form, all nontrivial MVD’s are eliminated, as are all FD’s that violate BCNF.
As a result, the decomposed relations have neither the redundancy from FD’s
that we discussed in Section 3.3.1 nor the redundancy from MVD’s that we
discussed in Section 3.6.1.

The “fourth normal form” condition is essentially the BCNF condition, but
applied to MVD’s instead of FD’s. Formally:

• A relation R is in fourth normal form (4NF) if whenever

Ai A2 ■ ■ ■ An —H- B\B2 ■ ■ ■ Bm

3.6. MULTIVALUED DEPENDENCIES 1 1 1

is a nontrivial MVD, { A i,A 2 , . . . , A n} is a superkey.

That is, if a relation is in 4NF, then every nontrivial MVD is really an FD with
a superkey on the left. Note that the notions of keys and super keys depend on
FD’s only; adding MVD’s does not change the definition of “key.”

E xam ple 3 .32 : The relation of Fig. 3.10 violates the 4NF condition. For
example,

name — street city

is a nontrivial MVD, yet name by itself is not a superkey. In fact, the only key
for this relation is all the attributes. □

Fourth normal form is truly a generalization of BCNF. Recall from Sec
tion 3.6.3 that every FD is also an MVD. Thus, every BCNF violation is also
a 4NF violation. Put another way, every relation that is in 4NF is therefore in
BCNF.

However, there are some relations that are in BCNF but not 4NF. Fig
ure 3.10 is a good example. The only key for this relation is all five attributes,
and there are no nontrivial FD’s. Thus it is surely in BCNF. However, as we
observed in Example 3.32, it is not in 4NF.

3.6.5 Decomposition into Fourth Normal Form
The 4NF decomposition algorithm is quite analogous to the BCNF decomposi
tion algorithm.

A lgorithm 3.33: Decomposition into Fourth Normal Form.

INPUT: A relation Ro with a set of functional and multivalued dependencies
S0.

OUTPUT: A decomposition of Ro into relations all of which are in 4NF. The
decomposition has the lossless-join property.

M E T H O D : Do the following steps, with R — Ro and S = So'-

1. Find a 4NF violation in R, say A 1 A 2 ---A n B \B 2 ■ ■ ■ B m. where

{Ai , A2 , .. ■ , A n}

is not a superkey. Note this MVD could be a true MVD in S, or it could
be derived from the corresponding FD .41 -̂2 ■ • • An —>■ B iB 2 • • • B m in S,
since every FD is an MVD. If there is none, return; R by itself is a suitable
decomposition.

2. If there is such a 4NF violation, break the schema for the relation R that
has the 4NF violation into two schemas:

112 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

(a) R i, whose schema is A’s and the B's.
(b) R 2 , whose schema is the 4̂’s and all attributes of R that are not

among the A’s or B ’s.

3. Find the FD’s and MVD’s that hold in R i and R 2 (Section 3.7 explains
how to do this task in general, but often this “projection” of dependencies
is straightforward). Recursively decompose jRi and R 2 with respect to
their projected dependencies.

□
E xam ple 3.34: Let us continue Example 3.32. We observed that

name — s t r ee t c i ty

was a 4NF violation. The decomposition rule above tells us to replace the
five-attribute schema by one schema that has only the three attributes in the
above MVD and another schema that consists of the left side, name, plus the
attributes that do not appear in the MVD. These attributes are t i t l e and
year, so the following two schemas

{name, s t r e e t , c ity}
{name, t i t l e , year}

are the result of the decomposition. In each schema there are no nontrivial
multivalued (or functional) dependencies, so they are in 4NF. Note that in the
relation with schema {name, s t r e e t , c ity} , the MVD:

name s t r e e t c ity
is trivial since it involves all attributes. Likewise, in the relation with schema
{name, t i t l e , year}, the MVD:

name —H t i t l e year
is trivial. Should one or both schemas of the decomposition not be in 4NF, we
would have had to decompose the non-4NF schema(s). □

As for the BCNF decomposition, each decomposition step leaves us with
schemas that have strictly fewer attributes than we started with, so eventually
we get to schemas that need not be decomposed further; that is, they are
in 4NF. Moreover, the argument justifying the decomposition that we gave
in Section 3.4.1 carries over to MVD’s as well. When we decompose a relation
because of an MVD A iA 2 ■ ■ ■ A„ -H- B iB 2 ■ ■ ■ B m, this dependency is enough to
justify the claim that we can reconstruct the original relation from the relations
of the decomposition.

We shall, in Section 3.7, give an algorithm by which we can verify that the
MVD used to justify a 4NF decomposition also proves that the decomposition
has a lossless join. Also in that section, we shall show how it is possible, although
time-consuming, to perform the projection of MVD’s onto the decomposed
relations. This projection is required if we are to decide whether or not further
decomposition is necessary.

3.6. MULTIVALUED DEPENDENCIES 113

3.6.6 Relationships Among Normal Forms
As we have mentioned, 4NF implies BCNF, which in turn implies 3NF. Thus,
the sets of relation schemas (including dependencies) satisfying the three normal
forms are related as in Fig. 3.12. That is, if a relation with certain dependen
cies is in 4NF, it is also in BCNF and 3NF. Also, if a relation with certain
dependencies is in BCNF, then it is in 3NF.

R ela tions in 3N F

R ela tions in B C N F

R ela tions in 4N F

Figure 3.12: 4NF implies BCNF implies 3NF

Another way to compare the normal forms is by the guarantees they make
about the set of relations that result from a decomposition into that normal
form. These observations are summarized in the table of Fig. 3.13. That is,
BCNF (and therefore 4NF) eliminates the redundancy and other anomalies
that are caused by FD’s, while only 4NF eliminates the additional redundancy
that is caused by the presence of MVD’s that are not FD’s. Often, 3NF is
enough to eliminate this redundancy, but there are examples where it is not.
BCNF does not guarantee preservation of FD’s, and none of the normal forms
guarantee preservation of MVD’s, although in typical cases the dependencies
are preserved.

Property 3NF BCNF 4NF
Eliminates redundancy

due to FD’s
No Yes Yes

Eliminates redundancy
due to MVD’s

No No Yes

Preserves FD’s Yes No No
Preserves MVD’s No No No

Figure 3.13: Properties of normal forms and their decompositions

3.6.7 Exercises for Section 3.6
E xercise 3 .6 .1 : Suppose we have a relation R(A, B, C) with an MVD A —H-

114 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

B. If we know that the tuples (a ,6i,c i), (a, &2, c-2), and (0 , 63, 03) are in the
current instance of R, what other tuples do we know must also be in R I

Exercise 3 .6 .2: Suppose we have a relation in which we want to record for
each person their name, Social Security number, and birthdate. Also, for each
child of the person, the name, Social Security number, and birthdate of the
child, and for each automobile the person owns, its serial number and make.
To be more precise, this relation has all tuples

(n, s, b, cn, cs, cb, as, am)

such that

1. n is the name of the person with Social Security number s.

2 . b is n ’s birthdate.

3. cn is the name of one of n ’s children.

4. cs is cn’s Social Security number.

5. cb is cn’s birthdate.

6 . as is the serial number of one of n ’s automobiles.

7. am is the make of the automobile with serial number as.

For this relation:

a) Tell the functional and multivalued dependencies we would expect to hold.

b) Suggest a decomposition of the relation into 4NF.

Exercise 3.6.3: For each of the following relation schemas and dependencies

a) R{A, B, C, D) with MVD’s A -H- B and A -»■ C.

b) R(A, B, C, D) with MVD’s A -H- B and B -*-» CD.

c) R(A, B, C, D) with MVD AB -H- C and FD B -> D.

d) R (A ,B ,C ,D ,E) with MVD’s A -H- B and A B C and FD’s A -> D
and AB -» E.

do the following:

i) Find all the 4NF violations.

ii) Decompose the relations into a collection of relation schemas in 4NF.

Exercise 3.6.4: Give informal arguments why we would not expect any of the
five attributes in Example 3.28 to be functionally determined by the other four.

3.7. A N ALGORITHM FOR DISCOVERING M VD ’S 115

3.7 An Algorithm for Discovering M V D ’s
Reasoning about MVD’s, or combinations of MVD’s and FD’s, is rather more
difficult than reasoning about FD’s alone. For FD’s, we have Algorithm 3.7 to
decide whether or not an FD follows from some given FD’s. In this section,
we shall first show that the closure algorithm is really the same as the chase
algorithm we studied in Section 3.4.2. The ideas behind the chase can be
extended to incorporate MVD’s as well as FD’s. Once we have that tool in
place, we can solve all the problems we need to solve about MVD’s and FD’s,
such as finding whether an MVD follows from given dependencies or projecting
MVD’s and FD’s onto the relations of a decomposition.

3.7.1 The Closure and the Chase
In Section 3.2.4 we saw how to take a set of attributes X and compute its
closure X + of all attributes that functionally depend on X . In that manner, we
can test whether an FD X -¥ Y follows from a given set of FD’s F, by closing
X with respect to F and seeing whether Y C X +. We could see the closure as
a variant of the chase, in which the starting tableau and the goal condition are
different from what we used in Section 3.4.2.

Suppose we start with a tableau that consists of two rows. These rows agree
in the attributes of X and disagree in all other attributes. If we apply the FD’s
in F to chase this tableau, we shall equate the symbols in exactly those columns
that are in X + — X . Thus, a chase-based test for whether X —► Y follows from
F can be summarized as:

1. Start with a tableau having two rows that agree only on X .

2. Chase the tableau using the FD’s of F.

3. If the final tableau agrees in all columns of Y , then X Y holds; other
wise it does not.

E xam ple 3.35: Let us repeat Example 3.8, where we had a relation

R (A ,B ,C ,D ,E ,F)

with FD’s A B —>• C, B C —► AD, D —»• E, and C F —► B. We want to test
whether A B — D holds. Start with the tableau:

A B C D E F
a b Cl di ei f i
a b C2 d,2 e2 h

We can apply A B C to infer c\ = C2; say both become c±. The resulting
tableau is:

116 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

A B C D E F
a b Cl d\ ei h
a b Cl di C2 h

Next, apply B C —> AD to infer that d\ = d2, and apply D —>■ E to infer
ei = e2. At this point, the tableau is:

A B C D E F
a b Cl di ei h
a b Cl di ei h

and we can go no further. Since the two tuples now agree in the D column, we
know that A B -» D does follow from the given FD’s. □

3.7.2 Extending the Chase to M VD’s
The method of inferring an FD using the chase can be applied to infer MVD’s
as well. When we try to infer an FD, we are asking whether we can conclude
that two possibly unequal values must indeed be the same. When we apply an
FD X —> Y , we search for pairs of rows in the tableau that agree on all the
columns of X , and we force the symbols in each column of Y to be equal.

However, MVD’s do not tell us to conclude symbols are equal. Rather,
X —H- Y tells us that if we find two rows of the tableau that agree in X , then
we can form two new tuples by swapping all their components in the attributes
of Y ; the resulting two tuples must also be in the relation, and therefore in
the tableau. Likewise, if we want to infer some MVD X —H- Y from given
FD’s and MVD’s, we start with a tableau consisting of two tuples that agree
in X and disagree in all attributes not in the set X . We apply the given
FD’s to equate symbols, and we apply the given MVD’s to swap the values in
certain attributes between two existing rows of the tableau in order to add new
rows to the tableau. If we ever discover that one of the original tuples, with
its components for Y replaced by those of the other original tuple, is in the
tableau, then we have inferred the MVD.

There is a point of caution to be observed in this more complex chase pro
cess. Since symbols may get equated and replaced by other symbols, we may
not recognize that we have created one of the desired tuples, because some of
the original symbols may be replaced by others. The simplest way to avoid a
problem is to define the target tuple initially, and never change its symbols.
That is, let the target row be one with an unsubscripted letter in each compo
nent. Let the two initial rows of the tableau for the test of X —>-* Y have the
unsubscripted letters in X . Let the first row also have unsubscripted letters in
Y , and let the second row have the unsubscripted letters in all attributes not
in X or Y. Fill in the other positions of the two rows with new symbols that
each occur only once. When we equate subscripted and unsubscripted symbols,
always replace a subscripted one by the unsubscripted one, as we did in Sec
tion 3.4.2. Then, when applying the chase, we have only to ask whether the
all-unsubscripted-letters row ever appears in the tableau.

3.7. A N ALGORITHM FOR DISCOVERING M VD ’S 117

E xam ple 3.36: Suppose we have a relation R (A ,B ,C ,D) with given depen
dencies A B and B —>4 C. We wish to prove that A —h> C holds in R. Start
with the two-row tableau that represents A —H- C :

A B C D
a h c di
a b C2 d

Notice that our target row is (a,b ,c,d). Both rows of the tableau have the
unsubscripted letter in the column for A. The first row has the unsubscripted
letter in C, and the second row has unsubscripted letters in the remaining
columns.

We first apply the FD A —¥ B to infer that b = b\. We must therefore
replace the subscripted &i by the unsubscripted b. The tableau becomes:

A B C D
a b c di
a b C2 d

Next, we apply the MVD B —>4 C, since the two rows now agree in the B
column. We swap the C columns to get two more rows which we add to the
tableau, which becomes:

A B C D
a b c d \
a b C2 d
a b C2 d i
a b C d

We have now a row with all unsubscripted symbols, which proves that A —h- C
holds in relation R. Notice how the tableau manipulations really give a proof
that A —»-> C holds. This proof is: “Given two tuples of R that agree in A,
they must also agree in B because A -¥ B. Since they agree in B, we can swap
their C components by B C, and the resulting tuples will be in R. Thus, if
two tuples of R agree in A, the tuples that result when we swap their C ’s are
also in R; i.e., A —>-> C.” □

E xam ple 3 .37 : There is a surprising rule for FD’s and MVD’s that says when
ever there is an MVD X —»-» Y , and any FD whose right side is a (not necessarily
proper) subset of Y , say Z, then X —> Z. We shall use the chase process to
prove a simple example of this rule. Let us be given relation R(A, B, C, D) with
MVD A —>4 B C and FD D -¥ C. We claim that A C.

Since we are trying to prove an FD, we don’t have to worry about a target
tuple of unsubscripted letters. We can start with any two tuples that agree in
A and disagree in every other column, such as:

118 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

A B C D
a bi C l di
a 62 C2 d,2

Our goal is to prove that cj = C2-
The only thing we can do to start is to apply the MVD A —H BC, since

the two rows agree on A, but no other columns. When we swap the B and C
columns of these two rows, we get two new rows to add:

A B C D
a bi C l di
a 62 C2 di
a 62 C2 di
a bi C l d2

Now, we have pairs of rows that agree in D, so we can apply the FD D —> C .
For instance, the first and third rows have the same D-value d\ , so we can apply
the FD and conclude ci = C2. That is our goal, so we have proved A —> C . The
new tableau is:

A B C D
a bi Cl di
a 62 Cl di
a 62 Cl di
a bi Cl d2

It happens that no further changes are possible, using the given dependencies.
However, that doesn’t matter, since we already proved what we need. □

3.7.3 Why the Chase Works for MVD’s
The arguments are essentially the same as we have given before. Each step of the
chase, whether it equates symbols or generates new rows, is a true observation
about tuples of the given relation R that is justified by the FD or MVD that
we apply in that step. Thus, a positive conclusion of the chase is always a proof
that the concluded FD or MVD holds in R.

When the chase ends in failure — the goal row (for an MVD) or the desired
equality of symbols (for an FD) is not produced — then the final tableau is a
counterexample. It satisfies the given dependencies, or else we would not be
finished making changes. However, it does not satisfy the dependency we were
trying to prove.

There is one other issue that did not come up when we performed the chase
using only FD’s. Since the chase with MVD’s adds rows to the tableau, how
do we know we ever terminate the chase? Could we keep adding rows forever,
never reaching our goal, but not sure that after a few more steps we would
achieve that goal? Fortunately, that cannot happen. The reason is that we

3.7. A N ALGORITHM FOR DISCOVERING M VD ’S 119

never create any new symbols. We start out with at most two symbols in each
of k columns, and all rows we create will have one of these two symbols in its
component for that column. Thus, we cannot ever have more than 2k rows in
our tableau, if k is the number of columns. The chase with MVD’s can take
exponential time, but it cannot run forever.

3.7.4 Projecting M VD’s
Recall that our reason for wanting to infer MVD’s was to perform a cascade of
decompositions leading to 4NF relations. To do that task, we need to be able
to project the given dependencies onto the schemas of the two relations that
we get in the first step of the decomposition. Only then can we know whether
they are in 4NF or need to be decomposed further.

In the worst case, we have to test every possible FD and MVD for each of
the decomposed relations. The chase test is applied on the full set of attributes
of the original relation. However, the goal for an MVD is to produce a row
of the tableau that has unsubscripted letters in all the attributes of one of
the relations of the decomposition; that row may have any letters in the other
attributes. The goal for an FD is the same: equality of the symbols in a given
column.

E xam ple 3.38: Suppose we have a relation R(A, B, C, D, E) that we decom
pose, and let one of the relations of the decomposition be 5(A, B, C). Suppose
that the MVD A —H CD holds in R. Does this MVD imply any dependency
in S? We claim that A —>4 C holds in S, as does A —>4 B (by the comple
mentation rule). Let us verify that A — C holds in S. We start with the
tableau:

A B C D E
a bi c di ei
a b Cl d e

Use the MVD of R, A —»-> CD to swap the C and D components of these two
rows to get two new rows:

A B C D E
a bi c di ei
a b C2 d e
a bi C2 d Cl
a b C di e

Notice that the last row has unsubscripted symbols in all the attributes of S,
that is, A, B, and C. That is enough to conclude that A —B- C holds in S. □

Often, our search for FD’s and MVD’s in the projected relations does not
have to be completely exhaustive. Here are some simplifications.

120 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

1. It is surely not necessary to check the trivial FD’s and MVD’s.

2. For FD’s, we can restrict ourselves to looking for FD’s with a singleton
right side, because of the combining rule for FD’s.

3. An FD or MVD whose left side does not contain the left side of any given
dependency surely cannot hold, since there is no way for its chase test
to get started. That is, the two rows with which you start the test are
unchanged by the given dependencies.

3.7.5 Exercises for Section 3.7
E xercise 3 .7 .1 : Use the chase test to tell whether each of the following depen
dencies hold in a relation R(A, B, C, D, E) with the dependencies A —H- BC,
B -> D, and C -»• E.

a) A -> D.

b) A D.

c) A ^ E .

d) A -H- E.

! E xercise 3 .7 .2 : If we project the relation R of Exercise 3.7.1 onto S(A, C, E),
what nontrivial FD’s and MVD’s hold in S?

! E xercise 3 .7 .3 : Show the following rules for MVD’s. In each case, you can
set up the proof as a chase test, but you must think a little more generally than
in the examples, since the set of attributes are arbitrary sets X , Y , Z , and the
other unnamed attributes of the relation in which these dependencies hold.

a) The Union Rule. If X , Y , and Z are sets of attributes, X —>-» Y , and
X Z, then X -h- (Y U Z).

b) The Intersection Rule. If X , Y , and Z are sets of attributes, X -y* Y ,
and X — Z, then X —y-y (Y n Z).

c) The Difference Rule. If X , Y , and Z are sets of attributes, X —h Y , and
X -»• Z, then X - » (Y - Z).

d) Removing attributes shared by left and right side. If X —H Y holds, then
X - » {Y - X) holds.

! Exercise 3 .7 .4 : Give counterexample relations to show why the following rules
for MVD’s do not hold. Hint: apply the chase test and see what happens.

a) If A — BC, then A —yy B.

b) If A —H- B, then A —► B.

c) If AB —»-> C, then A -h- C.

.8. SUMMARY OF CHAPTER 3 121

.8 Summary of Chapter 3
♦ Functional Dependencies: A functional dependency is a statement that

two tuples of a relation that agree on some particular set of attributes
must also agree on some other particular set of attributes.

♦ Keys of a Relation: A superkey for a relation is a set of attributes that
functionally determines all the attributes of the relation. A key is a su
perkey, no proper subset of which is also a superkey.

♦ Reasoning About Functional Dependencies: There are many rules that let
us infer that one FD X —» A holds in any relation instance that satisfies
some other given set of FD’s. To verify that X -» A holds, compute the
closure of X , using the given FD’s to expand X until it includes A.

♦ Minimal Basis for a set of FD’s: For any set of FD’s, there is at least
one minimal basis, which is a set of FD’s equivalent to the original (each
set implies the other set), with singleton right sides, no FD that can be
eliminated while preserving equivalence, and no attribute in a left side
that can be eliminated while preserving equivalence.

♦ Boyce-Codd Normal Form: A relation is in BCNF if the only nontrivial
FD’s say that some superkey functionally determines one or more of the
other attributes. A major benefit of BCNF is that it eliminates redun
dancy caused by the existence of FD’s.

♦ Lossless-Join Decomposition: A useful property of a decomposition is that
the original relation can be recovered exactly by taking the natural join of
the relations in the decomposition. Any decomposition gives us back at
least the tuples with which we start, but a carelessly chosen decomposition
can give tuples in the join that were not in the original relation.

♦ Dependency-Preserving Decomposition: Another desirable property of a
decomposition is that we can check all the functional dependencies that
hold in the original relation by checking FD’s in the decomposed relations.

♦ Third Normal Form: Sometimes decomposition into BCNF can lose the
dependency-preservation property. A relaxed form of BCNF, called 3NF,
allows an FD X -»■ A even if X is not a superkey, provided A is a member
of some key. 3NF does not guarantee to eliminate all redundancy due to
FD’s, but often does so.

♦ The Chase: We can test whether a decomposition has the lossless-join
property by setting up a tableau — a set of rows that represent tuples of
the original relation. We chase a tableau by applying the given functional
dependencies to infer that certain pairs of symbols must be the same. The
decomposition is lossless with respect to a given set of FD’s if and only if
the chase leads to a row identical to the tuple whose membership in the
join of the projected relations we assumed.

1 2 2 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

♦ Synthesis Algorithm, for 3NF: If we take a minimal basis for a given set
of FD’s, turn each of these FD’s into a relation, and add a key for the
relation, if necessary, the result is a decomposition into 3NF that has the
lossless-join and dependency-preservation properties.

♦ Multivalued Dependencies: A multivalued dependency is a statement that
two sets of attributes in a relation have sets of values that appear in all
possible combinations.

♦ Fourth Normal Form: MVD’s can also cause redundancy in a relation.
4NF is like BCNF, but also forbids nontrivial MVD’s whose left side is
not a superkey. It is possible to decompose a relation into 4NF without
losing information.

♦ Reasoning About M VD’s: We can infer MVD’s and FD’s from a given set
of MVD’s and FD’s by a chase process. We start with a two-row tableau
that represent the dependency we are trying to prove. FD’s are applied by
equating symbols, and MVD’s are applied by adding rows to the tableau
that have the appropriate components interchanged.

3.9 References for Chapter 3
Third normal form was described in [6]. This paper introduces the idea of
functional dependencies, as well as the basic relational concept. Boyce-Codd
normal form is in a later paper [7].

Multivalued dependencies and fourth normal form were defined by Fagin in
[9]. However, the idea of multivalued dependencies also appears independently
in [8] and [11].

Armstrong was the first to study rules for inferring FD’s [2], The rules for
FD’s that we have covered here (including what we call “Armstrong’s axioms”)
and rules for inferring MVD’s as well, come from [3].

The technique for testing an FD by computing the closure for a set of at
tributes is from [4], as is the fact that a minimal basis provides a 3NF de
composition. The fact that this decomposition provides the lossless-join and
dependency-preservation propoerties is from [5].

The tableau test for the lossless-join property and the chase are from [1],
More information and the history of the idea is found in [10].

1. A. V. Aho, C. Beeri, and J. D. Ullman, “The theory of joins in relational
databases,” ACM Transactions on Database Systems 4:3, pp. 297-314,
1979.

2. W. W. Armstrong, “Dependency structures of database relationships,”
Proceedings of the 1974 IFIP Congress, pp. 580-583.

3.9. REFERENCES FOR CHAPTER 3 123

3. C. Beeri, R. Fagin, and J. H. Howard, “A complete axiomatization for
functional and multivalued dependencies,” ACM SIGMOD Intl. Conf. on
Management of Data, pp. 47-61, 1977.

4. P. A. Bernstein, “Synthesizing third normal form relations from functional
dependencies,” ACM Transactions on Database Systems 1:4, pp. 277-298,
1976.

5. J. Biskup, U. Dayal, and P. A. Bernstein, “Synthesizing independent
database schemas,” ACM SIGMOD Intl. Conf. on Management of Data,
pp. 143-152, 1979.

6 . E. F. Codd, “A relational model for large shared data banks,” Comm.
ACM 13:6, pp. 377-387, 1970.

7. E. F. Codd, “Further normalization of the data base relational model,” in
Database Systems (R. Rustin, ed.), Prentice-Hall, Englewood Cliffs, NJ,
1972.

8 . C. Delobel, “Normalization and hierarchical dependencies in the relational
data model,” ACM Transactions on Database Systems 3:3, pp. 201-222,
1978.

9. R. Fagin, “Multivalued dependencies and a new normal form for relational
databases,” ACM Transactions on Database Systems 2:3, pp. 262-278,
1977.

10. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol
ume I, Computer Science Press, New York, 1988.

11. C. Zaniolo and M. A. Melkanoff, “On the design of relational database
schemata,” ACM Transactions on Database Systems 6:1, pp. 1-47, 1981.

Chapter 4

High-Level Database
Models

Let us consider the process whereby a new database, such as our movie database,
is created. Figure 4.1 suggests the process. We begin with a design phase, in
which we address and answer questions about what information will be stored,
how information elements will be related to one another, what constraints such
as keys or referential integrity may be assumed, and so on. This phase may last
for a long time, while options are evaluated and opinions axe reconciled. We
show this phase in Fig. 4.1 as the conversion of ideas to a high-level design.

Relational
Ideas ---------- ► H igh-L evel ---------- ^ Database

Desi§n Schem a

Figure 4.1: The database modeling and implementation process

Since the great majority of commercial database systems use the relational
model, we might suppose that the design phase should use this model too.
However, in practice it is often easier to start with a higher-level model and
then convert the design to the relational model. The primary reason for doing so
is that the relational model has only one concept — the relation — rather than
several complementary concepts that more closely model real-world situations.
Simplicity of concepts in the relational model is a great strength of the model,
especially when it comes to efficient implementation of database operations.
Yet that strength becomes a weakness when we do a preliminary design, which
is why it often is helpful to begin by using a high-level design model.

There are several options for the notation in which the design is expressed.
The first, and oldest, method is the “entity-relationship diagram,” and here is
where we shall start in Section 4.1. A more recent trend is the use of UML
(“Unified Modeling Language”), a notation that was originally designed for

Relational

DBM S

125

126 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

describing object-oriented software projects, but which has been adapted to de
scribe database schemas as well. We shall see this model in Section 4.7. Finally,
in Section 4.9, we shall consider ODL (“Object Description Language”), which
was created to describe databases as collections of classes and their objects.

The next phase shown in Fig. 4.1 is the conversion of our high-level design
to a relational design. This phase occurs only when we are confident of the
high-level design. Whichever of the high-level models we use, there is a fairly
mechanical way of converting the high-level design into a relational database
schema, which then runs on a conventional DBMS. Sections 4.5 and 4.6 discuss
conversion of E /R diagrams to relational database schemas. Section 4.8 does
the same for UML, and Section 4.10 serves for ODL.

4.1 The Entity/Relationship Model
In the entity-relationship model (or E /R model), the structure of data is rep
resented graphically, as an “entity-relationship diagram,” using three principal
element types:

1. Entity sets,

2 . Attributes, and

3. Relationships.

We shall cover each in turn.

4.1.1 Entity Sets
An entity is an abstract object of some sort, and a collection of similar entities
forms an entity set. An entity in some ways resembles an “object” in the sense of
object-oriented programming. Likewise, an entity set bears some resemblance
to a class of objects. However, the E /R model is a static concept, involving the
structure of data and not the operations on data. Thus, one would not expect
to find methods associated with an entity set as one would with a class.

E xam ple 4 .1 : Let us consider the design of our running movie-database ex
ample. Each movie is an entity, and the set of all movies constitutes an entity
set. Likewise, the stars are entities, and the set of stars is an entity set. A
studio is another kind of entity, and the set of studios is a third entity set that
will appear in our examples. □

4.1.2 Attributes
Entity sets have associated attributes, which are properties of the entities in
that set. For instance, the entity set Movies might be given attributes such
as title and length. It should not surprise you if the attributes for the entity

4.1. THE ENTITY/RELATIO NSH IP MODEL 127

E /R Model Variations

In some versions of the E /R model, the type of an attribute can be either:

1. A primitive type, as in the version presented here.

2. A “struct,” as in C, or tuple with a fixed number of primitive com
ponents.

3. A set of values of one type: either primitive or a “struct” type.

For example, the type of an attribute in such a model could be a set of
pairs, each pair consisting of an integer and a string.

set Movies resemble the attributes of the relation Movies in our example. It
is common for entity sets to be implemented as relations, although not every
relation in our final relational design will come from an entity set.

In our version of the E /R model, we shall assume that attributes are of
primitive types, such as strings, integers, or reals. There are other variations of
this model in which attributes can have some limited structure; see the box on
“E /R Model Variations.”

4.1.3 Relationships
Relationships are connections among two or more entity sets. For instance,
if Movies and Stars are two entity sets, we could have a relationship Stars-in
that connects movies and stars. The intent is that a movie entity m is related
to a star entity s by the relationship Stars-in if s appears in movie m. While
binary relationships, those between two entity sets, are by far the most common
type of relationship, the E /R model allows relationships to involve any number
of entity sets. We shall defer discussion of these multiway relationships until
Section 4.1.7.

4.1.4 Entity-Relationship Diagrams
An E /R diagram is a graph representing entity sets, attributes, and relation
ships. Elements of each of these kinds are represented by nodes of the graph,
and we use a special shape of node to indicate the kind, as follows:

• Entity sets are represented by rectangles.

• Attributes are represented by ovals.

• Relationships are represented by diamonds.

128 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Edges connect an entity set to its attributes and also connect a relationship to
its entity sets.

Exam ple 4.2 : In Fig. 4.2 is an E /R diagram that represents a simple database
about movies. The entity sets are Movies, Stars, and Studios.

Figure 4.2: An entity-relationship diagram for the movie database

The Movies entity set has four of our usual attributes: title, year, length,
and genre. The other two entity sets Stars and Studios happen to have the
same two attributes: name and address, each with an obvious meaning. We
also see two relationships in the diagram:

1. Stars-in is a relationship connecting each movie to the stars of that movie.
This relationship consequently also connects stars to the movies in which
they appeared.

2. Owns connects each movie to the studio that owns the movie. The arrow
pointing to entity set Studios in Fig. 4.2 indicates that each movie is
owned by at most one studio. We shall discuss uniqueness constraints
such as this one in Section 4.1.6.

□

4.1.5 Instances of an E /R Diagram
E /R diagrams are a notation for describing schemas of databases. We may
imagine that a database described by an E /R diagram contains particular data,
an “instance” of the database. Since the database is not implemented in the
E /R model, only designed, the instance never exists in the sense that a relation’s

4.1. THE ENTITY/RELATIO NSHIP MODEL 129

instances exist in a DBMS. However, it is often useful to visualize the database
being designed as if it existed.

For each entity set, the database instance will have a particular finite set
of entities. Each of these entities has particular values for each attribute. A
relationship R that connects n entity sets E i ,E2,... ,E„ may be imagined to
have an “instance” that consists of a finite set of tuples (e i,e2, . . . ,en), where
each ei is chosen from the entities that are in the current instance of entity set
Ei . We regard each of these tuples as “connected” by relationship R.

This set of tuples is called the relationship set for R. It is often helpful to
visualize a relationship set as a table or relation. However, the “tuples” of a
relationship set are not really tuples of a relation, since their components are
entities rather than primitive types such as strings or integers. The columns of
the table are headed by the names of the entity sets involved in the relationship,
and each list of connected entities occupies one row of the table. As we shall
see, however, when we convert relationships to relations, the resulting relation
is not the same as the relationship set.

E xam ple 4 .3 : An instance of the Stars-in relationship could be visualized as
a table with pairs such as:

Movies Stars
Basic Instinct Sharon Stone
Total Recall Arnold Schwarzenegger
Total Recall Sharon Stone

The members of the relationship set are the rows of the table. For instance,
(Basic Instinct, Sharon Stone) is a tuple in the relationship set for the current
instance of relationship Stars-in. □

4.1.6 M ultiplicity of Binary E /R Relationships
In general, a binary relationship can connect any member of one of its entity
sets to any number of members of the other entity set. However, it is common
for there to be a restriction on the “multiplicity” of a relationship. Suppose R
is a relationship connecting entity sets E and F. Then:

• If each member of E can be connected by R to at most one member of F,
then we say that R is many-one from E to F. Note that in a many-one
relationship from E to F, each entity in F can be connected to many
members of E. Similarly, if instead a member of F can be connected by
R to at most one member of E, then we say R is many-one from F to E
(or equivalently, one-many from E to F).

• If R is both many-one from E to F and many-one from F to E, then we
say that R is one-one. In a one-one relationship an entity of either entity
set can be connected to at most one entity of the other set.

130 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

• If R is neither many-one from E to F or from F to E, then we say R is
many-many.

As we mentioned in Example 4.2, arrows can be used to indicate the multi
plicity of a relationship in an E /R diagram. If a relationship is many-one from
entity set E to entity set F, then we place an arrow entering F. The arrow
indicates that each entity in set E is related to at most one entity in set F.
Unless there is also an arrow on the edge to E, an entity in F may be related
to many entities in E.

E xam ple 4 .4 : A one-one relationship between entity sets E and F is repre
sented by arrows pointing to both E and F. For instance, Fig. 4.3 shows two
entity sets, Studios and Presidents, and the relationship Runs between them
(attributes are omitted). We assume that a president can run only one studio
and a studio has only one president, so this relationship is one-one, as indicated
by the two arrows, one entering each entity set.

Remember that the arrow means “at most one”; it does not guarantee ex
istence of an entity of the set pointed to. Thus, in Fig. 4.3, we would expect
that a “president” is surely associated with some studio; how could they be a
“president” otherwise? However, a studio might not have a president at some
particular time, so the arrow from Runs to Presidents truly means “at most one”
and not “exactly one.” We shall discuss the distinction further in Section 4.3.3.
□

4.1.7 Multiway Relationships
The E /R model makes it convenient to define relationships involving more than
two entity sets. In practice, ternary (three-way) or higher-degree relationships
are rare, but they occasionally are necessary to reflect the true state of affairs.
A multiway relationship in an E /R diagram is represented by lines from the
relationship diamond to each of the involved entity sets.

E xam ple 4 .5 : In Fig. 4.4 is a relationship Contracts that involves a studio,
a star, and a movie. This relationship represents that a studio has contracted
with a particular star to act in a particular movie. In general, the value of
an E /R relationship can be thought of as a relationship set of tuples whose
components are the entities participating in the relationship, as we discussed in
Section 4.1.5. Thus, relationship Contracts can be described by triples of the
form (studio, star, movie).

Studios Presidents

Figure 4.3: A one-one relationship

4.1. THE ENTITY/RELATIO NSHIP MODEL 131

Figure 4.4: A three-way relationship

In multiway relationships, an arrow pointing to an entity set E means that if
we select one entity from each of the other entity sets in the relationship, those
entities are related to at most one entity in E. (Note that this rule generalizes
the notation used for many-one, binary relationships.) Informally, we may think
of a functional dependency with E on the right and all the other entity sets of
the relationship on the left.

In Fig. 4.4 we have an arrow pointing to entity set Studios, indicating that
for a particular star and movie, there is only one studio with which the star has
contracted for that movie. However, there are no arrows pointing to entity sets
Stars or Movies. A studio may contract with several stars for a movie, and a
star may contract with one studio for more than one movie. □

4.1.8 Roles in Relationships
It is possible that one entity set appears two or more times in a single relation
ship. If so, we draw as many lines from the relationship to the entity set as the
entity set appears in the relationship. Each line to the entity set represents a
different role that the entity set plays in the relationship. We therefore label the
edges between the entity set and relationship by names, which we call “roles.”

E xam ple 4 .6 : In Fig. 4.5 is a relationship Sequel-of between the entity set
Movies and itself. Each relationship is between two movies, one of which is
the sequel of the other. To differentiate the two movies in a relationship, one
line is labeled by the role Original and one by the role Sequel, indicating the

132 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Limits on Arrow Notation in Multiway Relationships

There are not enough choices of arrow or no-arrow on the lines attached to
a relationship with three or more participants. Thus, we cannot describe
every possible situation with arrows. For instance, in Fig. 4.4, the studio
is really a function of the movie alone, not the star and movie jointly,
since only one studio produces a movie. However, our notation does not
distinguish this situation from the case of a three-way relationship where
the entity set pointed to by the arrow is truly a function of both other
entity sets. To handle all possible situations, we would have to give a set
of functional dependencies involving the entity sets of the relationship.

Original

Figure 4.5: A relationship with roles

original movie and its sequel, respectively. We assume that a movie may have
many sequels, but for each sequel there is only one original movie. Thus, the
relationship is many-one from Sequel movies to Original movies, as indicated
by the arrow in the E /R diagram of Fig. 4.5. □

E xam ple 4.7 : As a final example that includes both a multiway relationship
and an entity set with multiple roles, in Fig. 4.6 is a more complex version of
the Contracts relationship introduced earlier in Example 4.5. Now, relationship
Contracts involves two studios, a star, and a movie. The intent is that one
studio, having a certain star under contract (in general, not for a particular
movie), may further contract with a second studio to allow that star to act in
a particular movie. Thus, the relationship is described by 4-tuples of the form
(studiol, studio2 , star, movie), meaning that studio2 contracts with studiol for
the use of studiol’s star by studio2 for the movie.

We see in Fig. 4.6 arrows pointing to Studios in both of its roles, as “owner”
of the star and as producer of the movie. However, there are not arrows pointing
to Stars or Movies. The rationale is as follows. Given a star, a movie, and a
studio producing the movie, there can be only one studio that “owns” the
star. (We assume a star is under contract to exactly one studio.) Similarly,
only one studio produces a given movie, so given a star, a movie, and the
star’s studio, we can determine a unique producing studio. Note that in both

4.1. THE ENTITY/RELATIONSH IP MODEL 133

Figure 4.6: A four-way relationship

cases we actually needed only one of the other entities to determine the unique
entity—for example, we need only know the movie to determine the unique
producing studio—but this fact does not change the multiplicity specification
for the multiway relationship.

There are no arrows pointing to Stars or Movies. Given a star, the star’s
studio, and a producing studio, there could be several different contracts allow
ing the star to act in several movies. Thus, the other three components in a
relationship 4-tuple do not necessarily determine a unique movie. Similarly, a
producing studio might contract with some other studio to use more than one
of their stars in one movie. Thus, a star is not determined by the three other
components of the relationship. □

Figure 4.7: A relationship with an attribute

134 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.1.9 Attributes on Relationships
Sometimes it is convenient, or even essential, to associate attributes with a
relationship, rather than with any one of the entity sets that the relationship
connects. For example, consider the relationship of Fig. 4.4, which represents
contracts between a star and studio for a movie.1 We might wish to record the
salary associated with this contract. However, we cannot associate it with the
star; a star might get different salaries for different movies. Similarly, it does
not make sense to associate the salary with a studio (they may pay different
salaries to different stars) or with a movie (different stars in a movie may receive
different salaries).

However, we can associate a unique salary with the (star, movie, studio)
triple in the relationship set for the Contracts relationship. In Fig. 4.7 we see
Fig. 4.4 fleshed out with attributes. The relationship has attribute salary, while
the entity sets have the same attributes that we showed for them in Fig. 4.2.

In general, we may place one or more attributes on any relationship. The
values of these attributes are functionally determined by the entire tuple in the
relationship set for that relation. In some cases, the attributes can be deter
mined by a subset of the entity sets involved in the relation, but presumably
not by any single entity set (or it would make more sense to place the attribute
on that entity set). For instance, in Fig. 4.7, the salary is really determined by
the movie and star entities, since the studio entity is itself determined by the
movie entity.

It is never necessary to place attributes on relationships. We can instead
invent a new entity set, whose entities have the attributes ascribed to the rela
tionship. If we then include this entity set in the relationship, we can omit the
attributes on the relationship itself. However, attributes on a relationship are
a useful convention, which we shall continue to use where appropriate.

Exam ple 4 .8 : Let us revise the E /R diagram of Fig. 4.7, which has the
salary attribute on the Contracts relationship. Instead, we create an entity
set Salaries, with attribute salary. Salaries becomes the fourth entity set of
relationship Contracts. The whole diagram is shown in Fig. 4.8.

Notice that there is an arrow into the Salaries entity set in Fig. 4.8. That
arrow is appropriate, since we know that the salary is determined by all the other
entity sets involved in the relationship. In general, when we do a conversion
from attributes on a relationship to an additional entity set, we place an arrow
into that entity set. □

4.1.10 Converting Multiway Relationships to Binary
There are some data models, such as UML (Section 4.7) and ODL (Section 4.9),
that limit relationships to be binary. Thus, while the E /R model does not

1H ere, we have reverted to th e earlier notion o f three-w ay con trac ts in E xam ple 4.5, no t
th e four-w ay relationsh ip of E xam ple 4.7.

4.1. THE ENTITY/RELATIONSH IP MODEL 135

Figure 4.8: Moving the attribute to an entity set

require binary relationships, it is useful to observe that any relationship con
necting more than two entity sets can be converted to a collection of binary,
many-one relationships. To do so, introduce a new entity set whose entities we
may think of as tuples of the relationship set for the multiway relationship. We
call this entity set a connecting entity set. We then introduce many-one rela
tionships from the connecting entity set to each of the entity sets that provide
components of tuples in the original, multiway relationship. If an entity set
plays more than one role, then it is the target of one relationship for each role.

E xam ple 4 .9 : The four-way Contracts relationship in Fig. 4.6 can be replaced
by an entity set that we may also call Contracts. As seen in Fig. 4.9, it partici
pates in four relationships. If the relationship set for the relationship Contracts
has a 4-tuple (studiol, studio2, star, movie) then the entity set Contracts has
an entity e. This entity is linked by relationship Star-of to the entity star in
entity set Stars. It is linked by relationship Movie-of to the entity movie in
Movies. It is linked to entities studiol and studioB of Studios by relationships
Studio-of-star and Producing-studio, respectively.

Note that we have assumed there are no attributes of entity set Contracts,
although the other entity sets in Fig. 4.9 have unseen attributes. However, it is
possible to add attributes, such as the date of signing, to entity set Contracts.
□

4.1.11 Subclasses in the E /R Model
Often, an entity set contains certain entities that have special properties not
associated with all members of the set. If so, we find it useful to define certain

136 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Figure 4.9: Replacing a multiway relationship by an entity set and binary
relationships

special-case entity sets, or subclasses, each with its own special attributes and/or
relationships. We connect an entity set to its subclasses using a relationship
called isa (i.e., “an A is a B ” expresses an “isa” relationship from entity set A
to entity set B).

An isa relationship is a special kind of relationship, and to emphasize that
it is unlike other relationships, we use a special notation: a triangle. One side
of the triangle is attached to the subclass, and the opposite point is connected
to the superclass. Every isa relationship is one-one, although we shall not draw
the two arrows that are associated with other one-one relationships.

Exam ple 4.10: Among the special kinds of movies we might store in our
example database are cartoons and murder mysteries. For each of these special
movie types, we could define a subclass of the entity set Movies. For instance, let
us postulate two subclasses: Cartoons and Murder-Mysteries. A cartoon has, in
addition to the attributes and relationships of Movies, an additional relationship
called Voices that gives us a set of stars who speak, but do not appear in the
movie. Movies that are not cartoons do not have such stars. Murder-mysteries
have an additional attribute weapon. The connections among the three entity
sets Movies, Cartoons, and Murder-Mysteries is shown in Fig. 4.10. □

While, in principle, a collection of entity sets connected by isa relationships
could have any structure, we shall limit isa-structures to trees, in which there

4.1. THE ENTITY/RELATIONSHIP MODEL 137

Figure 4.10: Isa relationships in an E /R diagram

is one root entity set (e.g., Movies in Fig. 4.10) that is the most general, with
progressively more specialized entity sets extending below the root in a tree.

Suppose we have a tree of entity sets, connected by isa relationships. A
single entity consists of components from one or more of these entity sets, as
long as those components are in a subtree including the root. That is, if an
entity e has a component c in entity set E, and the parent of E in the tree is
F, then entity e also has a component d in F. Further, c and d must be paired
in the relationship set for the isa relationship from E to F. The entity e has
whatever attributes any of its components has, and it participates in whatever
relationships any of its components participate in.

E xam ple 4.11: The typical movie, being neither a cartoon nor a murder-
mystery, will have a component only in the root entity set Movies in Fig. 4.10.
These entities have only the four attributes of Movies (and the two relationships

138 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

The E /R View of Subclasses

There is a significant resemblance between “isa” in the E /R model and
subclasses in object-oriented languages. In a sense, “isa” relates a subclass
to its superclass. However, there is also a fundamental difference between
the conventional E /R view and the object-oriented approach: entities are
allowed to have representatives in a tree of entity sets, while objects are
assumed to exist in exactly one class or subclass.

The difference becomes apparent when we consider how the movie
Roger Rabbit was handled in Example 4.11. In an object-oriented ap
proach, we would need for this movie a fourth entity set, “cartoon-murder-
mystery,” which inherited all the attributes and relationships of Movies,
Cartoons, and Murder-Mysteries. However, in the E /R model, the effect
of this fourth subclass is obtained by putting components of the movie
Roger Rabbit in both the Cartoons and Murder-Mysteries entity sets.

of Movies — Stars-in and Owns — that are not shown in Fig. 4.10).
A cartoon that is not a murder-mystery will have two components, one in

Movies and one in Cartoons. Its entity will therefore have not only the four
attributes of Movies, but the relationship Voices. Likewise, a murder-mystery
will have two components for its entity, one in Movies and one in Murder-
Mysteries and thus will have five attributes, including weapon.

Finally, a movie like Roger Rabbit, which is both a cartoon and a murder-
mystery, will have components in all three of the entity sets Movies, Cartoons,
and Murder-Mysteries. The three components are connected into one entity by
the isa relationships. Together, these components give the Roger Rabbit entity
all four attributes of Movies plus the attribute weapon of entity set Murder-
Mysteries and the relationship Voices of entity set Cartoons. □

4.1.12 Exercises for Section 4.1
Exercise 4 .1 .1: Design a database for a bank, including information about
customers and their accounts. Information about a customer includes their
name, address, phone, and Social Security number. Accounts have numbers,
types (e.g., savings, checking) and balances. Also record the customer(s) who
own an account. Draw the E /R diagram for this database. Be sure to include
arrows where appropriate, to indicate the multiplicity of a relationship.

Exercise 4 .1 .2: Modify your solution to Exercise 4.1.1 as follows:

a) Change your diagram so an account can have only one customer.

b) Further change your diagram so a customer can have only one account.

4.1. THE ENTITY/RELATIONSHIP MODEL 139

! c) Change your original diagram of Exercise 4.1.1 so that a customer can
have a set of addresses (which are street-city-state triples) and a set of
phones. Remember that we do not allow attributes to have nonprimitive
types, such as sets, in the E /R model.

! d) Further modify your diagram so that customers can have a set of ad
dresses, and at each address there is a set of phones.

Exercise 4 .1 .3 : Give an E /R diagram for a database recording information
about teams, players, and their fans, including:

1. For each team, its name, its players, its team captain (one of its players),
and the colors of its uniform.

2. For each player, his/her name.

3. For each fan, his/her name, favorite teams, favorite players, and favorite
color.

Remember that a set of colors is not a suitable attribute type for teams. How
can you get around this restriction?

Exercise 4 .1 .4 : Suppose we wish to add to the schema of Exercise 4.1.3 a
relationship Led-by among two players and a team. The intention is that this
relationship set consists of triples (playerl, player2, team) such that player 1
played on the team at a time when some other player 2 was the team captain.

a) Draw the modification to the E /R diagram.

b) Replace your ternary relationship with a new entity set and binary rela
tionships.

! c) Are your new binary relationships the same as any of the previously ex
isting relationships? Note that we assume the two players are different,
i.e., the team captain is not self-led.

Exercise 4 .1 .5 : Modify Exercise 4.1.3 to record for each player the history of
teams on which they have played, including the start date and ending date (if
they were traded) for each such team.

! E xercise 4 .1 .6 : Design a genealogy database with one entity set: People. The
information to record about persons includes their name (an attribute), their
mother, father, and children.

! E xercise 4 .1 .7 : Modify your “people” database design of Exercise 4.1.6 to
include the following special types of people:

1. Females.

140 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

2. Males.

3. People who are parents.

You may wish to distinguish certain other kinds of people as well, so relation
ships connect appropriate subclasses of people.

Exercise 4 .1 .8 : An alternative way to represent the information of Exer
cise 4.1.6 is to have a ternary relationship Family with the intent that in the
relationship set for Family, triple (person, mother, father) is a person, their
mother, and their father; all three are in the People entity set, of course.

a) Draw this diagram, placing arrows on edges where appropriate.

b) Replace the ternary relationship Family by an entity set and binary rela
tionships. Again place arrows to indicate the multiplicity of relationships.

Exercise 4 .1 .9 : Design a database suitable for a university registrar. This
database should include information about students, departments, professors,
courses, which students are enrolled in which courses, which professors are
teaching which courses, student grades, TA’s for a course (TA’s are students),
which courses a department offers, and any other information you deem appro
priate. Note that this question is more free-form than the questions above, and
you need to make some decisions about multiplicities of relationships, appro
priate types, and even what information needs to be represented.

! Exercise 4 .1 .10: Informally, we can say that two E /R diagrams “have the
same information” if, given a real-world situation, the instances of these two di
agrams that reflect this situation can be computed from one another. Consider
the E /R diagram of Fig. 4.6. This four-way relationship can be decomposed
into a three-way relationship and a binary relationship by taking advantage
of the fact that for each movie, there is a unique studio that produces that
movie. Give an E /R diagram without a four-way relationship that has the
same information as Fig. 4.6.

4.2 Design Principles
We have yet to learn many of the details of the E /R model, but we have enough
to begin study of the crucial issue of what constitutes a good design and what
should be avoided. In this section, we offer some useful design principles.

4.2.1 Faithfulness
First and foremost, the design should be faithful to the specifications of the
application. That is, entity sets and their attributes should reflect reality. You
can’t attach an attribute number-of-cylinders to Stars, although that attribute

4.2. DESIGN PRINCIPLES 141

would make sense for an entity set Automobiles. Whatever relationships are
asserted should make sense given what we know about the part of the real
world being modeled.

E xam ple 4 .12: If we define a relationship Stars-in between Stars and Movies,
it should be a many-many relationship. The reason is that an observation of the
real world tells us that stars can appear in more than one movie, and movies
can have more than one star. It is incorrect to declare the relationship Stars-in
to be many-one in either direction or to be one-one. □

E xam ple 4 .13 : On the other hand, sometimes it is less obvious what the
real world requires us to do in our E /R design. Consider, for instance, entity
sets Courses and Instructors, with a relationship Teaches between them. Is
Teaches many-one from Courses to Instructors? The answer lies in the policy
and intentions of the organization creating the database. It is possible that
the school has a policy that there can be only one instructor for any course.
Even if several instructors may “team-teach” a course, the school may require
that exactly one of them be listed in the database as the instructor responsible
for the course. In either of these cases, we would make Teaches a many-one
relationship from Courses to Instructors.

Alternatively, the school may use teams of instructors regularly and wish
its database to allow several instructors to be associated with a course. Or,
the intent of the Teaches relationship may not be to reflect the current teacher
of a course, but rather those who have ever taught the course, or those who
are capable of teaching the course; we cannot tell simply from the name of the
relationship. In either of these cases, it would be proper to make Teaches be
many-many. □

4.2.2 Avoiding Redundancy
We should be careful to say everything once only. The problems we discussed
in Section 3.3 regarding redundancy and anomalies are typical of problems that
can arise in E /R designs. However, in the E /R model, there are several new
mechanisms whereby redundancy and other anomalies can arise.

For instance, we have used a relationship Owns between movies and studios.
We might also choose to have an attribute studioName of entity set Movies.
While there is nothing illegal about doing so, it is dangerous for several reasons.

1. Doing so leads to repetition of a fact, with the result that extra space
is required to represent the data, once we convert the E /R design to a
relational (or other type of) concrete implementation.

2. There is an update-anomaly potential, since we might change the rela
tionship but not the attribute, or vice-versa.

We shall say more about avoiding anomalies in Sections 4.2.4 and 4.2.5.

142 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.2.3 Simplicity Counts
Avoid introducing more elements into your design than is absolutely necessary.

Exam ple 4.14: Suppose that instead of a relationship between Movies and
Studios we postulated the existence of “movie-holdings,” the ownership of a
single movie. We might then create another entity set Holdings. A one-one
relationship Represents could be established between each movie and the unique
holding that represents the movie. A many-one relationship from Holdings to
Studios completes the picture shown in Fig. 4.11.

Figure 4.11: A poor design with an unnecessary entity set

Technically, the structure of Fig. 4.11 truly represents the real world, since
it is possible to go from a movie to its unique owning studio via Holdings.
However, Holdings serves no useful purpose, and we axe better off without it.
It makes programs that use the movie-studio relationship more complicated,
wastes space, and encourages errors. □

4.2.4 Choosing the Right Relationships
Entity sets can be connected in various ways by relationships. However, adding
to our design every possible relationship is not often a good idea. Doing so
can lead to redundancy, update anomalies, and deletion anomalies, where the
connected pairs or sets of entities for one relationship can be deduced from
one or more other relationships. We shall illustrate the problem and what
to do about it with two examples. In the first example, several relationships
could represent the same information; in the second, one relationship could be
deduced from several others.

Exam ple 4.15: Let us review Fig. 4.7, where we connected movies, stars,
and studios with a three-way relationship Contracts. We omitted from that
figure the two binary relationships Stars-in and Owns from Fig. 4.2. Do we
also need these relationships, between Movies and Stars, and between Movies
and Studios, respectively? The answer is: “we don’t know; it depends on our
assumptions regarding the three relationships in question.”

It might be possible to deduce the relationship Stars-in from Contracts. If
a star can appear in a movie only if there is a contract involving that star, that
movie, and the owning studio for the movie, then there truly is no need for
relationship Stars-in. We could figure out all the star-movie pairs by looking
at the star-movie-studio triples in the relationship set for Contracts and taking
only the star and movie components, i.e., projecting Contracts onto Stars-in.

4.2. DESIGN PRINCIPLES 143

However, if a star can work on a movie without there being a contract — or
what is more likely, without there being a contract that we know about in our
database — then there could be star-movie pairs in Stars-in that axe not part
of star-movie-studio triples in Contracts. In that case, we need to retain the
Stars-in relationship.

A similar observation applies to relationship Owns. If for every movie, there
is at least one contract involving that movie, its owning studio, and some star for
that movie, then we can dispense with Owns. However, if there is the possibility
that a studio owns a movie, yet has no stars under contract for that movie, or
no such contract is known to our database, then we must retain Owns.

In summary, we cannot tell you whether a given relationship will be redun
dant. You must find out from those who wish the database implemented what
to expect. Only then can you make a rational decision about whether or not to
include relationships such as Stars-in or Owns. □

E xam ple 4 .16 : Now, consider Fig. 4.2 again. In this diagram, there is no
relationship between stars and studios. Yet we can use the two relationships
Stars-in and Owns to build a connection by the process of composing those
two relationships. That is, a star is connected to some movies by Stars-in, and
those movies are connected to studios by Owns. Thus, we could say that a star
is connected to the studios that own movies in which the star has appeared.

Would it make sense to have a relationship Works-for, as suggested in
Fig. 4.12, between Stars and Studios too? Again, we cannot tell without know
ing more. First, what would the meaning of this relationship be? If it is to
mean “the star appeared in at least one movie of this studio,” then probably
there is no good reason to include it in the diagram. We could deduce this
information from Stars-in and Owns instead.

Figure 4.12: Adding a relationship between Stars and Studios

However, perhaps we have other information about stars working for stu
dios that is not implied by the connection through a movie. In that case, a

144 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

relationship connecting stars directly to studios might be useful and would not
be redundant. Alternatively, we might use a relationship between stars and
studios to mean something entirely different. For example, it might represent
the fact that the star is under contract to the studio, in a manner unrelated
to any movie. As we suggested in Example 4.7, it is possible for a star to be
under contract to one studio and yet work on a movie owned by another stu
dio. In this case, the information found in the new Works-for relation would
be independent of the Stars-in and Owns relationships, and would surely be
nonredundant. □

4.2.5 Picking the Right Kind of Element
Sometimes we have options regarding the type of design element used to repre
sent a real-world concept. Many of these choices are between using attributes
and using entity set/relationship combinations. In general, an attribute is sim
pler to implement than either an entity set or a relationship. However, making
everything an attribute will usually get us into trouble.

Exam ple 4.17: Let us consider a specific problem. In Fig. 4.2, were we wise
to make studios an entity set? Should we instead have made the name and
address of the studio be attributes of movies and eliminated the Studio entity
set? One problem with doing so is that we repeat the address of the studio for
each movie. We can also have an update anomaly if we change the address for
one movie but not another with the same studio, and we can have a deletion
anomaly if we delete the last movie owned by a given studio.

On the other hand, if we did not record addresses of studios, then there
is no harm in making the studio name an attribute of movies. We have no
anomalies in this case. Saying the name of a studio for each movie is not true
redundancy, since we must represent the owner of each movie somehow, and
saying the name of the studio is a reasonable way to do so. □

We can abstract what we have observed in Example 4.17 to give the con
ditions under which we prefer to use an attribute instead of an entity set.
Suppose E is an entity set. Here are conditions that E must obey in order for
us to replace E by an attribute or attributes of several other entity sets.

1. All relationships in which E is involved must have arrows entering E.
That is, E must be the “one” in many-one relationships, or its general
ization for the case of multiway relationships.

2. If E has more than one attribute, then no attribute depends on the other
attributes, the way address depends on name for Studios. That is, the
only key for E is all its attributes.

3. No relationship involves E more than once.

If these conditions are met, then we can replace entity set E as follows:

4.2. DESIGN PRINCIPLES 145

a) If there is a many-one relationship R from some entity set F to E, then re
move R and make the attributes of E be attributes of F, suitably renamed
if they conflict with attribute names for F. In effect, each F-entity takes,
as attributes, the name of the unique, related identity.2 For instance,
Movies entities could take their studio name as an attribute, should we
dispense with studio addresses.

b) If there is a multiway relationship R with an arrow to E, make the at
tributes of E be attributes of R and delete the arc from R to E. An
example of this transformation is replacing Fig. 4.8, where there is an
entity set Salaries with a number as its lone attribute, by its original
diagram in Fig. 4.7.

E xam ple 4 .18 : Let us consider a point where there is a tradeoff between using
a multiway relationship and using a connecting entity set with several binary
relationships. We saw a four-way relationship Contracts among a star, a movie,
and two studios in Fig. 4.6. In Fig. 4.9, we mechanically converted it to an
entity set Contracts. Does it matter which we choose?

As the problem was stated, either is appropriate. However, should we change
the problem just slightly, then we are almost forced to choose a connecting entity
set. Let us suppose that contracts involve one star, one movie, but any set of
studios. This situation is more complex than the one in Fig. 4.6, where we
had two studios playing two roles. In this case, we can have any number of
studios involved, perhaps one to do production, one for special effects, one for
distribution, and so on. Thus, we cannot assign roles for studios.

It appears that a relationship set for the relationship Contracts must contain
triples of the form (star, movie, set-of-studios), and the relationship Contracts
itself involves not only the usual Stars and Movies entity sets, but a new entity
set whose entities are sets of studios. While this approach is possible, it seems
unnatural to think of sets of studios as basic entities, and we do not recommend
it.

A better approach is to think of contracts as an entity set. As in Fig. 4.9,
a contract entity connects a star, a movie and a set of studios, but now there
must be no limit on the number of studios. Thus, the relationship between
contracts and studios is many-many, rather than many-one as it would be if
contracts were a true “connecting” entity set. Figure 4.13 sketches the E /R
diagram. Note that a contract is related to a single star and to a single movie,
but to any number of studios. □

4.2.6 Exercises for Section 4.2
E xercise 4 .2 .1 : In Fig. 4.14 is an E /R diagram for a bank database involv
ing customers and accounts. Since customers may have several accounts, and

2 In a s itu a tio n w here an F -e n tity is n o t re la ted to any i?-entity , th e new a ttr ib u te s of F
would be given special “null” values to ind ica te th e absence o f a re la ted .E-entity. A sim ilar
a rrangem en t w ould be used for th e new a ttr ib u te s of i t in case (b).

146 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

\ S t a r - o f y K M ovie—o f y

Stars Contracts M ovies

S tudios-oi

Studios

Figure 4.13: Contracts connecting a star, a movie, and a set of studios

accounts may be held jointly by several customers, we associate with each cus
tomer an “account set,” and accounts are members of one or more account sets.
Assuming the meaning of the various relationships and attributes are as ex
pected given their names, criticize the design. What design rules are violated?
Why? What modifications would you suggest?

Figure 4.14: A poor design for a bank database

Exercise 4.2 .2: Under what circumstances (regarding the unseen attributes
of Studios and Presidents) would you recommend combining the two entity sets
and relationship in Fig. 4.3 into a single entity set and attributes?

Exercise 4 .2 .3 : Suppose we delete the attribute address from Studios in
Fig. 4.7. Show how we could then replace an entity set by an attribute. Where

4.2. DESIGN PRINCIPLES 147

would that attribute appear?

E xercise 4 .2 .4 : Give choices of attributes for the following entity sets in
Fig. 4.13 that will allow the entity set to be replaced by an attribute:

a) Stars.

b) Movies.

! c) Studios.

!! Exercise 4 .2 .5 : In this and following exercises we shall consider two design
options in the E /R model for describing births. At a birth, there is one baby
(twins would be represented by two births), one mother, any number of nurses,
and any number of doctors. Suppose, therefore, that we have entity sets Babies,
Mothers, Nurses, and Doctors. Suppose we also use a relationship Births, which
connects these four entity sets, as suggested in Fig. 4.15. Note that a tuple of
the relationship set for Births has the form (baby, mother, nurse, doctor). If
there is more than one nurse and/or doctor attending a birth, then there will
be several tuples with the same baby and mother, one for each combination of
nurse and doctor.

Figure 4.15: Representing births by a multiway relationship

There are certain assumptions that we might wish to incorporate into our
design. For each, tell how to add arrows or other elements to the E /R diagram
in order to express the assumption.

a) For every baby, there is a unique mother.

b) For every combination of a baby, nurse, and doctor, there is a unique
mother.

c) For every combination of a baby and a mother there is a unique doctor.

! E xercise 4 .2 .6 : Another approach to the problem of Exercise 4.2.5 is to con
nect the four entity sets Babies, Mothers, Nurses, and Doctors by an entity set

148 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Figure 4.16: Representing births by an entity set

Births, with four relationships, one between Births and each of the other entity
sets, as suggested in Fig. 4.16. Use arrows (indicating that certain of these
relationships are many-one) to represent the following conditions:

a) Every baby is the result of a unique birth, and every birth is of a unique
baby.

b) In addition to (a), every baby has a unique mother.

c) In addition to (a) and (b), for every birth there is a unique doctor.

In each case, what design flaws do you see?

!! Exercise 4 .2 .7 : Suppose we change our viewpoint to allow a birth to involve
more than one baby born to one mother. How would you represent the fact
that every baby still has a unique mother using the approaches of Exercises
4.2.5 and 4.2.6?

4.3 Constraints in the E /R Model
The E /R model has several ways to express the common kinds of constraints
on the data that will populate the database being designed. Like the relational
model, there is a way to express the idea that an attribute or attributes are a key
for an entity set. We have already seen how an arrow connecting a relationship
to an entity set serves as a “functional dependency.” There is also a way to
express a referential-integrity constraint, where an entity in one set is required
to have an entity in another set to which it is related.

4.3.1 Keys in the E /R Model
A key for an entity set E is a set K of one or more attributes such that, given
any two distinct entities ei and e2 in E, e\ and e2 cannot have identical values
for each of the attributes in the key K . If K consists of more than one attribute,
then it is possible for e\ and e2 to agree in some of these attributes, but never
in all attributes. Some important points to remember are:

4.3. CONSTRAINTS IN THE E /R MODEL 149

• Every entity set must have a key, although in some cases — isa-hierarchies
and “weak” entity sets (see Section 4.4), the key actually belongs to an
other entity set.

• There can be more than one possible key for an entity set. However, it
is customary to pick one key as the “primary key,” and to act as if that
were the only key.

• When an entity set is involved in an isa-hierarchy, we require that the root
entity set have all the attributes needed for a key, and that the key for
each entity is found from its component in the root entity set, regardless
of how many entity sets in the hierarchy have components for the entity.

In our running movies example, we have used title and year as the key for
Movies, counting on the observation that it is unlikely that two movies with
the same title would be released in one year. We also decided that it was safe
to use name as a key for MovieStar, believing that no real star would ever want
to use the name of another star.

4.3.2 Representing Keys in the E /R Model

In our E/R-diagram notation, we underline the attributes belonging to a key for
an entity set. For example, Fig. 4.17 reproduces our E /R diagram for movies,
stars, and studios from Fig. 4.2, but with key attributes underlined. Attribute
name is the key for Stars. Likewise, Studios has a key consisting of only its own
attribute name.

Figure 4.17: E /R diagram; keys are indicated by underlines

150 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

The attributes title and year together form the key for Movies. Note that
when several attributes are underlined, as in Fig. 4.17, then they are each
members of the key. There is no notation for representing the situation where
there are several keys for an entity set; we underline only the primary key. You
should also be aware that in some unusual situations, the attributes forming
the key for an entity set do not all belong to the entity set itself. We shall defer
this matter, called “weak entity sets,” until Section 4.4.

4.3.3 Referential Integrity
Recall our discussion of referential-integrity constraints in Section 2.5.2. These
constraints say that a value appearing in one context must also appear in
another. For example, let us consider the many-one relationship Owns from
Movies to Studios in Fig. 4.2. The many-one requirement simply says that no
movie can be owned by more than one studio. It does not say that a movie
must surely be owned by a studio, or that the owning studio must be present
in the Studios entity set, as stored in our database. An appropriate referential
integrity constraint on relationship Owns is that for each movie, the owning
studio (the entity “referenced” by the relationship for this movie) must exist in
our database.

The arrow notation in E /R diagrams is able to indicate whether a rela
tionship is expected to support referential integrity in one or more directions.
Suppose R is a relationship from entity set E to entity set F. A rounded arrow
head pointing to F indicates not only that the relationship is many-one from E
to F, but that the entity of set F related to a given entity of set E is required
to exist. The same idea applies when R is a relationship among more than two
entity sets.

Exam ple 4.19: Figure 4.18 shows some appropriate referential integrity con
straints among the entity sets Movies, Studios, and Presidents. These entity sets
and relationships were first introduced in Figs. 4.2 and 4.3. We see a rounded
arrow entering Studios from relationship Owns. That arrow expresses the refer
ential integrity constraint that every movie must be owned by one studio, and
this studio is present in the Studios entity set.

M ovies

Figure 4.18: E /R diagram showing referential integrity constraints

Similarly, we see a rounded arrow entering Studios from Runs. That arrow
expresses the referential integrity constraint that every president runs a studio
that exists in the Studios entity set.

Note that the arrow to Presidents from Runs remains a pointed arrow. That
choice reflects a reasonable assumption about the relationship between studios

4.3. CONSTRAINTS IN THE E /R MODEL 151

and their presidents. If a studio ceases to exist, its president can no longer be
called a president, so we would expect the president of the studio to be deleted
from the entity set Presidents. Hence there is a rounded arrow to Studios. On
the other hand, if a president were fired or resigned, the studio would continue
to exist. Thus, we place an ordinary, pointed arrow to Presidents, indicating
that each studio has at most one president, but might have no president at
some time. □

4.3.4 Degree Constraints
In the E /R model, we can attach a bounding number to the edges that connect
a relationship to an entity set, indicating limits on the number of entities that
can be connected to any one entity of the related entity set. For example, we
could choose to place a constraint on the degree of a relationship, such as that
a movie entity cannot be connected by relationship Stars-in to more than 10
star entities.

Figure 4.19: Representing a constraint on the number of stars per movie

Figure 4.19 shows how we can represent this constraint. As another example,
we can think of the arrow as a synonym for the constraint “< 1,” and we can
think of the rounded arrow of Fig. 4.18 as standing for the constraint “= 1.”

4.3.5 Exercises for Section 4.3
E xercise 4 .3 .1 : For your E /R diagrams of:

a) Exercise 4.1.1.

b) Exercise 4.1.3.

c) Exercise 4.1.6.

(i) Select and specify keys, and (ii) Indicate appropriate referential integrity
constraints.

E xercise 4 .3 .2 : We may think of relationships in the E /R model as having
keys, just as entity sets do. Let R be a relationship among the entity sets
E i, E 2 , . . . ,E n . Then a key for R is a set K of attributes chosen from the
attributes of E i,E 2, . . . , E n such that if (e i,e2). . . ,en) and (/ i , / 2, - - - ,fn)
are two different tuples in the relationship set for R, then it is not possible that
these tuples agree in all the attributes of K . Now, suppose n = 2; that is, R
is a binary relationship. Also, for each i, let Ki be a set of attributes that is a
key for entity set Ei. In terms of Ei and E2, give a smallest possible key for R
under the assumption that:

152 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

a) R is many-many.

b) R is many-one from Ei to E2.

c) R is many-one from E 2 to E \.

d) R is one-one.

!! Exercise 4.3.3: Consider again the problem of Exercise 4.3.2, but with n
allowed to be any number, not just 2. Using only the information about which
arcs from R to the E l’s have arrows, show how to find a smallest possible key
K for R in terms of the K i s.

4.4 Weak Entity Sets
It is possible for an entity set’s key to be composed of attributes, some or all
of which belong to another entity set. Such an entity set is called a weak entity
set.

4.4.1 Causes of Weak Entity Sets
There are two principal reasons we need weak entity sets. First, sometimes
entity sets fall into a hierarchy based on classifications unrelated to the “isa
hierarchy” of Section 4.1.11. If entities of set E are subunits of entities in set
F, then it is possible that the names of .E-entities axe not unique until we take
into account the name of the F-entity to which the E entity is subordinate.
Several examples will illustrate the problem.

Exam ple 4.20: A movie studio might have several film crews. The crews
might be designated by a given studio as crew 1, crew 2, and so on. However,
other studios might use the same designations for crews, so the attribute number
is not a key for crews. Rather, to name a crew uniquely, we need to give
both the name of the studio to which it belongs and the number of the crew.
The situation is suggested by Fig. 4.20. The double-rectangle indicates a weak
entity set, and the double-diamond indicates a many-one relationship that helps
provide the key for the weak entity set. The notation will be explained further
in Section 4.4.3. The key for weak entity set Crews is its own number attribute
and the name attribute of the unique studio to which the crew is related by the
many-one Unit-of relationship. □

Exam ple 4.21: A species is designated by its genus and species names. For
example, humans are of the species Homo sapiens-, Homo is the genus name
and sapiens the species name. In general, a genus consists of several species,
each of which has a name beginning with the genus name and continuing with
the species name. Unfortunately, species names, by themselves, are not unique.

4.4. W EAK E N T IT Y SETS 153

Figure 4.20: A weak entity set for crews, and its connections

Two or more genera may have species with the same species name. Thus, to
designate a species uniquely we need both the species name and the name of the
genus to which the species is related by the Belongs-to relationship, as suggested
in Fig. 4.21. Species is a weak entity set whose key comes partially from its
genus. □

Figure 4.21: Another weak entity set, for species

The second common source of weak entity sets is the connecting entity
sets that we introduced in Section 4.1.10 as a way to eliminate a multiway
relationship.3 These entity sets often have no attributes of their own. Their
key is formed from the attributes that are the key attributes for the entity sets
they connect.

E xam ple 4 .22: In Fig. 4.22 we see a connecting entity set Contracts that
replaces the ternary relationship Contracts of Example 4.5. Contracts has an
attribute salary, but this attribute does not contribute to the key. Rather, the
key for a contract consists of the name of the studio and the star involved, plus
the title and year of the movie involved. □

4.4.2 Requirements for Weak Entity Sets
We cannot obtain key attributes for a weak entity set indiscriminately. Rather,
if E is a weak entity set then its key consists of:

1. Zero or more of its own attributes, and

3R em em ber th a t th e re is no p a r tic u la r requ irem en t in th e E /R m odel th a t m ultiw ay re
lationsh ips be e lim inated , a lthough th is requ irem ent ex ists in som e o th e r d a tab ase design
m odels.

154 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Figure 4.22: Connecting entity sets are weak

2. Key attributes from entity sets that are reached by certain many-one
relationships from E to other entity sets. These many-one relationships
are called supporting relationships for E, and the entity sets reached from
E are supporting entity sets.

In order for R, a many-one relationship from E to some entity set F, to be a
supporting relationship for E, the following conditions must be obeyed:

a) R must be a binary, many-one relationship4 from E to F.

b) R must have referential integrity from E to F. That is, for every id
entity, there must be exactly one existing identity related to it by R. Put
another way, a rounded arrow from R t o F must be justified.

c) The attributes that F supplies for the key of E must be key attributes of
F.

d) However, if F is itself weak, then some or all of the key attributes of F
supplied to E will be key attributes of one or more entity sets G to which
F is connected by a supporting relationship. Recursively, if G is weak,
some key attributes of G will be supplied from elsewhere, and so on.

4R em em ber th a t a one-one relationship is a special case of a m any-one relationship. W hen
we say a relationship m ust be m any-one, we always include one-one relationships as well.

4.4. W EAK E N T IT Y SETS 155

e) If there are several different supporting relationships from E to the same
entity set F, then each relationship is used to supply a copy of the key
attributes of F to help form the key of E. Note that an entity e from
E may be related to different entities in F through different supporting
relationships from E. Thus, the keys of several different entities from F
may appear in the key values identifying a particular entity e from E.

The intuitive reason why these conditions are needed is as follows. Consider
an entity in a weak entity set, say a crew in Example 4.20. Each crew is unique,
abstractly. In principle we can tell one crew from another, even if they have
the same number but belong to different studios. It is only the data about
crews that makes it hard to distinguish crews, because the number alone is not
sufficient. The only way we can associate additional information with a crew
is if there is some deterministic process leading to additional values that make
the designation of a crew unique. But the only unique values associated with
an abstract crew entity are:

1. Values of attributes of the Crews entity set, and

2. Values obtained by following a relationship from a crew entity to a unique
entity of some other entity set, where that other entity has a unique
associated value of some kind. That is, the relationship followed must be
many-one to the other entity set F , and the associated value must be part
of a key for F.

4.4.3 Weak Entity Set Notation
We shall adopt the following conventions to indicate that an entity set is weak
and to declare its key attributes.

1. If an entity set is weak, it will be shown as a rectangle with a double
border. Examples of this convention are Crews in Fig. 4.20 and Contracts
in Fig. 4.22.

2. Its supporting many-one relationships will be shown as diamonds with a
double border. Examples of this convention are Unit-of in Fig. 4.20 and
all three relationships in Fig. 4.22.

3. If an entity set supplies any attributes for its own key, then those at
tributes will be underlined. An example is in Fig. 4.20, where the number
of a crew participates in its own key, although it is not the complete key
for Crews.

We can summarize these conventions with the following rule:

• Whenever we use an entity set E with a double border, it is weak. The key
for E is whatever attributes of E are underlined plus the key attributes of
those entity sets to which E is connected by many-one relationships with
a double border.

156 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

We should remember that the double-diamond is used only for supporting
relationships. It is possible for there to be many-one relationships from a weak
entity set that are not supporting relationships, and therefore do not get a
double diamond.

Exam ple 4.23: In Fig. 4.22, the relationship Studio-of need not be a support
ing relationship for Contracts. The reason is that each movie has a unique own
ing studio, determined by the (not shown) many-one relationship from Movies
to Studios. Thus, if we are told the name of a star and a movie, there is at most
one contract with any studio for the work of that star in that movie. In terms
of our notation, it would be appropriate to use an ordinary single diamond,
rather than the double diamond, for Studio-of in Fig. 4.22. □

4.4.4 Exercises for Section 4.4

Exercise 4 .4 .1 : One way to represent students and the grades they get in
courses is to use entity sets corresponding to students, to courses, and to “en
rollments.” Enrollment entities form a “connecting” entity set between students
and courses and can be used to represent not only the fact that a student is
taking a certain course, but the grade of the student in the course. Draw an
E /R diagram for this situation, indicating weak entity sets and the keys for the
entity sets. Is the grade part of the key for enrollments?

Exercise 4 .4 .2 : Modify your solution to Exercise 4.4.1 so that we can record
grades of the student for each of several assignments within a course. Again,
indicate weak entity sets and keys.

Exercise 4 .4 .3 : For your E /R diagrams of Exercise 4.2.6(a)-(c), indicate weak
entity sets, supporting relationships, and keys.

Exercise 4.4 .4: Draw E /R diagrams for the following situations involving
weak entity sets. In each case indicate keys for entity sets.

a) Entity sets Courses and Departments. A course is given by a unique
department, but its only attribute is its number. Different departments
can offer courses with the same number. Each department has a unique
name.

! b) Entity sets Leagues, Teams, and Players. League names are unique. No
league has two teams with the same name. No team has two players with
the same number. However, there can be players with the same number
on different teams, and there can be teams with the same name in different
leagues.

4.5. FROM E /R DIAGRAMS TO RELATIONAL DESIGNS 157

4.5 From E /R Diagrams to Relational Designs

To a first approximation, converting an E /E design to a relational database
schema is straightforward:

• Turn each entity set into a relation with the same set of attributes, and

• Replace a relationship by a relation whose attributes are the keys for the
connected entity sets.

While these two rules cover much of the ground, there are also several special
situations that we need to deal with, including:

1. Weak entity sets cannot be translated straightforwardly to relations.

2. “Isa” relationships and subclasses require careful treatment.

3. Sometimes, we do well to combine two relations, especially the relation for
an entity set E and the relation that comes from a many-one relationship
from E to some other entity set.

4.5.1 Prom Entity Sets to Relations

Let us first consider entity sets that are not weak. We shall take up the mod
ifications needed to accommodate weak entity sets in Section 4.5.4. For each
non-weak entity set, we shall create a relation of the same name and with the
same set of attributes. This relation will not have any indication of the rela
tionships in which the entity set participates; we’ll handle relationships with
separate relations, as discussed in Section 4.5.2.

E xam ple 4 .24: Consider the three entity sets Movies, Stars and Studios from
Fig. 4.17, which we reproduce here as Fig. 4.23. The attributes for the Movies
entity set are title, year, length, and genre. As a result, this relation Movies
looks just like the relation Movies of Fig. 2.1 with which we began Section 2.2.

Next, consider the entity set Stars from Fig. 4.23. There are two attributes,
name and address. Thus, we would expect the corresponding Stars relation to
have schema Stars (name, address) and for

name address
Carrie Fisher
Mark Hamill
Harrison Ford

123 Maple St
456 Oak Rd.,
789 Palm Dr.

., Hollywood
Brentwood
, Beverly Hills

to be a typical instance. □

158 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Figure 4.23: E /R diagram for the movie database

4.5.2 From E /R Relationships to Relations
Relationships in the E /R model are also represented by relations. The relation
for a given relationship R has the following attributes:

1. For each entity set involved in relationship R, we take its key attribute
or attributes as part of the schema of the relation for R.

2. If the relationship has attributes, then these are also attributes of relation
R.

If one entity set is involved several times in a relationship, in different roles,
then its key attributes each appear as many times as there are roles. We must
rename the attributes to avoid name duplication. More generally, should the
same attribute name appear twice or more among the attributes of R itself and
the keys of the entity sets involved in relationship R, then we need to rename
to avoid duplication.

Exam ple 4.25: Consider the relationship Owns of Fig. 4.23. This relationship
connects entity sets Movies and Studios. Thus, for the schema of relation Owns
we use the key for Movies, which is title and year, and the key of Studios, which
is name. That is, the schema for relation Owns is:

Owns(title, y ea r, studioName)

A sample instance of this relation is:

4.5. FROM E /R DIAGRAMS TO RELATIONAL DESIGNS 159

title year studioName
S ta r Wars 1977 Fox
Gone With th e Wind 1939 MGM
Wayne’s World 1992 Paramount

We have chosen the attribute studioName for clarity; it corresponds to the
attribute name of Studios. □

title year starName
S ta r Wars 1977 C arrie F ish er
S ta r Wars 1977 Mark Hamill
S ta r Wars 1977 H arrison Ford
Gone With th e Wind 1939 Vivien Leigh
Wayne’s World 1992 Dana Carvey
Wayne’s World 1992 Mike Meyers

Figure 4.24: A relation for relationship Stars-In

E xam ple 4 .26 : Similarly, the relationship Stars-in of Fig. 4.23 can be trans
formed into a relation with the attributes t i t l e and year (the key for Movies)
and attribute starName. which is the key for entity set Stars. Figure 4.24 shows
a sample relation S ta rs - in . □

Figure 4.25: The relationship Contracts

E xam ple 4 .27 : Multiway relationships are also easy to convert to relations.
Consider the four-way relationship Contracts of Fig. 4.6, reproduced here as
Fig. 4.25, involving a star, a movie, and two studios — the first holding the
star’s contract and the second contracting for that star’s services in that movie.
We represent this relationship by a relation C ontracts whose schema consists
of the attributes from the keys of the following four entity sets:

160 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

1. The key starName for the star.

2. The key consisting of attributes t i t l e and year for the movie.

3. The key studioOf S ta r indicating the name of the first studio; recall we
assume the studio name is a key for the entity set Studios.

4. The key producingStudio indicating the name of the studio that will
produce the movie using that star.

That is, the relation schema is:

Contracts(starN am e, t i t l e , year, s tu d io O fS ta r, producingStudio)

Notice that we have been inventive in choosing attribute names for our relation
schema, avoiding “name” for any attribute, since it would be unobvious whether
that referred to a star’s name or studio’s name, and in the latter case, which
studio role. Also, were there attributes attached to entity set Contracts, such
as salary, these attributes would be added to the schema of relation Contracts.
□

4.5.3 Combining Relations
Sometimes, the relations that we get from converting entity sets and relation
ships to relations are not the best possible choice of relations for the given data.
One common situation occurs when there is an entity set E with a many-one
relationship R from E to F. The relations from E and R will each have the
key for E in their relation schema. In addition, the relation for E will have
in its schema the attributes of E that are not in the key, and the relation for
R will have the key attributes of F and any attributes of R itself. Because R
is many-one, all these attributes are functionally determined by the key for E,
and we can combine them into one relation with a schema consisting of:

1. All attributes of E.

2. The key attributes of F.

3. Any attributes belonging to relationship R.

For an entity e of E that is not related to any entity of F, the attributes of
types (2) and (3) will have null values in the tuple for e.

Exam ple 4.28: In our running movie example, Owns is a many-one relation
ship from Movies to Studios, which we converted to a relation in Example 4.25.
The relation obtained from entity set Movies was discussed in Example 4.24.
We can combine these relations by taking all their attributes and forming one
relation schema. If we do, the relation looks like that in Fig. 4.26. □

4.5. FROM E /R DIAGRAMS TO RELATIONAL DESIGNS 161

title year length genre studioName
Star Wars 1977 124 sciFi Fox
Gone With the Wind 1939 239 drama MGM
Wayne’s World 1992 95 comedy Paramount

Figure 4.26: Combining relation Movies with relation Owns

Whether or not we choose to combine relations in this manner is a matter
of judgement. However, there are some advantages to having all the attributes
that are dependent on the key of entity set E together in one relation, even
if there are a number of many-one relationships from E to other entity sets.
For example, it is often more efficient to answer queries involving attributes
of one relation than to answer queries involving attributes of several relations.
In fact, some design systems based on the E /R model combine these relations
automatically.

On the other hand, one might wonder if it made sense to combine the
relation for E with the relation of a relationship R that involved E but was not
many-one from E- to some other entity set. Doing so is risky, because it often
leads to redundancy, as the next example shows.

E xam ple 4 .29 : To get a sense of what can go wrong, suppose we combined the
relation of Fig. 4.26 with the relation that we get for the many-many relationship
Stars-in; recall this relation was suggested by Fig. 4.24. Then the combined
relation would look like Fig. 3.2, which we reproduce here as Fig. 4.27. As we
discussed in Section 3.3.1, this relation has anomalies that we need to remove
by the process of normalization. □

title year length genre studioName starN am e

Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone With the Wind 1939 231 drama MGM Vivien Leigh
Wayne’s World 1992 95 comedy Paramount Dana Carvey
Wayne’s World 1992 95 comedy Paramount Mike Meyers

Figure 4.27: The relation Movies with star information

4.5.4 Handling Weak Entity Sets
When a weak entity set appears in an E /R diagram, we need to do three things
differently.

162 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

1. The relation for the weak entity set W itself must include not only the
attributes of W but also the key attributes of the supporting entity sets.
The supporting entity sets are easily recognized because they are reached
by supporting (double-diamond) relationships from W.

2. The relation for any relationship in which the weak entity set W appears
must use as a key for W all of its key attributes, including those of other
entity sets that contribute to W ’s key.

3. However, a supporting relationship R, from the weak entity set W to a
supporting entity set, need not be converted to a relation at all. The
justification is that, as discussed in Section 4.5.3, the attributes of many-
one relationship R's relation will either be attributes of the relation for
W , or (in the case of attributes on R) can be added to the schema for
W 's relation.

Of course, when introducing additional attributes to build the key of a weak
entity set, we must be careful not to use the same name twice. If necessary, we
rename some or all of these attributes.

Exam ple 4 .30: Let us consider the weak entity set Crews from Fig. 4.20,
which we reproduce here as Fig. 4.28. From this diagram we get three relations,
whose schemas are:

Studios(name, addr)
Crews(number, studioName, crewChief)
Unit-of(number, studioName, name)

The first relation, Studios, is constructed in a straightforward manner from
the entity set of the same name. The second, Crews, comes from the weak entity
set Crews. The attributes of this relation are the key attributes of Crews and the
one nonkey attribute of Crews, which is crewChief. We have chosen studioName
as the attribute in relation Crews that corresponds to the attribute name in the
entity set Studios.

Figure 4.28: The crews example of a weak entity set

The third relation, U nit-of, comes from the relationship of the same name.
As always, we represent an E /R relationship in the relational model by a relation
whose schema has the key attributes of the related entity sets. In this case,

4.5. FROM E /R DIAGRAMS TO RELATIONAL DESIGNS 163

U nit-o f has attributes number and studioName, the key for weak entity set
Crews, and attribute name, the key for entity set Studios. However, notice that
since Unit-of is a many-one relationship, the studio studioName is surely the
same as the studio name.

For instance, suppose Disney crew # 3 is one of the crews of the Disney
studio. Then the relationship set for E /R relationship Unit-of includes the pair

(Disney-crew-#3, Disney)

This pair gives rise to the tuple

(3, Disney, Disney)

for the relation Unit-of.
Notice that, as must be the case, the components of this tuple for attributes

studioName and name are identical. As a consequence, we can “merge” the
attributes studioName and name of U n it-o f, giving us the simpler schema:

U nit-of(num ber, name)

However, now we can dispense with the relation U n it-o f altogether, since its
attributes are now a subset of the attributes of relation Crews. □

The phenomenon observed in Example 4.30 — that a supporting relationship
needs no relation — is universal for weak entity sets. The following is a modified
rule for converting to relations entity sets that are weak.

• If W is a weak entity set, construct for W a relation whose schema consists
of:

1. All attributes of W.
2. All attributes of supporting relationships for W.
3. For each supporting relationship for W , say a many-one relationship

from W to entity set E, all the key attributes of E.

Rename attributes, if necessary, to avoid name conflicts.

• Do not construct a relation for any supporting relationship for W.

4.5.5 Exercises for Section 4.5
Exercise 4 .5 .1 : Convert the E /R diagram of Fig. 4.29 to a relational database
schema.

! Exercise 4 .5 .2 : There is another E /R diagram that could describe the weak
entity set Bookings in Fig. 4.29. Notice that a booking can be identified uniquely
by the flight number, day of the flight, the row, and the seat; the customer is
not then necessary to help identify the booking.

164 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Relations W ith Subset Schemas

You might imagine from Example 4.30 that whenever one relation R has a
set of attributes that is a subset of the attributes of another relation S, we
can eliminate R. That is not exactly true. R might hold information that
doesn’t appear in S because the additional attributes of S do not allow us
to extend a tuple from R to S.

For instance, the Internal Revenue Service tries to maintain a relation
People (name, ss#) of potential taxpayers and their social-security num
bers, even if the person had no income and did not file a tax return. They
might also maintain a relation Taxpayers (name, ss#, amount) indicat
ing the amount of tax paid by each person who filed a return in the current
year. The schema of People is a subset of the schema of Taxpayers, yet
there may be value in remembering the social-security number of those
who are mentioned in People but not in Taxpayers.

In fact, even identical sets of attributes may have different semantics,
so it is not possible to merge their tuples. An example would be two
relations S ta rs (name, addr) and S tudios (name, addr). Although the
schemas look alike, we cannot turn star tuples into studio tuples, or vice-
versa.

On the other hand, when the two relations come from the weak-entity-
set construction, then there can be no such additional value to the relation
with the smaller set of attributes. The reason is that the tuples of the
relation that comes from the supporting relationship correspond one-for-
one with the tuples of the relation that comes from the weak entity set.
Thus, we routinely eliminate the former relation.

a) Revise the diagram of Fig. 4.29 to reflect this new viewpoint.

b) Convert your diagram from (a) into relations. Do you get the same
database schema as in Exercise 4.5.1?

Exercise 4 .5 .3 : The E /R diagram of Fig. 4.30 represents ships. Ships are said
to be sisters if they were designed from the same plans. Convert this diagram
to a relational database schema.

Exercise 4.5 .4: Convert the following E /R diagrams to relational database
schemas.

a) Figure 4.22.

b) Your answer to Exercise 4.4.1.

c) Your answer to Exercise 4.4.4(a).

d) Your answer to Exercise 4.4.4(b).

4.6. CONVERTING SUBCLASS STRUCTURES TO RELATIONS 165

Figure 4.29: An E /R diagram about airlines

Figure 4.30: An E /R diagram about sister ships

4.6 Converting Subclass Structures to Relations
When we have an isa-hierarchy of entity sets, we are presented with several
choices of strategy for conversion to relations. Recall we assume that:

• There is a root entity set for the hierarchy,

• This entity set has a key that serves to identify every entity represented
by the hierarchy, and

• A given entity may have components that belong to the entity sets of any
subtree of the hierarchy, as long as that subtree includes the root.

The principal conversion strategies are:

1. Follow the E /R viewpoint. For each entity set E in the hierarchy, create a
relation that includes the key attributes from the root and any attributes
belonging to E.

166 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

2. Treat entities as objects belonging to a single class. For each possible
subtree that includes the root, create one relation, whose schema includes
all the attributes of all the entity sets in the subtree.

3. Use null values. Create one relation with all the attributes of all the entity
sets in the hierarchy. Each entity is represented by one tuple, and that
tuple has a null value for whatever attributes the entity does not have.

We shall consider each approach in turn.

4.6.1 E/R -Style Conversion

Our first approach is to create a relation for each entity set, as usual. If the
entity set E is not the root of the hierarchy, then the relation for E will include
the key attributes at the root, to identify the entity represented by each tuple,
plus all the attributes of E. In addition, if E is involved in a relationship, then
we use these key attributes to identify entities of E in the relation corresponding
to that relationship.

Note, however, that although we spoke of “isa” as a relationship, it is unlike
other relationships, in that it connects components of a single entity, not distinct
entities. Thus, we do not create a relation for “isa.”

Figure 4.31: The movie hierarchy

E xam ple 4.31: Consider the hierarchy of Fig. 4.10, which we reproduce here
as Fig. 4.31. The relations needed to represent the entity sets in this hierarchy
are:

1. Movies (t i t l e , year, len g th , genre). This relation was discussed in
Example 4.24, and every movie is represented by a tuple here.

4.6. CONVERTING SUBCLASS STRUCTURES TO RELATIONS 167

2. MurderMysteries(title, year, weapon). The first two attributes are
the key for all movies, and the last is the lone attribute for the corre
sponding entity set. Those movies that are murder mysteries have a tuple
here as well as in Movies.

3. Cartoons (title, year). This relation is the set of cartoons. It has
no attributes other than the key for movies, since the extra information
about cartoons is contained in the relationship Voices. Movies that are
cartoons have a tuple here as well as in Movies.

Note that the fourth kind of movie — those that are both cartoons and murder
mysteries — have tuples in all three relations.

In addition, we shall need the relation Voices (title, year, starName)
that corresponds to the relationship Voices between Stars and Cartoons. The
last attribute is the key for Stars and the first two form the key for Cartoons.

For instance, the movie Roger Rabbit would have tuples in all four relations.
Its basic information would be in Movies, the murder weapon would appear
in MurderMysteries, and the stars that provided voices for the movie would
appear in Voices.

Notice that the relation Cartoons has a schema that is a subset of the
schema for the relation Voices. In many situations, we would be content to
eliminate a relation such as Cartoons, since it appears not to contain any
information beyond what is in Voices. However, there may be silent cartoons
in our database. Those cartoons would have no voices, and we would therefore
lose information should we eliminate relation Cartoons. □

4.6.2 An Object-Oriented Approach
An alternative strategy for converting isa-hierarchies to relations is to enumerate
all the possible subtrees of the hierarchy. For each, create one relation that
represents entities having components in exactly those subtrees. The schema
for this relation has all the attributes of any entity set in the subtree. We refer
to this approach as “object-oriented,” since it is motivated by the assumption
that entities are “objects” that belong to one and only one class.

E xam ple 4 .32: Consider the hierarchy of Fig. 4.31. There are four possible
subtrees including the root:

1. Movies alone.

2. Movies and Cartoons only.

3. Movies and Murder-Mysteries only.

4. All three entity sets.

We must construct relations for all four “classes.” Since only Murder-Mysteries
contributes an attribute that is unique to its entities, there is actually some
repetition, and these four relations are:

168 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Movies(title, year, length, genre)
MoviesC(title, year, length, genre)
MoviesMM(title, year, length, genre, weapon)
MoviesCMM(title, year, length, genre, weapon)

If Cartoons had attributes unique to that entity set, then all four relations would
have different sets of attributes. As that is not the case here, we could com
bine Movies with MoviesC (i.e., create one relation for non-murder-mysteries)
and combine MoviesMM with MoviesCMM (i.e., create one relation for all mur
der mysteries), although doing so loses some information — which movies are
cartoons.

We also need to consider how to handle the relationship Voices from Car
toons to Stars. If Voices were many-one from Cartoons, then we could add a
voice attribute to MoviesC and MoviesCMM, which would represent the Voices
relationship and would have the side-effect of making all four relations different.
However, Voices is many-many, so we need to create a separate relation for this
relationship. As always, its schema has the key attributes from the entity sets
connected; in this case

Voices(title, y e a r, starName)

would be an appropriate schema.
One might consider whether it was necessary to create two such relations,

one connecting cartoons that are not murder mysteries to their voices, and the
other for cartoons that are murder mysteries. However, there does not appear
to be any benefit to doing so in this case. □

4.6.3 Using Null Values to Combine Relations
There is one more approach to representing information about a hierarchy of
entity sets. If we are allowed to use NULL (the null value as in SQL) as a
value in tuples, we can handle a hierarchy of entity sets with a single relation.
This relation has all the attributes belonging to any entity set of the hierarchy.
An entity is then represented by a single tuple. This tuple has NULL in each
attribute that is not defined for that entity.

E xam ple 4.33: If we applied this approach to the diagram of Fig. 4.31, we
would create a single relation whose schema is:

Movie(title, year, length, genre, weapon)

Those movies that are not murder mysteries would have NULL in the weapon
component of their tuple. It would also be necessary to have a relation Voices
to connect those movies that are cartoons to the stars performing the voices,
as in Example 4.32. □

4.6. CONVERTING SUBCLASS STRUCTURES TO RELATIONS 169

4.6.4 Comparison of Approaches
Each of the three approaches, which we shall refer to as “straight-E/R,” “object-
oriented,” and “nulls,” respectively, have advantages and disadvantages. Here
is a list of the principal issues.

1. It can be expensive to answer queries involving several relations, so we
would prefer to find all the attributes we needed to answer a query in one
relation. The nulls approach uses only one relation for all the attributes,
so it has an advantage in this regard. The other two approaches have
advantages for different kinds of queries. For instance:

(a) A query like “what films of 2008 were longer than 150 minutes?” can
be answered directly from the relation Movies in the straight-E/R
approach of Example 4.31. However, in the object-oriented approach
of Example 4.32, we need to examine Movies, MoviesC, MoviesMM,
and MoviesCMM, since a long movie may be in any of these four
relations.

(b) On the other hand, a query like “what weapons were used in cartoons
of over 150 minutes in length?” gives us trouble in the straight-
E /R approach. We must access Movies to find those movies of over
150 minutes. We must access Cartoons to verify that a movie is a
cartoon, and we must access MurderMysteries to find the murder
weapon. In the object-oriented approach, we have only to access the
relation MoviesCMM, where all the information we need will be found.

2. We would like not to use too many relations. Here again, the nulls method
shines, since it requires only one relation. However, there is a difference
between the other two methods, since in the straight-E/R approach, we
use only one relation per entity set in the hierarchy. In the object-oriented
approach, if we have a root and n children (n + 1 entity sets in all), then
there are 2" different classes of entities, and we need that many relations.

3. We would like to minimize space and avoid repeating information. Since
the object-oriented method uses only one tuple per entity, and that tuple
has components for only those attributes that make sense for the entity,
this approach offers the minimum possible space usage. The nulls ap
proach also has only one tuple per entity, but these tuples are “long” ; i.e.,
they have components for all attributes, whether or not they are appro
priate for a given entity. If there are many entity sets in the hierarchy, and
there are many attributes among those entity sets, then a large fraction
of the space could be wasted in the nulls approach. The straight-E/R
method has several tuples for each entity, but only the key attributes are
repeated. Thus, this method could use either more or less space than the
nulls method.

170 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Figure 4.32: E /R diagram for Exercise 4.6.1

Figure 4.33: E /R diagram for Exercise 4.6.2

4.7. UNIFIED MODELING LANG UAGE 171

4.6.5 Exercises for Section 4.6
Exercise 4 .6 .1 : Convert the E /R diagram of Fig. 4.32 to a relational database
schema, using each of the following approaches:

a) The straight-E/R method.

b) The object-oriented method.

c) The nulls method.

! E xercise 4 .6 .2 : Convert the E /R diagram of Fig. 4.33 to a relational database
schema, using:

a) The straight-E/R method.

b) The object-oriented method.

c) The nulls method.

E xercise 4 .6 .3 : Convert your E /R design from Exercise 4.1.7 to a relational
database schema, using:

a) The straight-E/R method.

b) The object-oriented method.

c) The nulls method.

! E xercise 4 .6 .4 : Suppose that we have an isa-hierarchy involving e entity sets.
Each entity set has a attributes, and k of those at the root form the key for all
these entity sets. Give formulas for (i) the minimum and maximum number of
relations used, and (ii) the minimum and maximum number of components that
the tuple(s) for a single entity have all together, when the method of conversion
to relations is:

a) The straight-E/R method.

b) The object-oriented method.

c) The nulls method.

4.7 Unified M odeling Language
UML (Unified Modeling Language) was developed originally as a graphical no
tation for describing software designs in an object-oriented style. It has been
extended, with some modifications, to be a popular notation for describing
database designs, and it is this portion of UML that we shall study here. UML
offers much the same capabilities as the E /R model, with the exception of mul
tiway relationships. UML also offers the ability to treat entity sets as true
classes, with methods as well as data. Figure 4.34 summarizes the common
concepts, with different terminology, used by E /R and UML.

172 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

UML E /R Model
Class Entity set
Association Binary relationship
Association Class Attributes on a relationship
Subclass Isa hierarchy
Aggregation Many-one relationship
Composition Many-one relationship

with referential integrity

Figure 4.34: Comparison between UML and E /R terminology

4.7.1 UML Classes
A class in UML is similar to an entity set in the E /R model. The notation for a
class is rather different, however. Figure 4.35 shows the class that corresponds
to the E /R entity set Movies from our running example of this chapter.

Movies

title PK
year PK
length
genre

<place for methods>

Figure 4.35: The Movies class in UML

The box for a class is divided into three parts. At the top is the name of
the class. The middle has the attributes, which are like instance variables of a
class. In our Movies class, we use the attributes title, year, length, and genre.

The bottom portion is for methods. Neither the E /R model nor the re
lational model provides methods. However, they are an important concept,
and one that actually appears in modern relational systems, called “object-
relational” DBMS’s (see Section 10.3).

Exam ple 4.34: We might have added an instance method lengthlnHoursQ.
The UML specification doesn’t tell anything more about a method than the
types of any arguments and the type of its return-value. Perhaps this method
returns length/60.0, but we cannot know from the design. □

In this section, we shall not use methods in our design. Thus, in the fu
ture, UML class boxes will have only two sections, for the class name and the
attributes.

4.7. UNIFIED MODELING LANG UAGE 173

4.7.2 Keys for UML classes
As for entity sets, we can declare one key for a UML class. To do so, we follow
each attribute in the key by the letters PK, standing for “primary key.” There
is no convenient way to stipulate that several attributes or sets of attributes
are each keys.

E xam ple 4 .35 : In Fig. 4.35, we have made our standard assumption that title
and year together form the key for Movies. Notice that PK appears on the lines
for these attributes and not for the others. □

4.7.3 Associations
A binary relationship between classes is called an association. There is no
analog of multiway relationships in UML. Rather, a multiway relationship has
to be broken into binary relationships, which as we suggested in Section 4.1.10,
can always be done. The interpretation of an association is exactly what we
described for relationships in Section 4.1.5 on relationship sets. The association
is a set of pairs of objects, one from each of the classes it connects.

Figure 4.36: Movies, stars, and studios in UML

We draw a UML association between two classes simply by drawing a line
between them, and giving the line a name. Usually, we’ll place the name below
the line. For example, Fig. 4.36 is the UML analog of the E /R diagram of
Fig. 4.17. There are two associations, Stars-in and Owns; the first connects
Movies with Stars and the second connects Movies with Studios.

Every association has constraints on the number of objects from each of its
classes that can be connected to an object of the other class. We indicate these
constraints by a label of the form m..n at each end. The meaning of this label
is that each object at the other end is connected to at least m and at most n
objects at this end. In addition:

174 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

• A * in place of n, as in m..*, stands for “infinity.” That is, there is no
upper limit.

• A * alone, in place of m..n, stands for the range 0..*, that is, no constraint
at all on the number of objects.

• If there is no label at all at an end of an association edge, then the label
is taken to be 1..1, i.e., “exactly one.”

Exam ple 4.36: In Fig. 4.36 we see 0..* at the Movies end of both associations.
That says that a star appears in zero or more movies, and a studio owns zero
or more movies; i.e., there is no constraint for either. There is also a 0..* at
the Stars end of association Stars-in, telling us that a movie has any number
of stars. However, the label on the Studios end of association Owns is 0..1,
which means either 0 or 1 studio. That is, a given movie can either be owned
by one studio, or not be owned by any studio in the database. Notice that this
constraint is exactly what is said by the pointed arrow entering Studios in the
E /R diagram of Fig. 4.17. □

Figure 4.37: Expressing referential integrity in UML

Exam ple 4.37: The UML diagram of Fig. 4.37 is intended to mirror the E /R
diagram of Fig. 4.18. Here, we see assumptions somewhat different from those in
Example 4.36, about the numbers of movies and studios that can be associated.
The label 1..* at the Movies end of Owns says that each studio must own at
least one movie (or else it isn’t really a studio). There is still no upper limit on
how many movies a studio can own.

At the Studios end of Owns, we see the label 1..1. That label says that a
movie must be owned by one studio and only one studio. It is not possible for
a movie not to be owned by any studio, as was possible in Fig. 4.36. The label
1..1 says exactly what the rounded arrow in E /R diagrams says.

We also see the association Runs between studios and presidents. At the
Studios end we see label 1..1. That is, a president must be the president of one
and only one studio. That label reflects the same constraint as the rounded
arrow from Presidents to Studios in Fig. 4.18. At the other end of association
Runs is the label 0..1. That label says that a studio can have at most one
president, but it could not have a president at some time. This constraint is
exactly the constraint of a pointed arrow. □

4.7. UNIFIED MODELING LANGUAGE 175

4.7.4 Self-Associations
An association can have both ends at the same class; such an association is
called a self-association. To distinguish the two roles played by one class in a
self-association, we give the association two names, one for each end.

0..1 TheOriginal

0..* TheSequel

Figure 4.38: A self-association representing sequels of movies

E xam ple 4 .38: Figure 4.38 represents the relationship “sequel-of” on movies.
We see one association with each end at the class Movies. The end with role
TheOriginal points to the original movie, and it has label 0..1. That is, for a
movie to be a sequel, there has to be exactly one movie that was the original.
However, some movies are not sequels of any movie. The other role, TheSequel
has label 0..*. The reasoning is that an original can have any number of sequels.
Note we take the point of view that there is an original movie for any sequence
of sequels, and a sequel is a sequel of the original, not of the previous movie in
the sequence. For instance, Rocky //th rough Rocky V are sequels of Rocky. We
do not assume Rocky IV is a sequel of Rocky III, and so on. □

4.7.5 Association Classes
We can attach attributes to an association in much the way we did in the E /R
model, in Section 4.1.9.5 In UML, we create a new class, called an association
class, and attach it to the middle of the association. The association class
has its own name, but its attributes may be thought of as attributes of the
association to which it attaches.

E xam ple 4 .39 : Suppose we want to add to the association Stars-in between
Movies and Stars some information about the compensation the star received
for the movie. This information is not associated with the movie (different
stars get different salaries) nor with the star (stars can get different salaries for
different movies). Thus, we must attach this information with the association
itself. That is, every movie-star pair has its own salary information.

Figure 4.39 shows the association Stars-in with an association class called
Compensation. This class has two attributes, salary and residuals. Notice

Movies

title PK
year PK
length
genre

“However, th e exam ple th e re in F ig . 4.7 will n o t carry over directly , because th e re la tionsh ip
th e re is 3-way.

176 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Figure 4.39: Compensation is an association class for the association Stars-in

that there is no primary key marked for Compensation. When we convert a
diagram such as Fig. 4.39 to relations, the attributes of Compensation will
attach to tuples created for movie-star pairs, as was described for relationships
in Section 4.5.2. □

4.7.6 Subclasses in UML
Any UML class can have a hierarchy of subclasses below it. The primary
key comes from the root of the hierarchy, just as with E /R hierarchies. UML
permits a class C to have four different kinds of subclasses below it, depending
on our choices of answer to two questions:

1. Complete versus Partial. Is every object in the class C a member of some
subclass? If so, the subclasses are complete; otherwise they are partial or
incomplete.

2. Disjoint versus Overlapping. Are the subclasses disjoint (an object cannot
be in two of the subclasses)? If an object can be in two or more of the
subclasses, then the subclasses are said to be overlapping.

Note that these decisions are taken at each level of a hierarchy, and the decisions
may be made independently at each point.

There are several interesting relationships between the classification of UML
subclasses given above, the standard notion of subclasses in object-oriented
systems, and the E /R notion of subclasses.

• In a typical object-oriented system, subclasses are disjoint. That is, no
object can be in two classes. Of course they inherit properties from their
parent class, so in a sense, an object also “belongs” in the parent class.
However, the object may not also be in a sibling class.

• The E /R model automatically allows overlapping subclasses.

• Both the E /R model and object-oriented systems allow either complete
or partial subclasses. That is, there is no requirement that a member of
the superclass be in any subclass.

4.7. UNIFIED MODELING LANGUAGE 177

Subclasses are represented by rectangles, like any class. We assume a sub
class inherits the properties (attributes and associations) from its superclass.
However, any additional attributes belonging to the subclass are shown in the
box for that subclass, and the subclass may have its own, additional, associ
ations to other classes. To represent the class/subclass relationship in UML
diagrams, we use a triangular, open arrow pointing to the superclass. The
subclasses are usually connected by a horizontal line, feeding into the arrow.

Figure 4.40: Cartoons and murder mysteries as disjoint subclasses of movies

E xam ple 4 .40 : Figure 4.40 shows a UML variant of the subclass example
from Section 4.1.11. However, unlike the E /R subclasses, which are of necessity
overlapping, we have chosen here to make the subclasses disjoint. They are
partial, of course, since many movies are neither cartoons nor murder mysteries.

Because the subclasses were chosen disjoint, there must be a third subclass
for movies like Roger Rabbit that are both cartoons and murder mysteries.
Notice that both the classes MurderMysteries and Cartoon-MurderMysteries
have additional attribute weapon, while the two subclasses MurderMysteries
and Cartoon-MurderMysteries have associations with the unseen class Voices.
□

4.7.7 Aggregations and Compositions
There are two special notations for many-one associations whose implications
are rather subtle. In one sense, they reflect the object-oriented style of pro
gramming, where it is common for one class to have references to other classes
among its attributes. In another sense, these special notations are really stipu
lations about how the diagram should be converted to relations; we discuss this
aspect of the m atter in Section 4.8.3.

An aggregation is a line between two classes that ends in an open diamond
at one end. The implication of the diamond is that the label at that end must

178 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

be 0..1, i.e., the aggregation is a many-one association from the class at the
opposite end to the class at the diamond end. Although the aggregation is an
association, we do not need to name it, since in practice that name will never
be used in a relational implementation.

A composition is similar to an association, but the label at the diamond
end must be 1..1. That is, every object at the opposite end from the diamond
must be connected to exactly one object at the diamond end. Compositions
are distinguished by making the diamond be solid black.

Exam ple 4.41: In Fig. 4.41 we see examples of both an aggregation and a
composition. It both modifies and elaborates on the situation of Fig. 4.37. We
see an association from Movies to Studios. The label 1..* at the Movies end
says that a studio has to own at least one movie. We do not need a label at
the diamond end, since the open diamond implies a 0..1 label. That is, a movie
may or may not be associated with a studio, but cannot be associated with
more than one studio. There is also the implication that Movies objects will
contain a reference to their owning Studios object; that reference may be null
if the movie is not owned by a studio.

Figure 4.41: An aggregation from Movies to Studios and a composition from
Presidents to Studios

At the right, we see the class MovieExecs with a subclass Presidents. There
is a composition from Presidents to Studios, meaning that every president is the
president of exactly one studio. A label 1..1 at the Studios end is implied by the
solid diamond. The implication of the composition is that Presidents objects
will contain a reference to a Studios object, and that this reference cannot be
null. □

4.8. FROM UML DIAGRAMS TO RELATIONS 179

4.7.8 Exercises for Section 4.7
E xercise 4 .7 .1 : Draw a UML diagram for the problem of Exercise 4.1.1.

E xercise 4 .7 .2 : Modify your diagram from Exercise 4.7.1 in accordance with
the requirements of Exercise 4.1.2.

Exercise 4 .7 .3 : Repeat Exercise 4.1.3 using UML.

E xercise 4 .7 .4 : Repeat Exercise 4.1.6 using UML.

E xercise 4 .7 .5 : Repeat Exercise 4.1.7 using UML. Are your subclasses dis
joint or overlapping? Are they complete or partial?

E xercise 4 .7 .6 : Repeat Exercise 4.1.9 using UML.

E xercise 4 .7 .7 : Convert the E /R diagram of Fig. 4.30 to a UML diagram.

! E xercise 4 .7 .8 : How would you represent the 3-way relationship of Contracts
among movies, stars, and studios (see Fig. 4.4) in UML?

! E xercise 4 .7 .9 : Repeat Exercise 4.2.5 using UML.

E xercise 4.7 .10: Usually, when we constrain associations with a label of the
form m..n, we find that m and n are each either 0, 1, or *. Give some examples
of associations where it would make sense for at least one of m and n to be
something different.

4.8 From UML Diagrams to Relations
Many of the ideas needed to turn E /R diagrams into relations work for UML
diagrams as well. We shall therefore briefly review the important techniques,
dwelling only on points where the two modeling methods diverge.

4.8.1 UML-to-Relations Basics
Here is an outline of the points that should be familiar from our discussion in
Section 4.5:

• Classes to Relations. For each class, create a relation whose name is the
name of the class, and whose attributes are the attributes of the class.

• Associations to Relations. For each association, create a relation with
the name of that association. The attributes of the relation are the key
attributes of the two connected classes. If there is a coincidence of at
tributes between the two classes, rename them appropriately. If there is
an association class attached to the association, include the attributes of
the association class among the attributes of the relation.

180 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Exam ple 4.42: Consider the UML diagram of Fig. 4.36. For the three classes
we create relations:

Movies(title, year, length genre)
Stars(name, address)
Studios(name, address)

For the two associations, we create relations

Stars-in(movieTitle, movieYear, starName)
Owns(movieTitle, movieYear, studioName)

Note that we have taken some liberties with the names of attributes, for clarity
of intention, even though we were not required to do so.

For another example, consider the UML diagram of Fig. 4.39, which shows
an association class. The relations for the classes Movies and Stars would be
the same as above. However, for the association, we would have a relation

Stars-in(movieTitle, movieYear, starName, salary, residuals)
That is, we add to the key attributes of the associated classes, the two attributes
of the association class Compensation. Note that there is no relation created
for Compensation itself. □

4.8.2 From UML Subclasses to Relations
The three options we enumerated in Section 4.6 apply to UML subclass hierar
chies as well. Recall these options are “E /R style” (relations for each subclass
have only the key attributes and attributes of that subclass), “object-oriented”
(each entity is represented in the relation for only one subclass), and “use nulls”
(one relation for all subclasses). However, if we have information about whether
subclasses are disjoint or overlapping, and complete or partial, then we may find
one or another method more appropriate. Here are some considerations:

1. If a hierarchy is disjoint at every level, then an object-oriented represen
tation is suggested. We do not have to consider each possible tree of
subclasses when forming relations, since we know that each object can
belong to only one class and its ancestors in the hierarchy. Thus, there
is no possibility of an exponentially exploding number of relations being
created.

2. If the hierarchy is both complete and disjoint at every level, then the task
is even simpler. If we use the object-oriented approach, then we have only
to construct relations for the classes at the leaves of the hierarchy.

3. If the hierarchy is large and overlapping at some or all levels, then the
E /R approach is indicated. We are likely to need so many relations that
the relational database schema becomes unwieldy.

4.8. FROM UML DIAGRAMS TO RELATIONS 181

4.8.3 From Aggregations and Compositions to Relations
Aggregations and compositions are really types of many-one associations. Thus,
one approach to their representation in a relational database schema is to con
vert them as we do for any association in Section 4.8.1. Since these elements
are not necessarily named in the UML diagram, we need to invent a name for
the corresponding relation.

However, there is a hidden assumption that this implementation of aggrega
tions and compositions is undesirable. Recall from Section 4.5.3 that when we
have an entity set E and a many-one relationship R from E to another entity
set F, we have the option — some would say the obligation — to combine the
relation for E with the relation for R. That is, the one relation constructed
from E and R has all the attributes of E plus the key attributes of F.

We suggest that aggregations and compositions be treated routinely in this
manner. Construct no relation for the aggregation or composition. Rather, add
to the relation for the class at the nondiamond end the key attribute(s) of the
class at the diamond end. In the case of an aggregation (but not a composition),
it is possible that these attributes can be null.

E xam ple 4 .43: Consider the UML diagram of Fig. 4.41. Since there is a small
hierarchy, we need to decide how MovieExecs and Presidents will be translated.
Let us adopt the E /R approach, so the Presidents relation has only the cert#
attribute from MovieExecs.

The aggregation from Movies to Studios is represented by putting the key
name for Studios among the attributes for the relation Movies. The composition
from Presidents to Studios is represented by adding the key for Studios to the
relation P res id en ts as well. No relations are constructed for the aggregation
or the composition. The following are all the relations we construct from this
UML diagram.

MovieExecs(cert#, name, address, netWorth)
Presidents(cert#, studioName)
Movies(title, year, length, genre, studioName)
Studios(name, address)

As before, we take some liberties with names of attributes to make our intentions
clear. □

4.8.4 The UML Analog of Weak Entity Sets
We have not mentioned a UML notation that corresponds to the double-border
notation for weak entity sets in the E /R model. There is a sense in which
none is needed. The reason is that UML, unlike E/R , draws on the tradition
of object-oriented systems, which takes the point of view that each object has
its own object-identity. That is, we can distinguish two objects, even if they
have the same values for each of their attributes and other properties. That
object-identity is typically viewed as a reference or pointer to the object.

182 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

In UML, we can take the point of view that the objects belonging to a
class likewise have object-identity. Thus, even if the stated attributes for a
class do not serve to identify a unique object of the class, we can create a new
attribute that serves as a key for the corresponding relation and represents the
object-identity of the object.

However, it is also possible, in UML, to use a composition as we used sup
porting relationships for weak entity sets in the E /R model. This composition
goes from the “weak” class (the class whose attributes do not provide its key)
to the “supporting” class. If there are several “supporting” classes, then sev
eral compositions can be used. We shall use a special notation for a supporting
composition: a small box attached to the weak class with “PK” in it will serve
as the anchor for the supporting composition. The implication is that the key
attribute(s) for the supporting class at the other end of the composition is part
of the key of the weak class, along with any of the attributes of the weak class
that are marked “PK.” As with weak entity sets, there can be several support
ing compositions and classes, and those supporting classes could themselves be
weak, in which case the rule just described is applied recursively.

Crews 0..* 1..1
▲ Studios

number PK PK name PK
crewChief address

Figure 4.42: Weak class Crews supported by a composition and the class Studios

Exam ple 4.44: Figure 4.42 shows the analog of the weak entity set Crews of
Example 4.20. There is a composition from Crews to Studios anchored by a
box labeled “PK” to indicate that this composition provides part of the key for
Crews. □

We convert weak structures such as Fig. 4.42 to relations exactly as we
did in Section 4.5.4. There is a relation for class Studios as usual. There is
no relation for the composition, again as usual. The relation for class Crews
includes not only its own attribute number, but the key for the class at the end
of the composition, which is Studios.

E xam ple 4.45 : The relations for Example 4.44 are thus:

Studios(name, address)
Crews(number, crewChief, studioName)

As before, we renamed the attribute name of Studios in the Crews relation, for
clarity. □

4.9. OBJECT DEFINITION LANGUAGE 183

Customers
Bookings

Flights

SSNo PK 1..1 0 ..* 0..* 1..1 number PK
name
addr
phone

♦ PK row
seat

PK
aircraft

Figure 4.43: A UML diagram analogous to the E /R diagram of Fig. 4.29

4.8.5 Exercises for Section 4.8
E xercise 4 .8 .1 : Convert the UML diagram of Fig. 4.43 to relations.

E xercise 4 .8 .2 : Convert the following UML diagrams to relations:

a) Figure 4.37.

b) Figure 4.40.

c) Your solution to Exercise 4.7.1.

d) Your solution to Exercise 4.7.3.

e) Your solution to Exercise 4.7.4.

f) Your solution to Exercise 4.7.6.

E xercise 4 .8 .3 : How many relations do we create, using the object-oriented
approach, if we have a three-level hierarchy with three subclasses of each class
at the first and second levels, and that hierarchy is:

a) Disjoint and complete at each level.

b) Disjoint but not complete at each level.

c) Neither disjoint nor complete.

ODL (Object Definition Language) is a text-based language for specifying the
structure of databases in object-oriented terms. Like UML, the class is the
central concept in ODL. Classes in ODL have a name, attributes, and methods,
just as UML classes do. Relationships, which are analogous to UML’s associa
tions, are not an independent concept in ODL, but are embedded within classes
as an additional family of properties.

4.9 Object Definition Language

184 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.9.1 Class Declarations
A declaration of a class in ODL, in its simplest form, is:

c la ss <name> {
<list of properties>

};

That is, the keyword c la ss is followed by the name of the class and a bracketed
list of properties. A property can be an attribute, a relationship, or a method.

4.9.2 Attributes in ODL
The simplest kind of property is the attribute. In ODL, attributes need not be of
simple types, such as integers and strings. ODL has a type system, described in
Section 4.9.6, that allows us to form structured types and collection types (e.g.,
sets). For example, an attribute address might have a structured type with
fields for the street, city, and zip code. An attribute phones might have a set of
strings as its type, and even more complex types are possible. An attribute is
represented in the declaration for its class by the keyword a t t r ib u te , the type
of the attribute, and the name of the attribute.

1) c la ss Movie {
2) a t t r ib u te s t r in g t i t l e ;
3) a t t r ib u te in teg e r year;
4) a t t r ib u te in teg e r leng th ;
5) a t t r ib u te enum Genres

{drama, comedy, s c iF i , teen} genre;
>;

Figure 4.44: An ODL declaration of the class Movie

Exam ple 4.46: In Fig. 4.44 is an ODL declaration of the class of movies. It
is not a complete declaration; we shall add more to it later. Line (1) declares
Movie to be a class. Following line (1) are the declarations of four attributes
that all Movie objects will have.

Lines (2), (3), and (4) declare three attributes, t i t l e , year, and length.
The first of these is of character-string type, and the other two are integers.
Line (5) declares attribute genre to be of enumerated type. The name of the
enumeration (list of symbolic constants) is Genres, and the four values the
attribute genre is allowed to take are drama, comedy, sc iF i, and teen. An
enumeration must have a name, which can be used to refer to the same type
anywhere. □

4.9. OBJECT DEFINITION LANGUAGE 185

W hy Name Enumerations and Structures?

The enumeration-name Genres in Fig. 4.44 appears to play no role. How
ever, by giving this set of symbolic constants a name, we can refer to it
elsewhere, including in the declaration of other classes. In some other class,
the scoped name Movie:: Genres can be used to refer to the definition of
the enumerated type of this name within the class Movie.

E xam ple 4 .47: In Example 4.46, all the attributes have primitive types. Here
is an example with a complex type. We can define the class S ta r by

1) c la s s S ta r {
2) a t t r ib u te s t r in g name;
3) a t t r ib u te S tru c t Addr

{ s tr in g s t r e e t , s t r in g c ity } address;
>;

Line (2) specifies an attribute name (of the star) that is a string. Line (3)
specifies another attribute address. This attribute has a type that is a record
structure. The name of this structure is Addr, and the type consists of two
fields: s t r e e t and c ity . Both fields are strings. In general, one can define
record structure types in ODL by the keyword S tru c t and curly braces around
the list of field names and their types. Like enumerations, structure types must
have a name, which can be used elsewhere to refer to the same structure type.
□

4.9.3 Relationships in ODL
An ODL relationship is declared inside a class declaration, by the keyword
re la tio n s h ip , a type, and the name of the relationship. The type of a re
lationship describes what a single object of the class is connected to by the
relationship. Typically, this type is either another class (if the relationship is
many-one) or a collection type (if the relationship is one-many or many-many).
We shall show complex types by example, until the full type system is described
in Section 4.9.6.

E xam ple 4 .48: Suppose we want to add to the declaration of the Movie class
from Example 4.46 a property that is a set of stars. More precisely, we want
each Movie object to connect the set of S ta r objects that are its stars. The
best way to represent this connection between the Movie and S ta r classes is
with a relationship. We may represent this relationship by a line:

relationship Set<Star> stars;

186 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

in the declaration of class Movie. It says that in each object of class Movie there
is a set of references to Star objects. The set of references is called stars. □

4.9.4 Inverse Relationships
Just as we might like to access the stars of a given movie, we might like to
know the movies in which a given star acted. To get this information into S ta r
objects, we can add the line

relationship Set<Movie> starredln;
to the declaration of class S ta r in Example 4.47. However, this line and a
similar declaration for Movie omits a very important aspect of the relationship
between movies and stars. We expect that if a star S is in the s ta r s set for
movie M , then movie M is in the s ta r r e d ln set for star 5. We indicate this
connection between the relationships s ta r s and s ta r r e d ln by placing in each of
their declarations the keyword inverse and the name of the other relationship.
If the other relationship is in some other class, as it usually is, then we refer
to that relationship by its scoped name — the name of its class, followed by a
double colon (: :) and the name of the relationship.

Example 4.49: To define the relationship starredln of class Star to be the
inverse of the relationship stars in class Movie, we revise the declarations of
these classes, as shown in Fig. 4.45 (which also contains a definition of class
Studio to be discussed later). Line (6) shows the declaration of relationship
stairs of movies, and says that its inverse is Star: : starredln. Since relation
ship starredln is defined in another class, its scoped name must be used.

Similarly, relationship starredln is declared in line (11). Its inverse is
declared by that line to be stars of class Movie, as it must be, because inverses
always are linked in pairs. □

As a general rule, if a relationship R for class C associates with object x of
class C with objects j/i, y<i, ■ ■ ■ ,yn of class D, then the inverse relationship of R
associates with each of the t/j’s the object x (perhaps along with other objects).

4.9.5 M ultiplicity of Relationships
Like the binary relationships of the E /R model, a pair of inverse relationships
in ODL can be classified as either many-many, many-one in either direction, or
one-one. The type declarations for the pair of relationships tells us which.

1. If we have a many-many relationship between classes C and D, then in
class C the type of the relationship is Set<Z)>, and in class D the type is
Set<C>.6

6 A ctually , th e S e t could be replaced by an o th er “collection ty p e ,” such as list o r bag,
as discussed in Section 4.9.6. We shall assum e all collections are se ts in o u r exposition of
relationsh ips, however.

4.9. OBJECT DEFINITION LANGUAGE 187

1) class Movie {
2) attribute string title;
3) attribute integer year;
4) attribute integer length;
5) attribute enum Genres

{drama, comedy, sciFi, teen} genre;
6) relationship Set<Star> stars

inverse Star::starredln;
7) relationship Studio ownedBy

inverse Studio::owns;
>;

8) class Star {
9) attribute string name;
10) attribute Struct Addr

{string street, string city} address;
11) relationship Set<Movie> starredln

inverse Movie:: stairs;
};

12) class Studio {
13) attribute string name;
14) attribute Star::Addr address;
15) relationship Set<Movie> owns

inverse Movie::ownedBy;
};

Figure 4.45: Some ODL classes and their relationships

2. If the relationship is many-one from C to D, then the type of the rela
tionship in C is just D, while the type of the relationship in D is Set<C>.

3. If the relationship is many-one from D to C, then the roles of C and D
are reversed in (2) above.

4. If the relationship is one-one, then the type of the relationship in C is just
D, and in D it is just C.

Note that, as in the E /R model, we allow a many-one or one-one relationship
to include the case where for some objects the “one” is actually “none.” For
instance, a many-one relationship from C to D might have a “null” value of
the relationship in some of the C objects. Of course, since a D object could
be associated with any set of C objects, it is also permissible for that set to be
empty for some D objects.

188 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Exam ple 4.50: In Fig. 4.45 we have the declaration of three classes, Movie,
S tar, and Studio. The first two of these have already been introduced in
Examples 4.46 and 4.47. We also discussed the relationship pair s ta r s and
s ta rre d ln . Since each of their types uses Set, we see that this pair represents
a many-many relationship between S ta r and Movie.

Studio objects have attributes name and address; these appear in lines (13)
and (14). We have used the same type for addresses of studios as we defined in
class S ta r for addresses of stars.

In line (7) we see a relationship ownedBy from movies to studios, and the
inverse of this relationship is owns on line (15). Since the type of ownedBy is
Studio, while the type of owns is Set<Movie>, we see that this pair of inverse
relationships is many-one from Movie to Studio. □

4.9.6 Types in ODL
ODL offers the database designer a type system similar to that found in C or
other conventional programming languages. A type system is built from a basis
of types that are defined by themselves and certain recursive rules whereby
complex types are built from simpler types. In ODL, the basis consists of:

1. Primitive types: integer, float, character, character string, boolean, and
enumerations. The latter are lists of symbolic names, such as drama in
line (5) of Fig. 4.45.

2. Class names, such as Movie, or S tar, which represent types that are
actually structures, with components for each of the attributes and rela
tionships of that class.

These types are combined into structured types using the following type
constructors:

1. Set. If T is any type, then Set<T> denotes the type whose values are finite
sets of elements of type T. Examples using the set type-constructor occur
in lines (6), (11), and (15) of Fig. 4.45.

2. Bag. If T is any type, then Bag<T> denotes the type whose values are
finite bags or multisets of elements of type T.

3. List. If T is any type, then List<T> denotes the type whose values are
finite lists of zero or more elements of type T.

4. Array. If T is a type and i is an integer, then Array<T, i> denotes the
type whose elements are arrays of i elements of type T. For example,
Array<char,10> denotes character strings of length 10.

5. Dictionary. If T and S are types, then Dictionary<T,S> denotes a type
whose values are finite sets of pairs. Each pair consists of a value of the
key type T and a value of the range type S. The dictionary may not
contain two pairs with the same key value.

4.9. OBJECT DEFINITION LANGUAGE 189

Sets, Bags, and Lists

To understand the distinction between sets, bags, and lists, remember that
a set has unordered elements, and only one occurrence of each element. A
bag allows more than one occurrence of an element, but the elements and
their occurrences are unordered. A list allows more than one occurrence of
an element, but the occurrences are ordered. Thus, {1,2,1} and {2,1,1}
are the same bag, but (1,2,1) and (2,1,1) are not the same list.

6. Structures. If Ti, T2, . . . , Tn are types, and Fi, F2 , . . . , Fn are names of
fields, then

Struct N {Ti Fi, T2 F2,..., Tn Fn>

denotes the type named N whose elements are structures with n fields.
The *th field is named Ft and has type T*. For example, line (10) of
Fig. 4.45 showed a structure type named Addr, with two fields. Both
fields are of type string and have names street and city, respectively.

The first five types — set, bag, list, array, and dictionary — are called
collection types. There are different rules about which types may be associated
with attributes and which with relationships.

• The type of a relationship is either a class type or a single use of a collec
tion type constructor applied to a class type.

• The type of an attribute is built starting with a primitive type or types.7
We may then apply the structure and collection type constructors as we
wish, as many times as we wish.

E xam ple 4 .51: Some of the possible types of attributes are:

1. integer.

2. Struct N {string fieldl, integer field2}.

3. List<real>.

4. Array<Struct N {string fieldl, integer field2>, 10>.
7 C lass ty p es m ay also be used, w hich m akes th e a t tr ib u te behave like a “one-w ay” rela

tionsh ip . W e shall no t consider such a ttr ib u te s here.

190 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Example (1) is a primitive type, (2) is a structure of primitive types, (3) a
collection of a primitive type, and (4) a collection of structures built from
primitive types.

Now, suppose the class names Movie and Star are available primitive types.
Then we may construct relationship types such as Movie or Bag<Star>. How
ever, the following are illegal as relationship types:

1. Struct N {Movie fieldl, Star field2}. Relationship types cannot
involve structures.

2. Set<integer> . Relationship types cannot involve primitive types.

3. Set<A rray<Star, 1 0 » . Relationship types cannot involve two applica
tions of collection types.

□

4.9.7 Subclasses in ODL
We can declare one class C to be a subclass of another class D. To do so,
follow the name C in its declaration with the keyword extends and the name
D. Then, class C inherits all the properties of D, and may have additional
properties of its own.

E xam ple 4.52: Recall Example 4.10, where we declared cartoons to be a
subclass of movies, with the additional property of a relationship from a cartoon
to a set of stars that are its “voices.” We can create a subclass Cartoon for
Movie with the ODL declaration:

class Cartoon extends Movie {
relationship Set<Star> voices;

};

Also in that example, we defined a class of murder mysteries with additional
attribute weapon.

class MurderMystery extends Movie {
attribute string weapon;

};

is a suitable declaration of this subclass. □

Sometimes, as in the case of a movie like “Roger Rabbit,” we need a class
that is a subclass of two or more other classes at the same time. In ODL, we
may follow the keyword extends by several classes, separated by colons.8 Thus,
we may declare a fourth class by:

te c h n ic a l ly , the second and subsequent nam es m ust be “in terfaces,” ra th e r th a n classes.
Roughly, an in terface in ODL is a class definition w ithou t an associated set of objects.

4.9. OBJECT DEFINITION LANGUAGE 191

class CartoonMurderMystery
extends MurderMystery : Cartoon;

Note that when there is multiple inheritance, there is the potential for a
class to inherit two properties with the same name. The way such conflicts are
resolved is implementation-dependent.

4.9.8 Declaring Keys in ODL
The declaration of a key or keys for a class is optional. The reason is that
ODL, being object-oriented, assumes that all objects have an object-identity,
as discussed in connection with UML in Section 4.8.4.

In ODL we may declare one or more attributes to be a key for a class by using
the keyword key or keys (it doesn’t matter which) followed by the attribute
or attributes forming keys. If there is more than one attribute in a key, the
list of attributes must be surrounded by parentheses. The key declaration itself
appears inside parentheses, following the name of the class itself in the first line
of its declaration.

E xam ple 4 .53: To declare that the set of two attributes t i t l e and year form
a key for class Movie, we could begin its declaration:

class Movie (key (title, year)) {

We could have used keys in place of key, even though only one key is declared.
□

It is possible that several sets of attributes are keys. If so, then following
the word key(s) we may place several keys separated by commas. A key that
consists of more than one attribute must have parentheses around the list of its
attributes, so we can disambiguate a key of several attributes from several keys
of one attribute each.

The ODL standard also allows properties other than attributes to appear
in keys. There is no fundamental problem with a method or relationship being
declared a key or part of a key, since keys are advisory statements that the
DBMS can take advantage of or not, as it wishes. For instance, one could
declare a method to be a key, meaning that on distinct objects of the class the
method is guaranteed to return distinct values.

When we allow many-one relationships to appear in key declarations, we
can get an effect similar to that of weak entity sets in the E /R model. We can
declare that the object Oi referred to by an object O2 on the “many” side of the
relationship, perhaps together with other properties of O2 that are included in
the key, is unique for different objects Oi- However, we should remember that
there is no requirement that classes have keys; we are never obliged to handle,
in some special way, classes that lack attributes of their own to form a key, as
we did for weak entity sets.

192 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

Exam ple 4.54: Let us review the example of a weak entity set Crews in
Fig. 4.20. Recall that we hypothesized that crews were identified by their
number, and the studio for which they worked, although two studios might
have crews with the same number. We might declare the class Crew as in
Fig. 4.46. Note that we should modify the declaration of S tudio to include the
relationship crewsOf that is an inverse to the relationship unitO f in Crew; we
omit this change.

class Crew (key (number, unitOf)) {
attribute integer number;
attribute string crewChief;
relationship Studio unitOf

inverse Studio::crewsOf;
>;

Figure 4.46: A ODL declaration for crews

What this key declaration asserts is that there cannot be two crews that
both have the same value for the number attribute and are related to the same
studio by unitO f. Notice how this assertion resembles the implication of the
E /R diagram in Fig. 4.20, which is that the number of a crew and the name of
the related studio (i.e., the key for studios) uniquely determine a crew entity.
□

4.9.9 Exercises for Section 4.9
Exercise 4 .9 .1 : In Exercise 4.1.1 was the informal description of a bank data
base. Render this design in ODL, including keys as appropriate.

Exercise 4 .9 .2 : Modify your design of Exercise 4.9.1 in the ways enumerated
in Exercise 4.1.2. Describe the changes; do not write a complete, new schema.

Exercise 4 .9 .3 : Render the teams-players-fans database of Exercise 4.1.3 in
ODL, including keys, as appropriate. Why does the complication about sets
of team colors, which was mentioned in the original exercise, not present a
problem in ODL?

! Exercise 4 .9 .4: Suppose we wish to keep a genealogy. We shall have one class,
Person. The information we wish to record about persons includes their name
(an attribute) and the following relationships: mother, father, and children.
Give an ODL design for the Person class. Be sure to indicate the inverses of
the relationships that, like mother, fa th e r , and ch ild ren , are also relationships
from Person to itself. Is the inverse of the mother relationship the ch ild ren
relationship? Why or why not? Describe each of the relationships and their
inverses as sets of pairs.

4.10. FROM ODL DESIGNS TO RELATIONAL DESIGNS 193

! E xercise 4 .9 .5 : Let us add to the design of Exercise 4.9.4 the attribute
education. The value of this attribute is intended to be a collection of the
degrees obtained by each person, including the name of the degree (e.g., B.S.),
the school, and the date. This collection of structs could be a set, bag, list,
or array. Describe the consequences of each of these four choices. What infor
mation could be gained or lost by making each choice? Is the information lost
likely to be important in practice?

E xercise 4 .9 .6 : In Exercise 4.4.4 we saw two examples of situations where
weak entity sets were essential. Render these databases in ODL, including
declarations for suitable keys.

E xercise 4 .9 .7 : Give an ODL design for the registrar’s database described in
Exercise 4.1.9.

!! E xercise 4 .9 .8 : Under what circumstances is a relationship its own inverse?
Hint: Think about the relationship as a set of pairs, as discussed in Sec
tion 4.9.4.

4.10 From ODL Designs to Relational Designs
ODL was actually intended as the data-definition part of a language standard
for object-oriented DBMS’s, analogous to the SQL CREATE TABLE statement.
Indeed, there have been some attempts to implement such a system. However,
it is also possible to see ODL as a text-based, high-level design notation, from
which we eventually derive a relational database schema. Thus, in this section
we shall consider how to convert ODL designs into relational designs.

Much of the process is similar to that we discussed for E /R diagrams in
Section 4.5 and for UML in Section 4.8. Classes become relations, and relation
ships become relations that connect the key attributes of the classes involved
in the relationship. Yet some new problems arise for ODL, including:

1. Entity sets must have keys, but there is no such guarantee for ODL classes.

2. While attributes in E/R , UML, and the relational model are of primitive
type, there is no such constraint for ODL attributes.

4.10.1 From ODL Classes to Relations
As a starting point, let us assume that our goal is to have one relation for each
class and for that relation to have one attribute for each property. We shall see
many ways in which this approach must be modified, but for the moment, let
us consider the simplest possible case, where we can indeed convert classes to
relations and properties to attributes. The restrictions we assume are:

1. All properties of the class are attributes (not relationships or methods).

194 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

2. The types of the attributes are primitive (not structures or sets).

In this case, the ODL class looks almost like an entity set or a UML class. Al
though there might be no key for the ODL class, ODL assumes object-identity.
We can create an artificial attribute to represent the object-identity and serve
as a key for the relation; this issue was introduced for UML in Section 4.8.4.

Exam ple 4.55: Figure 4.47 is an ODL description of movie executives. No
key is listed, and we do not assume that name uniquely determines a movie
executive (unlike stars, who will make sure their chosen name is unique).

class MovieExec {
attribute string name;
attribute string address;
attribute integer netWorth;

>;

Figure 4.47: The class MovieExec

We create a relation with the same name as the class. The relation has four
attributes, one for each attribute of the class, and one for the object-identity:

MovieExecs(cert#, name, address, netWorth)
We use cert# as the key attribute, representing the object-identity. □

4.10.2 Complex Attributes in Classes
Even when a class’ properties are all attributes we may have some difficulty
converting the class to a relation. The reason is that attributes in ODL can
have complex types such as structures, sets, bags, or lists. On the other hand,
a fundamental principle of the relational model is that a relation’s attributes
have a primitive type, such as numbers and strings. Thus, we must find some
way to represent complex attribute types as relations.

Record structures whose fields are themselves primitive are the easiest to
handle. We simply expand the structure definition, making one attribute of the
relation for each field of the structure.

class Star (key name) {
attribute string name;
attribute Struct Addr

{string street, string city} address;
};

Figure 4.48: Class with a structured attribute

4.10. FROM ODL DESIGNS TO RELATIONAL DESIGNS 195

E xam ple 4 .56 : In Fig. 4.48 is a declaration for class S ta r, with only attributes
as properties. The attribute name is of primitive type, but attribute address
is a structure with two fields, s t r e e t and c ity . We represent this class by the
relation:

Star(name, street, city)

The key is name, and the attributes street and city represent the structure
address. □

4.10.3 Representing Set-Valued Attributes
However, record structures are not the most complex kind of attribute that can
appear in ODL class definitions. Values can also be built using type constructors
Set, Bag, List, Array, and Dictionary from Section 4.9.6. Each presents its
own problems when migrating to the relational model. We shall only discuss
the Set constructor, which is the most common, in detail.

One approach to representing a set of values for an attribute A is to make
one tuple for each value. That tuple includes the appropriate values for all
the other attributes besides A. This approach works, although it is likely to
produce unnormalized relations, as we shall see in the next example.

class Star (key name) {
attribute string name;
attribute Set<

Struct Addr {string street, string city}
> address;

attribute Date birthdate;
};

Figure 4.49: Stars with a set of addresses and a birthdate

E xam ple 4 .57: Figure 4.49 shows a new definition of the class S ta r, in which
we have allowed stars to have a set of addresses and also added a nonkey,
primitive attribute b ir th d a te . The b ir th d a te attribute can be an attribute
of the Stair relation, whose schema now becomes:

Star(name, street, city, birthdate)

Unfortunately, this relation exhibits the sort of anomalies we saw in Sec
tion 3.3.1. If Carrie Fisher has two addresses, say a home and a beach house,
then she is represented by two tuples in the relation S tar. If Harrison Ford has
an empty set of addresses, then he does not appear at all in S tar. A typical
set of tuples for S ta r is shown in Fig. 4.50.

196 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

name street city birthdate
Carrie Fisher 123 Maple St. Hollywood 9/9/99
Carrie Fisher 5 Locust Ln. Malibu 9/9/99
Mark Hamill 456 Oak Rd. Brentwood 8/8/88

Figure 4.50: Adding birthdates

Although name is a key for the class S tar, our need to have several tuples
for one star to represent all their addresses means that name is not a key for
the relation S tar. In fact, the key for that relation is {name, s t r e e t , c ity}.
Thus, the functional dependency

name —» b ir th d a te

is a BCNF violation and the multivalued dependency

name —H- s t r e e t c ity

is a 4NF violation as well. □

There are several options regarding how to handle set-valued attributes that
appear in a class declaration along with other attributes, set-valued or not. One
approach is to separate out each set-valued attribute as if it were a many-many
relationship between the objects of the class and the values that appear in the
sets.

An alternative approach is to place all attributes, set-valued or not, in the
schema for the relation, then use the normalization techniques of Sections 3.3
and 3.6 to eliminate the resulting BCNF and 4NF violations. Notice that any
set-valued attribute in conjunction with any single-valued attribute leads to a
BNCF violation, as in Example 4.57. Two set-valued attributes in the same
class declaration will lead to a 4NF violation, even if there are no single-valued
attributes.

4.10.4 Representing Other Type Constructors
Besides record structures and sets, an ODL class definition could use Bag, L is t,
Array, or D ictionary to construct values. To represent a bag (multiset), in
which a single object can be a member of the bag n times, we cannot simply
introduce into a relation n identical tuples.9 Instead, we could add to the
relation schema another attribute count representing the number of times that

9To be precise, we cannot in troduce identical tup les in to relations o f th e ab strac t relational
m odel described in Section 2.2. However, SQL-based relational D BM S’s do allow duplicate
tuples; i.e., re lations are bags ra th er th an sets in SQL. See Sections 5.1 and 6.4. If queries
are likely to ask for tup le counts, we advise using a scheme such as th a t described here, even
if your DBM S allows duplicate tuples.

4.10. FROM ODL DESIGNS TO RELATIONAL DESIGNS 197

each element is a member of the bag. For instance, suppose that address
in Fig. 4.49 were a bag instead of a set. We could say that 123 Maple St.,
Hollywood is Carrie Fisher’s address twice and 5 Locust Ln., Malibu is her
address 3 times (whatever that may mean) by

name street city count
Carrie Fisher 123 Maple St. Hollywood 2
Carrie Fisher 5 Locust Ln. Malibu 3

A list of addresses could be represented by a new attribute p o s itio n , in
dicating the position in the list. For instance, we could show Carrie Fisher’s
addresses as a list, with Hollywood first, by:

name street city position
Carrie Fisher 123 Maple St. Hollywood 1
Carrie Fisher 5 Locust Ln. Malibu 2

A fixed-length array of addresses could be represented by attributes for
each position in the array. For instance, if address were to be an array of two
street-city structures, we could represent S ta r objects as:

name__________| streetl_________| cityl______ | streets_______ | city2
C arrie F ish e r | 123 Maple S t. | Hollywood | 5 Locust Ln. | Malibu

Finally, a dictionary could be represented as a set, but with attributes for
both the key-value and range-value components of the pairs that are members of
the dictionary. For instance, suppose that instead of star’s addresses, we really
wanted to keep, for each star, a dictionary giving the mortgage holder for each
of their homes. Then the dictionary would have address as the key value and
bank name as the range value. A hypothetical rendering of the Carrie-Fisher
object with a dictionary attribute is:

name street city mortgag e-holder
Carrie
Carrie

Fisher
Fisher

123 Maple St.
5 Locust Ln.

Hollywood
Malibu

Bank of Burbank
Torrance Trust

Of course attribute types in ODL may involve more than one type construc
tor. If a type is any collection type besides dictionary applied to a structure
(e.g., a set of structs), then we may apply the techniques from Sections 4.10.3
or 4.10.4 as if the struct were an atomic value, and then replace the single at
tribute representing the atomic value by several attributes, one for each field of
the struct. This strategy was used in the examples above, where the address
is a struct. The case of a dictionary applied to structs is similar and left as an
exercise.

There are many reasons to limit the complexity of attribute types to an
optional struct followed by an optional collection type. We mentioned in Sec
tion 4.1.1 that some versions of the E /R model allow exactly this much gener
ality in the types of attributes, although we restricted ourselves to attributes of

198 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

primitive type in the E /R model. We recommend that, if you are going to use
an ODL design for the purpose of eventual translation to a relational database
schema, you similarly limit yourself. We take up in the exercises some options
for dealing with more complex types as attributes.

4.10.5 Representing ODL Relationships
Usually, an ODL class definition will contain relationships to other ODL classes.
As in the E /R model, we can create for each relationship a new relation that
connects the keys of the two related classes. However, in ODL, relationships
come in inverse pairs, and we must create only one relation for each pair.

When a relationship is many-one, we have an option to combine it with the
relation that is constructed for the class on the “many” side. Doing so has the
effect of combining two relations that have a common key, as we discussed in
Section 4.5.3. It therefore does not cause a BCNF violation and is a legitimate
and commonly followed option.

4.10.6 Exercises for Section 4.10
E xercise 4.10.1: Convert your ODL designs from the following exercises to
relational database schemas.

a) Exercise 4.9.1.

b) Exercise 4.9.2 (include all four of the modifications specified by that ex
ercise).

c) Exercise 4.9.3.

d) Exercise 4.9.4.

e) Exercise 4.9.5.

! Exercise 4.10.2: Consider an attribute of type Dictionary with key and
range types both structs of primitive types. Show how to convert a class with
an attribute of this type to a relation.

Exercise 4.10.3: We mentioned that when attributes are of a type more com
plex than a collection of structs, it becomes tricky to convert them to relations;
in particular, it becomes necessary to create some intermediate concepts and re
lations for them. The following sequence of questions will examine increasingly
more complex types and how to represent them as relations.

a) A card can be represented as a struct with fields rank (2,3, . . . , 10, Jack,
Queen, King, and Ace) and suit (Clubs, Diamonds, Hearts, and Spades).
Give a suitable definition of a structured type Card. This definition should
be independent of any class declarations but available to them all.

4.10. FROM ODL DESIGNS TO RELATIONAL DESIGNS 199

b) A hand is a set of cards. The number of cards may vary. Give a declaration
of a class Hand whose objects are hands. That is, this class declaration
has an attribute theHand, whose type is a hand.

! c) Convert your class declaration Hand from (b) to a relation schema.

d) A poker hand is a set of five cards. Repeat (b) and (c) for poker hands.

! e) A deal is a set of pairs, each pair consisting of the name of a player and a
hand for that player. Declare a class Deal, whose objects are deals. That
is, this class declaration has an attribute theD eal, whose type is a deal.

f) Repeat (e), but restrict hands of a deal to be hands of exactly five cards.

g) Repeat (e), using a dictionary for a deal. You may assume the names of
players in a deal are unique.

!! h) Convert your class declaration from (e) to a relational database schema.

! i) Suppose we defined deals to be sets of sets of cards, with no player as
sociated with each hand (set of cards). It is proposed that we represent
such deals by a relation schema Deals (deallD , c a rd), meaning that the
card was a member of one of the hands in the deal with the given ID.
What, if anything, is wrong with this representation? How would you fix
the problem?

E xercise 4.10.4: Suppose we have a class C defined by

c la ss C (key a) {
a t t r ib u te s t r in g a;
a t t r ib u te T b;

};

where T is some type. Give the relation schema for the relation derived from
C and indicate its key attributes if T is:

a) S et< S truct S { s tr in g f , s t r in g g}>

! b) Bag<Struct S { s tr in g f , s t r in g g}>

! c) L is t< S tru c t S { s tr in g f , s t r in g }>

! d) D ictionary< S truc t K { s tr in g f , s t r in g g}, S tru c t R { s tr in g i ,
s t r in g j}>

200 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.11 Summary of Chapter 4
♦ The Entity-Relationship Model: In the E /R model we describe entity

sets, relationships among entity sets, and attributes of entity sets and
relationships. Members of entity sets are called entities.

♦ Entity-Relationship Diagrams: We use rectangles, diamonds, and ovals to
draw entity sets, relationships, and attributes, respectively.

♦ Multiplicity of Relationships: Binary relationships can be one-one, many-
one, or many-many. In a one-one relationship, an entity of either set
can be associated with at most one entity of the other set. In a many-one
relationship, each entity of the “many” side is associated with at most one
entity of the other side. Many-many relationships place no restriction.

♦ Good Design: Designing databases effectively requires that we represent
the real world faithfully, that we select appropriate elements (e.g., rela
tionships, attributes), and that we avoid redundancy — saying the same
thing twice or saying something in an indirect or overly complex manner.

♦ Subclasses: The E /R model uses a special relationship isa to represent
the fact that one entity set is a special case of another. Entity sets may be
connected in a hierarchy with each child node a special case of its parent.
Entities may have components belonging to any subtree of the hierarchy,
as long as the subtree includes the root.

♦ Weak Entity Sets: These require attributes of some supporting entity
set(s) to identify their own entities. A special notation involving diamonds
and rectangles with double borders is used to distinguish weak entity sets.

♦ Converting Entity Sets to Relations: The relation for an entity set has one
attribute for each attribute of the entity set. An exception is a weak entity
set E, whose relation must also have attributes for the key attributes of
its supporting entity sets.

♦ Converting Relationships to Relations: The relation for an E /R relation
ship has attributes corresponding to the key attributes of each entity
set that participates in the relationship. However, if a relationship is a
supporting relationship for some weak entity set, it is not necessary to
produce a relation for that relationship.

♦ Converting Isa Hierarchies to Relations: One approach is to create a
relation for each entity set with the key attributes of the hierarchy’s root
plus the attributes of the entity set itself. A second approach is to create
a relation for each possible subset of the entity sets in the hierarchy, and
create for each entity one tuple; that tuple is in the relation for exactly
the set of entity sets to which the entity belongs. A third approach is to
create only one relation and to use null values for those attributes that
do not apply to the entity represented by a given tuple.

♦ Unified Modeling Language: In UML, we describe classes and associa
tions between classes. Classes are analogous to E /R entity sets, and
associations are like binary E /R relationships. Special kinds of many-
one associations, called aggregations and compositions, are used and have
implications as to how they are translated to relations.

♦ UML Subclass Hierarchies: UML permits classes to have subclasses, with
inheritance from the superclass. The subclasses of a class can be complete
or partial, and they can be disjoint or overlapping.

♦ Converting UML Diagrams to Relations: The methods are similar to
those used for the E /R model. Classes become relations and associations
become relations connecting the keys of the associated classes. Aggrega
tions and compositions are combined with the relation constructed from
the class at the “many” end.

4- Object Definition Language: This language is a notation for formally de
scribing the schemas of databases in an object-oriented style. One defines
classes, which may have three kinds of properties: attributes, methods,
and relationships.

♦ ODL Relationships: A relationship in ODL must be binary. It is repre
sented, in the two classes it connects, by names that are declared to be
inverses of one another. Relationships can be many-many, many-one, or
one-one, depending on whether the types of the pair are declared to be a
single object or a set of objects.

♦ The ODL Type System: ODL allows types to be constructed, beginning
with class names and atomic types such as integer, by applying any of the
following type constructors: structure formation, set-of, bag-of, list-of,
array-of, and dictionary-of.

♦ Keys in ODL: Keys are optional in ODL. We can declare one or more keys,
but because objects have an object-ID that is not one of its properties, a
system implementing ODL can tell the difference between objects, even
if they have identical values for all properties.

♦ Converting ODL Classes to Relations: The method is the same as for
E /R or UML, except if the class has attributes of complex type. If that
happens the resulting relation may be unnormalized and will have to
be decomposed. It may also be necessary to create a new attribute to
represent the object-identity of objects and serve as a key.

♦ Converting ODL Relationships to Relations: The method is the same as
for E /R relationships, except that we must first pair ODL relationships
and their inverses, and create only one relation for the pair.

4.11. SUMMARY OF CHAPTER 4 201

202 CHAPTER 4. HIGH-LEVEL DATABASE MODELS

4.12 References for Chapter 4
The original paper on the Entity-Relationship model is [5]. Two books on the
subject of E /R design are [2] and [7].

The manual defining ODL is [4]. One can also find more about the history
of object-oriented database systems from [1], [3], and [6].

1. F. Bancilhon, C. Delobel, and P. Kanellakis, Building an Object-Oriented
Database System, Morgan-Kaufmann, San Francisco, 1992.

2. Carlo Batini, S. Ceri, S. B. Navathe, and Carol Batini, Conceptual Data
base Design: an Entity/Relationship Approach, Addison-Wesley, Boston
MA, 1991.

3. R. G. G. Cattell, Object Data Management, Addison-Wesley, Reading,
MA, 1994.

4. R. G. G. Cattell (ed.), The Object Database Standard: ODMG-99, Mor
gan-Kaufmann, San Francisco, 1999.

5. P. P. Chen, “The entity-relationship model: toward a unified view of
data,” ACM Trans, on Database Systems 1:1, pp. 9-36, 1976.

6. W. Kim (ed.), Modern Database Systems: The Object Model, Interoper
ability, and Beyond, ACM Press, New York, 1994.

7. B. Thalheim, “Fundamentals of Entity-Relationship Modeling,” Spring
er-Verlag, Berlin, 2000.

Part II

Relational Database
Programming

203

Chapter 5

Algebraic and Logical
Query Languages

We now switch our attention from modeling to programming for relational
databases. We start in this discussion with two abstract programming lan
guages, one algebraic and the other logic-based. The algebraic programming
language, relational algebra, was introduced in Section 2.4, to let us see what
operations in the relational model look like. However, there is more to the al
gebra. In this chapter, we extend the set-based algebra of Section 2.4 to bags,
which better reflect the way the relational model is implemented in practice.
We also extend the algebra so it can handle several more operations than were
described previously; for example, we need to do aggregations (e.g., averages)
of columns of a relation.

We close the chapter with another form of query language, based on logic.
This language, called “Datalog,” allows us to express queries by describing the
desired results, rather than by giving an algorithm to compute the results, as
relational algebra requires.

5.1 Relational Operations on Bags
In this section, we shall consider relations that are bags (multisets) rather than
sets. That is, we shall allow the same tuple to appear more than once in a
relation. When relations are bags, there are changes that need to be made to
the definition of some relational operations, as we shall see. First, let us look
at a simple example of a relation that is a bag but not a set.

E xam ple 5 .1 : The relation in Fig. 5.1 is a bag of tuples. In it, the tuple
(1.2) appears three times and the tuple (3,4) appears once. If Fig. 5.1 were
a set-valued relation, we would have to eliminate two occurrences of the tuple
(1.2). In a bag-valued relation, we do allow multiple occurrences of the same
tuple, but like sets, the order of tuples does not matter. □

205

206 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

B

Figure 5.1: A bag

5.1.1 Why Bags?
As we mentioned, commercial DBMS’s implement relations that are bags, rather
than sets. An important motivation for relations as bags is that some relational
operations are considerably more efficient if we use the bag model. For example:

1. To take the union of two relations as bags, we simply copy one relation
and add to the copy all the tuples of the other relation. There is no
need to eliminate duplicate copies of a tuple that happens to be in both
relations.

2. When we project relation as sets, we need to compare each projected tuple
with all the other projected tuples, to make sure that each projection
appears only once. However, if we can accept a bag as the result, then
we simply project each tuple and add it to the result; no comparison with
other projected tuples is necessary.

A B C
1 2 5
3 4 6
1 2 7
1 2 8

Figure 5.2: Bag for Example 5.2

E xam ple 5.2 : The bag of Fig. 5.1 could be the result of projecting the relation
shown in Fig. 5.2 onto attributes A and B, provided we allow the result to be
a bag and do not eliminate the duplicate occurrences of (1,2). Had we used
the ordinary projection operator of relational algebra, and therefore eliminated
duplicates, the result would be only:

B

4

5.1. RELATIONAL OPERATIONS ON BAGS 207

Note that the bag result, although larger, can be computed more quickly, since
there is no need to compare each tuple (1,2) or (3,4) with previously generated
tuples. □

Another motivation for relations as bags is that there are some situations
where the expected answer can only be obtained if we use bags, at least tem
porarily. Here is an example.

E xam ple 5.3: Suppose we want to take the average of the ^-components of
a set-valued relation such as Fig. 5.2. We could not use the set model to think
of the relation projected onto attribute A. As a set, the average value of A is
2, because there are only two values of A — 1 and 3 — in Fig. 5.2, and their
average is 2. However, if we treat the ^4-column in Fig. 5.2 as a bag {1,3,1,1},
we get the correct average of A, which is 1.5, among the four tuples of Fig. 5.2.
□

5.1.2 Union, Intersection, and Difference of Bags
These three operations have new definitions for bags. Suppose that R and S
are bags, and that tuple t appears n times in R and m times in S. Note that
either n or m (or both) can be 0. Then:

• In the bag union R U S, tuple t appears n + m times.

• In the bag intersection R fl 5, tuple t appears min(n, m) times.

• In the bag difference R — S, tuple t appears max(0, n — m) times. That
is, if tuple t appears in R more times than it appears in S, then t appears
in R — S the number of times it appears in R, minus the number of times
it appears in S. However, if t appears at least as many times in 5 as
it appears in R, then t does not appear at all in R — S. Intuitively,
occurrences of t in S each “cancel” one occurrence in R.

E xam ple 5 .4 : Let R be the relation of Fig. 5.1, that is, a bag in which tuple
(1,2) appears three times and (3,4) appears once. Let S be the bag

BIT
4
4
6

Then the bag union R U S is the bag in which (1,2) appears four times (three
times for its occurrences in R and once for its occurrence in 5); (3,4) appears
three times, and (5,6) appears once.

The bag intersection R fl S is the bag

208 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

A B
1 2
3 4

with one occurrence each of (1,2) and (3,4). That is, (1,2) appears three times
in R and once in 5, and min(3,1) = 1, so (1,2) appears once in R fl S. Similarly,
(3,4) appears m in(l,2) = 1 time in R fl S. Tuple (5,6), which appears once in
S but zero times in R appears min(0,1) = 0 times in R fl S. In this case, the
result happens to be a set, but any set is also a bag.

The bag difference R — S is the bag

B

To see why, notice that (1,2) appears three times in R and once in S, so in
R — S it appears max(0,3 — 1) = 2 times. Tuple (3,4) appears once in R and
twice in S, so in R — S it appears max(0,1 — 2) = 0 times. No other tuple
appears in R, so there can be no other tuples in R — S.

As another example, the bag difference S — R is the bag

B

Tuple (3,4) appears once because that is the number of times it appears in S
minus the number of times it appears in R. Tuple (5,6) appears once in S — R
for the same reason. □

5.1.3 Projection of Bags

We have already illustrated the projection of bags. As we saw in Example 5.2,
each tuple is processed independently during the projection. If R is the bag of
Fig. 5.2 and we compute the bag-projection tta,b (R), then we get the bag of
Fig. 5.1.

If the elimination of one or more attributes during the projection causes
the same tuple to be created from several tuples, these duplicate tuples are not
eliminated from the result of a bag-projection. Thus, the three tuples (1,2,5),
(1,2,7), and (1,2,8) of the relation R from Fig. 5.2 each gave rise to the same
tuple (1,2) after projection onto attributes A and B. In the bag result, there are
three occurrences of tuple (1,2), while in the set-projection, this tuple appears
only once.

5.1. RELATIONAL OPERATIONS ON BAGS 209

Bag Operations on Sets

Imagine we have two sets R and S. Every set may be thought of as a
bag; the bag just happens to have at most one occurrence of any tuple.
Suppose we intersect R fl 5, but we think of R and S as bags and use the
bag intersection rule. Then we get the same result as we would get if we
thought of R and S as sets. That is, thinking of R and S as bags, a tuple
t is in R fl S the minimum of the number of times it is in R and S. Since
R and S are sets, t can be in each only 0 or 1 times. Whether we use the
bag or set intersection rules, we find that t can appear at most once in
R fl S, and it appears once exactly when it is in both R and S. Similarly,
if we use the bag difference rule to compute R — S or S — R we get exactly
the same result as if we used the set rule.

However, union behaves differently, depending on whether we think
of R and S as sets or bags. If we use the bag rule to compute R, U S,
then the result may not be a set, even if R and S are sets. In particular,
if tuple t appears in both R and S, then t appears twice in R U 5 if we
use the bag rule for union. But if we use the set rule then t appears only
once in R U S.

5.1.4 Selection on Bags
To apply a selection to a bag, we apply the selection condition to each tuple
independently. As always with bags, we do not eliminate duplicate tuples in
the result.

E xam ple 5.5: If R is the bag

B
~ T "

4
2
2

then the result of the bag-selection crc>6 (R) is

A B C
3 4 6
1 2 7
1 2 7

That is, all but the first tuple meets the selection condition. The last two tuples,
which are duplicates in R, are each included in the result. □

210 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

Algebraic Laws for Bags

An algebraic law is an equivalence between two expressions of relational
algebra whose arguments are variables standing for relations. The equiv
alence asserts that no matter what relations we substitute for these vari
ables, the two expressions define the same relation. An example of a well-
known law is the commutative law for union: R U S = S U R. This law
happens to hold whether we regard relation-variables R and S as standing
for sets or bags. However, there are a number of other laws that hold when
relational algebra is applied to sets but that do not hold when relations are
interpreted as bags. A simple example of such a law is the distributive law
of set difference over union, (R U S) — T = (R — T) U (S — T). This law
holds for sets but not for bags. To see why it fails for bags, suppose R, S,
and T each have one copy of tuple t. Then the expression on the left has
one t, while the expression on the right has none. As sets, neither would
have t. Some exploration of algebraic laws for bags appears in Exercises
5.1.4 and 5.1.5.

5.1.5 Product of Bags
The rule for the Cartesian product of bags is the expected one. Each tuple of
one relation is paired with each tuple of the other, regardless of whether it is a
duplicate or not. As a result, if a tuple r appears in a relation R m times, and
tuple s appears n times in relation S, then in the product R x S, the tuple rs
will appear m n times.

E xam ple 5 .6 : Let R and S be the bags shown in Fig. 5.3. Then the product
R x S consists of six tuples, as shown in Fig. 5.3(c). Note that the usual
convention regarding attribute names that we developed for set-relations applies
equally well to bags. Thus, the attribute B , which belongs to both relations R
and S, appears twice in the product, each time prefixed by one of the relation
names. □

5.1.6 Joins of Bags
Joining bags presents no surprises. We compare each tuple of one relation with
each tuple of the other, decide whether or not this pair of tuples joins success
fully, and if so we put the resulting tuple in the answer. When constructing the
answer, we do not eliminate duplicate tuples.

E xam ple 5 .7 : The natural join R txi S of the relations R and S seen in Fig. 5.3
is

5.1. RELATIONAL OPERATIONS ON BAGS 211

B

(a) The relation R

B

(b) The relation S

A R.B S.B C
1 2 2 3
1 2 2 3
1 2 4 5
1 2 4 5
1 2 4 5
1 2 4 5

(c) The product R x S

Figure 5.3: Computing the product of bags

A B C
1 2 3
1 2 3

That is, tuple (1,2) of R joins with (2,3) of S. Since there are two copies of
(1, 2) in R and one copy of (2,3) in 5 , there are two pairs of tuples that join to
give the tuple (1,2,3). No other tuples from R and S join successfully.

As another example on the same relations R and S, the theta-join

R x i r .b < s . b S

produces the bag

A R.B S.B c
1 2 4 5
1 2 4 5
1 2 4 5
1 2 4 5

212 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

The computation of the join is as follows. Tuple (1,2) from R and (4,5) from S
meet the join condition. Since each appears twice in its relation, the number of
times the joined tuple appears in the result is 2 x 2 or 4. The other possible join
of tuples — (1,2) from R with (2,3) from S — fails to meet the join condition,
so this combination does not appear in the result. □

5.1.7 Exercises for Section 5.1
Exercise 5 .1 .1 : Let PC be the relation of Fig. 2.21(a), and suppose we compute
the projection nspeed(PC). What is the value of this expression as a set? As a
bag? What is the average value of tuples in this projection, when treated as a
set? As a bag?

Exercise 5 .1 .2 : Repeat Exercise 5.1.1 for the projection 7Tfcd(PC).

E xercise 5 .1 .3 : This exercise refers to the “battleship” relations of Exer
cise 2.4.3.

a) The expression iri,ore (C lasses) yields a single-column relation with the
bores of the various classes. For the data of Exercise 2.4.3, what is this
relation as a set? As a bag?

! b) Write an expression of relational algebra to give the bores of the ships
(not the classes). Your expression must make sense for bags; that is, the
number of times a value b appears must be the number of ships that have
bore b.

! E xercise 5 .1 .4 : Certain algebraic laws for relations as sets also hold for re
lations as bags. Explain why each of the laws below hold for bags as well as
sets.

a) The associative law for union: (R U S) U T = R U (S U T).

b) The associative law for intersection: (R ft S) fl T — RC\ (S C\ T).

c) The associative law for natural join: (R tx S) ix T = R tx (S tx T).

d) The commutative law for union: (R U S) = (S U R).

e) The commutative law for intersection: (R fl S) = (S fl R).

f) The commutative law for natural join: (R ix S) = (S ex R).

g) x l (R U S) = ttl(R) U tti,(S). Here, L is an arbitrary list of attributes.

h) The distributive law of union over intersection:

R u (S n T) = {R u S) n (R u T)

5.2. EXTENDED OPERATORS OF RELATIONAL ALGEBRA 213

i) <jc and d (R) — <Jc(R) H (Td (R)• Here, C and D are arbitrary conditions
about the tuples of R.

!! Exercise 5 .1 .5 : The following algebraic laws hold for sets but not for bags.
Explain why they hold for sets and give counterexamples to show that they do
not hold for bags.

a) (R n 5) - T = R n {S - T).

b) The distributive law of intersection over union:

R n (5 u T) = (R n S) u (R n T)

c) a c or d(R) = &c(R) U a D(R). Here, C and D are arbitrary conditions
about the tuples of R.

5.2 Extended Operators of Relational Algebra
Section 2.4 presented the classical relational algebra, and Section 5.1 introduced
the modifications necessary to treat relations as bags of tuples rather than sets.
The ideas of these two sections serve as a foundation for most of modern query
languages. However, languages such as SQL have several other operations that
have proved quite important in applications. Thus, a full treatment of relational
operations must include a number of other operators, which we introduce in this
section. The additions:

1. The duplicate-elimination operator 6 turns a bag into a set by eliminating
all but one copy of each tuple.

2. Aggregation operators, such as sums or averages, are not operations of
relational algebra, but are used by the grouping operator (described next).
Aggregation operators apply to attributes (columns) of a relation; e.g., the
sum of a column produces the one number that is the sum of all the values
in that column.

3. Grouping of tuples according to their value in one or more attributes has
the effect of partitioning the tuples of a relation into “groups.” Aggre
gation can then be applied to columns within each group, giving us the
ability to express a number of queries that are impossible to express in
the classical relational algebra. The grouping operator 7 is an operator
that combines the effect of grouping and aggregation.

4. Extended projection gives additional power to the operator n. In addition
to projecting out some columns, in its generalized form ir can perform
computations involving the columns of its argument relation to produce
new columns.

214 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

5. The sorting operator t turns a relation into a list of tuples, sorted accord
ing to one or more attributes. This operator should be used judiciously,
because some relational-algebra operators do not make sense on lists. We
can, however, apply selections or projections to lists and expect the order
of elements on the list to be preserved in the output.

6 . The outerjoin operator is a variant of the join that avoids losing dangling
tuples. In the result of the outerjoin, dangling tuples are “padded” with
the null value, so the dangling tuples can be represented in the output.

5.2.1 Duplicate Elimination
Sometimes, we need an operator that converts a bag to a set. For that purpose,
we use 6(R) to return the set consisting of one copy of every tuple that appears
one or more times in relation R.

E xam ple 5 .8 : If R is the relation

from Fig. 5.1, then 6(R) is

B

B

Note that the tuple (1,2), which appeared three times in R, appears only once
in 6(R). □

5.2.2 Aggregation Operators
There are several operators that apply to sets or bags of numbers or strings.
These operators are used to summarize or “aggregate” the values in one column
of a relation, and thus are referred to as aggregation operators. The standard
operators of this type are:

1. SUM produces the sum of a column with numerical values.
2. AVG produces the average of a column with numerical values.

3. MIN and MAX, applied to a column with numerical values, produces the
smallest or largest value, respectively. When applied to a column with
character-string values, they produce the lexicographically (alphabeti
cally) first or last value, respectively.

5.2. EXTENDED OPERATORS OF RELATIONAL ALGEBRA 215

4. COUNT produces the number of (not necessarily distinct) values in a col
umn. Equivalently, COUNT applied to any attribute of a relation produces
the number of tuples of that relation, including duplicates.

E xam ple 5 .9 : Consider the relation

A B
"1 2

3 4
1 2
1 2

Some examples of aggregations on the attributes of this relation are:

1. SUM(B) = 2 + 4 + 2 + 2 = 10.

2. AVG(A) = (1 + 3 + 1 + l) /4 = 1.5.

3. MIN (A) = 1.

4. MAX(B) = 4. .

5. COUNT (A) = 4.

□

5.2.3 Grouping
Often we do not want simply the average or some other aggregation of an
entire column. Rather, we need to consider the tuples of a relation in groups,
corresponding to the value of one or more other columns, and we aggregate only
within each group. As an example, suppose we wanted to compute the total
number of minutes of movies produced by each studio, i.e., a relation such as:

studioName sumOfLengths
Disney 12345
MGM 54321

Starting with the relation

M o v ie s (tit le , y ea r, len g th , genre, studioName, producerC#)

from our example database schema of Section 2.2.8, we must group the tuples
according to their value for attribute studioName. We must then sum the
len g th column within each group. That is, we imagine that the tuples of
Movies are grouped as suggested in Fig. 5.4, and we apply the aggregation
SUM (leng th) to each group independently.

216 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

studioN am e

Disney
Disney
Disney
MGM
MGM

OO
O

Figure 5.4: A relation with imaginary division into groups

5.2.4 The Grouping Operator
We shall now introduce an operator that allows us to group a relation and/or
aggregate some columns. If there is grouping, then the aggregation is within
groups.

The subscript used with the 7 operator is a list L of elements, each of which
is either:

a) An attribute of the relation R to which the 7 is applied; this attribute is
one of the attributes by which R will be grouped. This element is said to
be a grouping attribute.

b) An aggregation operator applied to an attribute of the relation. To pro
vide a name for the attribute corresponding to this aggregation in the
result, an arrow and new name are appended to the aggregation. The
underlying attribute is said to be an aggregated attribute.

The relation returned by the expression 7l {R) is constructed as follows:

1. Partition the tuples of R into groups. Each group consists of all tuples
having one particular assignment of values to the grouping attributes in
the list L. If there are no grouping attributes, the entire relation R is one
group.

2. For each group, produce one tuple consisting of:

i. The grouping attributes’ values for that group and
ii. The aggregations, over all tuples of that group, for the aggregated

attributes on list L.

E xam ple 5.10: Suppose we have the relation

S t a r s l n (t i t l e , y ea r, starName)

5.2. EXTENDED OPERATORS OF RELATIONAL ALGEBRA 217

S is a Special Case of 7

Technically, the 5 operator is redundant. If R(Ai ,A 2, . . . , An) is a relation,
then S(R) is equivalent to 7a , ,a „(R)- That is, to eliminate duplicates,
we group on all the attributes of the relation and do no aggregation. Then
each group corresponds to a tuple that is found one or more times in
R. Since the result of 7 contains exactly one tuple from each group, the
effect of this “grouping” is to eliminate duplicates. However, because 6 is
such a common and important operator, we shall continue to consider it
separately when we study algebraic laws and algorithms for implementing
the operators.

One can also see 7 as an extension of the projection operator on sets.
That is, 'YAi,A-i,... ,An (R) is also the same as ’Ka x,Ai ,... ,a „ (R), if i? is a set.
However, if R is a bag, then 7 eliminates duplicates while 7r does not.

and we wish to find, for each star who has appeared in at least three movies,
the earliest year in which they appeared. The first step is to group, using
starName as a grouping attribute. We clearly must compute for each group
the MIN (year) aggregate. However, in order to decide which groups satisfy the
condition that the star appears in at least three movies, we must also compute
the COUNT (title) aggregate for each group.

We begin with the grouping expression

Y s ta r N a m e, MI 1i(year)—> m in Y ea r, c o xn n (titie)—> ctT itie (Starsln)

The first two columns of the result of this expression are needed for the query re
sult. The third column is an auxiliary attribute, which we have named c tT itle ;
it is needed to determine whether a star has appeared in at least three movies.
That is, we continue the algebraic expression for the query by selecting for
c tT i t le >= 3 and then projecting onto the first two columns. An expression
tree for the query is shown in Fig. 5.5. □

5.2.5 Extending the Projection Operator
Let us reconsider the projection operator 7t l (R) introduced in Section 2.4.5.
In the classical relational algebra, L is a list of (some of the) attributes of R.
We extend the projection operator to allow it to compute with components
of tuples as well as choose components. In extended projection, also denoted
7tl(R), projection lists can have the following kinds of elements:

1. A single attribute of R.

71 starName, minYear

218 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

^starName, M IN (y e a r) m inYear , COUNT (title) ctTitle

Starsln

Figure 5.5: Algebraic expression tree for the query of Example 5.10

2. An expression x —» y, where x and y are names for attributes. The
element x —► y in the list L asks that we take the attribute x of R and
rename it y ; i.e., the name of this attribute in the schema of the result
relation is y.

3. An expression E —► 2 , where E is an expression involving attributes of
R, constants, arithmetic operators, and string operators, and 2 is a new
name for the attribute that results from the calculation implied by E. For
example, a + b —> x as a list element represents the sum of the attributes a
and b, renamed x. Element cl Id —>• e means concatenate the presumably
string-valued attributes c and d and call the result e.

The result of the projection is computed by considering each tuple of R in
turn. We evaluate the list L by substituting the tuple’s components for the
corresponding attributes mentioned in L and applying any operators indicated
by L to these values. The result is a relation whose schema is the names of the
attributes on list L, with whatever renaming the list specifies. Each tuple of
R yields one tuple of the result. Duplicate tuples in R surely yield duplicate
tuples in the result, but the result can have duplicates even if R does not.

E xam ple 5 .11 : Let R be the relation

A B C
0 1 2
0 1 2
3 4 5

Then the result of t t a ,b + c ^ x (R) is

A X
0 3
0 3
3 9

5.2. EXTENDED OPERATORS OF RELATIONAL ALGEBRA 219

The result’s schema has two attributes. One is A, the first attribute of R, not
renamed. The second is the sum of the second and third attributes of R, with
the name X .

For another example, t:b - a^ x ,c - b -+y {R) is

X Y
1 1
1 1
1 1

Notice that the calculation required by this projection list happens to turn
different tuples (0,1,2) and (3,4,5) into the same tuple (1,1). Thus, the latter
tuple appears three times in the result. □

5.2.6 The Sorting Operator
There are several contexts in which we want to sort the tuples of a relation by
one or more of its attributes. Often, when querying data, one wants the result
relation to be sorted. For instance, in a query about all the movies in which
Sean Connery appeared, we might wish to have the list sorted by title, so we
could more easily find whether a certain movie was on the list. We shall also
see when we study query optimization how execution of queries by the DBMS
is often made more efficient if we sort the relations first.

The expression t l{R) , where R is a relation and L a list of some of R ’s
attributes, is the relation R, but with the tuples of R sorted in the order indi
cated by L. If L is the list A j , A2, . . . , A n, then the tuples of R are sorted first
by their value of attribute Ai. Ties are broken according to the value of A-y,
tuples that agree on both Ai and A? are ordered according to their value of A 3 ,
and so on. Ties that remain after attribute A n is considered may be ordered
arbitrarily.

E xam ple 5.12 : If R is a relation with schema R(A, B, C), then tc,b (R) orders
the tuples of R by their value of C, and tuples with the same C-value are ordered
by their B value. Tuples that agree on both B and C may be ordered arbitrarily.
□

If we apply another operator such as join to the sorted result of a r , the
sorted order usually becomes meaningless, and the elements on the list should
be treated as a bag, not a list. However, bag projections can be made to preserve
the order. Also, a selection on a list drops out the tuples that do not satisfy
the condition of the selection, but the remaining tuples can be made to appear
in their original sorted order.

5.2.7 Outerjoins
A property of the join operator is that it is possible for certain tuples to be
“dangling”; that is, they fail to match any tuple of the other relation in the

220 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

common attributes. Dangling tuples do not have any trace in the result of the
join, so the join may not represent the data of the original relations completely.
In cases where this behavior is undesirable, a variation on the join, called “out-
erjoin,” has been proposed and appears in various commercial systems.

We shall consider the “natural” case first, where the join is on equated
values of all attributes in common to the two relations. The outerjoin R cxi S
is formed by starting with R tx 5, and adding any dangling tuples from R or
S. The added tuples must be padded with a special null symbol, _L, in all the
attributes that they do not possess but that appear in the join result. Note
that I. is written NULL in SQL (recall Section 2.3.4).

A B C
1 2 3
4 5 6
7 8 9

(a) Relation U

B C D
2 3 10
2 3 11
6 7 12

(b) Relation V

A B C D
1 2 3 10
1 2 3 11
4 5 6 ±
7 8 9 ±
_L 6 7 12

(c) Result U & V

Figure 5.6: Outerjoin of relations

Exam ple 5.13: In Fig. 5.6(a) and (b) we see two relations U and V . Tuple
(1,2,3) of U joins with both (2,3,10) and (2,3,11) of V, so these three tuples
are not dangling. However, the other three tuples — (4,5,6) and (7,8,9) of
U and (6,7,12) of V — are dangling. That is, for none of these three tuples
is there a tuple of the other relation that agrees with it on both the B and C
components. Thus, in U cSi V, seen in Fig. 5.6(c), the three dangling tuples

5.2. EXTENDED OPERATORS OF RELATIONAL ALGEBRA 221

are padded with _L in the attributes that they do not have: attribute D for the
tuples of U and attribute A for the tuple of V . □

There are many variants of the basic (natural) outerjoin idea. The left
outerjoin R S is like the outerjoin, but only dangling tuples of the left
argument R are padded with J. and added to the result. The right outerjoin
R tSi r S is like the outerjoin, but only the dangling tuples of the right argument
S are padded with _L and added to the result.

E xam ple 5 .14 : If U and V are as in Fig. 5.6, then U tx l V is:

A B C D
1 2 3 10
1 2 3 11
4 5 6 _L
7 8 9 ±

and U [Si/{ V is:

A B C D
1 2 3 10
1 2 3 11
_L 6 7 12

□

In addition, all three natural outerjoin operators have theta-join analogs,
where first a theta-join is taken and then those tuples that failed to join with
any tuple of the other relation, when the condition of the theta-join was applied,
are padded with _L and added to the result. We use i x i c to denote a theta-
outerjoin with condition C. This operator can also be modified with L or R to
indicate left- or right-outerjoin.

E xam ple 5.15: Let U and V be the relations of Fig. 5.6, and consider

U & a >v.c V

Tuples (4,5,6) and (7,8,9) of U each satisfy the condition with both of the
tuples (2,3,10) and (2,3,11) of V. Thus, none of these four tuples are dangling
in this theta-join. However, the two other tuples — (1,2,3) of U and (6,7,12)
of V — are dangling. They thus appear, padded, in the result shown in Fig. 5.7.
□

222 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

A U.B U.C V.B V.C D
4 5 6 2 3 10
4 5 6 2 3 11
7 8 9 2 3 10
7 8 9 2 3 11
1 2 3 _L _L _L
_L _L _L 6 7 12

Figure 5.7: Result of a theta-outerjoin

5.2.8 Exercises for Section 5.2

Exercise 5.2 .1: Here are two relations:

R(A,B): {(0,1), (2,3), (0,1), (2,4), (3,4)}

S(B,C): {(0,1), (2,4), (2,5), (3,4), (0,2), (3,4)}

Compute the following: a) 7ta+b.a^bK-R); b) t tb + i .c - i^) ; c) t b ,a{R);
d) t b , c (S) \ e) S(R); f) 6 { S) ; g) 7a, sum(b)CR); h) 7b,atg(C)(5); ! i) 7a(-R);
U) 7a,mi(C)(R xi S); k) .RcSi^S; \) R & r S ; m) R tS S; n) R cSi r . b < s . b S.

! Exercise 5 .2 .2: A unary operator / is said to be idempotent if for all relations
R, f (f { R)) — f{R)- That is, applying / more than once is the same as applying
it once. Which of the following operators are idempotent? Either explain why
or give a counterexample.

a) 6; b) irL; c) ac ; d) j L; e) r.

! Exercise 5 .2 .3: One thing that can be done with an extended projection,
but not with the original version of projection that we defined in Section 2.4.5,
is to duplicate columns. For example, if R (A ,B) is a relation, then tta,a (R)
produces the tuple (a, a) for every tuple (a, b) in R. Can this operation be done
using only the classical operations of relation algebra from Section 2.4? Explain
your reasoning.

5.3 A Logic for Relations
As an alternative to abstract query languages based on algebra, one can use a
form of logic to express queries. The logical query language Datalog (“database
logic”) consists of if-then rules. Each of these rules expresses the idea that from
certain combinations of tuples in certain relations, we may infer that some other
tuple must be in some other relation, or in the answer to a query.

5.3. A LOGIC FOR RELATIONS 223

5.3.1 Predicates and Atoms
Relations are represented in Datalog by predicates. Each predicate takes a fixed
number of arguments, and a predicate followed by its arguments is called an
atom.. The syntax of atoms is just like that of function calls in conventional
programming languages; for example P (x1, 0:2, ■ ■ ■ , x n) is an atom consisting of
the predicate P with arguments X\,X 2 ,. ■ ■ , x n.

In essence, a predicate is the name of a function that returns a boolean
value. If R is a relation with n attributes in some fixed order, then we shall
also use R as the name of a predicate corresponding to this relation. The atom
R(ai,a,2 , ■ ■ ■ ,an) has value TRUE if (<21,(22, . . . ,an) is a tuple of R; the atom
has value FALSE otherwise.

Notice that a relation defined by a predicate can be assumed to be a set.
In Section 5.3.6, we shall discuss how it is possible to extend Datalog to bags.
However, outside that section, you should assume in connection with Datalog
that relations are sets.

E xam ple 5.16 : Let R be the relation

A B
1 2
3 4

Then iZ(l,2) is true and so is R(3,4). However, for any other combination of
values x and y , R(x, y) is false. □

A predicate can take variables as well as constants as arguments. If an
atom has variables for one or more of its arguments, then it is a boolean-valued
function that takes values for these variables and returns TRUE or FALSE.
E xam ple 5.17: If R is the predicate from Example 5.16, then R(x ,y) is the
function that tells, for any x and y, whether the tuple (x,y) is in relation R.
For the particular instance of R mentioned in Example 5.16, R{x,y) returns
TRUE when either

1. x = 1 and y = 2, or

2. x — 3 and y — 4

and returns FALSE otherwise. As another example, the atom R (l ,z) returns
TRUE if z = 2 and returns FALSE otherwise. □

5.3.2 Arithmetic Atoms
There is another kind of atom that is important in Datalog: an arithmetic
atom. This kind of atom is a comparison between two arithmetic expressions,
for example x < y or x + 1 > y + 4 x z. For contrast, we shall call the atoms
introduced in Section 5.3.1 relational atoms; both kinds are “atoms.”

224 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

Note that arithmetic and relational atoms each take as arguments the values
of any variables that appear in the atom, and they return a boolean value.
In effect, arithmetic comparisons like < or > are like the names of relations
that contain all the true pairs. Thus, we can visualize the relation “< ” as
containing all the tuples, such as (1,2) or (—1.5,65.4), whose first component is
less than their second component. Remember, however, that database relations
are always finite, and usually change from time to time. In contrast, arithmetic-
comparison relations such as < are both infinite and unchanging.

5.3.3 Datalog Rules and Queries
Operations similar to those of relational algebra are described in Datalog by
rules, which consist of

1. A relational atom called the head, followed by

2. The symbol «—, which we often read “if,” followed by

3. A body consisting of one or more atoms, called subgoals, which may be
either relational or arithmetic. Subgoals are connected by AND, and any
subgoal may optionally be preceded by the logical operator NOT.

E xam ple 5.18: The Datalog rule

LongMovie(t.y) <— M o v ie s (t ,y ,l ,g ,s ,p) AND 1 > 100

defines the set of “long” movies, those at least 100 minutes long. It refers to
our standard relation Movies with schema

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)

The head of the rule is the atom LongMovie(t, y). The body of the rule consists
of two subgoals:

1. The first subgoal has predicate Movies and six arguments, corresponding
to the six attributes of the Movies relation. Each of these arguments has a
different variable: t for the t i t l e component, y for the year component,
I for the leng th component, and so on. We can see this subgoal as saying:
“Let (t ,y , l ,g ,s ,p) be a tuple in the current instance of relation Movies.”
More precisely, Movies(t,y,l,g,s,p) is true whenever the six variables
have values that are the six components of some one Movies tuple.

2. The second subgoal, I > 100, is true whenever the length component of a
Movies tuple is at least 100.

The rule as a whole can be thought of as saying: LongMovie(t,y) is true
whenever we can find a tuple in Movies with:

a) t and y as the first two components (for t i t l e and year),

5.3. A LOGIC FOR RELATIONS 225

Anonymous Variables

Frequently, Datalog rules have some variables that appear only once. The
names used for these variables are irrelevant. Only when a variable appears
more than once do we care about its name, so we can see it is the same
variable in its second and subsequent appearances. Thus, we shall allow
the common convention that an underscore, _, as an argument of an atom,
stands for a variable that appears only there. Multiple occurrences of _
stand for different variables, never the same variable. For instance, the
rule of Example 5.18 could be written

LongMovie(t,y) 4- Movies(t,y,l,AND 1 > 100

The three variables g, s, and p that appear only once have each been
replaced by underscores. We cannot replace any of the other variables,
since each appears twice in the rule.

b) A third component I (for length) that is at least 100, and

c) Any values in components 4 through 6.

Notice that this rule is thus equivalent to the “assignment statement” in rela
tional algebra:

LongMovie := ■nt i t ie ,y e a r (v ie n g th > io o (Movies))

whose right side is a relational-algebra expression. □

A query in Datalog is a collection of one or more rules. If there is only
one relation that appears in the rule heads, then the value of this relation is
taken to be the answer to the query. Thus, in Example 5.18, LongMovie is the
answer to the query. If there is more than one relation among the rule heads,
then one of these relations is the answer to the query, while the others assist
in the definition of the answer. When there are several predicates defined by
a collection of rules, we shall usually assume that the query result is named
Answer.

5.3.4 Meaning of Datalog Rules
Example 5.18 gave us a hint of the meaning of a Datalog rule. More precisely,
imagine the variables of the rule ranging over all possible values. Whenever
these variables have values that together make all the subgoals true, then we
see what the value of the head is for those variables, and we add the resulting
tuple to the relation whose predicate is in the head.

226 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

For instance, we can imagine the six variables of Example 5.18 ranging over
all possible values. The only combinations of values that can make all the
subgoals true are when the values of (t , y, l,g, s,p) in that order form a tuple of
Movies. Moreover, since the I > 100 subgoal must also be true, this tuple must
be one where I, the value of the len g th component, is at least 100. When we
find such a combination of values, we put the tuple (t , y) in the head’s relation
LongMovie.

There are, however, restrictions that we must place on the way variables are
used in rules, so that the result of a rule is a finite relation and so that rules
with arithmetic subgoals or with negated subgoals (those with NOT in front of
them) make intuitive sense. This condition, which we call the safety condition,
is:

• Every variable that appears anywhere in the rule must appear in some
nonnegated, relational subgoal of the body.

In particular, any variable that appears in the head, in a negated relational sub
goal, or in any arithmetic subgoal, must also appear in a nonnegated, relational
subgoal of the body.

E xam ple 5 .19: Consider the rule

LongMovie(t,y) <— Movies(t,y,l,AND 1 > 100

from Example 5.18. The first subgoal is a nonnegated, relational subgoal, and
it contains all the variables that appear anywhere in the rule, including the
anonymous ones represented by underscores. In particular, the two variables
t and y that appear in the head also appear in the first subgoal of the body.
Likewise, variable I appears in an arithmetic subgoal, but it also appears in the
first subgoal. Thus, the rule is safe. □

E xam ple 5 .20: The following rule has three safety violations:

P(x,y) Q(x,z) AND NOT R(w,x,z) AND x<y

1. The variable y appears in the head but not in any nonnegated, relational
subgoal of the body. Notice that y ’s appearance in the arithmetic subgoal
x < y does not help to limit the possible values of y to a finite set. As
soon as we find values a, b, and c for w, x, and 2 respectively that satisfy
the first two subgoals, we are forced to add the infinite number of tuples
(ib, d) such that d > b to the relation for the head predicate P.

2. Variable w appears in a negated, relational subgoal but not in a non
negated, relational subgoal.

3. Variable y appears in an arithmetic subgoal, but not in a nonnegated,
relational subgoal.

5.3. A LOGIC FOR RELATIONS 227

Thus, it is not a safe rule and cannot be used in Datalog. □

There is another way to define the meaning of rules. Instead of considering
all of the possible assignments of values to variables, we consider the sets of
tuples in the relations corresponding to each of the nonnegated, relational sub
goals. If some assignment of tuples for each nonnegated, relational subgoal is
consistent, in the sense that it assigns the same value to each occurrence of any
one variable, then consider the resulting assignment of values to all the variables
of the rule. Notice that because the rule is safe, every variable is assigned a
value.

For each consistent assignment, we consider the negated, relational subgoals
and the arithmetic subgoals, to see if the assignment of values to variables makes
them all true. Remember that a negated subgoal is true if its atom is false. If
all the subgoals are true, then we see what tuple the head becomes under this
assignment of values to variables. This tuple is added to the relation whose
predicate is the head.

E xam ple 5.21: Consider the Datalog rule

P(x,y) «- Q(x,z) AND R(z,y) AND NOT Q(x,y)
Let relation Q contain the two tuples (1,2) and (1,3). Let relation R contain
tuples (2,3) and (3,1). There are two nonnegated, relational subgoals, Q(x,z)
and R(z,y), so we must consider all combinations of assignments of tuples
from relations Q and R, respectively, to these subgoals. The table of Fig. 5.8
considers all four combinations.

Tuple for
Q(x,z)

Tuple for
R (z,y)

Consistent
Assignment?

NOT Q(x,y)
True?

Resulting
Head

1) (1,2) (2,3) Yes No —
2) (1,2) (3,1) No; 2 = 2,3 Irrelevant —
3) (1,3) (2,3) No; z = 3,2 Irrelevant —
4) (1,3) (3,1) Yes Yes P(1,1)

Figure 5.8: All possible assignments of tuples to Q(x,z) and R(z,y)

The second and third options in Fig. 5.8 are not consistent. Each assigns
two different values to the variable 2 . Thus, we do not consider these tuple-
assignments further.

The first option, where subgoal Q{x,z) is assigned the tuple (1,2) and sub
goal R(z,y) is assigned tuple (2,3), yields a consistent assignment, with x, y,
and z given the values 1, 3, and 2, respectively. We thus proceed to the test of
the other subgoals, those that are not nonnegated, relational subgoals. There
is only one: NOT Q(x,y). For this assignment of values to the variables, this
subgoal becomes NOT Q (l,3). Since (1,3) is a tuple of Q, this subgoal is false,
and no head tuple is produced for the tuple-assignment (1).

228 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

The final option is (4). Here, the assignment is consistent; x, y, and 2 are
assigned the values 1, 1, and 3, respectively. The subgoal NOT Q(x,y) takes
on the value NOT Q(l,l). Since (1,1) is not a tuple of Q, this subgoal is true.
We thus evaluate the head P(x,y) for this assignment of values to variables
and find it is P(l, 1). Thus the tuple (1,1) is in the relation P. Since we have
exhausted all tuple-assignments, this is the only tuple in P. □

5.3.5 Extensional and Intensional Predicates
It is useful to make the distinction between

• Extensional predicates, which are predicates whose relations are stored in
a database, and

• Intensional predicates, whose relations are computed by applying one or
more Datalog rules.

The difference is the same as that between the operands of a relational-algebra
expression, which are “extensional” (i.e., defined by their extension, which is
another name for the “current instance of a relation”) and the relations com
puted by a relational-algebra expression, either as the final result or as an
intermediate result corresponding to some subexpression; these relations are
“intensional” (i.e., defined by the programmer’s “intent”).

When talking of Datalog rules, we shall refer to the relation corresponding
to a predicate as “intensional” or “extensional,” if the predicate is intensional
or extensional, respectively. We shall also use the abbreviation IDB for “inten
sional database” to refer to either an intensional predicate or its correspond
ing relation. Similarly, we use abbreviation EDB, standing for “extensional
database,” for extensional predicates or relations.

Thus, in Example 5.18, Movies is an EDB relation, defined by its extension.
The predicate Movies is likewise an EDB predicate. Relation and predicate
LongMovie are both intensional.

An EDB predicate can never appear in the head of a rule, although it can
appear in the body of a rule. IDB predicates can appear in either the head or
the body of rules, or both. It is also common to construct a single relation by
using several rules with the same IDB predicate in the head. We shall see an
illustration of this idea in Example 5.24, regarding the union of two relations.

By using a series of intensional predicates, we can build progressively more
complicated functions of the EDB relations. The process is similar to the build
ing of relational-algebra expressions using several operators.

5.3.6 Datalog Rules Applied to Bags
Datalog is inherently a logic of sets. However, as long as there are no negated,
relational subgoals, the ideas for evaluating Datalog rules when relations are sets
apply to bags as well. When relations are bags, it is conceptually simpler to use

5.3. A LOGIC FOR RELATIONS 229

the second approach for evaluating Datalog rules that we gave in Section 5.3.4.
Recall this technique involves looking at each of the nonnegated, relational
subgoals and substituting for it all tuples of the relation for the predicate of
that subgoal. If a selection of tuples for each subgoal gives a consistent value to
each variable, and the arithmetic subgoals all become true,1 then we see what
the head becomes with this assignment of values to variables. The resulting
tuple is put in the head relation.

Since we are now dealing with bags, we do not eliminate duplicates from
the head. Moreover, as we consider all combinations of tuples for the subgoals,
a tuple appearing n times in the relation for a subgoal gets considered n times
as the tuple for that subgoal, each time in conjunction with all combinations of
tuples for the other subgoals.

E xam ple 5.22 : Consider the rule

H(x,z) «— R(x,y) AND S(y,z)

where relation R(A, B) has the tuples:

B

and S(B ,C) has tuples:

B
~ 2 ~

4
4

The only time we get a consistent assignment of tuples to the subgoals (i.e.,
an assignment where the value of y from each subgoal is the same) is when
the first subgoal is assigned one of the tuples (1,2) from R and the second
subgoal is assigned tuple (2,3) from S. Since (1,2) appears twice in R, and
(2,3) appears once in 5, there will be two assignments of tuples that give the
variable assignments x — 1, y = 2, and 2 = 3. The tuple of the head, which
is (x,z), is for each of these assignments (1,3). Thus the tuple (1,3) appears
twice in the head relation H, and no other tuple appears there. That is, the
relation

1 3
1 3

l N ote th a t th e re m u st no t be any negated re la tio n a l subgoals in th e rule. T h ere is not
a clearly defined m eaning of a rb itra ry D ata log ru les w ith negated , re la tio n a l subgoals under
th e bag m odel.

230 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

is the head relation defined by this rule. More generally, had tuple (1,2) ap
peared n times in R and tuple (2,3) appeared m times in S, then tuple (1,3)
would appear nm times in H . □

If a relation is defined by several rules, then the result is the bag-union of
whatever tuples are produced by each rule.

E xam ple 5.23: Consider a relation H defined by the two rules

H(x,y) «- S(x,y) AND x>l
H(x,y) <- S(x,y) AND y<5

where relation S(B, C) is as in Example 5.22; that is, S = {(2,3), (4,5), (4,5)}.
The first rule puts each of the three tuples of S into H, since they each have a
first component greater than 1. The second rule puts only the tuple (2,3) into
H, since (4,5) does not satisfy the condition y < 5. Thus, the resulting relation
H has two copies of the tuple (2,3) and two copies of the tuple (4,5). □

5.3.7 Exercises for Section 5.3
E xercise 5 .3 .1 : Write each of the queries of Exercise 2.4.1 in Datalog. You
should use only safe rules, but you may wish to use several IDB predicates
corresponding to subexpressions of complicated relational-algebra expressions.

E xercise 5 .3 .2 : Write each of the queries of Exercise 2.4.3 in Datalog. Again,
use only safe rules, but you may use several IDB predicates if you like.

E xercise 5 .3 .3 : The requirement we gave for safety of Datalog rules is suffi
cient to guarantee that the head predicate has a finite relation if the predicates
of the relational subgoals have finite relations. However, this requirement is
too strong. Give an example of a Datalog rule that violates the condition, yet
whatever finite relations we assign to the relational predicates, the head relation
will be finite.

5.4 Relational Algebra and Datalog
Each of the relational-algebra operators of Section 2.4 can be mimicked by one
or several Datalog rules. In this section we shall consider each operator in turn.
We shall then consider how to combine Datalog rules to mimic complex algebraic
expressions. It is also true that any single safe Datalog rule can be expressed in
relational algebra, although we shall not prove that fact here. However, Datalog
queries are more powerful than relational algebra when several rules are allowed
to interact; they can express recursions that are not expressable in the algebra
(see Example 5.35).

5.4. RELATIONAL ALGEBRA AND DATALOG 231

5.4.1 Boolean Operations
The boolean operations of relational algebra — union, intersection, and set
difference — can each be expressed simply in Datalog. Here are the three
techniques needed. We assume R and S are relations with the same number of
attributes, n. We shall describe the needed rules using Answer as the name of
the head predicate in all cases. However, we can use anything we wish for the
name of the result, and in fact it is important to choose different predicates for
the results of different operations.

• To take the union R U S, use two rules and n distinct variables

One rule has R(ai,a,2 , . . . , an) as the lone subgoal and the other has
S(ai, a,2 , ■ ■ ■ , an) alone. Both rules have the head Answer(ai, a2, . . . , an).
As a result, each tuple from R and each tuple of 5 is put into the answer
relation.

• To take the intersection R n S, use a rule with body

R (a i,a2, . . . ,an) AND S(a i ,a2, . . . ,a„)
and head Answer (ai ,(1 2 , ■ ■ ■ , an). Then, a tuple is in the answer relation
if and only if it is in both R and S.

• To take the difference R — S, use a rule with body

R (a i,a2, . . . ,a„) AND NOT S(a i ,a2, . . . ,a„)

and head Answer(ai ,a2, . . . , an). Then, a tuple is in the answer relation
if and only if it is in R but not in S.

Example 5.24: Let the schemas for the two relations be R(A, B, C) and
S (A ,B ,C) . To avoid confusion, we use different predicates for the various
results, rather than calling them all Answer.

To take the union R U S we use the two rules:

1. U(x,y,z) <- R(x,y,z)
2. U (x ,y ,z) 4- S (x ,y ,z)

Rule (1) says that every tuple in R is a tuple in the IDB relation U. Rule (2)
similarly says that every tuple in S is in U.

To compute R fl S, we use the rule

I(a,b,c) •<— R(a,b,c) AND S(a,b,c)
Finally, the rule

D(a,b,c) «— R(a,b,c) AND NOT S(a,b,c)
computes the difference R — S. □

232 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

Variables Are Local to a Rule

Notice that the names we choose for variables in a rule are arbitrary and
have no connection to the variables used in any other rule. The reason
there is no connection is that each rule is evaluated alone and contributes
tuples to its head’s relation independent of other rules. Thus, for instance,
we could replace the second rule of Example 5.24 by

U(a,b,c) «— S(a,b,c)

while leaving the first rule unchanged, and the two rules would still com
pute the union of R and S. Note, however, that when substituting one
variable u for another variable v within a rule, we must substitute u for
all occurrences of v within the rule. Moreover, the substituting variable u
that we choose must not be a variable that already appears in the rule.

5.4.2 Projection
To compute a projection of a relation R, we use one rule with a single subgoal
with predicate R. The arguments of this subgoal are distinct variables, one
for each attribute of the relation. The head has an atom with arguments that
are the variables corresponding to the attributes in the projection list, in the
desired order.

E xam ple 5.25 : Suppose we want to project the relation

Movies(title, year, length, genre, studioName, producerC#)

onto its first three attributes — title, year, and length. The rule

P(t,y,l) «- Movies(t,y,l,g,s,p)

serves, defining a relation called P to be the result of the projection. □

5.4.3 Selection
Selections can be somewhat more difficult to express in Datalog. The sim
ple case is when the selection condition is the AND of one or more arithmetic
comparisons. In that case, we create a rule with

1. One relational subgoal for the relation upon which we are performing the
selection. This atom has distinct variables for each component, one for
each attribute of the relation.

5.4. RELATIONAL ALGEBRA AND DATALOG 233

2. For each comparison in the selection condition, an arithmetic subgoal
that is identical to this comparison. However, while in the selection con
dition an attribute name was used, in the arithmetic subgoal we use the
corresponding variable, following the correspondence established by the
relational subgoal.

E xam ple 5.26: The selection

®le n g th > 100 AND s tu d io N a m e -^ ’ Fox’ (Movies)

can be written as a Datalog rule

S (t ,y , l ,g , s , p) «— M o v ie s (t ,y ,l ,g ,s ,p) AND 1 > 100 AND s = ’Fox’

The result is the relation S. Note that I and s are the variables corresponding
to attributes len g th and studioName in the standard order we have used for
the attributes of Movies. □

Now, let us consider selections that involve the OR of conditions. We cannot
necessarily replace such selections by single Datalog rules. However, selection
for the OR of two conditions is equivalent to selecting for each condition sepa
rately and then taking the union of the results. Thus, the OR of n conditions
can be expressed by n rules, each of which defines the same head predicate.
The ith rule performs the selection for the ith of the n conditions.

E xam ple 5.27: Let us modify the selection of Example 5.26 by replacing the
AND by an OR to get the selection:

& le n g th > 100 OR s tu d io N a m e = ’ F o x ’ (Movies)
That is, find all those movies that are either long or by Fox. We can write two
rules, one for each of the two conditions:

1. S (t ,y , l ,g , s , p) M o v ie s (t ,y ,l ,g ,s ,p) AND 1 > 100
2. S (t ,y , l ,g , s , p) <- M o v ie s (t ,y ,l ,g ,s ,p) AND s = ’Fox’

Rule (1) produces movies at least 100 minutes long, and rule (2) produces
movies by Fox. □

Even more complex selection conditions can be formed by several applica
tions, in any order, of the logical operators AND, OR, and NOT. However, there is
a widely known technique, which we shall not present here, for rearranging any
such logical expression into “disjunctive normal form,” where the expression is
the disjunction (OR) of “conjuncts.” A conjunct, in turn, is the AND of “literals,”
and a literal is either a comparison or a negated comparison.2

2See, e.g ., A . V . A ho an d J . D . U llm an, F oundations o f C om puter Science, C o m p u ter
Science P ress , New Y ork, 1992.

234 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

We can represent any literal by a subgoal, perhaps with a NOT in front of it.
If the subgoal is arithmetic, the NOT can be incorporated into the comparison
operator. For example, NOT x > 100 can be written as x < 100. Then, any
conjunct can be represented by a single Datalog rule, with one subgoal for each
comparison. Finally, every disjunctive-normal-form expression can be written
by several Datalog rules, one rule for each conjunct. These rules take the union,
or OR, of the results from each of the conjuncts.

E xam ple 5.28: We gave a simple instance of this algorithm in Example 5.27.
A more difficult example can be formed by negating the condition of that ex
ample. We then have the expression:

^NOT (le n g th > 100 OR s tu d io N a m e = * Fox ’} (Movies)
That is, find all those movies that are neither long nor by Fox.

Here, a NOT is applied to an expression that is itself not a simple comparison.
Thus, we must push the NOT down the expression, using one form of DeMorgan’s
laws, which says that the negation of an OR is the AND of the negations. That
is, the selection can be rewritten:

ff(N0T (le n g th > 100)) AND (NOT (s tu d io N a m e = ’Fox’))(Movies)
Now, we can take the NOT’s inside the comparisons to get the expression:

& leng th< 100 AND s tu d io N a m e ^ ’ F o x ’ (Movies)
This expression can be converted into the Datalog rule

S(t,y,l,g,s,p) <- Movies(t,y,l,g,s,p) AND 1 < 100 AND s ^ ’Fox’
□
Exam ple 5.29: Let us consider a similar example where we have the negation
of an AND in the selection. Now, we use the second form of DeMorgan’s law,
which says that the negation of an AND is the OR of the negations. We begin
with the algebraic expression

N̂OT (len g th > 1 0 0 AND s tu d io N a m e= ’Fox ’) (Movies)
That is, find all those movies that are not both long and by Fox.

We apply DeMorgan’s law to push the NOT below the AND, to get:

^(NOT (le n g th > 100)) OR (NOT (s tu d io N a m e = ’Fox’))(Movies)
Again we take the NOT’s inside the comparisons to get:

® length<lQ Q OR s tu d io N a m e ^ ’Fox’ (Movies)
Finally, we write two rules, one for each part of the OR. The resulting Datalog
rules are:

1. S(t,y,l,g,s,p) «— Movies(t,y,l,g,s,p) AND 1 < 100
2. S(t,y,l,g,s,p) 4- Movies(t,y,l,g,s,p) AND s / ’Fox’

□

5.4. RELATIONAL ALGEBRA AND DATALOG 235

5.4.4 Product
The product of two relations R x S can be expressed by a single Datalog rule.
This rule has two subgoals, one for R and one for S. Each of these subgoals
has distinct variables, one for each attribute of R or S. The IDB predicate in
the head has as arguments all the variables that appear in either subgoal, with
the variables appearing in the -R-subgoal listed before those of the 5-subgoal.

E xam ple 5.30: Let us consider the two three-attribute relations R and S from
Example 5.24. The rule

P(a,b,c,x,y,z) ■<— R(a,b,c) AND S(x,y,z)

defines P to be R x S. We have arbitrarily used variables at the beginning of
the alphabet for the arguments of R and variables at the end of the alphabet
for S. These variables all appear in the rule head. □

5.4.5 Joins
We can take the natural join of two relations by a Datalog rule that looks much
like the rule for a product. The difference is that if we want R ix S, then
we must use the same variable for attributes of R and S that have the same
name and must use different variables otherwise. For instance, we can use the
attribute names themselves as the variables. The head is an IDB predicate that
has each variable appearing once.

E xam ple 5.31: Consider relations with schemas R (A ,B) and S(B ,C ,D).
Their natural join may be defined by the rule

J(a,b,c,d) R(a,b) AND S(b,c,d)
Notice how the variables used in the subgoals correspond in an obvious way to
the attributes of the relations R and S. □

We also can convert theta-joins to Datalog. Recall from Section 2.4.12 how a
theta-join can be expressed as a product followed by a selection. If the selection
condition is a conjunct, that is, the AND of comparisons, then we may simply
start with the Datalog rule for the product and add additional, arithmetic
subgoals, one for each of the comparisons.

E xam ple 5.32: Consider the relations U (A ,B ,C) and V (B ,C ,D) and the
theta-join:

U x i A < D a n d u .b ^ v .b V

We can construct the Datalog rule

J(a,ub,uc,vb,vc,d) «— U(a,ub,uc) AND V(vb,vc,d) AND
a < d AND ub / vb

236 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

to perform the same operation. We have used ub as the variable corresponding
to attribute B of U, and similarly used vb, uc, and vc, although any six distinct
variables for the six attributes of the two relations would be fine. The first two
subgoals introduce the two relations, and the second two subgoals enforce the
two comparisons that appear in the condition of the theta-join. □

If the condition of the theta-join is not a conjunction, then we convert it to
disjunctive normal form, as discussed in Section 5.4.3. We then create one rule
for each conjunct. In this rule, we begin with the subgoals for the product and
then add subgoals for each literal in the conjunct. The heads of all the rules are
identical and have one argument for each attribute of the two relations being
theta-joined.

E xam ple 5.33: In this example, we shall make a simple modification to the
algebraic expression of Example 5.32. The AND will be replaced by an OR. There
are no negations in this expression, so it is already in disjunctive normal form.
There are two conjuncts, each with a single literal. The expression is:

U x a < d OR u .b ^ v .b V

Using the same variable-naming scheme as in Example 5.32, we obtain the
two rules

1. J(a,ub,uc,vb,vc,d) U(a,ub,uc) AND V(vb,vc,d) AND a < d
2. J(a,ub,uc,vb,vc,d) -f- U(a,ub,uc) AND V(vb,vc,d) AND ub / vb

Each rule has subgoals for the two relations involved plus a subgoal for one of
the two conditions A < D or U.B V.B. □

5.4.6 Simulating Multiple Operations with Datalog
Datalog rules are not only capable of mimicking a single operation of relational
algebra. We can in fact mimic any algebraic expression. The trick is to look
at the expression tree for the relational-algebra expression and create one IDB
predicate for each interior node of the tree. The rule or rules for each IDB
predicate is whatever we need to apply the operator at the corresponding node of
the tree. Those operands of the tree that are extensional (i.e., they are relations
of the database) are represented by the corresponding predicate. Operands
that are themselves interior nodes are represented by the corresponding IDB
predicate. The result of the algebraic expression is the relation for the predicate
associated with the root of the expression tree.

E xam ple 5.34: Consider the algebraic expression

T ttitle ,y ea r (& length> l(SO (Movies) fl <7'sttidio7Vame=’Fox’ (Movies))

K . .title, year

5.4. RELATIONAL ALGEBRA AND DATALOG 237

n

® length >= 100 ® studioName = 'F o x '

Movies Movies

Figure 5.9: Expression tree

1. W(t,y,l,g,s,p) 4- Movies(t, y, 1, g, s, p) AND 1 > 100
2. X(t,y,l,g,s,p) 4 - Movies(t,y,l,g,s,p) AND s = ’Fox’
3. YCt.y.l.g.s.p) -f- W(t,y,l,g,s,p) AND X(t,y,l,g,s,p)
4. Answer(t,y) 4 - Y(t,y,l,g,s,p)

Figure 5.10: Datalog rules to perform several algebraic operations

from Example 2.17, whose expression tree appeared in Fig. 2.18. We repeat
this tree as Fig. 5.9. There are four interior nodes, so we need to create four
IDB predicates. Each of these predicates has a single Datalog rule, and we
summarize all the rules in Fig. 5.10.

The lowest two interior nodes perform simple selections on the EDB relation
Movies, so we can create the IDB predicates W and X to represent these
selections. Rules (1) and (2) of Fig. 5.10 describe these selections. For example,
rule (1) defines W to be those tuples of Movies that have a length at least 100.

Then rule (3) defines predicate Y to be the intersection of W and X , using
the form of rule we learned for an intersection in Section 5.4.1. Finally, rule (4)
defines the answer to be the projection of Y onto the t i t l e and year at
tributes. We here use the technique for simulating a projection that we learned
in Section 5.4.2.

Note that, because Y is defined by a single rule, we can substitute for the Y
subgoal in rule (4) of Fig. 5.10, replacing it with the body of rule (3). Then, we
can substitute for the W and X subgoals, using the bodies of rules (1) and (2).
Since the Movies subgoal appears in both of these bodies, we can eliminate one
copy. As a result, the single rule

Answer(t,y) 4 - Movies(t,y,l,g,s,p) AND 1 > 100 AND s = ’Fox’

suffices. □

238 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

5.4.7 Comparison Between Datalog and Relational
Algebra

We see from Section 5.4.6 that every expression in the basic relational algebra
of Section 2.4 can be expressed as a Datalog query. There are operations in the
extended relational algebra, such as grouping and aggregation from Section 5.2,
that have no corresponding features in the Datalog version we have presented
here. Likewise, Datalog does not support bag operations such as duplicate
elimination.

It is also true that any single Datalog rule can be expressed in relational
algebra. That is, we can write a query in the basic relational algebra that
produces the same set of tuples as the head of that rule produces.

However, when we consider collections of Datalog rules, the situation chan
ges. Datalog rules can express recursion, which relational algebra can not. The
reason is that IDB predicates can also be used in the bodies of rules, and the
tuples we discover for the heads of rules can thus feed back to rule bodies
and help produce more tuples for the heads. We shall not discuss here any of
the complexities that arise, especially when the rules have negated subgoals.
However, the following example will illustrate recursive Datalog.

Example 5.35: Suppose we have a relation Edge(X,Y) that says there is a
directed edge (arc) from node X to node Y. We can express the transitive
closure of the edge relation, that is, the relation Path(X,Y) meaning that there
is a path of length 1 or more from node X to node Y , as follows:

1. Path(X,Y) <- Edge(X,Y)
2. Path(X.Y) <- Edge(X,Z) AND Path(Z,Y)

Rule (1) says that every edge is a path. Rule (2) says that if there is an
edge from node X to some node Z and a path from Z to Y , then there is also a
path from X to Y. If we apply Rule (1) and then Rule (2), we get the paths of
length 2. If we take the Path facts we get from this application and use them in
another application of Rule (2), we get paths of length 3. Feeding those Path
facts back again gives us paths of length 4, and so on. Eventually, we discover
all possible path facts, and on one round we get no new facts. At that point,
we can stop. If we haven’t discovered the fact Path(a,b), then there really is
no path in the graph from node a to node b. □

5.4.8 Exercises for Section 5.4
Exercise 5.4.1: Let R(a,b,c), S(a,b,c), and T(a,b,c) be three relations.
Write one or more Datalog rules that define the result of each of the following
expressions of relational algebra:

a) R U S.

b) R n S.

5.4. RELATIONAL ALGEBRA AND DATALOG 239

c) R - S .

d) (R U S) - T.

! e) (R - S) n (R - T) .

f) n a ,b(R)-

! g) * a ,b (R) n P U (a ,b){ ^b A S)) -

Exercise 5 .4 .2 : Let R (x ,y ,z) be a relation. Write one or more Datalog rules
that define ac{R), where C stands for each of the following conditions:

a) x = y.

b) x < y AND y < z.

c) x < y OR y < z.

d) NOT (x < y OR x > y).

! e) NOT ((x < y OR x > y) AND y < z).

! f) NOT ((* < y OR x < z) AND y < z).

E xercise 5 .4 .3 : Let R(a,b,c), S(b,c,d), and T(d,e) be three relations. Write
single Datalog rules for each of the natural joins:

a) R m S.

b) 5 tx: T.

c) (R cxi S) m T. (Note: since the natural join is associative and commuta
tive, the order of the join of these three relations is irrelevant.)

E xercise 5 .4 .4 : Let R (x ,y ,z) and S (x ,y ,z) be two relations. Write one or
more Datalog rules to define each of the theta-joins R S, where C is
one of the conditions of Exercise 5.4.2. For each of these conditions, interpret
each arithmetic comparison as comparing an attribute of R on the left with an
attribute of 5 on the right. For instance, x < y stands for R.x < S.y.

! E xercise 5 .4 .5 : It is also possible to convert Datalog rules into equivalent
relational-algebra expressions. While we have not discussed the method of
doing so in general, it is possible to work out many simple examples. For each
of the Datalog rules below, write an expression of relational algebra that defines
the same relation as the head of the rule.

a) P(x,y) <- Q(x,z) AND R(z,y)
b) P(x,y) •(- Q(x,z) AND Q(z,y)
c) P(x,y) Q(x,z) AND R(z,y) AND x < y

240 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

5.5 Summary of Chapter 5
4- Relations as Bags: In commercial database systems, relations are actually

bags, in which the same tuple is allowed to appear several times. The
operations of relational algebra on sets can be extended to bags, but
there are some algebraic laws that fail to hold.

♦ Extensions to Relational Algebra: To match the capabilities of SQL, some
operators not present in the core relational algebra are needed. Sorting
of a relation is an example, as is an extended projection, where compu
tation on columns of a relation is supported. Grouping, aggregation, and
outerjoins are also needed.

♦ Grouping and Aggregation: Aggregations summarize a column of a rela
tion. Typical aggregation operators are sum, average, count, minimum,
and maximum. The grouping operator allows us to partition the tuples
of a relation according to their value (s) in one or more attributes before
computing aggregation(s) for each group.

♦ Outerjoins: The outerjoin of two relations starts with a join of those re
lations. Then, dangling tuples (those that failed to join with any tuple)
from either relation are padded with null values for the attributes belong
ing only to the other relation, and the padded tuples are included in the
result.

♦ Datalog: This form of logic allows us to write queries in the relational
model. In Datalog, one writes rules in which a head predicate or relation
is defined in terms of a body, consisting of subgoals.

♦ Atoms: The head and subgoals are each atoms, and an atom consists of
an (optionally negated) predicate applied to some number of arguments.
Predicates may represent either relations or arithmetic comparisons such
as <.

♦ IDB and EDB Predicates: Some predicates correspond to stored relations,
and are called EDB (extensional database) predicates or relations. Other
predicates, called IDB (intensional database), are defined by the rules.
EDB predicates may not appear in rule heads.

♦ Safe Rules: Datalog rules must be safe, meaning that every variable in
the rule appears in some nonnegated, relational subgoal of the body. Safe
rules guarantee that if the EDB relations are finite, then the IDB relations
will be finite.

♦ Relational Algebra and Datalog: All queries that can be expressed in core
relational algebra can also be expressed in Datalog. If the rules are safe
and nonrecursive, then they define exactly the same set of queries as core
relational algebra.

5.6. REFERENCES FOR CHAPTER 5 241

5.6 References for Chapter 5
As mentioned in Chapter 2, the relational algebra comes from [2]. The extended
operator 7 is from [5].

Codd also introduced two forms of first-order logic called tuple relational
calculus and domain relational calculus in one of his early papers on the re
lational model [3]. These forms of logic are equivalent in expressive power to
relational algebra, a fact proved in [3].

Datalog, looking more like logical rules, was inspired by the programming
language Prolog. The book [4] originated much of the development of logic as
a query language, while [1] placed the ideas in the context of database systems.

More on Datalog and relational calculus can be found in [6] and [7].

1. F. Bancilhon, and R. Ramakrishnan, “An amateur’s introduction to re
cursive query-processing strategies,” ACM SIGMOD Intl. Conf. on Man
agement of Data, pp. 16-52, 1986.

2. E. F. Codd, “A relational model for large shared data banks,” Comm.
ACM 13:6, pp. 377-387, 1970.

3. E. F. Codd, “Relational completeness of database sublanguages,” in Data
base Systems (R. Rustin, ed.), Prentice Hall, Englewood Cliffs, NJ, 1972.

4. H. Gallaire and J. Minker, Logic and Databases, Plenum Press, New York,
1978.

5. A. Gupta, V. Harinarayan, and D. Quass, “Generalized projections: a
powerful approach to aggregation,” Intl. Conf. on Very Large Databases,
pp. 358-369, 1995.

6 . M. Liu, “Deductive database languages: problems and solutions,” Com
puting Surveys 31:1 (March, 1999), pp. 27-62.

7. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol
umes I and II, Computer Science Press, New York, 1988, 1989.

Chapter 6

The Database Language
SQL

The most commonly used relational DBMS’s query and modify the database
through a language called SQL (sometimes pronounced “sequel”). SQL stands
for “Structured Query Language.” The portion of SQL that supports queries
has capabilities very close to that of relational algebra, as extended in Sec
tion 5.2. However, SQL also includes statements for modifying the database
(e.g., inserting and deleting tuples from relations) and for declaring a database
schema. Thus, SQL serves as both a data-manipulation language and as a data-
definition language. SQL also standardizes many other database commands,
covered in Chapters 7 and 9.

There are many different dialects of SQL. First, there are three major stan
dards. There is ANSI (American National Standards Institute) SQL and an
updated standard adopted in 1992, called SQL-92 or SQL2. The most recent
SQL-99 (previously referred to as SQL3) standard extends SQL2 with object-
relational features and a number of other new capabilities. There is also a
collection of extensions to SQL-99, collectively called SQL:2003. Then, there
are versions of SQL produced by the principal DBMS vendors. These all include
the capabilities of the original ANSI standard. They also conform to a large
extent to the more recent SQL2, although each has its variations and extensions
beyond SQL2, including some, but not all, of the features in the SQL-99 and
SQL:2003 standards.

This chapter introduces the basics of SQL: the query language and database
modification statements. We also introduce the notion of a “transaction,” the
basic unit of work for database systems. This study, although simplifed, will
give you a sense of how database operations can interact and some of the re
sulting pitfalls.

The next chapter discusses constraints and triggers, as another way of ex
erting user control over the content of the database. Chapter 8 covers some
of the ways that we can make our SQL queries more efficient, principally by

243

244 CHAPTER 6. THE DATABASE LANGUAGE SQL

declaring indexes and related structures. Chapter 9 covers database-related
programming as part of a whole system, such as the servers that we commonly
access over the Web. There, we shall see that SQL queries and other operations
are almost never performed in isolation, but are embedded in a conventional
host language, with which it must interact.

Finally, Chapter 10 explains a number of advanced database programming
concepts. These include recursive SQL, security and access control in SQL,
object-relational SQL, and the data-cube model of data.

The intent of this chapter and the following are to provide the reader with a
sense of what SQL is about, more at the level of a “tutorial” than a “manual.”
Thus, we focus on the most commonly used features only, and we try to use code
that not only conforms to the standard, but to the usage of commercial DBMS’s.
The references mention places where more of the details of the language and
its dialects can be found.

6.1 Simple Queries in SQL
Perhaps the simplest form of query in SQL asks for those tuples of some one
relation that satisfy a condition. Such a query is analogous to a selection in
relational algebra. This simple query, like almost all SQL queries, uses the three
keywords, SELECT, FROM, and WHERE that characterize SQL.

Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

Figure 6.1: Example database schema, repeated

E xam ple 6.1 : In this and subsequent examples, we shall use the movie data
base schema from Section 2.2.8. For reference, these relation schemas are the
ones shown in Fig. 6.1.

As our first query, let us ask about the relation

Movies(title, year, length, genre, studioName, producerC#)
for all movies produced by Disney Studios in 1990. In SQL, we say

SELECT *
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

This query exhibits the characteristic select-from-where form of most SQL
queries.

6.1. SIMPLE QUERIES IN SQL 245

How SQL is Used

In this chapter, we assume a generic query interface, where we type SQL
queries or other statements and have them execute. In practice, the generic
interface is used rarely. Rather, there are large programs, written in a
conventional language such as C or Java (called the host language). These
programs issue SQL statements to a database, using a special library for
the host language. Data is moved from host-language variables to the
SQL statements, and the results of those statements are moved from the
database to host-language variables. We shall have more to say about the
matter in Chapter 9.

• The FROM clause gives the relation or relations to which the query refers.
In our example, the query is about the relation Movies.

• The WHERE clause is a condition, much like a selection-condition in rela
tional algebra. Tuples must satisfy the condition in order to match the
query. Here, the condition is that the studioName attribute of the tuple
has the value ’D isney’ and the year attribute of the tuple has the value
1990. All tuples meeting both stipulations satisfy the condition; other
tuples do not.

• The SELECT clause tells which attributes of the tuples matching the con
dition are produced as part of the answer. The * in this example indicates
that the entire tuple is produced. The result of the query is the relation
consisting of all tuples produced by this process.

One way to interpret this query is to consider each tuple of the relation
mentioned in the FROM clause. The condition in the WHERE clause is applied
to the tuple. More precisely, any attributes mentioned in the WHERE clause are
replaced by the value in the tuple’s component for that attribute. The condition
is then evaluated, and if true, the components appearing in the SELECT clause
are produced as one tuple of the answer. Thus, the result of the query is
the Movies tuples for those movies produced by Disney in 1990, for example,
Pretty Woman.

In detail, when the SQL query processor encounters the Movies tuple

title ________ | year \ length \ genre \ studioName \ producerC#
Pretty Woman | 1990 | 119 | romance | Disney | 999

(here, 999 is the imaginary certificate number for the producer of the movie),
the value ’D isney’ is substituted for attribute studioName and value 1990 is
substituted for attribute year in the condition of the WHERE clause, because
these are the values for those attributes in the tuple in question. The WHERE
clause thus becomes

246 CHAPTER 6. THE DATABASE LANGUAGE SQL

A Trick for Reading and Writing Queries

It is generally easist to examine a select-from-where query by first looking
at the FROM clause, to learn which relations are involved in the query.
Then, move to the WHERE clause, to learn what it is about tuples that is
important to the query. Finally, look at the SELECT clause to see what
the output is. The same order — from, then where, then select — is often
useful when writing queries of your own, as well.

WHERE ’Disney' = ’Disney’ AND 1990 = 1990

Since this condition is evidently true, the tuple for Pretty Woman passes the
test of the WHERE clause and the tuple becomes part of the result of the query.
□

6.1.1 Projection in SQL
We can, if we wish, eliminate some of the components of the chosen tuples;
that is, we can project the relation produced by a SQL query onto some of
its attributes. In place of the * of the SELECT clause, we may list some of
the attributes of the relation mentioned in the FROM clause. The result will be
projected onto the attributes listed.1

E xam ple 6 .2 : Suppose we wish to modify the query of Example 6.1 to produce
only the movie title and length. We may write

SELECT title, length
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

The result is a table with two columns, headed title and length. The tuples
in this table are pairs, each consisting of a movie title and its length, such that
the movie was produced by Disney in 1990. For instance, the relation schema
and one of its tuples looks like:

title length
Pretty Woman 119

□
1T hus, th e keyword SELECT in SQL actually corresponds m ost closely to th e p ro jec tion

o p e ra to r of re la tional a lgebra, while th e selection o p e ra to r of th e a lgebra corresponds to th e
WHERE clause o f SQL queries.

6.1. SIMPLE QUERIES IN SQL 247

Sometimes, we wish to produce a relation with column headers different
from the attributes of the relation mentioned in the FROM clause. We may follow
the name of the attribute by the keyword AS and an alias, which becomes the
header in the result relation. Keyword AS is optional. That is, an alias can
immediately follow what it stands for, without any intervening punctuation.

Example 6.3: We can modify Example 6.2 to produce a relation with at
tributes name and d u ra tio n in place of t i t l e and len g th as follows.

SELECT title AS name, length AS duration
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

The result is the same set of tuples as in Example 6.2, but with the columns
headed by attributes name and du ra tion . For example,

name duration
Pretty Woman 119

could be the first tuple in the result. □

Another option in the SELECT clause is to use an expression in place of
an attribute. Put another way, the SELECT list can function like the lists in
an extended projection, which we discussed in Section 5.2.5. We shall see in
Section 6.4 that the SELECT list can also include aggregates as in the 7 operator
of Section 5.2.4.

Example 6.4: Suppose we want output as in Example 6.3, but with the length
in hours. We might replace the SELECT clause of that example with

SELECT title AS name, length*0.016667 AS lengthlnHours

Then the same movies would be produced, but lengths would be calculated in
hours and the second column would be headed by attribute lengthlnHours,
as:

name lengthlnHours
Pretty Woman 1.98334

□

Example 6.5: We can even allow a constant as an expression in the SELECT
clause. It might seem pointless to do so, but one application is to put some
useful words into the output that SQL displays. The following query:

248 CHAPTER 6. THE DATABASE LANGUAGE SQL

Case Insensitivity

SQL is case insensitive, meaning that it treats upper- and lower-case let
ters as the same letter. For example, although we have chosen to write
keywords like FROM in capitals, it is equally proper to write this keyword
as From or from, or even FrOm. Names of attributes, relations, aliases, and
so on are similarly case insensitive. Only inside quotes does SQL make
a distinction between upper- and lower-case letters. Thus, ’FROM’ and
’from’ are different character strings. Of course, neither is the keyword
FROM.

SELECT title, length*0.016667 AS length, ’hrs.’ AS inHours
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

produces tuples such as

title length inHours
Pretty Woman 1.98334 hrs.

We have arranged that the third column is called inHours, which fits with the
column header length in the second column. Every tuple in the answer will
have the constant h r s . in the third column, which gives the illusion of being
the units attached to the value in the second column. □

6.1.2 Selection in SQL
The selection operator of relational algebra, and much more, is available through
the WHERE clause of SQL. The expressions that may follow WHERE include con
ditional expressions like those found in common languages such as C or Java.

We may build expressions by comparing values using the six common com
parison operators: =, <>, <, >, <=, and >=. The last four operators are as in C,
but <> is the SQL symbol for “not equal to” (! = in C), and = in SQL is equality
(== in C).

The values that may be compared include constants and attributes of the
relations mentioned after FROM. We may also apply the usual arithmetic op
erators, +, *, and so on, to numeric values before we compare them. For
instance, (year — 1930) * (year — 1930) < 100 is true for those years within 9
of 1930. We may apply the concatenation operator I I to strings; for example
’fo o ’ | | ’b a r ’ has value ’foobar’ .

An example comparison is

studioName = ’Disney’

6.1. SIMPLE QUERIES IN SQL 249

SQL Queries and Relational Algebra

The simple SQL queries that we have seen so far all have the form:

SELECT L
FROM R
WHERE C

in which L is a list of expressions, R is a relation, and C is a condition.
The meaning of any such expression is the same as that of the relational-
algebra expression

k l {<?c (R))

That is, we start with the relation in the FROM clause, apply to each tuple
whatever condition is indicated in the WHERE clause, and then project onto
the list of attributes and/or expressions in the SELECT clause.

in Example 6.1. The attribute studioName of the relation Movies is tested for
equality against the constant ’D isney’ . This constant is string-valued; strings
in SQL are denoted by surrounding them with single quotes. Numeric constants,
integers and reals, are also allowed, and SQL uses the common notations for
reals such as -12 .34 or 1 .23E45.

The result of a comparison is a boolean value: either TRUE or FALSE.2
Boolean values may be combined by the logical operators AND, OR, and NOT,
with their expected meanings. For instance, we saw in Example 6.1 how two
conditions could be combined by AND. The WHERE clause of this example eval
uates to true if and only if both comparisons are satisfied; that is, the studio
name is ’D isney’ and the year is 1990. Here is an example of a query with a
complex WHERE clause.

E xam ple 6 .6 : Consider the query

SELECT t i t l e
FROM Movies
WHERE (year > 1970 OR len g th < 90) AND studioName = ’MGM’ ;

This query asks for the titles of movies made by MGM Studios that either were
made after 1970 or were less than 90 minutes long. Notice that comparisons
can be grouped using parentheses. The parentheses are needed here because the
precedence of logical operators in SQL is the same as in most other languages:
AND takes precedence over OR, and NOT takes precedence over both. □

2W ell th e re ’s a b it m ore to boo lean values; see Section 6.1.7.

250 CHAPTER 6. THE DATABASE LANGUAGE SQL

Representing Bit Strings

A string of bits is represented by B followed by a quoted string of 0’s and
l ’s. Thus, B’011’ represents the string of three bits, the first of which
is 0 and the other two of which are 1. Hexadecimal notation may also
be used, where an X is followed by a quoted string of hexadecimal digits
(0 through 9, and a through / , with the latter representing “digits” 10
through 15). For instance, X’7 ff ’ represents a string of twelve bits, a 0
followed by eleven l ’s. Note that each hexadecimal digit represents four
bits, and leading 0 ’s are not suppressed.

6.1.3 Comparison of Strings
Two strings are equal if they are the same sequence of characters. Recall from
Section 2.3.2 that strings can be stored as fixed-length strings, using CHAR, or
variable-length strings, using VARCHAR. When comparing strings with different
declarations, only the actual strings are compared; SQL ignores any “pad”
characters that must be present in the database in order to give a string its
required length.

When we compare strings by one of the “less than” operators, such as < or
>=, we are asking whether one precedes the other in lexicographic order (i.e.,
in dictionary order, or alphabetically). That is, if 0102 • • • an and b\b2 ■ ■ ■ brn
are two strings, then the first is “less than” the second if either 01 < 61, or if
ai = &i and 02 < b2, or if «i = b\, a2 — b2l and a3 < 63, and so on. We also say
ai<i2 • • • an < &1&2 • • • bm if n < m and aia2 •■•<!„ = &1&2 that is, the first
string is a proper prefix of the second. For instance, ’fo d d er’ < ’f 0 0 ’ , because
the first two characters of each string are the same, f o, and the third character of
fodder precedes the third character of f 00 . Also, ’b a r ’ < ’b a rg a in ’ because
the former is a proper prefix of the latter.

6.1.4 Pattern Matching in SQL
SQL also provides the capability to compare strings on the basis of a simple
pattern match. An alternative form of comparison expression is

s LIKE p

where s is a string and p is a pattern, that is, a string with the optional use
of the two special characters °/, and _. Ordinary characters in p match only
themselves in s. But "/, in p can match any sequence of 0 or more characters in
s, and _ in p matches any one character in s. The value of this expression is
true if and only if string s matches pattern p. Similarly, s NOT LIKE p is true
if and only if string s does not match pattern p.

6.1. SIMPLE QUERIES IN SQL 251

E xam ple 6 .7 : We remember a movie “Star something,” and we remember
that the something has four letters. What could this movie be? We can retrieve
all such names with the query:

SELECT title
FROM Movies
WHERE title LIKE ’Star ___

This query asks if the title attribute of a movie has a value that is nine characters
long, the first five characters being S ta r and a blank. The last four characters
may be anything, since any sequence of four characters matches the four _
symbols. The result of the query is the set of complete matching titles, such as
Star Wars and Star Trek. □

E xam ple 6 .8 : Let us search for all movies with a possessive (’s) in their titles.
The desired query is

SELECT title
FROM Movies
WHERE title LIKE ’%” s %> ;

To understand this pattern, we must first observe that the apostrophe, being
the character that surrounds strings in SQL, cannot also represent itself. The
convention taken by SQL is that two consecutive apostrophes in a string rep
resent a single apostrophe and do not end the string. Thus, ’ ’ s in a pattern is
matched by a single apostrophe followed by an s.

The two "/, characters on either side of the ’ s match any strings whatsoever.
Thus, any title with ’ s as a substring will match the pattern, and the answer
to this query will include films such as Logan’s Run or Alice’s Restaurant. □

6.1.5 Dates and Times
Implementations of SQL generally support dates and times as special data
types. These values are often representable in a variety of formats such as
05/14/1948 or 14 May 1948. Here we shall describe only the SQL standard
notation, which is very specific about format.

A date constant is represented by the keyword DATE followed by a quoted
string of a special form. For example, DATE ’ 1948-05-14’ follows the required
form. The first four characters are digits representing the year. Then come a
hyphen and two digits representing the month. Note that, as in our example,
a one-digit month is padded with a leading 0. Finally there is another hyphen
and two digits representing the day. As with months, we pad the day with a
leading 0 if that is necessary to make a two-digit number.

A time constant is represented similarly by the keyword TIME and a quoted
string. This string has two digits for the hour, on the military (24-hour)

252 CHAPTER 6. THE DATABASE LANGUAGE SQL

Escape Characters in LIKE expressions

What if the pattern we wish to use in a LIKE expression involves the char
acters ’/, or _? Instead of having a particular character used as the escape
character (e.g., the backslash in most UNIX commands), SQL allows us
to specify any one character we like as the escape character for a single
pattern. We do so by following the pattern by the keyword ESCAPE and
the chosen escape character, in quotes. A character ’/, or _ preceded by
the escape character in the pattern is interpreted literally as that charac
ter, not as a symbol for any sequence of characters or any one character,
respectively. For example,

s LIKE 1 x'/.'/.x0/.’ ESCAPE ’x’

makes x the escape character in the pattern x7,‘/,x'/,. The sequence x“/0 is
taken to be a single ’/». This pattern matches any string that begins and
ends with the character ’/,. Note that only the middle ’/» has its “any string”
interpretation.

clock. Then come a colon, two digits for the minute, another colon, and two
digits for the second. If fractions of a second are desired, we may continue
with a decimal point and as many significant digits as we like. For instance,
TIME ’ 15 :0 0 :0 2 .5 ’ represents the time at which all students will have left a
class that ends at 3 PM: two and a half seconds past three o’clock.

Alternatively, time can be expressed as the number of hours and minutes
ahead of (indicated by a plus sign) or behind (indicated by a minus sign) Green
wich Mean Time (GMT). For instance, TIME ’12 :00 :00-8 :00’ represents noon
in Pacific Standard Time, which is eight hours behind GMT.

To combine dates and times we use a value of type TIMESTAMP. These values
consist of the keyword TIMESTAMP, a date value, a space, and a time value.
Thus, TIMESTAMP ’ 1948-05-14 12:00:00’ represents noon on May 14, 1948.

We can compare dates or times using the same comparison operators we use
for numbers or strings. That is, < on dates means that the first date is earlier
than the second; < on times means that the first is earlier (within the same
day) than the second.

6.1.6 Null Values and Comparisons Involving NULL
SQL allows attributes to have a special value NULL, which is called the null
value. There are many different interpretations that can be put on null values.
Here are some of the most common:

1. Value unknown: that is, “I know there is some value that belongs here
but I don’t know what it is.” An unknown birthdate is an example.

6.1. SIMPLE QUERIES IN SQL 253

2. Value inapplicable: “There is no value that makes sense here.” For ex
ample, if we had a spouse attribute for the MovieStar relation, then an
unmarried star might have NULL for that attribute, not because we don’t
know the spouse’s name, but because there is none.

3. Value withheld: “We are not entitled to know the value that belongs
here.” For instance, an unlisted phone number might appear as NULL in
the component for a phone attribute.

We saw in Section 5.2.7 how the use of the outerjoin operator of relational al
gebra produces null values in some components of tuples; SQL allows outerjoins
and also produces NULL’s when a query involves outerjoins; see Section 6.3.8.
There are other ways SQL produces NULL’s as well. For example, certain inser
tions of tuples create null values, as we shall see in Section 6.5.1.

In WHERE clauses, we must be prepared for the possibility that a component
of some tuple we are examining will be NULL. There are two important rules to
remember when we operate upon a NULL value.

1. When we operate on a NULL and any value, including another NULL, using
an arithmetic operator like x or +, the result is NULL.

2. When we compare a NULL value and any value, including another NULL,
using a comparison operator like = or >, the result is UNKNOWN. The value
UNKNOWN is another truth-value, like TRUE and FALSE; we shall discuss how
to manipulate truth-value UNKNOWN shortly.

However, we must remember that, although NULL is a value that can appear
in tuples, it is not a constant. Thus, while the above rules apply when we try
to operate on an expression whose value is NULL, we cannot use NULL explicitly
as an operand.

Example 6.9: Let x have the value NULL. Then the value of x + 3 is also NULL.
However, NULL + 3 is not a legal SQL expression. Similarly, the value of x = 3
is UNKNOWN, because we cannot tell if the value of x, which is NULL, equals the
value 3. However, the comparison NULL = 3 is not correct SQL. □

The correct way to ask if x has the value NULL is with the expression
x IS NULL. This expression has the value TRUE if x has the value NULL and
it has value FALSE otherwise. Similarly, x IS NOT NULL has the value TRUE
unless the value of x is NULL.

6.1.7 The Truth-Value UNKNOWN
In Section 6.1.2 we assumed that the result of a comparison was either TRUE
or FALSE, and these truth-values were combined in the obvious way using the
logical operators AND, OR, and NOT. We have just seen that when NULL values

254 CHAPTER 6. THE DATABASE LANGUAGE SQL

Pitfalls Regarding Nulls

It is tempting to assume that NULL in SQL can always be taken to mean
“a value that we don’t know but that surely exists.” However, there
are several ways that intuition is violated. For instance, suppose x is
a component of some tuple, and the domain for that component is the
integers. We might reason that 0 * x surely has the value 0, since no
matter what integer x is, its product with 0 is 0. However, if x has the
value NULL, rule (1) of Section 6.1.6 applies; the product of 0 and NULL is
NULL. Similarly, we might reason that x — x has the value 0, since whatever
integer x is, its difference with itself is 0. However, again the rule about
operations on nulls applies, and the result is NULL.

occur, comparisons can yield a third truth-value: UNKNOWN. We must now learn
how the logical operators behave on combinations of all three truth-values.

The rule is easy to remember if we think of TRUE as 1 (i.e., fully true), FALSE
as 0 (i.e., not at all true), and UNKNOWN as 1/2 (i.e., somewhere between true
and false). Then:

1. The AND of two truth-values is the minimum of those values. That is,
x AND y is FALSE if either x or y is FALSE; it is UNKNOWN if neither is FALSE
but at least one is UNKNOWN, and it is TRUE only when both x and y are
TRUE.

2. The OR of two truth-values is the maximum of those values. That is,
x OR y is TRUE if either x or y is TRUE; it is UNKNOWN if neither is TRUE but
at least one is UNKNOWN, and it is FALSE only when both are FALSE.

3. The negation of truth-value v is 1 — v. That is, NOT x has the value TRUE
when x is FALSE, the value FALSE when x is TRUE, and the value UNKNOWN
when x has value UNKNOWN.

In Fig. 6.2 is a summary of the result of applying the three logical operators to
the nine different combinations of truth-values for operands x and y. The value
of the last operator, NOT, depends only on x.

SQL conditions, as appear in WHERE clauses of select-from-where statements,
apply to each tuple in some relation, and for each tuple, one of the three truth
values, TRUE, FALSE, or UNKNOWN is produced. However, only the tuples for
which the condition has the value TRUE become part of the answer; tuples with
either UNKNOWN or FALSE as value are excluded from the answer. That situation
leads to another surprising behavior similar to that discussed in the box on
“Pitfalls Regarding Nulls,” as the next example illustrates.

E xam ple 6 .10: Suppose we ask about our running-example relation

6.1. SIMPLE QUERIES IN SQL 255

X y x AND y x OR y NOT x
TRUE TRUE TRUE TRUE FALSE
TRUE UNKNOWN UNKNOWN TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
UNKNOWN TRUE UNKNOWN TRUE UNKNOWN
UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN
UNKNOWN FALSE FALSE UNKNOWN UNKNOWN
FALSE TRUE FALSE TRUE TRUE
FALSE UNKNOWN FALSE UNKNOWN TRUE
FALSE FALSE FALSE FALSE TRUE

Figure 6.2: Truth table for three-valued logic

Movies(title, year, length, genre, studioName, producerC#)
the following query:

SELECT *
FROM Movies
WHERE length <= 120 OR length > 120;

Intuitively, we would expect to get a copy of the Movies relation, since each
movie has a length that is either 120 or less or that is greater than 120.

However, suppose there are Movies tuples with NULL in the length compo
nent. Then both comparisons length <= 120 and length > 120 evaluate to
UNKNOWN. The OR of two UNKNOWN’S is UNKNOWN, by Fig. 6.2. Thus, for any tuple
with a NULL in the length component, the WHERE clause evaluates to UNKNOWN.
Such a tuple is n o t returned as part of the answer to the query. As a result,
the true meaning of the query is “find all the Movies tuples with non-NULL
lengths.” □

6.1.8 Ordering the Output
We may ask that the tuples produced by a query be presented in sorted order.
The order may be based on the value of any attribute, with ties broken by the
value of a second attribute, remaining ties broken by a third, and so on, as in
the r operation of Section 5.2.6. To get output in sorted order, we may add to
the select-from-where statement a clause:

ORDER BY Clist of attributes>
The order is by default ascending, but we can get the output highest-first by
appending the keyword DESC (for “descending”) to an attribute. Similarly, we
can specify ascending order with the keyword ASC, but that word is unnecessary.

The ORDER BY clause follows the WHERE clause and any other clauses (i.e., the
optional GROUP BY and HAVING clauses, which are introduced in Section 6.4).

256 CHAPTER 6. THE DATABASE LANGUAGE SQL

The ordering is performed on the result of the FROM, WHERE, and other clauses,
just before we apply the SELECT clause. The tuples of this result are then
sorted by the attributes in the list of the ORDER BY clause, and then passed to
the SELECT clause for processing in the normal manner.

E xam ple 6 .11 : The following is a rewrite of our original query of Example 6.1,
asking for the Disney movies of 1990 from the relation

M o v ie s (ti t le , yeax, length., genre , studioName, producerC#)

To get the movies listed by length, shortest first, and among movies of equal
length, alphabetically, we can say:

SELECT *
FROM Movies
WHERE studioName = ’D isney’ AND yeax = 1990
ORDER BY le n g th , t i t l e ;

A subtlety of ordering is that all the attributes of Movies are available at the
time of sorting, even if they are not part of the SELECT clause. Thus, we could
replace SELECT * by SELECT producerC#, and the query would still be legal.
□

An additional option in ordering is that the list following ORDER BY can
include expressions, just as the SELECT clause can. For instance, we can order
the tuples of a relation R(A, B) by the sum of the two components of the tuples,
highest first, with:

SELECT *
FROM R
ORDER BY A+B DESC;

6.1.9 Exercises for Section 6.1
Exercise 6 .1 .1 : If a query has a SELECT clause

SELECT A B

how do we know whether A and B are two different attributes or B is an alias
of .4?

E xercise 6 .1 .2 : Write the following queries, based on our running movie
database example

M o v ie s (ti t le , y ea r, le n g th , genre, studioName, producerC#)
S ta rsIn (m o v ieT itle , movieYear, starName)
MovieStar(name, ad d ress , gender, b ir th d a te)
MovieExec(name, ad d ress , c e r t# , netWorth)
Studio(nam e, ad d ress , presC#)

in SQL.

a) Find the address of MGM studios.

b) Find Sandra Bullock’s birthdate.

c) Find all the stars that appeared either in a movie made in 1980 or a movie
with “Love” in the title.

d) Find all executives worth at least $10,000,000.

e) Find all the stars who either are male or live in Malibu (have string Malibu
as a part of their address).

Exercise 6 .1 .3 : Write the following queries in SQL. They refer to the database
schema of Exercise 2.4.1:

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Show the result of your queries using the data from Exercise 2.4.1.

a) Find the model number, speed, and hard-disk size for all PC’s whose price
is under $1000.

b) Do the same as (a), but rename the speed column gigahertz and the hd
column gigabytes.

c) Find the manufacturers of printers.

d) Find the model number, memory size, and screen size for laptops costing
more than $1500.

e) Find all the tuples in the Printer relation for color printers. Remember
that color is a boolean-valued attribute.

f) Find the model number and hard-disk size for those PC ’s that have a
speed of 3.2 and a price less than $2000.

E xercise 6 .1 .4 : Write the following queries based on the database schema of
Exercise 2.4.3:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

and show the result of your query on the data of Exercise 2.4.3.

6.1. SIMPLE QUERIES IN SQL 257

258 CHAPTER 6. THE DATABASE LANGUAGE SQL

a) Find the class name and country for all classes with at least 10 guns.

b) Find the names of all ships launched prior to 1918, but call the resulting
column shipName.

c) Find the names of ships sunk in battle and the name of the battle in which
they were sunk.

d) Find all ships that have the same name as their class.

e) Find the names of all ships that begin with the letter “R.”

! f) Find the names of all ships whose name consists of three or more words
(e.g., King George V).

E xercise 6 .1 .5 : Let a and b be integer-valued attributes that may be NULL in
some tuples. For each of the following conditions (as may appear in a WHERE
clause), describe exactly the set of (a, 6) tuples that satisfy the condition, in
cluding the case where a and/or b is NULL.

a) a = 10 OR b = 20

b) a = 10 AND b = 20

c) a < 10 OR a >= 10

!d) a = b

!e) a <== b

! E xercise 6 .1 .6 : In Example 6.10 we discussed the query

SELECT *
FROM Movies
WHERE len g th <= 120 OR len g th > 120;

which behaves unintuitively when the length of a movie is NULL. Find a simpler,
equivalent query, one with a single condition in the WHERE clause (no AND or OR
of conditions).

6.2 Queries Involving More Than One Relation
Much of the power of relational algebra comes from its ability to combine two
or more relations through joins, products, unions, intersections, and differences.
We get all of these operations in SQL. The set-theoretic operations — union,
intersection, and difference — appear directly in SQL, as we shall learn in
Section 6.2.5. First, we shall learn how the select-from-where statement of SQL
allows us to perform products and joins.

6.2. QUERIES INVOLVING MORE THAN ONE RELATION 259

6.2.1 Products and Joins in SQL

SQL has a simple way to couple relations in one query: list each relation in the
FROM clause. Then, the SELECT and WHERE clauses can refer to the attributes of
any of the relations in the FROM clause.

E xam ple 6.12 : Suppose we want to know the name of the producer of Star
Wars. To answer this question we need the following two relations from our
running example:

Movies(title, year, length, genre, studioName, producerC#)
MovieExec(name, address, cert#, netWorth)

The producer certificate number is given in the Movies relation, so we can do a
simple query on Movies to get this number. We could then do a second query
on the relation MovieExec to find the name of the person with that certificate
number.

However, we can phrase both these steps as one query about the pair of
relations Movies and MovieExec as follows:

SELECT name
FROM Movies, MovieExec
WHERE title = ’Star Weirs’ AND producerC# = cert#;

This query asks us to consider all pairs of tuples, one from Movies and the other
from MovieExec. The conditions on this pair are stated in the WHERE clause:

1. The t i t l e component of the tuple from Movies must have value ’S ta r
Wars’ .

2. The producerC# attribute of the Movies tuple must be the same certifi
cate number as the ce rt# attribute in the MovieExec tuple. That is,
these two tuples must refer to the same producer.

Whenever we find a pair of tuples satisfying both conditions, we produce
the name attribute of the tuple from MovieExec as part of the answer. If the
data is what we expect, the only time both conditions will be met is when the
tuple from Movies is for Star Wars, and the tuple from MovieExec is for George
Lucas. Then and only then will the title be correct and the certificate numbers
agree. Thus, George Lucas should be the only value produced. This process is
suggested in Fig. 6.3. We take up in more detail how to interpret multirelation
queries in Section 6.2.4. □

260 CHAPTER 6. THE DATABASE LANGUAGE SQL

title producerC# name cert#

Figure 6.3: The query of Example 6.12 asks us to pair every tuple of Movies
with every tuple of MovieExec and test two conditions

6.2.2 Disambiguating Attributes
Sometimes we ask a query involving several relations, and among these relations
are two or more attributes with the same name. If so, we need a way to indicate
which of these attributes is meant by a use of their shared name. SQL solves
this problem by allowing us to place a relation name and a dot in front of an
attribute. Thus R.A refers to the attribute A of relation R.

E xam ple 6 .13 : The two relations

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

each have attributes name and address. Suppose we wish to find pairs consist
ing of a star and an executive with the same address. The following query does
the job.

SELECT MovieStar.name, MovieExec.name
FROM MovieStar, MovieExec
WHERE MovieStar.address = MovieExec.address;

In this query, we look for a pair of tuples, one from MovieStar and the other
from MovieExec, such that their address components agree. The WHERE clause
enforces the requirement that the address attributes from each of the two
tuples agree. Then, for each matching pair of tuples, we extract the two name
attributes, first from the MovieStar tuple and then from the other. The result
would be a set of pairs such as

6.2. QUERIES INVOLVING MORE THAN ONE RELATION 261

MovieStar. name MovieExec. name
Jane Fonda Ted Turner

□

The relation name, followed by a dot, is permissible even in situations where
there is no ambiguity. For instance, we are free to write the query of Example
6.12 as

SELECT MovieExec.name
FROM Movies, MovieExec
WHERE Movie.title = ’Star Wars’

AND Movie.producerC# = MovieExec.cert#;

Alternatively, we may use relation names and dots in front of any subset of the
attributes in this query.

6.2.3 Tuple Variables
Disambiguating attributes by prefixing the relation name works as long as the
query involves combining several different relations. However, sometimes we
need to ask a query that involves two or more tuples from the same relation.
We may list a relation R as many times as we need to in the FROM clause, but
we need a way to refer to each occurrence of R. SQL allows us to define, for
each occurrence of R in the FROM clause, an “alias” which we shall refer to as
a tuple variable. Each use of R in the FROM clause is followed by the (optional)
keyword AS and the name of the tuple variable; we shall generally omit the AS
in this context.

In the SELECT and WHERE clauses, we can disambiguate attributes of R by
preceding them by the appropriate tuple variable and a dot. Thus, the tuple
variable serves as another name for relation R and can be used in its place when
we wish.

E xam ple 6 .14: While Example 6.13 asked for a star and an executive sharing
an address, we might similarly want to know about two stars who share an
address. The query is essentially the same, but now we must think of two tuples
chosen from relation MovieStar, rather than tuples from each of MovieStar and
MovieExec. Using tuple variables as aliases for two uses of MovieStar, we can
write the query as

SELECT Starl.name, Star2.name
FROM MovieStar Starl, MovieStar Star2
WHERE Starl.address = Star2.address

AND Starl.name < Star2.name;

262 CHAPTER 6. THE DATABASE LANGUAGE SQL

Tuple Variables and Relation Names

Technically, references to attributes in SELECT and WHERE clauses are al
ways to a tuple variable. However, if a relation appears only once in the
FROM clause, then we can use the relation name as its own tuple variable.
Thus, we can see a relation name R in the FROM clause as shorthand for
R AS R. Furthermore, as we have seen, when an attribute belongs un
ambiguously to one relation, the relation name (tuple variable) may be
omitted.

We see in the FROM clause the declaration of two tuple variables, S ta r l and
S tar2; each is an alias for relation MovieStar. The tuple variables are used in
the SELECT clause to refer to the name components of the two tuples. These
aliases are also used in the WHERE clause to say that the two MovieStar tu
ples represented by S ta r l and S tar2 have the same value in their address
components.

The second condition in the WHERE clause, S t a r l .name < S ta r2 . name, says
that the name of the first star precedes the name of the second star alphabet
ically. If this condition were omitted, then tuple variables S ta r l and S tar2
could both refer to the same tuple. We would find that the two tuple variables
referred to tuples whose address components are equal, of course, and thus
produce each star name paired with itself.3 The second condition also forces us
to produce each pair of stars with a common address only once, in alphabetical
order. If we used <> (not-equal) as the comparison operator, then we would
produce pairs of married stars twice, like

Starl. name StarS.name
Paul Newman
Joanne Woodward

Joanne Woodward
Paul Newman

□

6.2.4 Interpreting Multirelation Queries

There are several ways to define the meaning of the select-from-where expres
sions that we have just covered. All are equivalent, in the sense that they each
give the same answer for each query applied to the same relation instances. We
shall consider each in turn.

3A sim ilar prob lem occurs in E xam ple 6.13 w hen th e sam e ind iv idual is b o th a s ta r and
a n executive. W e could solve th a t p rob lem by requ iring th a t th e tw o nam es be unequal.

6.2. QUERIES INVOLVING MORE THAN ONE RELATION 263

Nested Loops
The semantics that we have implicitly used in examples so far is that of tuple
variables. Recall that a tuple variable ranges over all tuples of the corresponding
relation. A relation name that is not aliased is also a tuple variable ranging
over the relation itself, as we mentioned in the box on “Tuple Variables and
Relation Names.” If there are several tuple variables, we may imagine nested
loops, one for each tuple variable, in which the variables each range over the
tuples of their respective relations. For each assignment of tuples to the tuple
variables, we decide whether the WHERE clause is true. If so, we produce a tuple
consisting of the values of the expressions following SELECT; note that each term
is given a value by the current assignment of tuples to tuple variables. This
query-answering algorithm is suggested by Fig. 6.4.

LET the tuple variables in the from-clause range over
relat ions R\, R2, • • • , R n;

FOR each tuple t\ in relation R\ DO
FOR each tuple t2 in relation R 2 DO

FOR each tuple tn in relation R n DO
IF the where-clause is satisfied when the values
from t \ , t 2, . . . , t n are substituted for all
attribute references THEN

evaluate the expressions of the select-clause
according to t \ , t 2, . . . , t n and produce the
tuple of values that results.

Figure 6.4: Answering a simple SQL query

Parallel Assignment
There is an equivalent definition in which we do not explicitly create nested
loops ranging over the tuple variables. Rather, we consider in arbitrary order,
or in parallel, all possible assignments of tuples from the appropriate relations
to the tuple variables. For each such assignment, we consider whether the
WHERE clause becomes true. Each assignment that produces a true WHERE clause
contributes a tuple to the answer; that tuple is constructed from the attributes
of the SELECT clause, evaluated according to that assignment.

Conversion to Relational Algebra
A third approach is to relate the SQL query to relational algebra. We start with
the tuple variables in the FROM clause and take the Cartesian product of their
relations. If two tuple variables refer to the same relation, then this relation
appears twice in the product, and we rename its attributes so all attributes have

264 CHAPTER 6. THE DATABASE LANGUAGE SQL

An Unintuitive Consequence of SQL Semantics

Suppose R, S, and T are unary (one-component) relations, each having
attribute A alone, and we wish to find those elements that are in R and
also in either S or T (or both). That is, we want to compute R fl (5 U T).
We might expect the following SQL query would do the job.

SELECT R.A
FROM R, S, T
WHERE R.A = S.A OR R.A = T.A;

However, consider the situation in which T is empty. Since then R.A =
T.A can never be satisfied, we might expect the query to produce exactly
R C\ S, based on our intuition about how “OR” operates. Yet whichever of
the three equivalent definitions of Section 6.2.4 one prefers, we find that the
result is empty, regardless of how many elements R and S have in common.
If we use the nested-loop semantics of Figure 6.4, then we see that the loop
for tuple variable T iterates 0 times, since there are no tuples in the relation
for the tuple variable to range over. Thus, the if-statement inside the for-
loops never executes, and nothing can be produced. Similarly, if we look
for assignments of tuples to the tuple variables, there is no way to assign
a tuple to T, so no assignments exist. Finally, if we use the Cartesian-
product approach, we start with R x S x T, which is empty because T is
empty.

unique names. Similarly, attributes of the same name from different relations
are renamed to avoid ambiguity.

Having created the product, we apply a selection operator to it by convert
ing the WHERE clause to a selection condition in the obvious way. That is, each
attribute reference in the WHERE clause is replaced by the attribute of the prod
uct to which it corresponds. Finally, we create from the SELECT clause a list
of expressions for a final (extended) projection operation. As we did for the
WHERE clause, we interpret each attribute reference in the SELECT clause as the
corresponding attribute in the product of relations.

Example 6.15: Let us convert the query of Example 6.14 to relational algebra.
First, there are two tuple variables in the FROM clause, both referring to relation
MovieStar. Thus, our expression (without the necessary renaming) begins:

MovieStar x MovieStar

The resulting relation has eight attributes, the first four correspond to at
tributes name, address, gender, and birthdate from the first copy of relation
MovieStar, and the second four correspond to the same attributes from the

6.2. QUERIES INVOLVING MORE THAN ONE RELATION 265

other copy of MovieStar. We could create names for these attributes with a
dot and the aliasing tuple variable — e.g., S ta r l.g e n d e r — but for succinct
ness, let us invent new symbols and call the attributes simply A x,A 2, . . . , j4g.
Thus, Ai corresponds to S tarl.nam e, A5 corresponds to Star2.name, and so
on.

Under this naming strategy for attributes, the selection condition obtained
from the WHERE clause is A2 = A 6 and A t < A$. The projection list is A i ,A 5.
Thus,

'KA1,A 5 (a A 2= A e AND Aj<A5 (PM(̂ i,A2,A3,A4)(MovieStar) x
P N (A 5,A e,A 7, a s) (MovieStar)))

renders the entire query in relational algebra. □

6.2.5 Union, Intersection, and Difference of Queries
Sometimes we wish to combine relations using the set operations of relational
algebra: union, intersection, and difference. SQL provides corresponding oper
ators that apply to the results of queries, provided those queries produce rela
tions with the same list of attributes and attribute types. The keywords used
are UNION, INTERSECT, and EXCEPT for U, fl, and —, respectively. Words like
UNION are used between two queries, and those queries must be parenthesized.

E xam ple 6 .16: Suppose we wanted the names and addresses of all female
movie stars who are also movie executives with a net worth over $10,000,000.
Using the following two relations:

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

we can write the query as in Fig. 6.5. Lines (1) through (3) produce a rela
tion whose schema is (name, address) and whose tuples are the names and
addresses of all female movie stars.

1) (SELECT name, address
2) FROM MovieStar
3) WHERE gender = ’F’)
4) INTERSECT
5) (SELECT name, address
6) FROM MovieExec
7) WHERE netWorth > 10000000);

Figure 6.5: Intersecting female movie stars with rich executives

Similarly, lines (5) through (7) produce the set of “rich” executives, those
with net worth over $10,000,000. This query also yields a relation whose schema

266 CHAPTER 6. THE DATABASE LANGUAGE SQL

Readable SQL Queries

Generally, one writes SQL queries so that each important keyword like
FROM or WHERE starts a new line. This style offers the reader visual clues
to the structure of the query. However, when a query or subquery is short,
we shall sometimes write it out on a single line, as we did in Example 6.17.
That style, keeping a complete query compact, also offers good readability.

has the attributes name and address only. Since the two schemas are the same,
we can intersect them, and we do so with the operator of line (4). □

E xam ple 6.17: In a similar vein, we could take the difference of two sets of
persons, each selected from a relation. The query

(SELECT name, address FROM MovieStar)
EXCEPT

(SELECT name, address FROM MovieExec);

gives the names and addresses of movie stars who are not also movie executives,
regardless of gender or net worth. □

In the two examples above, the attributes of the relations whose intersection
or difference we took were conveniently the same. However, if necessary to get
a common set of attributes, we can rename attributes as in Example 6.3.

E xam ple 6.18: Suppose we wanted all the titles and years of movies that
appeared in either the Movies or Starsln relation of our running example:

Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)

Ideally, these sets of movies would be the same, but in practice it is common
for relations to diverge; for instance we might have movies with no listed stars
or a Starsln tuple that mentions a movie not found in the Movies relation.4
Thus, we might write

(SELECT title, year FROM Movie)
UNION

(SELECT movieTitle AS title, movieYear AS year FROM Starsln);

The result would be all movies mentioned in either relation, with title and
yeax as the attributes of the resulting relation. □

4T here are ways to prevent th is divergence; see Section 7.1.1.

6.2.6 Exercises for Section 6.2
Exercise 6 .2 .1 : Using the database schema of our running movie example

Movies(title, year, length, genre, studioName, producerC#)
Starsln(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

write the following queries in SQL.

a) Who were the male stars in Titanic?

b) Which stars appeared in movies produced by MGM in 1995?

c) Who is the president of MGM studios?

! d) Which movies are longer than Gone With the Wind?

! e) Which executives are worth more than Merv Griffin?

E xercise 6 .2 .2 : Write the following queries, based on the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1, and evaluate your queries using the data of that exercise.

a) Give the manufacturer and speed of laptops with a hard disk of at least
thirty gigabytes.

b) Find the model number and price of all products (of any type) made by
manufacturer B.

c) Find those manufacturers that sell Laptops, but not PC’s.

! d) Find those hard-disk sizes that occur in two or more PC’s.

! e) Find those pairs of PC models that have both the same speed and RAM.
A pair should be listed only once; e.g., list (i , j) but not (j,i).

!! f) Find those manufacturers of at least two different computers (PC’s or
laptops) with speeds of at least 3.0.

Exercise 6 .2 .3 : Write the following queries, based on the database schema

6.2. QUERIES INVOLVING MORE THAN ONE RELATION 267

268 CHAPTER 6. THE DATABASE LANGUAGE SQL

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3, and evaluate your queries using the data of that exercise.

a) Find the ships heavier than 35,000 tons.

b) List the name, displacement, and number of guns of the ships engaged in
the battle of Guadalcanal.

c) List all the ships mentioned in the database. (Remember that all these
ships may not appear in the Ships relation.)

! d) Find those countries that have both battleships and battlecruisers.

! e) Find those ships that were damaged in one battle, but later fought in

! f) Find those battles with at least three ships of the same country.

E xercise 6 .2 .4 : A general form of relational-algebra query is

Here, L is an arbitrary list of attributes, and C is an arbitrary condition. The
list of relations Ri, R 2, . . . , R n may include the same relation repeated several
times, in which case appropriate renaming may be assumed applied to the R i’s.
Show how to express any query of this form in SQL.

E xercise 6 .2 .5 : Another general form of relational-algebra query is

The same assumptions as in Exercise 6.2.4 apply here; the only difference is
that the natural join is used instead of the product. Show how to express any
query of this form in SQL.

6.3 Subqueries
In SQL, one query can be used in various ways to help in the evaluation of
another. A query that is part of another is called a subquery. Subqueries can
have subqueries, and so on, down as many levels as we wish. We already saw one
example of the use of subqueries; in Section 6.2.5 we built a union, intersection,
or difference query by connecting two subqueries to form the whole query. There
are a number of other ways that subqueries can be used:

another.

6.3. SUBQUERIES 269

1. Subqueries can return a single constant, and this constant can be com
pared with another value in a WHERE clause.

2. Subqueries can return relations that can be used in various ways in WHERE
clauses.

3. Subqueries can appear in FROM clauses, followed by a tuple variable that
represents the tuples in the result of the subquery.

6.3.1 Subqueries that Produce Scalar Values
An atomic value that can appear as one component of a tuple is referred to
as a scalar. A select-from-where expression can produce a relation with any
number of attributes in its schema, and there can be any number of tuples in
the relation. However, often we are only interested in values of a single attribute.
Furthermore, sometimes we can deduce from information about keys, or from
other information, that there will be only a single value produced for that
attribute.

If so, we can use this select-from-where expression, surrounded by parenthe
ses, as if it were a constant. In particular, it may appear in a WHERE clause any
place we would expect to find a constant or an attribute representing a compo
nent of a tuple. For instance, we may compare the result of such a subquery to
a constant or attribute.

E xam ple 6.19: Let us recall Example 6.12, where we asked for the producer
of Star Wars. We had to query the two relations

Movies(title, year, length, genre, studioName, producerC#)
MovieExec(name, address, cert#, netWorth)

because only the former has movie title information and only the latter has
producer names. The information is linked by “certificate numbers.” These
numbers uniquely identify producers. The query we developed is:

SELECT name
FROM Movies, MovieExec
WHERE title = ’Star Wars’ AND producerC# = cert#;

There is another way to look at this query. We need the Movies relation
only to get the certificate number for the producer of Star Wars. Once we have
it, we can query the relation MovieExec to find the name of the person with this
certificate. The first problem, getting the certificate number, can be written as
a subquery, and the result, which we expect will be a single value, can be used
in the “main” query to achieve the same effect as the query above. This query
is shown in Fig. 6.6.

Lines (4) through (6) of Fig. 6.6 are the subquery. Looking only at this
simple query by itself, we see that the result will be a unary relation with

270 CHAPTER 6. THE DATABASE LANGUAGE SQL

1) SELECT name
2) FROM MovieExec
3) WHERE cert# =
4) (SELECT producerC#
5) FROM Movies
6) WHERE title = ’Star Wars’

) ;

Figure 6.6: Finding the producer of Star Wars by using a nested subquery

attribute producerC#, and we expect to find only one tuple in this relation.
The tuple will look like (12345), that is, a single component with some integer,
perhaps 12345 or whatever George Lucas’ certificate number is. If zero tuples
or more than one tuple is produced by the subquery of lines (4) through (6), it
is a run-time error.

Having executed this subquery, we can then execute lines (1) through (3) of
Fig. 6.6, as if the value 12345 replaced the entire subquery. That is, the “main”
query is executed as if it were

SELECT name
FROM MovieExec
WHERE cert# = 12345;

The result of this query should be George Lucas. □

6.3.2 Conditions Involving Relations
There are a number of SQL operators that we can apply to a relation R and
produce a boolean result. However, the relation R must be expressed as a
subquery. As a trick, if we want to apply these operators to a stored table
Foo, we can use the subquery (SELECT * FROM Foo). The same trick works
for union, intersection, and difference of relations. Notice that those operators,
introduced in Section 6.2.5 are applied to two subqueries.

Some of the operators below — IN, ALL, and ANY — will be explained first in
their simple form where a scalar value s is involved. In this situation, the sub
query R is required to produce a one-column relation. Here are the definitions
of the operators:

1. EXISTS R is a condition that is true if and only if R is not empty.

2. s IN R is true if and only if s is equal to one of the values in R. Likewise,
s NOT IN R is true if and only if s is equal to no value in R. Here, we
assume R is a unary relation. We shall discuss extensions to the IN and
NOT IN operators where R has more than one attribute in its schema and
s is a tuple in Section 6.3.3.

6.3. SUBQUERIES 271

3. s > ALL R is true if and only if s is greater than every value in unary
relation R. Similarly, the > operator could be replaced by any of the
other five comparison operators, with the analogous meaning: s stands in
the stated relationship to every tuple in R. For instance, s <> ALL R is
the same as s NOT IN R.

4. s > ANY R is true if and only if s is greater than at least one value in unary
relation R. Similarly, any of the other five comparisons could be used in
place of >, with the meaning that s stands in the stated relationship to
at least one tuple of R. For instance, s = ANY R is the same as s IN R.

The EXISTS, ALL, and ANY operators can be negated by putting NOT in front
of the entire expression, just like any other boolean-valued expression. Thus,
NOT EXISTS R is true if and only if R is empty. NOT s >= ALL R is true if and
only if s is not the maximum value in R, and NOT s > ANY R is true if and
only if s is the minimum value in R. We shall see several examples of the use
of these operators shortly.

6.3.3 Conditions Involving Tuples
A tuple in SQL is represented by a parenthesized list of scalar values. Examples
are (123, ’fo o ’) and (name, address, networth). The first of these has
constants as components; the second has attributes as components. Mixing of
constants and attributes is permitted.

If a tuple t has the same number of components as a relation R, then it
makes sense to compare t and R in expressions of the type listed in Section 6.3.2.
Examples are t IN R or t <> ANY R. The latter comparison means that there is
some tuple in R other than t. Note that when comparing a tuple with members
of a relation R, we must compare components using the assumed standard order
for the attributes of R.

1) SELECT name
2) FROM MovieExec
3) WHERE cert# IN
4) (SELECT producerC#
5) FROM Movies
6) WHERE (title, year) IN
7) (SELECT movieTitle, movieYear
8) FROM Starsln
9) WHERE starName = ’Harrison Ford’

)
);

Figure 6.7: Finding the producers of Harrison Ford’s movies

272 CHAPTER 6. THE DATABASE LANGUAGE SQL

E xam ple 6 .20 : In Fig. 6.7 is a SQL query on the three relations

Movies(title, year, length, genre, studioName, producerC#)
Starsln(movieTitle, movieYear, starName)
MovieExec(name, address, cert#, netWorth)

asking for all the producers of movies in which Harrison Ford stars. It consists
of a “main” query, a query nested within that, and a third query nested within
the second.

We should analyze any query with subqueries from the inside out. Thus, let
us start with the innermost nested subquery: lines (7) through (9). This query
examines the tuples of the relation Starsln and finds all those tuples whose
starName component is ’Harrison Ford’. The titles and years of those movies
are returned by this subquery. Recall that title and year, not title alone, is the
key for movies, so we need to produce tuples with both attributes to identify a
movie uniquely. Thus, we would expect the value produced by lines (7) through
(9) to look something like Fig. 6.8.

title year

Star Wars 1977
Raiders of the Lost Ark 1981
The Fugitive 1993

Figure 6.8: Title-year pairs returned by inner subquery

Now, consider the middle subquery, lines (4) through (6). It searches the
Movies relation for tuples whose title and year are in the relation suggested by
Fig. 6.8. For each tuple found, the producer’s certificate number is returned,
so the result of the middle subquery is the set of certificates of the producers
of Harrison Ford’s movies.

Finally, consider the “main” query of lines (1) through (3). It examines the
tuples of the MovieExec relation to find those whose cert# component is one
of the certificates in the set returned by the middle subquery. For each of these
tuples, the name of the producer is returned, giving us the set of producers of
Harrison Ford’s movies, as desired. O

Incidentally, the nested query of Fig. 6.7 can, like many nested queries, be
written as a single select-from-where expression with relations in the FROM clause
for each of the relations mentioned in the main query or a subquery. The IN
relationships are replaced by equalities in the WHERE clause. For instance, the
query of Fig. 6.9 is essentially that of Fig. 6.7. There is a difference regarding the
way duplicate occurrences of a producer — e.g., George Lucas — are handled,
as we shall discuss in Section 6.4.1.

6.3. SUBQUERIES 273

SELECT name
FROM MovieExec, Movies, Starsln
WHERE cert# = producerC# AND

title = movieTitle AND
year = movieYear AND
starName = ’Harrison Ford’;

Figure 6.9: Ford’s producers without nested subqueries

6.3.4 Correlated Subqueries
The simplest subqueries can be evaluated once and for all, and the result used
in a higher-level query. A more complicated use of nested subqueries requires
the subquery to be evaluated many times, once for each assignment of a value
to some term in the subquery that comes from a tuple variable outside the
subquery. A subquery of this type is called a correlated subquery. Let us begin
our study with an example.

E xam ple 6.21: We shall find the titles that have been used for two or more
movies. We start with an outer query that looks at all tuples in the relation

Movies(title, year, length, genre, studioName, producerC#)

For each such tuple, we ask in a subquery whether there is a movie with the
same title and a greater year. The entire query is shown in Fig. 6.10.

As with other nested queries, let us begin at the innermost subquery, lines
(4) through (6). If O ld . t i t l e in line (6) were replaced by a constant string
such as ’King Kong’ , we would understand it quite easily as a query asking for
the year or years in which movies titled King Kong were made. The present
subquery differs little. The only problem is that we don’t know what value
O ld . t i t l e has. However, as we range over Movies tuples of the outer query
of lines (1) through (3), each tuple provides a value of O ld . t i t l e . We then
execute the query of lines (4) through (6) with this value for O ld . t i t l e to
decide the truth of the WHERE clause that extends from lines (3) through (6).

1) SELECT title
2) FROM Movies Old
3) WHERE year < ANY
4) (SELECT year
5) FROM Movies
6) WHERE title = Old.title

);

Figure 6.10: Finding movie titles that appear more than once

274 CHAPTER 6. THE DATABASE LANGUAGE SQL

The condition of line (3) is true if any movie with the same title as Old. t i t l e
has a later year than the movie in the tuple that is the current value of tuple
variable Old. This condition is true unless the year in the tuple Old is the last
year in which a movie of that title was made. Consequently, lines (1) through
(3) produce a title one fewer times than there are movies with that title. A
movie made twice will be listed once, a movie made three times will be listed
twice, and so on.5 □

When writing a correlated query it is important that we be aware of the
scoping rules for names. In general, an attribute in a subquery belongs to one
of the tuple variables in that subquery’s FROM clause if some tuple variable’s
relation has that attribute in its schema. If not, we look at the immediately
surrounding subquery, then to the one surrounding that, and so on. Thus,
year on line (4) and t i t l e on line (6) of Fig. 6.10 refer to the attributes of
the tuple variable that ranges over all the tuples of the copy of relation Movies
introduced on line (5) — that is, the copy of the Movies relation addressed by
the subquery of lines (4) through (6).

However, we can arrange for an attribute to belong to another tuple variable
if we prefix it by that tuple variable and a dot. That is why we introduced
the alias Old for the Movies relation of the outer query, and why we refer to
Old. t i t l e in line (6). Note that if the two relations in the FROM clauses of lines
(2) and (5) were different, we would not need an alias. Rather, in the subquery
we could refer directly to attributes of a relation mentioned in line (2).

6.3.5 Subqueries in FROM Clauses
Another use for subqueries is as relations in a FROM clause. In a FROM list, instead
of a stored relation, we may use a parenthesized subquery. Since we don’t have
a name for the result of this subquery, we must give it a tuple-variable alias.
We then refer to tuples in the result of the subquery as we would tuples in any
relation that appears in the FROM list.

E xam ple 6.22: Let us reconsider the problem of Example 6.20, where we
wrote a query that finds the producers of Harrison Ford’s movies. Suppose we
had a relation that gave the certificates of the producers of those movies. It
would then be a simple matter to look up the names of those producers in the
relation MovieExec. Figure 6.11 is such a query.

Lines (2) through (7) are the FROM clause of the outer query. In addition
to the relation MovieExec, it has a subquery. That subquery joins Movies and
S ta rs ln on lines (3) through (5), adds the condition that the star is Harrison
Ford on line (6), and returns the set of producers of the movies at line (2). This
set is given the alias Prod on line (7).

5T h is exam ple is th e first occasion on w hich w e’ve been rem inded th a t re la tions in SQL
axe bags, n o t se ts. T h e re a re several ways th a t dup lica tes m ay crop u p in SQL relations. We
shall discuss th e m a tte r in d e ta il in Section 6.4.

6.3. SUBQUERIES 275

1) SELECT name
2) FROM MovieExec, (SELECT producerC#
3) FROM Movies, Starsln
4) WHERE title = movieTitle AND
5) year = movieYear AND
6) starName = ’Harrison Ford’
7)) Prod
8) WHERE cert# = Prod.producerC#;

Figure 6.11: Finding the producers of Ford’s movies using a subquery in the
FROM clause

At line (8), the relations MovieExec and the subquery aliased Prod are joined
with the requirement that the certificate numbers be the same. The names of
the producers from MovieExec that have certificates in the set aliased by Prod
is returned at line (1). □

6.3.6 SQL Join Expressions
We can construct relations by a number of variations on the join operator
applied to two relations. These variants include products, natural joins, theta-
joins, and outerjoins. The result can stand as a query by itself. Alternatively, all
these expressions, since they produce relations, may be used as subqueries in the
FROM clause of a select-from-where expression. These expressions are principally
shorthands for more complex select-from-where queries (see Exercise 6.3.11).

The simplest form of join expression is a cross join; that term is a synonym
for what we called a Cartesian product or just “product” in Section 2.4.7. For
instance, if we want the product of the two relations

Movies(title, year, length, genre, studioName, producerC#)
Starsln(movieTitle, movieYear, starName)

we can say

Movies CROSS JOIN Starsln;
and the result will be a nine-column relation with all the attributes of Movies
and S ta rs ln . Every pair consisting of one tuple of Movies and one tuple of
S ta rs ln will be a tuple of the resulting relation.

The attributes in the product relation can be called R.A, where R is one
of the two joined relations and A is one of its attributes. If only one of the
relations has an attribute named A, then the R and dot can be dropped, as
usual. In this instance, since Movies and S ta rs ln have no common attributes,
the nine attribute names suffice in the product.

However, the product by itself is rarely a useful operation. A more conven
tional theta-join is obtained with the keyword ON. We put JOIN between two

276 CHAPTER 6. THE DATABASE LANGUAGE SQL

relation names R and S and follow them by ON and a condition. The meaning
of JOIN... ON is that the product of R x S is followed by a selection for whatever
condition follows ON.

E xam p le 6 .2 3 : Suppose we want to join the relations

Movies(title, year, length, genre, studioName, producerC#)
Starsln(movieTitle, movieYear, starName)

with the condition that the only tuples to be joined are those that refer to the
same movie. That is, the titles and years from both relations must be the same.
We can ask this query by

Movies JOIN Starsln ON
title = movieTitle AND year = movieYear;

The result is again a nine-column relation with the obvious attribute names.
However, now a tuple from Movies and one from S ta rs ln combine to form a
tuple of the result only if the two tuples agree on both the title and year. As a
result, two of the columns are redundant, because every tuple of the result will
have the same value in both the t i t l e and m ovieT itle components and will
have the same value in both year and movieYear.

If we are concerned with the fact that the join above has two redundant
components, we can use the whole expression as a subquery in a FROM clause
and use a SELECT clause to remove the undesired attributes. Thus, we could
write

SELECT title, year, length, genre, studioName,
producerC#, starName

FROM Movies JOIN Starsln ON
title = movieTitle AND year = movieYear;

to get a seven-column relation which is the Movies relation’s tuples, each ex
tended in all possible ways with a star of that movie. □

6.3.7 Natural Joins
As we recall from Section 2.4.8, a natural join differs from a theta-join in that:

1. The join condition is that all pairs of attributes from the two relations
having a common name are equated, and there are no other conditions.

2 . One of each pair of equated attributes is projected out.

The SQL natural join behaves exactly this way. Keywords NATURAL JOIN ap
pear between the relations to express the tx operator.

E xam ple 6 .2 4 : Suppose we want to compute the natural join of the relations

6.3. SUBQUERIES 277

MovieStar(name, ad d ress , gender, b ir th d a te)
MovieExec(name, ad d ress , c e r t# , netWorth)

The result will be a relation whose schema includes attributes name and address
plus all the attributes that appear in one or the other of the two relations.
A tuple of the result will represent an individual who is both a star and an
executive and will have all the information pertinent to either: a name, address,
gender, birthdate, certificate number, and net worth. The expression

MovieStar NATURAL JOIN MovieExec;

succinctly describes the desired relation. □

6.3.8 Outerjoins
The outerjoin operator was introduced in Section 5.2.7 as a way to augment
the result of a join by the dangling tuples, padded with null values. In SQL,
we can specify an outerjoin; NULL is used as the null value.

E xam ple 6.25 : Suppose we wish to take the outerjoin of the two relations

MovieStar(name, ad d ress , gender, b ir th d a te)
MovieExec(name, ad d ress , c e r t# , netWorth)

SQL refers to the standard outerjoin, which pads dangling tuples from both of
its arguments, as a full outerjoin. The syntax; is unsurprising:

MovieStar NATURAL FULL OUTER JOIN MovieExec;

The result of this operation is a relation with the same six-attribute schema as
Example 6.24. The tuples of this relation are of three kinds. Those representing
individuals who are both stars and executives have tuples with all six attributes
non-NULL. These are the tuples that are also in the result of Example 6.24.

The second kind of tuple is one for an individual who is a star but not an
executive. These tuples have values for attributes name, address, gender, and
b ir th d a te taken from their tuple in MovieStar, while the attributes belonging
only to MovieExec, namely ce rt# and netWorth, have NULL values.

The third kind of tuple is for an executive who is not also a star. These
tuples have values for the attributes of MovieExec taken from their MovieExec
tuple and NULL’s in the attributes gender and b ir th d a te that come only
from MovieStar. For instance, the three tuples of the result relation shown
in Fig. 6.12 correspond to the three types of individuals, respectively. □

All the variations on the outerjoin that we mentioned in Section 5.2.7 are also
available in SQL. If we want a left- or right-outerjoin, we add the appropriate
word LEFT or RIGHT in place of FULL. For instance,

MovieStar NATURAL LEFT OUTER JOIN MovieExec;

278 CHAPTER 6. THE DATABASE LANGUAGE SQL

name address gender birthdate cert# networth
Mary T yler Moore Maple S t. >F > 9 /9 /99 12345 $100-••
Tom Hanks Cherry Ln. >M> 8 / 8 /8 8 NULL NULL
George Lucas Oak Rd. NULL NULL 23456 $200- ■ •

Figure 6.12: Three tuples in the outerjoin of MovieStar and MovieExec

would yield the first two tuples of Fig. 6.12 but not the third. Similarly,

MovieStar NATURAL RIGHT OUTER JOIN MovieExec;

would yield the first and third tuples of Fig. 6.12 but not the second.
Next, suppose we want a theta-outerjoin instead of a natural outerjoin.

Instead of using the keyword NATURAL, we may follow the join by ON and a
condition that matching tuples must obey. If we also specify FULL OUTER JOIN,
then after matching tuples from the two joined relations, we pad dangling tuples
of either relation with NULL’s and include the padded tuples in the result.

E xam ple 6 .26: Let us reconsider Example 6.23, where we joined the relations
Movies and S ta rs ln using the conditions that the t i t l e and m ovieT itle at
tributes of the two relations agree and that the year and movieYear attributes
of the two relations agree. If we modify that example to call for a full outerjoin:

Movies FULL OUTER JOIN S ta rs ln ON
t i t l e = m ovieT itle AND year = movieYear;

then we shall get not only tuples for movies that have at least one star mentioned
in S ta rs ln , but we shall get tuples for movies with no listed stars, padded with
NULL’s in attributes m ovieT itle, movieYear, and starName. Likewise, for stars
not appearing in any movie listed in relation Movies we get a tuple with NULL’s
in the six attributes of Movies. □

The keyword FULL can be replaced by either LEFT or RIGHT in outerjoins of
the type suggested by Example 6.26. For instance,

Movies LEFT OUTER JOIN S ta rs ln ON
t i t l e = m ovieT itle AND year = movieYear;

gives us the Movies tuples with at least one listed star and NULL-padded Movies
tuples without a listed star, but will not include stars without a listed movie.
Conversely,

Movies RIGHT OUTER JOIN S ta rs ln ON
t i t l e = m ovieT itle AND year = movieYear;

will omit the tuples for movies without a listed star but will include tuples for
stars not in any listed movies, padded with NULL’s.

6.3. SUBQUERIES 279

6.3.9 Exercises for Section 6.3
Exercise 6 .3 .1 : Write the following queries, based on the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1. You should use at least one subquery in each of your answers
and write each query in two significantly different ways (e.g., using different
sets of the operators EXISTS, IN, ALL, and ANY).

a) Find the makers of PC’s with a speed of at least 3.0.

b) Find the printers with the highest price.

! c) Find the laptops whose speed is slower than that of any PC.

! d) Find the model number of the item (PC, laptop, or printer) with the
highest price.

! e) Find the maker of the color printer with the lowest price.

!! f) Find the maker(s) of the PC(s) with the fastest processor among all those
PC ’s that have the smallest amount of RAM.

E xercise 6.3.2 : Write the following queries, based on the database schema

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3. You should use at least one subquery in each of your answers
and write each query in two significantly different ways (e.g., using different
sets of the operators EXISTS, IN, ALL, and ANY).

a) Find the countries whose ships had the largest number of guns.

! b) Find the classes of ships, at least one of which was sunk in a battle.

c) Find the names of the ships with a 16-inch bore.

d) Find the battles in which ships of the Kongo class participated.

!! e) Find the names of the ships whose number of guns was the largest for
those ships of the same bore.

E xercise 6 .3 .3 : Write the query of Fig. 6.10 without any subqueries.

280 CHAPTER 6. THE DATABASE LANGUAGE SQL

! Exercise 6 .3 .4 : Consider expression n i(R i tx R 2 m • • • xi Rn) of relational
algebra, where L is a list of attributes all of which belong to R i . Show that this
expression can be written in SQL using subqueries only. More precisely, write
an equivalent SQL expression where no FROM clause has more than one relation
in its list.

! E xercise 6 .3 .5 : Write the following queries without using the intersection or
difference operators:

a) The intersection query of Fig. 6.5.

b) The difference query of Example 6.17.

! Exercise 6 .3 .6 : We have noticed that certain operators of SQL are redun
dant, in the sense that they always can be replaced by other operators. For
example, we saw that s IN R can be replaced by s = ANY R. Show that EXISTS
and NOT EXISTS are redundant by explaining how to replace any expression of
the form EXISTS R or NOT EXISTS R by an expression that does not involve
EXISTS (except perhaps in the expression R itself). Hint: Remember that it is
permissible to have a constant in the SELECT clause.

Exercise 6 .3 .7 : For these relations from our running movie database schema

StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

describe the tuples that would appear in the following SQL expressions:

a) Studio CROSS JOIN MovieExec;
b) Starsln NATURAL FULL OUTER JOIN MovieStar;
c) Starsln FULL OUTER JOIN MovieStar ON name = starName;

! E xercise 6 .3 .8 : Using the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, rd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

write a SQL query that will produce information about all products — PC ’s,
laptops, and printers — including their manufacturer if available, and whatever
information about that product is relevant (i.e., found in the relation for that
type of product).

Exercise 6 .3 .9 : Using the two relations

6.4. FULL-RELATION OPERATIONS 281

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

from our database schema of Exercise 2.4.3, write a SQL query that will produce
all available information about ships, including that information available in the
Classes relation. You need not produce information about classes if there are
no ships of that class mentioned in Ships.

! Exercise 6.3.10: Repeat Exercise 6.3.9, but also include in the result, for any
class C that is not mentioned in Ships, information about the ship that has
the same name C as its class. You may assume that there is a ship with the
class name, even if it doesn’t appear in Ships.

! Exercise 6.3.11: The join operators (other than outerjoin) we learned in this
section are redundant, in the sense that they can always be replaced by select-
from-where expressions. Explain how to write expressions of the following forms
using select-from-where:

a) R CROSS JOIN S;
b) R NATURAL JOIN S;
c) R JOIN S ON C where C is a SQL condition.

6.4 Full-Relation Operations
In this section we shall study some operations that act on relations as a whole,
rather than on tuples individually or in small numbers (as do joins of several
relations, for instance). First, we deal with the fact that SQL uses relations that
are bags rather than sets, and a tuple can appear more than once in a relation.
We shall see how to force the result of an operation to be a set in Section 6.4.1,
and in Section 6.4.2 we shall see that it is also possible to prevent the elimination
of duplicates in circumstances where SQL systems would normally eliminate
them.

Then, we discuss how SQL supports the grouping and aggregation operator
7 that we introduced in Section 5.2.4. SQL has aggregation operators and
a GROUP-BY clause. There is also a “HAVING” clause that allows selection of
certain groups in a way that depends on the group as a whole, rather than on
individual tuples.

6.4.1 Eliminating Duplicates
As mentioned in Section 6.3.4, SQL’s notion of relations differs from the abstract
notion of relations presented in Section 2.2. A relation, being a set, cannot
have more than one copy of any given tuple. When a SQL query creates a new
relation, the SQL system does not ordinarily eliminate duplicates. Thus, the
SQL response to a query may list the same tuple several times.

282 CHAPTER 6. THE DATABASE LANGUAGE SQL

Recall from Section 6.2.4 that one of several equivalent definitions of the
meaning of a SQL select-from-where query is that we begin with the Cartesian
product of the relations referred to in the FROM clause. Each tuple of the
product is tested by the condition in the WHERE clause, and the ones that pass
the test are given to the output for projection according to the SELECT clause.
This projection may cause the same tuple to result from different tuples of
the product, and if so, each copy of the resulting tuple is printed in its turn.
Further, since there is nothing wrong with a SQL relation having duplicates, the
relations from which the Cartesian product is formed may have duplicates, and
each identical copy is paired with the tuples from the other relations, yielding
a proliferation of duplicates in the product.

If we do not wish duplicates in the result, then we may follow the key
word SELECT by the keyword DISTINCT. That word tells SQL to produce only
one copy of any tuple and is the SQL analog of applying the <5 operator of
Section 5.2.1 to the result of the query.

E xam ple 6 .27 : Let us reconsider the query of Fig. 6.9, where we asked for the
producers of Harrison Ford’s movies using no subqueries. As written, George
Lucas will appear many times in the output. If we want only to see each
producer once, we may change line (1) of the query to

1) SELECT DISTINCT name

Then, the list of producers will have duplicate occurrences of names eliminated
before printing.

Incidentally, the query of Fig. 6.7, where we used subqueries, does not nec
essarily suffer from the problem of duplicate answers. True, the subquery at
line (4) of Fig. 6.7 will produce the certificate number of George Lucas several
times. However, in the “main” query of line (1), we examine each tuple of
MovieExec once. Presumably, there is only one tuple for George Lucas in that
relation, and if so, it is only this tuple that satisfies the WHERE clause of line (3).
Thus, George Lucas is printed only once. □

6.4.2 Duplicates in Unions, Intersections, and Differences
Unlike the SELECT statement, which preserves duplicates as a default and only
eliminates them when instructed to by the DISTINCT keyword, the union, inter
section, and difference operations, which we introduced in Section 6.2.5, nor
mally eliminate duplicates. That is, bags are converted to sets, and the set
version of the operation is applied. In order to prevent the elimination of dupli
cates, we must follow the operator UNION, INTERSECT, or EXCEPT by the keyword
ALL. If we do, then we get the bag semantics of these operators as was discussed
in Section 5.1.2.

E xam ple 6 .28 : Consider again the union expression from Example 6.18, but
now add the keyword ALL, as:

6.4. FULL-RELATION OPERATIONS 283

The Cost of Duplicate Elimination

One might be tempted to place DISTINCT after every SELECT, on the theory
that it is harmless. In fact, it is very expensive to eliminate duplicates from
a relation. The relation must be sorted or partitioned so that identical
tuples appear next to each other. Only by grouping the tuples in this
way can we determine whether or not a given tuple should be eliminated.
The time it takes to sort the relation so that duplicates may be eliminated
is often greater than the time it takes to execute the query itself. Thus,
duplicate elimination should be used judiciously if we want our queries to
run fast.

(SELECT title, year FROM Movies)
UNION ALL

(SELECT movieTitle AS title, movieYear AS year FROM Starsln);

Now, a title and year will appear as many times in the result as it appears in
each of the relations Movies and S ta rs ln put together. For instance, if a movie
appeared once in the Movies relation and there were three stars for that movie
listed in S ta rs ln (so the movie appeared in three different tuples of S ta rs ln),
then that movie’s title and year would appear four times in the result of the
union. □

As for union, the operators INTERSECT ALL and EXCEPT ALL are intersection
and difference of bags. Thus, if R and S are relations, then the result of
expression

R INTERSECT ALL S

is the relation in which the number of times a tuple t appears is the minimum
of the number of times it appears in R and the number of times it appears in
S.

The result of expression

R EXCEPT ALL S

has tuple t as many times as the difference of the number of times it appears in
R minus the number of times it appears in S, provided the difference is positive.
Each of these definitions is what we discussed for bags in Section 5.1.2.

6.4.3 Grouping and Aggregation in SQL
In Section 5.2.4, we introduced the grouping-and-aggregation operator 7 for
our extended relational algebra. Recall that this operator allows us to partition

284 CHAPTER 6. THE DATABASE LANGUAGE SQL

the tuples of a relation into “groups,” based on the values of tuples in one or
more attributes, as discussed in Section 5.2.3. We are then able to aggregate
certain other columns of the relation by applying “aggregation” operators to
those columns. If there are groups, then the aggregation is done separately for
each group. SQL provides all the capability of the 7 operator through the use
of aggregation operators in SELECT clauses and a special GROUP BY clause.

6.4.4 Aggregation Operators
SQL uses the five aggregation operators SUM, AVG, MIN, MAX, and COUNT that we
met in Section 5.2.2. These operators are used by applying them to a scalar-
valued expression, typically a column name, in a SELECT clause. One exception
is the expression C0UNT(*), which counts all the tuples in the relation that is
constructed from the FROM clause and WHERE clause of the query.

In addition, we have the option of eliminating duplicates from the column
before applying the aggregation operator by using the keyword DISTINCT. That
is, an expression such as COUNT (DISTINCT x) counts the number of distinct
values in column x. We could use any of the other operators in place of COUNT
here, but expressions such as SUM (DISTINCT x) rarely make sense, since it asks
us to sum the different values in column x.

E xam ple 6 .2 9 : The following query finds the average net worth of all movie
executives:

SELECT AVG(netWorth)
FROM MovieExec;

Note that there is no WHERE clause at all, so the keyword WHERE is properly
omitted. This query examines the netWorth column of the relation

MovieExec(name, address, cert#, netWorth)
sums the values found there, one value for each tuple (even if the tuple is a
duplicate of some other tuple), and divides the sum by the number of tuples.
If there are no duplicate tuples, then this query gives the average net worth
as we expect. If there were duplicate tuples, then a movie executive whose
tuple appeared n times would have his or her net worth counted n times in the
average. □

E xam ple 6.30: The following query:

SELECT COUNT(*)
FROM Starsln;

counts the number of tuples in the S ta rs ln relation. The similar query:

SELECT COUNT(starName)
FROM Starsln;

6.4. FULL-RELATION OPERATIONS 285

counts the number of values in the starName column of the relation. Since
duplicate values are not eliminated when we project onto the starName column
in SQL, this count should be the same as the count produced by the query with
C0UNT(*).

If we want to be certain that we do not count duplicate values more than
once, we can use the keyword DISTINCT before the aggregated attribute, as:

SELECT COUNT(DISTINCT starName)
FROM S ta rs ln ;

Now, each star is counted once, no matter in how many movies they appeared.
□

6.4.5 Grouping
To group tuples, we use a GROUP BY clause, following the WHERE clause. The
keywords GROUP BY are followed by a list of grouping attributes. In the simplest
situation, there is only one relation reference in the FROM clause, and this relation
has its tuples grouped according to their values in the grouping attributes.
Whatever aggregation operators are used in the SELECT clause are applied only
within groups.

E xam ple 6 .31: The problem of finding, from the relation

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)

the sum of the lengths of all movies for each studio is expressed by

SELECT studioName, SUM(length)
FROM Movies
GROUP BY studioName;

We may imagine that the tuples of relation Movies are reorganized and grouped
so that all the tuples for Disney studios are together, all those for MGM are
together, and so on, as was suggested in Fig. 5.4. The sums of the length
components of all the tuples in each group are calculated, and for each group,
the studio name is printed along with that sum. □

Observe in Example 6.31 how the SELECT clause has two kinds of terms.
These are the only terms that may appear when there is an aggregation in the
SELECT clause.

1. Aggregations, where an aggregate operator is applied to an attribute or
expression involving attributes. As mentioned, these terms are evaluated
on a per-group basis.

286 CHAPTER 6. THE DATABASE LANGUAGE SQL

2. Attributes, such as studioName in this example, that appear in the GROUP
BY clause. In a SELECT clause that has aggregations, only those attributes
that are mentioned in the GROUP BY clause may appear unaggregated in
the SELECT clause.

While queries involving GROUP BY generally have both grouping attributes
and aggregations in the SELECT clause, it is technically not necessary to have
both. For example, we could write

SELECT studioName
FROM Movies
GROUP BY studioName;

This query would group the tuples of Movies according to their studio name
and then print the studio name for each group, no matter how many tuples
there are with a given studio name. Thus, the above query has the same effect
as

SELECT DISTINCT studioName
FROM Movies;

It is also possible to use a GROUP BY clause in a query about several relations.
Such a query is interpreted by the following sequence of steps:

1. Evaluate the relation R expressed by the FROM and WHERE clauses. That
is, relation R is the Cartesian product of the relations mentioned in the
FROM clause, to which the selection of the WHERE clause is applied.

2. Group the tuples of R according to the attributes in the GROUP BY clause.

3. Produce as a result the attributes and aggregations of the SELECT clause,
as if the query were about a stored relation R.

E xam ple 6.32: Suppose we wish to print a table listing each producer’s total
length of film produced. We need to get information from the two relations

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)
MovieExec(name, address, c e r t# , netWorth)

so we begin by taking their theta-join, equating the certificate numbers from
the two relations. That step gives us a relation in which each MovieExec tuple
is paired with the Movies tuples for all the movies of that producer. Note that
an executive who is not a producer will not be paired with any movies, and
therefore will not appear in the relation. Now, we can group the selected tuples
of this relation according to the name of the producer. Finally, we sum the
lengths of the movies in each group. The query is shown in Fig. 6.13. □

6.4. FULL-RELATION OPERATIONS 287

SELECT name, SUM(length)
FROM MovieExec, Movies
WHERE producerC# = ce rt#
GROUP BY name;

Figure 6.13: Computing the length of movies for each producer

6.4.6 Grouping, Aggregation, and Nulls
When tuples have nulls, there are a few rules we must remember:

• The value NULL is ignored in any aggregation. It does not contribute to
a sum, average, or count of an attribute, nor can it be the minimum or
maximum in its column. For example, COUNT(*) is always a count of the
number of tuples in a relation, but COUNT (A) is the number of tuples with
non-NULL values for attribute A.

• On the other hand, NULL is treated as an ordinary value when forming
groups. That is, we can have a group in which one or more of the grouping
attributes are assigned the value NULL.

• When we perform any aggregation except count over an empty bag of
values, the result is NULL. The count of an empty bag is 0.

E xam ple 6 .33: Suppose we have a relation R(A, B) with one tuple, both of
whose components are NULL:

A | B
NULL | NULL

Then the result of:

SELECT A, COUNT(B)
FROM R
GROUP BY A;

is the one tuple (NULL, 0). The reason is that when we group by A, we find only
a group for value NULL. This group has one tuple, and its fi-value is NULL. We
thus count the bag of values {NULL}. Since the count of a bag of values does
not count the NULL’s, this count is 0.

On the other hand, the result of:

SELECT A, SUM(B)
FROM R
GROUP BY A;

288 CHAPTER 6. THE DATABASE LANGUAGE SQL

Order of Clauses in SQL Queries

We have now met all six clauses that can appear in a SQL “select-from-
where” query: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY.
Only the SELECT and FROM clauses are required. Whichever additional
clauses appear must be in the order listed above.

is the one tuple (NULL, NULL). The reason is as follows. The group for value
NULL has one tuple, the only tuple in R. However, when we try to sum the
B-values for this group, we only find NULL, and NULL does not contribute to a
sum. Thus, we are summing an empty bag of values, and this sum is defined
to be NULL. □

6.4.7 HAVING Clauses
Suppose that we did not wish to include all of the producers in our table of
Example 6.32. We could restrict the tuples prior to grouping in a way that
would make undesired groups empty. For instance, if we only wanted the total
length of movies for producers with a net worth of more than $10,000,000, we
could change the third line of Fig. 6.13 to

WHERE producerC# = cert# AND networth > 10000000
However, sometimes we want to choose our groups based on some aggregate

property of the group itself. Then we follow the GROUP BY clause with a HAVING
clause. The latter clause consists of the keyword HAVING followed by a condition
about the group.

Exam ple 6.34: Suppose we want to print the total film length for only those
producers who made at least one film prior to 1930. We may append to Fig. 6.13
the clause

HAVING MIN(year) < 1930
The resulting query, shown in Fig. 6.14, would remove from the grouped relation
all those groups in which every tuple had a year component 1930 or higher.
□

There are several rules we must remember about HAVING clauses:

• An aggregation in a HAVING clause applies only to the tuples of the group
being tested.

• Any attribute of relations in the FROM clause may be aggregated in the
HAVING clause, but only those attributes that are in the GROUP BY list
may appear unaggregated in the HAVING clause (the same rule as for the
SELECT clause).

6.4. FULL-RELATION OPERATIONS 289

SELECT name, SUM(length)
FROM MovieExec, Movies
WHERE producerC# = cert#
GROUP BY name
HAVING MIN(year) < 1930;

Figure 6.14: Computing the total length of film for early producers

6.4.8 Exercises for Section 6.4
Exercise 6 .4 .1 : Write each of the queries in Exercise 2.4.1 in SQL, making
sure that duplicates are eliminated.

E xercise 6 .4 .2 : Write each of the queries in Exercise 2.4.3 in SQL, making
sure that duplicates are eliminated.

! E xercise 6 .4 .3 : For each of your answers to Exercise 6.3.1, determine whether
or not the result of your query can have duplicates. If so, rewrite the query
to eliminate duplicates. If not, write a query without subqueries that has the
same, duplicate-free answer.

! E xercise 6 .4 .4 : Repeat Exercise 6.4.3 for your answers to Exercise 6.3.2.

! E xercise 6 .4 .5 : In Example 6.27, we mentioned that different versions of the
query “find the producers of Harrison Ford’s movies” can have different answers
as bags, even though they yield the same set of answers. Consider the version
of the query in Example 6.22, where we used a subquery in the FROM clause.
Does this version produce duplicates, and if so, why?

E xercise 6 .4 .6 : Write the following queries, based on the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1, and evaluate your queries using the data of that exercise.

a) Find the average speed of PC ’s.

b) Find the average speed of laptops costing over $1000.

c) Find the average price of PC ’s made by manufacturer “A.”

! d) Find the average price of PC’s and laptops made by manufacturer “D.”

e) Find, for each different speed, the average price of a PC.

290 CHAPTER 6. THE DATABASE LANGUAGE SQL

! f) Find for each manufacturer, the average screen size of its laptops.

! g) Find the manufacturers that make at least three different models of PC.

! h) Find for each manufacturer who sells PC ’s the maximum price of a PC.

! i) Find, for each speed of PC above 2.0, the average price.

!! j) Find the average hard disk size of a PC for all those manufacturers that
make printers.

Exercise 6.4.7: Write the following queries, based on the database schema

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3, and evaluate your queries using the data of that exercise.

a) Find the number of battleship classes.

b) Find the average number of guns of battleship classes.

! c) Find the average number of guns of battleships. Note the difference be
tween (b) and (c); do we weight a class by the number of ships of that
class or not?

! d) Find for each class the year in which the first ship of that class was
launched.

! e) Find for each class the number of ships of that class sunk in battle.

!! f) Find for each class with at least three ships the number of ships of that
class sunk in battle.

!! g) The weight (in pounds) of the shell fired from a naval gun is approximately
one half the cube of the bore (in inches). Find the average weight of the
shell for each country’s ships.

Exercise 6.4.8: In Example 5.10 we gave an example of the query: “find, for
each star who has appeared in at least three movies, the earliest year in which
they appeared.” We wrote this query as a 7 operation. Write it in SQL.

! Exercise 6.4.9: The 7 operator of extended relational algebra does not have
a feature that corresponds to the HAVING clause of SQL. Is it possible to mimic
a SQL query with a HAVING clause in relational algebra? If so, how would we
do it in general?

6.5. DATABASE MODIFICATIONS 291

6.5 Database M odifications
To this point, we have focused on the normal SQL query form: the select-from-
where statement. There are a number of other statement forms that do not
return a result, but rather change the state of the database. In this section, we
shall focus on three types of statements that allow us to

1. Insert tuples into a relation.

2. Delete certain tuples from a relation.

3. Update values of certain components of certain existing tuples.

We refer to these three types of operations collectively as modifications.

6.5.1 Insertion
The basic form of insertion statement is:

INSERT INTO R (A 1, . . . , A n) VALUES (ui, . . . , vn);

A tuple is created using the value for attribute Ai, for * = 1,2 , , . . , n. If
the list of attributes does not include all attributes of the relation R, then the
tuple created has default values for all missing attributes.

E xam ple 6 .35: Suppose we wish to add Sydney Greenstreet to the list of
stars of The Maltese Falcon. We say:

1) INSERT INTO Starsln(movieTitle, movieYear, starName)
2) VALUES(’The Maltese Falcon’, 1942, ’Sydney Greenstreet’);

The effect of executing this statement is that a tuple with the three components
on line (2) is inserted into the relation S ta rs ln . Since all attributes of S ta rs ln
are mentioned on line (1), there is no need to add default components. The
values on line (2) are matched with the attributes on line (1) in the order given,
so ’The M altese F alcon’ becomes the value of the component for attribute
m ovieT itle, and so on. □

If, as in Example 6.35, we provide values for all attributes of the relation,
then we may omit the list of attributes that follows the relation name. That is,
we could just say:

INSERT INTO Starsln
VALUES(’The Maltese Falcon’, 1942, ’Sydney Greenstreet’);

However, if we take this option, we must be sure that the order of the values is
the same as the standard order of attributes for the relation.

292 CHAPTER 6. THE DATABASE LANGUAGE SQL

• If you are not sure of the declared order for the attributes, it is best to
list them in the INSERT clause in the order you choose for their values in
the VALUES clause.

The simple INSERT described above only puts one tuple into a relation.
Instead of using explicit values for one tuple, we can compute a set of tuples to
be inserted, using a subquery. This subquery replaces the keyword VALUES and
the tuple expression in the INSERT statement form described above.

E xam ple 6 .36: Suppose we want to add to the relation

Studio(name, add ress, presC#)

all movie studios that are mentioned in the relation

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)

but do not appear in Studio. Since there is no way to determine an address or
a president for such a studio, we shall have to be content with value NULL for
attributes address and presC# in the inserted S tudio tuples. A way to make
this insertion is shown in Fig. 6.15.

1) INSERT INTO Studio(name)
2) SELECT DISTINCT studioName
3) FROM Movies
4) WHERE studioName NOT IN
5) (SELECT name
6) FROM S tu d io);

Figure 6.15: Adding new studios

Like most SQL statements with nesting, Fig. 6.15 is easiest to examine from
the inside out. Lines (5) and (6) generate all the studio names in the relation
Studio. Thus, line (4) tests that a studio name from the Movies relation is
none of these studios.

Now, we see that lines (2) through (6) produce the set of studio names
found in Movies but not in Studio. The use of DISTINCT on line (2) assures
that each studio will appear only once in this set, no matter how many movies it
owns. Finally, line (1) inserts each of these studios, with NULL for the attributes
address and presC#, into relation Studio. □

6.5.2 Deletion
The form of a deletion is

DELETE FROM R WHERE <condition> ;

6.5. DATABASE MODIFICATIONS 293

The Timing of Insertions

The SQL standard requires that the query be evaluated completely before
any tuples are inserted. For example, in Fig. 6.15, the query of lines (2)
through (6) must be evaluated prior to executing the insertion of line (1).
Thus, there is no possibility that new tuples added to S tudio at line (1)
will affect the condition on line (4).

In this particular example, it does not matter whether or not inser
tions are delayed until the query is completely evaluated. However, sup
pose DISTINCT were removed from line (2) of Fig. 6.15. If we evaluate the
query of lines (2) through (6) before doing any insertion, then a new stu
dio name appearing in several Movies tuples would appear several times in
the result of this query and therefore would be inserted several times into
relation Studio. However, if the DBMS inserted new studios into Studio
as soon as we found them during the evaluation of the query of lines (2)
through (6), something that would be incorrect according to the standard,
then the same new studio would not be inserted twice. Rather, as soon
as the new studio was inserted once, its name would no longer satisfy the
condition of lines (4) through (6), and it would not appear a second time
in the result of the query of lines (2) through (6).

The effect of executing this statement is that every tuple satisfying the condition
will be deleted from relation R.

E xam ple 6.37: We can delete from relation

S ta rs ln (m o v ieT itle , movieYear, starName)

the fact that Sydney Greenstreet was a star in The Maltese Falcon by the SQL
statement:

DELETE FROM S ta rs ln
WHERE m ovieT itle = ’The M altese F alcon’ AND

movieYear = 1942 AND
starName = ’Sydney G re e n s tre e t’ ;

Notice that unlike the insertion statement of Example 6.35, we cannot simply
specify a tuple to be deleted. Rather, we must describe the tuple exactly by a
WHERE clause. □

E xam ple 6 .38: Here is another example of a deletion. This time, we delete
from relation

MovieExec(name, ad d ress , c e r t# , netWorth)

294 CHAPTER 6. THE DATABASE LANGUAGE SQL

several tuples at once by using a condition that can be satisfied by more than
one tuple. The statement

DELETE FROM MovieExec
WHERE netWorth < 10000000;

deletes all movie executives whose net worth is low — less than ten million
dollars. □

6.5.3 Updates
While we might think of both insertions and deletions of tuples as “updates”
to the database, an update in SQL is a very specific kind of change to the
database: one or more tuples that already exist in the database have some of
their components changed. The general form of an update statement is:

UPDATE R SET <new-value assignments> WHERE <condition>;

Each new-value assignment is an attribute, an equal sign, and an expression.
If there is more than one assignment, they are separated by commas. The effect
of this statement is to find all the tuples in R that satisfy the condition. Each
of these tuples is then changed by having the expressions in the assignments
evaluated and assigned to the components of the tuple for the corresponding
attributes of R.

E xam ple 6 .39: Let us modify the relation

MovieExec(name, ad d ress , c e r t# , netWorth)

by attaching the title P res , in front of the name of every movie executive who
is the president of a studio. The condition the desired tuples satisfy is that
their certificate numbers appear in the presC# component of some tuple in the
Studio relation. We express this update as:

1) UPDATE MovieExec
2) SET name = ’P res . ’ I I name
3) WHERE ce rt# IN (SELECT presC# FROM S tu d io) ;

Line (3) tests whether the certificate number from the MovieExec tuple is
one of those that appear as a president’s certificate number in Studio.

Line (2) performs the update on the selected tuples. Recall that the operator
I I denotes concatenation of strings, so the expression following the = sign in
line (2) places the characters P re s . and a blank in front of the old value of the
name component of this tuple. The new string becomes the value of the name
component of this tuple; the effect is that ’ P re s . ’ has been prepended to the
old value of name. □

6.5. DATABASE MODIFICATIONS 295

6.5.4 Exercises for Section 6.5
Exercise 6 .5 .1 : Write the following database modifications, based on the
database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1. Describe the effect of the modifications on the data of that
exercise.

a) Using two INSERT statements, store in the database the fact that PC
model 1100 is made by manufacturer C, has speed 3.2, RAM 1024, hard
disk 180, and sells for $2499.

! b) Insert the facts that for every PC there is a laptop with the same manu
facturer, speed, RAM, and hard disk, a 17-inch screen, a model number
1100 greater, and a price $500 more.

c) Delete all PC’s with less than 100 gigabytes of hard disk.

d) Delete all laptops made by a manufacturer that doesn’t make printers.

e) Manufacturer A buys manufacturer B. Change all products made by B so
they are now made by A.

f) For each PC, double the amount of RAM and add 60 gigabytes to the
amount of hard disk. (Remember that several attributes can be changed
by one UPDATE statement.)

! g) For each laptop made by manufacturer B, add one inch to the screen size
and subtract $100 from the price.

E xercise 6 .5 .2 : Write the following database modifications, based on the
database schema

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3. Describe the effect of the modifications on the data of that
exercise.

a) The two British battleships of the Nelson class — Nelson and Rodney —
were both launched in 1927, had nine 16-inch guns, and a displacement
of 34,000 tons. Insert these facts into the database.

296 CHAPTER 6. THE DATABASE LANGUAGE SQL

b) Two of the three battleships of the Italian Vittorio Veneto class — Vit
torio Veneto and Italia — were launched in 1940; the third ship of that
class, Roma, was launched in 1942. Each had nine 15-inch guns and a
displacement of 41,000 tons. Insert these facts into the database.

c) Delete from Ships all ships sunk in battle.

d) Modify the C lasses relation so that gun bores are measured in centime
ters (one inch = 2.5 centimeters) and displacements are measured in met
ric tons (one metric ton = 1.1 tons).

e) Delete all classes with fewer than three ships.

6.6 Transactions in SQL
To this point, our model of operations on the database has been that of one
user querying or modifying the database. Thus, operations on the database are
executed one at a time, and the database state left by one operation is the state
upon which the next operation acts. Moreover, we imagine that operations are
carried out in their entirety (“atomically”). That is, we assumed it is impossible
for the hardware or software to fail in the middle of a modification, leaving the
database in a state that cannot be explained as the result of the operations
performed on it.

Real life is often considerably more complicated. We shall first consider what
can happen to leave the database in a state that doesn’t reflect the operations
performed on it, and then we shall consider the tools SQL gives the user to
assure that these problems do not occur.

6.6.1 Serializability
In applications like Web services, banking, or airline reservations, hundreds
of operations per second may be performed on the database. The operations
initiate at any of thousands or millions of sites, such as desktop computers
or automatic teller machines. It is entirely possible that we could have two
operations affecting the same bank account or flight, and for those operations
to overlap in time. If so, they might interact in strange ways.

Here is an example of what could go wrong if the DBMS were completely
unconstrained as to the order in which it operated upon the database. This
example involves a database interacting with people, and it is intended to illus
trate why it is important to control the sequences in which interacting events
can occur. However, a DBMS would not control events that were so “large”
that they involved waiting for a user to make a choice. The event sequences
controlled by the DBMS involve only the execution of SQL statements.

Exam ple 6.40: The typical airline gives customers a Web interface where
they can choose a seat for their flight. This interface shows a map of available

6.6. TRANSACTIONS IN SQL 297

seats, and the data for this map is obtained from the airline’s database. There
might be a relation such as:

Flights(fltNo, fltDate, seatNo, seatStatus)

upon which we can issue the query:

SELECT seatNo
FROM Flights
WHERE fltNo = 123 AND fltDate = DATE ’2008-12-25’

AND seatStatus = ’available’;

The flight number and date are example data, which would in fact be obtained
from previous interactions with the customer.

When the customer clicks on an empty seat, say 22A, that seat is reserved
for them. The database is modified by an update-statement, such as:

UPDATE Flights
SET seatStatus = ’occupied’
WHERE fltNo = 123 AND fltDate = DATE ’2008-12-25’

AND seatNo = ’22A’;

However, this customer may not be the only one reserving a seat on flight
123 on Dec. 25, 2008 and this exact moment. Another customer may have asked
for the seat map at the same time, in which case they also see seat 22A empty.
Should they also choose seat 22A, they too believe they have reserved 22A. The
timing of these events is as suggested by Fig. 6.16. □

User 1 finds
seat empty

User 2 finds
seat empty

User 1 sets seat
22A occupied

User 2 sets seat
22A occupied

Figure 6.16: Two customers trying to book the same seat simultaneously

As we see from Example 6.40, it is conceivable that two operations could
each be performed correctly, and yet the global result not be correct: both
customers believe they have been granted seat 22A. The problem is solved in
SQL by the notion of a “transaction,” which is informally a group of operations
that need to be performed together. Suppose that in Example 6.40, the query

time

298 CHAPTER 6. THE DATABASE LANGUAGE SQL

Assuring Serializable Behavior

In practice it is often impossible to require that operations run serially;
there are just too many of them, and some parallelism is required. Thus,
DBMS’s adopt a mechanism for assuring serializable behavior; even if
the execution is not serial, the result looks to users as if operations were
executed serially.

One common approach is for the DBMS to lock elements of the
database so that two functions cannot access them at the same time. We
mentioned locking in Section 1.2.4, and there is an extensive technology
of how to implement locks in a DBMS. For example, if the transaction of
Example 6.40 were written to lock other transactions out of the F lig h ts
relation, then transactions that did not access F lig h ts could run in par
allel with the seat-selection transaction, but no other invocation of the
seat-selection operation could run in parallel.

and update shown would be grouped into one transaction .6 SQL then allows
the programmer to state that a certain transaction must be serializable with
respect to other transactions. That is, these transactions must behave as if they
were run serially — one at a time, with no overlap.

Clearly, if the two invocations of the seat-selection operation are run serially
(or serializably), then the error we saw cannot occur. One customer’s invocation
occurs first. This customer sees seat 22A is empty, and books it. The other
customer’s invocation then begins and is not given 22A as a choice, because it
is already occupied. It may matter to the customers who gets the seat, but to
the database all that is important is that a seat is assigned only once.

6.6.2 Atomicity
In addition to nonserialized behavior that can occur if two or more database op
erations are performed about the same time, it is possible for a single operation
to put the database in an unacceptable state if there is a hardware or software
“crash” while the operation is executing. Here is another example suggesting
what might occur. As in Example 6.40, we should remember that real database
systems do not allow this sort of error to occur in properly designed application
programs.

E xam ple 6.41: Let us picture another common sort of database: a bank’s
account records. We can represent the situation by a relation

®However, it would be ex trem ely unw ise to g roup in to a single tra n sa c tio n operations
th a t involved a user, o r even a com p u ter th a t w as no t owned by th e airline , such as a travel
ag en t’s com pu ter. A no ther m echanism m u st be used to deal w ith event sequences th a t include
o pera tions ou tside th e datab ase .

6.6. TRANSACTIONS IN SQL 299

Accounts(acctNo, balance)

Consider the operation of transferring $100 from the account numbered 123
to the account 456. We might first check whether there is at least $100 in
account 123, and if so, we execute the following two steps:

1. Add $100 to account 456 by the SQL update statement:

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

2 . Subtract $100 from account 123 by the SQL update statement:

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

Now, consider what happens if there is a failure after Step (1) but before
Step (2). Perhaps the computer fails, or the network connecting the database to
the processor that is actually performing the transfer fails. Then the database
is left in a state where money has been transferred into the second account, but
the money has not been taken out of the first account. The bank has in effect
given away the amount of money that was to be transferred. □

The problem illustrated by Example 6.41 is that certain combinations of
database operations, like the two updates of that example, need to be done
atomically, that is, either they are both done or neither is done. For exam
ple, a simple solution is to have all changes to the database done in a local
workspace, and only after all work is done do we commit the changes to the
database, whereupon all changes become part of the database and visible to
other operations.

6.6.3 Transactions
The solution to the problems of serialization and atomicity posed in Sections
6.6.1 and 6.6.2 is to group database operations into transactions. A transaction
is a collection of one or more operations on the database that must be executed
atomically; that is, either all operations are performed or none are. In addition,
SQL requires that, as a default, transactions are executed in a serializable
manner. A DBMS may allow the user to specify a less stringent constraint on
the interleaving of operations from two or more transactions. We shall discuss
these modifications to the serializability condition in later sections.

When using the generic SQL interface (the facility wherein one types queries
and other SQL statements), each statement is a transaction by itself. However,

300 CHAPTER 6. THE DATABASE LANGUAGE SQL

How the Database Changes During Transactions

Different systems may do different things to implement transactions. It is
possible that as a transaction executes, it makes changes to the database.
If the transaction aborts, then (unless the programmer took precautions)
it is possible that these changes were seen by some other transaction. The
most common solution is for the database system to lock the changed items
until COMMIT or ROLLBACK is chosen, thus preventing other transactions
from seeing the tentative change. Locks or an equivalent would surely be
used if the user wants the transactions to run in a serializable fashion.

However, as we shall see starting in Section 6.6.4, SQL offers us sev
eral options regarding the treatment of tentative database changes. It
is possible that the changed data is not locked and becomes visible even
though a subsequent rollback makes the change disappear. It is up to the
author of a transaction to decide whether it is safe for that transaction to
see tentative changes of other transactions.

SQL allows the programmer to group several statements into a single transac
tion. The SQL command START TRANSACTION is used to mark the beginning
of a transaction. There are two ways to end a transaction:

1. The SQL statement COMMIT causes the transaction to end successfully.
Whatever changes to the database were caused by the SQL statement or
statements since the current transaction began are installed permanently
in the database (i.e., they are committed). Before the COMMIT statement
is executed, changes are tentative and may or may not be visible to other
transactions.

2. The SQL statement ROLLBACK causes the transaction to abort, or termi
nate unsuccessfully. Any changes made in response to the SQL statements
of the transaction are undone (i.e., they are rolled back), so they never
permanently appear in the database.

E xam ple 6.42: Suppose we want the transfer operation of Example 6.41 to
be a single transaction. We execute BEGIN TRANSACTION before accessing the
database. If we find that there are insufficient funds to make the transfer,
then we would execute the ROLLBACK command. However, if there are sufficient
funds, then we execute the two update statements and then execute COMMIT.
□

6.6.4 Read-Only Transactions
Examples 6.40 and 6.41 each involved a transaction that read and then (pos
sibly) wrote some data into the database. This sort of transaction is prone to

6.6. TRANSACTIONS IN SQL 301

Application- Versus System-Generated Rollbacks

In our discussion of transactions, we have presumed that the decision
whether a transaction is committed or rolled back is made as part of the
application issuing the transaction. That is, as in Examples 6.44 and 6.42,
a transaction may perform a number of database operations, then decide
whether to make any changes permanent by issuing COMMIT, or to return
to the original state by issuing ROLLBACK. However, the system may also
perform transaction rollbacks, to ensure that transactions are executed
atomically and conform to their specified isolation level in the presence of
other concurrent transactions or system crashes. Typically, if the system
aborts a transaction then a special error code or exception is generated.
If an application wishes to guarantee that its transactions are executed
successfully, it must catch such conditions and reissue the transaction in
question.

serialization problems. Thus we saw in Example 6.40 what could happen if two
executions of the function tried to book the same seat at the same time, and
we saw in Example 6.41 what could happen if there was a crash in the middle
of a funds transfer. However, when a transaction only reads data and does not
write data, we have more freedom to let the transaction execute in parallel with
other transactions.

E xam ple 6 .43: Suppose we wrote a program that read data from the F lig h ts
relation of Example 6.40 to determine whether a certain seat was available.
We could execute many invocations of this program at once, without risk of
permanent harm to the database. The worst that could happen is that while
we were reading the availability of a certain seat, that seat was being booked
or was being released by the execution of some other program. Thus, we might
get the answer “available” or “occupied,” depending on microscopic differences
in the time at which we executed the query, but the answer would make sense
at some time. □

If we tell the SQL execution system that our current transaction is read
only, that is, it will never change the database, then it is quite possible that the
SQL system will be able to take advantage of that knowledge. Generally it will
be possible for many read-only transactions accessing the same data to run in
parallel, while they would not be allowed to run in parallel with a transaction
that wrote the same data.

We tell the SQL system that the next transaction is read-only by:

SET TRANSACTION READ ONLY;
This statement must be executed before the transaction begins. We can also
inform SQL that the coming transaction may write data by the statement

302 CHAPTER 6. THE DATABASE LANGUAGE SQL

SET TRANSACTION READ WRITE;

However, this option is the default.

6.6.5 Dirty Reads
Dirty data is a common term for data written by a transaction that has not yet
committed. A dirty read is a read of dirty data written by another transaction.
The risk in reading dirty data is that the transaction that wrote it may even
tually abort. If so, then the dirty data will be removed from the database, and
the world is supposed to behave as if that data never existed. If some other
transaction has read the dirty data, then that transaction might commit or take
some other action that reflects its knowledge of the dirty data.

Sometimes the dirty read matters, and sometimes it doesn’t. Other times
it matters little enough that it makes sense to risk an occasional dirty read and
thus avoid:

1. The time-consuming work by the DBMS that is needed to prevent dirty
reads, and

2. The loss of parallelism that results from waiting until there is no possibility
of a dirty read.

Here are some examples of what might happen when dirty reads are allowed.

E xam ple 6.44: Let us reconsider the account transfer of Example 6.41. How
ever, suppose that transfers are implemented by a program P that executes the
following sequence of steps:

1. Add money to account 2.

2. Test if account 1 has enough money.

(a) If there is not enough money, remove the money from account 2 and
end.7

(b) If there is enough money, subtract the money from account 1 and
end.

If program P is executed serializably, then it doesn’t matter that we have put
money temporarily into account 2. No one will see that money, and it gets
removed if the transfer can’t be made.

However, suppose dirty reads are possible. Imagine there are three accounts:
A I, A2, and ^43, with $100, $200, and $300, respectively. Suppose transaction

7You should be aw are th a t th e p rog ram P is try in g to perform functions th a t would m ore
typ ically be done by th e D BM S. In p articu la r, w hen P decides, as it has done a t th is step ,
th a t it m u st no t com plete th e tran sac tio n , it would issue a rollback (ab o rt) com m and to th e
DBM S an d have th e D BM S reverse th e effects of th is execution o f P.

6.6. TRANSACTIONS IN SQL 303

Ti executes program P to transfer $150 from A I to A2. At roughly the same
time, transaction T2 runs program P to transfer $250 from A2 to A3. Here is
a possible sequence of events:

1. T2 executes Step.(l) and adds $250 to A3, which now has $550.

2. Ti executes Step (1) and adds $150 to A2, which now has $350.

3. T2 executes the test of Step (2) and finds that A2 has enough funds ($350)
to allow the transfer of $250 from A2 to A3.

4. Ti executes the test of Step (2) and finds that A I does not have enough
funds ($100) to allow the transfer of $150 from A I to A2.

5. T2 executes Step (2b). It subtracts $250 from A2, which now has $100,
and ends.

6 . Ti executes Step (2a). It subtracts $150 from A2, which now has —$50,
and ends.

The total amount of money has not changed; there is still $600 among the three
accounts. But because T2 read dirty data at the third of the six steps above, we
have not protected against an account going negative, which supposedly was
the purpose of testing the first account to see if it had adequate funds. □

E xam ple 6.45: Let us imagine a variation on the seat-choosing function of
Example 6.40. In the new approach:

1. We find an available seat and reserve it by setting se a tS ta tu s to ’occ
u p ied ’ for that seat. If there is none, end.

2. We ask the customer for approval of the seat. If so, we commit. If not,
we release the seat by setting se a tS ta tu s to ’a v a ila b le ’ and repeat
Step (1) to get another seat.

If two transactions are executing this algorithm at about the same time, one
might reserve a seat S, which later is rejected by the customer. If the second
transaction executes Step (1) at a time when seat S is marked occupied, the
customer for that transaction is not given the option to take seat S.

As in Example 6.44, the problem is that a dirty read has occurred. The
second transaction saw a tuple (with S marked occupied) that was written by
the first transaction and later modified by the first transaction. □

How important is the fact that a read was dirty? In Example 6.44 it was
very important; it caused an account to go negative despite apparent safeguards
against that happening. In Example 6.45, the problem does not look too serious.
Indeed, the second traveler might not get their favorite seat, or might even be
told that no seats existed. However, in the latter case, running the transaction

304 CHAPTER 6. THE DATABASE LANGUAGE SQL

again will almost certainly reveal the availability of seat S. It might well make
sense to implement this seat-choosing function in a way that allowed dirty reads,
in order to speed up the average processing time for booking requests.

SQL allows us to specify that dirty reads are acceptable for a given transac
tion. We use the SET TRANSACTION statement that we discussed in Section 6.6.4.
The appropriate form for a transaction like that described in Example 6.45 is:

1) SET TRANSACTION READ WRITE
2) ISOLATION LEVEL READ UNCOMMITTED;

The statement above does two things:

1. Line (1) declares that the transaction may write data.

2. Line (2) declares that the transaction may run with the “isolation level”
read-uncommitted. That is, the transaction is allowed to read dirty data.
We shall discuss the four isolation levels in Section 6 .6 .6 . So far, we have
seen two of them: serializable and read-uncommitted.

Note that if the transaction is not read-only (i.e., it may modify the data
base), and we specify isolation level READ UNCOMMITTED, then we must also
specify READ WRITE. Recall from Section 6.6.4 that the default assumption is
that transactions are read-write. However, SQL makes an exception for the
case where dirty reads are allowed. Then, the default assumption is that the
transaction is read-only, because read-write transactions with dirty reads entail
significant risks, as we saw. If we want a read-write transaction to run with
read-uncommitted as the isolation level, then we need to specify READ WRITE
explicitly, as above.

6.6.6 Other Isolation Levels
SQL provides a total of four isolation levels. Two of them we have already
seen: serializable and read-uncommitted (dirty reads allowed). The other two
are read-committed and repeatable-read. They can be specified for a given trans
action by

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

or

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

respectively. For each, the default is that transactions are read-write, so we can
add READ ONLY to either statement, if appropriate. Incidentally, we also have
the option of specifying

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

6.6. TRANSACTIONS IN SQL 305

Interactions Among Transactions Running at
Different Isolation Levels

A subtle point is that the isolation level of a transaction affects only what
data that transaction may see; it does not affect what any other transaction
sees. As a case in point, if a transaction T is running at level serializable,
then the execution of T must appear as if all other transactions run either
entirely before or entirely after T. However, if some of those transactions
are running at another isolation level, then they may see the data written
by T as T writes it. They may even see dirty data from T if they are
running at isolation level read-uncommitted, and T aborts.

However, that is the SQL default and need not be stated explicitly.
The read-committed isolation level, as its name implies, forbids the reading

of dirty (uncommitted) data. However, it does allow a transaction running at
this isolation level to issue the same query several times and get different an
swers, as long as the answers reflect data that has been written by transactions
that already committed.

E xam ple 6.46: Let us reconsider the seat-choosing program of Example 6.45,
but suppose we declare it to run with isolation level read-committed. Then
when it searches for a seat at Step (1), it will not see seats as booked if some
other transaction is reserving them but not committed.8 However, if the trav
eler rejects seats, and one execution of the function queries for available seats
many times, it may see a different set of available seats each time it queries, as
other transactions successfully book seats or cancel seats in parallel with our
transaction. □

Now, let us consider isolation level repeatable-read. The term is something
of a misnomer, since the same query issued more than once is not quite guar
anteed to get the same answer. Under repeatable-read isolation, if a tuple is
retrieved the first time, then we can be sure that the identical tuple will be
retrieved again if the query is repeated. However, it is also possible that a
second or subsequent execution of the same query will retrieve phantom tuples.
The latter are tuples that result from insertions into the database while our
transaction is executing.

E xam ple 6.47: Let us continue with the seat-choosing problem of Examples
6.45 and 6.46. If we execute this function under isolation level repeatable-read,

8W h a t ac tually h ap p en s m ay seem m ysterious, since we have n o t addressed th e algorithm s
for enforcing th e various iso lation levels. Possibly, shou ld tw o tran sac tio n s b o th see a seat
as available and try to book it, one will be forced by th e system to roll back in o rd er to
b reak th e deadlock (see th e box on “A pplication- V ersus System -G enera ted R ollbacks” in
Section 6.6.3).

306 CHAPTER 6. THE DATABASE LANGUAGE SQL

then a seat that is available on the first query at Step (1) will remain available
at subsequent queries.

However, suppose some new tuples enter the relation F lig h ts . For exam
ple, the airline may have switched the flight to a larger plane, creating some
new tuples that weren’t there before. Then under repeatable-read isolation, a
subsequent query for available seats may also retrieve the new seats. □

Figure 6.17 summarizes the differences between the four SQL isolation levels.

Isolation Level Dirty Reads Nonrepeat-
able Reads

Phantoms

Read Uncommitted Allowed Allowed Allowed
Read Committed Not Allowed Allowed Allowed
Repeatable Read Not Allowed Not Allowed Allowed
Serializable Not Allowed Not Allowed Not Allowed

Figure 6.17: Properties of SQL isolation levels

6.6.7 Exercises for Section 6.6
Exercise 6 .6 .1 : This and the next exercises involve certain programs that
operate on the two relations

Product(maker, model, type)
PC(model, speed, ram, hd, price)

from our running PC exercise. Sketch the following programs, including SQL
statements and work done in a conventional language. Do not forget to issue
BEGIN TRANSACTION, COMMIT, and ROLLBACK statements at the proper times
and to tell the system your transactions are read-only if they are.

a) Given a speed and amount of RAM (as arguments of the function), look
up the PC’s with that speed and RAM, printing the model number and
price of each.

b) Given a model number, delete the tuple for that model from both PC and
Product.

c) Given a model number, decrease the price of that model PC by $100.

d) Given a maker, model number, processor speed, RAM size, hard-disk size,
and price, check that there is no product with that model. If there is such
a model, print an error message for the user. If no such model existed
in the database, enter the information about that model into the PC and
Product tables.

6.7. SUMMARY OF CHAPTER 6 307

! E xercise 6 .6 .2 : For each of the programs of Exercise 6.6.1, discuss the atom
icity problems, if any, that could occur should the system crash in the middle
of an execution of the program.

! E xercise 6 .6 .3 : Suppose we execute as a transaction T one of the four pro
grams of Exercise 6.6.1, while other transactions that are executions of the same
or a different one of the four programs may also be executing at about the same
time. What behaviors of transaction T may be observed if all the transactions
run with isolation level READ UNCOMMITTED that would not be possible if they
all ran with isolation level SERIALIZABLE? Consider separately the case that T
is any of the programs (a) through (d) of Exercise 6.6.1.

!! Exercise 6 .6 .4 : Suppose we have a transaction T that is a function which runs
“forever,” and at each hour checks whether there is a PC that has a speed of
3.5 or more and sells for under $1000. If it finds one, it prints the information
and terminates. During this time, other transactions that are executions of
one of the four programs described in Exercise 6.6.1 may run. For each of the
four isolation levels — serializable, repeatable read, read committed, and read
uncommitted — tell what the effect on T of running at this isolation level is.

6.7 Summary of Chapter 6
4- SQL: The language SQL is the principal query language for relational

database systems. The most recent full standard is called SQL-99 or
SQL3. Commercial systems generally vary from this standard.

♦ Select-From-Where Queries: The most common form of SQL query has
the form select-from-where. It allows us to take the product of several
relations (the FROM clause), apply a condition to the tuples of the result
(the WHERE clause), and produce desired components (the SELECT clause).

♦ Subqueries: Select-from-where queries can also be used as subqueries
within a WHERE clause or FROM clause of another query. The operators
EXISTS, IN, ALL, and ANY may be used to express boolean-valued con
ditions about the relations that are the result of a subquery in a WHERE
clause.

♦ Set Operations on Relations: We can take the union, intersection, or
difference of relations by connecting the relations, or connecting queries
defining the relations, with the keywords UNION, INTERSECT, and EXCEPT,
respectively.

♦ Join Expressions: SQL has operators such as NATURAL JOIN that may be
applied to relations, either as queries by themselves or to define relations
in a FROM clause.

308 CHAPTER 6. THE DATABASE LANGUAGE SQL

♦ Null Values: SQL provides a special value NULL that appears in compo
nents of tuples for which no concrete value is available. The arithmetic
and logic of NULL is unusual. Comparison of any value to NULL, even
another NULL, gives the tru th value UNKNOWN. That truth value, in turn,
behaves in boolean-valued expressions as if it were halfway between TRUE
and FALSE.

♦ Outerjoins: SQL provides an OUTER JOIN operator that joins relations
but also includes in the result dangling tuples from one or both relations;
the dangling tuples are padded with NULL’s in the resulting relation.

♦ The Bag Model of Relations: SQL actually regards relations as bags of
tuples, not sets of tuples. We can force elimination of duplicate tuples
with the keyword DISTINCT, while keyword ALL allows the result to be a
bag in certain circumstances where bags are not the default.

♦ Aggregations: The values appearing in one column of a relation can be
summarized (aggregated) by using one of the keywords SUM, AVG (average
value), MIN, MAX, or COUNT. Tuples can be partitioned prior to aggregation
with the keywords GROUP BY. Certain groups can be eliminated with a
clause introduced by the keyword HAVING.

♦ Modification Statements: SQL allows us to change the tuples in a relation.
We may INSERT (add new tuples), DELETE (remove tuples), or UPDATE
(change some of the existing tuples), by writing SQL statements using
one of these three keywords.

♦ Transactions: SQL allows the programmer to group SQL statements into
transactions, which may be committed or rolled back (aborted). Trans
actions may be rolled back by the application in order to undo changes,
or by the system in order to guarantee atomicity and isolation.

♦ Isolation Levels: SQL defines four isolation levels called, from most strin
gent to least stringent: “serializable” (the transaction must appear to
run either completely before or completely after each other transaction),
“repeatable-read” (every tuple read in response to a query will reappear if
the query is repeated), “read-committed” (only tuples written by transac
tions that have already committed may be seen by this transaction), and
“read-uncommitted” (no constraint on what the transaction may see).

6.8 References for Chapter 6
Many books on SQL programming are available. Some popular ones are [3],
[5], and [7]. [6] is an early exposition of the SQL-99 standard.

SQL was first defined in [4]. It was implemented as part of System R [1],
one of the first generation of relational database prototypes.

6.8. REFERENCES FOR CHAPTER 6 309

There is a discussion of problems with this standard in the area of transac
tions and cursors in [2].

1. M. M. Astrahan et al., “System R: a relational approach to data manage
ment,” ACM Transactions on Database Systems 1:2, pp. 97-137, 1976.

2. H. Berenson, P. A. Bernstein, J. N. Gray, J. Melton, E. O’Neil, and P.
O’Neil, “A critique of ANSI SQL isolation levels,” Proceedings of ACM
SIGMOD Intl. Conf. on Management of Data, pp. 1-10, 1995.

3. J. Celko, SQL for Smarties, Morgan-Kaufmann, San Francisco, 2005.

4. D. D. Chamberlin et al., “SEQUEL 2: a unified approach to data defini
tion, manipulation, and control,” IBM Journal of Research and Develop
ment 20:6, pp. 560-575, 1976.

5. C. J. Date and H. Darwen, A Guide to the SQL Standard, Addison-Wesley,
Reading, MA, 1997.

6. P. Gulutzan and T. Pelzer, SQL-99 Complete, Really, R&D Books, Law
rence, KA, 1999.

7. J. Melton and A. R. Simon, Understanding the New SQL: A Complete
Guide, Morgan-Kaufmann, San Francisco, 2006.

Chapter 7

Constraints and Triggers

In this chapter we shall cover those aspects of SQL that let us create “active” el
ements. An active element is an expression or statement that we write once and
store in the database, expecting the element to execute at appropriate times.
The time of action might be when a certain event occurs, such as an insertion
into a particular relation, or it might be whenever the database changes so that
a certain boolean-valued condition becomes true.

One of the serious problems faced by writers of applications that update
the database is that the new information could be wrong in a variety of ways.
For example, there are often typographical or transcription errors in manually
entered data. We could write application programs in such a way that every
insertion, deletion, and update command has associated with it the checks
necessary to assure correctness. However, it is better to store these checks in
the database, and have the DBMS administer the checks. In this way, we can
be sure a check will not be forgotten, and we can avoid duplication of work.

SQL provides a variety of techniques for expressing integrity constraints
as part of the database schema. In this chapter we shall study the principal
methods. We have already seen key constraints, where an attribute or set of
attributes is declared to be a key for a relation. SQL supports a form of refer
ential integrity, called a “foreign-key constraint,” the requirement that a value
in an attribute or attributes of one relation must also appear as a value in an
attribute or attributes of another relation. SQL also allows constraints on at
tributes, constraints on tuples, and interrelation constraints called “assertions.”
Finally, we discuss “triggers,” which are a form of active element that is called
into play on certain specified events, such as insertion into a specific relation.

7.1 Keys and Foreign Keys
Recall from Section 2.3.6 that SQL allows us to define an attribute or attributes
to be a key for a relation with the keywords PRIMARY KEY or UNIQUE. SQL also
uses the term “key” in connection with certain referential-integrity constraints.

311

312 CHAPTER 7. CONSTRAINTS AND TRIGGERS

These constraints, called “foreign-key constraints,” assert that a value appear
ing in one relation must also appear in the primary-key component (s) of another
relation.

7.1.1 Declaring Foreign-Key Constraints
A foreign key constraint is an assertion that values for certain attributes must
make sense. Recall, for instance, that in Example 2.21 we considered how
to express in relational algebra the constraint that the producer “certificate
number” for each movie was also the certificate number of some executive in
the MovieExec relation.

In SQL we may declare an attribute or attributes of one relation to be a
foreign key, referencing some attribute(s) of a second relation (possibly the same
relation). The implication of this declaration is twofold:

1. The referenced attribute(s) of the second relation must be declared UNIQUE
or the PRIMARY KEY for their relation. Otherwise, we cannot make the
foreign-key declaration.

2. Values of the foreign key appearing in the first relation must also appear
in the referenced attributes of some tuple. More precisely, let there be a
foreign-key F that references set of attributes G of some relation. Suppose
a tuple t of the first relation has non-NULL values in all the attributes of F ;
call the list of t's values in these attributes t[F], Then in the referenced
relation there must be some tuple s that agrees with t[F] on the attributes
G. That is, s[G] = t[F],

As for primary keys, we have two ways to declare a foreign key.

a) If the foreign key is a single attribute we may follow its name and type by
a declaration that it “references” some attribute (which must be a key —
primary or unique) of some table. The form of the declaration is

REFERENCES <table> (<attribute>)

b) Alternatively, we may append to the list of attributes in a CREATE TABLE
statement one or more declarations stating that a set of attributes is a
foreign key. We then give the table and its attributes (which must be a
key) to which the foreign key refers. The form of this declaration is:

FOREIGN KEY (< attributes>) REFERENCES <table> (<attributes>)

E xam ple 7 .1 : Suppose we wish to declare the relation

Studio(name, add ress, presC#)

7.1. K EYS AND FOREIGN K EYS 313

whose primary key is name and which has a foreign key presC# that references
c e rt# of relation

MovieExec(name, ad d ress , c e r t# , netWorth)

We may declare presC# directly to reference ce rt# as follows:

CREATE TABLE Studio (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT REFERENCES MovieExec(cert#)

);

An alternative form is to add the foreign key declaration separately, as

CREATE TABLE Studio (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT,
FOREIGN KEY (presC#) REFERENCES MovieExec(cert#)

);

Notice that the referenced attribute, c e rt# in MovieExec, is a key of that rela
tion, as it must be. The meaning of either of these two foreign key declarations
is that whenever a value appears in the presC# component of a S tudio tuple,
that value must also appear in the ce rt# component of some MovieExec tuple.
The one exception is that, should a particular S tudio tuple have NULL as the
value of its presC# component, there is no requirement that NULL appear as
the value of a c e rt# component (but note that c e rt# is a primary key and
therefore cannot have NULL’s anyway). □

7.1.2 Maintaining Referential Integrity
The schema designer may choose from among three alternatives to enforce a
foreign-key constraint. We can learn the general idea by exploring Example
7.1, where it is required that a presC# value in relation S tudio also be a c e rt#
value in MovieExec. The following actions will be prevented by the DBMS (i.e.,
a run-time exception or error will be generated).

a) We try to insert a new Studio tuple whose presC# value is not NULL and
is not the ce rt# component of any MovieExec tuple.

b) We try to update a S tudio tuple to change the presC# component to a
non-NULL value that is not the ce rt# component of any MovieExec tuple.

c) We try to delete a MovieExec tuple, and its c e rt# component, which is
not NULL, appears as the presC# component of one or more Studio tuples.

314 CHAPTER 7. CONSTRAINTS AND TRIGGERS

d) We try to update a MovieExec tuple in a way that changes the ce rt#
value, and the old c e rt# is the value of presC# of some movie studio.

For the first two modifications, where the change is to the relation where
the foreign-key constraint is declared, there is no alternative; the system has
to reject the violating modification. However, for changes to the referenced
relation, of which the last two modifications are examples, the designer can
choose among three options:

1. The Default Policy: Reject Violating Modifications. SQL has a default
policy that any modification violating the referential integrity constraint
is rejected.

2. The Cascade Policy. Under this policy, changes to the referenced at
tribute (s) are mimicked at the foreign key. For example, under the cas
cade policy, when we delete the MovieExec tuple for the president of a
studio, then to maintain referential integrity the system will delete the
referencing tuple(s) from Studio. If we update the ce rt# for some movie
executive from c.\ to C2, and there was some Studio tuple with c\ as
the value of its presC# component, then the system will also update this
presC# component to have value c^.

3. The Set-Null Policy. Here, when a modification to the referenced relation
affects a foreign-key value, the latter is changed to NULL. For instance, if
we delete from MoveExec the tuple for a president of a studio, the system
would change the presC# value for that studio to NULL. If we updated that
president’s certificate number in MovieExec, we would again set presC#
to NULL in Studio.

These options may be chosen for deletes and updates, independently, and
they are stated with the declaration of the foreign key. We declare them with
ON DELETE or ON UPDATE followed by our choice of SET NULL or CASCADE.

E xam ple 7.2 : Let us see how we might modify the declaration of

Studio(nam e, add ress, presC#)

in Example 7.1 to specify the handling of deletes and updates in the

MovieExec(name, add ress, c e r t# , netWorth)

relation. Figure 7.1 takes the first of the CREATE TABLE statements in that
example and expands it with ON DELETE and ON UPDATE clauses. Line (5) says
that when we delete a MovieExec tuple, we set the presC# of any studio of
which he or she was the president to NULL. Line ('6) says that if we update the
ce rt# component of a MovieExec tuple, then any tuples in S tudio with the
same value in the presC# component are changed similarly.

7.1. K EYS AND FOREIGN KEYS 315

1)
2)
3)
4)
5)
6)

CREATE TABLE Studio (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT REFERENCES MovieExec(cert#)

ON DELETE SET NULL
ON UPDATE CASCADE

);

Figure 7.1: Choosing policies to preserve referential integrity

Dangling Tuples and Modification Policies

A tuple with a foreign key value that does not appear in the referenced
relation is said to be a dangling tuple. Recall that a tuple which fails to
participate in a join is also called “dangling.” The two ideas are closely
related. If a tuple’s foreign-key value is missing from the referenced rela
tion, then the tuple will not participate in a join of its relation with the
referenced relation, if the join is on equality of the foreign key and the key
it references (called a foreign-key join). The dangling tuples are exactly
the tuples that violate referential integrity for this foreign-key constraint.

Note that in this example, the set-null policy makes more sense for deletes,
while the cascade policy seems preferable for updates. We would expect that
if, for instance, a studio president retires, the studio will exist with a “null”
president for a while. However, an update to the certificate number of a studio
president is most likely a clerical change. The person continues to exist and to
be the president of the studio, so we would like the presC# attribute in S tudio
to follow the change. □

7.1.3 Deferred Checking of Constraints
Let us assume the situation of Example 7.1, where presC# in Studio is a
foreign key referencing ce rt# of MovieExec. Arnold Schwarzenegger retires as
Governor of California and decides to found a movie studio, called La Vista
Studios, of which he will naturally be the president. If we execute the insertion:

INSERT INTO Studio
VALUES(’La V is ta ’ , ’New York’ , 23456);

we are in trouble. The reason is that there is no tuple of MovieExec with
certificate number 23456 (the presumed newly issued certificate for Arnold
Schwarzenegger), so there is an obvious violation of the foreign-key constraint.

316 CHAPTER 7. CONSTRAINTS AND TRIGGERS

One possible fix is first to insert the tuple for La Vista without a president’s
certificate, as:

INSERT INTO Studio(name, address)
VALUES(’La V is ta ’ , ’New York’);

This change avoids the constraint violation, because the La-Vista tuple is in
serted with NULL as the value of presC#, and NULL in a foreign key does not
require that we check for the existence of any value in the referenced column.
However, we must insert a tuple for Arnold Schwarzenegger into MovieExec,
with his correct certificate number before we can apply an update statement
such as

UPDATE Studio
SET presC# = 23456
WHERE name = ’La V is ta ’ ;

If we do not fix MovieExec first, then this update statement will also violate
the foreign-key constraint.

Of course, inserting Arnold Schwarzenegger and his certificate number into
MovieExec before inserting La Vista into S tudio will surely protect against
a foreign-key violation in this case. However, there are cases of circular con
straints that cannot be fixed by judiciously ordering the database modification
steps we take.

E xam ple 7 .3 : If movie executives were limited to studio presidents, then we
might want to declare ce r t# to be a foreign key referencing S tudio (presC#);
we would first have to declare presC# to be UNIQUE, but that declaration makes
sense if you assume a person cannot be the president of two studios at the same
time.

Now, it is impossible to insert new studios with new presidents. We can’t
insert a tuple with a new value of presC# into Studio, because that tuple would
violate the foreign-key constraint from presC# to MovieExec (c e rt#) . We can’t
insert a tuple with a new value of c e r t# into MovieExec, because that would
violate the foreign-key constraint from ce rt# to S tudio (presC#). □

The problem of Example 7.3 can be solved as follows.

1. First, we must group the two insertions (one into S tudio and the other
into MovieExec) into a single transaction.

2. Then, we need a way to tell the DBMS not to check the constraints until
after the whole transaction has finished its actions and is about to commit.

To inform the DBMS about point (2), the declaration of any constraint —
key, foreign-key, or other constraint types we shall meet later in this chapter —
may be followed by one of DEFERRABLE or NOT DEFERRABLE. The latter is the

7.1. K EYS AND FOREIGN KEYS 317

default, and means that every time a database modification statement is ex
ecuted, the constraint is checked immediately afterwards, if the modification
could violate the foreign-key constraint. However, if we declare a constraint to
be DEFERRABLE, then we have the option of having it wait until a transaction is
complete before checking the constraint.

We follow the keyword DEFERRABLE by either INITIALLY DEFERRED or IN
ITIALLY IMMEDIATE. In the former case, checking will be deferred to just before
each transaction commits. In the latter case, the check will be made immedi
ately after each statement.

E xam ple 7 .4 : Figure 7.2 shows the declaration of S tudio modified to allow
the checking of its foreign-key constraint to be deferred until the end of each
transaction. We have also declared presC# to be UNIQUE, in order that it may
be referenced by other relations’ foreign-key constraints.

CREATE TABLE S tudio (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT UNIQUE

REFERENCES MovieExec(cert#)
DEFERRABLE INITIALLY DEFERRED

);

Figure 7.2: Making presC# unique and deferring the checking of its foreign-key
constraint

If we made a similar declaration for the hypothetical foreign-key constraint
from MovieExec (ce rt#) to Studio (presC#) mentioned in Example 7.3, then
we could write transactions that inserted two tuples, one into each relation, and
the two foreign-key constraints would not be checked until after both insertions
had been done. Then, if we insert both a new studio and its new president, and
use the same certificate number in each tuple, we would avoid violation of any
constraint. □

There are two additional points about deferring constraints that we should
bear in mind:

• Constraints of any type can be given names. We shall discuss how to do
so in Section 7.3.1.

• If a constraint has a name, say MyConstraint, then we can change a
deferrable constraint from immediate to deferred by the SQL statement

SET CONSTRAINT MyConstraint DEFERRED;

and we can reverse the process by replacing DEFERRED in the above to
IMMEDIATE.

318 CHAPTER 7. CONSTRAINTS AND TRIGGERS

7.1.4 Exercises for Section 7.1
Exercise 7 .1 .1 : Our running example movie database of Section 2.2.8 has
keys defined for all its relations.

Movies(t i t l e , ye a r , len g th , genre, studioName, producerC#)
S ta r s ln (m ov ieT itle . movieYear. starName)
M ovieStar(name, add ress, gender, b ir th d a te)
MovieExec(name, add ress, c e r t# , netWorth)
S tu d io (name, add ress, presC#)

Declare the following referential integrity constraints for the movie database as
in Exercise 7.1.1.

a) The producer of a movie must be someone mentioned in MovieExec. Mod
ifications to MovieExec that violate this constraint are rejected.

b) Repeat (a), but violations result in the producerC# in Movie being set to
NULL.

c) Repeat (a), but violations result in the deletion or update of the offending
Movie tuple.

d) A movie that appears in S ta rs ln must also appear in Movie. Handle
violations by rejecting the modification.

e) A star appearing in S ta rs ln must also appear in MovieStar. Handle
violations by deleting violating tuples.

E xercise 7 .1 .2 : We would like to declare the constraint that every movie in
the relation Movie must appear with at least one star in S ta rs ln . Can we do
so with a foreign-key constraint? Why or why not?

E xercise 7 .1 .3 : Suggest suitable keys and foreign keys for the relations of the
PC database:

Product(m aker, model, type)
PC(model, speed, ram, hd, p ric e)
Laptop(model, speed, ram, hd, screen , p r ic e)
P rin ter(m o d e l, c o lo r, ty p e , p rice)

of Exercise 2.4.1. Modify your SQL schema from Exercise 2.3.1 to include
declarations of these keys.

E xercise 7 .1 .4 : Suggest suitable keys for the relations of the battleships
database

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent)
Ships(name, c la s s , launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e , r e s u l t)

7.2. CONSTRAINTS ON ATTRIBUTES AND TUPLES 319

of Exercise 2.4.3. Modify your SQL schema from Exercise 2.3.2 to include
declarations of these keys.

E xercise 7 .1 .5 : Write the following referential integrity constraints for the
battleships database as in Exercise 7.1.4. Use your assumptions about keys
from that exercise, and handle all violations by setting the referencing attribute
value to NULL.

a) Every class mentioned in Ships must be mentioned in C lasses.

b) Every battle mentioned in Outcomes must be mentioned in B a ttle s .

c) Every ship mentioned in Outcomes must be mentioned in Ships.

7.2 Constraints on Attributes and Tuples
Within a SQL CREATE TABLE statement, we can declare two kinds of constraints:

1. A constraint on a single attribute.

2. A constraint on a tuple as a whole.

In Section 7.2.1 we shall introduce a simple type of constraint on an attribute’s
value: the constraint that the attribute not have a NULL value. Then in Sec
tion 7.2.2 we cover the principal form of constraints of type (1): attribute-based
CHECK constraints. The second type, the tuple-based constraints, are covered
in Section 7.2.3.

There are other, more general kinds of constraints that we shall meet in
Sections 7.4 and 7.5. These constraints can be used to restrict changes to
whole relations or even several relations, as well as to constrain the value of a
single attribute or tuple.

7.2.1 Not-Null Constraints
One simple constraint to associate with an attribute is NOT NULL. The effect is to
disallow tuples in which this attribute is NULL. The constraint is declared by the
keywords NOT NULL following the declaration of the attribute in a CREATE TABLE
statement.

E xam ple 7 .5 : Suppose relation Studio required presC# not to be NULL, per
haps by changing line (4) of Fig. 7.1 to:

4) presC# INT REFERENCES MovieExec(cert#) NOT NULL

This change has several consequences. For instance:

320 CHAPTER 7. CONSTRAINTS AND TRIGGERS

• We could not insert a tuple into Studio by specifying only the name
and address, because the inserted tuple would have NULL in the presC#
component.

• We could not use the set-null policy in situations like line (5) of Fig. 7.1,
which tells the system to fix foreign-key violations by making presC# be
NULL.

□

7.2.2 Attribute-Based CHECK Constraints
More complex constraints can be attached to an attribute declaration by the
keyword CHECK and a parenthesized condition that must hold for every value of
this attribute. In practice, an attribute-based CHECK constraint is likely to be a
simple limit on values, such as an enumeration of legal values or an arithmetic
inequality. However, in principle the condition can be anything that could
follow WHERE in a SQL query. This condition may refer to the attribute being
constrained, by using the name of that attribute in its expression. However,
if the condition refers to any other relations or attributes of relations, then
the relation must be introduced in the FROM clause of a subquery (even if the
relation referred to is the one to which the checked attribute belongs).

An attribute-based CHECK constraint is checked whenever any tuple gets a
new value for this attribute. The new value could be introduced by an update
for the tuple, or it could be part of an inserted tuple. In the case of an update,
the constraint is checked on the new value, not the old value. If the constraint
is violated by the new value, then the modification is rejected.

It is important to understand that an attribute-based CHECK constraint is
not checked if the database modification does not change the attribute with
which the constraint is associated. This limitation can result in the constraint
becoming violated, if other values involved in the constraint do change. First,
let us consider a simple example of an attribute-based check. Then we shall see
a constraint that involves a subquery, and also see the consequence of the fact
that the constraint is only checked when its attribute is modified.

E xam ple 7 .6 : Suppose we want to require that certificate numbers be at least
six digits. We could modify line (4) of Fig. 7.1, a declaration of the schema for
relation

Studio(name, ad d ress , presC#)

to be

4) presC# INT REFERENCES MovieExec(cert#)
CHECK (presC# >= 100000)

For another example, the attribute gender of relation

7.2. CONSTRAINTS ON ATTRIBUTES AND TUPLES 321

MovieStar(name, ad d ress , gender, b ir th d a te)

was declared in Fig. 2.8 to be of data type CHAR(l) — that is, a single character.
However, we really expect that the only characters that will appear there axe
’F ’ and ’M \ The following substitute for line (4) of Fig. 2.8 enforces the rule:

4) gender CHAR(l) CHECK (gender IN (’F ’ , ’M’)) ,

Note that the expression (’F ’ ’M’) describes a one-component relation with
two tuples. The constraint says that the value of any gender component must
be in this set. □

E xam ple 7 .7 : We might suppose that we could simulate a referential integrity
constraint by an attribute-based CHECK constraint that requires the existence
of the referred-to value. The following is an erroneous attempt to simulate the
requirement that the presC# value in a

Studio(name, ad d ress, presC#)

tuple must appear in the ce rt# component of some

MovieExec(name, ad d ress , c e r t# , netWorth)

tuple. Suppose line (4) of Fig. 7.1 were replaced by

4) presC# INT CHECK
(presC# IN (SELECT c e rt# FROM MovieExec))

This statement is a legal attribute-based CHECK constraint, but let us look at
its effect. Modifications to S tudio that introduce a presC# that is not also a
c e rt# of MovieExec will be rejected. That is almost what the similar foreign-key
constraint would do, except that the attribute-based check will also reject a NULL
value for presC# if there is no NULL value for ce rt# . But far more importantly,
if we change the MovieExec relation, say by deleting the tuple for the president
of a studio, this change is invisible to the above CHECK constraint. Thus, the
deletion is permitted, even though the attribute-based CHECK constraint on
presC# is now violated. □

7.2.3 Tuple-Based CHECK Constraints
To declare a constraint on the tuples of a single table R, we may add to the list of
attributes and key or foreign-key declarations, in R ’s CREATE TABLE statement,
the keyword CHECK followed by a parenthesized condition. This condition can
be anything that could appear in a WHERE clause. It is interpreted as a condition
about a tuple in the table R , and the attributes of R may be referred to by
name in this expression. However, as for attribute-based CHECK constraints, the
condition may also mention, in subqueries, other relations or other tuples of
the same relation R.

322 CHAPTER 7. CONSTRAINTS AND TRIGGERS

Limited Constraint Checking: Bug or Feature?

One might wonder why attribute- and tuple-based checks are allowed to
be violated if they refer to other relations or other tuples of the same rela
tion. The reason is that such constraints can be implemented much more
efficiently than more general constraints can. With attribute- or tuple-
based checks, we only have to evaluate that constraint for the tuple(s)
that are inserted or updated. On the other hand, assertions must be eval
uated every time any one of the relations they mention is changed. The
careful database designer will use attribute- and tuple-based checks only
when there is no possibility that they will be violated, and will use an
other mechanism, such as assertions (Section 7.4) or triggers (Section 7.5)
otherwise.

The condition of a tuple-based CHECK constraint is checked every time a
tuple is inserted into R and every time a tuple of R is updated. The condition
is evaluated for the new or updated tuple. If the condition is false for that
tuple, then the constraint is violated and the insertion or update statement
that caused the violation is rejected. However, if the condition mentions some
other relation in a subquery, and a change to that relation causes the condition
to become false for some tuple of R, the check does not inhibit this change.
That is, like an attribute-based CHECK, a tuple-based CHECK is invisible to other
relations. In fact, even a deletion from R can cause the condition to become
false, if R is mentioned in a subquery.

On the other hand, if a tuple-based check does not have subqueries, then
we can rely on its always holding. Here is an example of a tuple-based CHECK
constraint that involves several attributes of one tuple, but no subqueries.

E xam ple 7.8 : Recall Example 2.3, where we declared the schema of table
MovieStar. Figure 7.3 repeats the CREATE TABLE statement with the addition
of a primary-key declaration and one other constraint, which is one of several
possible “consistency conditions” that we might wish to check. This constraint
says that if the star’s gender is male, then his name must not begin with ’Ms. ’ .

In line (2), name is declared the primary key for the relation. Then line (6)
declares a constraint. The condition of this constraint is true for every female
movie star and for every star whose name does not begin with ’ Ms. ’ . The only
tuples for which it is not true are those where the gender is male and the name
does begin with ’ Ms. ’ . Those are exactly the tuples we wish to exclude from
MovieStar. □

7.2. CONSTRAINTS ON ATTRIBUTES AND TUPLES 323

1) CREATE TABLE MovieStar (
2) name CHAR(30) PRIMARY KEY,
3) address VARCHAR(255),
4) gender CHAR(l),
5) b ir th d a te DATE,
6) CHECK (gender = ’F ’ OR name NOT LIKE ’Ms.*/.’)

);

Figure 7.3: A constraint on the table MovieStar

Writing Constraints Correctly

Many constraints are like Example 7.8, where we want to forbid tuples
that satisfy two or more conditions. The expression that should follow
the check is the OR of the negations, or opposites, of each condition; this
transformation is one of “DeMorgan’s laws” : the negation of the AND of
terms is the OR of the negations of the same terms. Thus, in Example 7.8
the first condition was that the star is male, and we used gender = ’F ’
as a suitable negation (although perhaps gender <> ’M’ would be the
more normal way to phrase the negation). The second condition is that
the name begins with ’Ms. ’, and for this negation we used the NOT LIKE
comparison. This comparison negates the condition itself, which would be
name LIKE ’Ms.’/.’ in SQL.

7.2.4 Comparison of Tuple- and Attribute-Based
Constraints

If a constraint on a tuple involves more than one attribute of that tuple, then
it must be written as a tuple-based constraint. However, if the constraint
involves only one attribute of the tuple, then it can be written as either a
tuple- or attribute-based constraint. In either case, we do not count attributes
mentioned in subqueries, so even a attribute-based constraint can mention other
attributes of the same relation in subqueries.

When only one attribute of the tuple is involved (not counting subqueries),
then the condition checked is the same, regardless of whether a tuple- or
attribute-based constraint is written. However, the tuple-based constraint will
be checked more frequently than the attribute-based constraint — whenever any
attribute of the tuple changes, rather than only when the attribute mentioned
in the constraint changes.

7.2.5 Exercises for Section 7.2
E xercise 7 .2 .1 : Write the following constraints for attributes of the relation

324 CHAPTER 7. CONSTRAINTS AND TRIGGERS

M o v ie s (tit le , y ea r, len g th , genre, studioName, producerC#)

a) The year cannot be before 1915.

b) The length cannot be less than 60 nor more than 250.

c) The studio name can only be Disney, Fox, MGM, or Paramount.

E xercise 7 .2 .2 : Write the following constraints on attributes from our exam
ple schema

Product(m aker, model, type)
PC(model, speed, ram, hd, p rice)
Laptop(model, speed, ram, hd, screen , p rice)
P rin ter(m o d e l, c o lo r, ty p e , p rice)

of Exercise 2.4.1.

a) The speed of a laptop must be at least 2.0.

b) The only types of printers are laser, ink-jet, and bubble-jet.

c) The only types of products are PC ’s, laptops, and printers.

! d) A model of a product must also be the model of a PC, a laptop, or a
printer.

E xercise 7 .2 .3 : Write the following constraints as tuple-based CHECK con
straints on one of the relations of our running movies example:

M o v ie s (t i t le , y ea r, len g th , genre, studioName, producerC#)
S ta rsIn (m o v ieT itle , movieYear, starName)
MovieStar(name, ad d ress , gender, b ir th d a te)
MovieExec(name, ad d ress , c e r t# , netWorth)
Studio(name, ad d ress , presC#)

If the constraint actually involves two relations, then you should put constraints
in both relations so that whichever relation changes, the constraint will be
checked on insertions and updates. Assume no deletions; it is not always pos
sible to maintain tuple-based constraints in the face of deletions.

a) A star may not appear in a movie made before they were born.

! b) No two studios may have the same address.

! c) A name that appears in MovieStar must not also appear in MovieExec.

! d) A studio name that appears in S tudio must also appear in at least one
Movies tuple.

7.3. MODIFICATION OF CONSTRAINTS 325

!! e) If a producer of a movie is also the president of a studio, then they must
be the president of the studio that made the movie.

E xercise 7 .2 .4 : Write the following as tuple-based CHECK constraints about
our “PC” schema.

a) A PC with a processor speed less than 2.0 must not sell for more than
$600.

b) A laptop with a screen size less than 15 inches must have at least a 40
gigabyte hard disk or sell for less than $1000.

E xercise 7 .2 .5 : Write the following as tuple-based CHECK constraints about
our “battleships” schema:

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent)
Ships(name, c la s s , launched)
B attles(nam e, d ate)
Outcomes(ship, b a t t l e , r e s u l t)

a) No class of ships may have guns with larger than a 16-inch bore.

b) If a class of ships has more than 9 guns, then their bore must be no larger
than 14 inches.

! c) No ship can be in battle before it is launched.

E xercise 7 .2 .6 : In Examples 7.6 and 7.8, we introduced constraints on the
gender attribute ofMovieStar. What restrictions, if any, do each of these con
straints enforce if the value of gender is NULL?

7.3 M odification of Constraints
It is possible to add, modify, or delete constraints at any time. The way to
express such modifications depends on whether the constraint involved is asso
ciated with an attribute, a table, or (as in Section 7.4) a database schema.

7.3.1 Giving N ames to Constraints
In order to modify or delete an existing constraint, it is necessary that the
constraint have a name. To do so, we precede the constraint by the keyword
CONSTRAINT and a name for the constraint.

E xam ple 7.9: We could rewrite line (2) of Fig. 2.9 to name the constraint
that says attribute name is a primary key, as

2) name CHAR(30) CONSTRAINT NamelsKey PRIMARY KEY,

326 CHAPTER 7. CONSTRAINTS AND TRIGGERS

Similarly, we could name the attribute-based CHECK constraint that appeared
in Example 7.6 by:

4) gender CHAR(l) CONSTRAINT NoAndro
CHECK (gender IN (’F>, >M’)) ,

Finally, the following constraint:

6) CONSTRAINT R ig h tT itle
CHECK (gender = ’F ’ OR name NOT LIKE ’Ms.*/.’) ;

is a rewriting of the tuple-based CHECK constraint in line (6) of Fig. 7.3 to give
that constraint a name. □

7.3.2 Altering Constraints on Tables
We mentioned in Section 7.1.3 that we can switch the checking of a constraint
from immediate to deferred or vice-versa with a SET CONSTRAINT statement.
Other changes to constraints are effected with an ALTER TABLE statement. We
previously discussed some uses of the ALTER TABLE statement in Section 2.3.4,
where we used it to add and delete attributes.

ALTER TABLE statements can affect constraints in several ways. You may
drop a constraint with keyword DROP and the name of the constraint to be
dropped. You may also add a constraint with the keyword ADD, followed by the
constraint to be added. Note, however, that the added constraint must be of a
kind that can be associated with tuples, such as tuple-based constraints, key, or
foreign-key constraints. Also note that you cannot add a constraint to a table
unless it holds at that time for every tuple in the table.

E xam ple 7 .10: Let us see how we would drop and add the constraints of
Example 7.9 on relation MovieStar. The following sequence of three statements
drops them:

ALTER TABLE MovieStar DROP CONSTRAINT NamelsKey;
ALTER TABLE MovieStar DROP CONSTRAINT NoAndro;
ALTER TABLE MovieStar DROP CONSTRAINT R ig h tT itle ;

Should we wish to reinstate these constraints, we would alter the schema
for relation MovieStax by adding the same constraints, for example:

ALTER TABLE MovieStar ADD CONSTRAINT NamelsKey
PRIMARY KEY (name);

ALTER TABLE MovieStar ADD CONSTRAINT NoAndro
CHECK (gender IN (’F ’ (’M’)) ;

ALTER TABLE MovieStar ADD CONSTRAINT R ig h tT itle
CHECK (gender = >F’ OR name NOT LIKE >Ms.7.’) ;

7.3. MODIFICATION OF CONSTRAINTS 327

Name Your Constraints

Remember, it is a good idea to give each of your constraints a name, even
if you do not believe you will ever need to refer to it. Once the constraint
is created without a name, it is too late to give it one later, should you
wish to alter it. However, should you be faced with a situation of having
to alter a nameless constraint, you will find that your DBMS probably has
a way for you to query it for a list of all your constraints, and that it has
given your unnamed constraint an internal name of its own, which you
may use to refer to the constraint.

These constraints are now tuple-based, rather than attribute-based checks. We
cannot bring them back as attribute-based constraints.

The name is optional for these reintroduced constraints. However, we cannot
rely on SQL remembering the dropped constraints. Thus, when we add a former
constraint we need to write the constraint again; we cannot refer to it by its
former name. □

7.3.3 Exercises for Section 7.3
Exercise 7 .3 .1 : Show how to alter your relation schemas for the movie exam
ple:

M o v ie (title , y ea r, len g th , genre, studioName, producerC#)
S ta rs ln (m o v ieT itle , movieYear, starName)
MovieStar(name, ad d ress, gender, b ir th d a te)
MovieExec(name, ad d ress, c e r t# , netWorth)
Studio(nam e, ad d ress , presC#)

in the following ways.

a) Make t i t l e and year the key for Movie.

b) Require the referential integrity constraint that the producer of every
movie appear in MovieExec.

c) Require that no movie length be less than 60 nor greater than 250.

! d) Require that no name appear as both a movie star and movie executive
(this constraint need not be maintained in the face of deletions).

! e) Require that no two studios have the same address.

Exercise 7 .3 .2 : Show how to alter the schemas of the “battleships” database:

328 CHAPTER 7. CONSTRAINTS AND TRIGGERS

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent)
Ships(name, c la s s , launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e , r e s u l t)

to have the following tuple-based constraints.

a) C lass and country form a key for relation C lasses.

b) Require the referential integrity constraint that every battle appearing in
Outcomes also appears in B a ttle s .

c) Require the referential integrity constraint that every ship appearing in
Outcomes appears in Ships.

d) Require that no ship has more than 14 guns.

! e) Disallow a ship being in battle before it is launched.

7.4 Assertions
The most powerful forms of active elements in SQL are not associated with
particular tuples or components of tuples. These elements, called “triggers”
and “assertions,” are part of the database schema, on a par with tables.

• An assertion is a boolean-valued SQL expression that must be true at all
times.

• A trigger is a series of actions that are associated with certain events, such
as insertions into a particular relation, and that are performed whenever
these events arise.

Assertions are easier for the programmer to use, since they merely require the
programmer to state what must be true. However, triggers are the feature
DBMS’s typically provide as general-purpose, active elements. The reason is
that it is very hard to implement assertions efficiently. The DBMS must deduce
whether any given database modification could affect the truth of an assertion.
Triggers, on the other hand, tell exactly when the DBMS needs to deal with
them.

7.4.1 Creating Assertions
The SQL standard proposes a simple form of assertion that allows us to enforce
any condition (expression that can follow WHERE). Like other schema elements,
we declare an assertion with a CREATE statement. The form of an assertion is:

CREATE ASSERTION <assertion-name> CHECK (<condition>)

7.4. ASSERTIONS 329

The condition in an assertion must be true when the assertion is created and
must remain true; any database modification that causes it to become false will
be rejected.1 Recall that the other types of CHECK constraints we have covered
can be violated under certain conditions, if they involve subqueries.

7.4.2 Using Assertions
There is a difference between the way we write tuple-based CHECK constraints
and the way we write assertions. Tuple-based checks can refer directly to the
attributes of that relation in whose declaration they appear. An assertion has no
such privilege. Any attributes referred to in the condition must be introduced
in the assertion, typically by mentioning their relation in a select-from-where
expression.

Since the condition must have a boolean value, it is necessary to combine
results in some way to make a single true/false choice. For example, we might
write the condition as an expression producing a relation, to which NOT EXISTS
is applied; that is, the constraint is that this relation is always empty. Alter
natively, we might apply an aggregation operator like SUM to a column of a
relation and compare it to a constant. For instance, this way we could require
that a sum always be less than some limiting value.

E xam ple 7.11: Suppose we wish to require that no one can become the pres
ident of a studio unless their net worth is at least $10,000,000. We declare an
assertion to the effect that the set of movie studios with presidents having a net
worth less than $10,000,000 is empty. This assertion involves the two relations

MovieExec(name, add ress, c e r t# , netWorth)
Studio(name, ad d ress , presC#)

The assertion is shown in Fig. 7.4. □

CREATE ASSERTION RichPres CHECK
(NOT EXISTS

(SELECT Studio.name
FROM S tud io , MovieExec
WHERE presC# = ce rt# AND netWorth < 10000000

)
);

Figure 7.4: Assertion guaranteeing rich studio presidents

1However, rem em ber from Section 7.1.3 th a t it is possible to defer th e checking of a
constra in t un til ju s t before its tran sac tio n com m its. If we do so w ith an assertion , it m ay
briefly becom e false un til th e end of a tran sac tio n .

330 CHAPTER 7. CONSTRAINTS AND TRIGGERS

E xam ple 7 .12: Here is another example of an assertion. It involves the rela
tion

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)

and says the total length of all movies by a given studio shall not exceed 10,000
minutes.

CREATE ASSERTION SumLength CHECK (10000 >= ALL
(SELECT SUM(length) FROM Movies GROUP BY studioName)

);

As this constraint involves only the relation Movies, it seemingly could have
been expressed as a tuple-based CHECK constraint in the schema for Movies
rather than as an assertion. That is, we could add to the definition of table
Movies the tuple-based CHECK constraint

CHECK (10000 >= ALL
(SELECT SUM(length) FROM Movies GROUP BY studioName));

Notice that in principle this condition applies to every tuple of table Movies.
However, it does not mention any attributes of the tuple explicitly, and all the
work is done in the subquery.

Also observe that if implemented as a tuple-based constraint, the check
would not be made on deletion of a tuple from the relation Movies. In this
example, that difference causes no harm, since if the constraint was satisfied
before the deletion, then it is surely satisfied after the deletion. However, if the
constraint were a lower bound on total length, rather than an upper bound as
in this example, then we could find the constraint violated had we written it as
a tuple-based check rather than an assertion. □

As a final point, it is possible to drop an assertion. The statement to do so
follows the pattern for any database schema element:

DROP ASSERTION <assertion name>

7.4.3 Exercises for Section 7.4
E xercise 7 .4 .1 : Write the following assertions. The database schema is from
the “PC” example of Exercise 2.4.1:

Product(m aker, model, type)
PC(model, speed, ram, hd, p r ic e)
Laptop(model, speed, ram, hd, screen , p ric e)
P rin ter(m o d e l, c o lo r, ty p e , p rice)

a) No manufacturer of PC’s may also make laptops.

7.4. ASSERTIONS 331

Comparison of Constraints

The following table lists the principal differences among attribute-based
checks, tuple-based checks, and assertions.

Type of
Constraint

Where
Declared

When
Activated

Guaranteed
to Hold?

Attribute-
based CHECK

With
attribute

On insertion
to relation or
attribute update

Not if
sub queries

Tuple-
based CHECK

Element of
relation schema

On insertion
to relation or
tuple update

Not if
subqueries

Assertion Element of
database schema

On any change to
any mentioned
relation

Yes

b) A manufacturer of a PC must also make a laptop with at least as great a
processor speed.

c) If a laptop has a larger main memory than a PC, then the laptop must
also have a higher price than the PC.

d) If the relation Product mentions a model and its type, then this model
must appear in the relation appropriate to that type.

E xercise 7 .4 .2 : Write the following as assertions. The database schema is
from the battleships example of Exercise 2.4.3.

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent)
Ships(name, c la s s , launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e , r e s u l t)

a) No class may have more than 2 ships.

! b) No country may have both battleships and battlecruisers.

! c) No ship with more than 9 guns may be in a battle with a ship having
fewer than 9 guns that was sunk.

! d) No ship may be launched before the ship that bears the name of the first
ship’s class.

! e) For every class, there is a ship with the name of that class.

332 CHAPTER 7. CONSTRAINTS AND TRIGGERS

! E xercise 7 .4 .3 : The assertion of Exercise 7.11 can be written as two tuple-
based constraints. Show how to do so.

7.5 Triggers
Triggers, sometimes called event-condition-action rules or ECA rules, differ
from the kinds of constraints discussed previously in three ways.

1. Triggers are only awakened when certain events, specified by the database
programmer, occur. The sorts of events allowed are usually insert, delete,
or update to a particular relation. Another kind of event allowed in many
SQL systems is a transaction end.

2. Once awakened by its triggering event, the trigger tests a condition. If
the condition does not hold, then nothing else associated with the trigger
happens in response to this event.

3. If the condition of the trigger is satisfied, the action associated with the
trigger is performed by the DBMS. A possible action is to modify the ef
fects of the event in some way, even aborting the transaction of which the
event is part. However, the action could be any sequence of database op
erations, including operations not connected in any way to the triggering
event.

7.5.1 Triggers in SQL
The SQL trigger statement gives the user a number of different options in the
event, condition, and action parts. Here are the principal features.

1. The check of the trigger’s condition and the action of the trigger may be
executed either on the state of the database (i.e., the current instances of
all the relations) that exists before the triggering event is itself executed
or on the state that exists after the triggering event is executed.

2. The condition and action can refer to both old and/or new values of tuples
that were updated in the triggering event.

3. It is possible to define update events that are limited to a particular
attribute or set of attributes.

4. The programmer has an option of specifying that the trigger executes
either:

(a) Once for each modified tuple (a row-level trigger), or
(b) Once for all the tuples that are changed in one SQL statement (a

statement-level trigger, remember that one SQL modification state
ment can affect many tuples).

7.5. TRIGGERS 333

Before giving the details of the syntax for triggers, let us consider an example
that will illustrate the most important syntactic as well as semantic points.
Notice in the example trigger, Fig. 7.5, the key elements and the order in which
they appear:

a) The CREATE TRIGGER statement (line 1).

b) A clause indicating the triggering event and telling whether the trigger
uses the database state before or after the triggering event (line 2).

c) A REFERENCING clause to allow the condition and action of the trigger to
refer to the tuple being modified (lines 3 through 5). In the case of an
update, such as this one, this clause allows us to give names to the tuple
both before and after the change.

d) A clause telling whether the trigger executes once for each modified row
or once for all the modifications made by one SQL statement (line 6).

e) The condition, which uses the keyword WHEN and a boolean expression
(line 7).

f) The action, consisting of one or more SQL statements (lines 8 through
10).

Each of these elements has options, which we shall discuss after working through
the example.

E xam ple 7 .13: In Fig. 7.13 is a SQL trigger that applies to the

MovieExec(name, add ress, c e r t# , netWorth)

table. It is triggered by updates to the netWorth attribute. The effect of this
trigger is to foil any attempt to lower the net worth of a movie executive.

1) CREATE TRIGGER NetWorthTrigger
2) AFTER UPDATE OF netWorth ON MovieExec
3) REFERENCING
4) OLD ROW AS OldTuple,
5) NEW ROW AS NewTuple
6) FOR EACH ROW
7) WHEN (OldTuple.netW orth > NewTuple.netWorth)
8) UPDATE MovieExec
9) SET netWorth = OldTuple.netW orth

10) WHERE ce rt# = NewTuple. c e r t# ;

Figure 7.5: A SQL trigger

334 CHAPTER 7. CONSTRAINTS AND TRIGGERS

Line (1) introduces the declaration with the keywords CREATE TRIGGER and
the name of the trigger. Line (2) then gives the triggering event, namely the
update of the netWorth attribute of the MovieExec relation. Lines (3) through
(5) set up a way for the condition and action portions of this trigger to talk
about both the old tuple (the tuple before the update) and the new tuple
(the tuple after the update). These tuples will be referred to as OldTuple and
NewTuple, according to the declarations in lines (4) and (5), respectively. In the
condition and action, these names can be used as if they were tuple variables
declared in the FROM clause of an ordinary SQL query.

Line (6), the phrase FOR EACH ROW, expresses the requirement that this
trigger is executed once for each updated tuple. Line (7) is the condition part
of the trigger. It says that we only perform the action when the new net worth
is lower than the old net worth; i.e., the net worth of an executive has shrunk.

Lines (8) through (10) form the action portion. This action is an ordinary
SQL update statement that has the effect of restoring the net worth of the
executive to what it was before the update. Note that in principle, every tuple of
MovieExec is considered for update, but the WHERE-clause of line (10) guarantees
that only the updated tuple (the one with the proper ce rt#) will be affected.
□

7.5.2 The Options for Trigger Design

Of course Example 7.13 illustrates only some of the features of SQL triggers. In
the points that follow, we shall outline the options that are offered by triggers
and how to express these options.

• Line (2) of Fig. 7.5 says that the condition test and action of the rule
are executed on the database state that exists after the triggering event,
as indicated by the keyword AFTER. We may replace AFTER by BEFORE,
in which case the WHEN condition is tested on the database state that
exists before the triggering event is executed. If the condition is true,
then the action of the trigger is executed on that state. Finally, the event
that awakened the trigger is executed, regardless of whether the condition
is still true. There is a third option, INSTEAD OF, that we discuss in
Section 8.2.3, in connection with modification of views.

• Besides UPDATE, other possible triggering events are INSERT and DELETE.
The OF netWorth clause in line (2) of Fig. 7.5 is optional for UPDATE
events, and if present defines the event to be only an update of the at
tribute^) listed after the keyword OF. An OF clause is not permitted for
INSERT or DELETE events; these events make sense for entire tuples only.

• The WHEN clause is optional. If it is missing, then the action is executed
whenever the trigger is awakened. If present, then the action is executed
only if the condition following WHEN is true.

7.5. TRIGGERS 335

• While we showed a single SQL statement as an action, there can be any
number of such statements, separated by semicolons and surrounded by
BEGIN.. .END.

• When the triggering event of a row-level trigger is an update, then there
will be old and new tuples, which are the tuple before the update and
after, respectively. We give these tuples names by the OLD ROW AS and
NEW ROW AS clauses seen in lines (4) and (5). If the triggering event
is an insertion, then we may use a NEW ROW AS clause to give a name
for the inserted tuple, and OLD ROW AS is disallowed. Conversely, on a
deletion OLD ROW AS is used to name the deleted tuple and NEW ROW AS
is disallowed.

• If we omit the FOR EACH ROW on line (6) or replace it by the default
FOR EACH STATEMENT, then a row-level trigger such as Fig. 7.5 becomes a
statement-level trigger. A statement-level trigger is executed once when
ever a statement of the appropriate type is executed, no matter how many
rows — zero, one, or many — it actually affects. For instance, if we update
an entire table with a SQL update statement, a statement-level update
trigger would execute only once, while a row-level trigger would execute
once for each tuple to which an update was applied.

• In a statement-level trigger, we cannot refer to old and new tuples di
rectly, as we did in lines (4) and (5). However, any trigger — whether
row- or statement-level — can refer to the relation of old tuples (deleted
tuples or old versions of updated tuples) and the relation of new tuples
(inserted tuples or new versions of updated tuples), using declarations
such as OLD TABLE AS O ldStuff and NEW TABLE AS NewStuff.

E xam ple 7.14: Suppose we want to prevent the average net worth of movie
executives from dropping below $500,000. This constraint could be violated by
an insertion, a deletion, or an update to the netWorth column of

MovieExec(name, address, cert#, netWorth)
The subtle point is that we might, in one statement insert, delete, or change
many tuples of MovieExec. During the modification, the average net worth
might temporarily dip below $500,000 and then rise above it by the time all the
modifications are made. We only want to reject the entire set of modifications
if the net worth is below $500,000 at the end of the statement.

It is necessary to write one trigger for each of these three events: insert,
delete, and update of relation MovieExec. Figure 7.6 shows the trigger for the
update event. The triggers for the insertion and deletion of tuples are similar.

Lines (3) through (5) declare that NewStuff and O ldStuff are the names
of relations containing the new tuples and old tuples that are involved in the
database operation that awakened our trigger. Note that one database state
ment can modify many tuples of a relation, and if such a statement executes,
there can be many tuples in NewStuff and O ldStuff.

336 CHAPTER 7. CONSTRAINTS AND TRIGGERS

1) CREATE TRIGGER AvgNetWorthTrigger
2) AFTER UPDATE OF netWorth ON MovieExec
3) REFERENCING
4) OLD TABLE AS O ldS tuff,
5) NEW TABLE AS NewStuff
6) FOR EACH STATEMENT
7) WHEN (500000 > (SELECT AVG(netWorth) FROM MovieExec))
8) BEGIN
9)

10)

11)
12)

DELETE FROM MovieExec
WHERE (name, ad d ress , c e r t# , netWorth) IN NewStuff;
INSERT INTO MovieExec

(SELECT * FROM O ld S tu ff);
13) END;

Figure 7.6: Constraining the average net worth

If the operation is an update, then tables NewStuff and O ldStuff are the
new and old versions of the updated tuples, respectively. If an analogous trigger
were written for deletions, then the deleted tuples would be in O ldStuff, and
there would be no declaration of a relation name like NewStuff for NEW TABLE
in this trigger. Likewise, in the analogous trigger for insertions, the new tuples
would be in NewStuff, and there would be no declaration of O ldStuff.

Line (6) tells us that this trigger is executed once for a statement, regardless
of how many tuples are modified. Line (7) is the condition. This condition is
satisfied if the average net worth after the update is less than $500,000.

The action of lines (8) through (13) consists of two statements that restore
the old relation MovieExec if the condition of the WHEN clause is satisfied; i.e.,
the new average net worth is too low. Lines (9) and (10) remove all the new
tuples, i.e., the updated versions of the tuples, while lines (11) and (12) restore
the tuples as they were before the update. □

E xam p le 7.15 : An important use of BEFORE triggers is to fix up the inserted
tuples in some way before they are inserted. Suppose that we want to insert
movie tuples into

M o v ie s (ti t le , y e a r , len g th , genre , studioName, producerC#)

but sometimes, we will not know the year of the movie. Since year is part of the
primary key, we cannot have NULL for this attribute. However, we could make
sure that year is not NULL with a trigger and replace NULL by some suitable
value, perhaps one that we compute in a complex way. In Fig. 7.7 is a trigger
that takes the simple expedient of replacing NULL by 1915 (something that could
be handled by a default value, but which will serve as an example).

Line (2) says that the condition and action execute before the insertion
event. In the referencing-clause of lines (3) through (5), we define names for

7.5. TRIGGERS 337

1) CREATE TRIGGER FixY earTrigger
2) BEFORE INSERT ON Movies
3) REFERENCING
4) NEW ROW AS NewRow
5) NEW TABLE AS NewStuff
6) FOR EACH ROW
7) WHEN NewRow.year IS NULL
8) UPDATE NewStuff SET year = 1915;

Figure 7.7: Fixing NULL’s in inserted tuples

both the new row being inserted and a table consisting of only that row. Even
though the trigger executes once for each inserted tuple [because line (6) declares
this trigger to be row-level], the condition of line (7) needs to be able to refer
to an attribute of the inserted row, while the action of line (8) needs to refer to
a table in order to describe an update. □

7.5.3 Exercises for Section 7.5
E xercise 7 .5 .1 : Write the triggers analogous to Fig. 7.6 for the insertion and
deletion events on MovieExec.

E xercise 7 .5 .2 : Write the following as triggers. In each case, disallow or
undo the modification if it does not satisfy the stated constraint. The database
schema is from the “PC” example of Exercise 2.4.1:

Product(m aker, model, type)
PC(model, speed, ram, hd, p r ic e)
Laptop(model, speed, ram, hd, screen , p ric e)
P rin ter(m o d e l, co lo r , ty p e , p r ic e)

a) When updating the price of a PC, check that there is no lower priced PC
with the same speed.

b) When inserting a new printer, check that the model number exists in
Product.

! c) When making any modification to the Laptop relation, check that the
average price of laptops for each manufacturer is at least $1500.

! d) When updating the RAM or hard disk of any PC, check that the updated
PC has at least 100 times as much hard disk as RAM.

! e) When inserting a new PC, laptop, or printer, make sure that the model
number did not previously appear in any of PC, Laptop, or P rin te r .

338 CHAPTER 7. CONSTRAINTS AND TRIGGERS

Exercise 7 .5 .3 : Write the following as triggers. In each case, disallow or
undo the modification if it does not satisfy the stated constraint. The database
schema is from the battleships example of Exercise 2.4.3.

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent)
Ships(name, c la s s , launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e , r e s u l t)

a) When a new class is inserted into C lasses, also insert a ship with the
name of that class and a NULL launch date.

b) When a new class is inserted with a displacement greater than 35,000
tons, allow the insertion, but change the displacement to 35,000.

! c) If a tuple is inserted into Outcomes, check that the ship and battle are
listed in Ships and B a ttle s , respectively, and if not, insert tuples into
one or both of these relations, with NULL components where necessary.

! d) When there is an insertion into Ships or an update of the c la ss attribute
of Ships, check that no country has more than 20 ships.

!! e) Check, under all circumstances that could cause a violation, that no ship
fought in a battle that was at a later date than another battle in which
that ship was sunk.

Exercise 7 .5 .4 : Write the following as triggers. In each case, disallow or undo
the modification if it does not satisfy the stated constraint. The problems are
based on our running movie example:

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)
S ta rs ln (m o v ieT itle , movieYear, starName)
MovieStar(name, ad d ress , gender, b ir th d a te)
MovieExec(name, ad d ress , c e r t# , netWorth)
Studio(name, add ress, presC#)

You may assume that the desired condition holds before any change to the
database is attempted. Also, prefer to modify the database, even if it means
inserting tuples with NULL or default values, rather than rejecting the attempted
modification.

a) Assure that at all times, any star appearing in S ta rs ln also appears in
MovieStar.

b) Assure that at all times every movie executive appears as either a studio
president, a producer of a movie, or both.

c) Assure that every movie has at least one male and one female star.

7.6. SUMMARY OF CHAPTER 7 339

d) Assure that the number of movies made by any studio in any year is no
more than 100.

e) Assure that the average length of all movies made in any year is no more
than 120.

7.6 Summary of Chapter 7
♦ Referential-Integrity Constraints: We can declare that a value appearing

in some attribute or set of attributes must also appear in the correspond
ing attribute(s) of some tuple of the same or another relation. To do so,
we use a REFERENCES or FOREIGN KEY declaration in the relation schema.

♦ Attribute-Based Check Constraints: We can place a constraint on the
value of an attribute by adding the keyword CHECK and the condition to
be checked after the declaration of that attribute in its relation schema.

♦ Tuple-Based Check Constraints: We can place a constraint on the tuples
of a relation by adding the keyword CHECK and the condition to be checked
to the declaration of the relation itself.

♦ Modifying Constraints: A tuple-based check can be added or deleted with
an ALTER statement for the appropriate table.

♦ Assertions: We can declare an assertion as an element of a database
schema. The declaration gives a condition to be checked. This condition
may involve one or more relations of the database schema, and may involve
the relation as a whole, e.g., with aggregation, as well as conditions about
individual tuples.

♦ Invoking the Checks: Assertions are checked whenever there is a change
to one of the relations involved. Attribute- and tuple-based checks are
only checked when the attribute or relation to which they apply changes
by insertion or update. Thus, the latter constraints can be violated if
they have subqueries.

♦ Triggers: The SQL standard includes triggers that specify certain events
(e.g., insertion, deletion, or update to a particular relation) that awaken
them. Once awakened, a condition can be checked, and if true, a spec
ified sequence of actions (SQL statements such as queries and database
modifications) will be executed.

7.7 References for Chapter 7
References [5] and [4] survey all aspects of active elements in database systems.
[1] discusses recent thinking regarding active elements in SQL-99 and future

340 CHAPTER 7. CONSTRAINTS AND TRIGGERS

standards. References [2] and [3] discuss HiPAC, an early prototype system
that offered active database elements.

1. R. J. Cochrane, H. Pirahesh, and N. Mattos, “Integrating triggers and
declarative constraints in SQL database systems,” Intl. Conf. on Very
Large Databases, pp. 567-579, 1996.

2. U. Dayal et al., “The HiPAC project: combining active databases and
timing constraints,” SIGMOD Record 17:1, pp. 51-70, 1988.

3. D. R. McCarthy and U. Dayal, “The architecture of an active database
management system,” Proc. ACM SIGMOD Intl. Conf. on Management
of Data, pp. 215-224, 1989.

4. N. W. Paton and 0 . Diaz, “Active database systems,” Computing Surveys
31:1 (March, 1999), pp. 63-103.

5. J. Widom and S. Ceri, Active Database Systems, Morgan-Kaufmann, San
Francisco, 1996.

Chapter 8

Views and Indexes

We begin this chapter by introducing virtual views, which are relations that
are defined by a query over other relations. Virtual views are not stored in
the database, but can be queried as if they existed. The query processor will
replace the view by its definition in order to execute the query.

Views can also be materialized, in the sense that they are constructed peri
odically from the database and stored there. The existence of these materialized
views can speed up the execution of queries. A very important specialized type
of “materialized view” is the index, a stored data structure whose sole purpose
is to speed up the access to specified tuples of one of the stored relations. We
introduce indexes here and consider the principal issues in selecting the right
indexes for a stored table.

8.1 Virtual Views
Relations that are defined with a CREATE TABLE statement actually exist in the
database. That is, a SQL system stores tables in some physical organization.
They are persistent, in the sense that they can be expected to exist indefi
nitely and not to change unless they are explicitly told to change by a SQL
modification statement.

There is another class of SQL relations, called (virtual) views, that do not
exist physically. Rather, they are defined by an expression much like a query.
Views, in turn, can be queried as if they existed physically, and in some cases,
we can even modify views.

8.1.1 Declaring Views
The simplest form of view definition is:

CREATE VIEW <view-name> AS <view-definition>;

The view definition is a SQL query.

341

342 CHAPTER 8. VIEWS AND INDEXES

Relations, Tables, and Views

SQL programmers tend to use the term “table” instead of “relation.” The
reason is that it is important to make a distinction between stored rela
tions, which are “tables,” and virtual relations, which are “views.” Now
that we know the distinction between a table and a view, we shall use “re
lation” only where either a table or view could be used. When we want to
emphasize that a relation is stored, rather than a view, we shall sometimes
use the term “base relation” or “base table.”

There is also a third kind of relation, one that is neither a view nor
stored permanently. These relations are temporary results, as might be
constructed for some subquery. Temporaries will also be referred to as
“relations” subsequently.

E xam ple 8 .1 : Suppose we want to have a view that is a part of the

M o v ie s (title , yeax, len g th , genre, studioName, producerC#)

relation, specifically, the titles and years of the movies made by Paramount
Studios. We can define this view by

1) CREATE VIEW ParamountMovies AS
2) SELECT t i t l e , year
3) FROM Movies
4) WHERE studioName = ’Paramount’ ;

First, the name of the view is ParamountMovies, as we see from line (1).
The attributes of the view are those listed in line (2), namely t i t l e and year.
The definition of the view is the query of lines (2) through (4). □

E xam ple 8 .2 : Let us consider a more complicated query used to define a
view. Our goal is a relation MovieProd with movie titles and the names of their
producers. The query defining the view involves two relations:

M o v ie s (t i t le , y ea r, len g th , genre, studioName, producerC#)
MovieExec(name, add ress, c e r t# , netWorth)

The following view definition

CREATE VIEW MovieProd AS
SELECT t i t l e , name
FROM Movies, MovieExec
WHERE producerC# = c e rt# ;

joins the two relations and requires that the certificate numbers match. It then
extracts the movie title and producer name from pairs of tuples that agree on
the certificates. □

8.1. VIRTUAL VIEWS 343

8.1.2 Querying Views
A view may be queried exactly as if it were a stored table. We mention its
name in a FROM clause and rely on the DBMS to produce the needed tuples by
operating on the relations used to define the virtual view.

E xam ple 8 .3 : We may query the view ParamountMovies just as if it were a
stored table, for instance:

SELECT t i t l e
FROM ParamountMovies
WHERE year = 1979;

finds the movies made by Paramount in 1979. □

E xam ple 8 .4 : It is also possible to write queries involving both views and
base tables. An example is:

SELECT DISTINCT starName
FROM ParamountMovies, S ta rs ln
WHERE t i t l e = m ovieT itle AND year = movieYear;

This query asks for the name of all stars of movies made by Paramount. □

The simplest way to interpret what a query involving virtual views means
is to replace each view in a FROM clause by a subquery that is identical to the
view definition. That subquery is followed by a tuple variable, so we can refer
to its tuples. For instance, the query of Example 8.4 can be thought of as the
query of Fig. 8.1.

SELECT DISTINCT starName
FROM (SELECT t i t l e , year

FROM Movies
WHERE studioName = ’Paramount’

) Pm, S ta rs ln
WHERE P m .ti t le = m ovieT itle AND Pm.year = movieYear;

Figure 8.1: Interpreting the use of a virtual view as a subquery

8.1.3 Renaming Attributes
Sometimes, we might prefer to give a view’s attributes names of our own choos
ing, rather than use the names that come out of the query defining the view.
We may specify the attributes of the view by listing them, surrounded by paren
theses, after the name of the view in the CREATE VIEW statement. For instance,
we could rewrite the view definition of Example 8.2 as:

344 CHAPTER 8. VIEWS AND INDEXES

CREATE VIEW M ovieProd(m ovieTitle, prodName) AS
SELECT t i t l e , name
FROM Movies, MovieExec
WHERE producerC# = c e rt# ;

The view is the same, but its columns are headed by attributes m ovieT itle
and prodName instead of t i t l e and name.

8.1.4 Exercises for Section 8.1
Exercise 8 .1 .1 : From the following base tables of our running example

MovieStar(name, add ress, gender, b ir th d a te)
MovieExec(name, add ress, c e r t# , netWorth)
Studio(name, add ress, presC#)

Construct the following views:

a) A view RichExec giving the name, address, certificate number and net
worth of all executives with a net worth of at least $10,000,000.

b) A view StudioPres giving the name, address, and certificate number of
all executives who are studio presidents.

c) A view E xecutiveS tar giving the name, address, gender, birth date, cer
tificate number, and net worth of all individuals who are both executives
and stars.

E xercise 8 .1 .2 : Write each of the queries below, using one or more of the
views from Exercise 8.1.1 and no base tables.

a) Find the names of females who are both stars and executives.

b) Find the names of those executives who are both studio presidents and
worth at least $10,000,000.

! c) Find the names of studio presidents who are also stars and are worth at
least $50,000,000.

8.2 M odifying Views
In limited circumstances it is possible to execute an insertion, deletion, or up
date to a view. At first, this idea makes no sense at all, since the view does not
exist the way a base table (stored relation) does. What could it mean, say, to
insert a new tuple into a view? Where would the tuple go, and how would the
database system remember that it was supposed to be in the view?

For many views, the answer is simply “you can’t do that.” However, for
sufficiently simple views, called updatable views, it is possible to translate the

8.2. MODIFYING VIEWS 345

modification of the view into an equivalent modification on a base table, and
the modification can be done to the base table instead. In addition, “instead-
of” triggers can be used to turn a view modification into modifications of base
tables. In that way, the programmer can force whatever interpretation of a
view modification is desired.

8.2.1 View Removal
An extreme modification of a view is to delete it altogether. This modification
may be done whether or not the view is updatable. A typical DROP statement
is

DROP VIEW ParamountMovies;

Note that this statement deletes the definition of the view, so we may no longer
make queries or issue modification commands involving this view. However
dropping the view does not affect any tuples of the underlying relation Movies.
In contrast,

DROP TABLE Movies

would not only make the Movies table go away. It would also make the view
ParamountMovies unusable, since a query that used it would indirectly refer to
the nonexistent relation Movies.

8.2.2 Updatable Views
SQL provides a formal definition of when modifications to a view axe permit
ted. The SQL rules are complex, but roughly, they permit modifications on
views that are defined by selecting (using SELECT, not SELECT DISTINCT) some
attributes from one relation R (which may itself be an updatable view). Two
important technical points:

• The WHERE clause must not involve R in a subquery.

• The FROM clause can only consist of one occurrence of R and no other
relation.

• The list in the SELECT clause must include enough attributes that for
every tuple inserted into the view, we can fill the other attributes out
with NULL values or the proper default. For example, it is not permitted
to project out an attribute that is declared NOT NULL and has no default.

An insertion on the view can be applied directly to the underlying relation R.
The only nuance is that we need to specify that the attributes in the SELECT
clause of the view are the only ones for which values are supplied.

346 CHAPTER 8. VIEW S AND INDEXES

E xam ple 8 .5 : Suppose we insert into view ParamountMovies of Example 8.1
a tuple like:

INSERT INTO ParamountMovies
VALUES(’S ta r T rek’ , 1979);

View ParamountMovies meets the SQL updatability conditions, since the view
asks only for some components of some tuples of one base table:

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)

The insertion on ParamountMovies is executed as if it were the same insertion
on Movies:

INSERT INTO M o v ie s (title , year)
VALUES(’S ta r T rek’ , 1979);

Notice that the attributes t i t l e and year had to be specified in this insertion,
since we cannot provide values for other attributes of Movies.

The tuple inserted into Movies has values ’S ta r T rek’ for t i t l e , 1979 for
year, and NULL for the other four attributes. Curiously, the inserted tuple, since
it has NULL as the value of attribute studioName, will not meet the selection
condition for the view ParamountMovies, and thus, the inserted tuple has no
effect on the view. For instance, the query of Example 8.3 would not retrieve
the tuple (’S ta r T rek’ , 1979).

To fix this apparent anomaly, we could add studioName to the SELECT clause
of the view, as:

CREATE VIEW ParamountMovies AS
SELECT studioName, t i t l e , year
FROM Movies
WHERE studioName = ’Paramount’ ;

Then, we could insert the Star-Trek tuple into the view by:

INSERT INTO ParamountMovies
VALUES(’Paramount’ , ’S ta r T rek’ , 1979);

This insertion has the same effect on Movies as:

INSERT INTO Movies(studioName, t i t l e , year)
VALUES(’Paramount’ , ’S ta r T rek’ , 1979);

Notice that the resulting tuple, although it has NULL in the attributes not
mentioned, does yield the appropriate tuple for the view ParamountMovies.
□

8.2. MODIFYING VIEWS 347

We may also delete from an updatable view. The deletion, like the insertion,
is passed through to the underlying relation R. However, to make sure that only
tuples that can be seen in the view are deleted, we add (using AND) the condition
of the WHERE clause in the view to the WHERE clause of the deletion.

E xam ple 8 .6 : Suppose we wish to delete from the updatable Paramount
Movies view all movies with “Trek” in their titles. We may issue the deletion
statement

DELETE FROM ParamountMovies
WHERE t i t l e LIKE ’‘/.Trek*/.’ ;

This deletion is translated into an equivalent deletion on the Movies base table;
the only difference is that the condition defining the view ParamountMovies is
added to the conditions of the WHERE clause.

DELETE FROM Movies
WHERE t i t l e LIKE ’‘/.Trek’/,’ AND studioName = ’Paramount’ ;

is the resulting delete statement. □

Similarly, an update on an updatable view is passed through to the under
lying relation. The view update thus has the effect of updating all tuples of the
underlying relation that give rise in the view to updated view tuples.

E xam ple 8 .7 : The view update

UPDATE ParamountMovies
SET year = 1979
WHERE t i t l e = ’S ta r Trek th e Movie’ ;

is equivalent to the base-table update

UPDATE Movies
SET year = 1979
WHERE t i t l e = ’S ta r Trek th e Movie’ AND

studioName = ’Paramount’ ;

□

8.2.3 Instead-Of Triggers on Views
When a trigger is defined on a view, we can use INSTEAD OF in place of BEFORE
or AFTER. If we do so, then when an event awakens the trigger, the action of
the trigger is done instead of the event itself. That is, an instead-of trigger
intercepts attempts to modify the view and in its place performs whatever
action the database designer deems appropriate. The following is a typical
example.

348 CHAPTER 8. VIEW S AND INDEXES

W hy Some Views Are Not Updatable

Consider the view MovieProd of Example 8.2, which relates movie titles
and producers’ names. This view is not updatable according to the SQL
definition, because there are two relations in the FROM clause: Movies and
MovieExec. Suppose we tried to insert a tuple like

(’G rea test Show on E a r th ’ , ’C ecil B. DeM ille’)

We would have to insert tuples into both Movies and MovieExec. We
could use the default value for attributes like len g th or address, but
what could be done for the two equated attributes producerC# and ce rt#
that both represent the unknown certificate number of DeMille? We could
use NULL for both of these. However, when joining relations with NULL’s,
SQL does not recognize two NULL values as equal (see Section 6.1.6).
Thus, ’G rea test Show on E a r th ’ would not be connected with ’C ecil
B. DeM ille’ in the MovieProd view, and our insertion would not have
been done correctly.

E xam ple 8.8 : Let us recall the definition of the view of all movies owned by
Paramount:

CREATE VIEW ParamountMovies AS
SELECT t i t l e , year
FROM Movies
WHERE studioName = ’Paramount’ ;

from Example 8.1. As we discussed in Example 8.5, this view is updatable, but
it has the unexpected flaw that when you insert a tuple into ParamountMovies,
the system cannot deduce that the studioName attribute is surely Paramount,
so studioName is NULL in the inserted Movies tuple.

A better result can be obtained if we create an instead-of trigger on this
view, as shown in Fig. 8.2. Much of the trigger is unsurprising. We see the
keyword INSTEAD OF on line (2), establishing that an attempt to insert into
ParamountMovies will never take place.

Rather, lines (5) and (6) is the action that replaces the attempted insertion.
There is an insertion into Movies, and it specifies the three attributes that we
know about. Attributes t i t l e and year come from the tuple we tried to insert
into the view; we refer to these values by the tuple variable NewRow that was
declared in line (3) to represent the tuple we are trying to insert. The value
of attribute studioName is the constant ’ Paramount ’ . This value is not part
of the inserted view tuple. Rather, we assume it is the correct studio for the
inserted movie, because the insertion came through the view ParamountMovies.
□

8.2. MODIFYING VIEWS 349

1) CREATE TRIGGER Param ountInsert
2) INSTEAD OF INSERT ON ParamountMovies
3) REFERENCING NEW ROW AS NewRow
4) FOR EACH ROW
5) INSERT INTO M o v ie s (title , y ea r, studioName)
6) VALUES(NewRow.title, NewRow.year, ’Paramount’);

Figure 8.2: Trigger to replace an insertion on a view by an insertion on the
underlying base table

8.2.4 Exercises for Section 8.2
E xercise 8 .2 .1 : Which of the views of Exercise 8.1.1 are updatable?

E xercise 8 .2 .2 : Suppose we create the view:

CREATE VIEW DisneyComedies AS
SELECT t i t l e , y ea r, len g th FROM Movies
WHERE studioName = ’D isney’ AND genre = ’comedy’ ;

a) Is this view updatable?

b) Write an instead-of trigger to handle an insertion into this view.

c) Write an instead-of trigger to handle an update of the length for a movie
(given by title and year) in this view.

E xercise 8 .2 .3 : Using the base tables

Product(m aker, model, type)
PC(model, speed, ram, hd, p rice)

suppose we create the view:

CREATE VIEW NewPC AS
SELECT maker, model, speed, ram, hd, p r ic e
FROM P roduct, PC
WHERE Product.model = PC.model AND type = ’p c ’ ;

Notice that we have made a check for consistency: that the model number not
only appears in the PC relation, but the type attribute of Product indicates
that the product is a PC.

a) Is this view updatable?

b) Write an instead-of trigger to handle an insertion into this view.

c) Write an instead-of trigger to handle an update of the price.

d) Write an instead-of trigger to handle a deletion of a specified tuple from
this view.

350 CHAPTER 8. VIEW S AND INDEXES

8.3 Indexes in SQL
An index on an attribute A of a relation is a data structure that makes it
efficient to find those tuples that have a fixed value for attribute A. We could
think of the index as a binary search tree of (key, value) pairs, in which a key a
(one of the values that attribute A may have) is associated with a “value” that
is the set of locations of the tuples that have a in the component for attribute
A. Such an index may help with queries in which the attribute A is compared
with a constant, for instance A = 3, or even A < 3. Note that the key for the
index can be any attribute or set of attributes, and need not be the key for
the relation on which the index is built. We shall refer to the attributes of the
index as the index key when a distinction needs to be made.

The technology of implementing indexes on large relations is of central im
portance in the implementation of DBMS’s. The most important data structure
used by a typical DBMS is the “B-tree,” which is a generalization of a balanced
binary tree. We shall take up B-trees when we talk about DBMS implementa
tion, but for the moment, thinking of indexes as binary search trees will suffice.

8.3.1 M otivation for Indexes
When relations are very large, it becomes expensive to scan all the tuples of a
relation to find those (perhaps very few) tuples that match a given condition.
For example, consider the first query we examined:

SELECT *
FROM Movies
WHERE studioName = ’D isney’ AND year = 1990;

from Example 6.1. There might be 10,000 Movies tuples, of which only 200
were made in 1990.

The naive way to implement this query is to get all 10,000 tuples and test
the condition of the WHERE clause on each. It would be much more efficient if we
had some way of getting only the 200 tuples from the year 1990 and testing each
of them to see if the studio was Disney. It would be even more efficient if we
could obtain directly only the 10 or so tuples that satisfied both the conditions
of the WHERE clause — that the studio is Disney and the year is 1990; see the
discussion of “multiattribute indexes,” in Section 8.3.2.

Indexes may also be useful in queries that involve a join. The following
example illustrates the point.

E xam ple 8 .9 : Recall the query

SELECT name
FROM Movies, MovieExec
WHERE t i t l e = ’S ta r Wars’ AND producerC# = c e r t# ;

8.3. INDEXES IN SQL 351

from Example 6.12 that asks for the name of the producer of Star Wars. If
there is an index on t i t l e of Movies, then we can use this index to get the
tuple for Star Wars. From this tuple, we can extract the producerC# to get
the certificate of the producer.

Now, suppose that there is also an index on ce rt# of MovieExec. Then we
can use the producerC# with this index to find the tuple of MovieExec for the
producer of Star Wars. From this tuple, we can extract the producer’s name.
Notice that with these two indexes, we look at only the two tuples, one from
each relation, that are needed to answer the query. Without indexes, we have
to look at every tuple of the two relations. □

8.3.2 Declaring Indexes
Although the creation of indexes is not part of any SQL standard up to and
including SQL-99, most commercial systems have a way for the database de
signer to say that the system should create an index on a certain attribute for
a certain relation. The following syntax is typical. Suppose we want to have
an index on attribute year for the relation Movies. Then we say:

CREATE INDEX YearIndex ON M ovies(year);

The result will be that an index whose name is Year Index will be created on
attribute year of the relation Movies. Henceforth, SQL queries that specify a
year may be executed by the SQL query processor in such a way that only those
tuples of Movies with the specified year are ever examined; there is a resulting
decrease in the time needed to answer the query.

Often, a DBMS allows us to build a single index on multiple attributes.
This type of index takes values for several attributes and efficiently finds the
tuples with the given values for these attributes.

E xam ple 8.10: Since t i t l e and year form a key for Movies, we might expect
it to be common that values for both these attributes will be specified, or neither
will. The following is a typical declaration of an index on these two attributes:

CREATE INDEX Keylndex ON M o v ie s (title , y e a r) ;

Since (t i t l e , year) is a key, if follows that when we are given a title and
year, we know the index will find only one tuple, and that will be the desired
tuple. In contrast, if the query specifies both the title and year, but only
Yearlndex is available, then the best the system can do is retrieve all the
movies of that year and check through them for the given title.

If, as is often the case, the key for the multiattribute index is really the
concatenation of the attributes in some order, then we can even use this index
to find all the tuples with a given value in the first of the attributes. Thus,
part of the design of a multiattribute index is the choice of the order in which
the attributes are listed. For instance, if we were more likely to specify a title

352 CHAPTER 8. VIEWS AND INDEXES

than a year for a movie, then we would prefer to order the attributes as above;
if a year were more likely to be specified, then we would ask for an index on
(y ear, t i t l e) . □

If we wish to delete the index, we simply use its name in a statement like:

DROP INDEX YearIndex;

8.3.3 Exercises for Section 8.3
E xercise 8 .3 .1 : For our running movies example:

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)
S ta rs ln (m o v ieT itle , movieYear, starName)
MovieExec(name, ad d ress , c e r t# , netWorth)
Studio(name, ad d ress, presC#)

Declare indexes on the following attributes or combination of attributes:

a) studioName.

b) address of MovieExec.

c) genre and length .

8.4 Selection of Indexes
Choosing which indexes to create requires the database designer to analyze
a trade-off. In practice, this choice is one of the principal factors that influ
ence whether a database design gives acceptable performance. Two important
factors to consider are:

• The existence of an index on an attribute may speed up greatly the exe
cution of those queries in which a value, or range of values, is specified for
that attribute, and may speed up joins involving that attribute as well.

• On the other hand, every index built for one or more attributes of some
relation makes insertions, deletions, and updates to that relation more
complex and time-consuming.

8.4.1 A Simple Cost Model
To understand how to choose indexes for a database, we first need to know
where the time is spent answering a query. The details of how relations are
stored will be taken up when we consider DBMS implementation. But for
the moment, let us state that the tuples of a relation are normally distributed

8.4. SELECTION OF INDEXES 353

among many pages of a disk.1 One page, which is typically several thousand
bytes at least, will hold many tuples.

To examine even one tuple requires that the whole page be brought into
main memory. On the other hand, it costs little more time to examine all the
tuples on a page than to examine only one. There is a great time saving if the
page you want is already in main memory, but for simplicity we shall assume
that never to be the case, and every page we need must be retrieved from the
disk.

8.4.2 Some Useful Indexes
Often, the most useful index we can put on a relation is an index on its key.
There are two reasons:

1. Queries in which a value for the key is specified are common. Thus, an
index on the key will get used frequently.

2. Since there is at most one tuple with a given key value, the index returns
either nothing or one location for a tuple. Thus, at most one page must
be retrieved to get that tuple into main memory (although there may be
other pages that need to be retrieved to use the index itself).

The following example shows the power of key indexes, even in a query that
involves a join.

E xam ple 8.11: Recall Figure 6.3, where we suggested an exhaustive pairing
of tuples of Movies and MovieExec to compute a join. Implementing the join
this way requires us to read each of the pages holding tuples of Movies and
each of the pages holding tuples of MovieExec at least once. In fact, since these
pages may be too numerous to fit in main memory at the same time, we may
have to read each page from disk many times. With the right indexes, the whole
query might be done with as few as two page reads.

An index on the key t i t l e and year for Movies would help us find the one
Movies tuple for Star Wars quickly. Only one page — the page containing that
tuple — would be read from disk. Then, after finding the producer-certificate
number in that tuple, an index on the key ce rt# for MovieExec would help us
quickly find the one tuple for the producer in the MovieExec relation. Again,
only one page with MovieExec tuples would be read from disk, although we
might need to read a small number of other pages to use the ce r t# index. □

When the index is not on a key, it may or may not be able to improve the
time spent retrieving from disk the tuples needed to answer a query. There are
two situations in which an index can be effective, even if it is not on a key.

1 Pages a re usually referred to as “blocks” in discussion of d a tab ases, b u t if you are fam iliar
w ith a paged-m em ory system from opera tin g system s you shou ld th in k of th e d isk as d iv ided
in to pages.

354 CHAPTER 8. VIEWS AND INDEXES

1. If the attribute is almost a key; that is, relatively few tuples have a given
value for that attribute. Even if each of the tuples with a given value is
on a different page, we shall not have to retrieve many pages from disk.

2. If the tuples are “clustered” on that attribute. We cluster a relation on an
attribute by grouping the tuples with a common value for that attribute
onto as few pages as possible. Then, even if there are many tuples, we
shall not have to retrieve nearly as many pages as there are tuples.

E xam ple 8.12: As an example of an index of the first kind, suppose Movies
had an index on t i t l e rather than t i t l e and year. Since t i t l e by itself is not
a key for the relation, there would be titles such as King Kong, where several
tuples matched the index key t i t l e . If we compared use of the index on t i t l e
with what happens in Example 8.11, we would find that a search for movies with
title King Kong would produce three tuples (because there are three movies with
that title, from years 1933, 1976, and 2005). It is possible that these tuples are
on three different pages, so all three pages would be brought into main memory,
roughly tripling the amount of time this step takes. However, since the relation
Movies probably is spread over many more than three pages, there is still a
considerable time saving in using the index.

At the next step, we need to get the three producerC# values from these
three tuples, and find in the relation MovieExec the producers of these three
movies. We can use the index on c e rt# to find the three relevant tuples of
MovieExec. Possibly they are on three different pages, but we still spend less
time than we would if we had to bring the entire MovieExec relation into main
memory. □

E xam ple 8 .13: Now, suppose the only index we have on Movies is one on
year, and we want to answer the query:

SELECT *
FROM Movies
WHERE year = 1990;

First, suppose the tuples of Movies are not clustered by year; say they are
stored alphabetically by title. Then this query gains little from the index on
year. If there are, say, 100 movies per page, there is a good chance that any
given page has at least one movie made in 1990. Thus, a large fraction of the
pages used to hold the relation Movies will have to be brought to main memory.

However, suppose the tuples of Movies are clustered on year. Then we could
use the index on year to find only the small number of pages that contained
tuples with year = 1990. In this case, the year index will be of great help. In
comparison, an index on the combination of t i t l e and year would be of little
help, no matter what attribute or attributes we used to cluster Movies. □

8.4. SELECTION OF INDEXES 355

8.4.3 Calculating the Best Indexes to Create
It might seem that the more indexes we create, the more likely it is that an
index useful for a given query will be available. However, if modifications are
the most frequent action, then we should be very conservative about creating
indexes. Each modification on a relation R forces us to change any index on
one or more of the modified attributes of R. Thus, we must read and write not
only the pages of R that are modified, but also read and write certain pages
that hold the index. But even when modifications are the dominant form of
database action, it may be an efficiency gain to create an index on a frequently
used attribute. In fact, since some modification commands involve querying the
database (e.g., an INSERT with a select-from-where subquery or a DELETE with
a condition) one must be very careful how one estimates the relative frequency
of modifications and queries.

Remember that the typical relation is stored over many disk blocks (pages),
and the principal cost of a query or modification is often the number of pages
that need to be brought to main memory. Thus, indexes that let us find a
tuple without examining the entire relation can save a lot of time. However,
the indexes themselves have to be stored, at least partially, on disk, so accessing
and modifying the indexes themselves cost disk accesses. In fact, modification,
since it requires one disk access to read a page and another disk access to write
the changed page, is about twice as expensive as accessing the index or the data
in a query.

To calculate the new value of an index, we need to make assumptions
about which queries and modifications are most likely to be performed on the
database. Sometimes, we have a history of queries that we can use to get good
information, on the assumption that the future will be like the past. In other
cases, we may know that the database supports a particular application or ap
plications, and we can see in the code for those applications all the SQL queries
and modifications that they will ever do. In either situation, we are able to list
what we expect are the most common query and modification forms. These
forms can have variables in place of constants, but should otherwise look like
real SQL statements. Here is a simple example of the process, and of the
calculations that we need to make.

E xam ple 8.14: Let us consider the relation

S ta rsIn (m o v ieT itle , movieYear, starName)

Suppose that there are three database operations that we sometimes perform
on this relation:

Q i : We look for the title and year of movies in which a given star appeared.
That is, we execute a query of the form:

SELECT m ovieT itle , movieYear
FROM S ta rs ln
WHERE starName = s;

356 CHAPTER 8. VIEWS AND INDEXES

for some constant s.

Q2: We look for the stars that appeared in a given movie. That is, we execute
a query of the form:

SELECT starName
FROM S ta rs ln
WHERE m ovieT itle = t AND movieYear = y;

for constants t and y.

I: We insert a new tuple into Stairs In. That is, we execute an insertion of
the form:

INSERT INTO S ta rs ln VALUES(i, y , s) ;

for constants t, y, and s.

Let us make the following assumptions about the data:

1. S ta rs ln occupies 10 pages, so if we need to examine the entire relation
the cost is 10.

2. On the average, a star has appeared in 3 movies and a movie has 3 stars.

3. Since the tuples for a given star or a given movie are likely to be spread
over the 10 pages of S ta rs ln , even if we have an index on starName or on
the combination of m ovieT itle and movieYear, it will take 3 disk accesses
to find the (average of) 3 tuples for a star or movie. If we have no index
on the star or movie, respectively, then 10 disk accesses are required.

4. One disk access is needed to read a page of the index every time we use
that index to locate tuples with a given value for the indexed attribute (s).
If an index page must be modified (in the case of an insertion), then
another disk access is needed to write back the modified page.

5. Likewise, in the case of an insertion, one disk access is needed to read a
page on which the new tuple will be placed, and another disk access is
needed to write back this page. We assume that, even without an index,
we can find some page on which an additional tuple will fit, without
scanning the entire relation.

Figure 8.3 gives the costs of each of the three operations; Qi (query given a
star), Q2 (query given a movie), and I (insertion). If there is no index, then we
must scan the entire relation for Q j or Q2 (cost 10),2 while an insertion requires

2T here is a sub tle po in t th a t we shall ignore here. In m any s itu a tio n s , it is possible to
s to re a re la tio n on disk using consecutive pages o r tracks. In th a t case, th e cost of re triev ing
th e en tire re la tion m ay be significantly less th a n re triev ing th e sam e num ber o f pages chosen
random ly.

8.4. SELECTION OF INDEXES 357

Action No Index Star Index Movie Index Both Indexes
Qi 10 4 10 4
Qi 10 10 4 4

I 2 4 4 6
Average 2 + 8pi + 8p2 4 + 6p2 4 + 6pi (M&1£1

Figure 8.3: Costs associated with the three actions, as a function of which
indexes are selected

merely that we access a page with free space and rewrite it with the new tuple
(cost of 2, since we assume that page can be found without an index). These
observations explain the column labeled “No Index.”

If there is an index on stars only, then Q2 still requires a scan of the entire
relation (cost 10). However, Q 1 can be answered by accessing one index page
to find the three tuples for a given star and then making three more accesses
to find those tuples. Insertion I requires that we read and write both a page
for the index and a page for the data, for a total of 4 disk accesses.

The case where there is an index on movies only is symmetric to the case
for stars only. Finally, if there are indexes on both stars and movies, then it
takes 4 disk accesses to answer either Q1 or Qi- However, insertion I requires
that we read and write two index pages as well as a data page, for a total of 6
disk accesses. That observation explains the last column in Fig. 8.3.

The final row in Fig. 8.3 gives the average cost of an action, on the assump
tion that the fraction of the time we do Qi is p\ and the fraction of the time
we do Q2 is P2 ; therefore, the fraction of the time we do I is 1 — pi — p2.

Depending on pi and p2, any of the four choices of index/no index can yield
the best average cost for the three actions. For example, if pi = p2 =0 .1 , then
the expression 2 + 8pi + 8 p2 is the smallest, so we would prefer not to create any
indexes. That is, if we are doing mostly insertion, and very few queries, then
we don’t want an index. On the other hand, if pi = P2 = 0.4, then the formula
6 — 2 pi — 2p 2 turns out to be the smallest, so we would prefer indexes on both
starName and on the (m ovieT itle, movieYear) combination. Intuitively, if
we are doing a lot of queries, and the number of queries specifying movies and
stars are roughly equally frequent, then both indexes are desired.

If we have pi = 0 .5 and p2 = 0 .1 , then an index on stars only gives the best
average value, because 4 + 6p2 is the formula with the smallest value. Likewise,
Pi = 0 .1 and P2 = 0.5 tells us to create an index on only movies. The intuition
is that if only one type of query is frequent, create only the index that helps
that type of query. □

8.4.4 Automatic Selection of Indexes to Create
“Tuning” a database is a process that includes not only index selection, but the
choice of many different parameters. We have not yet discussed much about

358 CHAPTER 8. VIEW S AND INDEXES

physical implementation of databases, but some examples of tuning issues are
the amount of main memory to allocate to various processes and the rate at
which backups and checkpoints are made (to facilitate recovery from a crash).
There are a number of tools that have been designed to take the responsibility
from the database designer and have the system tune itself, or at least advise
the designer on good choices.

We shall mention some of these projects in the bibliographic notes for this
chapter. However, here is an outline of how the index-selection portion of tuning
advisors work.

1. The first step is to establish the query workload. Since a DBMS normally
logs all operations anyway, we may be able to examine the log and find a
set of representative queries and database modifications for the database
at hand. Or it is possible that we know, from the application programs
that use the database, what the typical queries will be.

2. The designer may be offered the opportunity to specify some constraints,
e.g., indexes that must, or must not, be chosen.

3. The tuning advisor generates a set of possible candidate indexes, and
evaluates each one. Typical queries are given to the query optimizer of
the DBMS. The query optimizer has the ability to estimate the running
times of these queries under the assumption that one particular set of
indexes is available.

4. The index set resulting in the lowest cost for the given workload is sug
gested to the designer, or it is automatically created.

A subtle issue arises when we consider possible indexes in step (3). The
existence of previously chosen indexes may influence how much benefit (im
provement in average execution time of the query mix) another index offers. A
“greedy” approach to choosing indexes has proven effective.

a) Initially, with no indexes selected, evaluate the benefit of each of the
candidate indexes. If at least one provides positive benefit (i.e., it reduces
the average execution time of queries), then choose that index.

b) Then, reevaluate the benefit of each of the remaining candidate indexes,
assuming that the previously selected index is also available. Again,
choose the index that provides the greatest benefit, assuming that benefit
is positive.

c) In general, repeat the evaluation of candidate indexes under the assump
tion that all previously selected indexes are available. Pick the index with
maximum benefit, until no more positive benefits can be obtained.

8.5. MATERIALIZED VIEWS 359

8.4.5 Exercises for Section 8.4
E xercise 8 .4 .1 : Suppose that the relation S ta rs ln discussed in Example 8.14
required 100 pages rather than 10, but all other assumptions of that example
continued to hold. Give formulas in terms of pi and p? to measure the cost of
queries Q\ and Q2 and insertion I, under the four combinations of index/no in
dex discussed there.

! E xercise 8 .4 .2 : In this problem, we consider indexes for the relation

Ships(name, c l a s s , launched)

from our running battleships exercise. Assume:

i. name is the key.

ii. The relation Ships is stored over 50 pages.

Hi. The relation is clustered on c la s s so we expect that only one disk access
is needed to find the ships of a given class.

iv. On average, there are 5 ships of a class, and 25 ships launched in any
given year.

v. With probability p\ the operation on this relation is a query of the form
SELECT * FROM Ships WHERE name = n.

vi. With probability p2 the operation on this relation is a query of the form
SELECT * FROM Ships WHERE c la s s = c.

vii. With probability pz the operation on this relation is a query of the form
SELECT * FROM Ships WHERE launched = y.

viii. With probability 1 — pi — p2 — P3 the operation on this relation is an
insertion of a new tuple into Ships.

You can also make the assumptions about accessing indexes and finding empty
space for insertions that were made in Example 8.14.

Consider the creation of indexes on name, c la ss , and launched. For each
combination of indexes, estimate the average cost of an operation. As a function
of Pi, P2 , and pz, what is the best choice of indexes?

8.5 M aterialized Views
A view describes how a new relation can be constructed from base tables by
executing a query on those tables. Until now, we have thought of views only as
logical descriptions of relations. However, if a view is used frequently enough,
it may even be efficient to materialize it; that is, to maintain its value at all
times. As with maintaining indexes, there is a cost involved in maintaining a
materialized view, since we must recompute parts of the materialized view each
time one of the underlying base tables changes.

360 CHAPTER 8. VIEW S AND INDEXES

8.5.1 Maintaining a Materialized View
In principle, the DBMS needs to recompute a materialized view every time one
of its base tables changes in any way. For simple views, it is possible to limit
the number of times we need to consider changing the materialized view, and it
is possible to limit the amount of work we do when we must maintain the view.
We shall take up an example of a join view, and see that there are a number of
opportunities to simplify our work.

E xam ple 8.15 : Suppose we frequently want to find the name of the producer
of a given movie. We might find it advantageous to materialize a view:

CREATE MATERIALIZED VIEW MovieProd AS
SELECT t i t l e , y ea r, name
FROM Movies, MovieExec
WHERE producerC# = ce rt#

To start, the DBMS does not have to consider the effect on MovieProd of an
update on any attribute of Movies or MovieExec that is not mentioned in the
query that defines the materialized view. Surely any modification to a relation
that is neither Movies nor MovieExec can be ignored as well. However, there are
a number of other simplifications that enable us to handle other modifications
to Movies or MovieExec more efficiently than a re-execution of the query that
defines the materialized view.

1. Suppose we insert a new movie into Movies, say t i t l e = ’K il l B i l l ’ ,
year = 2003, and producerC# = 23456. Then we only need to look up
c e rt# = 23456 in MovieExec. Since c e rt# is the key for MovieExec, there
can be at most one name returned by the query

SELECT name FROM MovieExec
WHERE ce rt# = 23456;

As this query returns name = ’Quentin T a ran tin o ’, the DBMS can in
sert the proper tuple into MovieProd by:

INSERT INTO MovieProd
VALUES(’K il l B i l l ’ , 2003, ’Quentin T a ran tin o ’) ;

Note that, since MovieProd is materialized, it is stored like any base table,
and this operation makes sense; it does not have to be reinterpreted by
an instead-of trigger or any other mechanism.

2. Suppose we delete a movie from Movies, say the movie with t i t l e =
’Dumb & Dumber’ and year = 1994. The DBMS has only to delete this
one movie from MovieProd by:

8.5. MATERIALIZED VIEWS 361

DELETE FROM MovieProd
WHERE t i t l e = ’Dumb & Dumber’ AND year = 1994;

3. Suppose we insert a tuple into MovieExec, and that tuple has ce r t# =
34567 and name = ’Max B ia ly s to ck ’ . Then the DBMS may have to
insert into MovieProd some movies that were not there because their
producer was previously unknown. The operation is:

INSERT INTO MovieProd
SELECT t i t l e , y ea r, ’Max B ia ly s to ck ’
FROM Movies
WHERE producerC# = 34567;

4. Suppose we delete the tuple with c e r t# = 45678 from MovieExec. Then
the DBMS must delete from MovieProd all movies that have producerC#
= 45678, because there now can be no matching tuple in MovieExec for
their underlying Movies tuple. Thus, the DBMS executes:

DELETE FROM MovieProd
WHERE (t i t l e , year) IN

(SELECT t i t l e , year FROM Movies
WHERE producerC# = 45678);

Notice that it is not sufficient to look up the name corresponding to 45678
in MovieExec and delete all movies from MovieProd that have that pro
ducer name. The reason is that, because name is not a key for MovieExec,
there could be two producers with the same name.

We leave as an exercise the consideration of how updates to Movies that involve
t i t l e or year are handled, and how updates to MovieExec involving c e rt# are
handled. □

The most important thing to take away from Example 8.15 is that all the
changes to the materialized view are incremental. That is, we never have to
reconstruct the whole view from scratch. Rather, insertions, deletions, and up
dates to a base table can be implemented in a join view such as MovieProd
by a small number of queries to the base tables followed by modification state
ments on the materialized view. Moreover, these modifications do not affect all
the tuples of the view, but only those that have at least one attribute with a
particular constant.

It is not possible to find rules such as those in Example 8.15 for any ma
terialized view we could construct; some are just too complicated. However,
many common types of materialized view do allow the view to be maintained
incrementally. We shall explore another common type of materialized view —
aggregation views — in the exercises.

362 CHAPTER 8. VIEWS AND INDEXES

8.5.2 Periodic Maintenance of Materialized Views
There is another setting in which we may use materialized views, yet not have
to worry about the cost or complexity of maintaining them up-to-date as the
underlying base tables change. We shall encounter the option when we study
OLAP in Section 10.6, but for the moment let us remark that it is common for
databases to serve two purposes. For example, a department store may use its
database to record its current inventory; this data changes with every sale. The
same database may be used by analysts to study buyer patterns and to predict
when the store is going to need to restock an item.

The analysts’ queries may be answered more efficiently if they can query
materialized views, especially views that aggregate data (e.g., sum the inven
tories of different sizes of shirt after grouping by style). But the database is
updated with each sale, so modifications are far more frequent than queries.
When modifications dominate, it is costly to have materialized views, or even
indexes, on the data.

What is usually done is to create materialized views, but not to try to keep
them up-to-date as the base tables change. Rather, the materialized views
are reconstructed periodically (typically each night), when other activity in
the database is low. The materialized views are only used by analysts, and
their data might be out of date by as much as 24 hours. However, in normal
situations, the rate at which an item is bought by customers changes slowly.
Thus, the data will be “good enough” for the analysts to predict items that
are selling well and those that are selling poorly. Of course if Brad P itt is seen
wearing a Hawaiian shirt one morning, and every cool guy has to buy one by
that evening, the analysts will not notice they are out of Hawaiian shirts until
the next morning, but the risk of that sort of occurrence is low.

8.5.3 Rewriting Queries to Use Materialized Views
A materialized view can be referred to in the FROM clause of a query, just as
a virtual view can (Section 8.1.2). However, because a materialized view is
stored in the database, it is possible to rewrite a query to use a materialized
view, even if that view was not mentioned in the query as written. Such a
rewriting may enable the query to execute much faster, because the hard parts
of the query, e.g., joining of relations, may have been carried out already when
the materialized view was constructed.

However,we must be very careful to check that the query can be rewritten to
use a materialized view. A complete set of rules that will let us use materialized
views of any kind is beyond the scope of this book. However, we shall offer a
relatively simple rule that applies to the view of Example 8.15 and similar views.

Suppose we have a materialized view V defined by a query of the form:

SELECT L v
FROM R v
WHERE Cv

8.5. MATERIALIZED VIEWS 363

where L y is a list of attributes, R y is a list of relations, and Cy is a condition.
Similarly, suppose we have a query Q of the same form:

SELECT L q
FROM R q
WHERE C q

Here are the conditions under which we can replace part of the query Q by the
view V.

1. The relations in list R y all appear in the list R q .

2. The condition Cq is equivalent to Cy AND C for some condition C. As a
special case, Cq could be equivalent to C y, in which case the “AND C” is
unnecessary.

3. If C is needed, then the attributes of relations on list R y that C mentions
are attributes on the list L y.

4. Attributes on the list L q that come from relations on the list R y are also
on the list L y.

If all these conditions are met, then we can rewrite Q to use V , as follows:

a) Replace the list R q by V and the relations that are on list R q but not
on R y.

b) Replace Cq by C. If C is not needed (i.e., Cy = Cq), then there is no
WHERE clause.

E xam ple 8 .16: Suppose we have the materialized view MovieProd from Ex
ample 8.15. This view is defined by the query V:

SELECT t i t l e , y ea r, name
FROM Movies, MovieExec
WHERE producerC# = ce rt#

Suppose also that we need to answer the query Q that asks for the names of
the stars of movies produced by Max Bialystock. For this query we need the
relations:

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)
S ta rs ln (m o v ieT itle , movieYear, starName)
MovieExec(name, add ress, c e r t# , netWorth)

The query Q can be written:

SELECT starName
FROM S ta rs ln , Movies, MovieExec
WHERE m ovieT itle = t i t l e AND movieYear = year AND

producerC# = c e rt# AND name = ’Max B ia ly s to ck ’ ;

364 CHAPTER 8. VIEW S AND INDEXES

Let us compare the view definition V with the query Q, to see that they
meet the conditions listed above.

1. The relations in the FROM clause of V are all in the FROM clause of Q.

2. The condition from Q can be written as the condition from V AND C,
where C —

m ovieT itle = t i t l e AND movieYear = year AND
name = ’Max B ia ly s to ck ’

3. The attributes of C that come from relations of V (Movies and Movie
Exec) are t i t l e , year, and name. These attributes all appear in the
SELECT clause of V.

4. No attribute from the SELECT list of Q is from a relation that appears in
the FROM list of V.

We may thus use V in Q, yielding the rewritten query:

SELECT starName
FROM S ta rs ln , MovieProd
WHERE m ovieT itle = t i t l e AND movieYear = year AND

name = ’Max B ia ly s to ck ’ ;

That is, we replaced Movies and MovieExec in the FROM clause by the mate
rialized view MovieProd. We also removed the condition of the view from the
WHERE clause, leaving only the condition C. Since the rewritten query involves
the join of only two relations, rather than three, we expect the rewritten query
to execute in less time than the original. □

8.5.4 Automatic Creation of Materialized Views
The ideas that were discussed in Section 8.4.4 for indexes can apply as well
to materialized views. We first need to establish or approximate the query
workload. An automated materialized-view-selection advisor needs to generate
candidate views. This task can be far more difficult than generating candi
date indexes. In the case of indexes, there is only one possibile index for each
attribute of each relation. We could also consider indexes on small sets of at
tributes of a relation, but even if we do, generating all the candidate indexes is
straightforward. However, with materialized views, any query could in principle
define a view, so there is no limit on what views we need to consider.

The process can be limited if we remember that there is no point in creating
a materialized view that does not help for at least one query of our expected
workload. For example, suppose some or all of the queries in our workload
have the form considered in Section 8.5.3. Then we can use the analysis of that
section to find the views that can help a given query. We can limit ourselves to
candidate materialized views that:

8.5. MATERIALIZED VIEWS 365

1. Have a list of relations in the FROM clause that is a subset of those in the
FROM clause of at least one query of the workload.

2. Have a WHERE clause that is the AND of conditions that each appear in at
least one query.

3. Have a list of attributes in the SELECT clause that is sufficient to be used
in at least one query.

To evaluate the benefit of a materialized view, let the query optimizer esti
mate the running times of the queries, both with and without the materialized
view. Of course, the optimizer must be designed to take advantage of materi
alized views; all modern optimizers know how to exploit indexes, but not all
can exploit materialized views. Section 8.5.3 was an example of the reasoning
that would be necessary for a query optimizer to perform, if it were to take
advantage of such views.

There is another issue that comes up when we consider automatic choice of
materialized views, but that did not surface for indexes. An index on a relation
is generally smaller than the relation itself, and all indexes on one relation
take roughly the same amount of space. However, materialized views can vary
radically in size, and some — those involving joins — can be very much larger
than the relation or relations on which they are built. Thus, we may need to
rethink the definition of the “benefit” of a materialized view. For example, we
might want to define the benefit to be the improvement in average running time
of the query workload divided by the amount of space the view occupies.

8.5.5 Exercises for Section 8.5
Exercise 8 .5 .1 : Complete Example 8.15 by considering updates to either of
the base tables.

Exercise 8 .5 .2 : Suppose the view NewPC of Exercise 8.2.3 were a materialized
view. What modifications to the base tables Product and PC would require a
modification of the materialized view? How would you implement those modi
fications incrementally?

E xercise 8 .5 .3 : This exercise explores materialized views that are based on
aggregation of data. Suppose we build a materialized view on the base tables

C la s se s (c la s s , ty p e , country , numGuns, bo re , displacem ent)
Ships(name, c la s s , launched)

from our running battleships exercise, as follows:

CREATE MATERIALIZED VIEW S h ip S ta ts AS
SELECT country , AVG(displacement) , COUNT(*)
FROM C lasses , Ships
WHERE C la s se s .c la s s = S h ip s .c la s s
GROUP BY country;

366 CHAPTER 8. VIEW S AND INDEXES

What modifications to the base tables C lasses and Ships would require a
modification of the materialized view? How would you implement those modi
fications incrementally?

Exercise 8 .5 .4 : In Section 8.5.3 we gave conditions under which a materialized
view of simple form could be used in the execution of a query of similar form.
For the view of Example 8.15, describe all the queries of that form, for which
this view could be used.

8.6 Summary of Chapter 8
♦ Virtual Views: A virtual view is a definition of how one relation (the view)

may be constructed logically from tables stored in the database or other
views. Views may be queried as if they were stored relations. The query
processor modifies queries about a view so the query is instead about the
base tables that are used to define the view.

♦ Updatable Views: Some virtual views on a single relation are updatable,
meaning that we can insert into, delete from, and update the view as if
it were a stored table. These operations are translated into equivalent
modifications to the base table over which the view is defined.

♦ Instead-Of Triggers: SQL allows a special type of trigger to apply to a
virtual view. When a modification to the view is called for, the instead-
of trigger turns the modification into operations on base tables that are
specified in the trigger.

♦ Indexes: While not part of the SQL standard, commercial SQL systems
allow the declaration of indexes on attributes; these indexes speed up
certain queries or modifications that involve specification of a value, or
range of values, for the indexed attribute(s).

♦ Choosing Indexes: While indexes speed up queries, they slow down data
base modifications, since the indexes on the modified relation must also
be modified. Thus, the choice of indexes is a complex problem, depending
on the actual mix of queries and modifications performed on the database.

♦ Automatic Index Selection: Some DBMS’s offer tools that choose indexes
for a database automatically. They examine the typical queries and mod
ifications performed on the database and evaluate the cost trade-offs for
different indexes that might be created.

4- Materialized Views: Instead of treating a view as a query on base tables,
we can use the query as a definition of an additional stored relation, whose
value is a function of the values of the base tables.

8.7. REFERENCES FOR CHAPTER 8 367

♦ Maintaining Materialized Views: As the base tables change, we must
make the corresponding changes to any materialized view whose value is
affected by the change. For many common kinds of materialized views,
it is possible to make the changes to the view incrementally, without
recomputing the entire view.

♦ Rewriting Queries to Use Materialized Views: The conditions under which
a query can be rewritten to use a materialized view are complex. However,
if the query optimizer can perform such rewritings, then an automatic de
sign tool can consider the improvement in performance that results from
creating materialized views and can select views to materialize, automat
ically.

8.7 References for Chapter 8
The technology behind materialized views is surveyed in [2] and [7]. Reference
[3] introduces the greedy algorithm for selecting materialized views.

Two projects for automatically tuning databases axe AutoAdmin at Mi
crosoft and SMART at IBM. Current information on AutoAdmin can be found
on-line at [8]. A description of the technology behind this system is in [1].

A survey of the SMART project is in [4]. The index-selection aspect of the
project is described in [6].

Reference [5] surveys index selection, materialized views, automatic tuning,
and related subjects covered in this chapter.

1. S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection of
materialized views and indexes in SQL databases,” Intl. Conf. on Very
Large Databases, pp. 496-505, 2000.

2. A. Gupta and I. S. Mumick, Materialized Views: Techniques, Implemen
tations, and Applications, MIT Press, Cambridge MA, 1999.

3. V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing data
cubes efficiently,” Proc. ACM SIGMOD Intl. Conf. on Management of
Data (1996), pp. 205-216.

4. S. S. Lightstone, G. Lohman, and S. Zilio, “Toward autonomic computing
with DB2 universal database,” SIGMOD Record 31:3, pp. 55-61, 2002.

5. S. S. Lightstone, T. Teorey, and T. Nadeau, Physical Database Design,
Morgan-Kaufmann, San Francisco, 2007.

6. G. Lohman, G. Valentin, D. Zilio, M. Zuliani, and A. Skelley, “DB2 Ad
visor: an optimizer smart enough to recommend its own indexes,” Proc.
Sixteenth IEEE Conf. on Data Engineering, pp. 101-110, 2000.

7. D. Lomet and J. Widom (eds.), Special issue on materialized views and
data warehouses, IEEE Data Engineering Bulletin 18:2 (1995).

368 CHAPTER 8. VIEW S AND INDEXES

8. Microsoft on-line description of the Auto Admin project,
h t t p : / / re s e a rc h .m ic ro so ft. com/dmx/autoadmin/

Chapter 9

SQL in a Server
Environment

We now turn to the question of how SQL fits into a complete programming
environment. The typical server environment is introduced in Section 9.1. Sec
tion 9.2 introduces the SQL terminology for client-server computing and con
necting to a database.

Then, we turn to how programming is really done, when SQL must be used
to access a database as part of a typical application. In Section 9.3 we see
how to embed SQL in programs that are written in an ordinary programming
language, such as C. A critical issue is how we move data between SQL relations
and the variables of the surrounding, or “host,” language. Section 9.4 considers
another way to combine SQL with general-purpose programming: persistent
stored modules, which are pieces of code stored as part of a database schema
and executable on command from the user.

A third programming approach is a “call-level interface,” where we program
in some conventional language and use a library of functions to access the
database. In Section 9.5 we discuss the SQL-standard library called SQL/CLI,
for making calls from C programs. Then, in Section 9.6 we meet Java’s JDBC
(database connectivity), which is an alternative call-level interface. Finally,
another popular call-level interface, PHP, is covered in Section 9.7.

9.1 The Three-Tier Architecture
Databases are used in many different settings, including small, standalone
databases. For example, a scientist may run a copy of MySQL or Microsoft
Access on a laboratory computer to store experimental data. However, there is
a very common architecture for large database installations; this architecture
motivates the discussion of the entire chapter. The architecture is called three-
tier or three-layer, because it distinguishes three different, interacting functions:

369

370 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

1. Web Servers. These are processes that connect clients to the database
system, usually over the Internet or possibly a local connection.

2. Application Servers. These processes perform the “business logic,” what
ever it is the system is intended to do.

3. Database Servers. These processes run the DBMS and perform queries
and modifications at the request of the application servers.

The processes may all run on the same processor in a small system, but it is
common to dedicate a large number of processors to each of the tiers. Figure 9.1
suggests how a large database installation would be organized.

Figure 9.1: The Three-Tier Architecture

9.1.1 The Web-Server Tier
The web-server processes manage the interactions with the user. When a user
makes contact, perhaps by opening a URL, a web server, typically running

9.1. THE THREE-TIER ARCHITECTURE 371

Apache/Tomcat, responds to the request. The user then becomes a client of
this web-server process. Typically, the client’s actions are performed by the
web-browser, e.g., managing of the filling of forms, which are then posted to
the web server.

As an example, let us consider a site such as Amazon.com. A user (cus
tomer) opens a connection to the Amazon database system by entering the
URL www. amazon. com into their browser. The Amazon web-server presents a
“home page” to the user, which includes forms, menus, and buttons enabling
the user to express what it is they want to do. For example, the user may set a
menu to Books and enter into a form the title of the book they are interested in.
The client web-browser transmits this information to the Amazon web-server,
and that web-server must negotiate with the next tier — the application tier —
to fulfill the client’s request.

9.1.2 The Application Tier
The job of the application tier is to turn data, from the database, into a response
to the request that it receives from the web-server. Each web-server process
can invoke one or more application-tier processes to handle the request; these
processes can be on one machine or many, and they may be on the same or
different machines from the web-server processes.

The actions performed by the application tier are often referred to as the
business logic of the organization operating the database. That is, one designs
the application tier by reasoning out what the response to a request by the
potential customer should be, and then implementing that strategy.

In the case of our example of a book at Amazon.com, this response would
be the elements of the page that Amazon displays about a book. That data
includes the title, author, price, and several other pieces of information about
the book. It also includes links to more information, such as reviews, alternative
sellers of the book, and similar books.

In a simple system, the application tier may issue database queries directly
to the database tier, and assemble the results of those queries, perhaps in an
HTML page. In a more complex system, there can be several subtiers to the
application tier, and each may have its own processes. A common architecture
is to have a subtier that supports “objects.” These objects can contain data
such as the title and price of a book in a “book object.” Data for this object is
obtained by a database query. The object may also have methods that can be
invoked by the application-tier processes, and these methods may in turn cause
additional queries to be issued to the database when and if they are invoked.

Another subtier may be present to support database integration. That is,
there may be several quite independent databases that support operations, and
it may not be possible to issue queries involving data from more than one
database at a time. The result^'of queries to different sources may need to be
combined at the integration subtier. To make integration more complex, the
databases may not be compatable in a number of important ways. We shall

372 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

examine the technology of information integration elsewhere. However, for the
moment, consider the following hypothetical example.

E xam ple 9 .1 : The Amazon database containing information about a book
may have a price in dollars. But the customer is in Europe, and their account
information is in another database, located in Europe, with billing information
in Euros. The integration subtier needs to know that there is a difference in
currencies, when it gets a price from the books database and uses that price to
enter data into a bill that is displayed to the customer. □

9.1.3 The Database Tier
Like the other tiers, there can be many processes in the database tier, and
the processes can be distributed over many machines, or all be together on
one. The database tier executes queries that are requested from the application
tier, and may also provide some buffering of data. For example, a query that
produces many tuples may be fed one-at-a-time to the requesting process of the
application tier.

Since creating connections to the database takes significant time, we nor
mally keep a large number of connections open and allow application processes
to share these connections. Each application process must return the connection
to the state in which it was found, to avoid unexpected interactions between
application processes.

The balance of this chapter is about how we implement a database tier.
Especially, we need to learn:

1. How do we enable a database to interact with “ordinary” programs that
are written in a conventional language such as C or Java?

2. How do we deal with the differences in data-types supported by SQL and
conventional languages? In particular, relations are the results of queries,
and these are not directly supported by conventional languages.

3. How do we manage connections to a database when these connections are
shared between many short-lived processes?

9.2 The SQL Environment
In this section we shall take the broadest possible view of a DBMS and the
databases and programs it supports. We shall see how databases are defined and
organized into clusters, catalogs, and schemas. We shall also see how programs
are linked with the data they need to manipulate. Many of the details depend
on the particular implementation, so we shall concentrate on the general ideas
that are contained in the SQL standard. Sections 9.5, 9.6, and 9.7 illustrate
how these high-level concepts appear in a “call-level interface,” which requires
the programmer to make explicit connections to databases.

9.2. THE SQL ENVIRONMENT 373

9.2.1 Environments
A SQL environment is the framework under which data may exist and SQL
operations on data may be executed. In practice, we should think of a SQL
environment as a DBMS running at some installation. For example, ABC
company buys a license for the Megatron 2010 DBMS to run on a collection
of ABC’s machines. The system running on these machines constitutes a SQL
environment.

All the database elements we have discussed — tables, views, triggers, and so
on — are defined within a SQL environment. These elements axe organized into
a hierarchy of structures, each of which plays a distinct role in the organization.
The structures defined by the SQL standard are indicated in Fig. 9.2.

Figure 9.2: Organization of database elements within the environment

Briefly, the organization consists of the following structures:

1. Schemas. These are collections of tables, views, assertions, triggers, and
some other types of information (see the box on “More Schema Elements”
in Section 9.2.2). Schemas are the basic units of organization, close to
what we might think of as a “database,” but in fact somewhat less than
a database as we shall see in point (3) below.

2. Catalogs. These are collections of schemas. They are the basic unit for
supporting unique, accessible terminology. Each catalog has one or more
schemas; the names of schemas within a catalog must be unique, and

374 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

each catalog contains a special schema called INFORMATION_SCHEMA that
contains information about all the schemas in the catalog.

3. Clusters. These are collections of catalogs. Each user has an associated
cluster: the set of all catalogs accessible to the user (see Section 10.1 for
an explanation of how access to catalogs and other elements is controlled).
A cluster is the maximum scope over which a query can be issued, so in
a sense, a cluster is “the database” as seen by a particular user.

9.2.2 Schemas

The simplest form of schema declaration is:

CREATE SCHEMA <schema name> <element declarations>

The element declarations are of the forms discussed in various places, such as
Sections 2.3, 8.1.1, 7.5.1, and 9.4.1.

E xam ple 9 .2 : We could declare a schema that includes the five relations about
movies that we have been using in our running example, plus some of the other
elements we have introduced, such as views. Figure 9.3 sketches the form of
such a declaration. O

CREATE SCHEMA MovieSchema
CREATE TABLE MovieStar . . . as in Fig. 7.3

Create-table statements for the four other tables
CREATE VIEW MovieProd . . . as in Example 8.2

Other view declarations
CREATE ASSERTION RichPres . . . as in Example 7.11

Figure 9.3: Declaring a schema

It is not necessary to declare the schema all at once. One can modify or
add to the “current” schema using the appropriate CREATE, DROP, or ALTER
statement, e.g., CREATE TABLE followed by the declaration of a new table for
the schema. We change the “current” schema with a SET SCHEMA statement.
For example,

SET SCHEMA MovieSchema;

makes the schema described in Fig. 9.3 the current schema. Then, any decla
rations of schema elements are added to that schema, and any DROP or ALTER
statements refer to elements already in that schema.

9.2. THE SQL ENVIRONMENT 375

More Schema Elements

Some schema elements that we have not already mentioned, but that oc
casionally are useful are:

• Domains: These are sets of values or simple data types. They are
little used today, because object-relational DBMS’s provide more
powerful type-creation mechanisms; see Section 10.4.

• Character sets: These are sets of symbols and methods for encoding
them. ASCII and Unicode are common options.

• Collations: A collation specifies which characters are “less than”
which others. For example, we might use the ordering implied by
the ASCII code, or we might treat lower-case and capital letters the
same and not compare anything that isn’t a letter.

• Grant statements: These concern who has access to schema elements.
We shall discuss the granting of privileges in Section 10.1.

• Stored Procedures: These are executable code; see Section 9.4.

Just as schema elements like tables are ere: ithin a schema, schemas are
created and modified within a catalog. In principle, we would expect the process
of creating and populating catalogs to be analogous to the process of creating
and populating schemas. Unfortunately, SQL does not define a standard way
to do so, such as a statement

followed by a list of schemas belonging to that catalog and the declarations of
those schemas.

However, SQL does stipulate a statement

This statement allows us to set the “current” catalog, so new schemas will go
into that catalog and schema modifications will refer to schemas in that catalog
should there be a name ambiguity.

9.2.4 Clients and Servers in the SQL Environment

9.2.3 Catalogs

CREATE CATALOG <catalog name>

SET CATALOG <catalog name>

A SQL environment is more than a collection of catalogs and schemas. It
contains elements whose purpose is to support operations on the database or

376 CHAPTER 9. SQL IN A SERVER ENVIRONM ENT

Complete Names for Schema Elements

Formally, the name for a schema element such as a table is its catalog
name, its schema name, and its own name, connected by dots in that
order. Thus, the table Movies in the schema MovieSchema in the catalog
MovieCatalog can be referred to as

M ovieCatalog.MovieSchema.Movies

If the catalog is the default or current catalog, then we can omit that
component of the name. If the schema is also the default or current schema,
then that part too can be omitted, and we are left with the element’s own
name, as is usual. However, we have the option to use the full name if we
need to access something outside the current schema or catalog.

databases represented by those catalogs and schemas. According to the SQL
standard, within a SQL environment are two special kinds of processes: SQL
clients and SQL servers.

In terms of Fig. 9.1, a “SQL server” plays the role what we called a “database
server there. A “SQL client” is like the application servers from that figure.
The SQL standard does not define processes analogous to what we called “Web
servers” or “clients” in Fig. 9.1.

9.2.5 Connections
If we wish to run some program involving SQL at a host where a SQL client ex
ists, then we may open a connection between the client and server by executing
a SQL statement

CONNECT TO <server name> AS <connection name>
AUTHORIZATION <name and password>

The server name is something that depends on the installation. The word
DEFAULT can substitute for a name and will connect the user to whatever SQL
server the installation treats as the “default server.” We have shown an au
thorization clause followed by the user’s name and password. The latter is the
typical method by which a user would be identified to the server, although other
strings following AUTHORIZATION might be used.

The connection name can be used to refer to the connection later on. The
reason we might have to refer to the connection is that SQL allows several
connections to be opened by the user, but only one can be active at any time.
To switch among connections, we can make connl become the active connection
by the statement:

9.2. THE SQL ENVIRONMENT 377

SET CONNECTION connl;

Whatever connection was currently active becomes dormant until it is reacti
vated with another SET CONNECTION statement that mentions it explicitly.

We also use the name when we drop the connection. We can drop connection
connl by

DISCONNECT connl;

Now, connl is terminated; it is not dormant and cannot be reactivated.
However, if we shall never need to refer to the connection being created, then

AS and the connection name may be omitted from the CONNECT TO statement.
It is also permitted to skip the connection statements altogether. If we simply
execute SQL statements at a host with a SQL client, then a default connection
will be established on our behalf.

9.2.6 Sessions
The SQL operations that are performed while a connection is active form a
session. The session lasts as long as the connection that created it. For example,
when a connection is made dormant, its session also becomes dormant, and
reactivation of the connection by a SET CONNECTION statement also makes the
session active. Thus, we have shown the session and connection as two aspects
of the link between client and server in Fig. 9.4. j

Each session has a current catalog and a current schema within that catalog.
These may be set with statements SET SCHEMA and SET CATALOG, as discussed
in Sections 9.2.2 and 9.2.3. There is also an authorized user for every session,
as we shall discuss in Section 10.1.

Figure 9.4: The SQL client-server interactions

378 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

The Languages of the SQL Standard

Implementations conforming to the SQL standard are required to support
at least one of the following seven host languages: ADA, C, Cobol, Fortran,
M (formerly called Mumps, and used primarily in the medical community),
Pascal, and PL/I. We shall use C in our examples.

9.2.7 Modules
A module is the SQL term for an application program. The SQL standard
suggests that there are three kinds of modules, but insists only that a SQL
implementation offer the user at least one of these types.

1. Generic SQL Interface. The user may type SQL statements that axe
executed by a SQL server. In this mode, each query or other statement
is a module by itself. It is this mode that we imagined for most of our
examples in this book, although in practice it is rarely used.

2. Embedded SQL. This style will be discussed in Section 9.3. Typically, a
preprocessor turns the embedded SQL statements into suitable function or
procedure calls to the SQL system. The compiled host-language program,
including these function calls, is a module.

3. True Modules. The most general style of modules envisioned by SQL is
a collection of stored functions or procedures, some of which are host-
language code and some of which are SQL statements. They commu
nicate among themselves by passing parameters and perhaps via shared
variables. PSM modules (Section 9.4) are an example of this type of
module.

An execution of a module is called a SQL agent. In Fig. 9.4 we have shown
both a module and an SQL agent, as one unit, calling upon a SQL client
to establish a connection. However, we should remember that the distinction
between a module and an SQL agent is analogous to the distinction between
a program and a process; the first is code, the second is an execution of that
code.

9.3 The SQL/Host-Language Interface
To this point, we have used the generic SQL interface in our examples. That
is, we have assumed there is a SQL interpreter, which accepts and executes the
sorts of SQL queries and commands that we have learned. Although provided
as an option by almost all DBMS’s, this mode of operation is actually rare. In
real systems, such as those described in Section 9.1, there is a program in some

9.3. THE SQL/HOST-LANGUAGE INTERFACE 379

conventional host language such as C, but some of the steps in this program are
actually SQL statements.

H ost language

H ost-language

com piler

T
O bject-code

program

SQL library

Figure 9.5: Processing programs with SQL statements embedded

A sketch of a typical programming system that involves SQL statements is
in Fig. 9.5. There, we see the programmer writing programs in a host language,
but with some special “embedded” SQL statements. There are two ways this
embedding could take place.

1. Call-Level Interface. A library is provided, and the embedding of SQL in
the host language is really calls to functions or methods in this library.
SQL statements are usually string arguments of these methods. This
approach, often referred to as a call-level interface or CLI, is discussed in
Section 9.5 and is represented by the curved arrow in Fig. 9.5 from the
user directly to the host language.

2. Directly Embedded SQL. The entire host-language program, with embed
ded SQL statements, is sent to a preprocessor, which changes the embed
ded SQL statements into something that makes sense in the host language.
Typically, the SQL statements are replaced by calls to library functions
or methods, so the difference between a CLI and direct embedding of SQL
is more a matter of “look and feel” than of substance. The preprocessed
host-language program is then compiled in the usual manner and operates
on the database through execution of the library calls.

380 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

In this section, we shall learn the SQL standard for direct embedding in a
host language — C in particular. We are also introduced to a number of con
cepts, such as cursors, that appear in all, or almost all, systems for embedding
SQL.

9.3.1 The Impedance Mismatch Problem
The basic problem of connecting SQL statements with those of a conventional
programming language is impedance mismatch: the fact that the data model
of SQL differs so much from the models of other languages. As we know, SQL
uses the relational data model at its core. However, C and similar languages
use a data model with integers, reals, arithmetic, characters, pointers, record
structures, arrays, and so on. Sets are not represented directly in C or these
other languages, while SQL does not use pointers, loops and branches, or many
other common programming-language constructs. As a result, passing data
between SQL and other languages is not straightforward, and a mechanism
must be devised to allow the development of programs that use both SQL and
another language.

One might first suppose that it is preferable to use a single language. Ei
ther do all computation in SQL or forget SQL and do all computation in a
conventional language. However, we can dispense with the idea of omitting
SQL when there are database operations involved. SQL systems greatly aid the
programmer in writing database operations that can be executed efficiently, yet
that can be expressed at a very high level. SQL takes from the programmer’s
shoulders the need to understand how data is organized in storage or how to
exploit that storage structure to operate efficiently on the database.

On the other hand, there are many important things that SQL cannot do
at all. For example, one cannot write a SQL query to compute n factorial,
something that is an easy exercise in C or similar languages.1 As another
example, SQL cannot format its output directly into a convenient form such
as a graphic. Thus, real database programming requires both SQL and a host
language.

9.3.2 Connecting SQL to the Host Language
When we wish to use a SQL statement within a host-language program, we
warn the preprocessor that SQL code is coming with the keywords EXEC SQL in
front of the statement. We transfer information between the database, which
is accessed only by SQL statements, and the host-language program through
shared, variables, which are allowed to appear in both host-language statements

1W e should be careful here. T here are extensions to th e basic SQL language, such as
recursive SQ L discussed in Section 10.2 o r S Q L /P S M discussed in Section 9.4, th a t do offer
“T uring com pleteness” — th e ab ility to com pute any th in g th a t can be com pu ted in any o th er
p rog ram m ing language. However, these extensions were never in tended for general-purpose
calcu la tion , an d we do no t regard th em as general-purpose languages.

9.3. TEE SQL/HOST-LANGUAGE INTERFACE 381

and SQL statements. Shared variables are prefixed by a colon within a SQL
statement, but they appear without the colon in host-language statements.

A special variable, called SQLSTATE in the SQL standard, serves to con
nect the host-language program with the SQL execution system. The type of
SQLSTATE is an array of five characters. Each time a function of the SQL library
is called, a code is put in the variable SQLSTATE that indicates any problems
found during that call. The SQL standard also specifies a large number of
five-character codes and their meanings.

For example, ’00000’ (five zeroes) indicates that no error condition oc
curred, and ’ 02000 ’ indicates that a tuple requested as part of the answer to
a SQL query could not be found. The latter code is very important, since it
allows us to create a loop in the host-language program that examples tuples
from some relation one-at-a-time and to break the loop after the last tuple has
been examined.

9.3.3 The DECLARE Section
To declare shared variables, we place their declarations between two embedded
SQL statements:

EXEC SQL BEGIN DECLARE SECTION;

EXEC SQL END DECLARE SECTION;

What appears between them is called the declare section. The form of variable
declarations in the declare section is whatever the host language requires. It
only makes sense to declare variables to have types that both the host language
and SQL can deal with, such as integers, reals, and character strings or arrays.

E xam ple 9 .3 : The following statements might appear in a C function that
updates the S tudio relation:

EXEC SQL BEGIN DECLARE SECTION;
char studioName[50], studioA ddr[256];
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

The first and last statements are the required beginning and end of the declare
section. In the middle is a statement declaring two shared variables, s tu d io
Name and studioAddr. These are both character arrays and, as we shall see,
they can be used to hold a name and address of a studio that are made into
a tuple and inserted into the S tudio relation. The third statement declares
SQLSTATE to be a six-character array.2 □

2W e shall use six charac te rs for th e five-character value o f SQLSTATE because in p rog ram s
to follow we w ant to use th e C function strcm p to te s t w h e th er SQLSTATE has a ce rta in value.
Since strcm p expects s trin g s to be te rm in a te d by ’ \ 0 ’ , we need a s ix th ch a rac te r for th is
endm arker. T h e six th ch a rac te r m u st be se t in itia lly to ’ \ 0 ’ , b u t we shall n o t show th is
assignm ent in p rog ram s to follow.

382 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

9.3.4 Using Shared Variables
A shared variable can be used in SQL statements in places where we expect or
allow a constant. Recall that shared variables are preceded by a colon when
so used. Here is an example in which we use the variables of Example 9.3 as
components of a tuple to be inserted into relation Studio.

E xam ple 9 .4 : In Fig. 9.6 is a sketch of a C function getS tud io that prompts
the user for the name and address of a studio, reads the responses, and inserts
the appropriate tuple into Studio. Lines (1) through (4) are the declarations
from Example 9.3. We omit the C code that prints requests and scans entered
text to fill the two arrays studioName and studioAddr.

void g e tS tu d io () {

1) EXEC SQL BEGIN DECLARE SECTION;
2) char studioName[50], studioA ddr[256];
3) char SQLSTATE[6];
4) EXEC SQL END DECLARE SECTION;

/* p r in t req u est th a t s tu d io name and address
be en tered and read response in to v a r ia b le s
studioName and studioAddr */

5) EXEC SQL INSERT INTO Studio(name, address)
6) VALUES (: studioName, :stud ioA ddr);

}

Figure 9.6: Using shared variables to insert a new studio

Then, in lines (5) and (6) is an embedded SQL INSERT statement. This
statement is preceded by the keywords EXEC SQL to indicate that it is indeed
an embedded SQL statement rather than ungrammatical C code. The values
inserted by lines (5) and (6) are not explicit constants, as they were in all
previous examples; rather, the values appearing in line (6) are shared variables
whose current values become components of the inserted tuple. □

Any SQL statement that does not return a result (i.e., is not a query) can be
embedded in a host-language program by preceding it with EXEC SQL. Examples
of embeddable SQL statements include insert-, delete-, and update-statements
and those statements that create, modify, or drop schema elements such as
tables and views.

However, select-from-where queries are not embeddable directly into a host
language, because of the “impedance mismatch.” Queries produce bags of tu
ples as a result, while none of the major host languages support a set or bag

9.3. THE SQL/HOST-LANGUAGE INTERFACE 383

data type directly. Thus, embedded SQL must use one of two mechanisms for
connecting the result of queries with a host-language program:

1. Single-Row SELECT Statements. A query that produces a single tuple can
have that tuple stored in shared variables, one variable for each component
of the tuple.

2. Cursors. Queries producing more than one tuple can be executed if we
declare a cursor for the query. The cursor ranges over all tuples in the
answer relation, and each tuple in turn can be fetched into shared variables
and processed by the host-language program.

We shall consider each of these mechanisms in turn.

9.3.5 Single-Row Select Statements
The form of a single-row select is the same as an ordinary select-from-where
statement, except that following the SELECT clause is the keyword INTO and a
list of shared variables. These shared variables each are preceded by a colon,
as is the case for all shared variables within a SQL statement. If the result
of the query is a single tuple, this tuple’s components become the values of
these variables. If the result is either no tuple or more than one tuple, then no
assignment to the shared variables is made, and an appropriate error code is
written in the variable SQLSTATE.

E xam ple 9 .5 : We shall write a C function to read the name of a studio and
print the net worth of the studio’s president. A sketch of this function is shown
in Fig. 9.7. It begins with a declare section, lines (1) through (5), for the
variables we shall need. Next, C statements that we do not show explicitly
obtain a studio name from the standard input.

Lines (6) through (9) are the single-row select statement. It is quite similar
to queries we have already seen. The two differences are that the value of
variable studioName is used in place of a constant string in the condition of
line (9), and there is an INTO clause at line (7) that tells us where to put the
result of the query. In this case, we expect a single tuple, and tuples have only
one component, that for attribute netWorth. The value of this one component
of one tuple is placed in the shared variable presNetWorth. □

9.3.6 Cursors
The most versatile way to connect SQL queries to a host language is with a
cursor that runs through the tuples of a relation. This relation can be a stored
table, or it can be something that is generated by a query. To create and use a
cursor, we need the following statements:

1. A cursor declaration, whose simplest form is:

384 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

void printN etW orthQ {

1) EXEC SQL BEGIN DECLARE SECTION;
2) char studioName [50];
3) in t presNetWorth;
4) char SQLSTATE[6];
5) EXEC SQL END DECLARE SECTION;

/* p r in t req u es t th a t s tu d io name be en te red ,
read response in to studioName * /

6) EXEC SQL SELECT netWorth
7) INTO :presNetWorth
8) FROM S tud io , MovieExec
9) WHERE presC# = ce rt# AND

S tu d io . name = :studioName;

/* check th a t SQLSTATE has a l l 0 ’s and i f so , p r in t
th e value of presNetWorth */

}

Figure 9.7: A single-row select embedded in a C function

EXEC SQL DECLARE <cursor name> CURSOR FOR <query>

The query can be either an ordinary select-from-where query or a relation
name. The cursor ranges over the tuples of the relation produced by the
query.

2. A statement EXEC SQL OPEN, followed by the cursor name. This state
ment initializes the cursor to a position where it is ready to retrieve the
first tuple of the relation over which the cursor ranges.

3. One or more uses of a fetch statement. The purpose of a fetch statement
is to get the next tuple of the relation over which the cursor ranges. The
fetch statement has the form:

EXEC SQL FETCH FROM <cursor name> INTO <list of variables>

There is one variable in the list for each attribute of the tuple’s relation.
If there is a tuple available to be fetched, these variables are assigned
the values of the corresponding components from that tuple. If the tuples
have been exhausted, then no tuple is returned, and the value of SQLSTATE
is set to ’ 02000 ’ , a code that means “no tuple found.”

9.3. THE SQL/HOST-LANGUAGE INTERFACE 385

4. The statement EXEC SQL CLOSE followed by the name of the cursor. This
statement closes the cursor, which now no longer ranges over tuples of the
relation. It can, however, be reinitialized by another OPEN statement, in
which case it ranges anew over the tuples of this relation.

E xam ple 9 .6 : Suppose we wish to determine the number of movie executives
whose net worths fall into a sequence of bands of exponentially growing size,
each band corresponding to a number of digits in the net/worth. We shall
design a query that retrieves the netWorth field of all the (MovieExec tuples
into a shared variable called worth. A cursor called execCursor will range over
all these one-component tuples. Each time a tuple is fetched, we compute the
number of digits in the integer worth and increment the appropriate element
of an array counts.

The C function worthRanges begins in line (1) of Fig. 9.8. Line (2) declares
some variables used only by the C function, not by the embedded SQL. The
array counts holds the counts of executives in the various bands, d ig i t s counts
the number of digits in a net worth, and i is an index ranging over the elements
of array counts.

Lines (3) through (6) are a SQL declare section in which shared vari
able worth and the usual SQLSTATE are declared. Lines (7) and (8) declare
execCursor to be a cursor that ranges over the values produced by the query
on line (8). This query simply asks for the netWorth components of all the tu
ples in MovieExec. This cursor is then opened at line (9). Line (10) completes
the initialization by zeroing the elements of array counts.

The main work is done by the loop of lines (11) through (16). At line (12)
a tuple is fetched into shared variable worth. Since tuples produced by the
query of line (8) have only one component, we need only one shared variable,
although in general there would be as many variables as there are components
of the retrieved tuples. Line (13) tests whether the fetch has been successful.
Here, we use a macro N0_M0RE_TUPLES, defined by

#define N0_M0RE_TUPLES ! (strcmp(SqLSTATE,"02000"))

Recall that "02000" is the SQLSTATE code that means no tuple was found. If
there are no more tuples, we break out of the loop and go to line (17).

If a tuple has been fetched, then at line (14) we initialize the number of digits
in the net worth to 1. Line (15) is a loop that repeatedly divides the net worth
by 10 and increments d ig i t s by 1. When the net worth reaches 0 after division
by 10, d ig i t s holds the correct number of digits in the value of worth that was
originally retrieved. Finally, line (16) increments the appropriate element of the
array counts by 1. We assume that the number of digits is no more than 14.
However, should there be a net worth with 15 or more digits, line (16) will not
increment any element of the counts array, since there is no appropriate range;
i.e., enormous net worths are thrown away and do not affect the statistics.

Line (17) begins the wrap-up of the function. The cursor is closed, and lines
(18) and (19) print the values in the counts array. □

386 CHAPTER 9. SQL IN A SERVER ENVIRONM ENT

1) void worthRangesO {

2) in t i , d i g i t s , co u n ts [15];
3) EXEC SQL BEGIN DECLARE SECTION;
4) in t worth;
5) char SQLSTATE[6];
6) EXEC SQL END DECLARE SECTION;
7) EXEC SQL DECLARE execCursor CURSOR FOR
8) SELECT netWorth FROM MovieExec;

9) EXEC SQL OPEN execCursor;
10) f o r (i= l ; i<15; i++) co u n ts [i] = 0;
11) w h ile (l) {
12) EXEC SQL FETCH FROM execCursor INTO :worth;
13) if(N0_M0RE_TUPLES) break;
14) d ig i t s = 1;
15) w hile((w orth /= 10) > 0) d ig its+ + ;
16) i f (d i g i t s <= 14) c o u n ts [d ig i ts]++;

>
17) EXEC SQL CLOSE execCursor;
18) fo r (i= 0 ; i<15; i++)
19) p r in t f (" d ig i t s = */,d: number of execs = 7,d\n",

i , c o u n ts [i]) ;
}

Figure 9.8: Grouping executive net worths into exponential bands

9.3.7 Modifications by Cursor
When a cursor ranges over the tuples of a base table (i.e., a relation that is
stored in the database), then one can not only read the current tuple, but
one can update or delete the current tuple. The syntax of these UPDATE and
DELETE statements are the same as we encountered in Section 6.5, with the
exception of the WHERE clause. That clause may only be WHERE CURRENT OF
followed by the n^ame of the cursor. Of course it is possible for the host-language
program reading'the tuple to apply whatever condition it likes to the tuple
before deciding whether or not to delete or update it.

E xam ple 9 .7 : In Fig. 9.9 we see a C function that looks at each tuple of
MovieExec and decides either to delete the tuple or to double the net worth. In
lines (3) and (4) we declare variables that correspond to the four attributes of
MovieExec, as well as the necessary SQLSTATE. Then, at line (6), execCursor
is declared to range over the stored relation MovieExec itself.

Lines (8) through (14) are the loop, in which the cursor execCursor refers
to each tuple of MovieExec, in turn. Line (9) fetches the current tuple into

9.3. THE SQL/HOST-LANGUAGE INTERFACE 387

1) void changeWorth() {

2) EXEC SQL BEGIN DECLARE SECTION;
3) in t certN o, worth;
4) char execName [31] , execAddr[256], SQLSTATE[6];
5) EXEC SQL END DECLARE SECTION; /
6) EXEC SQL DECLARE execCursor CURSOR FOR MovieExec;

7) EXEC SQL OPEN execCursor;
8) w h ile (l) {
9) EXEC SQL FETCH FROM execCursor INTO :execName,

:execAddr, : certN o, :worth;
10) if(N0_M0RE_TUPLES) break;
11) i f (worth < 1000)
12) EXEC SQL DELETE FROM MovieExec

WHERE CURRENT OF execCursor;
13) e ls e
14) EXEC SQL UPDATE MovieExec

SET netWorth = 2 * netWorth
WHERE CURRENT OF execCursor;

}
15) EXEC SQL CLOSE execCursor;

>

Figure 9.9: Modifying executive net worths

the four variables used for this purpose; note that only worth is actually used.
Line (10) tests whether we have exhausted the tuples of MovieExec. We have
again used the macro N0_M0RE_TUPLES for the condition that variable SQLSTATE
has the “no more tuples” code "02000".

In the test of line (11) we ask if the net worth is under $1000. If so, the
tuple is deleted by the DELETE statement of line (12). Note that the WHERE
clause refers to the cursor, so the current tuple of MovieExec, the one we just
fetched, is deleted from MovieExec. If the net worth is at least $1000, then at
line (14), the net worth in the same tuple is doubled, instead. □

9.3.8 Protecting Against Concurrent Updates
Suppose that as we examine the net worths of movie executives using the func
tion worthRanges of Fig. 9.8, some other process is modifying the underlying
MovieExec relation. What should we do about this possibility? Perhaps noth
ing. We might be happy with approximate statistics, and we don’t care whether
or not we count an executive who was in the process of being deleted, for ex
ample. Then, we simply accept what tuples we get through the cursor.

388 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

However, we may not wish to allow concurrent changes to affect the tuples
we see through this cursor. Rather, we may insist on the statistics being taken
on the relation as it exists at some point in time. In terms of the transactions
of Section 6.6, we want the code that runs the cursor through the relation to be
serializable with any other operations on the relation. To obtain this guarantee,
we may declare the cursor insensitive to concurrent changes.

E xam ple 9 .8 : We could modify lines (7) and (8) of Fig. 9.8 to be:

7) EXEC SQL DECLARE execCursor INSENSITIVE CURSOR FOR
8) SELECT netWorth FROM MovieExec;

If execCursor is so declared, then the SQL system will guarantee that changes
to relation MovieExec made between one opening and closing of execCursor
will not affect the set of tuples fetched. □

There are certain cursors ranging over a relation R about which we may say
with certainty that they will not change R. Such a cursor can run simultane
ously with an insensitive cursor for R, without risk of changing the relation R
that the insensitive cursor sees. If we declare a cursor FOR READ ONLY, then the
database system can be sure that the underlying relation will not be modified
because of access to the relation through this cursor.

E xam ple 9 .9 : We could append after line (8) of worthRanges in Fig. 9.8 a
line

FOR READ ONLY;

If so, then any attem pt to execute a modification through cursor execCursor
would cause an error. □

9.3.9 Dynamic SQL
Our model of SQL embedded in a host language has been that of specific SQL
queries and commands within a host-language program. An alternative style
of embedded SQL has the statements themselves be computed by the host
language/Such statements are not known at compile time, and thus cannot be
handled by a SQL preprocessor or a host-language compiler.

An example of such a situation is a program that prompts the user for an
SQL query, reads the query, and then executes that query. The generic interface
for ad-hoc SQL queries that we assumed in Chapter 6 is an example of just such
a program. If queries are read and executed at run-time, there is nothing that
can be done at compile-time. The query has to be parsed and a suitable way
to execute the query found by the SQL system, immediately after the query is
read.

The host-language program must instruct the SQL system to take the char
acter string just read, to turn it into an executable SQL statement, and finally to
execute that statement. There are two dynamic SQL statements that perform
these two steps.

9.3. THE SQL/HOST-LANGUAGE INTERFACE 389

1. EXEC SQL PREPARE V FROM <expression>, where V is a SQL variable.
The expression can be any host-language expression whose value is a
string; this string is treated as a SQL statement. Presumably, the SQL
statement is parsed and a good way to execute it is found by the SQL
system, but the statement is not executed. Rather, the plan for executing
the SQL statement becomes the value of V.

2. EXEC SQL EXECUTE V. This statement causes the SQL statement denoted
by variable V to be executed. '

Both steps can be combined into one, with the statement:

EXEC SQL EXECUTE IMMEDIATE <expression>

The disadvantage of combining these two parts is seen if we prepare a statement
once and then execute it many times. With EXECUTE IMMEDIATE the cost of
preparing the statement is paid each time the statement is executed, rather
than paid only once, when we prepare it.

E xam ple 9 .10 : In Fig. 9.10 is a sketch of a C program that reads text from
standard input into a variable query, prepares it, and executes it. The SQL
variable SQLquery holds the prepared query. Since the query is only executed
once, the line:

EXEC SQL EXECUTE IMMEDIATE :query;

could replace lines (6) and (7) of Fig. 9.10. □

1) void readQueryO {

2) EXEC SQL BEGIN DECLARE SECTION;
3) char *query;
4) EXEC SQL END DECLARE SECTION;

5) /* prompt u se r fo r a query, a l lo c a te space (e .g . ,
use m alloc) and make shared v a r ia b le :query po in t
to th e f i r s t ch a rac te r of th e query * /

6) EXEC SQL PREPARE SQLquery FROM :query;
7) EXEC SQL EXECUTE SQLquery;

>

Figure 9.10: Preparing and executing a dynamic SQL query

390 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

9.3.10 Exercises for Section 9.3
E xercise 9 .3 .1 : Write the following embedded SQL queries, based on the
database schema

Product(m aker, model, type)
PC(model, speed, ram, hd, p r ic e)
Laptop(model, speed, ram, hd, sc reen , p r ic e)
P rin te r(m o d e l, c o lo r , ty p e , p r ic e)

of Exercise 2.4.1. You may use any host language with which you are familiar,
and details of host-language programming may be replaced by clear comments
if you wish.

a) Ask the user for a price and find the PC whose price is closest to the
desired price. Print the maker, model number, and speed of the PC.

b) Ask the user for minimum values of the speed, RAM, hard-disk size, and
screen size that they will accept. Find all the laptops that satisfy these
requirements. Print their specifications (all attributes of Laptop) and
their manufacturer.

! c) Ask the user for a manufacturer. Print the specifications of all products
by that manufacturer. That is, print the model number, product-type,
and all the attributes of whichever relation is appropriate for that type.

!! d) Ask the user for a “budget” (total price of a PC and printer), and a
minimum speed of the PC. Find the cheapest “system” (PC plus printer)
that is within the budget and minimum speed, but make the printer a
color printer if possible. Print the model numbers for the chosen system.

e) Ask the user for a manufacturer, model number, speed, RAM, hard-disk
size, and price of a new PC. Check that there is no PC with that model
number. Print a warning if so, and otherwise insert the information into
tables Product and PC.

Write the following embedded SQL queries, based on the

C la s s e s (c la s s , ty p e , coun try , numGuns, bo re , displacem ent)
Ships(name, c la s s , launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e , r e s u l t)

of Exercise 2.4.3.

a) The firepower of a ship is roughly proportional to the number of guns
times the cube of the bore of the guns. Find the class with the largest
firepower.

9.4. STORED PROCEDURES 391

! b) Ask the user for the name of a battle. Find the countries of the ships
involved in the battle. Print the country with the most ships sunk and
the country with the most ships damaged.

c) Ask the user for the name of a class and the other information required
for a tuple of table C lasses. Then ask for a list of the names of the ships
of that class and their dates launched. However, the user need not give
the first name, which will be the name of the class. Insert the information
gathered into C lasses and Ships.

! d) Examine the B a ttle s , Outcomes, and Ships relations for ships that were
in battle before they were launched. Prompt the user when there is an
error found, offering the option to change the date of launch or the date
of the battle. Make whichever change is requested.

9.4 Stored Procedures
In this section, we introduce you to Persistent, Stored Modules (SQL/PSM,
or just PSM). PSM is part of the latest revision to the SQL standard, called
SQL:2003. It allows us to write procedures in a simple, general-purpose lan
guage and to store them in the database, as part of the schema. We can then
use these procedures in SQL queries and other statements to perform compu
tations that cannot be done with SQL alone. Each commercial DBMS offers its
own extension of PSM. In this book, we shall describe the SQL/PSM standard,
which captures the major ideas of these facilities, and which should help you
understand the language associated with any particular system. References to
PSM extensions provided with several major commercial systems are in the
bibliographic notes.

9.4.1 Creating PSM Functions and Procedures
In PSM, you define modules, which are collections of function and procedure
definitions, temporary relation declarations, and several other optional decla
rations. The major elements of a procedure declaration are:

CREATE PROCEDURE <name> (<param eters>)
<local declarations>
<procedure body>;

This form should be familiar from a number of programming languages; it con
sists of a procedure name, a parenthesized list of parameters, some optional
local-variable declarations, and the executable body of code that defines the
procedure. A function is defined in almost the same way, except that the key
word FUNCTION is used, and there is a return-value type that must be specified.
That is, the elements of a function definition are:

392 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

CREATE FUNCTION <name> (<param eters>) RETURNS <type>
<local declarations >
<function body> ;

The parameters of a PSM procedure are mode-name-type triples. That
is, the parameter name is not only followed by its declared type, as usual in
programming languages, but it is preceded by a “mode,” which is either IN,
OUT, or INOUT. These three keywords indicate that the parameter is input-only,
output-only, or both input and output, respectively. IN is the default, and can
be omitted.

Function parameters, on the other hand, may only be of mode IN. That is,
PSM forbids side-effects in functions, so the only way to obtain information
from a function is through its return-value. We shall not specify the IN mode
for function parameters, although we do so in procedure definitions.

E xam ple 9 .11 : While we have not yet learned the variety of statements that
can appear in procedure and function bodies, one kind should not surprise
us: an SQL statement. The limitation on these statements is the same as
for embedded SQL, as we introduced in Section 9.3.4: only single-row-select
statements and cursor-based accesses are permitted as queries. In Fig. 9.11 is a
PSM procedure that takes two addresses — an old address and a new address —
as parameters and replaces the old address by the new everywhere it appears
in MovieStar.

1) CREATE PROCEDURE Move(
2) IN oldAddr VARCHAR(255),
3) IN newAddr VARCHAR(255)

)
4) UPDATE MovieStar
5) SET address = newAddr
6) WHERE address = oldAddr;

Figure 9.11: A procedure to change addresses

Line (1) introduces the procedure and its name, Move. Lines (2) and (3) de
clare two input parameters, both of whose types are VARCHAR(255). This type
is consistent with the type we declared for the attribute address of MovieStar
in Fig. 2.8. Lines (4) through (6) are a conventional UPDATE statement. How
ever, notice that the parameter names can be used as if they were constants.
Unlike host-language variables, which require a colon prefix when used in SQL
(see Section 9.3.2), parameters and other local variables of PSM procedures and
functions require no colon. □

9.4.2 Some Simple Statement Forms in PSM
Let us begin with a potpourri of statement forms that are easy to master.

9.4. STORED PROCEDURES 393

1. The call-statement: The form of a procedure call is:

CALL <procedure name> (<argument l is t>) ;

That is, the keyword CALL is followed by the name of the procedure and
a parenthesized list of arguments, as in most any language. This call can,
however, be made from a variety of places:

i. From a host-language program, in which it might appear as

EXEC SQL CALL Foo(:x , 3);

for instance.
ii. As a statement of another PSM function or procedure.

Hi. As a SQL command issued to the generic SQL interface. For exam
ple, we can issue a statement such as

CALL F o o (l, 3) ;

to such an interface, and have stored procedure Foo executed with
its two parameters set equal to 1 and 3, respectively.

Note that it is not permitted to call a function. You invoke functions in
PSM as you do in C: use the function name and suitable arguments as
part of an expression.

2. The return-statement: Its form is

RETURN <expression>;

This statement can only appear in a function. It evaluates the expression
and sets the return-value of the function equal to that result. However,
at variance with common programming languages, the return-statement
of PSM does not terminate the function. Rather, control continues with
the following statement, and it is possible that the return-value will be
changed before the function completes.

3. Declarations of local variables: The statement form

DECLARE <name> < ty p e> ;

declares a variable with the given name to have the given type. This
variable is local, and its value is not preserved by the DBMS after a run
ning of the function or procedure. Declarations must precede executable
statements in the function or procedure body.

4. Assignment Statements: The form of an assignment is:

394 CHAPTER 9. SQL IN A SERVER ENVIRONM ENT

SET <variable> = <expression>;

Except for the introductory keyword SET, assignment in PSM is quite
like assignment in other languages. The expression on the right of the
equal-sign is evaluated, and its value becomes the value of the variable on
the left. NULL is a permissible expression. The expression may even be a
query, as long as it returns a single value.

5. Statement groups: We can form a list of statements ended by semicolons
and surrounded by keywords BEGIN and END. This construct is treated
as a single statement and can appear anywhere a single statement can.
In particular, since a procedure or function body is expected to be a
single statement, we can put any sequence of statements in the body by
surrounding them by BEGIN. . . END.

6. Statement labels: We label a statement by prefixing it with a name (the
label) and a colon.

9.4.3 Branching Statements
For our first complex PSM statement type, let us consider the if-statement.
The form is only a little strange; it differs from C or similar languages in that:

1. The statement ends with keywords END IF.

2. If-statements nested within the else-clause are introduced with the single
word ELSEIF.

Thus, the general form of an if-statement is as suggested by Fig. 9.12. The
condition is any boolean-valued expression, as can appear in the WHERE clause
of SQL statements. Each statement list consists of statements ended by semi
colons, but does not need a surrounding BEGIN. . . END. The final ELSE and its
statement(s) are optional; i.e., I F . . .THEN.. .END IF alone or with ELSEIF’s is
acceptable.

E xam ple 9 .12: Let us write a function to take a year y and a studio s, and
return a boolean that is TRUE if and only if studio s produced at least one
comedy in year y or did not produce any movies at all in that year. The code
appears in Fig. 9.13.

Line (1) introduces the function and includes its arguments. We do not need
to specify a mode for the arguments, since that can only be IN for a function.
Lines (2) and (3) test for the case where there are no movies at all by studio
s/in year y, in which case we set the return-value to TRUE at line (4). Note

/chat line (4) does not cause the function to return. Technically, it is the flow of
control dictated by the if-statements that causes control to jump from line (4)
to line (9), where the function completes and returns.

9.4. STORED PROCEDURES 395

IF <condition> / t t THEN
<statement list>

ELSEIF <condition> / t t THEN
<statement list>

ELSEIF

ELSE
<statement list>

END IF;

Figure 9.12: The form of an if-statement

1) CREATE FUNCTION BandW(y INT, s CHAR(15)) RETURNS BOOLEAN

2) IF NOT EXISTS(
3) SELECT * FROM Movies WHERE year = y AND

studioName = s)
4) THEN RETURN TRUE;
5) ELSEIF 1 <=
6) (SELECT C0UNT(*) FROM Movies WHERE year = y AND

studioName = s AND genre = ’comedy’)
7) THEN RETURN TRUE;
8) ELSE RETURN FALSE;
9) END IF;

Figure 9.13: If there are any movies at all, then at least one has to be a comedy

If studio s made movies in year y, then lines (5) and (6) test if at least one
of them was a comedy. If so, the return-value is again set to true, this time at
line (7). In the remaining case, studio s made movies but only in color, so we
set the return-value to FALSE at line (8). □

9.4.4 Queries in PSM
There are several ways that select-from-where queries are used in PSM.

1. Subqueries can be used in conditions, or in general, any place a subquery
is legal in SQL. We saw two examples of subqueries in lines (3) and (6)
of Fig. 9.13, for instance.

2. Queries that return a single value can be used as the right sides of assign
ment statements.

3. A single-row select statement is a legal statement in PSM. Recall this
statement has an INTO clause that specifies variables into which the com

396 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

ponents of the single returned tuple are placed. These variables could be
local variables or parameters of a PSM procedure. The general form was
discussed in the context of embedded SQL in Section 9.3.5.

4. We can declare and use a cursor, essentially as it was described in Sec
tion 9.3.6 for embedded SQL. The declaration of the cursor, OPEN, FETCH,
and CLOSE statements are all as described there, with the exceptions that:

(a) No EXEC SQL appears in the statements, and
(b) The variables do not use a colon prefix.

CREATE PROCEDURE SomeProc(IN studioName CHAR(15))

DECLARE presNetWorth INTEGER;

SELECT netWorth
INTO presNetWorth
FROM Studio, MovieExec
WHERE presC# = cert# AND Studio.name = studioName;

Figure 9.14: A single-row select in PSM

E xam ple 9 .13: In Fig. 9.14 is the single-row select of Fig. 9.7, redone for
PSM and placed in the context of a hypothetical procedure definition. Note
that, because the single-row select returns a one-component tuple, we could
also get the same effect from an assignment statement, as:

SET presNetWorth = (SELECT netWorth
FROM Studio, MovieExec
WHERE presC# = cert# AND Studio.name = studioName);

We shall defer examples of cursor use until we learn the PSM loop statements
in the next section. □

9.4.5 Loops in PSM
The basic loop construct in PSM is:

LOOP
< statement list>

END LOOP;
One often labels the LOOP statement, so it is possible to break out of the loop,
using a statement:

9.4. STORED PROCEDURES 397

LEAVE <loop label> ;

In the common case that the loop involves the fetching of tuples via a cursor,
we often wish to leave the loop when there axe no more tuples. It is useful to
declare a condition name for the SQLSTATE value that indicates no tuple found
(’02000’, recall); we do so with:

DECLARE Not.Found CONDITION FOR SQLSTATE ’02000’ ;

More generally, we can declare a condition with any desired name corresponding
to any SQLSTATE value by

DECLARE <name> CONDITION FOR SQLSTATE <value>;

We are now ready to take up an example that ties together cursor operations
and loops in PSM.

E xam ple 9 .14: Figure 9.15 shows a PSM procedure that takes a studio name
s as an input argument and produces in output arguments mean and variance
the mean and variance of the lengths of all the movies owned by studio s. Lines
(1) through (4) declare the procedure and its parameters.

Lines (5) through (8) are local declarations. We define Not JFound to be the
name of the condition that means a FETCH failed to return a tuple at line (5).
Then, at line (6), the cursor MovieCursor is defined to return the set of the
lengths of the movies by studio s. Lines (7) and (8) declare two local vari
ables that we’ll need. Integer newLength holds the result of a FETCH, while
movieCount counts the number of movies by studio s. We need movieCount
so that, at the end, we can convert a sum of lengths into an average (mean) of
lengths and a sum of squares of the lengths into a variance.

The rest of the lines are the body of the procedure. We shall use mean
and v ariance as temporary variables, as well as for “returning” the results at
the end. In the major loop, mean actually holds the sum of the lengths, and
variance actually holds the sum of the squares of the lengths. Thus, lines
(9) through (11) initialize these variables and the count of the movies to 0.
Line (12) opens the cursor, and lines (13) through (19) form the loop labeled
movieLoop.

Line (14) performs a fetch, and at line (15) we check that another tuple was
found. If not, we leave the loop. Lines (16) through (18) accumulate values; we
add 1 to movieCount, add the length to mean (which, recall, is really computing
the sum of lengths), and we add the square of the length to variance.

When all movies by studio s have been seen, we leave the loop, and control
passes to line (20). At that line, we turn mean into its correct value by dividing
the sum of lengths by the count of movies. At line (21), we make variance
truly hold the variance by dividing the sum of squares of the lengths by the
number of movies and subtracting the square of the mean. See Exercise 9.4.4
for a discussion of why this calculation is correct. Line (22) closes the cursor,
and we are done. □

1) CREATE PROCEDURE MeanVar(
2) IN s CHAR(15),
3) OUT mean REAL,
4) OUT variance REAL

398 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

)
5) DECLARE Not_Found CONDITION FOR SQLSTATE ’02000’;
6) DECLARE MovieCursor CURSOR FOR

SELECT length FROM Movies WHERE studioName = s;
7) DECLARE newLength INTEGER;
8) DECLARE movieCount INTEGER;

BEGIN
9) SET mean = 0.0;
10) SET variance = 0.0;
11) SET movieCount = 0;
12) OPEN MovieCursor;
13) movieLoop: LOOP
14) FETCH FROM MovieCursor INTO newLength;
15) IF Not_Found THEN LEAVE movieLoop END IF;
16) SET movieCount = movieCount + 1;
17) SET mean = mean + newLength;
18) SET variance = variance + newLength * newLength;
19) END LOOP;
20) SET mean = mean/movieCount;
21) SET variance = variance/movieCount - mean * mean;
22) CLOSE MovieCursor;

END;

Figure 9.15: Computing the mean and variance of lengths of movies by one
studio

9.4.6 For-Loops
There is also in PSM a for-loop construct, but it is used only to iterate over a
cursor. The form of the statement is shown in Fig. 9.16. This statement not
only declares a cursor, but it handles for us a number of “grubby details” : the
opening and closing of the cursor, the fetching, and the checking whether there
are no more tuples to be fetched. However, since we are not fetching tuples for
ourselves, we can not specify the variable(s) into which component(s) of a tuple
are placed. Thus, the names used for the attributes in the result of the query
are also treated by PSM as local variables of the same type.

E xam ple 9.15 : Let us redo the procedure of Fig. 9.15 using a for-loop. The
code is shown in Fig. 9.17. Many things have not changed. The declaration
of the procedure in lines (1) through (4) of Fig. 9.17 are the same, as is the

9.4. STORED PROCEDURES 399

Other Loop Constructs

PSM also allows while- and repeat-loops, which have the expected mean
ing, as in C. That is, we can create a loop of the form

WHILE <condition> DO
<statement list>

END WHILE;

or a loop of the form

REPEAT
<statement list>

UNTIL <condition>
END REPEAT;

Incidentally, if we label these loops, or the loop formed by a loop-statement
or for-statement, then we can place the label as well after the END LOOP
or other ender. The advantage of doing so is that it makes clearer where
each loop ends, and it allows the PSM compiler to catch some syntactic
errors involving the omission of an END.

FOR <loop name> AS <cursor name> CURSOR FOR
<query>

DO
<statement list>

END FOR;

Figure 9.16: The PSM for-statement

declaration of local variable movieCount at line (5).
However, we no longer need to declare a cursor in the declaration portion of

the procedure, and we do not need to define the condition Not_Found. Lines (6)
through (8) initialize the variables, as before. Then, in line (9) we see the for-
loop, which also defines the cursor MovieCursor. Lines (11) through (13) are
the body of the loop. Notice that in lines (12) and (13), we refer to the length
retrieved via the cursor by the attribute name length , rather than by the local
variable name newLength, which does not exist in this version of the procedure.
Lines (15) and (16) compute the correct values for the output variables, exactly
as in the earlier version of this procedure. □

400 CHAPTER 9. SQL IN A SERVER ENVIRONM ENT

1) CREATE PROCEDURE MeanVar(
2) IN s CHAR(15),
3) OUT mean REAL,
4) OUT variance REAL

)
5) DECLARE movieCount INTEGER;

BEGIN
6) SET mean = 0.0;
7) SET variance = 0.0;
8) SET movieCount = 0;
9) FOR movieLoop AS MovieCursor CURSOR FOR

SELECT length FROM Movies WHERE studioName =
10) DO
11) SET movieCount = movieCount + 1;
12) SET mean = mean + length;
13) SET variance = variance + length * length;
14) END FOR;
15) SET mean = mean/movieCount;
16) SET variance = variance/movieCount - mean * mean

END;

Figure 9.17: Computing the mean and variance of lengths using a for-loop

9.4.7 Exceptions in PSM
A SQL system indicates error conditions by setting a nonzero sequence of digits
in the five-character string SQLSTATE. We have seen one example of these codes:
’02000’ for “no tuple found.” For another example, ’21000’ indicates that a
single-row select has returned more than one row.

PSM allows us to declare a piece of code, called an exception handler, that is
invoked whenever one of a list of these error codes appears in SQLSTATE during
the execution of a statement or list of statements. Each exception handler
is associated with a block of code, delineated by BEGIN.. .END. The handler
appears within this block, and it applies only to statements within the block.

The components of the handler are:

1. A list of exception conditions that invoke the handler when raised.

2. Code to be executed when one of the associated exceptions is raised.

3. An indication of where to go after the handler has finished its work.

The form of a handler declaration is:

DECLARE <where to go next> HANDLER FOR <condition list>
<statem ent>

9.4. STORED PROCEDURES 401

W hy Do We Need Names in For-Loops?

Notice that movieLoop and MovieCursor, although declared at line (9)
of Fig. 9.17, are never used in that procedure. Nonetheless, we have to
invent names, both for the for-loop itself and for the cursor over which it
iterates. The reason is that the PSM interpreter will translate the for-loop
into a conventional loop, much like the code of Fig. 9.15, and in this code,
there is a need for both names.

The choices for “where to go” are:

a) CONTINUE, which means that after executing the statement in the han
dler declaration, we execute the statement after the one that raised the
exception.

b) EXIT, which means that after executing the handler’s statement, control
leaves the BEGIN. . . END block in which the handler is declared. The state
ment after this block is executed next.

c) UNDO, which is the same as EXIT, except that any changes to the database
or local variables that were made by the statements of the block executed
so far are undone. That is, the block is a transaction, which is aborted
by the exception.

The “condition list” is a comma-separated list of conditions, which are either
declared conditions, like Not_Found in line (5) of Fig. 9.15, or expressions of the
form SQLSTATE and a five-character string.

E xam ple 9.16: Let us write a PSM function that takes a movie title as ar
gument and returns the year of the movie. If there is no movie of that title or
more than one movie of that title, then NULL must be returned. The code is
shown in Fig. 9.18.

Lines (2) and (3) declare symbolic conditions; we do not have to make these
definitions, and could as well have used the SQL states for which they stand in
line (4). Lines (4), (5), and (6) are a block, in which we first declare a handler
for the two conditions in which either zero tuples are returned, or more than
one tuple is returned. The action of the handler, on line (5), is simply to set
the return-value to NULL.

Line (6) is the statement that does the work of the function GetYear. It is
a SELECT statement that is expected to return exactly one integer, since that is
what the function GetYear returns. If there is exactly one movie with title t (the
input parameter of the function), then this value will be returned. However, if
an exception is raised at line (6), either because there is no movie with title t
or several movies with that title, then the handler is invoked, and NULL instead

402 CHAPTER 9. SQL IN A SERVER ENVIRONM ENT

1) CREATE FUNCTION G etY ear(t VARCHAR(255)) RETURNS INTEGER

2) DECLARE Not_Found CONDITION FOR SQLSTATE ’02000’ ;
3) DECLARE Too.Many CONDITION FOR SQLSTATE ’21000’ ;

BEGIN
4) DECLARE EXIT HANDLER FOR Not_Found, Too_Many
5) RETURN NULL;
6) RETURN (SELECT year FROM Movies WHERE t i t l e = t) ;

END;

Figure 9.18: Handling exceptions in which a single-row select returns other than
one tuple

becomes the return-value. Also, since the handler is an EXIT handler, control
next passes to the point after the END. Since that point is the end of the function,
GetYear returns at that time, with the return-value NULL. □

9.4.8 Using PSM Functions and Procedures
As we mentioned in Section 9.4.2, we can call a PSM procedure anywhere SQL
statements can appear, e.g., as embedded SQL, from PSM code itself, or from
SQL issued to the generic interface. We invoke a procedure by preceding it
by the keyword CALL. In addition, a PSM function can be used as part of an
expression, e.g., in a WHERE clause. Here is an example of how a function can
be used within an expression.

E xam ple 9 .17 : Suppose that our schema includes a module with the function
GetYear of Fig. 9.18. Imagine that we are sitting at the generic interface, and
we want to enter the fact that Denzel Washington was a star of Remember the
Titans. However, we forget the year in which that movie was made. As long
as there was only one movie of that name, and it is in the Movies relation, we
don’t have to look it up in a preliminary query. Rather, we can issue to the
generic SQL interface the following insertion:

INSERT INTO S ta rs in (m o v ieT itle , movieYear, starName)
VALUES(’Remember th e T ita n s ’ , GetYear(’Remember th e T ita n s ’) ,

’Denzel W ashington’) ;

Since GetYear returns NULL if there is not a unique movie by the name of
Remember the Titans, it is possible that this insertion will have NULL in the
middle component. □

9.4.9 Exercises for Section 9.4
E xercise 9 .4 .1 : Using our running movie database:

9.4. STORED PROCEDURES 403

Movies(title, year, length, genre, studioName, producerC#)
Starsln(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

write PSM procedures or functions to perform the following tasks:

a) Given the name of a movie studio, produce the net worth of its president.

b) Given a name and address, return 1 if the person is a movie star but not
an executive, 2 if the person is an executive but not a star, 3 if both, and
4 if neither.

! c) Given a studio name, assign to output parameters the titles of the two
longest movies by that studio. Assign NULL to one or both parameters if
there is no such movie (e.g., if there is only one movie by a studio, there
is no “second-longest”).

! d) Given a star name, find the earliest (lowest year) movie of more than 120
minutes length in which they appeared. If there is no such movie, return
the year 0.

e) Given an address, find the name of the unique star with that address if
there is exactly one, and return NULL if there is none or more than one.

f) Given the name of a star, delete them from MovieStar and delete all their
movies from S ta rs ln and Movies.

Exercise 9 .4 .2 : Write the following PSM functions or procedures, based on
the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1.

a) Take a price as argument and return the model number of the PC whose
price is closest.

b) Take a maker and model as arguments, and return the price of whatever
type of product that model is.

! c) Take model, speed, ram, hard-disk, and price information as arguments,
and insert this information into the relation PC. However, if there is al
ready a PC with that model number (tell by assuming that violation of
a key constraint on insertion will raise an exception with SQLSTATE equal
to ’23000’), then keep adding 1 to the model number until you find a
model number that is not already a PC model number.

404 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

! d) Given a price, produce the number of PC ’s, the number of laptops, and
the number of printers selling for more than that price.

E xercise 9 .4 .3 : Write the following PSM functions or procedures, based on
the database schema

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3.

a) The firepower of a ship is roughly proportional to the number of guns
times the cube of the bore. Given a class, find its firepower.

! b) Given the name of a battle, produce the two countries whose ships were
involved in the battle. If there are more or fewer than two countries
involved, produce NULL for both countries.

c) Take as arguments a new class name, type, country, number of guns, bore,
and displacement. Add this information to C lasses and also add the ship
with the class name to Ships.

! d) Given a ship name, determine if the ship was in a battle with a date before
the ship was launched. If so, set the date of the battle and the date the
ship was launched to 0.

E xercise 9 .4 .4 : In Fig. 9.15, we used a tricky formula for computing the
variance of a sequence of numbers x \ , x 2, . .. ,x n. Recall that the variance is
the average square of the deviation of these numbers from their mean. That is,
the variance is — x)2)/n , where the mean x is (5ZILi x i)/n . Prove
that the formula for the variance used in Fig. 9.15, which is

(Y,(xi)2) / n - (CjTxi)lnf
i=l i=1

yields the same value.

9.5 Using a Call-Level Interface
When using a call-level interface (CLI), we write ordinary host-language code,
and we use a library of functions that allow us to connect to and access a
database, passing SQL statements to that database. The differences between
this approach and embedded SQL programming are, in one sense, cosmetic,
since the preprocessor replaces embedded SQL by calls to library functions
much like the functions in the standard SQL/CLI.

9.5. USING A CALL-LEVEL INTERFACE 405

We shall give three examples of call-level interfaces. In this section, we
cover the standard SQL/CLI, which is an adaptation of ODBC (Open Database
Connectivity). We cover JDBC, which is a collection of classes that support
database access from Java programs. Then, we explore PHP, which is a way to
embed database access in Web pages described by HTML.

9.5.1 Introduction to SQL/CLI
A program written in C and using SQL/CLI (hereafter, just CLI) will include
the header file s q lc l i .h , from which it gets a large number of functions, type
definitions, structures, and symbolic constants. The program is then able to
create and deal with four kinds of records (structs, in C):

1. Environments. A record of this type is created by the application (client)
program in preparation for one or more connections to the database server.

2. Connections. One of these records is created to connect the application
program to the database. Each connection exists within some environ
ment.

3. Statements. An application program can create one or more statement
records. Each holds information about a single SQL statement, including
an implied cursor if the statement is a query. At different times, the
same CLI statement can represent different SQL statements. Every CLI
statement exists within some connection.

4. Descriptions. These records hold information about either tuples or pa
rameters. The application program or the database server, as appropriate,
sets components of description records to indicate the names and types of
attributes and/or their values. Each statement has several of these created
implicitly, and the user can create more if needed. In our presentation of
CLI, description records will generally be invisible.

Each of these records is represented in the application program by a handle,
which is a pointer to the record. The header file s q l c l i . h provides types for the
handles of environments, connections, statements, and descriptions: SQLHENV,
SQLHDBC, SQLHSTMT, and SQLHDESC, respectively, although we may think of them
as pointers or integers. We shall use these types and also some other defined
types with obvious interpretations, such as SQL_CHAR and SQL_INTEGER, that
are provided in s q lc l i .h .

We shall not go into detail about how descriptions are set and used. How
ever, (handles for) the other three types of records are created by the use of a
function

SQLAllocHandle(ft7fype, hln, hOut)

Here, the three arguments are:

406 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

1. hType is the type of handle desired. Use SQL_HANDLE_ENV for a new envi
ronment, SQL_HANDLEJDBC for a new connection, or SQL-HANDLE-STMT for
a new statement.

2. hln is the handle of the higher-level element in which the newly allocated
element lives. This parameter is SQL JJULL-HANDLE if you want an envi
ronment; the latter name is a defined constant telling SQLAllocHandle
that there is no relevant value here. If you want a connection handle,
then hln is the handle of the environment within which the connection
will exist, and if you want a statement handle, then hln is the handle of
the connection within which the statement will exist.

3. hOut is the address of the handle that is created by SQLAllocHandle.

SQLAllocHandle also returns a value of type SQLRETURN (an integer). This
value is 0 if no errors occurred, and there are certain nonzero values returned
in the case of errors.

E xam ple 9 .18: Let us see how the function worthRanges of Fig. 9.8, which we
used as an example of embedded SQL, would begin in CLI. Recall this function
examines all the tuples of MovieExec and breaks their net worths into ranges.
The initial steps are shown in Fig. 9.19.

1) # include s q lc l i .h
2) SQLHENV myEnv;
3) SQLHDBC myCon;
4) SQLHSTMT ex e cS ta t;
5) SQLRETURN erro rC odel, errorCode2, errorCode3;

6) errorC odel = SQLAllocHandle(SQL_HANDLE_ENV,
SQL_NULL_HANDLE, ftmyEnv);

7) i f (! errorC odel) {
8) errorCode2 = SQLAllocHandle(SQL_HANDLE_DBC,

myEnv, fanyCon);
9) i f (! errorCode2)

10) errorCode3 = SQLAllocHandle(SQL_HANDLE_STMT,
myCon, ftex ecS ta t); }

Figure 9.19: Declaring and creating an environment, a connection, and a state
ment

Lines (2) through (4) declare handles for an environment, connection, and
statement, respectively; their names are myEnv, myCon, and execS tat, respec
tively. We plan that execS tat will represent the SQL statement

SELECT netWorth FROM MovieExec;

9.5. USING A CALL-LEVEL INTERFACE 407

much as did the cursor execCursor in Fig. 9.8, but as yet there is no SQL
statement associated with execStat. Line (5) declares three variables into
which function calls can place their response and indicate an error. A value of
0 indicates no error occurred in the call.

Line (6) calls SQLAllocHandle, asking for an environment handle (the first
argument), providing a null handle in the second argument (because none is
needed when we are requesting an environment handle), and providing the
address of myEnv as the third argument; the generated handle will be placed
there. If line (6) is successful, lines (7) and (8) use the environment handle to
get a connection handle in myCon. Assuming that call is also successful, lines
(9) and (10) get a statement handle for execStat. □

9.5.2 Processing Statements
At the end of Fig. 9.19, a statement record whose handle is execStat, has been
created. However, there is as yet no SQL statement with which that record
is associated. The process of associating and executing SQL statements with
statement handles is analogous to the dynamic SQL described in Section 9.3.9.
There, we associated the text of a SQL statement with what we called a “SQL
variable,” using PREPARE, and then executed it using EXECUTE.

The situation in CLI is quite analogous, if we think of the “SQL variable”
as a statement handle. There is a function

SQLPrepare (,s/i, st, si)

that takes:

1. A statement handle sh,

2. A pointer to a SQL statement st, and

3. A length si for the character string pointed to by st. If we don’t know the
length, a defined constant SQLJJTS tells SQLPrepare to figure it out from
the string itself. Presumably, the string is a “null-terminated string,” and
it is sufficient for SQLPrepare to scan it until encountering the endmarker
’\0\

The effect of this function is to arrange that the statement referred to by the
handle sh now represents the particular SQL statement st.

Another function

SQLExecute(sh)

causes the statement to which handle sh refers to be executed. For many forms
of SQL statement, such as insertions or deletions, the effect of executing this
statement on the database is obvious. Less obvious is what happens when the
SQL statement referred to by sh is a query. As we shall see in Section 9.5.3,

408 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

there is an implicit cursor for this statement that is part of the statement record
itself. The statement is in principle executed, so we can imagine that all the
answer tuples are sitting somewhere, ready to be accessed. We can fetch tuples
one at a time, using the implicit cursor, much as we did with real cursors in
Sections 9.3 and 9.4.

E xam ple 9 .19 : Let us continue with the function worthRanges that we began
in Fig. 9.19. The following two function calls associate the query

SELECT netWorth FROM MovieExec;

with the statement referred to by handle execS tat:

11) SQ LPrepare(execStat, "SELECT netWorth FROM MovieExec",
SQL.NTS);

12) SQ LExecute(execStat);

These lines could appear right after line (10) of Fig. 9.19. Remember that
SQLJITS tells SQLPrepare to determine the length of the null-terminated string
to which its second argument refers. □

As with dynamic SQL, the prepare and execute steps can be combined into
one if we use the function SQLExecDirect. An example that combines lines
(11) and (12) above is:

SQLExecDirect(execStat, "SELECT netWorth FROM MovieExec",
SQL.NTS);

9.5.3 Fetching Data From a Query Result
The function that corresponds to a FETCH command in embedded SQL or PSM
is

SQLFetch(s/()

where sh is a statement handle. We presume the statement referred to by sh
has been executed already, or the fetch will cause an error. SQLFetch, like all
CLI functions, returns a value of type SQLRETURN that indicates either success
or an error. The return value SQL_N0_DATA tells us tuples were left in the query
result. As in our previous examples of fetching, this value will be used to get
us out of a loop in which we repeatedly fetch new tuples from the result.

However, if we follow the SQLExecute of Example 9.19 by one or more
SQLFetch calls, where does the tuple appear? The answer is that its components
go into one of the description records associated with the statement whose
handle appears in the SQLFetch call. We can extract the same component at
each fetch by binding the component to a host-language variable, before we
begin fetching. The function that does this job is:

9.5. USING A CALL-LEVEL INTERFACE 409

SQLBindCol(sft, colNo, colType, pVar, varSize, varlnfo)

The meanings of these six arguments are:

1. sh is the handle of the statement involved.

2. colNo is the number of the component (within the tuple) whose value we
obtain.

3. colType is a code for the type of the variable into which the value of the
component is to be placed. Examples of codes provided by s q l c l i .h are
SQL.CHAR for character arrays and strings, and SQL.INTEGER for integers.

4. p Var is a pointer to the variable into which the value is to be placed.

5. varSize is the length in bytes of the value of the variable pointed to by
pVar.

6. varlnfo is a pointer to an integer that can be used by SQLBindCol to
provide additional information about the value produced.

E xam ple 9 .20: Let us redo the entire function worthRanges from Fig. 9.8,
using CLI calls instead of embedded SQL. We begin as in Fig. 9.19, but for
the sake of succinctness, we skip all error checking except for the test whether
SQLFetch indicates that no more tuples are present. The code is shown in
Fig. 9.20.

Line (3) declares the same local variables that the embedded-SQL version
of the function uses, and lines (4) through (7) declare additional local variables
using the types provided in s q lc l i .h ; these are variables that involve SQL in
some way. Lines (4) through (6) are as in Fig. 9.19. New are the declarations
on line (7) of worth (which corresponds to the shared variable of that name in
Fig. 9.8) and w orthlnfo , which is required by SQLBindCol, but not used.

Lines (8) through (10) allocate the needed handles, as in Fig. 9.19, and
lines (11) and (12) prepare and execute the SQL statement, as discussed in
Example 9.19. In line (13), we see the binding of the first (and only) column of
the result of this query to the variable worth. The first argument is the handle
for the statement involved, and the second argument is the column involved,
1 in this case. The third argument is the type of the column, and the fourth
argument is a pointer to the place where the value will be placed: the variable
worth. The fifth argument is the size of that variable, and the final argument
points to w orth lnfo , a place for SQLBindCol to put additional information
(which we do not use here).

The balance of the function resembles closely lines (11) through (19) of
Fig. 9.8. The while-loop begins at line (14) of Fig. 9.20. Notice that we fetch
a tuple and check that we are not out of tuples, all within the condition of the
while-loop, on line (14). If there is a tuple, then in lines (15) through (17) we
determine the number of digits the integer (which is bound to worth) has and
increment the appropriate count. After the loop finishes, i.e., all tuples returned

410 CHAPTER 9. SQL IN A SERVER ENVIRONM ENT

1) #include sqlcli.h
2) void worthRangesO {

int i, digits, counts[15];
SQLHENV myEnv;
SQLHDBC myCon;
SQLHSTMT execStat;
SQLINTEGER worth, worthlnfo;

SQLAllocHandle(SQL_HANDLE_ENV,
SQL_NULL_HANDLE, tonyEnv);

SQLAllocHandle(SQL_HANDLE_DBC, myEnv, &myCon);
SQLAllocHandle(SQL_HANDLE_STMT, myCon, ftexecStat);
SQLPrepare(execStat,

"SELECT netWorth FROM MovieExec", SQL_NTS);
SQLExecute(execStat);
SQLBindCol(execStat, 1, SQL_INTEGER, &worth,

sizeof(worth), ftworthlnfo);
while(SQLFetch(execStat) != SQL_N0_DATA) {

digits = 1;
while((worth /= 10) > 0) digits++;
if(digits <= 14) counts[digits]++;

>
for(i=0; i<15; i++)

printf ("digits = */,d: number of execs = */.d\n",
i, counts[i]);

Figure 9.20: Grouping executive net worths: CLI version

by the statement execution of line (12) have been examined, the resulting counts
are printed out at lines (18) and (19). □

9.5.4 Passing Parameters to Queries
Embedded SQL gives us the ability to execute a SQL statement, part of which
consists of values determined by the current contents of shared variables. There
is a similar capability in CLI, but it is rather more complicated. The steps
needed are:

1. Use SQLPrepare to prepare a statement in which some portions, called
parameters, are replaced by a question-mark. The ith question-mark rep
resents the ith parameter.

3)
4)
5)
6)
7)

8)

9)
10)
11)

12)
13)

14)
15)
16)
17)

18)
19)

9.5. USING A CALL-LEVEL INTERFACE 411

Extracting Components with SQLGetData

An alternative to binding a program variable to an output of a query’s
result relation is to fetch tuples without any binding and then trans
fer components to program variables as needed. The function to use is
SQLGetData, and it takes the same arguments as SQLBindCol. However,
it only copies data once, and it must be used after each fetch in order to
have the same effect as initially binding the column to a variable.

2. Use function SQLBindParameter to bind values to the places where the
question-marks are found. This function has ten arguments, of which we
shall explain only the essentials.

3. Execute the query with these bindings, by calling SQLExecute. Note
that if we change the values of one or more parameters, we need to call
SQLExecute again.

The following example will illustrate the process, as well as indicate the impor
tant arguments needed by SQLBindParameter.

E xam ple 9.21: Let us reconsider the embedded SQL code of Fig. 9.6, where
we obtained values for two variables studioName and studioAddr and used
them as the components of a tuple, which we inserted into Studio. Figure 9.21
sketches how this process would work in CLI. It assumes that we have a state
ment handle myStat to use for the insertion statement.

/* get values for studioName and studioAddr */

1) SQLPrepare(myStat,
"INSERT INTO Studio(name, address) VALUESC?, ?)",
SQL.NTS);

2) SQLBindParameter(myStat, 1,..., studioName,...);
3) SQLBindParameter(myStat, 2,..., studioAddr,...);
4) SQLExecute(myStat);

Figure 9.21: Inserting a new studio by binding parameters to values

The code begins with steps (not shown) to give studioName and studioAddr
values. Line (1) shows statement myStat being prepared to be an insertion
statement with two parameters (the question-marks) in the VALUE clause. Then,
lines (2) and (3) bind the first and second question-marks, to the current con
tents of studioName and studioAddr, respectively. Finally, line (4) executes
the insertion. If the entire sequence of steps in Fig. 9.21, including the un
seen work to obtain new values for studioName and studioAddr, are placed

412 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

in a loop, then each time around the loop, a new tuple, with a new name and
address for a studio, is inserted into S tudio. □

9.5.5 Exercises for Section 9.5
Exercise 9 .5 .1 : Repeat the problems of Exercise 9.3.1, but write the code in
C with CLI calls.

Exercise 9 .5 .2 : Repeat the problems of Exercise 9.3.2, but write the code in
C with CLI calls.

9.6 JDBC
Java Database Connectivity, or JDBC, is a facility similar to CLI for allowing
Java programs to access SQL databases. The concepts resemble those of CLI,
although Java’s object-oriented flavor is evident in JDBC.

9.6.1 Introduction to JDBC
The first steps we must take to use JDBC are:

1. include the line:

import ja v a .s q l .* ;

to make the JDBC classes available to your Java program.

2. Load a “driver” for the database system we shall use. The driver we need
depends on which DBMS is available to us, but we load the needed driver
with the statement:

Class.forNam e(<driver name>) ;

For example, to get the driver for a MySQL database, execute:

Class.forName("com.mysql.j dbc.Driver");

The effect is that a class called DriverManager is available. This class is
analogous in many ways to the environment whose handle we get as the
first step in using CLI.

3. Establish a connection to the database. A variable of class Connection is
created if we apply the method getC onnection to DriverManager.

The Java statement to establish a connection looks like:

9.6. JDBC 413

Connection myCon = D riverM anager.getConnection(<URL>,
<user nam e>, <passw ord>);

That is, the method g e t Connect ion. takes as arguments the URL for the
database to which you wish to connect, your user name, and your password. It
returns an object of class Connection, which we have chosen to call myCon.

E xam ple 9.22: Each DBMS has its own way of specifying the URL in the
getConnection method. For instance, if you want to connect to a MySQL
database, the form of the URL is

jdbc:m ysql: / /< h o s t nam e>/<database name>

□

A JDBC Connection object is quite analogous to a CLI connection, and it
serves the same purpose. By applying the appropriate methods to a Connection
like myCon, we can create statement objects, place SQL statements “in” those
objects, bind values to SQL statement parameters, execute the SQL statements,
and examine results a tuple at a time.

9.6.2 Creating Statements in JDBC
There are two methods we can apply to a Connection object in order to create
statements:

1. createS tatem en tO returns a Statement object. This object has no
associated SQL statement yet, so method createS tatem en tO may be
thought of as analogous to the CLI call to SQLAllocHandle that takes a
connection handle and returns a statement handle.

2. prepareS tatem ent(Q), where Q is a SQL query passed as a string ar
gument, returns a PreparedStatement object. Thus, we may draw an
analogy between executing prepareStatem ent (Q) in JDBC with the two
CLI steps in which we get a statement handle with SQLAllocHandle and
then apply SQLPrepare to that handle and the query Q.

There are four different methods that execute SQL statements. Like the
methods above, they differ in whether or not they take a SQL statement as an
argument. However, these methods also distinguish between SQL statements
that are queries and other statements, which are collectively called “updates.”
Note that the SQL UPDATE statement is only one small example of what JDBC
terms an “update.” The latter include all modification statements, such as
inserts, and all schema-related statements such as CREATE TABLE. The four
“execute” methods are:

414 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

a) executeQueryCQ) takes a statement Q, which must be a query, and is
applied to a Statement object. This method returns a ResultSet object,
which is the set (bag, to be precise) of tuples produced by the query Q.
We shall see how to access these tuples in Section 9.6.3.

b) executeQueryO is applied to a PreparedStatement object. Since a pre
pared statement already has an associated query, there is no argument.
This method also returns a ResultSet object.

c) executeUpdate (U) takes a nonquery statement U and, when applied to
a Statement object, executes U. The effect is felt on the database only;
no ResultSet object is returned.

d) executeUpdate(), with no argument, is applied to a PreparedStatement
object. In that case, the SQL statement associated with the prepared
statement is executed. This SQL statement must not be a query, of
course.

E xam ple 9 .23: Suppose we have a Connection object myCon, and we wish to
execute the query

SELECT netWorth FROM MovieExec;

One way to do so is to create a Statement object execStat, and then use it to
execute the query directly.

Statement execStat = myCon.createStatementO;
ResultSet worths = execStat.executeQuery(

"SELECT netWorth FROM MovieExec");

The result of the query is a ResultSet object, which we have named worths.
We’ll see in Section 9.6.3 how to extract the tuples from worths and process
them.

An alternative is to prepare the query immediately and later execute it.
This approach would be preferable should we want to execute the same query
repeatedly. Then, it makes sense to prepare it once and execute it many times,
rather than having the DBMS prepare the same query many times. The JDBC
steps needed to follow this approach are:

PreparedStatement execStat = myCon.prepareStatement(
"SELECT netWorth FROM MovieExec");

ResultSet worths = execStat.executeQuery();

The result of executing the query is again a ResultSet object, which we have
called worths. □

9.6. JDBC 415

E xam ple 9 .24: If we want to execute a parameterless nonquery, we can per
form analogous steps in both styles. There is no result set, however. For
instance, suppose we want to insert into S ta rs ln the fact that Denzel Wash
ington starred in Remember the Titans in the year 2000. We may create and
use a statement s ta rS ta t in either of the following ways:

Statem ent s ta rS ta t = m yCon.createStatem ent() ;
s t a r S t a t . executeUpdate("INSERT INTO S ta rs ln VALUES(" +

" ’Remember th e T ita n s ’ , 2000, ’Denzel Washington’) ") ;

or

PreparedStatem ent s ta rS ta t = myCon.prepareStatement(
"INSERT INTO S ta rs ln VALUES(’Remember th e T ita n s ’ ," +
"2000, ’Denzel Washington’) ") ;

s ta rS ta t.e x ecu te U p d a teO ;

Notice that each of these sequences of Java statements takes advantage of the
fact that + is the Java operator that concatenates strings. Thus, we are able
to extend SQL statements over several lines of Java, as needed. □

9.6.3 Cursor Operations in JDBC
When we execute a query and obtain a result-set object, we may, in effect, run
a cursor through the tuples of the result set. To do so, the R esu ltSe t class
provides the following useful methods:

1. n e x t() , when applied to a ResultSet object, causes an implicit cursor to
move to the next tuple (to the first tuple the first time it is applied). This
method returns FALSE if there is no next tuple.

2. g e tS tr in g (i) , g e t l n t (0 , g e tF lo a t(i) , and analogous methods for the
other types that SQL values can take, each return the *th component of
the tuple currently indicated by the cursor. The method appropriate to
the type of the *th component must be used.

E xam ple 9.25: Having obtained the result set worths as in Example 9.23,
we may access its tuples one at a time. Recall that these tuples have only one
component, of type integer. The form of the loop is:

w h ile (w o rth s .n ex t()) {
in t worth = w o r th s .g e tIn t(1);
/* process th i s n e t worth * /

>;

□

416 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

9.6.4 Parameter Passing
As in CLI, we can use a question-mark in place of a portion of a query, and then
bind values to those parameters. To do so in JDBC, we need to create a prepared
statement, and we need to apply to that PreparedStatement object methods
such as s e tS t r in g (i , v) or s e t In t (i , v) that bind the value v, which must
be of the appropriate type for the method, to the *th parameter in the query.

E xam ple 9 .26 : Let us mimic the CLI code in Example 9.21, where we pre
pared a statement to insert a new studio into relation S tudio, with parameters
for the name and address of that studio. The Java code to prepare this state
ment, set its parameters, and execute it is shown in Fig. 9.22. We continue to
assume that connection object myCon is available to us.

1) P reparedStatem ent s tu d io S ta t = m yCon.prepareStatem ent(
2) "INSERT INTO Studio(nam e, address) VALUESC?, ?) ") ;

/* g e t va lu es f o r v a r ia b le s studioName and studioAddr
from th e u se r * /

3) s tu d io S ta t .s e tS t r in g (l , studioName);
4) s tu d io S ta t . s e tS tr in g (2 , studioA ddr);
5) s tu d io S ta t . executeU pdate() ;

Figure 9.22: Setting and using parameters in JDBC

In lines (1) and (2), we create and prepare the insertion statement. It has
parameters for each of the values to be inserted. After line (2), we could begin
a loop in which we repeatedly ask the user for a studio name and address,
and place these strings in the variables studioName and studioAddr. This
assignment is not shown, but represented by a comment. Lines (3) and (4) set
the first and second parameters to the strings that are the current values of
studioName and studioAddr, respectively. Finally, at line (5), we execute the
insertion statement with the current values of its parameters. After line (5), we
could go around the loop again, beginning with the steps represented by the
comment. □

9.6.5 Exercises for Section 9.6
E xercise 9 .6 .1 : Repeat Exercise 9.3.1, but write the code in Java using JDBC.

E xercise 9 .6 .2 : Repeat Exercise 9.3.2, but write the code in Java using JDBC.

9.7 PH P
PHP is a scripting language for helping to create HTML Web pages. It provides
support for database operations through an available library, much as JDBC

9.7. PHP 417

W hat Does PH P Stand For?

Originally, PHP was an acronym for “Personal Home Page.” More re
cently, it is said to be the recursive acronym “PHP: Hypertext Preproces
sor” in the spirit of other recursive acronyms such as GNU (= “GNU is
Not Unix”).

does. In this section we shall give a brief overview of PHP and show how
database operations are performed in this language.

9.7.1 PH P Basics
All PHP code is intended to exist inside HTML text. A browser will recognize
that text is PHP code by placing it inside a special tag, which looks like:

<?php
PHP code goes here

?>

Many aspects of PHP, such as assignment statements, branches, and loops,
will be familiar to the C or Java programmer, and we shall not cover them
explicitly. However, there are some interesting features of PHP of which we
should be aware.

V ariables

Variables are untyped and need not be declared. All variable names begin with
$.

Often, a variable will be declared to be a member of a “class,” in which
case certain functions (analogous to methods in Java) may be applied to that
variable. The function-application operator is ->, comparable to the dot in
Java or C-l—1-.

S trings

String values in PHP can be surrounded by either single or double quotes, but
there is an important difference. Strings surrounded by single quotes are treated
literally, just like SQL strings. However, when a string has double quotes around
it, any variable names within the string are replaced by their values.

E xam ple 9 .27: In the following code:

$foo = ’b a r ’ ;
$x = ’Step up to th e $foo’ ;

418 CHAPTER 9. SQL IN A SERVER ENVIRONM ENT

the value of $x is Step up to th e $foo. However, if the following code is
executed instead:

$foo = "bar";
$x = "Step up to th e $foo";

the value of $x is Step up to th e bar. It doesn’t m atter whether b ar has
single or double quotes, since it contains no dollar-signs and therefore no vari
ables. However, the variable $f oo is replaced only when surrounded by double
quotes, as in the second example. □

Concatenation of strings is denoted by a dot. Thus,

$y = "$foo" . ’b a r ’ ;

gives $y the value barbar.

9.7.2 Arrays

PHP has ordinary arrays (called numeric), which are indexed 0 ,1 ,. . . . It also
has arrays that are really mappings, called associative arrays. The indexes
(keys) of an associative array can be any strings, and the array associates a
single value with each key. Both kinds of arrays use the conventional square
brackets for indexing, but for associative arrays, an array element is represented
by:

<key> => <value>

E xam ple 9 .28 : The following line:

$a = a r r a y (3 0 ,2 0 ,1 0 ,0);

sets $a to be a numeric array of length four, with $a[0] equal to 30, $ a [l]
equal to 20, and so on. □

E xam ple 9 .29: The following line:

$seasons = a r r a y (’s p r in g ’ => ’warm’ , ’ summer’ => ’h o t ’ ,
’f a l l ’ => ’warm’ , ’w in te r’ => ’c o ld ’) ;

makes $seasons be an array of length four, but it is an associative array. For
instance, $seasons[’summer’] has the value ’h o t ’ . □

9.7. PHP 419

9.7.3 The PEAR DB Library
PHP has a collection of libraries called PEAR (PHP Extension and Application
Repository). One of these libraries, DB, has generic functions that are analo
gous to the methods of JDBC. We tell the function DB:: connect which vendor’s
DBMS we wish to access, but none of the other functions of DB need to know
about which DBMS we are using. Note that the double colon in DB:: connect
is PH P’s way of saying “the function connect in the DB library.” We make the
DB library available to our PHP program with the statement:

include(D B.php);

9.7.4 Creating a Database Connection Using DB
The form of an invocation of the connect function is:

$myCon = DB:: connect (< vendor> : / / Cuser nam e>: <password>
<host nam e>/<database n am e>);

The components of this call are like those in the analogous JDBC statement
that creates a connection (see Section 9.6.1). The one exception is the vendor,
which is a code used by the DB library. For example, m ysqli is the code for
recent versions of the MySQL database.

After executing this statement, the variable $myCon is a connection. Like all
PHP variables, $myCon can change its type. But as long as it is a connection, we
may apply to it a number of useful functions that enable us to manipulate the
database to which the connection was made. For example, we can disconnect
from the database by

$myCon->disconnect();

Remember that -> is the PHP way of applying a function to an “object.”

9.7.5 Executing SQL Statements
All SQL statements are referred to as “queries” and are executed by the func
tion query, which takes the statement as an argument and is applied to the
connection variable.

E xam ple 9 .30: Let us duplicate the insertion statement of Example 9.24,
where we inserted Denzel Washington and Remember the Titans into the S ta rs
ln table. Assuming that $myCon has connected to our movie database, We can
simply say:

$ re s u lt = $myCon->query("INSERT INTO S ta rs ln VALUES(" .
" ’Denzel Washington’ , 2000, ’Remember th e T ita n s ’) ") ;

420 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

Note that the dot concatenates the two strings that form the query. We only
broke the query into two strings because it was necessary to break it over two
lines.

The variable $ re s u lt will hold an error code if the insert-statement failed
to execute. If the “query” were really a SQL query, then $ re s u lt is a cursor
to the tuples of the result (see Section 9.7.6). □

PHP allows SQL to have parameters, denoted by question-marks, as we
shall discuss in Section 9.7.7. However, the ability to expand variables in doubly
quoted strings gives us another easy way to execute SQL statements that depend
on user input. In particular, since PHP is used within Web pages, there are
built-in ways to exploit HTML’s capabilities.

We often get information from a user of a Web page by showing them a form
and having their answers “posted.” PHP provides an associative array called
$_P0ST with all the information provided by the user. Its keys are the names
of the form elements, and the associated values are what the user has entered
into the form.

E xam ple 9 .31: Suppose we ask the user to fill out a form whose elements are
t i t l e , year, and starName. These three values will form a tuple that we may
insert into the table S ta rs ln . The statement:

$ re s u lt = $myCon->query("INSERT INTO S ta rs ln VALUES(
$_P 0ST [> title>], $_P0ST[’y e a r’] , $_P0ST[’starName’]) ") ;

will obtain the posted values for these three form elements. Since the query
argument is a double-quoted string, PHP evaluates terms like $-POST [’t i t l e ’]
and replaces them by their values. □

9.7.6 Cursor Operations in PH P
When the query function gets a true query as argument, it returns a result
object, that is, a list of tuples. Each tuple is a numeric array, indexed by
integers starting at 0. The essential function that we can apply to a result
object is letchRowO, which returns the next row, or 0 (false) if there is no
next row.

1) $worths = $myCon->query("SELECT netWorth FROM MovieExec");
2) w hile ($ tup le = $worths->fetchRow()) {
3) $worth = $ tu p le [0];

/ / p rocess th i s value of $worth
}

Figure 9.23: Finding and processing net worths in PHP

9.7. PHP 421

E xam ple 9.32: In Fig. 9.23 is PHP code that is the equivalent of the JDBC
in Examples 9.23 and 9.25. It assumes that connection $myCon is available, as
before.

Line (1) passes the query to the connection $myCon, and the result object is
assigned to the variable $worths. We then enter a loop, in which we repeatedly
get a tuple from the result and assign this tuple to the variable $ tuple, which
technically becomes an array of length 1, with only a component for the column
netWorth. As in C, the value returned by fetchRowO becomes the value of
the condition in the while-statement. Thus, if no tuple is found, this value,
0, terminates the loop. At line (3), the value of the tuple’s first (and only)
component is extracted and assigned to the variable $worth. We do not show
the processing of this value. □

9.7.7 Dynamic SQL in PH P

As in JDBC, PHP allows a SQL query to contain question-marks. These
question-marks are placeholders for values that can be filled in later, during
the execution of the statement. The process of doing so is as follows.

We may apply p repare and execute functions to a connection; these func
tions are analogous to similarly named functions discussed in Section 9.3.9 and
elsewhere. Function p repare takes a SQL statement as argument and returns
a prepared version of that statement. Function execute takes two arguments:
the prepared statement and an array of values to substitute for the question-
marks in the statement. If there is only one question-mark, a simple variable,
rather than an array, suffices.

E xam ple 9 .33 : Let us again look at the problem of Example 9.26, where we
prepared to insert many name-address pairs into relation Studio. To begin, we
prepare the query, with parameters, by:

$prepQuery = $myCon->prepare("INSERT INTO Studio(name, " .
"address) VALUES(? ,?) ") ;

Now, $prepQuery is a “prepared query.” We can use it as an argument to
execute along with an array of two values, a studio name and address. For
example, we could perform the following statements:

$args = a r r a y (’MGM’ , ’Los A ngeles’);
$ re s u lt = $myCon->execute($prepQuery, $ a rg s) ;

The advantage of this arrangement is the same as for all implementations of
dynamic SQL. If we insert many different tuples this way, we only have to
prepare the insertion statement once and can execute it many times. □

422 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

9.7.8 Exercises for Section 9.7
E xercise 9 .7 .1 : Repeat Exercise 9.3.1, but write the code using PHP.

Exercise 9 .7 .2 : Repeat Exercise 9.3.2, but write the code using PHP.

Exercise 9 .7 .3 : In Example 9.31 we exploited the feature of PHP that strings
in double-quotes have variables expanded. How essential is this feature? Could
we have done something analogous in JDBC? If so, how?

9.8 Summary of Chapter 9
♦ Three-Tier Architectures: Large database installations that support large-

scale user interactions over the Web commonly use three tiers of processes:
web servers, application servers, and database servers. There can be many
processes active at each tier, and these processes can be at one processor
or distributed over many processors.

♦ Client-Server Systems in the SQL Standard: The standard talks of SQL
clients connecting to SQL servers, creating a connection (link between the
two processes) and a session (sequence of operations). The code executed
during the session comes from a module, and the execution of the module
is called a SQL agent.

♦ The Database Environment: An installation using a SQL DBMS creates
a SQL environment. Within the environment, database elements such as
relations are grouped into (database) schemas, catalogs, and clusters. A
catalog is a collection of schemas, and a cluster is the largest collection of
elements that one user may see.

♦ Impedance Mismatch: The data model of SQL is quite different from the
data models of conventional host languages. Thus, information passes
between SQL and the host language through shared variables that can
represent components of tuples in the SQL portion of the program.

♦ Embedded SQL: Instead of using a generic query interface to express SQL
queries and modifications, it is often more effective to write programs
that embed SQL queries in a conventional host language. A preprocessor
converts the embedded SQL statements into suitable function calls of the
host language.

♦ Cursors: A cursor is a SQL variable that indicates one of the tuples of
a relation. Connection between the host language and SQL is facilitated
by having the cursor range over each tuple of the relation, while the
components of the current tuple are retrieved into shared variables and
processed using the host language.

9.9. REFERENCES FOR CHAPTER 9 423

♦ Dynamic SQL: Instead of embedding particular SQL statements in a host-
language program, the host program may create character strings that are
interpreted by the SQL system as SQL statements and executed.

♦ Persistent Stored Modules: We may create collections of procedures and
functions as part of a database schema. These are written in a special
language that has all the familiar control primitives, as well as SQL state
ments.

♦ The Call-Level Interface: There is a standard library of functions, called
SQL/CLI or ODBC, that can be linked into any C program. These func
tions give capabilities similar to embedded SQL, but without the need for
a preprocessor.

♦ JDBC: Java Database Connectivity is a collection of Java classes analo
gous to CLI for connecting Java programs to a database.

♦ PHP: Another popular system for implementing a call-level interface is
PHP. This language is found embedded in HTML pages and enables these
pages to interact with a database.

9.9 References for Chapter 9
The PSM standard is [4], and [5] is a comprehensive book on the subject.
Oracle’s version of PSM is called PL/SQL; a summary can be found in [2].
SQL Server has a version called Transact-SQL [6]. IBM’s version is SQL PL
[1].

[3] is a popular reference on JDBC. [7] is one on PHP, which was originally
developed by one of the book’s authors, R. Lerdorf.

1. D. Bradstock et al., DBS SQL Procedure Language for Linux, Unix, and
Windows, IBM Press, 2005.

2. Y.-M. Chang et al., “Using Oracle PL/SQL”
h t t p : / / in fo la b . S tan fo rd . edu /”u llm a n /fc d b /o ra c le /o r-p lsq l.html

3. M. Fisher, J. Ellis, and J. Bruce, JDBC A P I Tutorial and Reference,
Prentice-Hall, Upper Saddle River, NJ, 2003.

4. ISO/IEC Report 9075-4, 2003.

5. J. Melton, Understanding SQ L’s Stored Procedures: A Complete Guide
to SQL/PSM, Morgan-Kaufmann, San Francisco, 1998.

6. Microsoft Corp., “Transact-SQL Reference”
h t t p : //m sdn2 .m icroso ft. com /en-us/library/m sl89826. aspx

7. K. Tatroe, R. Lerdorf, and P. MacIntyre, Programming PHP, O’Reilly
Media, Cambridge, MA, 2006.

Chapter 10

Advanced Topics in
Relational Databases

This chapter introduces additional topics that are of interest to the database
programmer. We begin with a section on the SQL standard for authorization
of access to database elements. Next, we see the SQL extension that allows
for recursive programming in SQL — queries that use their own results. Then,
we look at the object-relational model, and how it is implemented in the SQL
standard.

The remainder of the chapter concerns “OLAP,” or on-line analytic pro
cessing. OLAP refers to complex queries of a nature that causes them to take
significant time to execute. Because they are so expensive, some special tech
nology has developed to handle them efficiently. One important direction is
an implementation of relations, called the “data cube,” that is rather different
from the conventional bag-of-tuples approach of SQL.

10.1 Security and User Authorization in SQL
SQL postulates the existence of authorization ID ’s, which are essentially user
names. SQL also has a special authorization ID called PUBLIC, which includes
any user. Authorization ID’s may be granted privileges, much as they would be
in the file system environment maintained by an operating system. For example,
a UNIX system generally controls three kinds of privileges: read, write, and
execute. That list of privileges makes sense, because the protected objects of a
UNIX system are files, and these three operations characterize well the things
one typically does with files. However, databases are much more complex than
file systems, and the kinds of privileges used in SQL are correspondingly more
complex.

In this section, we shall first learn what privileges SQL allows on database
elements. We shall then see how privileges may be acquired by users (by au

425

426 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

thorization ID’s, that is). Finally, we shall see how privileges may be taken
away.

10.1.1 Privileges
SQL defines nine types of privileges: SELECT, INSERT, DELETE, UPDATE, REF
ERENCES, USAGE, TRIGGER, EXECUTE, and UNDER. The first four of these apply
to a relation, which may be either a base table or a view. As their names
imply, they give the holder of the privilege the right to query (select from) the
relation, insert into the relation, delete from the relation, and update tuples of
the relation, respectively.

A SQL statement cannot be executed without the privileges appropriate to
that statement; e.g., a select-from-where statement requires the SELECT priv
ilege on every table it accesses. We shall see how the module can get those
privileges shortly. SELECT, INSERT, and UPDATE may also have an associated
list of attributes, for instance, SELECT (name, addr). If so, then only those
attributes may be seen in a selection, specified in an insertion, or changed in
an update, respectively. Note that, when granted, privileges such as these will
be associated with a particular relation, so it will be clear at that time to what
relation attributes name and addr belong.

The REFERENCES privilege on a relation is the right to refer to that relation in
an integrity constraint. These constraints may take any of the forms mentioned
in Chapter 7, such as assertions, attribute- or tuple-based checks, or referential
integrity constraints. The REFERENCES privilege may also have an attached
list of attributes, in which case only those attributes may be referenced in a
constraint. A constraint cannot be created unless the owner of the schema in
which the constraint appears has the REFERENCES privilege on all data involved
in the constraint.

USAGE is a privilege that applies to several kinds of schema elements other
than relations and assertions (see Section 9.2.2); it is the right to use that
element in one’s own declarations. The TRIGGER privilege on a relation is the
right to define triggers on that relation. EXECUTE is the right to execute a piece
of code, such as a PSM procedure or function. Finally, UNDER is the right to
create subtypes of a given type. The matter of types appears in Section 10.4.

E xam ple 10.1: Let us consider what privileges are needed to execute the in
sertion statement of Fig. 6.15, which we reproduce here as Fig. 10.1. First,
it is an insertion into the relation Studio, so we require an INSERT privilege
on Studio. However, since the insertion specifies only the component for at
tribute name, it is acceptable to have either the privilege INSERT or the privi
lege INSERT(name) on relation Studio. The latter privilege allows us to insert
S tudio tuples that specify only the name component and leave other compo
nents to take their default value or NULL, which is what Fig. 10.1 does.

However, notice that the insertion statement of Fig. 10.1 involves two sub
queries, starting at lines (2) and (5). To carry out these selections we require

10.1. SECU RITY AND USER AUTHORIZATION IN SQL 427

Triggers and Privileges

It is a bit subtle how privileges are handled for triggers. First, if you have
the TRIGGER privilege for a relation, you can attempt to create any trigger
you like on that relation. However, since the condition and action portions
of the trigger are likely to query and/or modify portions of the database,
the trigger creator must have the necessary privileges for those actions.
When someone performs an activity that awakens the trigger, they do
not need the privileges that the trigger condition and action require; the
trigger is executed under the privileges of its creator.

1) INSERT INTO Studio(name)
2) SELECT DISTINCT studioName
3) FROM Movies
4) WHERE studioName NOT IN
5) (SELECT name
6) FROM Studio);

Figure 10.1: Adding new studios

the privileges needed for the subqueries. Thus, we need the SELECT privilege
on both relations involved in FROM clauses: Movies and Studio. Note that just
because we have the INSERT privilege on Studio doesn’t mean we have the
SELECT privilege on Studio, or vice versa. Since it is only particular attributes
of Movies and S tudio that get selected, it is sufficient to have the privilege
SELECT (studioName) on Movies and the privilege SELECT (name) on Studio,
or privileges that include these attributes within a list of attributes. □

10.1.2 Creating Privileges
There are two aspects to the awarding of privileges: how they are created ini
tially, and how they are passed from user to user. We shall discuss initialization
here and the transmission of privileges in Section 10.1.4.

First, SQL elements such as schemas or modules have an owner. The owner
of something has all privileges associated with that thing. There are three
points at which ownership is established in SQL.

1. When a schema is created, it and all the tables and other schema elements
in it are owned by the user who created it. This user thus has all possible
privileges on elements of the schema.

2. When a session is initiated by a CONNECT statement, there is an oppor
tunity to indicate the user with an AUTHORIZATION clause. For instance,

428 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

the connection statement

CONNECT TO S ta r f le e t - s q l - s e rv e r AS connl
AUTHORIZATION k irk ;

would create a connection called connl to a database server whose name
is S ta r f le e t - s q l - s e rv e r , on behalf of user k irk . Presumably, the SQL
implementation would verify that the user name is valid, for example by
asking for a password. It is also possible to include the password in the
AUTHORIZATION clause, as we discussed in Section 9.2.5. That approach
is somewhat insecure, since passwords are then visible to someone looking
over Kirk’s shoulder.

3. When a module is created, there is an option to give it an owner by using
an AUTHORIZATION clause. For instance, a clause

AUTHORIZATION p ica rd ;

in a module-creation statement would make user p ic a rd the owner of
the module. It is also acceptable to specify no owner for a module, in
which case the module is publicly executable, but the privileges necessary
for executing any operations in the module must come from some other
source, such as the user associated with the connection and session during
which the module is executed.

10.1.3 The Privilege-Checking Process
As we saw above, each module, schema, and session has an associated user; in
SQL terms, there is an associated authorization ID for each. Any SQL operation
has two parties:

1. The database elements upon which the operation is performed and

2. The agent that causes the operation.

The privileges available to the agent derive from a particular authorization ID
called the current authorization ID. That ID is either

a) The module authorization ID, if the module that the agent is executing
has an authorization ID, or

b) The session authorization ID if not.

We may execute the SQL operation only if the current authorization ID pos
sesses all the privileges needed to carry out the operation on the database
elements involved.

10.1. SECU RITY AND USER AUTHORIZATION IN SQL 429

E xam ple 10.2: To see the mechanics of checking privileges, let us reconsider
Example 10.1. We might suppose that the referenced tables — Movies and
Studio — are part of a schema called MovieSchema, which was created by
and is owned by user janeway. At this point, user janeway has all privileges
on these tables and any other elements of the schema MovieSchema. She may
choose to grant some privileges to others by the mechanism to be described in
Section 10.1.4, but let us assume none have been granted yet. There are several
ways that the insertion of Example 10.1 can be executed.

1. The insertion could be executed as part of a module created by user
janeway and containing an AUTHORIZATION janeway clause. The module
authorization ID, if there is one, always becomes the current authorization
ID. Then, the module and its SQL insertion statement have exactly the
same privileges user janeway has, which includes all privileges on the
tables Movies and Studio.

2. The insertion could be part of a module that has no owner. User janeway
opens a connection with an AUTHORIZATION j aneway clause in the CON
NECT statement. Now, janeway is again the current authorization ID, so
the insertion statement has all the privileges needed.

3. User janeway grants all privileges on tables Movies and S tudio to user
archer, or perhaps to the special user PUBLIC, which stands for “all
users.” Suppose the insertion statement is in a module with the clause

AUTHORIZATION arch er

Since the current authorization ID is now archer, and this user has the
needed privileges, the insertion is again permitted.

4. As in (3), suppose user janeway has given user a rch er the needed priv
ileges. Also, suppose the insertion statement is in a module without an
owner; it is executed in a session whose authorization ID was set by
an AUTHORIZATION arch er clause. The current authorization ID is thus
archer, and that ID has the needed privileges.

□
There are several principles that are illustrated by Example 10.2. We shall

summarize them below.

• The needed privileges are always available if the data is owned by the
same user as the user whose ID is the current authorization ID. Scenarios
(1) and (2) above illustrate this point.

• The needed privileges are available if the user whose ID is the current
authorization ID has been granted those privileges by the owner of the
data, or if the privileges have been granted to user PUBLIC. Scenarios (3)
and (4) illustrate this point.

430 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

• Executing a module owned by the owner of the data, or by someone
who has been granted privileges on the data, makes the needed privileges
available. Of course, one needs the EXECUTE privilege on the module itself.
Scenarios (1) and (3) illustrate this point.

• Executing a publicly available module during a session whose authoriza
tion ID is that of a user with the needed privileges is another way to
execute the operation legally. Scenarios (2) and (4) illustrate this point.

10.1.4 Granting Privileges
So far, the only way we have seen to have privileges on a database element is to
be the creator and owner of that element. SQL provides a GRANT statement to
allow one user to give a privilege to another. The first user retains the privilege
granted, as well; thus GRANT can be thought of as “copy a privilege.”

There is one important difference between granting privileges and copying.
Each privilege has an associated grant option. That is, one user may have a
privilege like SELECT on table Movies “with grant option,” while a second user
may have the same privilege, but without the grant option. Then the first user
may grant the privilege SELECT on Movies to a third user, and moreover that
grant may be with or without the grant option. However, the second user, who
does not have the grant option, may not grant the privilege SELECT on Movies
to anyone else. If the third user got the privilege with the grant option, then
that user may grant the privilege to a fourth user, again with or without the
grant option, and so on.

A grant statement has the form:

GRANT <privilege list> ON <database element> TO <user list>

possibly followed by WITH GRANT OPTION.
The database element is typically a relation, either a base table or a view.

If it is another kind of element, the name of the element is preceded by the
type of that element, e.g., ASSERTION. The privilege list is a list of one or
more privileges, e.g., SELECT or INSERT(name). Optionally, the keywords ALL
PRIVILEGES may appear here, as a shorthand for all the privileges that the
grantor may legally grant on the database element in question.

In order to execute this grant statement legally, the user executing it must
possess the privileges granted, and these privileges must be held with the grant
option. However, the grantor may hold a more general privilege (with the grant
option) than the privilege granted. For instance, the privilege INSERT (name)
on table S tudio might be granted, while the grantor holds the more general
privilege INSERT on S tudio, with grant option.

E xam ple 10.3: User janeway, who is the owner of the MovieSchema schema
that contains tables

10.1. SECURITY AND USER AUTHORIZATION IN SQL 431

M o v ie s (t i t le , y e a r , len g th , genre, studioName, producerC#)
Studio(name, ad d ress, presC#)

grants the INSERT and SELECT privileges on table S tudio and privilege SELECT
on Movies to users k irk and p icard . Moreover, she includes the grant option
with these privileges. The grant statements are:

GRANT SELECT, INSERT ON Studio TO k irk , p ica rd
WITH GRANT OPTION;

GRANT SELECT ON Movies TO k irk , p ica rd
WITH GRANT OPTION;

Now, p ica rd grants to user s isk o the same privileges, but without the
grant option. The statements executed by p ica rd are:

GRANT SELECT, INSERT ON Studio TO s isk o ;
GRANT SELECT ON Movies TO s isk o ;

Also, k irk grants to s isk o the minimal privileges needed for the insertion of
Fig. 10.1, namely SELECT and INSERT(name) on S tudio and SELECT on Movies.
The statements are:

GRANT SELECT, INSERT(name) ON Studio TO s isk o ;
GRANT SELECT ON Movies TO s isk o ;

Note that s isk o has received the SELECT privilege on Movies and S tudio from
two different users. He has also received the INSERT (name) privilege on Studio
twice: directly from k irk and via the generalized privilege INSERT from p icard .
□

10.1.5 Grant Diagrams
Because of the complex web of grants and overlapping privileges that may result
from a sequence of grants, it is useful to represent grants by a graph called a
grant diagram. A SQL system maintains a representation of this diagram to
keep track of both privileges and their origins (in case a privilege is revoked;
see Section 10.1.6).

The nodes of a grant diagram correspond to a user and a privilege. Note
that the ability to do something (e.g., SELECT on relation R) with the grant
option and the same ability without the grant option are different privileges.
These two different privileges, even if they belong to the same user, must be
represented by two different nodes. Likewise, a user may hold two privileges,
one of which is strictly more general than the other (e.g., SELECT on R and
SELECT on R(A). These two privileges are also represented by two different
nodes.

If user U grants privilege P to user V, and this grant was based on the fact
that U holds privilege Q (Q could be P with the grant option, or it could be

432 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

some generalization of P, again with the grant option), then we draw an arc
from the node for U/Q to the node for V /P . As we shall see, privileges may
be lost when arcs of this graph are deleted. That is why we use separate nodes
for a pair of privileges, one of which includes the other, such as a privilege with
and without the grant option. If the more powerful privilege is lost, the less
powerful one might still be retained.

E xam ple 10.4: Figure 10.2 shows the grant diagram that results from the
sequence of grant statements of Example 10.3. We use the convention that a *
after a user-privilege combination indicates that the privilege includes the grant
option. Also, ** after a user-privilege combination indicates that the privilege
derives from ownership of the database element in question and was not due to
a grant of the privilege from elsewhere. This distinction will prove important
when we discuss revoking privileges in Section 10.1.6. A doubly starred privilege
automatically includes the grant option. □

Figure 10.2: A grant diagram

10.1. SECURITY AND USER AUTHORIZATION IN SQL 433

10.1.6 Revoking Privileges
A granted privilege can be revoked at any time. The revoking of privileges may
be required to cascade, in the sense that revoking a privilege with the grant
option that has been passed on to other users may require those privileges to
be revoked too. The simple form of a revoke statement begins:

REVOKE <privilege list> ON <database element> FROM <user list>

The statement ends with one of the following:

1. CASCADE. If chosen, then when the specified privileges are revoked, we
also revoke any privileges that were granted only because of the revoked
privileges. More precisely, if user U has revoked privilege P from user V,
based on privilege Q belonging to U, then we delete the arc in the grant
diagram from U/Q to V /P . Now, any node that is not accessible from
some ownership node (doubly starred node) is also deleted.

2. RESTRICT. In this case, the revoke statement cannot be executed if the
cascading rule described in the previous item would result in the revoking
of any privileges due to the revoked privileges having been passed on to
others.

It is permissible to replace REVOKE by REVOKE GRANT OPTION FOR, in which
case the core privileges themselves remain, but the option to grant them to
others is removed. We may have to modify a node, redirect arcs, or create a
new node to reflect the changes for the affected users. This form of REVOKE also
must be followed by either CASCADE or RESTRICT.

E xam ple 10.5: Continuing with Example 10.3, suppose that janeway revokes
the privileges she granted to p ica rd with the statements:

REVOKE SELECT, INSERT ON Studio FROM p ica rd CASCADE;
REVOKE SELECT ON Movies FROM p icard CASCADE;

We delete the arcs of Fig. 10.2 from these janeway privileges to the corre
sponding p ica rd privileges. Since CASCADE was stipulated, we also have to see
if there are any privileges that are not reachable in the graph from a doubly
starred (ownership-based) privilege. Examining Fig. 10.2, we see that p ic a rd ’s
privileges are no longer reachable from a doubly starred node (they might have
been, had there been another path to a p ica rd node). Also, s isk o ’s privilege
to INSERT into S tudio is no longer reachable. We thus delete not only p ic a rd ’s
privileges from the grant diagram, but we delete s isk o ’s INSERT privilege.

Note that we do not delete sisko ’ s SELECT privileges on Movies and Studio
or his INSERT (name) privilege on Studio, because these are all reachable from
janeway’s ownership-based privileges via k irk ’s privileges. The resulting grant
diagram is shown in Fig. 10.3. □

434 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

Figure 10.3: Grant diagram after revocation of p ic a rd ’s privileges

E xam ple 10.6: There are a few subtleties that we shall illustrate with abstract
examples. First, when we revoke a general privilege p, we do not also revoke a
privilege that is a special case of p. For instance, consider the following sequence
of steps, whereby user U, the owner of relation R, grants the INSERT privilege
on relation R to user V, and also grants the INSERT (A) privilege on the same
relation.

Step By Action
1 U GRANT INSERT ON R TO V
2 U GRANT INSERT (A) ON R TO V
3 U REVOKE INSERT ON R FROM V RESTRICT

When U revokes INSERT from V, the INSERT (A) privilege remains. The
grant diagrams after steps (2) and (3) are shown in Fig. 10.4.

Notice that after step (2) there are two separate nodes for the two similar
but distinct privileges that user V has. Also observe that the RESTRICT option
in step (3) does not prevent the revocation, because V had not granted the

10.1. SECU RITY AND USER AUTHORIZATION IN SQL 435

(a) After step (2) (b) After step (3)

Figure 10.4: Revoking a general privilege leaves a more specific privilege

option to any other user. In fact, V could not have granted either privilege,
because V obtained them without grant option. □

E xam ple 10.7: Now, let us consider a similar example where U grants V
a privilege p* that includes the grant option and then revokes only the grant
option. Assume the grant by U was based on its privilege q*. In this case, we
must replace the arc from the U/q* node to V/p* by an arc from U/q* to V/p,
i.e., the same privilege without the grant option. If there was no such node
V/p, it must be created. In normal circumstances, the node V/p* becomes
unreachable, and any grants of p made by V will also be unreachable. However,
it may be that V was granted p* by some other user besides U, in which case
the V /p* node remains accessible.

Here is a typical sequence of steps:

Step By Action
1 U GRANT p TO V WITH GRANT OPTION
2 V GRANT p TO W
3 U REVOKE GRANT OPTION FOR p FROM V CASCADE

In step (1), U grants the privilege p to V with the grant option. In step (2),
V uses the grant option to grant p to W . The diagram is then as shown in
Fig. 10.5(a).

Then in step (3), U revokes the grant option for privilege p from V, but
does not revoke the privilege itself. Since there is no node V/p, we create one.
The arc from U /p** to V/P* is removed and replaced by one from U/p * * to
V/p.

Now, the nodes V/p* and W /p are not reachable from any ** node. Thus,
these nodes are deleted from the diagram. The resulting grant diagram is shown
in Fig. 10.5(b). □

436 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

(a) After step (2) (b) After step (3)

Figure 10.5: Revoking a grant option leaves the underlying privilege

10.1.7 Exercises for Section 10.1
E xercise 10.1.1: Indicate what privileges are needed to execute the following
queries. In each case, mention the most specific privileges as well as general
privileges that are sufficient.

a) The query of Fig. 6.5.

b) The query of Fig. 6.7.

c) The insertion of Fig. 6.15.

d) The deletion of Example 6.37.

e) The update of Example 6.39.

f) The tuple-based check of Fig. 7.3.

g) The assertion of Example 7.11.

E xercise 10.1.2: Show the grant diagrams after steps (4) through (6) of the
sequence of actions listed in Fig. 10.6. Assume A is the owner of the relation
to which privilege p refers.

Step By Action___________________________________
1 A GRANT p TO B WITH GRANT OPTION
2 A GRANT p TO C
3 B GRANT p TO D WITH GRANT OPTION
4 D GRANT p TO B , C , E WITH GRANT OPTION
5 B REVOKE p FROM D CASCADE
6 A REVOKE p FROM C CASCADE

Figure 10.6: Sequence of actions for Exercise 10.1.2

Exercise 10.1.3: Show the grant diagrams after steps (5) and (6) of the se
quence of actions listed in Fig. 10.7. Assume A is the owner of the relation to
which privilege p refers.

Step By Action

10.2. RECURSION IN SQL 437

1 A GRANT p TO B , E WITH GRANT OPTION
2 B GRANT p TO C WITH GRANT OPTION
3 C GRANT p TO D WITH GRANT OPTION
4 E GRANT p TO C
5 E GRANT p TO D WITH GRANT OPTION
6 A REVOKE GRANT OPTION FOR p FROM B CASCADE

Figure 10.7: Sequence of actions for Exercise 10.1.3

Exercise 10.1.4: Show the final grant diagram after the following steps, as
suming A is the owner of the relation to which privilege p refers.

Step By Action
1 A GRANT p TO B WITH GRANT OPTION
2 B GRANT p TO B WITH GRANT OPTION
3 A REVOKE p FROM B CASCADE

10.2 Recursion in SQL
The SQL-99 standard includes provision for recursive definitions of queries.
Although this feature is not part of the “core” SQL-99 standard that every
DBMS is expected to implement, at least one major system — IBM’s DB2 —
does implement the SQL-99 proposal, which we describe in this section.

10.2.1 Defining Recursive Relations in SQL
The WITH statement in SQL allows us to define temporary relations, recursive
or not. To define a recursive relation, the relation can be used within the WITH
statement itself. A simple form of the WITH statement is:

WITH R AS <definition of R> <query involving R>

That is, one defines a temporary relation named R, and then uses R in some
query. The temporary relation is not available outside the query that is part of
the WITH statement.

More generally, one can define several relations after the WITH, separating
their definitions by commas. Any of these definitions may be recursive. Sev
eral defined relations may be mutually recursive; that is, each may be defined
in terms of some of the other relations, optionally including itself. However,
any relation that is involved in a recursion must be preceded by the keyword
RECURSIVE. Thus, a more general form of WITH statement is shown in Fig. 10.8.

E xam ple 10.8: Many examples of the use of recursion can be found in a study
of paths in a graph. Figure 10.9 shows a graph representing some flights of two

438 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

WITH
[RECURSIVE] R i AS <definition of R i> ,
[RECURSIVE] R 2 AS <definition of R 2> ,

[RECURSIVE] R n AS <definition of R n>
< query involving R i, R2, . . . ,R n >

Figure 10.8: Form of a WITH statement defining several temporary relations

hypothetical airlines — Untried Airlines (UA), and Arcane Airlines (AA) —
among the cities San Francisco, Denver, Dallas, Chicago, and New York. The
data of the graph can be represented by a relation

F l ig h t s (a i r l in e , frm , to , d e p a r ts , a r r iv e s)

and the particular tuples in this table are shown in Fig. 10.9.

AA 1900-2200

Figure 10.9: A map of some airline flights

airline from to departs arrives
UA SF DEN 930 1230
AA SF DAL 900 1430
UA DEN CHI 1500 1800
UA DEN DAL 1400 1700
AA DAL CHI 1530 1730
AA DAL NY 1500 1930
AA CHI NY 1900 2200
UA CHI NY 1830 2130

Figure 10.10: Tuples in the relation F lig h ts

The simplest recursive question we can ask is “For what pairs of cities (x , y)
is it possible to get from city x to city y by taking one or more flights?” Before

10.2. RECURSION IN SQL 439

writing this query in recursive SQL, it is useful to express the recursion in
the Datalog notation of Section 5.3. Since many concepts involving recursion
are easier to express in Datalog than in SQL, you may wish to review the
terminology of that section before proceeding. The following two Datalog rules
describe a relation R eaches(x,y) that contains exactly these pairs of cities.

1. R eaches(x.y) «— F lig h ts (a ,x ,y ,d , r)
2. R eaches(x,y) •<— R eaches(x,z) AND R eaches(z,y)

The first rule says that Reaches contains those pairs of cities for which there
is a direct flight from the first to the second; the airline a, departure time d,
and arrival time r are arbitrary in this rule. The second rule says that if you
can reach from city x to city z and you can reach from z to city y, then you
can reach from x to y.

Evaluating a recursive relation requires that we apply the Datalog rules
repeatedly, starting by assuming there are no tuples in Reaches. We begin
by using Rule (1) to get the following pairs in Reaches: (SF, DEN), (SF, DAL),
(DEN, CHI), (DEN, DAL), (DAL, CHI), (DAL, NY), and (CHI, NY). These are the seven
pairs represented by arcs in Fig. 10.9.

In the next round, we apply the recursive Rule (2) to put together pairs
of arcs such that the head of one is the tail of the next. That gives us the
additional pairs (SF, CHI), (DEN, NY), and (SF, NY). The third round combines
all one- and two-arc pairs together to form paths of length up to four arcs.
In this particular diagram, we get no new pairs. The relation Reaches thus
consists of the ten pairs (a;, y) such that y is reachable from x in the diagram
of Fig. 10.9. Because of the way we drew the diagram, these pairs happen to
be exactly those (x ,y) such that y is to the right of x in Fig 10.9.

From the two Datalog rules for Reaches in Example 10.8, we can develop
a SQL query that produces the relation Reaches. This SQL query places the
Datalog rules for Reaches in a WITH statement, and follows it by a query. In
our example, the desired result was the entire Reaches relation, but we could
also ask some query about Reaches, for instance the set of cities reachable from
Denver.

1) WITH RECURSIVE Reaches(frm , to) AS
2) (SELECT frm, to FROM F lig h ts)
3) UNION
4) (SELECT R I.frm , R2.to
5) FROM Reaches RI, Reaches R2
6) WHERE R I.to = R2.frm)
7) SELECT * FROM Reaches;

Figure 10.11: Recursive SQL query for pairs of reachable cities

Figure 10.11 shows how to express Reaches as a SQL query. Line (1) intro
duces the definition of Reaches, while the actual definition of this relation is in

440 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

Mutual Recursion

There is a graph-theoretic way to check whether two relations or predi
cates are mutually recursive. Construct a dependency graph whose nodes
correspond to the relations (or predicates if we are using Datalog rules).
Draw an arc from relation A to relation B if the definition of B depends
directly on the definition of A. That is, if Datalog is being used, then A
appears in the body of a rule with B at the head. In SQL, A would appear
in a FROM clause, somewhere in the definition of B, possibly in a subquery.
If there is a cycle involving nodes R and S, then R and 5 are mutually
recursive. The most common case will be a loop from R to R, indicating
that R depends recursively upon itself.

lines (2) through (6).
That definition is a union of two queries, corresponding to the two Datalog

rules by which Reaches was defined. Line (2) is the first term of the union and
corresponds to the first, or basis rule. It says that for every tuple in the F lig h ts
relation, the second and third components (the f rm and to components) are a
tuple in Reaches.

Lines (4) through (6) correspond to Rule (2), the recursive rule, in the
definition of Reaches. The two Reaches subgoals in Rule (2) are represented in
the FROM clause by two aliases RI and R2 for Reaches. The first component of
RI corresponds to x in Rule (2), and the second component of R2 corresponds
to y. Variable z is represented by both the second component of RI and the
first component of R2; note that these components are equated in line (6).

Finally, line (7) describes the relation produced by the entire query. It is a
copy of the Reaches relation. As an alternative, we could replace line (7) by a
more complex query. For instance,

7) SELECT to FROM Reaches WHERE frm = ’DEN’ ;

would produce all those cities reachable from Denver. □

10.2.2 Problematic Expressions in Recursive SQL
The SQL standard for recursion does not allow an arbitrary collection of mutu
ally recursive relations to be written in a WITH clause. There is a small matter
that the standard requires only that linear recursion be supported. A linear
recursion, in Datalog terms, is one in which no rule has more than one subgoal
that is mutually recursive with the head. Notice that Rule (2) in Example 10.8
has two subgoals with predicate Reaches that are mutually recursive with the
head (a predicate is always mutually recursive with itself; see the box on Mutual

10.2. RECURSION IN SQL 441

Recursion). Thus, technically, a DBMS might refuse to execute Fig. 10.11 and
yet conform to the standard.1

But there is a more important restriction on SQL recursions, one that, if
violated leads to recursions that cannot be executed by the query processor in
any meaningful way. To be a legal SQL recursion, the definition of a recursive
relation R may involve only the use of a mutually recursive relation S (including
R itself) if that use is “monotone” in S. A use of S is monotone if adding an
arbitrary tuple to S might add one or more tuples to R, or it might leave
R unchanged, but it can never cause any tuple to be deleted from R. The
following example suggests what can happen if the monotonicity requirement
is not respected.

E xam ple 10.9: Suppose relation R is a unary (one-attribute) relation, and its
only tuple is (0). R is used as an EDB relation in the following Datalog rules:

1. P(x) <- R(x) AND NOT Q(x)
2. Q(x) «- R(x) AND NOT P(x)

Informally, the two rules tell us that an element x in R is either in P or in Q
but not both. Notice that P and Q are mutually recursive.

If we start out, assuming that both P and Q are empty, and apply the
rules once, we find that P — {(0)} and Q = {(0)}; that is, (0) is in both IDB
relations. On the next round, we apply the rules to the new values for P and
Q again, and we find that now both are empty. This cycle repeats as long as
we like, but we never converge to a solution.

In fact, there are two “solutions” to the Datalog rules:

a) P = {(0)} Q = 0
b) p = 0 Q = {(0)}

However, there is no reason to assume one over the other, and the simple
iteration we suggested as a way to compute recursive relations never converges
to either. Thus, we cannot answer a simple question such as “Is P(0) true?”

The problem is not restricted to Datalog. The two Datalog rules of this
example can be expressed in recursive SQL. Figure 10.12 shows one way of
doing so. This SQL does not adhere to the standard, and no DBMS should
execute it. □

The problem in Example 10.9 is that the definitions of P and Q in Fig. 10.12
are not monotone. Look at the definition of P in lines (2) through (5) for
instance. P depends on Q, with which it is mutually recursive, but adding a
tuple to Q can delete a tuple from P. Notice that if R — {(0)} and Q is empty,
then P = {(0)}. But if we add (0) to Q, then we delete (0) from P. Thus, the
definition of P is not monotone in Q, and the SQL code of Fig. 10.12 does not
meet the standard.

1N ote, however, th a t we can replace e ith e r one o f th e uses o f R eaches in line (5) of F ig . 10.11
by F l ig h t s , an d th u s m ake th e recursion linear. N onlinear recursions can frequen tly —
a lthough n o t alw ays — be m ade lin ear in th is fashion.

442 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

1) WITH
2) RECURSIVE P(x) AS
3) (SELECT *
4) EXCEPT
5) (SELECT *

6) RECURSIVE Q(x) AS
7) (SELECT *
8) EXCEPT
9) (SELECT *

10) SELECT * FROM P;

Figure 10.12: Query with nonmonotonic behavior, illegal in SQL

E xam ple 1 0 .1 0 : Aggregation can also lead to nonmonotonicity. Suppose we
have unary (one-attribute) relations P and Q defined by the following two
conditions:

1. P is the union of Q and an EDB relation R.

2. Q has one tuple that is the sum of the members of P.

We can express these conditions by a WITH statement, although this statement
violates the monotonicity requirement of SQL. The query shown in Fig. 10.13
asks for the value of P.

1) WITH
2) RECURSIVE P(x) AS
3) (SELECT * FROM R)
4) UNION
5) (SELECT * FROM Q),

6) RECURSIVE Q(x) AS
7) SELECT SUM(x) FROM P

8) SELECT * FROM P;

Figure 10.13: Nonmonotone query involving aggregation, illegal in SQL

Suppose that R consists of the tuples (12) and (34), and initially P and Q
are both empty. Figure 10.14 summarizes the values computed in the first six
rounds. Note that both relations are computed, in one round, from the values
of the relations at the previous round. Thus, P is computed in the first round

10.2. RECURSION IN SQL 443

Round P Q
1) {(12), (34)} {NULL}
2) {(12), (34),NULL} {(46)}
3) {(12), (34), (46)} {(46)}
4) {(12), (34), (46)} {(92)}
5) {(12), (34), (92)} {(92)}
6) {(12), (34), (92)} {(138)}

Figure 10.14: Iterative calculation for a nonmonotone aggregation

to be the same as R, and Q is {NULL}, since the old, empty value of P is used
in line (7).

At the second round, the union of lines (3) through (5) is the set

R U {NULL} = {(12), (34), NULL}

so that set becomes the new value of P. The old value of P was {(12), (34)},
so on the second round Q = {(46)}. That is, 46 is the sum of 12 and 34.

At the third round, we get P = {(12), (34), (46)} at lines (2) through (5).
Using the old value of P, {(12), (34), NULL}, Q is defined by lines (6) and (7) to
be {(46)} again. Remember that NULL is ignored in a sum.

At the fourth round, P has the same value, {(12), (34), (46)}, but Q gets
the value {(92)}, since 12+34+46=92. Notice that Q has lost the tuple (46),
although it gained the tuple (92). That is, adding the tuple (46) to P has
caused a tuple (by coincidence the same tuple) to be deleted from Q. That
behavior is the nonmonotonicity that SQL prohibits in recursive definitions,
confirming that the query of Fig. 10.13 is illegal. In general, at the 2*th round,
P will consist of the tuples (12), (34), and (46* — 46), while Q consists only of
the tuple (46*). □

10.2.3 Exercises for Section 10.2
Exercise 10.2.1: The relation

Flights(airline, frm, to, departs, arrives)

from Example 10.8 has arrival- and departure-time information that we did not
consider. Suppose we are interested not only in whether it is possible to reach
one city from another, but whether the journey has reasonable connections.
That is, when using more than one flight, each flight must arrive at least an
hour before the next flight departs. You may assume that no journey takes
place over more than one day, so it is not necessary to worry about arrival close
to midnight followed by a departure early in the morning.

a) Write this recursion in Datalog.

444 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

b) Write the recursion in SQL.

! Exercise 10.2 .2 : In Example 10.8 we used frm as an attribute name. Why
did we not use the more obvious name from?

Exercise 10.2 .3 : Suppose we have a relation

SequelOf(movie, sequel)

that gives the immediate sequels of a movie, of which there can be more than
one. We want to define a recursive relation FollowOn whose pairs (x, y) are
movies such that y was either a sequel of x, a sequel of a sequel, or so on.

a) Write the definition of FollowOn as recursive Datalog rules.

b) Write the definition of FollowOn as a SQL recursion.

c) Write a recursive SQL query that returns the set of pairs (x , y) such that
movie y is a follow-on to movie x, but is not a sequel of x.

d) Write a recursive SQL query that returns the set of pairs (a;, y) meaning
that y is a follow-on of x, but is neither a sequel nor a sequel of a sequel.

! e) Write a recursive SQL query that returns the set of movies x that have
at least two follow-ons. Note that both could be sequels, rather than one
being a sequel and the other a sequel of a sequel.

! f) Write a recursive SQL query that returns the set of pairs (x , y) such that
movie y is a follow-on of x but y has at most one follow-on.

E xercise 10.2 .4 : Suppose we have a relation

Rel(class, rclass, mult)

that describes how one ODL class is related to other classes. Specifically, this
relation has tuple (c, d, m) if there is a relation from class c to class d. This
relation is multivalued if m = ’m u lti ’ and it is single-valued if m = ’s in g le ’ .
It is possible to view Rel as defining a graph whose nodes are classes and in
which there is an arc from c to d labeled m if and only if (c, d, m) is a tuple
of Rel. Write a recursive SQL query that produces the set of pairs (c, d) such
that:

a) There is a path from class c to class d in the graph described above.

b) There is a path from c to d along which every arc is labeled s in g le .

! c) There is a path from c to d along which at least one arc is labeled m ulti.

d) There is a path from c to d but no path along which all arcs are labeled
s in g le .

10.3. THE OBJECT-RELATIONAL MODEL 445

! e) There is a path from c to d along which arc labels alternate s in g le and
m ulti.

f) There are paths from c to d and from d to c along which every arc is
labeled sin g le .

10.3 The Object-Relational M odel
The relational model and the object-oriented model typified by ODL are two
important points in a spectrum of options that could underlie a DBMS. For an
extended period, the relational model was dominant in the commercial DBMS
world. Object-oriented DBMS’s made limited inroads during the 1990’s, but
never succeeded in winning significant market share from the vendors of re
lational DBMS’s. Rather, the vendors of relational systems have moved to
incorporate many of the ideas found in ODL or other object-oriented-database
proposals. As a result, many DBMS products that used to be called “relational”
are now called “object-relational.”

This section extends the abstract relational model to incorporate several
important object-relational ideas. It is followed by sections that cover object-
relational extensions of SQL. We introduce the concept of object-relations in
Section 10.3.1, then discuss one of its earliest embodiments — nested rela
tions — in Section 10.3.2. ODL-like references for object-relations are discussed
in Section 10.3.3, and in Section 10.3.4 we compare the object-relational model
with the pure object-oriented approach.

10.3.1 From Relations to Object-Relations
While the relation remains the fundamental concept, the relational model has
been extended to the object-relational model by incorporation of features such
as:

1. Structured types for attributes. Instead of allowing only atomic types for
attributes, object-relational systems support a type system like ODL’s:
types built from atomic types and type constructors for structs, sets, and
bags, for instance. Especially important is a type that is a bag of structs,
which is essentially a relation. That is, a value of one component of a
tuple can be an entire relation, called a “nested relation.”

2. Methods. These are similar to methods in ODL or any object-oriented
programming system.

3. Identifiers for tuples. In object-relational systems, tuples play the role of
objects. It therefore becomes useful in some situations for each tuple to
have a unique ID that distinguishes it from other tuples, even from tuples
that have the same values in all components. This ID, like the object-
identifier assumed in ODL, is generally invisible to the user, although

446 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

there are even some circumstances where users can see the identifier for
a tuple in an object-relational system.

4. References. While the pure relational model has no notion of references
or pointers to tuples, object-relational systems can use these references in
various ways.

In the next sections, we shall elaborate upon and illustrate each of these addi
tional capabilities of object-relational systems.

10.3.2 Nested Relations
In the nested-relational model, we allow attributes of relations to have a type
that is not atomic; in particular, a type can be a relation schema. As a result,
there is a convenient, recursive definition of the types of attributes and the
types (schemas) of relations:

BASIS: An atomic type (integer, real, string, etc.) can be the type of an
attribute.

INDUCTION: A relation’s type can be any schema consisting of names for one
or more attributes, and any legal type for each attribute. In addition, a schema
also can be the type of any attribute.

In what follows, we shall generally omit atomic types where they do not
matter. An attribute that is a schema will be represented by the attribute name
and a parenthesized list of the attributes of its schema. Since those attributes
may themselves have structure, parentheses can be nested to any depth.

E xam ple 10.11: Let us design a nested-relation schema for stars that incor
porates within the relation an attribute movies, which will be a relation rep
resenting all the movies in which the star has appeared. The relation schema
for attribute movies will include the title, year, and length of the movie. The
relation schema for the relation S ta rs will include the name, address, and birth
date, as well as the information found in movies. Additionally, the address
attribute will have a relation type with attributes s t r e e t and c ity . We can
record in this relation several addresses for the star. The schema for S ta rs can
be written:

S tars(nam e, a d d re s s (s t r e e t , c i t y) , b i r th d a te ,
m o v ie s (t i t le , y ea r, len g th))

An example of a possible relation for nested relation S ta rs is shown in
Fig. 10.15. We see in this relation two tuples, one for Carrie Fisher and one
for Mark Hamill. The values of components are abbreviated to conserve space,
and the dashed lines separating tuples are only for convenience and have no
notational significance.

10.3. THE OBJECT-RELATIONAL MODEL 447

address birthdate

Fisher street city

Maple H 'wood
Locust Malibu

9/9/99 title year length

Star Wars 1977 124
Empire 1980 127
Return 1983 133

Hamill street city

Oak B 'wood
8/ 8/88 title year length

Star Wars 1977 124
Empire 1980 127
Return 1983 133

Figure 10.15: A nested relation for stars and their movies

In the Carrie Fisher tuple, we see her name, an atomic value, followed
by a relation for the value of the address component. That relation has two
attributes, s t r e e t and c ity , and there are two tuples, corresponding to her
two houses. Next comes the birthdate, another atomic value. Finally, there is a
component for the movies attribute; this attribute has a relation schema as its
type, with components for the title, year, and length of a movie. The relation
for the movies component of the Carrie Fisher tuple has tuples for her three
best-known movies.

The second tuple, for Mark Hamill, has the same components. His relation
for address has only one tuple, because in our imaginary data, he has only
one house. His relation for movies looks just like Carrie Fisher’s because their
best-known movies happen, by coincidence, to be the same. Note that these
two relations are two different tuple-components. These components happen to
be identical, just like two components that happened to have the same integer
value, e.g., 124. □

10.3.3 References

The fact that movies like Star Wars will appear in several relations that are
values of the movies attribute in the nested relation S ta rs is a cause of redun
dancy. In effect, the schema of Example 10.11 has the nested-relation analog of
not being in BCNF. However, decomposing this S ta rs relation will not elimi
nate the redundancy. Rather, we need to arrange that among all the tuples of
all the movies relations, a movie appears only once.

To cure the problem, object-relations need the ability for one tuple t to refer
to another tuple s, rather than incorporating s directly in t. We thus add to
our model an additional inductive rule: the type of an attribute also can be a

448 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

reference to a tuple with a given schema or a set of references to tuples with a
given schema.

If an attribute A has a type that is a reference to a single tuple with a
relation schema named R, we show the attribute A in a schema as A(*R).
Notice that this situation is analogous to an ODL relationship A whose type is
R\ i.e., it connects to a single object of type R. Similarly, if an attribute A has
a type that is a set of references to tuples of schema R, then A will be shown
in a schema as A({*i?}). This situation resembles an ODL relationship A that
has type Set<i?>.

Fisher

Hamill

address

street city

Maple H'wood
Locust Malibu

street city

Oak B 'wood

birthdate

9/9/99

8 / 8/88

title year length

Star Wars 1977 124
Empire 1980 127
Return 1983 133

Stars Movies

Figure 10.16: Sets of references as the value of an attribute

E xam ple 10.12: An appropriate way to fix the redundancy in Fig. 10.15 is
to use two relations, one for stars and one for movies. In this example only, we
shall use a relation called Movies that is an ordinary relation with the same
schema as the attribute movies in Example 10.11. A new relation S ta rs has
a schema similar to the nested relation Stairs of that example, but the movies
attribute will have a type that is a set of references to Movies tuples. The
schemas of the two relations are thus:

Movies(title, year, length)
Stars(name, address(street, city), birthdate,

movies ({*Movies}-))

The data of Fig. 10.15, converted to this new schema, is shown in Fig. 10.16.
Notice that, because each movie has only one tuple, although it can have many
references, we have eliminated the redundancy inherent in the schema of Ex
ample 10.11. □

10.3. TEE OBJECT-RELATIONAL MODEL 449

10.3.4 Object-Oriented Versus Object-Relational

The object-oriented data model, as typified by ODL, and the object-relational
model discussed here, are remarkably similar. Some of the salient points of
comparison follow.

O bjects and Tuples

An object’s value is really a struct with components for its attributes and re
lationships. It is not specified in the ODL standard how relationships are to
be represented, but we may assume that an object is connected to related ob
jects by some collection of references. A tuple is likewise a struct, but in the
conventional relational model, it has components for only the attributes. Re
lationships would be represented by tuples in another relation, as suggested in
Section 4.5.2. However the object-relational model, by allowing sets of refer
ences to be a component of tuples, also allows relationships to be incorporated
directly into the tuples that represent an “object” or entity.

\

M eth od s

We did not discuss the use of methods as part of an object-relational schema.
However, in practice, the SQL-99 standard and all implementations of object-
relational ideas allow the same ability as ODL to declare and define methods
associated with any class or type.

T yp e S ystem s

The type systems of the object-oriented and object-relational models are quite
similar. Each is based on atomic types and construction of new types by struct-
and collection-type-constructors. The choice of collection types may vary, but
all variants include at least sets and bags. Moreover, the set (or bag) of structs
type plays a special role in both models. It is the type of classes in ODL, and
the type of relations in the object-relational model.

R eferences and O b ject-ID ’s

A pure object-oriented model uses object-ID’s that are completely hidden from
the user, and thus cannot be seen or queried. The object-relational model allows
references to be part of a type, and thus it is possible under some circumstances
for the user to see their values and even remember them for future use. You
may regard this situation as anything from a serious bug to a stroke of genius,
depending on your point of view, but in practice it appears to make little
difference.

450 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

Backw ards C om patib ility

With little difference in essential features of the two models, it is interesting to
consider why object-relational systems have dominated the pure object-oriented
systems in the marketplace. The reason, we believe, is as follows. As relational
DBMS’s evolved into object-relational DBMS’s, the vendors were careful to
maintain backwards compatibility. That is, newer versions of the system would
still run the old code and accept the same schemas, should the user not care
to adopt any of the object-oriented features. On the other hand, migration
to a pure object-oriented DBMS would require the installations to rewrite and
reorganize extensively. Thus, whatever competitive advantage could be argued
for object-oriented database systems was insufficient to motivate many to make
the switch.

10.3.5 Exercises for Section 10.3
Exercise 10.3.1: Using the notation developed for nested relations and re
lations with references, give one or more relation schemas that represent the
following information. In each case, you may exercise some discretion regard
ing what attributes of a relation are included, but try to keep close to the
attributes found in our running movie example. Also, indicate whether your
schemas exhibit redundancy, and if so, what could be done to avoid it.

a) Movies, with the usual attributes plus all their stars and the usual infor
mation about the stars.

! b) Studios, all the movies made by that studio, and all the stars of each
movie, including all the usual attributes of studios, movies^ and stars.

c) Movies with their studio, their stars, and all the usual attributes of these.

Exercise 10.3.2: Represent the banking information of Exercise 4.1.1 in the
object-relational model developed in this section. Make sure that it is easy,
given the tuple for a customer, to find their account (s) and also easy, given the
tuple for an account to find the customer(s) that hold that account. Also, try
to avoid redundancy.

! Exercise 10.3.3: If the data of Exercise 10.3.2 were modified so that an ac
count could be held by only one customer [as in Exercise 4.1.2(a)], how could
your answer to Exercise 10.3.2 be simplified?

! Exercise 10.3.4: Render the players, teams, and fans of Exercise 4.1.3 in the
object-relational model.

! Exercise 10.3.5: Render the genealogy of Exercise 4.1.6 in the object-rela-
tional model.

10.4. USER-DEFINED TYPES IN SQL 451

10.4 User-Defined Types in SQL
We now turn to the way SQL-99 incorporates many of the object-oriented fea
tures that we saw in Section 10.3. The central extension that turns the relational
model into the object-relational model in SQL is the user-defined type, or UDT.
We find UDT’s used in two distinct ways:

1. A UDT can be the type of a table.

2. A UDT can be the type of an attribute belonging to some table.

10.4.1 Defining Types in SQL
The SQL-99 standard allows the programmer to define UDT’s in several ways.
The simplest is as a renaming of an existing type.

CREATE TYPE T AS <primitive ty p e> ;

renames a primitive type such as INTEGER. Its purpose is to prevent errors
caused by accidental coercions among values that logically should not be com
pared or interchanged, even though they have the same primitive data type.
An example should make the purpose clear.

E xam ple 10.13: In our running movies example, there are several attributes
of type INTEGER. These include len g th of Movies, c e rt# of MovieExec, and
presC# of Studio. It makes sense to compare a value of c e rt# with a value of
presC#, and we could even take a value from one of these two attributes and
store it in a tuple as the value of the other attribute. However, It would not
make sense to compare a movie length with the certificate number of a movie
executive, or to take a len g th value from a Movies tuple and store it in the
c e rt# attribute of a MovieExec tuple.

If we create types:

CREATE TYPE CertType AS INTEGER;
CREATE TYPE LengthType AS INTEGER;

then we can declare ce rt# and presC# to be of type CertType instead of
INTEGER in their respective relation declarations, and we can declare leng th
to be of type LengthType in the Movies declaration. In that case, an object-
relational DBMS will intercept attempts to compare values of one type with
the other, or to use a value of one type in place of the other. O

A more powerful form of UDT declaration in SQL is similar to a class dec
laration in ODL, with some distinctions. First, key declarations for a relation
with a user-defined type are part of the table definition, not the type defini
tion; that is, many SQL relations can be declared to have the same UDT but
different keys and other constraints. Second, in SQL we do not treat relation
ships as properties. A relationship can be represented by a separate relation,

452 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

as was discussed in Section 4.10.5, or through references, which are covered in
Section 10.4.5. This form of UDT definition is:

CREATE TYPE T AS (<attribute declarations>);

E xam ple 10.14: Figure 10.17 shows two UDT’s, AddressType and StarType.
A tuple of type AddressType has two components, whose attributes are s t r e e t
and c ity . The types of these components are character strings of length 50 and
20, respectively. A tuple of type StarType also has two components. The first is
attribute name, whose type is a 30-character string, and the second is address,
whose type is itself a UDT AddressType, that is, a tuple with s t r e e t and c i ty
components. □

CREATE TYPE AddressType AS (
s t r e e t CHAR(50),
c i ty CHAR(20)

) ;

CREATE TYPE StarType AS (
name CHAR(30),
address AddressType

);

Figure 10.17: Two type definitions

10.4.2 M ethod Declarations in U D T ’s
The declaration of a method resembles the way a function in PSM is introduced;
see Section 9.4.1. There is no analog of PSM procedures as methods. That is,
every method returns a value of some type. While function declarations and
definitions in PSM are combined, a method needs both a declaration, which
follows the parenthesized list of attributes in the CREATE TYPE statement, and
a separate definition, in a CREATE METHOD statement. The actual code for the
method need not be PSM, although it could be. For example, the method body
could be Java with JDBC used to access the database.

A method declaration looks like a PSM function declaration, with the key
word METHOD replacing CREATE FUNCTION. However, SQL methods typically
have no arguments; they are applied to rows, just as ODL methods are ap
plied to objects. In the definition of the method, SELF refers to this tuple, if
necessary.

E xam ple 10.15: Let us extend the definition of the type AddressType of
Fig. 10.17 with a method houseNumber that extracts from the s t r e e t com
ponent the portion devoted to the house address. For instance, if the s t r e e t

10.4. USER-DEFINED TYPES IN SQL 453

component were ’ 123 Maple S t . ’ , then houseNumber should return ’ 123 ’ .
Exactly how houseNumber works is not visible in its declaration; the details are
left for the definition. The revised type definition is thus shown in Fig. 10.18.

CREATE TYPE AddressType AS (
s t r e e t CHAR(50),
c i ty CHAR(20)
)
METHOD houseNumberO RETURNS CHAR(IO);

Figure 10.18: Adding a method declaration to a UDT

We see the keyword METHOD, followed by the name of the method and a
parenthesized list of its arguments and their types. In this case, there are no ar
guments, but the parentheses are still needed. Had there been arguments, they
would have appeared, followed by their types, such as (a INT, b CHAR(5)).
□

10.4.3 Method Definitions
Separately, we need to define the method. A simple form of method definition
is:

CREATE METHOD <method name, arguments, and return type>
FOR <UDT name>

Cmethod body>

That is, the UDT for which the method is defined is indicated in a FOR clause.
The method definition need not be contiguous to, or part of, the definition of
the type to which it belongs.

E xam ple 10.16: For instance, we could define the method houseNumber from
Example 10.15 as in Fig. 10.19. We have omitted the body of the method
because accomplishing the intended separation of the string s t r in g as intended
is nontrivial, even if a general-purpose host language is used. □

CREATE METHOD houseNumberO RETURNS CHAR(10)
FOR AddressType
BEGIN

END;

Figure 10.19: Defining a method

454 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

10.4.4 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are
of that type. The form of relation declarations is like that of Section 2.3.3, but
the attribute declarations are omitted from the parenthesized list of elements,
and replaced by a clause with OF and the name of the UDT. That is, the
alternative form of a CREATE TABLE statement, using a UDT, is:

CREATE TABLE Ctable name> OF <UDT name>
(<list of elem ents>);

The parenthesized list of elements can include keys, foreign keys, and tuple-
based constraints. Note that all these elements are declared for a particular
table, not for the UDT. Thus, there can be several tables with the same UDT
as their row type, and these tables can have different constraints, and even
different keys. If there are no constraints or key declarations desired for the
table, then the parentheses are not needed.

E xam ple 10.17: We could declare MovieStar to be a relation whose tuples
are of type StarType by

CREATE TABLE MovieStar OF StarType (
PRIMARY KEY (name)

);

As a result, table MovieStar has two attributes, name and address. The first
attribute, name, is an ordinary character string, but the second, address, has
a type that is itself a UDT, namely the type AddressType. Attribute name is
a key for this relation, so it is not possible to have two tuples with the same
name. □

10.4.5 References
The effect of object identity in object-oriented languages is obtained in SQL
through the notion of a reference. A table may have a reference column that
serves as the “identity” for its tuples. This column could be the primary key of
the table, if there is one, or it could be a column whose values are generated and
maintained unique by the DBMS, for example. We shall defer to Section 10.4.6
the matter of defining reference columns until we first see how reference types
are used.

To refer to the tuples of a table with a reference column, an attribute may
have as its type a reference to another type. If T is a UDT, then REF(T) is the
type of a reference to a tuple of type T. Further, the reference may be given
a scope, which is the name of the relation whose tuples are referred to. Thus,
an attribute A whose values are references to tuples in relation R, where R is
a table whose type is the UDT T, would be declared by:

10.4. USER-DEFINED TYPES IN SQL 455

CREATE TYPE StarType AS (
name CHAR(30),
address AddressType,
bestMovie REF(MovieType) SCOPE Movies

);

Figure 10.20: Adding a best movie reference to StarType

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T.

E xam ple 10.18: Let us record in MovieStar the best movie for each star.
Assume that we have declared an appropriate relation Movies, and that the
type of this relation is the UDT MovieType; we shall define both MovleType
and Movies later, in Fig. 10.21. Figure 10.20 is a new definition of StarType
that includes an attribute bestMovies that is a reference to a movie. Now, if
relation MovieStar is defined to have the UDT of Fig. 10.20, then each star
tuple will have a component that refers to a Movies tuple — the star’s best
movie. □

10.4.6 Creating Object ID ’s for Tables
In order to refer to rows of a table, such as Movies in Example 10.18, that
table needs to have an “object-ID” for its tuples. Such a table is said to be
referenceable. In a CREATE TABLE statement where the type of the table is a
UDT (as in Section 10.4.4), we may include an element of the form:

REF IS <attribute name> <how generated>

The attribute name is a name given to the column that will serve as the object-
ID for tuples. The “how generated” clause can be:

1. SYSTEM GENERATED, meaning that the DBMS is responsible for maintain
ing a unique value in this column of each tuple, or

2. DERIVED, meaning that the DBMS will use the primary key of the relation
to produce unique values for this column.

E xam ple 10.19: Figure 10.21 shows how the UDT MovieType and relation
Movies could be declared so that Movies is referenceable. The UDT is declared
in lines (1) through (4). Then the relation Movies is defined to have this type in
lines (5) through (7). Notice that we have declared t i t l e and year, together,
to be the key for relation Movies in line (7).

We see in line (6) that the name of the “identity” column for Movies is
movielD. This attribute, which automatically becomes a fourth attribute of

456 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

1) CREATE TYPE MovieType AS (
2) t i t l e CHAR(30),
3) year INTEGER,
4) genre CHAR(10)

) ;

5) CREATE TABLE Movies OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7) PRIMARY KEY (t i t l e , year)

) ;

Figure 10.21: Creating a referenceable table

Movies, along with t i t l e , year, and genre, may be used in queries like any
other attribute of Movies.

Line (6) also says that the DBMS is responsible for generating the value of
movielD each time a new tuple is inserted into Movies. Had we replaced SYSTEM
GENERATED by DERIVED, then new tuples would get their value of movielD by
some calculation, performed by the system, on the values of the primary-key
attributes t i t l e and year taken from the new tuple. □

E xam ple 10.20: Now, let us see how to represent the many-many relationship
between movies and stars using references. Previously, we represented this
relationship by a relation like S ta rs ln that contains tuples with the keys of
Movies and MovieStar. As an alternative, we may define S ta rs ln to have
references to tuples from these two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s ta rID SYSTEM GENERATED,
PRIMARY KEY (name)

);

Then, we may declare the relation S ta rs ln to have two attributes, which
are references, one to a movie tuple and one to a star tuple. Here is a direct
definition of this relation:

CREATE TABLE S ta rs ln (
s t a r REF(StarType) SCOPE M ovieStar,
movie REF(MovieType) SCOPE Movies

);

Optionally, we could have defined a UDT as above, and then declared S ta rs ln
to be a table of that type. □

10.5. OPERATIONS ON OBJECT-RELATIONAL DATA 457

10.4.7 Exercises for Section 10.4
E xercise 10.4.1: For our running movies example, choose type names for the
attributes of each of the relations. Give attributes the same UDT if their values
can reasonably be compared or exchanged, and give them different UDT’s if
they should not have their values compared or exchanged.

E xercise 10.4.2: Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

b) PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

c) MarriageType, with the date of the marriage and references to the hus
band and wife.

E xercise 10.4.3: Redesign our running products database schema of Exer
cise 2.4.1 to use type declarations and reference attributes where appropriate.
In particular, in the relations PC, Laptop, and P r in te r make the model at
tribute be a reference to the Product tuple for that model.

E xercise 10.4.4: In Exercise 10.4.3 we suggested that model numbers in the
tables PC, Laptop, and P r in te r could be references to tuples of the Product
table. Is it also possible to make the model attribute in Product a reference to
the tuple in the relation for that type of product? Why or why not?

Exercise 10.4.5: Redesign our running battleships database schema of Exer
cise 2.4.3 to use type declarations and reference attributes where appropriate.
Look for many-one relationships and try to represent them using an attribute
with a reference type.

10.5 Operations on Object-Relational Data
All appropriate SQL operations from previous chapters apply to tables that are
declared with a UDT or that have attributes whose type is a UDT. There are
also some entirely new operations we can use, such as reference-following. How
ever, some familiar operations, especially those that access or modify columns
whose type is a UDT, involve new syntax.

10.5.1 Following References
Suppose a; is a value of type REF(T). Then x refers to some tuple t of type T.
We can obtain tuple t itself, or components of t, by two means:

458 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

1. Operator -> has essentially the same meaning as this operator does in C.
That is, if X is a reference to a tuple t, and a is an attribute of t, then
x->a is the value of the attribute a in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer
enced.

E xam ple 10.21: Let us use the relation S ta rs ln from Example 10.20 to find
the movies in which Brad P itt starred. Recall that the schema is

S ta r s ln (s t a r , movie)

where s t a r and movie are references to tuples of MovieStar and Movies, re
spectively. A possible query is:

1) SELECT DEREF(movie)
2) FROM S ta rs ln
3) WHERE star->nam e = ’Brad P i t t ’ ;

In line (3), the expression star->nam e produces the value of the name com
ponent of the MovieStar tuple referred to by the s tax component of any given
S ta rs ln tuple. Thus, the WHERE clause identifies those S ta rs ln tuples whose
s t a r components are references to the Brad-Pitt MovieStar tuple. Line (1)
then produces the movie tuple referred to by the movie component of those
tuples. All three attributes — t i t l e , year, and genre — will appear in the
printed result.

Note that we could have replaced line (1) by:

1) SELECT movie

However, had we done so, we would have gotten a list of system-generated
gibberish that serves as the internal unique identifiers for certain movie tuples.
We would not see the information in the referenced tuples. □

10.5.2 Accessing Components of Tuples with a UDT
When we define a relation to have a UDT, the tuples must be thought of as single
objects, rather than lists with components corresponding to the attributes of
the UDT. As a case in point, consider the relation Movies declared in Fig. 10.21.
This relation has UDT MovieType, which has three attributes: t i t l e , year,
and genre. However, a tuple t in Movies has only one component, not three.
That component is the object itself.

If we “drill down” into the object, we can extract the values of the three
attributes in the type MovieType, as well as use any methods defined for that
type. However, we have to access these attributes properly, since they are not
attributes of the tuple itself. Rather, every UDT has an implicitly defined
observer method for each attribute of that UDT. The name of the observer

10.5. OPERATIONS ON OBJECT-RELATIONAL DATA 459

method for an attribute x is x(). We apply this method as we would any other
method for this UDT; we attach it with a dot to an expression that evaluates
to an object of this type. Thus, if t is a variable whose value is of type T, and
a: is an attribute of T, then t.x() is the value of x in the tuple (object) denoted
by t.

E xam ple 10.22: Let us find, from the relation Movies of Fig. 10.21 the year(s)
of movies with title King Kong. Here is one way to do so:

SELECT m.yearO
FROM Movies m
WHERE m .t i t le O = ’King Kong’ ;

Even though the tuple variable m would appear not to be needed here,
we need a variable whose value is an object of type MovieType — the UDT
for relation Movies. The condition of the WHERE clause compares the constant
’King Kong’ to the value of m . t i t le O , the observer method for attribute
t i t l e applied to a MovieType object m. Similarly, the value in the SELECT
clause is expressed m .yearO ; this expression applies the observer method for
year to the object m. □

In practice, object-relational DBMS’s do not use method syntax to extract
an attribute from an object. Rather, the parentheses are dropped, and we shall
do so in what follows. For instance, the query of Example 10.22 will be written:

SELECT m.year
FROM Movies m
WHERE m.title = ’King Kong’;

The tuple variable m is still necessary, however.
The dot operator can be used to apply methods as well as to find attribute

values within objects. These methods should have the parentheses attached,
even if they take no arguments.

E xam ple 10.23: Suppose relation MovieStar has been declared to have UDT
StarType, which we should recall from Example 10.14 has an attribute address
of type AddressType. That type, in turn, has a method houseNumberO, which
extracts the house number from an object of type AddressType (see Exam
ple 10.15). Then the query

SELECT MAX(s.address.houseNumber())
FROM MovieStar s

extracts the address component from a StarType object s, then applies the
houseNumberO method to that AddressType object. The result returned is
the largest house number of any movie star. □

460 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

10.5.3 Generator and M utator Functions
In order to create data that conforms to a UDT, or to change components
of objects with a UDT, we can use two kinds of methods that are created
automatically, along with the observer methods, whenever a UDT is defined.
These are:

1. A generator method. This method has the name of the type and no
argument. It may be invoked without being applied to any object. That
is, if T is a UDT, then T() returns an object of type T , with no values in
its various components.

2. Mutator methods. For each attribute x of UDT T , there is a mutator
method x(v). When applied to an object of type T, it changes the x
attribute of that object to have value v. Notice that the mutator and
observer method for an attribute each have the name of the attribute,
but differ in that the mutator has an argument.

E xam ple 10.24: We shall write a PSM procedure that takes as arguments
a street, a city, and a name, and inserts into the relation MovieStar (of type
StarType according to Example 10.17) an object constructed from these values,
using calls to the proper generator and mutator functions. Recall from Exam
ple 10.14 that objects of StarType have a name component that is a character
string, but an address component that is itself an object of type AddressType.
The procedure In s e r tS ta r is shown in Fig. 10.22.

1) CREATE PROCEDURE In s e r tS ta r (
2) IN s CHAR(50),
3) IN c CHAR(20),
4) IN n CHAR(30)

)
5) DECLARE newAddr AddressType;
6) DECLARE newStar S tarT ype;

BEGIN
7) SET newAddr = AddressType() ;
8) SET newStar = S tarType() ;
9) newAddr. s t r e e t (s) ;

10) newAddr. c i t y (c) ;
11) newSt a r .nam e(n);
12) new Star.address(new A ddr);
13) INSERT INTO MovieStar VALUES(newStar);

END;

Figure 10.22: Creating and storing a StarType object

10.5. OPERATIONS ON OBJECT-RELATIONAL DATA 461

Lines (2) through (4) introduce the arguments s, c, and n, which will provide
values for a street, city, and star name, respectively. Lines (5) and (6) declare
two local variables. Each is of one of the UDT’s involved in the type for objects
that exist in the relation MovieStar. At lines (7) and (8) we create empty
objects of each of these two types.

Lines (9) and (10) put real values in the object newAddr; these values are
taken from the procedure arguments that provide a street and a city. Line (11)
similarly installs the argument n as the value of the name component in the
object newStar. Then line (12) takes the entire newAddr object and makes it
the value of the address component in newStar. Finally, line (13) inserts the
constructed object into relation MovieStar. Notice that, as always, a relation
that has a UDT as its type has but a single component, even if that component
has several attributes, such as name and address in this example.

To insert a star into MovieStar, we can call procedure In se rtS ta r .

CALL I n s e r tS ta r (’345 Spruce S t . ’ , ’G lendale’ , ’Gwyneth P altrow ’) ;

is an example. □

It is much simpler to insert objects into a relation with a UDT if your DBMS
provides a generator function that takes values for the attributes of the UDT and
returns a suitable object. For example, if we have functions AddressType(s,c)
and S tarT ype(n,a) that return objects of the indicated types, then we can
make the insertion at the end of Example 10.24 with an INSERT statement of a
familiar form:

INSERT INTO MovieStar VALUES(
StarType(’Gwyneth P altrow ’ ,

AddressType(’345 Spruce S t . ’ , ’G lendale’))) ;

10.5.4 Ordering Relationships on U D T ’s
Objects that are of some UDT are inherently abstract, in the sense that there
is no way to compare two objects of the same UDT, either to test whether they
are “equal” or whether one is less than another. Even two objects that have all
components identical will not be considered equal unless we tell the system to
regard them as equal. Similarly, there is no obvious way to sort the tuples of
a relation that has a UDT unless we define a function that tells which of two
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or
both an equality and a “less than” test. For instance, we cannot eliminate
duplicates if we can’t tell whether two tuples are equal. We cannot group by an
attribute whose type is a UDT unless there is an equality test for that UDT.
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause
unless we can compare two elements.

462 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

To specify an ordering or comparison, SQL allows us to issue a CREATE
ORDERING statement for any UDT. There are a number of forms this statement
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T EQUALS ONLY BY STATE;

says that two members of UDT T are considered equal if all of their
corresponding components are equal. There is no < defined on objects of
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be
performed on objects of UDT T. To tell how objects x \ and x 2 compare,
we apply the function F to these objects. This function must be writ
ten so that F (x i ,x 2) < 0 whenever we want to conclude that x\ < x 2;
F (x \ ,x 2) = 0 means that X\ = x 2, and F (x i ,x 2) > 0 means that x \ > x 2.
If we replace “ORDERING FULL” with “EQUALS ONLY,” then F (x i ,x 2) = 0
indicates that x\ — x 2, while any other value of F (x i ,x 2) means that
x i ^ x2. Comparison by < is impossible in this case.

E xam ple 10.25: Let us consider a possible ordering on the UDT StarType
from Example 10.14. If we want only an equality on objects of this UDT, we
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That statement says that two objects of StarType are equal if and only if their
names are equal as character strings, and their addresses are equal as objects
of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an
object of that type is not even equal to itself. Thus, we also need to create
at least an equality test for AddressType. A simple way to do so is to declare
that two AddressType objects are equal if and only if their streets and cities
are each equal as strings. We could do so by:

CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE;

Alternatively, we could define a complete ordering of AddressType objects.
One reasonable ordering is to order addresses first by cities, alphabetically, and
among addresses in the same city, by street address, alphabetically. To do so, we
have to define a function, say AddrLEG, that takes two AddressType arguments
and returns a negative, zero, or positive value to indicate that the first is less
than, equal to, or greater than the second. We declare:

10.5. OPERATIONS ON OBJECT-RELATIONAL DATA 463

CREATE ORDERING FOR AddressType
ORDERING FULL BY RELATIVE WITH AddrLEG;

The function AddrLEG is shown in Fig. 10.23. Notice that if we reach line (7),
it must be that the two c i ty components are the same, so we compare the
s t r e e t components. Likewise, if we reach line (9), the only remaining possi
bility is that the cities are the same and the first street precedes the second
alphabetically. □

1) CREATE FUNCTION AddrLEG(
2) x l AddressType,
3) x2 AddressType
4)) RETURNS INTEGER

5) IF x l .c i ty O < x2 . c i t y () THEN RETURN(-1)
6) ELSEIF x l .c i ty O > x 2 .c i ty () THEN RETURN(1)
7) ELSEIF x l . s t r e e t () < x 2 .s t r e e t () THEN RETURN(-1)
8) ELSEIF x1 .s t r e e t () = x 2 .s t r e e t () THEN RETURN(0)
9) ELSE RETURN(1)

END IF;

Figure 10.23: A comparison function for address objects

In practice, commercial DBMS’s each have their own way of allowing the
user to define comparisons for a UDT. In addition to the two approaches men
tioned above, some of the capabilities offered are:

a) Strict Object Equality. Two objects are equal if and only if they are the
same object.

b) Method-Defined Equality. A function is applied to two objects and returns
true or false, depending on whether or not the two objects should be
considered equal.

c) Method-Defined Mapping. A function is applied to one object and returns
a real number. Objects are compared by comparing the real numbers
returned.

10.5.5 Exercises for Section 10.5
E xercise 10.5.1: Use the S ta rs ln relation of Example 10.20 and the Movies
and MovieStar relations accessible through S ta rs ln to write the following quer
ies:

a) Find the names of the stars of Dogma.

464 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

! b) Find the titles and years of all movies in which at least one star lives in
Malibu.

c) Find all the movies (objects of type MovieType) that starred Melanie
Griffith.

! d) Find the movies (title and year) with at least five stars.

Exercise 10.5 .2 : Using your schema from Exercise 10.4.3, write the following
queries. Don’t forget to use references whenever appropriate.

a) Find the manufacturers of PC’s with a hard disk larger than 60 gigabytes.

b) Find the manufacturers of laser printers.

! c) Produce a table giving for each model of laptop, the model of the lap
top having the highest processor speed of any laptop made by the same
manufacturer.

Exercise 10.5.3: Using your schema from Exercise 10.4.5, write the following
queries. Don’t forget to use references whenever appropriate and avoid joins
(i.e., subqueries or more than one tuple variable in the FROM clause).

a) Find the ships with a displacement of more than 35,000 tons.

b) Find the battles in which at least one ship was sunk.

! c) Find the classes that had ships launched after 1930.

!! d) Find the battles in which at least one US ship was damaged.

Exercise 10.5.4: Assuming the function AddrLEG of Fig. 10.23 is available,
write a suitable function to compare objects of type StarType, and declare your
function to be the basis of the ordering of StarType objects.

! Exercise 10.5.5: Write a procedure to take a star name as argument and
delete from S ta rs ln and MovieStar all tuples involving that star.

10.6 On-Line Analytic Processing
An important application of databases is examination of data for patterns or
trends. This activity, called OLAP (standing for On-Line Analytic Processing
and pronounced “oh-lap”), generally involves highly complex queries that use
one or more aggregations. These queries are often termed OLAP queries or
decision-support queries. Some examples will be given in Section 10.6.2. A
typical example is for a company to search for those of its products that have
markedly increasing or decreasing overall sales.

Decision-support queries typically examine very large amounts of data, even
if the query results are small. In contrast, common database operations, such

10.6. ON-LINE ANALYTIC PROCESSING 465

as bank deposits or airline reservations, each touch only a tiny portion of the
database; the latter type of operation is often referred to as OLTP (On-Line
Transaction Processing, spoken “oh-ell-tee-pee”).

A recent trend in DBMS’s is to provide specialized support for OLAP
queries. For example, systems often support a “data cube” in some way. We
shall discuss the architecture of these systems in Section 10.7.

10.6.1 OLAP and Data Warehouses
It is common for OLAP applications to take place in a separate copy of the
master database, called a data warehouse. Data from many separate databases
may be integrated into the warehouse. In a common scenario, the warehouse
is only updated overnight, while the analysts work on a frozen copy during the
day. The warehouse data thus gets out of date by as much as 24 hours, which
limits the timeliness of its answers to OLAP queries, but the delay is tolerable
in many decision-support applications.

There are several reasons why data warehouses play an important role in
OLAP applications. First, the warehouse may be necessary to organize and
centralize data in a way that supports OLAP queries; the data may initially
be scattered across many different databases. But often more important is the
fact that OLAP queries, being complex and touching much of the data, take
too much time to be executed in a transaction-processing system with high
throughput requirements. Recall the discussion of serializable transactions in
Section 6.6. Trying to run a long transaction that needed to touch much of
the database serializably with other transactions would stall ordinary OLTP
operations more than could be tolerated. For instance, recording new sales
as they occur might not be permitted if there were a concurrent OLAP query
computing average sales.

10.6.2 OLAP Applications
A common OLAP application uses a warehouse of sales data. Major store chains
will accumulate terabytes of information representing every sale of every item
at every store. Queries that aggregate sales into groups and identify significant
groups can be of great use to the company in predicting future problems and
opportunities.

E xam ple 10.26: Suppose the Aardvark Automobile Co. builds a data ware
house to analyze sales of its cars. The schema for the warehouse might be:

S a le s (se ria lN o , d a te , d e a le r , p ric e)
A utos(serialN o, model, co lo r)
Dealers(nam e, c i ty , s t a t e , phone)

A typical decision-support query might examine sales on or after April 1, 2006
to see how the recent average price per vehicle varies by state. Such a query is
shown in Fig. 10.24.

466 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

SELECT s t a t e , AVG(price)
FROM S a le s , D ealers
WHERE S a le s .d e a le r = Dealers.nam e AND

d a te >= >2006-01-04’
GROUP BY s ta te ;

Figure 10.24: Find average sales price by state

Notice how the query of Fig. 10.24 touches much of the data of the database,
as it classifies every recent S ales fact by the state of the dealer that sold it.
In contrast, a typical OLTP query such as “find the price at which the auto
with serial number 123 was sold,” would touch only a single tuple of the data,
provided there was an index on serial number. □

For another OLAP example, consider a credit-card company trying to decide
whether applicants for a card are likely to be credit-worthy. The company
creates a warehouse of all its current customers and their payment history.
OLAP queries search for factors, such as age, income, home-ownership, and
zip-code, that might help predict whether customers will pay their bills on time.
Similarly, hospitals may use a warehouse of patient data — their admissions,
tests administered, outcomes, diagnoses, treatments, and so on — to analyze
for risks and select the best modes of treatment.

10.6.3 A Multidimensional View of OLAP Data
In typical OLAP applications there is a central relation or collection of data,
called the fact table. A fact table represents events or objects of interest, such
as sales in Example 10.26. Often, it helps to think of the objects in the fact
table as arranged in a multidimensional space, or “cube.” Figure 10.25 suggests
three-dimensional data, represented by points within the cube; we have called
the dimensions car, dealer, and date, to correspond to our earlier example of
automobile sales. Thus, in Fig. 10.25 we could think of each point as a sale of
a single automobile, while the dimensions represent properties of that sale.

Figure 10.25: Data organized in a multidimensional space

10.6. ON-LINE ANALYTIC PROCESSING 467

A data space such as Fig. 10.25 will be referred to informally as a “data
cube,” or more precisely as a raw-data cube when we want to distinguish it
from the more complex “data cube” of Section 10.7. The latter, which we shall
refer to as a formal data cube when a distinction from the raw-data cube is
needed, differs from the raw-data cube in two ways:

1. It includes aggregations of the data in all subsets of dimensions, as well
as the data itself.

2. Points in the formal data cube may represent an initial aggregation of
points in the raw-data cube. For instance, instead of the “car” dimension
representing each individual car (as we suggested for the raw-data cube),
that dimension might be aggregated by model only. There are points of a
formal data cube that represent the total sales of all cars of a given model
by a given dealer on a given day.

The distinctions between the raw-data cube and the formal data cube are
reflected in the two broad directions that have been taken by specialized systems
that support cube-structured data for OLAP:

1. ROLAP, or Relational OLAP. In this approach, data may be stored in
relations with a specialized structure called a “star schema,” described
in Section 10.6.4. One of these relations is the “fact table,” which con
tains the raw, or unaggregated, data, and corresponds to what we called
the raw-data cube. Other relations give information about the values
along each dimension. The query language, index structures, and other
capabilities of the system may be tailored to the assumption that data is
organized this way.

2. MOLAP, or Multidimensional OLAP. Here, a specialized structure, the
formal “data cube” mentioned above, is used to hold the data, includ
ing its aggregates. Nonrelational operators may be implemented by the
system to support OLAP queries on data in this structure.

10.6.4 Star Schemas
A star schema consists of the schema for the fact table, which links to several
other relations, called “dimension tables.” The fact table is at the center of the
“star,” whose points are the dimension tables. A fact table normally has several
attributes that represent dimensions, and one or more dependent attributes
that represent properties of interest for the point as a whole. For instance,
dimensions for sales data might include the date of the sale, the place (store)
of the sale, the type of item sold, the method of payment (e.g., cash or a credit
card), and so on. The dependent attribute(s) might be the sales price, the cost
of the item, or the tax, for instance.

E xam ple 10.27: The S ales relation from Example 10.26

468 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

S a le s (se ria lN o , d a te , d e a le r , p r ic e)

is a fact table. The dimensions are:

1. seria lN o , representing the automobile sold, i.e., the position of the point
in the space of possible automobiles.

2. date , representing the day of the sale, i.e., the position of the event in
the time dimension.

3. d ea le r, representing the position of the event in the space of possible
dealers.

The one dependent attribute is p r ic e , which is what OLAP queries to this
database will typically request in an aggregation. However, queries asking for
a count, rather than sum or average price would also make sense, e.g., “list the
total number of sales for each dealer in the month of May, 2006.” □

Supplementing the fact table are dimension tables describing the values
along each dimension. Typically, each dimension attribute of the fact table
is a foreign key, referencing the key of the corresponding dimension table, as
suggested by Fig. 10.26. The attributes of the dimension tables also describe
the possible groupings that would make sense in a SQL GROUP BY query. An
example should make the ideas clearer.

Dimension Dimension
table table

table table

Figure 10.26: The dimension attributes in the fact table reference the keys of
the dimension tables

E xam ple 10.28: For the automobile data of Example 10.26, two of the three
dimension tables might be:

10.6. ON-LINE ANALYTIC PROCESSING 469

A utos(serialN o , model, co lo r)
D ealers(nam e, c i ty , s t a t e , phone)

Attribute seria lN o in the fact table S ales is a foreign key, referencing seria lN o
of dimension table Autos.2 The attributes Autos .model and A utos. co lo r give
properties of a given auto. If we join the fact table Sales with the dimension
table Autos, then the attributes model and co lo r may be used for grouping
sales in interesting ways. For instance, we can ask for a breakdown of sales by
color, or a breakdown of sales of the Gobi model by month and dealer.

Similarly, attribute d ea le r of Sales is a foreign key, referencing name of
the dimension table D ealers. If S ales and D ealers are joined, then we have
additional options for grouping our data; e.g., we can ask for a breakdown of
sales by state or by city, as well as by dealer.

One might wonder where the dimension table for time (the d a te attribute of
Sales) is. Since time is a physical property, it does not make sense to store facts
about time in a database, since we cannot change the answer to questions such
as “in what year does the day July 5, 2007 appear?” However, since grouping
by various time units, such as weeks, months, quarters, and years, is frequently
desired by analysts, it helps to build into the database a notion of time, as if
there were a time “dimension table” such as

Days(day, week, month, year)

A typical tuple of this imaginary “relation” would be (5,27,7,2007), represent
ing July 5, 2007. The interpretation is that this day is the fifth day of the
seventh month of the year 2007; it also happens to fall in the 27th full week
of the year 2007. There is a certain amount of redundancy, since the week
is calculable from the other three attributes. However, weeks axe not exactly
commensurate with months, so we cannot obtain a grouping by months from
a grouping by weeks, or vice versa. Thus, it makes sense to imagine that both
weeks and months are represented in this “dimension table.” □

10.6.5 Slicing and Dicing
We can think of the points of the raw-data cube as partitioned along each
dimension at some level of granularity. For example, in the time dimension, we
might partition (“group by” in SQL terms) according to days, weeks, months,
years, or not partition at all. For the cars dimension, we might partition by
model, by color, by both model and color, or not partition. For dealers, we can
partition by dealer, by city, by state, or not partition.

A choice of partition for each dimension “dices” the cube, as suggested by
Fig. 10.27. The result is that the cube is divided into smaller cubes that repre
sent groups of points whose statistics are aggregated by a query that performs
this partitioning in its GROUP BY clause. Through the WHERE clause, a query also

2It h ap p en s th a t se r ia lN o is also a key for th e S a le s re la tio n , b u t th e re need n o t be an
a t tr ib u te th a t is b o th a key for th e fact tab le an d a foreign key fo r som e dim ension tab le .

470 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

/

date

Figure 10.27: Dicing the cube by partitioning along each dimension

has the option of focusing on particular partitions along one or more dimensions
(i.e., on a particular “slice” of the cube).

E xam ple 10.29: Figure 10.28 suggests a query in which we ask for a slice in
one dimension (the date), and dice in two other dimensions (car and dealer).
The date is divided into four groups, perhaps the four years over which data
has been accumulated. The shading in the diagram suggests that we are only
interested in one of these years.

The cars are partitioned into three groups, perhaps sedans, SUV’s, and
convertibles, while the dealers are partitioned into two groups, perhaps the
eastern and western regions. The result of the query is a table giving the total
sales in six categories for the one year of interest. □

date — *-

Figure 10.28: Selecting a slice of a diced cube

The general form of a so-called “slicing and dicing” query is thus:

SELECT <grouping attributes and aggregations>
FROM <fact table joined with some dimension tables>
WHERE <certain attributes are constant>
GROUP BY <grouping attributes > ;

E xam ple 10.30: Let us continue with our automobile example, but include
the conceptual Days dimension table for time discussed in Example 10.28. If

10.6. ON-LINE ANALYTIC PROCESSING 471

Drill-Down and Roll-Up

Example 10.30 illustrates two common patterns in sequences of queries
that slice-and-dice the data cube.

1. Drill-down is the process of partitioning more finely and/or focusing
on specific values in certain dimensions. Each of the steps except
the last in Example 10.30 is an instance of drill-down.

2. Roll-up is the process of partitioning more coarsely. The last step,
where we grouped by years instead of months to eliminate the effect
of randomness in the data, is an example of roll-up.

the Gobi isn’t selling as well as we thought it would, we might try to find out
which colors are not doing well. This query uses only the Autos dimension table
and can be written in SQL as:

SELECT co lo r , SUM(price)
FROM S ales NATURAL JOIN Autos
WHERE model = ’Gobi’
GROUP BY co lo r;

This query dices by color and then slices by model, focusing on a particular
model, the Gobi, and ignoring other data.

Suppose the query doesn’t tell us much; each color produces about the same
revenue. Since the query does not partition on time, we only see the total over
all time for each color. We might suppose that the recent trend is for one or
more colors to have weak sales. We may thus issue a revised query that also
paxtitions time by month. This query is:

SELECT co lo r , month, SUM(price)
FROM (Sales NATURAL JOIN Autos) JOIN Days ON d ate = day
WHERE model = ’Gobi’
GROUP BY c o lo r, month;

It is important to remember that the Days relation is not a conventional stored
relation, although we may treat it as if it had the schema

Days(day, week, month, year)

The ability to use such a “relation” is one way that a system specialized to
OLAP queries could differ from a conventional DBMS.

We might discover that red Gobis have not sold well recently. The next
question we might ask is whether this problem exists at all dealers, or whether

472 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

only some dealers have had low sales of red Gobis. Thus, we further focus the
query by looking at only red Gobis, and we partition along the dealer dimension
as well. This query is:

SELECT d e a le r , month, SUM(price)
FROM (S ales NATURAL JOIN Autos) JOIN Days ON d a te = day
WHERE model = ’Gobi’ AND co lo r = ’r e d ’
GROUP BY month, d ea le r;

At this point, we find that the sales per month for red Gobis are so small
that we cannot observe any trends easily. Thus, we decide that it was a mistake
to partition by month. A better idea would be to partition only by years, and
look at only the last two years (2006 and 2007, in this hypothetical example).
The final query is shown in Fig. 10.29. □

SELECT d e a le r , y ea r, SUM(price)
FROM (S ales NATURAL JOIN Autos) JOIN Days ON d ate = day
WHERE model = ’Gobi’ AND

co lo r = ’r e d ’ AND
(year = 2006 OR year = 2007)

GROUP BY y ea r, d ea le r;

Figure 10.29: Final slicing-and-dicing query about red Gobi sales

10.6.6 Exercises for Section 10.6
Exercise 10.6.1: An on-line seller of computers wishes to maintain data about
orders. Customers can order their PC with any of several processors, a selected
amount of main memory, any of several disk units, and any of several CD or
DVD readers. The fact table for such a database might be:

0 rd e rs (c u s t , d a te , p roc , memory, hd, od, quant, p ric e)

We should understand attribute cu st to be an ID that is the foreign key for
a dimension table about customers, and understand attributes proc, hd (hard
disk), and od (optical disk: CD or DVD, typically) analogously. For example,
an hd ID might be elaborated in a dimension table giving the manufacturer of
the disk and several disk characteristics. The memory attribute is simply an
integer: the number of megabytes of memory ordered. The quant attribute is
the number of machines of this type ordered by this customer, and the p r ic e
attribute is the total cost of each machine ordered.

a) Which are dimension attributes, and which are dependent attributes?

10.7. DATA CUBES 473

b) For some of the dimension attributes, a dimension table is likely to be
needed. Suggest appropriate schemas for these dimension tables.

! E xercise 10.6.2: Suppose that we want to examine the data of Exercise 10.6.1
to find trends and thus predict which components the company should order
more of. Describe a series of drill-down and roll-up queries that could lead to
the conclusion that customers are beginning to prefer a DVD drive to a CD
drive.

10.7 Data Cubes
In this section, we shall consider the “formal” data cube and special operations
on data presented in this form. Recall from Section 10.6.3 that the formal data
cube (just “data cube” in this section) precomputes all possible aggregates in
a systematic way. Surprisingly, the amount of extra storage needed is often
tolerable, and as long as the warehoused data does not change, there is no
penalty incurred trying to keep all the aggregates up-to-date.

In the data cube, it is normal for there to be some aggregation of the raw
data of the fact table before it is entered into the data-cube and its further
aggregates computed. For instance, in our cars example, the dimension we
thought of as a serial number in the star schema might be replaced by the
model of the car. Then, each point of the data cube becomes a description of a
model, a dealer and a date, together with the sum of the sales for that model,
on that date, by that dealer. We shall continue to call the points of the (formal)
data cube a “fact table,” even though the interpretation of the points may be
slightly different from fact tables in a star schema built from a raw-data cube.

10.7.1 The Cube Operator
Given a fact table F, we can define an augmented table C U B E (F) that adds
an additional value, denoted *, to each dimension. The * has the intuitive
meaning “any,” and it represents aggregation along the dimension in which
it appears. Figure 10.30 suggests the process of adding a border to the cube
in each dimension, to represent the * value and the aggregated values that
it implies. In this figure we see three dimensions, with the lightest shading
representing aggregates in one dimension, darker shading for aggregates over
two dimensions, and the darkest cube in the corner for aggregation over all
three dimensions. Notice that if the number of values along each dimension
is reasonably large, then the “border” represents only a small addition to the
volume of the cube (i.e., the number of tuples in the fact table). In that case,
the size of the stored data C U B E (F) is not much greater than the size of F
itself.

A tuple of the table C U B E (F) that has * in one or more dimensions will
have for each dependent attribute the sum (or another aggregate function) of
the values of that attribute in all the tuples that we can obtain by replacing

474 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

Figure 10.30: The cube operator augments a data cube with a border of aggre
gations in all combinations of dimensions

the *’s by real values. In effect, we build into the data the result of aggregating
along any set of dimensions. Notice, however, that the C U B E operator does
not support aggregation at intermediate levels of granularity based on values in
the dimension tables. For instance, we may either leave data broken down by
day (or whatever the finest granularity for time is), or we may aggregate time
completely, but we cannot, with the C U B E operator alone, aggregate by weeks,
months, or years.

E xam ple 10.31: Let us reconsider the Aardvark database from Example 10.26
in the light of what the C U B E operator can give us. Recall the fact table from
that example is

S ales(se ria lN o , d a te , d e a le r , p rice)

However, the dimension represented by serialN o is not well suited for the cube,
since the serial number is a key for Sales. Thus, summing the price over all
dates, or over all dealers, but keeping the serial number fixed has no effect; we
would still get the “sum” for the one auto with that serial number. A more
useful data cube would replace the serial number by the two attributes — model
and color — to which the serial number connects Sales via the dimension table
Autos. Notice that if we replace serialN o by model and color, then the cube
no longer has a key among its dimensions. Thus, an entry of the cube would
have the total sales price for all automobiles of a given model, with a given
color, by a given dealer, on a given date.

There is another change that is useful for the data-cube implementation
of the Sales fact table. Since the C U B E operator normally sums dependent
variables, and we might want to get average prices for sales in some category,
we need both the sum of the prices for each category of automobiles (a given
model of a given color sold on a given day by a given dealer) and the total
number of sales in that category. Thus, the relation Sales to which we apply
the C U B E operator is

10.7. DATA CUBES 475

Sales(m odel, co lo r, d a te , d e a le r , v a l , cn t)

The attribute v a l is intended to be the total price of all automobiles for the
given model, color, date, and dealer, while cn t is the total number of automo
biles in that category.

Now, let us consider the relation CUBE(Sales). A hypothetical tuple that
would be in CUBE(Sales) is:

(’Gobi’ , ’r e d ’ , ’2001-05-21’ , ’F riend ly F red ’ , 45000, 2)

The interpretation is that on May 21, 2001, dealer Friendly Fred sold two red
Gobis for a total of $45,000. In S ales, this tuple might appear as well, or there
could be in Sales two tuples, each with a cn t of 1, whose v a l’s summed to
45,000.

The tuple

(’Gobi’ , *, ’2001-05-21’ , ’F riend ly F red ’ , 152000, 7)

says that on May 21, 2001, Friendly Fred sold seven Gobis of all colors, for
a total price of $152,000. Note that this tuple is in CUBE(Sales) but not in
Sales.

Relation CUBE(Sales) also contains tuples that represent the aggregation
over more than one attribute. For instance,

(’Gobi’ , *, ’2001-05-21’ , *, 2348000, 100)

says that on May 21, 2001, there were 100 Gobis sold by all the dealers, and
the total price of those Gobis was $2,348,000.

(’Gobi’ , *, *, *, 1339800000, 58000)

Says that over all time, dealers, and colors, 58,000 Gobis have been sold for a
total price of $1,339,800,000. Lastly, the tuple

(*, *, *, *, 3521727000, 198000)

tells us that total sales of all Aardvark models in all colors, over all time at all
dealers is 198,000 cars for a total price of $3,521,727,000. □

10.7.2 The Cube Operator in SQL
SQL gives us a way to apply the cube operator within queries. If we add the
term WITH CUBE to a group-by clause, then we get not only the tuple for each
group, but also the tuples that represent aggregation along one or more of the
dimensions along which we have grouped. These tuples appear in the result
with NULL where we have used *.

476 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

E xam ple 10.32 : We can construct a materialized view that is the data cube
we called CUBE(Sales) in Example 10.31 by the following:

CREATE MATERIALIZED VIEW SalesCube AS
SELECT model, c o lo r , d a te , d e a le r , SUM(val), SUM(cnt)
FROM S ales
GROUP BY model, co lo r , d a te , d e a le r WITH CUBE;

The view SalesCube will then contain not only the tuples that are implied by
the group-by operation, such as

(’Gobi’ , ’r e d ’ , ’2001-05-21’ , ’F rien d ly F red ’ , 45000, 2)

but will also contain those tuples of C U B E (S a le s) that are constructed by rolling
up the dimensions listed in the GROUP BY. Some examples of such tuples would
be:

(’Gobi’ , NULL, ’2001-05-21’ , ’F rien d ly F red ’ , 152000, 7)
(’Gobi’ , NULL, ’2001-05-21’ , NULL, 2348000, 100)
(’Gobi’ , NULL, NULL, NULL, 1339800000, 58000)
(NULL, NULL, NULL, NULL, 3521727000, 198000)

Recall that NULL is used to indicate a rolled-up dimension, equivalent to the *
we used in the abstract C U B E operator’s result. □

A variant of the CUBE operator, called ROLLUP, produces the additional ag
gregated tuples only if they aggregate over a tail of the sequence of grouping
attributes. We indicate this option by appending WITH ROLLUP to the group-by
clause.

E xam ple 10.33: We can get the part of the data cube for S a les that is
constructed by the ROLLUP operator with:

CREATE MATERIALIZED VIEW SalesR ollup AS
SELECT model, c o lo r , d a te , d e a le r , SUM(val), SUM(cnt)
FROM S ales
GROUP BY model, co lo r , d a te , d e a le r WITH ROLLUP;

The view SalesR ollup will contain tuples

(’Gobi’ , ’r e d ’ , ’2001-05-21’ , ’F rien d ly F red ’ , 45000, 2)
(’Gobi’ , ’r e d ’ , ’2001-05-21’ , NULL, 3678000, 135)
(’Gobi’ , ’r e d ’ , NULL, NULL, 657100000, 34566)
(’Gobi’ , NULL, NULL, NULL, 1339800000, 58000)
(NULL, NULL, NULL, NULL, 3521727000, 198000)

because these tuples represent aggregation along some dimension and all di
mensions, if any, that follow it in the list of grouping attributes.

However, S alesR ollup would not contain tuples such as

10.7. DATA CUBES 477

(’Gobi’ , NULL, ’2001-05-21’ , ’F riend ly F red ’ , 152000, 7)
(’Gobi’ , NULL, ’2001-05-21’ , NULL, 2348000, 100)

These each have NULL in a dimension (co lo r in both cases) but do not have
NULL in one or more of the following dimension attributes. □

10.7.3 Exercises for Section 10.7
Exercise 10.7.1: What is the ratio of the size of CUBE(F) to the size of F if
fact table F has the following characteristics?

a) F has ten dimension attributes, each with ten different values.

b) F has ten dimension attributes, each with two different values.

E xercise 10.7.2: Use the materialized view SalesCube from Example 10.32
to answer the following queries:

a) Find the total sales of blue cars for each dealer.

b) Find the total number of green Gobis sold by dealer “Smilin’ Sally.”

c) Find the average number of Gobis sold on each day of March, 2007 by
each dealer.

E xercise 10.7.3: What help, if any, would the rollup SalesR ollup of Exam
ple 10.33 be for each of the queries of Exercise 10.7.2?

E xercise 10.7.4: In Exercise 10.6.1 we spoke of PC-order data organized as
a fact table with dimension tables for attributes cust, proc, memory, hd, and
od. That is, each tuple of the fact table Orders has an ID for each of these
attributes, leading to information about the PC involved in the order. Write a
SQL query that will produce the data cube for this fact table.

E xercise 10.7.5: Answer the following queries using the data cube from Exer
cise 10.7.4. If necessary, use dimension tables as well. You may invent suitable
names and attributes for the dimension tables.

a) Find, for each processor speed, the total number of computers ordered in
each month of the year 2007.

b) List for each type of hard disk (e.g., SCSI or IDE) and each processor
type the number of computers ordered.

c) Find the average price of computers with 3.0 gigahertz processors for each
month from Jan., 2005.

E xercise 10.7.6: The cube tuples mentioned in Example 10.32 are not in
the rollup of Example 10.33. Are there other rollups that would contain these
tuples?

478 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

!! E xercise 10.7 .7 : If the fact table F to which we apply the C U B E operator is
sparse (i.e., there are many fewer tuples in F than the product of the number
of possible values along each dimension), then the ratio of the sizes of C U B E (F)

and F can be very large. How large can it be?

10.8 Summary of Chapter 10
♦ Privileges: For security purposes, SQL systems allow many different kinds

of privileges to be managed for database elements. These privileges in
clude the right to select (read), insert, delete, or update relations, the
right to reference relations (refer to them in a constraint), and the right
to create triggers.

♦ Grant Diagrams: Privileges may be granted by owners to other users or
to the general user PUBLIC. If granted with the grant option, then these
privileges may be passed on to others. Privileges may also be revoked.
The grant diagram is a useful way to remember enough about the history
of grants and revocations to keep track of who has what privilege and
from whom they obtained those privileges.

♦ SQL Recursive Queries: In SQL, one can define a relation recursively —
that is, in terms of itself. Or, several relations can be defined to be
mutually recursive.

♦ Monotonicity: Negations and aggregations involved in a SQL recursion
must be monotone — inserting tuples in one relation does not cause tuples
to be deleted from any relation, including itself. Intuitively, a relation may
not be defined, directly or indirectly, in terms of a negation or aggregation
of itself.

♦ The Object-Relational Model: An alternative to pure object-oriented data
base models like ODL is to extend the relational model to include the
major features of object-orientation. These extensions include nested re
lations, i.e., complex types for attributes of a relation, including relations
as types. Other extensions include methods defined for these types, and
the ability of one tuple to refer to another through a reference type.

♦ User-Defined Types in SQL: Object-relational capabilities of SQL are cen
tered around the UDT, or user-defined type. These types may be declared
by listing their attributes and other information, as in table declarations.
In addition, methods may be declared for UDT’s.

♦ Relations With a UDT as Type: Instead of declaring the attributes of a
relation, we may declare that relation to have a UDT. If we do so, then
its tuples have one component, and this component is an object of the
UDT.

♦ Reference Types: A type of an attribute can be a reference to a UDT.
Such attributes essentially are pointers to objects of that UDT.

♦ Object Identity for UDT’s: When we create a relation whose type is a
UDT, we declare an attribute to serve as the “object-ID” of each tuple.
This component is a reference to the tuple itself. Unlike in object-oriented
systems, this “OID” column may be accessed by the user, although it is
rarely meaningful.

♦ Accessing components of a UDT: SQL provides observer and mutator
functions for each attribute of a UDT. These functions, respectively, re
turn and change the value of that attribute when applied to any object
of that UDT.

♦ Ordering Functions for UDT’s: In order to compare objects, or to use
SQL operations such as DISTINCT, GROUP BY, or ORDER BY, it is necessary
for the implementer of a UDT to provide a function that tells whether
two objects are equal or whether one precedes the other.

♦ OLAP: On-line analytic processing involves complex queries that touch
all or much of the data, at the same time. Often, a separate database,
called a data warehouse, is constructed to run such queries while the actual
database is used for short-term transactions (OLTP, or on-line transaction
processing).

♦ ROLAP and MOLAP: It is frequently useful, for OLAP queries, to think
of the data as residing in a multidimensional space, with dimensions cor
responding to independent aspects of the data represented. Systems that
support such a view of data take either a relational point of view (RO
LAP, or relational-OLAP systems), or use the specialized data-cube model
(MOLAP, or multidimensional-OLAP systems).

♦ Star Schemas: In a star schema, each data element (e.g., a sale of an item)
is represented in one relation, called the fact table, while information
helping to interpret the values along each dimension (e.g., what kind of
product is item 1234?) is stored in a dimension table for each dimension.

♦ The Cube Operator: A specialized operator called cube pre-aggregates the
fact table along all subsets of dimensions. It may add little to the space
needed by the fact table, and greatly increases the speed with which many
OLAP queries can be answered.

♦ Data Cubes in SQL: We can turn the result of a query into a data cube
by appending WITH CUBE to a group-by clause. We can also construct a
portion of the cube by using WITH ROLLUP there.

10.8. SUMM ARY OF CHAPTER 10 479

480 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

10.9 References for Chapter 10
The ideas behind the SQL authorization mechanism originated in [4] and [1].

Material on object-relational features of SQL can be obtained as described
in the bibliographic notes to Chapter 6.

The source of the SQL-99 proposal for recursion is [2]. This proposal, and
its monotonicity requirement, built on foundations developed over many years,
involving recursion and negation in Datalog; see [5].

The cube operator was proposed in [3].

1. R. Fagin, “On an authorization mechanism,” ACM Transactions on Da
tabase Systems 3:3, pp. 310-319, 1978.

2. S. J. Finkelstein, N. Mattos, I. S. Mumick, and H. Pirahesh, “Expressing
recursive queries in SQL,” ISO WG3 report X3H2-96 -075, March, 1996.

3. J. N. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “Data cube: a
relational aggregation operator generalizing group-by, cross-tab, and sub
totals,” Proc. Intl. Conf. on Data Engineering (1996), pp. 152-159.

4. P. P. Griffiths and B. W. Wade, “An authorization mechanism for a re
lational database system,” ACM Transactions on Database Systems 1:3,
pp. 242-255, 1976.

5. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol
ume I, Computer Science Press, New York, 1988.

Part III

M odeling and
Programming for

Semistructured Data

481

Chapter 11

The Semistructured-Data
Model

We now turn to a different kind of data model. This model, called “semistruc
tured,” is distinguished by the fact that the schema is implied by the data,
rather than being declared separately from the data as is the case for the re
lational model and all the other models we studied up to this point. After a
general discussion of semistructured data, we turn to the most important man
ifestation of this idea: XML. We shall cover ways to describe XML data, in
effect enforcing a schema for this “schemaless” data. These methods include
DTD’s (Document Type Definitions) and the language XML Schema.

11.1 Semistructured Data
The semistructured-data model plays a special role in database systems:

1. It serves as a model suitable for integration of databases, that is, for de
scribing the data contained in two or more databases that contain similar
data with different schemas.

2. It serves as the underlying model for notations such as XML, to be taken
up in Section 11.2, that are being used to share information on the Web.

In this section, we shall introduce the basic ideas behind “semistructured data”
and how it can represent information more flexibly than the other models we
have met previously.

11.1.1 Motivation for the Semistructured-Data Model
The models we have seen so far — E/R , UML, relational, ODL — each start
with a schema. The schema is a rigid framework into which data is placed. This

483

484 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

rigidity provides certain advantages. Especially, the relational model owes much
of its success to the existence of efficient implementations. This efficiency comes
from the fact that the data in a relational database must fit the schema, and the
schema is known to the query processor. For instance, fixing the schema allows
the data to be organized with data structures that support efficient answering
of queries, as we discussed in Section 8.3.

On the other hand, interest in the semistructured-data model is motivated
primarily by its flexibility. In particular, semistructured data is “schemaless.”
More precisely, the data is self-describing; it carries information about what its
schema is, and that schema can vary arbitrarily, both over time and within a
single database.

One might naturally wonder whether there is an advantage to creating a
database without a schema, where one could enter data at will, and attach to
the data whatever schema information you felt was appropriate for that data.
There are actually some small-scale information systems, such as Lotus Notes,
that take the self-describing-data approach. This flexibility may make query
processing harder, but it offers significant advantages to users. For example, we
can maintain a database of movies in the semistructured model and add new
attributes like “would I like to see this movie?” as we wish. The attributes
do not need to have a value for all movies, or even for more than one movie.
Likewise, we can add relationships like “homage to,” without having to change
the schema or even represent the relationship in more than one pair of movies.

11.1.2 Semistructured Data Representation
A database of semistructured data is a collection of nodes. Each node is either
a leaf or interior. Leaf nodes have associated data; the type of this data can
be any atomic type, such as numbers and strings. Interior nodes have one or
more arcs out. Each arc has a label, which indicates how the node at the head
of the arc relates to the node at the tail. One interior node, called the root,
has no arcs entering and represents the entire database. Every node must be
reachable from the root, although the graph structure is not necessarily a tree.

E xam ple 11.1: Figure 11.1 is an example of a semistructured database about
stars and movies. We see a node at the top labeled Root; this node is the entry
point to the data and may be thought of as representing all the information in
the database. The central objects or entities — stars and movies in this case —
are represented by nodes that are children of the root.

We also see many leaf nodes. At the far left is a leaf labeled C arrie F isher,
and at the far right is a leaf labeled 1977, for instance. There are also many
interior nodes. Three particular nodes we have labeled cf, mh, and sw, standing
for “Carrie Fisher,” “Mark Hamill,” and “Star Wars,” respectively. These labels
are not part of the model, and we placed them on these nodes only so we would
have a way of referring to the nodes, which otherwise would be nameless, in the
text. We may think of node sw, for instance, as representing the concept “Star

11.1. SEMISTRUCTURED DATA 485

Root

Figure 11.1: Semistructured data representing a movie and stars

Wars” : the title and year of this movie, other information not shown, such as
its length, and its stars, two of which are shown. □

A label L on the arc from node N to node M can play one of two roles:

1. It may be possible to think of N as representing an object or entity, while
M represents one of its attributes. Then, L represents the name of the
attribute.

2. We may be able to think of N and M as objects or entities and L as the
name of a relationship from N to M.

E xam ple 11.2: Consider Fig. 11.1 again. The node indicated by cf may be
thought of as representing the S ta r object for Carrie Fisher. We see, leaving
this node, an arc labeled name, which represents the attribute name and leads to
a leaf node holding the correct name. We also see two arcs, each labeled address.
These arcs lead to unnamed nodes which we may think of as representing two
addresses of Carrie Fisher. There is no schema to tell us whether stars can have
more than one address; we simply put two address nodes in the graph if we feel
it is appropriate.

Notice in Fig. 11.1 how both nodes have out-arcs labeled street and city.
Moreover, these arcs each lead to leaf nodes with the appropriate atomic values.
We may think of address nodes as structs or objects with two fields, named street
and city. However, in the semistructured model, it is entirely appropriate to
add other components, e.g., zip, to some addresses, or to have one or both fields
missing.

486 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

The other kind of arc also appears in Fig. 11.1. For instance, the node cf
has an out-arc leading to the node sw and labeled starsln. The node mh (for
Mark Hamill) has a similar arc, and the node sw has arcs labeled star Of to both
nodes cf and mh. These arcs represent the stars-in relationship between stars
and movies. □

11.1.3 Information Integration Via Semistructured Data
The flexibility and self-describing nature of semistructured data has made it
important in two applications. We shall discuss its use for data exchange in
Section 11.2, but here we shall consider its use as a tool for information inte
gration. As databases have proliferated, it has become a common requirement
that data in two or more of them be accessible as if they were one database. For
instance, companies may merge; each has its own personnel database, its own
database of sales, inventory, product designs, and perhaps many other matters.
If corresponding databases had the same schemas, then combining them would
be simple; for instance, we could take the union of the tuples in two relations
that had the same schema and played the same roles in the the two databases.

However, life is rarely that simple. Independently developed databases are
unlikely to share a schema, even if they talk about the same things, such as per
sonnel. For instance, one employee database may record spouse-name, another
not. One may have a way to represent several addresses, phones, or emails for
an employee, another database may allow only one of each. One may treat con
sultants as employees, another not. One database might be relational, another
object-oriented.

To make matters more complex, databases tend over time to be used in so
many different applications that it is impossible to turn them off and copy or
translate their data into another database, even if we could figure out an efficient
way to transform the data from one schema to another. This situation is often
referred to as the legacy-database problem,; once a database has been in existence
for a while, it becomes impossible to disentangle it from the applications that
grow up around it, so the database can never be decommissioned.

A possible solution to the legacy-database problem is suggested in Fig. 11.2.
We show two legacy databases with an interface; there could be many legacy
systems involved. The legacy systems are each unchanged, so they can support
their usual applications.

For flexibility in integration, the interface supports semistructured data, and
the user is allowed to query the interface using a query language that is suitable
for such data. The semistructured data may be constructed by translating the
data at the sources, using components called wrappers (or “adapters”) that are
each designed for the purpose of translating one source to semistructured data.

Alternatively, the semistructured data at the interface may not exist at all.
Rather, the user queries the interface as if there were semistructured data, while
the interface answers the query by posing queries to the sources, each referring
to the schema found at that source.

11.1. SEMISTRUCTURED DATA 487

User

Figure 11.2: Integrating two legacy databases through an interface that sup
ports semistructured data

E xam ple 11.3: We can see in Fig. 11.1a possible effect of information about
stars being gathered from several sources. Notice that the address information
for Carrie Fisher has an address concept, and the address is then broken into
street and city. That situation corresponds roughly to data that had a nested-
relationschemalike S ta rs (name, a d d re s s (s tre e t , c i ty)) .

On the other hand, the address information for Mark Hamill has no address
concept at all, just street and city. This information may have come from
a schema such as S ta rs (name, s t r e e t , c i ty) that can represent only one
address for a star. Some of the other variations in schema that are not reflected
in the tiny example of Fig. 11.1, but that could be present if movie information
were obtained from several sources, include: optional film-type information, a
director, a producer or producers, the owning studio, revenue, and information
on where the movie is currently playing. □

11.1.4 Exercises for Section 11.1
E xercise 11.1.1: Since there is no schema to design in the semistructured-
data model, we cannot ask you to design schemas to describe different situations.
Rather, in the following exercises we shall ask you to suggest how particular
data might be organized to reflect certain facts.

a) Add to Fig. 11.1 the facts that Star Wars was directed by George Lucas
and produced by Gary Kurtz.

b) Add to Fig. 11.1 information about Empire Strikes Back and Return of
the Jedi, including the facts that Carrie Fisher and Mark Hamill appeared
in these movies.

c) Add to (b) information about the studio (Fox) for these movies and the
address of the studio (Hollywood).

488 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

Exercise 11.1.2: Suggest how typical data about banks and customers, as in
Exercise 4.1.1, could be represented in the semistructured model.

Exercise 11.1.3: Suggest how typical data about players, teams, and fans,
as was described in Exercise 4.1.3, could be represented in the semistructured
model.

Exercise 11.1.4: Suggest how typical data about a genealogy, as was de
scribed in Exercise 4.1.6, could be represented in the semistructured model.

! E xercise 11.1.5: UML and the semistructured-data model are both “graphi
cal” in nature, in the sense that they use nodes, labels, and connections among
nodes as the medium of expression. Yet there is an essential difference between
the two models. What is it?

11.2 XML

XML (Extensible Markup Language) is a tag-based notation designed originally
for “marking” documents, much like the familiar HTML. Nowadays, data with
XML “markup” can be represented in many ways. However, in this section
we shall refer to XML data as represented in one or more documents. While
HTML’s tags talk about the presentation of the information contained in doc
uments — for instance, which portion is to be displayed in italics or what the
entries of a list are — XML tags are intended to talk about the meanings of
pieces of the document.

In this section we shall introduce the rudiments of XML. We shall see that it
captures, in a linear form, the same structure as do the graphs of semistructured
data introduced in Section 11.1. In particular, tags can play the same role as
the labels on the arcs of a semistructured-data graph.

11.2.1 Semantic Tags

Tags in XML are text surrounded by triangular brackets, i.e., < . ..> , as in
HTML. Also as in HTML, tags generally come in matching pairs, with an
opening tag like <Foo> and a matched closing tag that is the same word with a
slash, like </Foo>. Between a matching pair <Foo> and </Foo>, there can be
text, including text with nested HTML tags, and any number of other nested
matching pairs of XML tags. A pair of matching tags and everything that
comes between them is called an element.

A single tag, with no matched closing tag, is also permitted in XML. In this
form, the tag has a slash before the right bracket, for example, <Foo/>. Such a
tag cannot have any other elements or text nested within it. It can, however,
have attributes (see Section 11.2.4).

11.2. XML 489

11.2.2 XML W ith and W ithout a Schema
XML is designed to be used in two somewhat different modes:

1. Well-formed XML allows you to invent your own tags, much like the
arc-labels in semistructured data. This mode corresponds quite closely
to semistructured data, in that there is no predefined schema, and each
document is free to use whatever tags the author of the document wishes.
Of course the nesting rule for tags must be obeyed, or the document is
not well-formed.

2. Valid XML involves a “DTD,” or “Document Type Definition” (see Sec
tion 11.3) that specifies the allowable tags and gives a grammar for how
they may be nested. This form of XML is intermediate between the
strict-schema models such as the relational model, and the completely
schemaless world of semistructured data. As we shall see in Section 11.3,
DTD’s generally allow more flexibility in the data than does a conven
tional schema; DTD’s often allow optional fields or missing fields, for
instance.

11.2.3 Well-Formed XML
The minimal requirement for well-formed XML is that the document begin with
a declaration that it is XML, and that it have a root element that is the entire
body of the text. Thus, a well-formed XML document would have an outer
structure like:

<? xml v e rs io n = "1.0" encoding = "u tf-8 " standalone = "yes" ?>
<SomeTag>

</SomeTag>

The first line indicates that the file is an XML document. The encoding UTF-8
(UTF = “Unicode Transformation Format”) is a common choice of encoding for
characters in documents, because it is compatible with ASCII and uses only one
byte for the ASCII characters. The attribute standalone = "yes" indicates
that there is no DTD for this document; i.e., it is well-formed XML. Notice
that this initial declaration is delineated by special markers < ? .. .?>. The root
element for this document is labeled <SomeTag>.

E xam ple 11.4: In Fig. 11.3 is an XML document that corresponds roughly
to the data in Fig. 11.1. In particular, it corresponds to the tree-like portion
of the semistructured data — the root and all the nodes and arcs except the
“sideways” arcs among the nodes cf, mh, and sw. We shall see in Section 11.2.4
how those may be represented.

The root element is StarMovieData. Within this element, we see two el
ements, each beginning with the tag <Star> and ending with its matching

490 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

<? xml v ers io n = "1 .0" encoding = " u tf -8 " standalone = "yes" ?>
<StarMovieData>

<Star>
<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple S t.< /S tre e t>
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust L n .< /S treet>
<City>Malibu</City>

</Address>
</S tar>
<Star>

<Name>Mark Hamill</Name>
<Street>456 Oak R d.< /S treet>
<City>Brentwood</City>

</S tar>
<Movie>

< T itle> S ta r W ars</Title>
<Year>1977</Year>

</Movie>
</StarMovieData>

Figure 11.3: An XML document about stars and movies

</S tar> . Within each element is a subelement giving the name of the star.
One element, for Carrie Fisher, also has two subelements, each giving the ad
dress of one of her homes. These elements are each delineated by an <Address>
opening tag and its matched closing tag. The element for Mark Hamill has only
subelements for one street and one city, and does not use an <Address> tag to
group these. This distinction appeared as well in Fig. 11.1. We also see one
element with opening tag <Movie> and its matched closing tag. This element
has subelements for the title and year of the movie.

Notice that the document of Fig. 11.3 does not represent the relationship
“stars-in” between stars and movies. We could indicate the movies of a star by
including, within the element devoted to that star, the titles and years of their
movies. Figure 11.4 is an example of this representation. □

11.2.4 Attributes
As in HTML, an XML element can have attributes (name-value pairs) within
its opening tag. An attribute is an alternative way to represent a leaf node
of semistructured data. Attributes, like tags, can represent labeled arcs in

11.2. XML 491

<Star>
<Name>Mark Hamill</Name>
<Street>O ak</Street>
<City>Brentwood</City>
<Movie>

< T itle> S tar W ars</Title>
<Year>1977</Year>

</Movie>
<Movie>

<Title>Empire S tr ik e s Back</Title>
<Year>1980</Year>

</Movie>
</Star>

Figure 11.4: Nesting movies within stars

a semistructured-data graph. Attributes can also be used to represent the
“sideways” arcs as in Fig. 11.1.

E xam ple 11.5: The title or year children of the movie node labeled sw could
be represented directly in the <Movie> element, rather than being represented
by nested elements. That is, we could replace the <Movie> element of Fig. 11.3
by:

<Movie year = 1977><Title>Star Wars</Title></Movie>

We could even make both child nodes be attributes by:

<Movie t i t l e = "S ta r Wars" year = 1977></Movie>

or even:

<Movie t i t l e = "S tar Wars" year = 1977 />

Notice that here we use a single tag without a matched closing tag, as indicated
by the slash at the end. □

11.2.5 Attributes That Connect Elements
An important use for attributes is to represent connections in a semistructured
data graph that do not form a tree. We shall see in Section 11.3.4 how to
declare certain attributes to be identifiers for their elements. We shall also see
how to declare that other attributes are references to these element identifiers.
For the moment, let us just see an example of how these attributes could be
used.

492 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

E xam ple 11.6: Figure 11.5 can be interpreted as an exact representation in
XML of the semistructured data graph of Fig. 11.1. However, in order to make
the interpretation, we need to have enough schema information that we know
the attribute s t a r ID is an identifier for the element in which it appears. That
is, c f is the identifier of the first <Star> element (for Carrie Fisher) and mh is
the identifier of the second <Star> element (for Mark Hamill). Likewise, we
must establish that the attribute movielD within a <Movie> tag is an identifier
for that element. Thus, sw is an identifier for the lone <Movie> element in
Fig. 11.5.

<? xml v e rs io n = "1.0" encoding = " u tf -8 " standalone = "yes" ?>
<StarMovieData>

<Star s ta rlD = "cf" s ta r r e d ln = "sw">
<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple S t.< /S tre e t>
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust L n .< /S treet>
<City>Malibu</City>

</Address>
</S tar>
<Star s ta rlD = "mh" s ta r r e d ln = "sw">

<Name>Mark Hamill</Name>
<Street>456 Oak R d .< /S tree t>
<City>Brentwood</City>

</S tar>
<Movie movielD = "sw" sta rsO f = " c f" , "mh">

< T itle> S ta r W ars</Title>
<Year>1977</Year>

</Movie>
</StarMovieData>

Figure 11.5: Adding stars-in information to our XML document

Moreover, the schema must also say that the attributes s ta r r e d ln for
<Star> elements and sta rsO f for <Movie> elements are references to one or
more ID’s. That is, the value sw for s ta r r e d ln within each of the <Movie>
elements says that both Carrie Fisher and Mark Hamill starred in Star Wars.
Likewise, the list of ID’s cf and mh that is the value of s ta rsO f in the <Movie>
element says that both these stars were stars of Star Wars. □

11.2. XML 493

11.2.6 Namespaces
There axe situations in which XML data involves tags that come from two or
more different sources, and which may therefore have conflicting names. For
example, we would not want to confuse an HTML tag used in text with an
XML tag that represents the meaning of that text. In Section 11.4, we shall see
how XML Schema requires tags from two separate vocabularies. To distinguish
among different vocabularies for tags in the same document, we can use a
namespace for a set of tags.

To say that an element’s tag should be interpreted as part of a certain
namespace, we can use the attribute xmlns in its opening tag. There is a
special form used for this attribute:

xmlns: name=" URI”

Within the element having this attribute, name can modify any tag to say the
tag belongs to this namespace. That is, we can create qualified names of the
form name: tag, where name is the name of the namespace to which the tag tag
belongs.

The URI (Universal Resource Identifier) is typically a URL referring to a
document that describes the meaning of the tags in the namespace. This de
scription need not be formal; it could be an informal article about expectations.
It could even be nothing at all, and still serve the purpose of distinguishing dif
ferent tags that had the same name.

E xam ple 11.7: Suppose we want to say that in element StarMovieData
of Fig. 11.5 certain tags belong to the namespace defined in the document
info lab .steu iford .edu/m ovies. We could choose a name such as md for the
namespace by using the opening tag:

<md:StarMovieData xmlns:md=
"http://infolab.Stanford.edu/movies">

Our intent is that StarMovieData itself is part of this namespace, so it gets
the prefix md:, as does its closing tag /md:StarMovieData. Inside this element,
we have the option of asserting that the tags of subelements belong to this
namespace by prefixing their opening and closing tags with md:. □

11.2.7 XML and Databases
Information encoded in XML is not always intended to be stored in a database.
It has become common for computers to share data across the Internet by
passing messages in the form of XML elements. These messages live for a
very short time, although they may have been generated using data from one
database and wind up being stored as tuples of a database at the receiving
end. For example, the XML data in Fig. 11.5 might be turned into some tuples

494 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

to insert into relations MovieStar and S ta rs ln of our running example movie
database.

However, it is becoming increasingly common for XML to appear in roles
traditionally reserved for relational databases. For example, we discussed in
Section 11.1.3 how systems that integrate the data of an enterprise produce
integrated views of many databases. XML is becoming an important option
as the way to represent these views, as an alternative to views consisting of
relations or classes of objects. The integrated views are then queried using one
of the specialized XML query languages that we shall meet in Chapter 12.

When we store XML in a database, we must deal with the requirement that
access to information must be efficient, especially for very large XML documents
or very large collections of small documents.1 A relational DBMS provides
indexes and other tools for making access efficient, a subject we introduced
in Section 8.3. There are two approaches to storing XML to provide some
efficiency:

1. Store the XML data in a parsed form, and provide a library of tools to
navigate the data in that form. Two common standards are called SAX
(Simple API for XML) and DOM (Document Object Model).

2. Represent the documents and their elements as relations, and use a con
ventional, relational DBMS to store them.

In order to represent XML documents as relations, we should start by giving
each document and each element of those documents a unique ID. For the
document, the ID could be its URL or path in a file system. A possible relational
database schema is:

DocRoot(docID, rootElementID)
SubElement(parentID, ch ildID , p o s itio n)
E lem entA ttribute(elem entID , name, value)
ElementValue(elementID, value)

This schema is suitable for documents that obey the restriction that each ele
ment either contains only text or contains only subelements. Accommodating
elements with mixed content of text and subelements is left as an exercise.

The first relation, DocRoot relates document ID’s to the ID’s of their root
element. The second relation, SubElement, connects an element (the “par
ent”) to each of its immediate subelements (“children”). The third attribute of
SubElement gives the position of the child among all the children of the parent.

The third relation, E lem entA ttribute relates elements to their attributes;
each tuple gives the name and value of one of the attributes of an element.
Finally, Element Value relates those elements that have no subelements to the
text, if any, that is contained in that element.

1 Recall th a t XM L d a ta need no t tak e th e form of docum en ts (i.e., a h eader w ith a roo t
elem ent) a t all. F or exam ple, XM L d a ta could be a s tream of elem ents w ith o u t headers.
However, we shall continue to speak of “docum en ts” as XM L d a ta .

11.3. DOCUMENT TYP E DEFINITIONS 495

There is a small m atter that values of attributes and elements can have
different types, e.g., integers or strings, while relational attributes each have a
unique type. We could treat the two attributes named value as always being
strings, and interpret those strings that were integers or another type properly
as we processed the data. Or we could split each of the last two relations into
as many relations as there are different types of data.

11.2.8 Exercises for Section 11.2
E xercise 11.2.1: Repeat Exercise 11.1.1 using XML.

E xercise 11.2.2: Show that any relation can be represented by an XML doc
ument. Hint: Create an element for each tuple with a subelement for each
component of that tuple.

E xercise 11.2.3: How would you represent an empty element (one that had
neither text nor subelements) in the database schema of Section 11.2.7?

E xercise 11.2.4: In Section 11.2.7 we gave a database schema for representing
documents that do not have mixed, content — elements that contain a mixture
of text (#PCDATA) and subelements. Show how to modify the schema when
elements can have mixed content.

11.3 Docum ent Type Definitions
For a computer to process XML documents automatically, it is helpful for there
to be something like a schema for the documents. It is useful to know what
kinds of elements can appear in a collection of documents and how elements
can be nested. The description of the schema is given by a grammar-like set of
rules, called a document type definition, or DTD. It is intended that companies
or communities wishing to share data will each create a DTD that describes the
form(s) of the data they share, thus establishing a shared view of the semantics
of their elements. For instance, there could be a DTD for describing protein
structures, a DTD for describing the purchase and sale of auto parts, and so
on.

11.3.1 The Form of a DTD
The gross structure of a DTD is:

<! DOCTYPE root-tag [
<! ELEMENT element-name (components) >

more elements
]>

496 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

The opening root-tag and its matched closing tag surround a document
that conforms to the rules of this DTD. Element declarations, introduced by
! ELEMENT, give the tag used to surround the portion of the document that
represents the element, and also give a parenthesized list of “components.” The
latter are elements that may or must appear in the element being described.
The exact requirements on components are indicated in a manner we shall see
shortly.

There are two important special cases of components:

1. (#PCDATA) (“parsed character data”) after an element name means that
element has a value that is text, and it has no elements nested within.
Parsed character data may be thought of as HTML text. It can have
formatting information within it, and the special characters like < must
be escaped, by & lt; and similar HTML codes. For instance,

<!ELEMENT T i t le (#PCDATA)>

says that between < T itle> and < /T itle > tags a character string can
appear. However, any nested tags are not part of the XML; they could
be HTML, for instance.

2. The keyword EMPTY, with no parentheses, indicates that the element is
one of those that has no matched closing tag. It has no subelements, nor
does it have text as a value. For instance,

<!ELEMENT Foo EMPTY>

says that the only way the tag Foo can appear is as <Foo/>.

E xam ple 11.8: In Fig. 11.6 we see a DTD for stars.2 The DTD name and root
element is S ta rs . The first element definition says that inside the matching pair
of tags < S ta rs> .. .< /S ta rs> we shall find zero or more S ta r elements, each
representing a single star. It is the * in (S tar*) that says “zero or more,” i.e.,
“any number of.”

The second element, S ta r, is declared to consist of three kinds of subele
ments: Name, Address, and Movies. They must appear in this order, and each
must be present. However, the + following Address says “one or more” ; that
is, there can be any number of addresses listed for a star, but there must be at
least one. The Name element is then defined to be parsed character data. The
fourth element says that an address element consists of subelements for a street
and a city, in that order.

Then, the Movies element is defined to have zero or more elements of type
Movie within it; again, the * says “any number of.” A Movie element is defined
to consist of title and year elements, each of which are simple text. Figure 11.7
is an example of a document that conforms to the DTD of Fig. 11.6. □

11.3. DOCUMENT TYP E DEFINITIONS 497

<!DOCTYPE S ta rs [
<!ELEMENT S ta rs (S tar*)>
<!ELEMENT S ta r (Name, Address+, Movies)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (S tre e t , C ity)>
<!ELEMENT S tre e t (#PCDATA)>
<!ELEMENT C ity (#PCDATA)>
<!ELEMENT Movies (Movie*)>
<!ELEMENT Movie (T i t le , Year)>
<!ELEMENT T i t le (#PCDATA)>
<!ELEMENT Year (#PCDATA)>

]>

Figure 11.6: A DTD for movie stars

The components of an element E are generally other elements. They must
appear between the tags <E> and < /E > in the order listed. However, there
are several operators that control the number of times elements appear.

1. A * following an element means that the-element may occur any number
of times, including zero times.

2. A + following an element means that the element may occur one or more
times.

3. A ? following an element means that the element may occur either zero
times or one time, but no more.

4. We can connect a list of options by the “or” symbol I to indicate that ex
actly one option appears. For example, if <Movie> elements had <Genre>
subelements, we might declare these by

<!ELEMENT Genre (Comedy I Drama IS ciF i|T een)>

to indicate that each <Genre> element has one of these four subelements.

5. Parentheses can be used to group components. For example, if we declared
addresses to have the form

<!ELEMENT Address S tr e e t , (C ity |Z ip)>

then <Address> elements would each have a <S treet> subelement fol
lowed by either a <City> or <Zip> subelement, but not both.

2N ote th a t th e stars-and-m ovies X M L docum ent of F ig . 11.3 is n o t in tended to conform
to th is D T D .

498 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

<Stars>
<Star>

<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple St.</Street>
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust Ln.</Street>
<City>Malibu</City>

</Address>
<Movies>

<Movie>
<Title>Star Wars</Title>
<Year>1977</Year>

</Movie>
<Movie>

<Title>Empire Strikes Back</Title>
<Year>1980</Year>

</Hovie>
<Movie>

<Title>Return of the Jedi</Title>
<Year>1983</Year>

</Movie>
</Movies>

</Star>
<Star>

<Name>Mark Hamill</Name>
<Address>

<Street>456 Oak Rd.<Street>
<City>Brentwood</City>

</Address>
<Movies>

<Movie>
<Title>Star Wars</Title>
<Year>1977</Year>

</Movie>
<Movie>

<Title>Empire Strikes Back</Title>
<Year>1980</Year>

</Movie>
<Movie>

<Title>Return of the Jedi</Title>
<Year>1983</Year>

</Movie>
</Movies>

</Star>
</Stars>

Figure 11.7: Example of a document following the DTD of Fig. 11.6

11.3. DOCUMENT TYPE DEFINITIONS 499

11.3.2 Using a DTD
If a document is intended to conform to a certain DTD, we can either:

a) Include the DTD itself as a preamble to the document, or

b) In the opening line, refer to the DTD, which must be stored separately
in the file system accessible to the application that is processing the doc
ument.

E xam ple 11.9: Here is how we might introduce the document of Fig. 11.7 to
assert that it is intended to conform to the DTD of Fig. 11.6.

<?xml v ers io n = "1.0" encoding = "u tf-8 " standalone = "no"?>
<!DOCTYPE S ta rs SYSTEM " s ta r .d td ">

The attribute standalone = "no" says that a DTD is being used. Recall we
set this attribute to "yes" when we did not wish to specify a DTD for the
document. The location from which the DTD can be obtained is given in the
! DOCTYPE clause, where the keyword SYSTEM followed by a file name gives this
location. □

11.3.3 Attribute Lists
A DTD also lets us specify which attributes an element may have, and what
the types of these attributes are. A declaration of the form

<!ATTLIST element-name attribute-name type >

says that the named attribute can be an attribute of the named element, and
that the type of this attribute is the indicated type. Several attributes can be
defined in one ATTLIST statement, but it is not necessary to do so, and the
ATTLIST statements can appear in any position in the DTD.

The most common type for attributes is CDATA. This type is essentially
character-string data with special characters like < escaped as in #PCDATA. No
tice that CDATA does not take a pound sign as #PCDATA does. Another option
is an enumerated type, which is a list of possible strings, surrounded by paren
theses and separated by | ’s. Following the data type there can be a keyword
#REQUIRED or #IMPLIED, which means that the attribute must be present, or is
optional, respectively.

E xam ple 11.10: Instead of having the title and year be subelements of a
<Movie> element, we could make these be attributes instead. Figure 11.8 shows
possible attribute-list declarations. Notice that Movie is now an empty element.
We have given it three attributes: t i t l e , year, and genre. The first two are
CDATA, while the genre has values from an enumerated type. Note that in the
document, the values, such as comedy, appear with quotes. Thus,

<Movie t i t l e = "S tar Wars" year = "1977" genre = " sc iF i" />

is a possible movie element in a document that conforms to this DTD. □

500 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

<!ELEMENT Movie EMPTY>
<!ATTLIST Movie

t i t l e CDATA #REQUIRED
year CDATA #REQUIRED
genre (comedy I drama I s c iF i I teen) #IMPLIED

>

Figure 11.8: Data about movies will appear as attributes

<!D0CTYPE StarMovieData [
<!ELEMENT StarMovieData (S ta r* , Movie*)>
<!ELEMENT S ta r (Name, Address+)>

<!ATTLIST S ta r
s t a r ld ID #REQUIRED
s ta r r e d ln IDREFS #IMPLIED

>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (S tr e e t , C ity)>
<!ELEMENT S tre e t (#PCDATA)>
<!ELEMENT C ity (#PCDATA)>
<!ELEMENT Movie (T i t le , Year)>

<!ATTLIST Movie
movield ID #REQUIRED
starsO f IDREFS #IMPLIED

>
<!ELEMENT T i t le (#PCDATA)>
<!ELEMENT Year (#PCDATA)>

]>

Figure 11.9: A DTD for stars and movies, using ID’s and IDREF’s

11.3.4 Identifiers and References

Recall from Section 11.2.5 that certain attributes can be used as identifiers for
elements. In a DTD, we give these attributes the type ID. Other attributes
have values that are references to these element ID’s; these attributes may be
declared to have type IDREF. The value of an IDREF attribute must also be the
value of some ID attribute of some element, so the IDREF is in effect a pointer
to the ID. An alternative is to give an attribute the type IDREFS. In that case,
the value of the attribute is a string consisting of a list of ID’s, separated by
whitespace. The effect is that an IDREFS attribute links its element to a set of
elements — the elements identified by the ID’s on the list.

11.3. DOCUMENT TYPE DEFINITIONS 501

E xam ple 11.11: Figure 11.9 shows a DTD in which stars and movies are
given equal status, and the ID-IDREFS correspondence is used to describe the
many-many relationship between movies and stars that was suggested in the
semistructured data of Fig. 11.1. The structure differs from that of the DTD
in Fig. 11.6, in that stars and movies have equal status; both are subelements
of the root element. That is, the name of the root element for this DTD is
StarMovieData, and its elements are a sequence of stars followed by a sequence
of movies.

A star no longer has a set of movies as subelements, as was the case for the
DTD of Fig. 11.6. Rather, its only subelements are a name and address, and in
the beginning <Star> tag we shall find an attribute s ta r r e d ln of type IDREFS,
whose value is a list of ID’s for the movies of the star.

<? xml v ers io n = "1.0" encoding = "u tf-8 " standalone = "yes" ?>
<StarMovieData>

<Star s ta rlD = "cf" s ta r r e d ln = "sw">
<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple S t.< /S tre e t>
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust L n .< /S treet>
<City>Malibu</City>

</Address>
</Star>
<Star s tarID = "mh" s ta r r e d ln = "sw">

<Name>Mark Hamill</Name>
<Address>

<Street>456 Oak R d.< /S treet>
<City>Brentwood</City>

</Address>
</Star>
<Movie movielD = "sw" s tarsO f = "cf mh">

< T itle> S tar W ars</Title>
<Year>1977</Year>

</Movie>
</StarMovieData>

Figure 11.10: Adding stars-in information to our XML document

A <Star> element also has an attribute stair Id. Since it is declared to be
of type ID, the value of s t a r ld may be referenced by <Movie> elements to
indicate the stars of the movie. That is, when we look at the attribute list for
Movie in Fig. 11.9, we see that it has an attribute movield of type ID; these

502 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

are the ID’s that will appear on lists that are the values of s ta rred ln . elements.
Symmetrically, the attribute s ta rsO f of Movie is an IDREFS, a list of ID’s for
stars. □

11.3.5 Exercises for Section 11.3
E xercise 11.3 .1 : Add to the document of Fig. 11.10 the following facts:

a) Carrie Fisher and Mark Hamill also starred in The Empire Strikes Back
(1980) and Return of the Jedi (1983).

b) Harrison Ford also starred in Star Wars, in the two movies mentioned in
(a), and the movie Firewall (2006).

c) Carrie Fisher also starred in Hannah and Her Sisters (1985).

d) M att Damon starred in The Bourne Identity (2002).

E xercise 11.3.2: Suggest how typical data about banks and customers, as
was described in Exercise 4.1.1, could be represented as a DTD.

E xercise 11.3 .3 : Suggest how typical data about players, teams, and fans, as
was described in Exercise 4.1.3, could be represented as a DTD.

E xercise 11.3.4: Suggest how typical data about a genealogy, as was de
scribed in Exercise 4.1.6, could be represented as a DTD.

! E xercise 11.3.5: Using your representation from Exercise 11.2.2, devise an
algorithm that will take any relation schema (a relation name and a list of
attribute names) and produce a DTD describing a document that represents
that relation.

11.4 XML Schema
XML Schema is an alternative way to provide a schema for XML documents.
It is more powerful than DTD’s, giving the schema designer extra capabilities.
For instance, XML Schema allows arbitrary restrictions on the number of oc
currences of subelements. It allows us to declare types, such as integer or float,
for simple elements, and it gives us the ability to declare keys and foreign keys.

11.4.1 The Form of an XML Schema
An XML Schema description of a schema is itself an XML document. It uses
the namespace at the URL:

h t t p : //www.w3. org/2001/XMLSchema

11.4. XML SCHEMA 503

that is provided by the World-Wide-Web Consortium. Each XML-Schema doc
ument thus has the form:

<? xml v ers io n = "1.0" encoding = "u tf-8 " ?>
<xs: schema xmlns:xs="h t t p : //www.w3. org/2001/XMLSchema">

< /x s : schema>

The first line indicates XML, and uses the special brackets <? amd ?>. The
second line is the root tag for the document that is the schema. The attribute
xmlns (XML namespace) makes the variable xs stand for the namespace for
XML Schema that was mentioned above. It is this namespace that causes
the tag <xs: schema> to be interpreted as schema in the namespace for XML
Schema. As discussed in Section 11.2.6, qualifying each XML-Schema term we
use with the prefix x s : will cause each such tag to be interpreted according
to the rules for XML Schema. Between the opening <xs: schema> tag and its
matched closing tag < /x s : schema> will appear a schema. In what follows, we
shall learn the most important tags from the XML-Schema namespace and what
they mean.

11.4.2 Elements
An important component of schemas is the element, which is similar to an
element definition in a DTD. In the discussion that follows, you should be alert
to the fact that, because XML-Schema definitions are XML documents, these
schemas are themselves composed of “elements.” However, the elements of
the schema itself, each of which has a tag that begins with x s :, are not the
elements being defined by the schema.3 The form of an element definition in
XML Schema is:

<xs: element name = element name type = element type >
constraints and/or structure information

</xs:elem ent>

The element name is the chosen tag for these elements in the schema being
defined. The type can be either a simple type or a complex type. Simple
types include the common primitive types, such as x s :in te g e r , x s :s tr in g ,
and x s : boolean. There can be no subelements for an element of a simple type.

E xam ple 11.12: Here are title and year elements defined in XML Schema:

<xs:elem ent name = "T itle " type = " x s :s tr in g " />
<xs:elem ent name = "Year" type = "x s :in te g e r" />

3To fu rth e r assist in th e d istin c tio n betw een tag s th a t are p a r t o f a schem a definition and
th e tag s of th e schem a being defined, we shall begin each of th e la t te r w ith a cap ita l le tte r.

504 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

Each of these <xs: elem ent> elements is itself empty, so it can be closed by />
with no matched closing tag. The first defined element has name T i t le and is
of string type. The second element is named Year and is of type integer. In
documents (perhaps talking about movies) with <Title> and <Year> elements,
these elements will not be empty, but rather will be followed by a string (the
title) or integer (the yeax), and a matched closing tag, < /T itle> or </Year>,
respectively. □

11.4.3 Complex Types
A complex type in XML Schema can have several forms, but the most com
mon is a sequence of elements. These elements are required to occur in the
sequence given, but the number of repetitions of each element can be controlled
by attributes minOccurs and maxOccurs, that appear in the element definitions
themselves. The meanings of these attributes are as expected; no fewer than
minOccurs occurrences of each element may appear in the sequence, and no
more than maxOccurs occurrences may appeax. If there is more than one oc
currence, they must all appear consecutively. The default, if one or both of
these attributes are missing, is one occurrence. To say that there is no upper
limit on occurrences, use the value "unbounded" for maxOccurs.

<xs: complexType name = type name >
<xs: sequence>

list of element definitions
< /x s : sequence>

< /x s : complexType>

Figure 11.11: Defining a complex type that is a sequence of elements

The form of a definition for a complex-type that is a sequence of elements is
shown in Fig. 11.11. The name for the complex type is optional, but is needed if
we are going to use this complex type as the type of one or more elements of the
schema being defined. An alternative is to place the complex-type definition
between an opening <xs:element> tag and its matched closing tag, to make
that complex type be the type of the element.

E xam ple 11.13: Let us write a complete XML-Schema document that defines
a very simple schema for movies. The root element for movie documents will
be <Movies>, and the root will have zero or more <Movie> subelements. Each
<Movie> element will have two subelements: a title and year, in that order.
The XML-Schema document is shown in Fig. 11.12.

Lines (1) and (2) are a typical preamble to an XML-Schema definition. In
lines (3) through (8), we define a complex type, whose name is movieType.
This type consists of a sequence of two elements named T i t le and Year; they
are the elements we saw in Example 11.12. The type definition itself does not

11.4. XML SCHEMA 505

1) <? xml v ers io n = "1.0" encoding = "u tf-8 " ?>
2) <xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

3) <xs: complexType name = "movieType">
4) <xs:sequence>
5) <xs:elem ent name = "T itle " type = " x s :s tr in g " />
6) <xs:elem ent name = "Year" type = "x s : in teg e r" />
7) < /x s : sequence>
8) < /x s : complexType>

9) <xs:elem ent name = "Movies">
10) <xs: complexType>
11) <xs: sequence>
12) <xs:elem ent name = "Movie" type = "movieType"

minOccurs = "0" maxOccurs = "unbounded" />
13) < /x s : sequence>
14) </xs:complexType>
15) </xs:elem ent>

16) </xs:schema>

Figure 11.12: A schema for movies in XML Schema

create any elements, but notice how the name movieType is used in line (12)
to make this type be the type of Movie elements.

Lines (9) through (15) define the element Movies. Although we could have
created a complex type for this element, as we did for Movie, we have chosen to
include the type in the element definition itself. Thus, we put no type attribute
in line (9). Rather, between the opening <xs:element> tag at line (9) and
its matched closing tag at line (15) appears a complex-type definition for the
element Movies. This complex type has no name, but it is defined at line (11)
to be a sequence. In this case, the sequence has only one kind of element, Movie,
as indicated by line (12). This element is defined to have type movieType —
the complex type we defined at lines (3) through (8). It is also defined to have
between zero and infinity occurrences. Thus, the schema of Fig. 11.12 says the
same thing as the DTD we show in Fig. 11.13. □

There are several other ways we can construct a complex type.

• In place of x s : sequence we could use x s : a l l , which means that each of
the elements between the opening <xs: a ll> tag and its matched closing
tag must occur, in any order, exactly once each.

• Alternatively, we could replace xs:sequence by xs:cho ice . Then, ex
actly one of the elements found between the opening <xs:choice> tag

506 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

<!DOCTYPE Movies [
<!ELEMENT Movies (Movie*)>
<!ELEMENT Movie (T i t l e , Year)>
<!ELEMENT T i t le (#PCDATA)>
<!ELEMENT Year (#PCDATA)>

]>

Figure 11.13: A DTD for movies

and its matched closing tag will appear.

The elements inside a sequence or choice can have minOccurs and maxOccurs
attributes to govern how many times they can appear. In the case of a choice,
only one of the elements can appear at all, but it can appear more than once if
it has a value of maxOccurs greater than 1. The rules for x s : a l l are different.
It is not permitted to have a maxOccurs value other than 1, but minOccurs can
be either 0 or 1. In the former case, the element might not appear at all.

11.4.4 Attributes
A complex type can have attributes. That is, when we define a complex type
T, we can include instances of element <xs: a t t r i b u t e d When we use T as
the type of an element E, then E can have (or must have) an instance of this
attribute. The form of an attribute definition is:

<xs: a t t r i b u t e name = attribute name type = type name
other information about the attribute />

The “other information” may include information such as a default value and
usage (required or optional — the latter is the default).

E xam ple 11.14: The notation

< x s :a t t r ib u te name = "year" type = " x s :in te g e r"
d e fa u lt = "0" />

defines year to be an attribute of type integer. We do not know of what
element year is an attribute; it depends where the above definition is placed.
The default value of year is 0, meaning that if an element without a value for
attribute year occurs in a document, then the value of year is taken to be 0.

As another instance:

<xs:a t t r i b u t e name = "year" type = " x s :in te g e r"
use = "requ ired" />

11.4. XML SCHEMA 507

is another definition of the attribute year. However, setting use to req u ired
means that any element of the type being defined must have a value for attribute
year. □

Attribute definitions are placed within a complex-type definition. In the
next example, we rework Example 11.13 by making the type movieType have
attributes for the title and year, rather than subelements for that information.

1) <? xml v ers io n = "1.0" encoding = "u tf-8 " ?>
2) <xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

3) <xs: complexType name = "movieType">
4) <xs:a t t r ib u te name = " t i t l e " type = " x s :s tr in g "

use = "requ ired" />
5) <xs: a t t r ib u te name = "year" type = "x s :in te g e r"

use = "requ ired" />
6) < /x s : complexType>

7) <xs:elem ent name = "Movies">
8) <xs: complexType>
9) <xs: sequence>

10) <xs:elem ent name = "Movie" type = "movieType"
minOccurs = "0" maxOccurs = "unbounded" />

11) < /x s : sequence>
12) </xs:complexType>
13) </xs:elem ent>

14) </xs:schema>

Figure 11.14: Using attributes in place of simple elements

E xam ple 11.15: Figure 11.14 shows the revised XML Schema definition. At
lines (4) and (5), the attributes t i t l e and year are defined to be required
attributes for elements of type movieType. When element Movie is given that
type at line (10), we know that every <Movie> element must have values for
t i t l e and year. Figure 11.15 shows the DTD resembling Fig. 11.14. □

11.4.5 Restricted Simple Types
It is possible to create a restricted version of a simple type such as integer or
string by limiting the values the type can take. These types can then be used as
the type of an attribute or element. We shall consider two kinds of restrictions
here:

508 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

<!DOCTYPE Movies [
<!ELEMENT Movies (Movie*)>
<!ELEMENT Movie EMPTY>

<!ATTLIST Movie
t i t l e CDATA #REQUIRED
year CDATA #REQUIRED

>
]>

Figure 11.15: DTD equivalent for Fig. 11.14

1. Restricting numerical values by using m in lnc lusive to state the lower
bound, m axlnclusive to state the upper bound.4

2. Restricting values to an enumerated type.

The form of a range restriction is shown in Fig. 11.16. The restriction has a
base, which may be a primitive type (e.g., x s :s tr in g) or another simple type.

<xs: simpleType name = type name >
< x s : r e s t r ic t io n base = base type >

upper and/or lower bounds
< /x s :re s t r ic t io n >

< /x s : simpleType>

Figure 11.16: Form of a range restriction

E xam ple 11.16: Suppose we want to restrict the year of a movie to be no
earlier than 1915. Instead of using x s : in te g e r as the type for element Year in
line (6) of Fig. 11.12 or for the attribute year in line (5) of Fig. 11.14, we could
define a new simple type as in Fig. 11.17. The type movieYearType would then
be used in place of x s : in te g e r in the two lines cited above. □

Our second way to restrict a simple type is to provide an enumeration of
values. The form of a single enumerated value is:

<xs: enum eration value = some value />

A restriction can consist of any number of these values.

4T h e “inclusive” m eans th a t th e range of values includes th e given b ound . A n a lte rn a tiv e
is to replace I n c lu s iv e by E x c lu s iv e , m eaning th a t th e s ta te d b o unds are ju s t o u tside th e
p e rm itte d range.

11.4. XML SCHEMA 509

<xs:simpleType name = "movieYearType">
< x s :r e s t r ic t io n base = "x s:in teg e r">

<xs:m inlnclusive value = "1915" />
< /x s :re s tr ic t io n >

<xs: simpleType>

Figure 11.17: A type that restricts integer values to be 1915 or greater

E xam ple 11.17: Let us design a simple type suitable for the genre of movies.
In our running example, we have supposed that there are only four possible
genres: comedy, drama, sciFi, and teen. Figure 11.18 shows how to define
a type genreType that could serve as the type for an element or attribute
representing our genres of movies. □

<xs:simpleType name = "genreType">
< x s :r e s t r ic t io n base = "x s :s tr in g ">

<xs:enum eration value = "comedy" />
<xs:enum eration value = "drama" />
<xs:enum eration value = " sc iF i" />
<xs:enum eration value = "teen" />

< /x s :r e s t r i c t i o n
<xs: simpleType>

Figure 11.18: A enumerated type in XML Schema

11.4.6 Keys in XML Schema
An element can have a key declaration, which says that when we look at a
certain class C of elements, values of one or more given fields within those
elements are unique. The concept of “field” is actually quite general, but the
most common case is for a field to be either a subelement or an attribute.
The class C of elements is defined by a “selector.” Like fields, selectors can be
complex, but the most common case is a sequence of one or more element names,
each a subelement of the one before it. In terms of a tree of semistructured
data, the class is all those nodes reachable from a given node by following a
particular sequence of arc labels.

E xam ple 11.18: Suppose we want to say, about the semistructured data in
Fig. 11.1, that among all the nodes we can reach from the root by following
a star label, what we find following a further name label leads us to a unique
value. Then the “selector” would be star and the “field” would be name. The
implication of asserting this key is that within the root element shown, there

510 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

cannot be two stars with the same name. If movies had names instead of titles,
then the key assertion would not prevent a movie and a star from having the
same name. Moreover, if there were actually many elements like the tree of
Fig. 11.1 found in one document (e.g., each of the objects we called “Root” in
that figure were actually a single movie and its stars), then different trees could
have the same star name without violating the key constraint. □

The form of a key declaration is

<xs:key name = key name >
<xs: s e le c to r xpath = path description >
< x s :f ie ld xpath = path description >

</xs:key>

There can be more than one line with an x s : f i e ld element, in case several fields
are needed to form the key. An alternative is to use the element xs:unique in
place of xs:key. The difference is that if “key” is used, then the fields must
exist for each element defined by the selector. However, if “unique” is used,
then they might not exist, and the constraint is only that they are unique if
they exist.

The selector path can be any sequence of elements, each of which is a subele
ment of the previous. The element names are separated by slashes. The field
can be any subelement of the last element on the selector path, or it can be
an attribute of that element. If it is an attribute, then it is preceded by the
“at-sign.” There are other options, and in fact, the selector and field can be
any XPath expressions; we take up the XPath query language in Section 12.1.

E xam ple 11.19: In Fig. 11.19 we see an elaboration of Fig. 11.12. We have
added the element Genre to the definition of movieType, in order to have a
nonkey subelement for a movie. Lines (3) through (10) define genreType as in
Example 11.17. The Genre subelement of movieType is added at line (15).

The definition of the Movies element has been changed in lines (24) through
(28) by the addition of a key. The name of the key is movieKey; this name will
be used if it is referenced by a foreign key, as we shall discuss in Section 11.4.7.
Otherwise, the name is irrelevant. The selector path is just Movie, and there
are two fields, T i t le and Year. The meaning of this key declaration is that,
within any Movies element, among all its Movie subelements, no two can have
both the same title and the same year, nor can any of these values be missing.
Note that because of the way movieType was defined at lines (13) and (14),
with no values for minOccurs or maxOccurs for T i t le or Year, the defaults, 1,
apply, and there must be exactly one occurrence of each. □

11.4.7 Foreign Keys in XML Schema
We can also declare that an element has, perhaps deeply nested within it, a
field or fields that serve as a reference to the key for some other element. This

11.4. XML SCHEMA 511

1) <? xml v ers io n = "1.0" encoding = "u tf-8 " ?>
2) <xs:schema xm lns:xs = "http://www.w3.org/2001/XMLSchema">

3) <xs: simpleType name = "genreType">
4) <xs:r e s t r i c t io n base = "x s :s tr in g ">
5) <xs:enum eration value = "comedy" />
6) <xs:enum eration value = "drama" />
7) <xs:enum eration value = " sc iF i" />
8) <xs:enum eration value = "teen" />
9) < /x s :re s tr ic t io n >

10) <xs:simpleType>

11) <xs: complexType name = "movieType">
12) <xs: sequence>
13) <xs:elem ent name = " T itle " type = " x s :s tr in g " />
14) <xs:elem ent name = "Year" type = " x s :in te g e r" />
15) <xs:elem ent name = "Genre" type = "genreType"

minOccurs = "0" maxOccurs = "1" />
16) </xs:sequence>
17) </xs:complexType>

18) <xs:elem ent name = "Movies">
19) <xs: complexType>
20) <xs: sequence>
21) <xs:elem ent name = "Movie" type = "movieType"

minOccurs = "0" maxOccurs = "unbounded" />
22) < /x s : sequence>
23) < /x s : complexType>
24) <xs:key name = "movieKey">
25) < x s :se le c to r xpath = "Movie" />
26) < x s :f ie ld xpath = "T itle " />
27) < x s :f ie ld xpath = "Year" />
28) </xs:key>
29) </xs:elem ent>

30) < /x s : schema>

Figure 11.19: A schema for movies in XML Schema

512 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

capability is similar to what we get with ID’s and IDREF’s in a DTD (see
Section 11.3.4). However, the latter are untyped references, while references in
XML Schema are to particular types of elements. The form of a foreign-key
definition in XML Schema is:

<xs:keyref name = foreign-key name r e f e r = key name >
<xs: s e le c to r xpath = path description >
<xs: f i e ld xpath = path description >

</xs:keyref>

The schema element is x s:key re f. The foreign-key itself has a name, and it
refers to the name of some key or unique value. The selector and field(s) are as
for keys.

E xam ple 11.20: Figure 11.20 shows the definition of an element <Stars>.
We have used the style of XML Schema where each complex type is defined
within the element that uses it. Thus, we see at lines (4) through (6) that a
<Stars> element consists of one or more <Star> subelements.

At lines (7) through (11), we see that each <Star> element has three kinds
of subelements. There is exactly one <Name> and one <Address> subelement,
and any number of <StarredIn> subelements. In lines (12) through (15), we
find that a <StarredIn> element has no subelements, but it does have two
attributes, t i t l e and year.

Lines (22) through (26) define a foreign key. In line (22) we see that the
name of this foreign-key constraint is movieRef and that it refers to the key
movieKey that was defined in Fig. 11.19. Notice that this foreign key is defined
within the <Stars> definition. The selector is S ta r /S ta rre d ln . That is, it says
we should look at every <StarredIn> subelement of every <Star> subelement
of a <Stars> element. From that <StarredIn> element, we extract the two
fields t i t l e and year. The @ indicates that these axe attributes rather than
subelements. The assertion made by this foreign-key constraint is that any
title-year pair we find in this way will appear in some <Movie> element as the
pair of values for its subelements <Title> and <Year>. □

11.4.8 Exercises for Section 11.4
E xercise 11.4.1: Give an example of a document that conforms to the XML
Schema definition of Fig. 11.12 and an example of one that has all the elements
mentioned, but does not conform to the definition.

Exercise 11.4.2: Rewrite Fig. 11.12 so that there is a named complex type
for Movies, but no named type for Movie.

Exercise 11.4.3: Write the XML Schema definitions of Fig. 11.19 and 11.20
as a DTD.

11.4. XML SCHEMA 513

1) <? xml v ers io n = "1.0" encoding = "u tf-8 " ?>
2) <xs:schema xmlns:xs = "http://wwu.w3.org/2001/XMLSchema">

3) <xs:elem ent name = "Stars">

4) <xs: complexType>
5) <xs: sequence>
6) <xs:elem ent name = "S tar" minOccurs = "1"

maxOccurs = "unbounded">
7) <xs: complexType>
8) <xs: sequence>
9) <xs:elem ent name = "Name"

type = " x s ;s tr in g " />
10) <xs:elem ent name = "Address"

type = " x s :s tr in g " />
11) <xs:elem ent name = "S tarred ln "

minOccurs = "0"
maxOccurs = "unbounded">

12) <xs: complexType>
13) <xs: a t t r ib u te name = " t i t l e "

type = " x s :s tr in g " />
14) <xs:a t t r ib u te name = "year"

type = "x s :in te g e r" />
15) </xs:complexType>
16) </xs:elem ent>
17) </xs:sequence>
18) < /x s : complexType>
19) </xs:elem ent>
20) < /x s : sequence>
21) </xs:complexType>

22) <xs:keyref name = "movieRef" r e f e r s = "movieKey">
23) < x s :se le c to r xpath = "S ta r /S ta rre d ln " />
24) < x s :f ie ld xpath = " O title " />
25) < x s :f ie ld xpath = "Syear" />
26) < /xs:keyref>

27) </xs:elem ent>

Figure 11.20: Stars with a foreign key

514 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

11.5 Summary of Chapter 11
♦ Semistructured Data: In this model, data is represented by a graph.

Nodes are like objects or values of attributes, and labeled axes connect an
object to both the values of its attributes and to other objects to which
it is connected by a relationship.

♦ XML: The Extensible Markup Language is a World-Wide-Web Consor
tium standard that representes semistructured data linearly.

♦ XML Elements: Elements consist of an opening tag <Foo>, a matched
closing tag </Foo>, and everything between them. What appears can be
text, or it can be subelements, nested to any depth.

♦ XML Attributes: Tags can have attribute-value pairs within them. These
attributes provide additional information about the element with which
they are associated.

♦ Document Type Definitions: The DTD is a simple, grammatical form
of defining elements and attributes of XML, thus providing a rudimen
tary schema for those XML documents that use the DTD. An element is
defined to have a sequence of subelements, and these elements can be re
quired to appear exactly once, at most once, a t least once, or any number
of times. An element can also be defined to have a list of required and/or
optional attributes.

♦ Identifiers and References in D TD ’s: To represent graphs that are not
trees, a DTD allows us to declare attributes of type ID and IDREF(S). An
element can thus be given an identifier, and that identifier can be referred
to by other elements from which we would like to establish a link.

♦ XML Schema: This notation is another way to define a schema for cer
tain XML documents. XML Schema definitions are themselves written in
XML, using a set of tags in a namespace that is provided by the World-
Wide-Web Consortium.

♦ Simple Types in XML Schema: The usual sorts of primitive types, such as
integers and strings, are provided. Additional simple types can be defined
by restricting a simple type, such as by providing a range for values or by
giving an enumeration of permitted values.

♦ Complex Types in XML Schema: Structured types for elements may be
defined to be sequences of elements, each with a minimum and maximum
number of occurrences. Attributes of an element may also be defined in
its complex type.

♦ Keys and Foreign Keys in XML Schema: A set of elements and/or at
tributes may be defined to have a unique value within the scope of some

11.6. REFERENCES FOR CHAPTER 11 515

enclosing element. Other sets of elements and/or attributes may be de
fined to have a value that appears as a key within some other kind of
element.

11.6 References for Chapter 11
Semistructured data as a data model was first studied in [5] and [4]. LOREL,
the prototypical query language for this model is described in [3]. Surveys of
work on semistructured data include [1], [7], and the book [2].

XML is a standard developed by the World-Wide-Web Consortium. The
home page for information about XML is [9]. References on DTD’s and XML
Schema are also found there. For XML parsers, the definition of DOM is in [8]
and for SAX it is [6]. A useful place to go for quick tutorials on many of these
subjects is [10].

1. S. Abiteboul, “Querying semi-structured data,” Proc. Intl. Conf. on Data
base Theory (1997), Lecture Notes in Computer Science 1187 (F. Afrati
and P. Kolaitis, eds.), Springer-Verlag, Berlin, pp. 1-18.

2. S. Abiteboul, D. Suciu, and P. Buneman, Data on the Web: From Re
lations to Semistructured Data and XML, Morgan-Kaufmann, San Fran
cisco, 1999.

3. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Weiner, “The
LOREL query language for semistructured data,” In J. Digital Libraries
1:1, 1997.

4. P. Buneman, S. B. Davidson, and D. Suciu, “Programming constructs for
unstructured data,” Proceedings of the Fifth International Workshop on
Database Programming Languages, Gubbio, Italy, Sept., 1995.

5. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object ex
change across heterogeneous information sources,” IEEE Intl. Conf. on
Data Engineering, pp. 251-260, March 1995.

6. Sax Project, h t t p : //www. s a x p ro je c t. o rg /

7. D. Suciu (ed.) Special issue on management of semistructured data, SIG
MOD Record 26:4 (1997).

8. World-Wide-Web Consortium, http://www.w3.org/D0M/

9. World-Wide-Web Consortium, http://www.w3.org/XML/

10. W3 Schools, http://www.w3schools.com

Chapter 12

Programming Languages
for XML

We now turn to programming languages for semistructured data. All the widely
used languages of this type apply to XML data, and might be used for semistruc
tured data represented in other ways as well. In this chapter, we shall study
three such languages. The first, XPath, is a simple language for describing sets
of similar paths in a graph of semistructured data. XQuery is an extension
of XPath that adopts something of the style of SQL. It allows iterations over
sets, subqueries, and many other features that will be familiar from the study
of SQL.

The third topic of this chapter is XSLT. This language was developed orig
inally as a transformation language, capable of restructuring XML documents
or turning them into printable (HTML) documents. However, its expressive
power is actually quite similar to that of XQuery, and it is capable of producing
XML results. Thus, it can serve as a query language for XML.

12.1 XPath

In this section, we introduce XPath. We begin with a discussion of the data
model used in the most recent version of XPath, called XPath 2.0; this model
is used in XQuery as well. This model plays a role analogous to the “bag of
tuples of primitive-type components” that is used in the relational model as the
value of a relation.

In later sections, we learn about XPath path expressions and their meaning.
In general, these expressions allow us to move from elements of a document to
some or all of their subelements. Using “axes,” we are also able to move within
documents in a variety of ways, and to obtain the attributes of elements.

517

518 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

12.1.1 The XPath Data Model
As in the relational model, XPath assumes that all values — those it produces
and those constructed in intermediate steps — have the same general “shape.”
In the relational model, this “shape” is a bag of tuples. Tuples in a given
bag all have the same number of components, and the components each have
a primitive type, e.g., integer or string. In XPath, the analogous “shape” is
sequence of items. An item is either:

1. A value of primitive type: integer, real, boolean, or string, for example.

2. A node. There are many kinds of nodes, but in our introduction, we shall
only talk about three kinds:

(a) Documents. These are files containing an XML document, perhaps
denoted by their local path name or a URL.

(b) Elements. These are XML elements, including their opening tags,
their matched closing tag if there is one, and everything in between
(i.e., below them in the tree of semistructured data that an XML
document represents).

(c) Attributes. These are found inside opening tags, as we discussed in
several places in Chapter 11.

The items in a sequence need not be all of the same type, although often they
will be.

E xam ple 12.1: Figure 12.1 is a sequence of four items. The first is the integer
10; the second is a string, and the third is a real. These are all items of primitive
type.

10

"ten"

10.0

<Number base = "8">
<Digit>l</Digit>
<Digit>2</Digit>

</Number>

@val="10"

Figure 12.1: A sequence of five items

The fourth item is a node, and this node’s type is “element.” Notice that
the element has tag Number with an attribute and two subelements with tag
D ig it. The last item is an attribute node. □

12.1. XPATH 519

1 2 .1.2 Document Nodes
While the documents to which XPath is applied can come from various sources,
it is common to apply XPath to documents that are files. We can make a
document node from a file by applying the function:

doc (file name)

The named file should be an XML document. We can name a file either by
giving its local name or a URL if it is remote. Thus, examples of document
nodes include:

doc("m ovies. xml")
doc(" /u s r /s a lly /d a ta /m o v ie s . xml")
doc(" in fo la b . S tan fo rd . edu/~hector/m ovies. xml")

Every XPath query refers to a document. In many cases, this document will be
apparent from the context. For example, recall our discussion of XML-Schema
keys in Section 11.4.6. We used XPath expressions to denote the selector and
field(s) for a key. In that context, the document was “whatever document the
schema definition is being applied to.”

12.1.3 Path Expressions
Typically, an XPath expression starts at the root of a document and gives a se
quence of tags and slashes (/), say /7 i/T 2/ • • • /T n. We evaluate this expression
by starting with a sequence of items consisting of one node: the document. We
then process each of T i,T 2, . . . in turn. To process Tj, consider the sequence
of items that results from processing the previous tags, if any. Examine those
items, in order, and find for each all its subelements whose tag is Tj. Those
items are appended to the output sequence, in the order in which they appear
in the document.

As a special case, the root tag T\ for the document is considered a “subele
ment” of the document node. Thus, the expression /T i produces a sequence
of one item, which is an element node consisting of the entire contents of the
document. The difference may appear subtle; before we applied the expression
/T i, we had a document node representing the file, and after applying /T i to
that node we have an element node representing the text in the file.

E xam ple 12.2: Suppose our document is a file containing the XML text
of Fig. 11.5, which we reproduce here as Fig. 12.2. The path expression
/StarM ovieData produces the sequence of one element. This element has tag
<StarMovieData>, of course, and it consists of everything in Fig. 12.2 except
for line (1).

Now, consider the path expression

/StarM ovieData/Star/Name

520 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

1) <? xml version= "1 .0" encoding="utf-8" standalone="yes" ?>
2) <StarMovieData>
3) <S tar s ta rID = "cf" s ta r r e d ln = "sw">
4) <Name>Carrie Fisher</Name>
5) <Address>
6) <Street>123 Maple S t.< /S tre e t>
7) <City>Hollywood</City>
8) </Address>
9) <Address>

10) <Street>5 Locust L n .< /S treet>
11) <City>Malibu</City>
12) </Address>
13) < /S tar>
14) <Star s ta rlD = "mh" s ta r r e d ln = "sw">
15) <Name>Mark Hamill</Name>
16) <Street>456 Oak R d .< /S tree t>
17) <City>Brentwood</City>
18) < /S tar>
19) <Movie movielD = "sw" sta rsO f = " c f" , "mh">
20) < T itle> S ta r W ars</Title>
21) <Year>1977</Year>
22) </Movie>
23) </StarMovieData>

Figure 12.2: An XML document for applying path expressions

When we apply the StarMovieData tag to the sequence consisting of the doc
ument, we get the sequence consisting of the root element, as discussed above.
Next, we apply to this sequence the tag S ta r. There are two subelements of
the StarMovieData element that have tag S ta r. These are lines (3) through
(12) for star Carrie Fisher and lines (14) through (18) for star Mark Hamill.
Thus, the result of the path expression /S tarM ovieD ata/S tar is the sequence
of these two elements, in that order.

Finally, we apply to this sequence the tag Name. The first element has one
Name subelement, at line (4). The second element also has one Name subelement,
at line (15). Thus, the sequence

<Name>Carrie Fisher</Name>
<Name>Mark Hamill</Name>

is the result of applying the path expression /StarM ovieData/Star/Nam e to
the document of Fig. 12.2. □

12.1. XPATH 521

12.1.4 Relative Path Expressions
In several contexts, we shall use XPath expressions that are relative to the
current node or sequence of nodes.

• In Section 11.4.6 we talked about selector and field values that were really
XPath expressions relative to a node or sequence of nodes for which we
were defining a key.

• In Example 12.2 we talked about applying the XPath expression S ta r to
the element consisting of the entire document, or the expression Name to
a sequence of S ta r elements.

Relative expressions do not start with a slash. Each such expression must be
applied in some context, which will be clear from its use. The similarity to the
way files and directories are designated in a UNIX file system is not accidental.

12.1.5 Attributes in Path Expressions
Path expressions allow us to find all the elements within a document that are
reached from the root along a particular kind of path (a sequence of tags).
Sometimes, we want to find not these elements but rather the values of an
attribute of those elements. If so, we can end the path expression by an at
tribute name preceded by an at-sign. That is, the path-expression form is
/T 1/T 2/ - - - /T n/@A.

The result of this expression is computed by first applying the path expres
sion /T i/T 2/ • • • /T n to get a sequence of elements. We then look at the opening
tag of each element, in turn, to find an attribute A. If there is one, then the
value of that attribute is appended to the sequence that forms the result.

E xam ple 12.3: The path expression

/S tarM ovieD ata/S tar/® starID

applied to the document of Fig. 12.2 finds the two S ta r elements and looks into
their opening tags at lines (3) and (14) to find the values of their s ta rlD at
tributes. Both elements have this attribute, so the result sequence is "cf " "mh".
□

12.1.6 Axes
So far, we have only navigated through semistructured-data graphs in two ways:
from a node to its children or to an attribute. XPath in fact provides a large
number of axes, which are modes of navigation. Two of these axes are child
(the default axis) and attribute, for which @ is really a shorthand. At each step
in a path expression, we can prefix a tag or attribute name by an axis name
and a double-colon. For example,

522 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

/StarMovieData/Star/OstarlD

is really shorthand for:

/child::StarMovieData/child::Star/attribute::starID

Some of the other axes are parent, ancestor (really a proper ancestor), de
scendant (a proper descendant), next-sibling (any sibling to the right), previous-
sibling (any sibling to the left), self, and descendant-or-self. The latter has a
shorthand / / and takes us from a sequence of elements to those elements and
all their subelements, at any level of nesting.

E xam ple 12.4: It might look hard to find, in the document of Fig. 12.2, all
the cities where stars live. The problem is that Mark Hamill’s city is not nested
within an Address element, so it is not reached along the same paths as Carrie
Fisher’s cities. However, the path expression

//City

finds all the C ity subelements, at any level of nesting, and returns them in the
order in which they appear in the document. That is, the result of this path
expression is the sequence:

<City>Hollywood</City>
<City>Malibu</City>
<City>Brentwood</City>

which we obtain from lines (7), (11), and (17), respectively.
We could also use the / / axis within the path expression. For example,

should the document contain city information that wasn’t about stars (e.g.,
studios and their addresses), then we could restrict the paths that we consider
to make sure that the city was a subelement of a S ta r element. For the given
document, the path expression

/S ta rM o v ieD ata /S tar//C ity

produces the same three C ity elements as a result. □

Some of the other axes have shorthands as well. For example, . . stands for
parent, and . for self. We have already seen @ for attribute and / for child.

12.1.7 Context of Expressions
In order to understand the meaning of an axis like parent, we need to explore
further the view of data in XPath. Results of expressions are sequences of
elements or primitive values. However, XPath expressions and their results do
not exist in isolation; if they did, it would not make sense to ask for the “parent”
of an element. Rather, there is normally a context in which the expression is

12.1. XPATH 523

evaluated. In all our examples, there is a single document from which elements
are extracted. If we think of an element in the result of some XPath expression
as a reference to the element in the document, then it makes sense to apply
axes like parent, ancestor, or next-sibling to the element in the sequence.

For example, we mentioned in Section 11.4.6 that keys in XML Schema are
defined by a pair of XPath expressions. Key constraints apply to XML docu
ments that obey the schema that includes the constraint. Each such document
provides the context for the XPath expressions in the schema itself. Thus, it is
permitted to use all the XPath axes in these expressions.

12.1.8 Wildcards
Instead of specifying a tag along every step of a path, we can use a * to say
“any tag.” Likewise, instead of specifying an attribute, @* says “any attribute.”

E xam ple 12.5 : Consider the path expression

/StarMovieData/*/@*

applied to the document of Fig. 12.2. First, /StarM ovieData/* takes us to
every subelement of the root element. There are three: two stars and a movie.
Thus, the result of this path expression is the sequence of elements in lines (3)
through (13), (14) through (18), and (19) through (22).

However, the expression asks for the values of all the attributes of these
elements. We therefore look for attributes among the outermost tags of each
of these elements, and return their values in the order in which they appear in
the document. Thus, the sequence

"cf" "sw" "mh" "sw" "sw" "cf" "mh"

is the result of the XPath query.
A subtle point is that the value of the sta rsO f attribute in line (19) is itself

a sequence of items — strings " c f" and "mh". XPath expands sequences that
are part of other sequences, so all items are at the “top level,” as we showed
above. That is, a sequence of items is not itself an item. □

12.1.9 Conditions in Path Expressions
As we evaluate a path expression, we can restrict ourselves to follow only a
subset of the paths whose tags match the tags in the expression. To do so, we
follow a tag by a condition, surrounded by square brackets. This condition can
be anything that has a boolean value. Values can be compared by comparison
operators such as = or >=. “Not equal” is represented as in C, by !=. A com
pound condition can be constructed by connecting comparisons with operators
or or and.

The values compared can be path expressions, in which case we are compar
ing the sequences returned by the expressions. Comparisons have an implied

524 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

“there exists” sense; two sequences are related if any pair of items, one from
each sequence, are related by the given comparison operator. An example
should make this concept clear.

E xam ple 12.6: The following path expression:

/S ta rM o v ieD ata /S ta r[//C ity = "Malibu"]/Name

returns the names of the movie stars who have at least one home in Malibu. To
begin, the path expression /S tarM ovieD ata/S tar returns a sequence of all the
S ta r elements. For each of these elements, we need to evaluate the tru th of the
condition / /C i ty = "Malibu". Here, / /C i ty is a path expression, but it, like
any path expression in a condition, is evaluated relative to the element to which
the condition is applied. That is, we interpret the expression assuming that the
element were the entire document to which the path expression is applied.

We start with the element for Carrie Fisher, lines (3) through (13) of
Fig. 12.2. The expression / /C i ty causes us to look for all subelements, nested
zero or more levels deep, that have a C ity tag. There are two, at lines (7) and
(11). The result of the path expression / /C i ty applied to the Carrie-Fisher
element is thus the sequence:

<City>Hollywood</City>
<City>Malibu</City>

Each item in this sequence is compared with the value "Malibu". An element
whose type is a primitive value such as a string can be equated to that string,
so the second item passes the test. As a result, the entire S ta r element of lines
(3) through (13) satisfies the condition.

When we apply the condition to the second item, lines (14) through (18)
for Mark Hamill, we find a C ity subelement, but its value does not match
"Malibu" and this element fails the condition. Thus, only the Carrie-Fisher
element is in the result of the path expression

/S ta rM o v ieD ata /S ta r[//C ity = "Malibu"]

We have still to finish the XPath query by applying to this sequence of
one element the continuation of the path expression, /Name. At this stage,
we search for a Name subelement of the Carrie-Fisher element and find it
at line (4). Consequently, the query result is the sequence of one element,
<Name>Carrie Fisher</Name>. □

Several other useful forms of condition are:

• An integer [j] by itself is true only when applied the ith child of its parent.

• A tag [T] by itself is true only for elements that have one or more subele
ments with tag T.

12.1. XPATH 525

• Similarly, an attribute [A] by itself is true only for elements that have a
value for the attribute A.

Example 12.7: Figure 12.3 is a variant of our running movie example, in
which we have grouped all the movies with a common title as one Movie element,
with subelements that have tag Version. The title is an attribute of the movie,
and the year is an attribute of the version. Versions have Star subelements.
Consider the XPath query, applied to this document:

/Movies/Movie/Version[1]/@year

It asks for the year in which the first version of each movie was made, and the
result is the sequence "1933" "1984".

1) <? xml version="1.0" encoding="utf-8" standalone="yes" ?>
2) <Movies>
3) <Movie t i t l e = "King Kong">
4) cVersion year = "1933">
5) <Star>Fay Wray</Star>
6) </Version>
7) <Version year = "1976">
8) < S tar> Jeff B ridges</S tar>
9) < S tar> Jessica Lange</Star>

10) </Version>
11) CVersion year = "2005" />
12) </Movie>
13) <Movie t i t l e = "Footloose">
14) <Version year = "1984">
15) <Star>Kevin Bacon</Star>
16) <Star>John Lithgow</Star>
17) <Star>Sarah J e s s ic a Parker< /S tar>
18) </Version>
19) </Movie>
20) </Movies>

Figure 12.3: An XML document for applying path expressions

In more detail, there are four Version elements that match the path

/Movies/Movie/Version

These are at lines (4) through (6), (7) through (10), line (11), and lines (14)
through (18), respectively. Of these, the first and last are the first children of
their respective parents. The year attributes for these versions are 1933 and
1984, respectively. □

526 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

E xam ple 12.8: The XPath query:

/M ovies/M ovie/V ersion[Star]

applied to the document of Fig. 12.3 returns three V ersion elements. The
condition [S ta r] is interpreted as “has at least one S ta r subelement.” That
condition is true for the V ersion elements of lines (4) through (6), (7) through
(10), and (14) through (18); it is false for the element of line (11). □

<Products>
<Maker name = "A">

<PC model = "1001" p r ic e = "2114">
<Speed>2. 66</Speed>
<RAM>1024</RAM>
<HardDisk>250</HardDisk>

</PC>
<PC model = "1002" p r ic e = "995">

<Speed>2. 10</Speed>
<RAM>512</RAM>
<HardDisk>250</HardDisk>

</PC>
<Laptop model = "2004" p r ic e = "1150">

<Speed>2. 00</Speed>
<RAM>512</RAM>
<HardDisk>60</HardDisk>
<Screen>13. 3</Screen>

</Laptop>
<Laptop model = "2005" p r ic e = "2500">

<Speed>2. 16</Speed>
<RAM>1024</RAM>
<HardD i sk>120</HardD i sk>
<Screen>17.0</Screen>

</Laptop>
</Maker>

Figure 12.4: XML document with product data — beginning

12.1.10 Exercises for Section 12.1
E xercise 12.1 .1 : Figures 12.4 and 12.5 are the beginning and end, respec
tively, of an XML document that contains some of the data from our running
products exercise. Write the following XPath queries. What is the result of
each?

12.1. XPATH 527

<Maker name = "E">
<PC model = "1011" p r ic e = "959">

<Speed>l. 86</Speed>
<RAM>2048</RAM>
<HardDisk>160</HardDisk>

</PC>
<PC model = "1012" p r ic e = "649">

<Speed>2. 80</Speed>
<RAM>1024</RAM>
<HardDisk>160</HardDisk>

</PC>
<Laptop model = "2001" p r ic e = "3673">

<Speed>2. 00</Speed>
<RAM>2048</RAM>
<HardDisk>240</HardDisk>
<Screen>20.1</Screen>

</Laptop>
< P rin te r model = "3002" p r ic e = "239">

<Color>false</Color>
<Type>laser</Type>

< /P rin te r>
<Maker name = "H">

< P rin te r model = "3006" p ric e = "100">
<Color>true</Color>
<Type>ink-jet</Type>

< /P rin te r>
< P rin te r model = "3007" p ric e = "200">

<C olor>true</Color>
<Type>laser</Type>

< /P rin te r>
</Maker>

</Products>

Figure 12.5: XML document with product data — end

528 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

a) Find the amount of RAM on each PC.

b) Find the price of each product of any kind.

c) Find all the printer elements.

! d) Find the makers of laser printers.

! e) Find the makers of PC ’s and/or laptops.

f) Find the model numbers of PC ’s with a hard disk of at least 200 gigabytes.

!! g) Find the makers of at least two PC’s.

E xercise 12.1.2: The document of Fig. 12.6 contains data similar to that
used in our running battleships exercise. In this document, data about ships is
nested within their class element, and information about battles appears inside
each ship element. Write the following queries in XPath. What is the result of
each?

a) Find the names of all ships.

b) Find all the C lass elements for classes with a displacement larger than
35000.

c) Find all the Ship elements for ships that were launched before 1917.

d) Find the names of the ships that were sunk.

! e) Find the years in which ships having the same name as their class were
launched.

! f) Find the names of all ships that were in battles.

!! g) Find the Ship elements for all ships that fought in two or more battles.

12.2 XQuery

XQuery is an extension of XPath that has become a standard for high-level
querying of databases containing data in XML form. This section will introduce
some of the important capabilities of XQuery.

12.2. XQUERY 529

<Ships>
<Class name = "Kongo" type = "be" country = "Japan"

numGuns = "8" bore = "14" displacem ent = "32000">
<Ship name = "Kongo" launched = "1913" />
<Ship name = "H iei" launched = "1914" />
<Ship name = "K irishim a" launched = "1915">

< B attle outcome = "sunk">Guadalcanal</Battle>
</Ship>
<Ship name = "Haruna" launched = "1915" />

</Class>
<Class name = "North C arolina" type = "bb" country = "USA"

numGuns = "9" bore = "16" displacem ent = "37000">
<Ship name = "North C arolina" launched = "1941" />
<Ship name = "Washington" launched = "1941">

<B attle outcome = "ok">Guadalcanal</Battle>
</Ship>

</Class>
<Class name = "Tennessee" type = "bb" country = "USA"

numGuns = "12" bore = "14" displacem ent = "32000">
<Ship name = "Tennessee" launched = "1920">

< B attle outcome = "ok">Surigao S tra it< /B a ttle >
</Ship>
<Ship name = "C a lifo rn ia" launched = "1921">

< B attle outcome = "ok">Surigao S tra it< /B a ttle >
</Class>
<Class name = "King George V" type = "bb"

country = "Great B rita in "
numGuns = "10" bore = "14" displacem ent = "32000">

<Ship name = "King George V" launched = "1940" />
<Ship name = "Prince of Wales" launched = "1941">

< B attle outcome = "damaged">Denmark S tra it< /B a tt le >
< B attle outcome = "sunk">M alaya</Battle>

</Ship>
<Ship name = "Duke of York" launched = "1941">

< B attle outcome = "ok">North Cape</Battle>
</Ship>
<Ship name = "Howe" launched = "1942" />
<Ship name = "Anson" launched = "1942" />

</Class>
</Ships>

Figure 12.6: XML document containing battleship data

530 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

Case Sensitivity of XQuery

XQuery is case sensitive. Thus, keywords such as l e t or fo r need to be
written in lower case, just like keywords in C or Java.

12.2.1 XQuery Basics
XQuery uses the same model for values that we introduced for XPath in Sec
tion 12.1.1. That is, all values produced by XQuery expressions are sequences
of items. Items are either primitive values or nodes of various types, including
elements, attributes, and documents. Elements in a sequence are assumed to
exist in the context of some document, as discussed in Section 12.1.7.

XQuery is a functional language, which implies that any XQuery expression
can be used in any place that an expression is expected. This property is a very
strong one. SQL, for example, allows subqueries in many places; but SQL does
not permit, for example, any subquery to be any operand of any comparison in
a where-clause. The functional property is a double-edged sword. It requires
every operator of XQuery to make sense when applied to lists of more than one
item, leading to some unexpected consequences.

To start, every XPath expression is an XQuery expression. There is, how
ever, much more to XQuery, including FLWR (pronounced “flower”) expres
sions, which are in some sense analogous to SQL select-from-where expressions.

12.2.2 FLWR Expressions
Beyond XPath expressions, the most important form of XQuery expression
involves clauses of four types, called for-, let-, where-, and return- (FLWR)
clauses.1 We shall introduce each type of clause in turn. However, we should
be aware that there are options in the order and occurrences of these clauses.

1. The query begins with zero or more for- and let-clauses. There can be
more than one of each kind, and they can be interlaced in any order, e.g.,
for, for, let, for, let.

2. Then comes an optional where-clause.

3. Finally, there is exactly one return-clause.

E xam ple 12.9: Perhaps the simplest FLWR expression is:

re tu rn <Greeting>Hello World</Greeting>

It examines no data, and produces a value that is a simple XML element. □

1 T h e re is also an o rder-by clause th a t we sha ll in tro d u ce in Section 12.2.10. For th a t
reason , F L W R is a less com m on acronym for th e p rincipal form of X Q uery query th a n is
FLW O R .

12.2. XQUERY 531

L et C lauses

The simple form of a let-clause is:

l e t variable := expression

The intent of this clause is that the expression is evaluated and assigned to
the variable for the remainder of the FLWR expression. Variables in XQuery
must begin with a dollar-sign. Notice that the assignment symbol is :=, not
an equal sign (which is used, as in XPath, in comparisons). More generally,
a comma-separated list of assignments to variables can appear where we have
shown one.

E xam ple 12.10: One use of let-clauses is to assign a variable to refer to one
of the documents whose data is used by the query. For example, if we want to
query a document in file s t a r s . xml, we can start our query with:

l e t $ s ta rs := d o c("sta rs .x m l")

In what follows, the value of $ s ta rs is a single doc node. It can be used in front
of an XPath expression, and that expression will apply to the XML document
contained in the file s t a r s . xml. □

For C lauses

The simple form of a for-clause is:

fo r variable in expression

The intent is that the expression is evaluated. The result of any expression
is a sequence of items. The variable is assigned to each item, in turn, and
what follows this for-clause in the query is executed once for each value of the
variable. You will not be much deceived if you draw an analogy between an
XQuery for-clause and a C for-statement. More generally, several variables may
be set ranging over different sequences of items in one for-clause.

E xam ple 12.11: We shall use the data suggested in Fig. 12.7 for a num
ber of examples in this section. The data consists of two files, stairs.xm l in
Fig. 12.7(a) and movies .xml in Fig. 12.7(b). Each of these files has data similar
to what we used in Section 12.1, but the intent is that what is shown is just a
small sample of the actual contents of these files.

Suppose we start a query:

l e t $movies := doc("movies.xml")
fo r $m in $movies/Movies/Movie

. . . something done w ith each Movie element

532 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

1) <? xml version= "1 .0" encoding="utf-8" standalone="yes" ?>
2) <Stars>
3) <Star>
4) <Name>Carrie Fisher</Name>
5) <Address>
6) <Street>123 Maple S t.< /S tre e t>
7) <City>Hollywood</City>
8) </Address>
9) <Address>

10) <Street>5 Locust L n .< /S treet>
11) <City>Malibu</City>
12) </Address>
13) < /S tar>

. . . more s ta r s
14) < /S tars>

(a) Document s ta rs .x m l

15) <? xml version="1 .0" encoding="utf-8" standalone="yes" ?>
16) <Movies>
17) <Movie t i t l e = "King Kong">
18) <Version year = "1933">
19) <Star>Fay Wray</Star>
20) </Version>
21) <Version year = "1976">
22) < S tar> Jeff B ridges</S tar>
23) < S tar> Jessica Lange</Star>
24) </Version>
25) <Version year = "2005" />
26) </Movie>
27) <Movie t i t l e = "Footloose">
28) <Version year = "1984">
29) <Star>Kevin Bacon</Star>
30) <Star>John Lithgow</Star>
31) <Star>Sarah J e s s ic a P arker< /S tar>
32) </Version>
33) </Movie>

. . . more movies
34) </Movies>

(b) Document m ovies. xml

Figure 12.7: Data for XQuery examples

12.2. XQUERY 533

Boolean Values in XQuery

A comparision like $x = 10 evaluates to true or false (strictly speaking,
to one of the names x s : tru e or x s : f a ls e from the namespace for XML
Schema). However, several other types of expressions can be interpreted as
true or false, and so can serve as the value of a condition in a where-clause.
The important coercions to remember are:

1. If the value is a sequence of items, then the empty sequence is inter
preted as false and nonempty sequences as true.

2. Among numbers, 0 and NaN (“not a number,” in essence an infinite
number) are false, and other numbers are true.

3. Among strings, the empty string is false and other strings are true.

Notice that $movies/Movies/Movie is an XPath expression that tells us to start
with the document in file m ovies. xml, then go to the root Movies element, and
then form the sequence of all Movie subelements. The body of the “for-loop”
will be executed first with $m equal to the element of lines (17) through (26)
of Fig. 12.7, then with $m equal to the element of lines (27) through (33), and
then with each of the remaining Movie elements in the document. □

T he W here C lause

The form of a where-clause is:

where condition

This clause is applied to an item, and the condition, which is an expression,
evaluates to true or false. If the value is true, then the return-clause is applied to
the current values of any vaxiables in the query. Otherwise, nothing is produced
for the current values of variables.

T he R etu rn C lause

The form of this clause is:

re tu rn expression

The result of a FLWR expression, like that of any expression in XQuery, is
a sequence of items. The sequence of items produced by the expression in
the return-clause is appended to the sequence of items produced so far. Note
that although there is only one return-clause, this clause may be executed many

534 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

times inside “for-loops,” so the result of the query may be constructed in stages.
We should not think of the return-clause as a “return-statement,” since it does
not end processing of the query.

E xam ple 12.12: Let us complete the query we started in Example 12.11 by
asking for a list of all the star elements found among the versions of all movies.
The query is:

l e t $movies := docC'movies.xml")
fo r $m in $movies/Movies/Movie
re tu rn $m /V ersion/S tar

The first value of $min the “for-loop” is the element of lines (17) through (26)
of Fig. 12.7. From that Movie element, the XPath expression /V e rs io n /S ta r
produces a sequence of the three S ta r elements at lines (19), (22), and (23).
That sequence begins the result of the query.

<Star>Fay Wray</Star>
< S tar> Jeff B ridges</S tar>
< S tar> Jessica Lange</Star>
<Star>Kevin Bacon</Star>
<Star>John Lithgow</Star>
<Star>Sarah J e s s ic a Parker< /S tar>

Figure 12.8: Beginning of the result sequence for the query of Example 12.12

The next value of $m is the element of lines (27) through (33). Now, the
result of the expression in the return-clause is the sequence of elements in lines
(29), (30), and (31). Thus the beginning of the result sequence looks like that
in Fig. 12.8. □

12.2.3 Replacement of Variables by Their Values
Let us consider a modification to the query of Example 12.12. Here, we want to
produce not just a sequence of <Star> elements, but rather a sequence of Movie
elements, each containing all the stars of movies with a given title, regardless
of which version they starred in. The title will be an attribute of the Movie
element.

Figure 12.9 shows an attem pt that seems right, but in fact is not correct.
The expression we return for each value of $m seems to be an opening <Movie>
tag followed by the sequence of S ta r elements for that movie, and finally a
closing </Movie> tag. The <Movie> tag has a t i t l e attribute that is a copy of
the same attribute from the Movie element in file movies.xml. However, when
we execute this program, what appears is:

12.2. XQUERY 535

Sequences of Sequences

We should remind the reader that sequences of items can have no internal
structure. Thus, in Fig. 12.8, there is no separator between Jessica Lange
and Kevin Bacon, or any grouping of the first three stars and the last
three, even though these groups were produced by different executions of
the return-clause.

l e t $movies := doc("movies.xml")
fo r $m in $movies/Movies/Movie
re tu rn <Movie t i t l e = $m /Stitle>$m /Version/Star</M ovie>

Figure 12.9: Erroneous attempt to produce Movie elements

<Movie t i t l e = "$m/Qtitle">$m/Version/Star</M ovie>
<Movie t i t l e = "$m/@ title">$m/Version/Star</M ovie>

The problem is that, between tags, or as the value of an attribute, any text
string is permissible. This return statement looks no different, to the XQuery
processor, than the return of Example 12.9, where we really were producing text
inside matching tags. In order to get text interpreted as XQuery expressions
inside tags, we need to surround the text by curly braces.

l e t $movies := doc("movies.xml")
fo r $m in $movies/Movies/Movie
re tu rn <Movie t i t l e = {$m/@title}>{$m/Version/Star}</Movie>

Figure 12.10: Adding curly braces fixes the problem

The proper way to meet our goal is shown in Fig. 12.10. In this query,
the expressions $ m /ti t le and $m /V ersion/Star inside the braces are properly
interpreted as XPath expressions. The first is replaced by a text string, and
the second is replaced by a sequence of S ta r elements, as intended.

E xam ple 12.13: This example not only further illustrates the use of curly
braces to force interpretation of expressions, but also emphasizes how any
XQuery expression can be used wherever an expression of any kind is per
mitted. Our goal is to duplicate the result of Example 12.12, where we got a
sequence of S ta r elements, but to make the entire sequence of stars be within
a S ta rs element. We cannot use the trick of Fig. 12.10 with S ta rs in place
of S ta r, because that would place many S ta rs tags around separate groups of
stars.

536 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

l e t $ starS eq := (
l e t $movies := doc("m ovies.xml")
fo r $m in $movies/Movies/Movie
re tu rn $m /V ersion/S tar

)
r e tu rn <S tars>{$starSeq}</S tars>

Figure 12.11: Putting tags around a sequence

Figure 12.11 does the job. We assign the sequence of S ta r elements that
results from the query of Example 12.12 to a local variable $starSeq. We then
return that sequence, surrounded by tags, being careful to enclose the variable
in braces so it is evaluated and not treated literally. □

12.2.4 Joins in XQuery
We can join two or more documents in XQuery in much the same way as we
join two or more relations in SQL. In each case we need variables, each of
which ranges over elements of one of the documents or tuples of one of the
relations, respectively. In SQL, we use a from-clause to introduce the needed
tuple variables (which may just be the table name itself); in XQuery we use a
for-clause.

However, we must be very careful how we do comparisons in a join. First,
there is the m atter of comparison operators such as = or < operating on se
quences with the meaning of “there exist elements that compare” as discussed
in Section 12.1.9. We shall take up this point again in Section 12.2.5. Ad
ditionally, equality of elements is by “element identity” (analogous to “object
identity”). That is, an element is not equal to a different element, even if it
looks the same, character-by-character. Fortunately, we usually do not want to
compare elements, but really the primitive values such as strings and integers
that appear as values of their attributes and subelements. The comparison
operators work as expected on primitive values; < is “precedes in lexicographic
order” for strings.

There is a built-in function data(E) that extracts the value of an element
E. We can use this function to extract the text from an element that is a string
with matching tags.

E xam ple 12.14: Suppose we want to find the cities in which stars mentioned
in the movies.xml file of Fig. 12.7(b) live. We need to consult the s ta rs .x m l
file of Fig. 12.7(a) to get that information. Thus, we set up a variable ranging
over the S ta r elements of m ovies. xml and another variable ranging over the
S ta r elements of s t a r s .xml. When the data in a S ta r element of movies .xml
matches the data in the Name subelement of a S ta r element of s ta irs . xml, then
we have a match, and we extract the C ity element of the latter.

12.2. XQUERY 537

Figure 12.12 shows a solution. The let-clause introduces variables to stand
for the two documents. As before, this shorthand is not necessary, and we could
have used the document nodes themselves in the XPath expressions of the next
two lines. The for-clause introduces a doubly nested loop. Variable $ s l ranges
over each S ta r element of movies.xml and $s2 does the same for s ta rs .x m l.

l e t $movies := doc("m ovies.xm l"),
$ s ta rs := d o c("sta rs .x m l")

fo r $ s l in $m ovies/M ovies/M ovie/V ersion/Star,
$s2 in $ s ta r s /S ta r s /S ta r

where d a ta ($ s l) = data($s2/Name)
re tu rn $s2/A ddress/C ity

Figure 12.12: Finding the cities of stars

The where-clause uses the built-in function d a ta to extract the strings that
are the values of the elements $ s l and $s2. Finally, the return-clause produces
a C ity element. □

12.2.5 XQuery Comparison Operators
We shall now consider another puzzle where things don’t quite work as expected.
Our goal is to find the stars in s t a r s . xml of Fig. 12.7(a) that live at 123 Maple
St., Malibu. Our first attempt is in Fig. 12.13.

l e t $ s ta rs := d o c("sta rs .x m l")
fo r $s in $ s ta r s /S ta r s /S ta r
where $ s /A d d ress /S tree t = "123 Maple S t." and

$s/A ddress/C ity = "Malibu"
re tu rn $s/Name

Figure 12.13: An erroneous attempt to find who lives at 123 Maple St., Malibu

In the where-clause, we compare S tre e t elements and C ity elements with
strings, but that works as expected, because an element whose value is a string
is coerced to that string, and the comparison will succeed when expected. The
problem is seen when $s takes the S ta r element of lines (3) through (13) of
Fig. 12.7 as its value. Then, XPath expression $ s/A d d ress/S tree t produces
the sequence of two elements of lines (6) and (10) as its value. Since the =
operator returns true if any pair of items, one from each side, equate, the value
of the first condition is true; line (6), after coercion, is equal to the string
"123 Maple S t." . Similarly, the second condition compares the list of two
C ity elements of lines (7) and (11) with the string "Malibu", and equality is
found for line (11). As a result, the Name element for Carrie Fisher [line (4)] is
returned.

538 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

But Carrie Fisher doesn’t live at 123 Maple St., Malibu. She lives at 123
Maple St., Hollywood, and elsewhere in Malibu. The existential nature of
comparisons has caused us to fail to notice that we were getting a street and
city from different addresses.

XQuery provides a set of comparison operators that only compare sequences
consisting of a single item, and fail if either operand is a sequence of more than
one item. These operators are two-letter abbreviations for the comparisons: eq,
ne, I t , g t, le , and ge. We could use eq in place of = to catch the case where
we are actually comparing a string with several streets or cities. The revised
query is shown in Fig. 12.14.

l e t $ s ta r s := doc ("s ta irs , xml")
fo r $s in $ s ta r s /S ta r s /S ta r
where $ s /A d d re ss /S tree t eq "123 Maple S t." and

$ s/A ddress/C ity eq "Malibu"
re tu rn $s/Name

Figure 12.14: A second erroneous attem pt to find who lives at 123 Maple St.,
Malibu

This query does not allow the Carrie-Fisher element to pass the test of the
where-clause, because the left sides of the eq operator are not single items, and
therefore the comparison fails. Unfortunately, it will not report any star with
two or more addresses, even if one of those addresses is 123 Maple St., Malibu.
Writing a correct query is tricky, regardless of which version of the comparison
operators we use, and we leave a correct query as an exercise.

12.2.6 Elimination of Duplicates
XQuery allows us to eliminate duplicates in sequences of any kind, by applying
the built-in function d is t in c t-v a lu e s . There is a subtlely that must be noted,
however. Strictly speaking, distinct-values applies to primitive types. It will
strip the tags from an element that is a tagged text-string, but it won’t put
them back. Thus, the input to d is t in c t- v a lu e s can be a list of elements and
the result a list of strings.

E xam ple 12.15: Figure 12.11 gathered all the S ta r elements from all the
movies and returned them as a sequence. However, a star that appeared
in several movies would appear several times in the sequence. By applying
d is t in c t-v a lu e s to the result of the subquery that becomes the value of vari
able $ s ta rseq , we can eliminate all but one copy of each S ta r element. The
new query is shown in Fig. 12.15.

Notice, however, that what is produced is a list of the names of the stars
surrounded by the S ta rs tags, as:

<Stars>"Fay Wray" " Je f f B ridges" < /S tars>

12.2. XQUERY 539

l e t $starS eq := d is t in c t-v a lu e s (
l e t $movies := doc("movies.xml")
fo r $m in $movies/Movies/Movie
re tu rn $m /V ersion/Star

)
re tu rn <Stars>{$starSeq}</Stars>

Figure 12.15: Eliminating duplicate stars

In comparison, the version in Fig. 12.11 produced

<Stars><Star>Fay Wray</Star> <S tar>Jeff B ridges</S tar> • • •
< /S tars>

but might produce duplicates. □

12.2.7 Quantification in XQuery
There are expressions that say, in effect, “for all” and “there exists.” Their
forms, respectively, are:

every variable in expressionl s a t i s f i e s expressions
some variable in expressionl s a t i s f i e s expressions

Here, expressionl produces a sequence of items, and the variable takes on each
item, in turn, as its value. For each such value, expressions (which normally
involves the variable) is evaluated, and should produce a boolean value.

In the “every” version, the result of the entire expression is false if some item
produced by expressionl makes expressions false; the result is true otherwise.
In the “some” version, the result of the entire expression is true if some item
produced by expressionl makes expressions true; the result is false otherwise.

l e t $ s ta rs := docO 'stars.xm l")
fo r $s in $ s ta r s /S ta r s /S ta r
where every $c in $s/A ddress/C ity s a t i s f i e s

$c = "Hollywood"
re tu rn $s/Name

Figure 12.16: Finding the stars who only live in Hollywood

E xam ple 12.16: Using the data in the file s t a r s , xml of Fig. 12.7(a), we want
to find those stars who live in Hollywood and nowhere else. That is, no matter
how many addresses they have, they all have city Hollywood. Figure 12.16
shows how to write this query. Notice that $s/A ddress/C ity produces the

540 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

sequence of C ity elements of the star $s. The where-clause is thus satisfied if
and only if every element on that list is <City>Hollywood</City>.

Incidentally, we could change the “every” to “some” and find the stars that
have at least one home in Hollywood. However, it is rarely necessary to use the
“some” version, since most tests in XQuery are existentially quantified anyway.
For instance,

l e t $ s ta r s := d o c ("s ta rs .x m l")
fo r $s in $ s ta r s /S ta r s /S ta r
where $s/A ddress/C ity = "Hollywood"
re tu rn $s/Name

produces the stars with a home in Hollywood, without using a “some” expres
sion. Recall our discussion in Section 12.2.5 of how a comparision such as =,
with a sequence of more than one item on either or both sides, is true if we can
match any items from the two sides. □

12.2.8 Aggregations
XQuery provides built-in functions to compute the usual aggregations such as
count, sum, or max. They take any sequence as argument; that is, they can be
applied to the result of any XQuery expression.

l e t $movies := doc("m ovies.xml")
fo r $m in $movies/Movies/Movie
where count($m /Version) > 1
r e tu rn $m

Figure 12.17: Finding the movies with multiple versions

E xam ple 12.17: Let us examine the data in file movies.xml of Fig. 12.7(b)
and produce those Movie elements that have more than one version. Figure
12.17 does the job. The XPath expression $m/Version produces the sequence
of V ersion elements for the movie $m. The number of items in the sequence is
counted. If that count exceeds 1, the where-clause is satisfied, and the movie
element $m is appended to the result. □

12.2.9 Branching in XQuery Expressions
There is an if-then-else expression in XQuery of the form

i f (expressionl) then expression2 e ls e expressions

To evaluate this expression, first evaluate expressionl; if it is true, evaluate
expression2, which becomes the result of the whole expression. If expressionl
is false, the result of the whole expression is expressions.

12.2. XQUERY 541

This expression is not a statement — there are no statements in XQuery,
only expressions. Thus, the analog in C is the ?: expression, not the if-then-else
statement. Like the expression in C, there is no way to omit the “else” part.
However, we can use as expressions the empty sequence, which is denoted ().
This choice makes the conditional expression produce the empty sequence when
the test-condition is not satisfied.

E xam ple 12.18: Our goal in this example is to produce each of the versions
of King Kong, tagging the most recent version L a te st and the earlier versions
Old. In line (1), we set variable $kk to be the Movie element for King Kong.
Notice that we have used an XPath condition in this line, to make sure that we
produce only that one element. Of course, if there were several Movie elements
that had the title King Kong, then all of them would be on the sequence of items
that is the value of $kk, and the query would make no sense. However, we are
assuming title is a key for movies in this structure, since we have explicitly
grouped versions of movies with the same title.

1) l e t $kk :=
doc("m ovies.xm l")/M ovies/M ovie[@ title = "King Kong"]

2) fo r $v in $kk/Version
3) re tu rn
4) i f ($v/@year = max($kk/Version/@year))
5) then <Latest>{$v}</Latest>
6) e ls e <01d>{$v}</01d>

Figure 12.18: Tagging the versions of King Kong

Line (2) causes $v to iterate over all versions of King Kong. For each such
version, we return one of two elements. To tell which, we evaluate the condition
of line (4). On the right of the equal-sign is the maximum year of any of the
King-Kong versions, and on the left is the year of the version $v. If they are
equal, then $v is the latest version, and we produce the element of line (5). If
not, then $v is an old version, and we produce the element of line (6). □

12.2.10 Ordering the Result of a Query
It is possible to sort the results as part of a FLWR query, if we add an order-
clause before the return-clause. In fact, the query form we have been concen
trating on here is usually called FLWOR (but still pronounced “flower”), to
acknowledge the optional presence of an order-clause. The form of this clause
is:

o rder list of expressions

The sort is based on the value of the first expression, ties are broken by the
value of the second expression, and so on. The default order is ascending, but
the keyword descending following an expression reverses the order.

542 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

What happens when an order is present is analogous to what happens in
SQL. Just before we reach the stage in query processing where the output is
assembled (the SELECT clause in SQL; the return-clause in XQuery), the result
of previous clauses is assembled and sorted. In the case of SQL, the intermediate
result is a set of bindings of tuples to the tuple variables that range over each of
the relations in the FROM clause. Specifically, it is all those bindings that pass
the test of the WHERE clause.

In XQuery, we should think of the intermediate result as a sequence of
bindings of variables to values. The variables are those defined in the for- and
let-clauses that precede the order-clause, and the sequence consists of all those
bindings that pass the test of the where-clause. These bindings are each used to
evaluate the expressions in the order-clause, and the values of those expressions
govern the position of the binding in the order of all the bindings. Once we
have the order of bindings, we use them, in turn, to evaluate the expression in
the return-clause.

E xam ple 12.19: Let us consider all versions of all movies, order them by year,
and produce a sequence of Movie elements with the title and year as attributes.
The data comes from file movies.xml in Fig. 12.7(b), as usual. The query is
shown in Fig. 12.19.

l e t $movies := doc("m ovies.xml")
fo r $m in $movies/Movies/Movie,

$v in $m/Version
o rder $v/@year
re tu rn <Movie t i t l e = "{$m /© title}" year = "{$v/@year}" />

Figure 12.19: Construct the sequence of title-year pairs, ordered by year

When we reach the order-clause, bindings provide values for the three vari
ables $movies, $m, and $v. The value doc ("movies .xml) is bound to $movies
in every one of these bindings. However, the values of $m and $v vary; for each
pair consisting of a movie and a version of that movie, there will be one binding
for the two variables. For instance, the first such binding associates with $m the
element in lines (17) through (26) of Fig. 12.7(b) and associates with $v the
element of lines (18) through (20).

The bindings are sorted according to the value of attribute year in the
element to which $v is bound. There may be many movies with the same year,
and the ordering does not specify how these are to be ordered. As a result, all
we know is that the movie-version pairs with a given year will appear together
in some order, and the groups for each year will be in the ascending order of
year. If we wanted to specify a total ordering of the bindings, we could, for
example, add a second term to the list in the order-clause, such as:

o rder $v/®year, $m /@ title

to break ties alphabetically by title.
After sorting the bindings, each binding is passed to the return-clause, in

the order chosen. By substituting for the variables in the return-clause, we
produce from each binding a single Movie element. □

12.2.11 Exercises for Section 12.2
E xercise 1 2 .2 .1 : Using the product data from Figs. 12.4 and 12.5, write the
following in XQuery.

a) Find the P r in te r elements with a price less than 100.

b) Find the P r in te r elements with a price less than 100, and produce the
sequence of these elements surrounded by a tag <CheapPrinters>.

! c) Find the names of the makers of both printers and laptops.

! d) Find the names of the makers that produce at least two PC’s with a speed
of 3.00 or more.

! e) Find the makers such that every PC they produce has a price no more
than 1000.

!! f) Produce a sequence of elements of the form

<LaptopXModel>a;</Model><Maker>2/</Maker></Laptop>

where x is the model number and y is the name of the maker of the laptop.

E xercise 12 .2 .2 : Using the battleships data of Fig. 12.6, write the following
in XQuery.

a) Find the names of the classes that had at least 10 guns.

b) Find the names of the ships that had at least 10 guns.

c) Find the names of the ships that were sunk.

d) Find the names of the classes with at least 3 ships.

! e) Find the names of the classes such that no ship of that class was in a
battle.

!! f) Find the names of the classes that had at least two ships launched in the
same year.

!! g) Produce a sequence of items of the form

< B attle name = arXShip name = y />• • • < /B attle>

12.2. XQUERY 543

544 CHAPTER 12. PROGRAMMING LANGUAGES FOR XM L

where x is the name of a battle and y the name of a ship in the battle.
There may be more than one Ship element in the sequence.

! Exercise 12.2 .3 : Solve the problem of Section 12.2.5; write a query that finds
the star(s) living at a given address, even if they have several addresses, without
finding stars that do not live at that address.

! Exercise 12.2 .4 : Do there exist expressions E and F such that the expres
sion every $x in E s a t i s f i e s F is true, but some $x in E s a t i s f i e s F
is false? Either give an example or explain why it is impossible.

12.3 Extensible Stylesheet Language
XSLT (Extensible Stylesheet Language for Transformations) is a standard of
the World-Wide-Web Consortium. Its original purpose was to allow XML doc
uments to be transformed into HTML or similar forms that allowed the doc
ument to be viewed or printed. However, in practice, XSLT is another query
language for XML. Like XPath or XQuery, we can use XSLT to extract data
from documents or turn one document form into another form.

12.3.1 XSLT Basics
Like XML Schema, XSLT specifications are XML documents; these specifica
tions are usually called stylesheets. The tags used in XSLT are found in a
namespace, which is http://www.w3.org/1999/XSL/Transform . Thus, at the
highest level, a stylesheet looks like Fig. 12.20.

<? xml v e rs io n = "1 .0" encoding = " u tf -8 " ?>
< x s l: s ty le s h e e t xm lns:xsl =

"h t t p : / / www.w3. org/1999/XSL/Transf orm">

< /x s l : s ty le sh ee t>

Figure 12.20: The form of an XSLT stylesheet

12.3.2 Templates
A stylesheet will have one or more templates. To apply a stylesheet to an XML
document, we go down the list of templates until we find one that matches
the root. As processing proceeds, we often need to find matching templates
for elements nested within the document. If so, we again search the list of
templates for a match according to matching rules that we shall learn in this
section. The simplest form of a template tag is:

12.3. EXTENSIBLE STYLESHEET LANGUAGE 545

< x s l: tem plate match = "XPath expression">

The XPath expression, which can be either rooted (beginning with a slash) or
relative, describes the elements of an XML document to which this template is
applied. If the expression is rooted, then the template is applied to every ele
ment of the document that matches the path. Relative expressions are applied
when a template T has within it a tag <xsl:apply-tem plates> . In that case,
we look among the children of the elements to which T is applied. In that way,
we can traverse an XML document’s tree in a depth-first manner, performing
complicated transformations on the document.

The simplest content of a template is text, typically HTML. When a tem
plate matches a document, the text inside that document is produced as output.
Within the text can be calls to apply templates to the children and/or obtain
values from the document itself, e.g., from attributes of the current element.

1) <? xml v ers io n = "1.0" encoding = "u tf-8 " ?>
2) < x s l:s ty le sh e e t xm lns:xsl =
3) "h t t p ://www.w3 . org/1999/XSL/Transform">
4) < x sl:tem p la te match = "/">
5) <HTML>
6) <B0DY>
7) This i s a document
8) </body>
9) </html>

10) < /xsl:tem pla te>
11) < /x s l:s ty le sh e e t>

Figure 12.21: Printing output for any document

E xam ple 12.20: In Fig. 12.21 is an exceedingly simple stylesheet. It applies
to any document and produces the same HTML document, regardless of its
input. This HTML document says “This is a document” in boldface.

Line (4) introduces the one template in the stylesheet. The value of the
match attribute is " /" , which matches only the root. The body of the template,
lines (5) through (9), is simple HTML. When these lines are produced as output,
the resulting file can be treated as HTML and displayed by a browser or other
HTML processor. □

12.3.3 Obtaining Values From XML Data
It is unusual that the document we produce does not depend in any way on the
input to the transformation, as was the case in Example 12.20. The simplest
way to extract data from the input is with the va lue-o f tag. The form of this
tag is:

546 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

<? xml version="1.0" encoding="utf-8" standalone="yes" ?>
<Movies>

<Movie title = "King Kong">
<Version year = "1933">

<Star>Fay Wray</Star>
</Version>
<Version year = "1976">

<Star>Jeff Bridges</Star>
<Star>Jessica Lange</Star>

</Version>
CVersion year = "2005" />

</Movie>
<Movie title = "Footloose">

CVersion year = "1984">
<Star>Kevin Bacon</Star>
<Star>John Lith.gow</Star>
<Star>Sarah Jessica Parker</Star>

</Version>
</Movie>

... more movies
</Movies>

Figure 12.22: The file m ovies. xml

<xsl:value-of select = "expression" />

The expression is an XPath expression that should produce a string as value.
Other values, such as elements containing text, are coerced into strings in the
obvious way.

E xam ple 12.21: In Fig. 12.22 we reproduce the file movies.xml that was
used in Section 12.2 as a running example. In this example of a stylesheet, we
shall use v a lu e -o f to obtain all the titles of movies and print them, one to a
line. The stylesheet is shown in Fig. 12.23.

At line (4), we see that the template matches every Movie element, so we
process them one at a time. Line (5) applies the v a lu e-o f operation with an
XPath expression O ti t le . That is, we go to the t i t l e attribute of each Movie
element and take the value of that attribute. This value is produced as output,
and followed at line (6) by the HTML break tag, so the next movie title will be
printed on the next line. □

12.3.4 Recursive Use of Templates
The most interesting and powerful transformations require recursive application
of templates at various elements of the input. Having selected a template to

12.3. EXTENSIBLE STYLESHEET LANGUAGE 547

1) <? xml version = "1.0" encoding = "utf-8" ?>
2) <xsl:stylesheet xmlns:xsl =
3) "http://www.w3.org/1999/XSL/Transform">
4) <xsl:template match = "/Movies/Movie">
5) <xsl:value-of select = "Stitle" />
6)

7) </xsl:template>
8) </xsl:stylesheet>

Figure 12.23: Printing the titles of movies

apply to the root of the input document, we can ask that a template be applied
to each of its subelements, by using the app ly -tem plates tag. If we want to
apply a certain template to only some subset of the subelements, e.g., those
with a certain tag, we can use a s e le c t expression, as:

< x sl:ap p ly -tem p la tes s e le c t = "expression" />

When we encounter such a tag within a template, we find the set of matching
subelements of the current element (the element to which the template is being
applied). For each subelement, we find the first template that matches and
apply it to the subelement.

E xam ple 12.22: In this example, we shall use XSLT to transform an XML
document into another XML document, rather than into an HTML document.
Let us examine Fig. 12.24. There are four templates, and together they process
movie data in the form of Fig. 12.22. The first template, lines (4) through (8),
matches the root. It says to output the text <Movies> and then apply templates
to the children of the root element. We could have specified that templates were
to be applied only to children that are tagged <Movie>, but since we expect no
other tags among the children, we did not specify:

6) < x sl:ap p ly -tem p la tes s e le c t = "Movie" />

Notice that after applying templates to the <Movie> children (which will
result in the printing of many elements), we close the <Movies> element in the
output with the appropriate closing tag at line (7). Also observe that we can tell
the difference between tags that are output text, such as lines (5) and (7), from
tags that are XSLT, because all XSLT tags must be from the x s l namespace.

Now, let us see what applying templates to the <Movie> elements does. The
first (and only) template that matches these elements is the second, at lines (9)
through (15). This template begins by outputting the text <Movie t i t l e = "
at line (10). Then, line (11) obtains the title of the movie and emits it to the
output. Line (12) finishes the quoted attribute value and the <Movie> tag in
the output. Line (13) applies templates to all the children of the movie, which
should be versions. Finally, line (14) emits the matching </Movie> ending tag.

548 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

1) <? xml version = "1.0" encoding = "utf-8" ?>
2) <xsl:stylesheet xmlns:xsl =
3) "http://www.w3.org/1999/XSL/Transform">

4) <xsl:template match = "/Movies">
5) <Movies>
6) <xsl:apply-templates />
7) </Movies>
8) </xsl:template>

9) <xsl:template match = "Movie">
10) <Movie title = "
11) <xsl:value-of select = "fititle” />
12) ">
13) <xsl:apply-templates />
14) </Movie>
15) </xsl:template>

16) <xsl:template match = "Version">
17) <xsl:apply-templates />
18) </xsl:template>

19) <xsl:template match = "Star">
20) <Star name = "
21) <xsl:value-of select = "." />
22) " />
23) </xsl:template>

24) </xsl:stylesheet>

Figure 12.24: Transforming the m ovies. xml file

When line (13) calls for templates to be applied to all the versions of a
movie, the only matching template is that of lines (16) through (18), which
does nothing but apply templates to the children of the version, which should
be <Star> elements. Thus, what gets generated between each opening <Movie>
tag and its matched closing tag is determined by the last template of lines (19)
through (23). This template is applied to each <Star> element.

Star elements from the input are transformed in the output. Instead of the
star’s name being text, as it is in Fig. 12.22, the template starting at line (19)
produces a <Star> element with the name as an attribute. Line (21) says to
select the <Star> element itself (the dot represents the .“self” axis as an XPath
expression) as a value for the output. However, all output is text, so the tags
of the element are not part of the output. That result is exactly what we want,

12.3. EXTENSIBLE STYLESH EET LANGUAGE 549

since the value of the attribute name should be a string, not an element. The
empty <Star> element is completed on line (22). For instance, given the input
of Fig. 12.22, the output would be as shown in Fig. 12.25. □

<Movies>
<Movie t i t l e = "King Kong">

<Star name = "Fay Wray" />
<Star name = " Je ff B ridges" />
<Star name = " Je s s ic a Lange" />

</Movie>
<Movie t i t l e = "Footloose">

<Star name = "Kevin Bacon" />
<Star name = "John Lithgow" />
<Star name = "Sarah J e s s ic a Parker" />

</Movie>
. . . more movies

</Movies>

Figure 12.25: Output of the transform of Fig. 12.24

12.3.5 Iteration in XSLT
We can put a loop within a template that gives us freedom over the order in
which we visit certain subelements of the element to which the template is being
applied. The f o r-each tag creates the loop, with a form:

< x s l:fo r-e ach s e le c t = "expression">

The expression is an XPath expression whose value is a sequence of items.
Whatever is between the opening <for-each> tag and its matched closing tag
is executed for each item, in turn.

E xam ple 12.23: In Fig. 12.26 is a copy of our document s ta r s .xml; we wish
to transform it to an HTML list of all the names of stars followed by an HTML
list of all the cities in which stars live. Figure 12.27 has a template that does
the job.

There is one template, which matches the root. The first thing that happens
is at line (5), where the HTML tag <0L> is emitted to start an ordered list.
Then, line (6) starts a loop, which iterates over each <Star> subelement. At
lines (7) through (9), a list item with the name of that star is emitted. Line (11)
ends the list of names and begins a list of cities. The second loop, lines (12)
through (16), runs through each <Address> element and emits a list item for
the city. Line (17) closes the second list. □

550 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

<? xml versions"1.0" encoding="utf-8" standalone="yes" ?>
<Stars>

<Star>
<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple St.</Street>
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust Ln.</Street>
<City>Malibu</City>

</Address>
</Star>

... more stars
</Stars>

Figure 12.26: Document s ta rs .x m l

1) <? xml version = "1.0" encoding = "utf-8" ?>
2) <xsl:stylesheet xmlns:xsl =
3) "http://www.w3.org/1999/XSL/Transform">
4) <xsl:template match = "/">
5) <0L>
6) <xsl:for-each select = "Stars/Star" />
7)
8) <xsl:value-of select = "Name">
9)
10) </xsl:for-each>
11) <P/xOL>
12) <xsl:for-each select = "Stars/Star/Addre
13)
14) <xsl:value-of select = "City">
15)
16) </xsl:for-each>
17)
18) </xsl:template>
19) </xsl:stylesheet>

Figure 12.27: Printing names and cities of stars

12.3. EXTENSIBLE STYLESHEET LANGUAGE 551

12.3.6 Conditionals in XSLT
We can introduce branching into our templates by using an i f tag. The form
of this tag is:

<xsl:if test = "boolean expression">

Whatever appears between this tag and its matched closing tag is executed if
and only if the boolean expression is true. There is no else-clause, but we can
follow this expression by another i f that has the opposite test condition should
we wish.

1) <? xml version = "1.0" encoding = "utf-8" ?>
2) <xsl:stylesheet xmlns:xsl =
3) "http://www.w3.org/1999/XSL/Transform">
4) <xsl:template match = "/">
5) <TABLE border = "5"><TR><TH>Stars</thx/tr>
6) <xsl:for-each select = "Stars/Star" />
7) <xsl:if test = "Address/City = ’Hollywood’">
8) <TRXTD>
9) <xsl:value-of select = "Name" />
10) </tdx/tr>
11) </xsl:if>
12) </xsl:for-each>
13) </table>
14) </xsl:template>
15) </xsl:stylesheet>

Figure 12.28: Finding the names of the stars who live in Hollywood

E xam ple 12.24: Figure 12.28 is a stylesheet that prints a one-column table,
with header “Stars.” There is one template, which matches the root. The first
thing this template does is print the header row at line (5). The for-each loop
of lines (6) through (12) iterates over each star. The conditional of line (7)
tests whether the star has at least one home in Hollywood. Remember that
the equal-sign represents a comparison is true if any item on the left equals any
item on the right. That is what we want, since we asked whether any of the
homes a star has is in Hollywood. Lines (8) through (10) print a row of the
table. □

12.3.7 Exercises for Section 12.3
E xercise 12.3.1: Suppose our input XML document has the form of the prod
uct data of Figs. 12.4 and 12.5. Write XSLT stylesheets to produce each of the
following documents.

552 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

a) An HTML file consisting of a header “Manufacturers” followed by an
enumerated list of the names of all the makers of products listed in the
input.

b) An HTML file consisting of a table with headers “Model” and “Price,”
with a row for each PC. That row should have the proper model and price
for the PC.

! c) An HTML file consisting of a table whose headers are “Model,” “Price,”
“Speed,” and “Ram” for all Laptops, followed by another table with the
same headers for PC ’s.

d) An XML file with root tag <PCs> and subelements having tag <PC>. This
tag has attributes model, p r ic e , speed, and ram. In the output, there
should be one <PC> element for each <PC> element of the input file, and
the values of the attributes should be taken from the corresponding input
element.

!! e) An XML file with root tag <Products> whose subelements are <Product>
elements. Each <Product> element has attributes type, maker, model,
and p ric e , where the type is one of "PC", "Laptop", or " P r in te r" . There
should be one <Product> element in the output for every PC, laptop,
and printer in the input file, and the output values should be chosen
appropriately from the input data.

! f) Repeat part (b), but make the output file a Latex file.

E xercise 12.3 .2 : Suppose our input XML document has the form of the prod
uct data of Fig. 12.6. Write XSLT stylesheets to produce each of the following
documents.

a) An HTML file with a header for each class. Under each header is a table
with column-headers “Name” and “Launched” with the appropriate entry
for each ship of the class.

b) An HTML file with root tag <Losers> and subelements <Ship>, each of
whose values is the name of one of the ships that were sunk.

! c) An XML file with root tag <Ships> and subelements <Ship> for each
ship. These elements each should have attributes name, c la s s , country
and numGuns with the appropriate values taken from the input file.

! d) Repeat (c), but only list those ships that were in at least one battle.

e) An XML file identical to the input, except that <B attle> elements should
be empty, with the outcome and name of the battle as two attributes.

12.4. SUMMARY OF CHAPTER 12 553

12.4 Summary of Chapter 12
♦ XPath: This language is a simple way to express many queries about XML

data. You describe paths from the root of the document by sequences of
tags. The path may end at an attribute rather than an element.

♦ The XPath Data Model: All XPath values are sequences of items. An
item is either a primitive value or an element. An element is an opening
XML tag, its matched closing tag, and everything in between.

♦ Axes: Instead of proceeding down the tree in a path, one can follow
another axis, including jumps to any descendant, a parent, or a sibling.

♦ XPath Conditions: Any step in a path can be constrained by a condition,
which is a boolean-valued expression. This expression appears in square
brackets.

♦ XQuery: This language is a more advanced form of query language for
XML documents. It uses the same data model as XPath. XQuery is a
functional language.

♦ FLWR Expressions: Many queries in XQuery consist of let-, for-, where-
and return-clauses. “Let” introduces temporary definitions of variables;
“for” creates loops; “where” supplies conditions to be tested, and “return”
defines the result of the query.

♦ Comparison Operators in XQuery and XPath: The conventional compar
ison operators such as < apply to sequences of items, and have a “there-
exists” meaning. They are true if the stated relation holds between any
pair of items, one from each of the lists. To be assured that single items
are being compared, we can use letter codes for the operators, such as I t
for “less than.”

♦ Other XQuery Expressions: XQuery has many operations that resemble
those in SQL. These operators include existential and universal quantifi
cation, aggregation, duplicate-elimination, and sorting of results.

♦ XSLT: This language is designed for transformations of XML documents,
although it also can be used as a query language. A “program” in this
language has the form of an XML document, with a special namespace
that allows us to use tags to describe a transformation.

♦ Templates: The heart of XSLT is a template, which matches certain el
ements of the input document. The template describes output text, and
can extract values from the input document for inclusion in the output.
A template can also call for templates to be applied recursively to the
children of an element.

554 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

♦ XSLT Programming Constructs: A template can also include XSLT con
structs that behave like an iterative programming language. These con
structs include for-loops and if-statements.

12.5 References for Chapter 12
The World-Wide-Web Consortium site for the definition of XPath is [2], The
site for XQuery is [3], and for XSLT it is [4].

[1] is an introduction to the XQuery language. There are tutorials for XPath,
XQuery, and XSLT at [5].

1. D. D. Chamberlin, “XQuery: an XML Query Language,” IBM Systems
Journal 41:4 (2002), pp. 597-615. See also
www.research.ibm.com/j ournal/s j /4 1 4 /chamberlin.pdf

2. World-Wide-Web Consortium h t t p : //www. w3. org/TR/xpath

3. World-Wide-Web Consortium http://www.w3.org/TR/xquery

4. World-Wide-Web Consortium h t t p : / / www. w3. org /T R /xslt

5. W3 Schools, http://www.w3schools.com

Part IV

Database System
Implementation

555

Chapter 13

Secondary Storage
Management

Database systems always involve secondary storage — the disks and other de
vices that store large amounts of data that persists over time. This chapter
summarizes what we need to know about how a typical computer system man
ages storage. We review the memory hierarchy of devices with progressively
slower access but larger capacity. We examine disks in particular and see how
the speed of data access is affected by how we organize our data on the disk.
We also study mechanisms for making disks more reliable.

Then, we turn to how data is represented. We discuss the way tuples of a
relation or similar records or objects are stored. Efficiency, as always, is the
key issue. We cover ways to find records quickly, and how to manage insertions
and deletions of records, as well as records whose sizes grow and shrink.

13.1 The Memory Hierarchy
We begin this section by examining the memory hierarchy of a computer system.
We then focus on disks, by far the most common device at the “secondary-
storage” level of the hierarchy. We give the rough parameters that determine
the speed of access and look at the transfer of data from disks to the lower
levels of the memory hierarchy.

13.1.1 The Memory Hierarchy
A typical computer system has several different components in which data may
be stored. These components have data capacities ranging over at least seven
orders of magnitude and also have access speeds ranging over seven or more
orders of magnitude. The cost per byte of these components also varies, but
more slowly, with perhaps three orders of magnitude between the cheapest and

557

558 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

most expensive forms of storage. Not surprisingly, the devices with smallest
capacity also offer the fastest access speed and have the highest cost per byte.
A schematic of the memory hierarchy is shown in Fig. 13.1.

DBMS

Nonvolatile

t
Volatile

I
Figure 13.1: The memory hierarchy

Here are brief descriptions of the levels, from the lowest, or fastest-smallest
level, up.

1. Cache. A typical machine has a megabyte or more of cache storage.
On-board cache is found on the same chip as the microprocessor itself,
and additional level-2 cache is found on another chip. Data and instruc
tions are moved to cache from main memory when they are needed by
the processor. Cached data can be accessed by the processor in a few
nanoseconds.

2. Main Memory. In the center of the action is the computer’s main memory.
We may think of everything that happens in the computer — instruction
executions and data manipulations — as working on information that is
resident in main memory (although in practice, it is normal for what is
used to migrate to the cache). A typical machine in 2008 is configured
with about a gigabyte of main memory, although much larger main mem
ories are possible. Typical times to move data from main memory to the
processor or cache are in the 10-100 nanosecond range.

3. Secondary Storage. Secondary storage is typically magnetic disk, a device
we shall consider in detail in Section 13.2. In 2008, single disk units
have capacities of up to a terabyte, and one machine can have several
disk units. The time to transfer a single byte between disk and main

13.1. THE MEMORY HIERARCHY 559

Computer Quantities are Powers of 2

It is conventional to talk of sizes or capacities of computer components
as if they were powers of 10: megabytes, gigabytes, and so on. In reality,
since it is most efficient to design components such as memory chips to
hold a number of bits that is a power of 2, all these numbers are really
shorthands for nearby powers of 2. Since 210 = 1024 is very close to a
thousand, we often maintain the fiction that 210 = 1000, and talk about
210 with the prefix “kilo,” 220 as “mega,” 230 as “giga,” 240 as “tera,” and
250 as “peta,” even though these prefixes in scientific parlance refer to 103,
106, 109, 1012 and 1015, respectively. The discrepancy grows as we talk of
larger numbers. A “gigabyte” is really 1.074 x 109 bytes.

We use the standard abbreviations for these numbers: K, M, G, T, and
P for kilo, mega, giga, tera, and peta, respectively. Thus, 16Gb is sixteen
gigabytes, or strictly speaking 234 bytes. Since we sometimes want to talk
about numbers that are the conventional powers of 10, we shall reserve for
these the traditional numbers, without the prefixes “kilo,” “mega,” and
so on. For example, “one million bytes” is 1,000,000 bytes, while “one
megabyte” is 1,048,576 bytes.

A recent trend is to use “kilobyte,” “megabyte,” and so on for exact
powers of ten, and to replace the third and fourth letters by “bi” to repre
sent the similar powers of two. Thus, “kibibyte” is 1024 bytes, “mebibyte”
is 1,048,576 bytes, and so on. We shall not use this convention.

memory is around 10 miliseconds. However, large numbers of bytes can
be transferred at one time, so the m atter of how fast data moves from
and to disk is somewhat complex.

4. Tertiary Storage. As capacious as a collection of disk units can be, there
are databases much larger than what can be stored on the disk(s) of a
single machine, or even several machines. To serve such needs, tertiary
storage devices have been developed to hold data volumes measured in ter
abytes. Tertiary storage is characterized by significantly higher read/write
times than secondary storage, but also by much larger capacities and
smaller cost per byte than is available from magnetic disks. Many ter
tiary devices involve robotic arms or conveyors that bring storage media
such as magnetic tape or optical disks (e.g., DVD’s) to a reading device.
Retrieval takes seconds or minutes, but capacities in the petabyte range
are possible.

560 CHAPTER 13. SECONDARY STO RAGE M ANAGEM ENT

13.1.2 Transfer of Data Between Levels

Normally, data moves between adjacent levels of the hierarchy. At the secondary
and tertiary levels, accessing the desired data or finding the desired place to
store data takes a great deal of time, so each level is organized to transfer
large amounts of data to or from the level below, whenever any data at all is
needed. Especially important for understanding the operation of a database
system is the fact that the disk is organized into disk blocks (or just blocks, or
as in operating systems, pages) of perhaps 4-64 kilobytes. Entire blocks axe
moved to or from a continuous section of main memory called a buffer. Thus,
a key technique for speeding up database operations is to arrange data so that
when one piece of a disk block is needed, it is likely that other data on the same
block will also be needed at about the same time.

The same idea applies to other hierarchy levels. If we use tertiary storage,
we try to arrange so that when we select a unit such as a DVD to read, we
need much of what is on that DVD. At a lower level, movement between main
memory and cache is by units of cache lines, typically 32 consecutive bytes.
The hope is that entire cache lines will be used together. For example, if a
cache line stores consecutive instructions of a program, we hope that when
the first instruction is needed, the next few instructions will also be executed
immediately thereafter.

13.1.3 Volatile and Nonvolatile Storage
An additional distinction among storage devices is whether they are volatile or
nonvolatile. A volatile device “forgets” what is stored in it when the power goes
off. A nonvolatile device, on the other hand, is expected to keep its contents
intact even for long periods when the device is turned off or there is a power
failure. The question of volatility is important, because one of the characteristic
capabilities of a DBMS is the ability to retain its data even in the presence of
errors such as power failures.

Magnetic and optical materials hold their data in the absence of power.
Thus, essentially all secondary and tertiary storage devices are nonvolatile. On
the other hand, main memory is generally volatile (although certain types of
more expensive memory chips, such as flash memory, can hold their data after
a power failure). A significant part of the complexity in a DBMS comes from
the requirement that no change to the database can be considered final until it
has migrated to nonvolatile, secondary storage.

13.1.4 Virtual Memory-
Typical software executes in virtual-memory, an address space that is typically
32 bits; i.e., there are 232 bytes, or 4 gigabytes, in a virtual memory. The
operating system manages virtual memory, keeping some of it in main memory
and the rest on disk. Transfer between memory and disk is in units of disk

13.1. THE MEMORY HIERARCHY 561

M oore’s Law

Gordon Moore observed many years ago that integrated circuits were im
proving in many ways, following an exponential curve that doubles about
every 18 months. Some of these parameters that follow “Moore’s law” are:

1. The number of instructions per second that can be executed for unit
cost. Until about 2005, the improvement was achieved by making
processor chips faster, while keeping the cost fixed. After that year,
the improvement has been maintained by putting progressively more
processors on a single, fixed-cost chip.

2. The number of memory bits that can be bought for unit cost and
the number of bits that can be put on one chip.

3. The number of bytes per unit cost on a disk and the capacity of the
largest disks.

On the other hand, there are some other important parameters that
do not follow Moore’s law; they grow slowly if at all. Among these slowly
growing parameters are the speed of accessing data in main memory and
the speed at which disks rotate. Because they grow slowly, “latency”
becomes progressively larger. That is, the time to move data between
levels of the memory hierarchy appears enormous today, and will only get
worse.

blocks (pages). Virtual memory is an artifact of the operating system and its
use of the machine’s hardware, and it is not a level of the memory hierarchy.

The path in Fig. 13.1 involving virtual memory represents the treatment
of conventional programs and applications. It does not represent the typical
way data in a database is managed, since a DBMS manages the data itself.
However, there is increasing interest in main-memory database systems, which
do indeed manage their data through virtual memory, relying on the operating
system to bring needed data into main memory through the paging mechanism.
Main-memory database systems, like most applications, are most useful when
the data is small enough to remain in main memory without being swapped
out by the operating system.

13.1.5 Exercises for Section 13.1
Exercise 13.1.1: Suppose that in 2008 the typical computer has a processor
chip with two processors (“cores”) that each run at 3 gigahertz, has a disk of
250 gigabytes, and a main memory of 1 gigabyte. Assume that Moore’s law
(these factors double every 18 months) holds into the indefinite future.

562 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

a) When will petabyte disks be common?

b) When will terabyte main memories be common?

c) When will terahertz processor chips be common (i.e., the total number of
cycles per second of all the cores on a chip will be approximately 1012?

d) W hat will be a typical configuration (processor, disk, memory) in the year
2015?

! Exercise 13.1 .2 : Commander Data, the android from the 24th century on
Star Trek: The Next Generation once proudly announced that his processor
runs at “12 teraops.” While an operation and a cycle may not be the same, let
us suppose they are, and that Moore’s law continues to hold for the next 300
years. If so, what would Data’s true processor speed be?

13.2 Disks
The use of secondary storage is one of the important characteristics of a DBMS,
and secondary storage is almost exclusively based on magnetic disks. Thus, to
motivate many of the ideas used in DBMS implementation, we must examine
the operation of disks in detail.

13.2.1 Mechanics of Disks
The two principal moving pieces of a disk drive are shown in Fig. 13.2; they
are a disk assembly and a head assembly. The disk assembly consists of one
or more circular platters that rotate around a central spindle. The upper and
lower surfaces of the platters are covered with a thin layer of magnetic material,
on which bits are stored. 0’s and l ’s are represented by different patterns in the
magnetic material. A common diameter for disk platters is 3.5 inches, although
disks with diameters from an inch to several feet have been built.

The disk is organized into tracks, which are concentric circles on a single
platter. The tracks that are at a fixed radius from the center, among all the
surfaces, form one cylinder. Tracks occupy most of a surface, except for the
region closest to the spindle, as can be seen in the top view of Fig. 13.3. The
density of data is much greater along a track than radially. In 2008, a typical
disk has about 100,000 tracks per inch but stores about a million bits per inch
along the tracks.

Tracks are organized into sectors, which are segments of the circle separated
by gaps that are not magnetized to represent either 0’s or l ’s.1 The sector is an
indivisible unit, as far as reading and writing the disk is concerned. It is also
indivisible as far as errors are concerned. Should a portion of the magnetic layer

1 W e show each tra c k w ith th e sam e n u m b er o f sec to rs in F ig . 13.3. However, th e n u m b er
o f sec to rs p e r tra c k no rm ally varies, w ith th e o u te r track s hav ing m ore sec to rs th a n inn er
tracks.

13.2. DISKS 563

Figure 13.2: A typical disk

be corrupted in some way, so that it cannot store information, then the entire
sector containing this portion cannot be used. Gaps often represent about 10%
of the total track and are used to help identify the beginnings of sectors. As we
mentioned in Section 13.1.2, blocks are logical units of data that are transferred
between disk and main memory; blocks consist of one or more sectors.

Figure 13.3: Top view of a disk surface

The second movable piece shown in Fig. 13.2, the head assembly, holds the
disk heads. For each surface there is one head, riding extremely close to the
surface but never touching it (or else a “head crash” occurs and the disk is
destroyed). A head reads the magnetism passing under it, and can also alter
the magnetism to write information on the disk. The heads are each attached
to an arm, and the arms for all the surfaces move in and out together, being
part of the rigid head assembly.

E xam ple 13.1: The Megatron 7^7 disk has the following characteristics, which

564 CHAPTER 13. SECONDARY STO RAG E M ANAGEM ENT

are typical of a large vintage-2008 disk drive.

• There are eight platters providing sixteen surfaces.

• There are 216, or 65,536, tracks per surface.

• There are (on average) 28 = 256 sectors per track.

• There are 212 = 4096 bytes per sector.

The capacity of the disk is the product of 16 surfaces, times 65,536 tracks,
times 256 sectors, times 4096 bytes, or 240 bytes. The Megatron 747 is thus a
terabyte disk. A single track holds 256 x 4096 bytes, or 1 megabyte. If blocks
are 214, or 16,384 bytes, then one block uses 4 consecutive sectors, and there
are (on average) 256/4 = 32 blocks on a track. □

13.2.2 The Disk Controller
One or more disk drives are controlled by a disk controller, which is a small
processor capable of:

1. Controlling the mechanical actuator that moves the head assembly, to
position the heads at a particular radius, i.e., so that any track of one
particular cylinder can be read or written.

2. Selecting a sector from among all those in the cylinder at which the heads
are positioned. The controller is also responsible for knowing when the ro
tating spindle has reached the point where the desired sector is beginning
to move under the head.

3. Transferring bits between the desired sector and the computer’s main
memory.

4. Possibly, buffering an entire track or more in local memory of the disk
controller, hoping that many sectors of this track will be read soon, and
additional accesses to the disk can be avoided.

Figure 13.4 shows a simple, single-processor computer. The processor com
municates via a data bus with the main memory and the disk controller. A
disk controller can control several disks; we show three disks in this example.

13.2.3 Disk Access Characteristics
Accessing (reading or writing) a block requires three steps, and each step has
an associated delay.

1. The disk controller positions the head assembly at the cylinder containing
the track on which the block is located. The time to do so is the seek time.

13.2. DISKS 565

Disks

Figure 13.4: Schematic of a simple computer system

2. The disk controller waits while the first sector of the block moves under
the head. This time is called the rotational latency.

3. All the sectors and the gaps between them pass under the head, while the
disk controller reads or writes data in these sectors. This delay is called
the transfer time.

The sum of the seek time, rotational latency, and transfer time is the latency
of the disk.

The seek time for a typical disk depends on the distance the heads have to
travel from where they are currently located. If they are already at the desired
cylinder, the seek time is 0. However, it takes roughly a millisecond to start
the disk heads moving, and perhaps 10 milliseconds to move them across all
the tracks.

A typical disk rotates once in roughly 10 milliseconds. Thus, rotational
latency ranges from 0 to 10 milliseconds, and the average is 5. TYansfer times
tend to be much smaller, since there are often many blocks on a track. Thus,
transfer times are in the sub-millisecond range. When you add all three delays,
the typical average latency is about 10 milliseconds, and the maximum latency
about twice that.

E xam ple 13.2: Let us examine the time it takes to read a 16,384-byte block
from the Megatron 747 disk. First, we need to know some timing properties of
the disk:

• The disk rotates at 7200 rpm; i.e., it makes one rotation in 8.33 millisec
onds.

• To move the head assembly between cylinders takes one millisecond to
start and stop, plus one additional millisecond for every 4000 cylinders

566 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

traveled. Thus, the heads move one track in 1.00025 milliseconds and
move from the innermost to the outermost track, a distance of 65,536
tracks, in about 17.38 milliseconds.

• Gaps occupy 10% of the space around a track.

Let us calculate the minimum, maximum, and average times to read that
16,384-byte block. The minimum time is just the transfer time. That is, the
block might be on a track over which the head is positioned already, and the
first sector of the block might be about to pass under the head.

Since there are 4096 bytes per sector on the Megatron 747 (see Example 13.1
for the physical specifications of the disk), the block occupies four sectors. The
heads must therefore pass over four sectors and the three gaps between them.
We assume that gaps represent 10% of the circle and sectors the remaining 90%.
There are 256 gaps and 256 sectors around the circle. Since the gaps together
cover 36 degrees of arc and sectors the remaining 324 degrees, the total degrees
of arc covered by 3 gaps and 4 sectors is 36 x 3/256 + 324 x 4/256 = 5.48
degrees. The transfer time is thus (5.48/360) x 0.00833 = .00013 seconds. That
is, 5.48/360 is the fraction of a rotation needed to read the entire block, and
.00833 seconds is the amount of time for a 360-degree rotation.

Now, let us look at the maximum possible time to read the block. In the
worst case, the heads are positioned at the innermost cylinder, and the block
we want to read is on the outermost cylinder (or vice versa). Thus, the first
thing the controller must do is move the heads. As we observed above, the time
it takes to move the Megatron 747 heads across all cylinders is about 17.38
milliseconds. This quantity is the seek time for the read.

The worst thing that can happen when the heads arrive at the correct cylin
der is that the beginning of the desired block has just passed under the head.
Assuming we must read the block starting at the beginning, we have to wait
essentially a full rotation, or 8.33 milliseconds, for the beginning of the block
to reach the head again. Once that happens, we have only to wait an amount
equal to the transfer time, 0.13 milliseconds, to read the entire block. Thus,
the worst-case latency is 17.38 + 8.33 + 0.13 = 25.84 milliseconds.

Last, let us compute the average latency. Two of the components of the
latency are easy to compute: the transfer time is always 0.13 milliseconds, and
the average rotational latency is the time to rotate the disk half way around, or
4.17 milliseconds. We might suppose that the average seek time is just the time
to move across half the tracks. However, that is not quite right, since typically,
the heads are initially somewhere near the middle and therefore will have to
move less than half the distance, on average, to the desired cylinder. We leave
it as an exercise to show that the average distance traveled is 1/3 of the way
across the disk.

The time it takes the Megatron 747 to move 1/3 of the way across the disk
is 1 + (65536/3)/4000 = 6.46 milliseconds. Our estimate of the average latency
is thus 6.46 + 4.17 + 0.13 = 10.76 milliseconds; the three terms represent average
seek time, average rotational latency, and transfer time, respectively. □

13.2. DISKS 567

13.2.4 Exercises for Section 13.2
E xercise 13.2.1: The Megatron 777 disk has the following characteristics:

1. There are ten surfaces, with 100,000 tracks each.

2. Tracks hold an average of 1000 sectors of 1024 bytes each.

3. 20% of each track is used for gaps.

4. The disk rotates at 10,000 rpm.

5. The time it takes the head to move n tracks is 1 + 0.0002n milliseconds.

Answer the following questions about the Megatron 777.

a) What is the capacity of the disk?

b) If tracks are located on the outer inch of a 3.5-inch-diameter surface, what
is the average density of bits in the sectors of a track?

c) What is the maximum seek time?

d) What is the maximum rotational latency?

e) If a block is 65,546 bytes (i.e., 64 sectors), what is the transfer time of a
block?

! f) What is the average seek time?

g) What is the average rotational latency?

! E xercise 13.2.2: Suppose the Megatron 747 disk head is at cylinder 8192,
i.e., 1/8 of the way across the cylinders. Suppose that the next request is for a
block on a random cylinder. Calculate the average time to read this block.

!! Exercise 13.2.3: Prove that if we move the head from a random cylinder to
another random cylinder, the average distance we move is 1/3 of the way across
the disk (neglecting edge effects due to the fact that the number of cylinders is
finite).

!! Exercise 13.2.4: Exercise 13.2.3 assumes that we move from a random track
to another random track. Suppose, however, that the number of sectors per
track is proportional to the length (or radius) of the track, so the bit density
is the same for all tracks. Suppose also that we need to move the head from a
random sector to another random sector. Since the sectors tend to congregate
at the outside of the disk, we might expect that the average head move would
be less than 1/3 of the way across the tracks. Assuming that tracks occupy
radii from 0.75 inches to 1.75 inches, calculate the average number of tracks the
head travels when moving between two random sectors.

568 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

E xercise 13.2.5: To modify a block on disk, we must read it into main mem
ory, perform the modification, and write it back. Assume that the modification
in main memory takes less time than it does for the disk to rotate, and that the
disk controller postpones other requests for disk access until the block is ready
to be written back to the disk. For the Megatron 747 disk, what is the time to
modify a block?

13.3 Accelerating Access to Secondary Storage
Just because a disk takes an average of, say, 10 milliseconds to access a block,
it does not follow that an application such as a database system will get the
data it requests 10 milliseconds after the request is sent to the disk controller.
If there is only one disk, the disk may be busy with another access for the same
process or another process. In the worst case, a request for a disk access arrives
more than once every 10 milliseconds, and these requests back up indefinitely.
In that case, the scheduling latency becomes infinite.

There are several things we can do to decrease the average time a disk access
takes, and thus improve the throughput (number of disk accesses per second that
the system can accomodate). We begin this section by arguing that the “I/O
model” is the right one for measuring the time database operations take. Then,
we consider a number of techniques for speeding up typical database accesses
to disk:

1. Place blocks that are accessed together on the same cylinder, so we can
often avoid seek time, and possibly rotational latency as well.

2. Divide the data among several smaller disks rather than one large one.
Having more head assemblies that can go after blocks independently can
increase the number of block accesses per unit time.

3. “Mirror” a disk: making two or more copies of the data on different disks.
In addition to saving the data in case one of the disks fails, this strategy,
like dividing the data among several disks, lets us access several blocks at
once.

4. Use a disk-scheduling algorithm, either in the operating system, in the
DBMS, or in the disk controller, to select the order in which several
requested blocks will be read or written.

5. Prefetch blocks to main memory in anticipation of their later use.

13.3.1 The I/O Model of Computation
Let us imagine a simple computer running a DBMS and trying to serve a
number of users who are performing queries and database modifications. For
the moment, assume our computer has one processor, one disk controller, and

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 569

one disk. The database itself is much too large to fit in main memory. Key parts
of the database may be buffered in main memory, but generally, each piece of
the database that one of the users accesses will have to be retrieved initially
from disk. The following rule, which defines the I/O model of computation, can
thus be assumed.

D om inance o f I /O cost: The time taken to perform a disk ac
cess is much larger than the time likely to be used manipulating
that data in main memory. Thus, the number of block accesses
(Disk I /O ’s) is a good approximation to the time needed by the
algorithm and should be minimized.

E xam ple 13.3: Suppose our database has a relation R and a query asks for
the tuple of R that has a certain key value k. It is quite desirable to have
an index on R to identify the disk block on which the tuple with key value k
appears. However it is generally unimportant whether the index tells us where
on the block this tuple appears.

For instance, if we assume a Megatron 747 disk, it will take on the order
of 11 milliseconds to read a 16K-byte block. In 11 milliseconds, a modern
microprocessor can execute millions of instructions. However, searching for
the key value k once the block is in main memory will only take thousands of
instructions, even if the dumbest possible linear search is used. The additional
time to perform the search in main memory will therefore be less than 1% of
the block access time and can be neglected safely. □

13.3.2 Organizing Data by Cylinders
Since seek time represents about half the time it takes to access a block, it makes
sense to store data that is likely to be accessed together, such as relations, on
a single cylinder, or on as many adjacent cylinders as are needed. In fact, if we
choose to read all the blocks on a single track or on a cylinder consecutively,
then we can neglect all but the first seek time (to move to the cylinder) and
the first rotational latency (to wait until the first of the blocks moves under the
head). In that case, we can approach the theoretical transfer rate for moving
data on or off the disk.

E xam ple 13.4: Suppose relation R requires 1024 blocks of a Megatron 747
disk to hold its tuples. Suppose also that we need to access all the tuples of
R; for example we may be doing a search without an index or computing a
sum of the values of a particular attribute of R. If the blocks holding R are
distributed around the disk at random, then we shall need an average latency
(10.76 milliseconds — see Example 13.2) to access each, for a total of 11 seconds.

However, 1024 blocks are exactly one cylinder of the Megatron 747. We can
access them all by performing one average seek (6.46 milliseconds), after which
we can read the blocks in some order, one right after another. We can read all
the blocks on a cylinder in 16 rotations of the disk, since there are 16 tracks.

570 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Sixteen rotations take 16 x 8.33 = 133 milliseconds. The total time to access R
is thus about 139 milliseconds, and we speed up the operation on R by a factor
of about 80. □

13.3.3 Using M ultiple Disks
We can often improve the performance of our system if we replace one disk, with
many heads locked together, by several disks with their independent heads. The
arrangement was suggested in Fig. 13.4, where we showed three disks connected
to a single controller. As long as the disk controller, bus, and main memory
can handle n times the data-transfer rate, then n disks will have approximately
the performance of one disk that operates n times as fast.

Thus, using several disks can increase the ability of a database system to
handle heavy loads of disk-access requests. However, as long as the system is
not overloaded (when requests will queue up and are delayed for a long time or
ignored), there is no change in how long it takes to perform any single block
access. If we have several disks, then the technique known as striping (described
in the next example) will speed up access to large database objects — those
that occupy a large number of blocks.

E xam ple 1 3 .5 : Suppose we have four Megatron 747 disks and want to access
the relation R of Example 13.4 faster than the 139-millisecond time that was
suggested for storing R on one cylinder of one disk. We can “stripe” R by
dividing it among the four disks. The first disk can receive blocks 1 ,5 ,9 ,.. . of
R, the second disk holds blocks 2 ,6 ,1 0 ,.. ., the third holds blocks 3 ,7 ,1 1 ,.. .,
and the last disk holds blocks 4 ,8 ,1 2 ,.. ., as suggested by Fig. 13.5. Let us
contrive that on each of the disks, all the blocks of R are on four tracks of a
single cylinder.

r^i h
f^i r~i

IZD H
HD

10 [V]
HD

Figure 13.5: Striping a relation across four disks

Then to retrieve the 256 blocks of R on one of the disks requires an average
seek time (6.46 milliseconds) plus four rotations of the disk, one rotation for
each track. That is 6.46 + 4 x 8.33 = 39.8 milliseconds. Of course we have to
wait for the last of the four disks to finish, and there is a high probability that
one will take substantially more seek time than average. However, we should
get a speedup in the time to access R by about a factor of three on the average,
when there are four disks. □

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 571

13.3.4 Mirroring Disks
There are situations where it makes sense to have two or more disks hold identi
cal copies of data. The disks are said to be mirrors of each other. One important
motivation is that the data will survive a head crash by either disk, since it is
still readable on a mirror of the disk that crashed. Systems designed to enhance
reliability often use pairs of disks as mirrors of each other.

If we have n disks, each holding the same data, then the rate at which we
can read blocks goes up by a factor of n, since the disk controller can assign a
read request to any of the n disks. In fact, the speedup could be even greater
than n, if a clever controller chooses to read a block from the disk whose head
is currently closest to that block. Unfortunately, the writing of disk blocks does
not speed up at all. The reason is that the new block must be written to each
of the n disks.

13.3.5 Disk Scheduling and the Elevator Algorithm
Another effective way to improve the throughput of a disk system is to have the
disk controller choose which of several requests to execute first. This approach
cannot be used if accesses have to be made in a certain sequence, but if the
requests are from independent processes, they can all benefit, on the average,
from allowing the scheduler to choose among them judiciously.

A simple and effective way to schedule large numbers of block requests is
known as the elevator algorithm. We think of the disk head as making sweeps
across the disk, from innermost to outermost cylinder and then back again,
just as an elevator makes vertical sweeps from the bottom to top of a building
and back again. As heads pass a cylinder, they stop if there are one or more
requests for blocks on that cylinder. All these blocks are read or written, as
requested. The heads then proceed in the same direction they were traveling
until the next cylinder with blocks to access is encountered. When the heads
reach a position where there are no requests ahead of them in their direction of
travel, they reverse direction.

E xam ple 13.6: Suppose we are scheduling a Megatron 747 disk, which we
recall has average seek, rotational latency, and transfer times of 6.46, 4.17,
and 0.13, respectively (in this example, all times are in milliseconds). Suppose
that at some time there are pending requests for block accesses at cylinders
8000, 24,000, and 56,000. The heads are located at cylinder 8000. In addition,
there are three more requests for block accesses that come in at later times, as
summarized in Fig. 13.6. For instance, the request for a block from cylinder
16,000 is made at time 10 milliseconds.

We shall assume that each block access incurs time 0.13 for transfer and
4.17 for average rotational latency, i.e., we need 4.3 milliseconds plus whatever
the seek time is for each block access. The seek time can be calculated by the
rule for the Megatron 747 given in Example 13.2: 1 plus the number of tracks
divided by 4000. Let us see what happens if we schedule disk accesses using

572 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Cylinder
of request

First time
available

8000 0
24000 0
56000 0
16000 10
64000 20
40000 30

Figure 13.6: Arrival times for four block-access requests

the elevator algorithm. The first request, a t cylinder 8000, requires no seek,
since the heads are already there. Thus, a t time 4.3 the first access will be
complete. The request for cylinder 16,000 has not arrived at this point, so we
move the heads to cylinder 24,000, the next requested “stop” on our sweep to
the highest-numbered tracks. The seek from cylinder 8000 to 24,000 takes 5
milliseconds, so we arrive at time 9.3 and complete the access in another 4.3.
Thus, the second access is complete at time 13.6. By this time, the request for
cylinder 16,000 has arrived, but we passed that cylinder at time 7.3 and will
not come back to it until the next pass.

We thus move next to cylinder 56,000, taking time 9 to seek and 4.3 for
rotation and transfer. The third access is thus complete at time 26.9. Now, the
request for cylinder 64,000 has arrived, so we continue outward. We require 3
milliseconds for seek time, so this access is complete at time 26.9+3+4.3 = 34.2.

At this time, the request for cylinder 40,000 has been made, so it and the
request at cylinder 16,000 remain. We thus sweep inward, honoring these two
requests. Figure 13.7 summarizes the times at which requests are honored.

Cylinder
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
64000 34.2
40000 45.5
16000 56.8

Figure 13.7: Finishing times for block accesses using the elevator algorithm

Let us compare the performance of the elevator algorithm with a more naive
approach such as first-come-first-served. The first three requests are satisfied
in exactly the same manner, assuming that the order of the first three requests
was 8000, 24,000, and 56,000. However, at that point, we go to cylinder 16,000,

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 573

because that was the fourth request to arrive. The seek time is 11 for this
request, since we travel from cylinder 56,000 to 16,000, more than half way
across the disk. The fifth request, at cylinder 64,000, requires a seek time of 13,
and the last, at 40,000, uses seek time 7. Figure 13.8 summarizes the activity
caused by first-come-first-served scheduling. The difference between the two
algorithms — 14 milliseconds — may not appear significant, but recall that
the number of requests in this simple example is small and the algorithms were
assumed not to deviate until the fourth of the six requests. □

Cylinder
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
16000 42.2
64000 59.5
40000 70.8

Figure 13.8: Finishing times for block accesses using the first-come-first-served
algorithm

13.3.6 Prefetching and Large-Scale Buffering
Our final suggestion for speeding up some secondary-memory algorithms is
called prefetching or sometimes double buffering. In some applications we can
predict the order in which blocks will be requested from disk. If so, then we can
load them into main memory buffers before they are needed. One advantage to
doing so is that we are thus better able to schedule the disk, such as by using
the elevator algorithm, to reduce the average time needed to access a block. In
the extreme case, where there are many access requests waiting at all times, we
can make the seek time per request be very close to the minimum seek time,
rather than the average seek time.

13.3.7 Exercises for Section 13.3
E xercise 13.3.1: Suppose we are scheduling I/O requests for a Megatron 747
disk, and the requests in Fig. 13.9 are made, with the head initially at track
32,000. At what time is each request serviced fully if:

a) We use the elevator algorithm (it is permissible to start moving in either
direction at first).

b) We use first-come-first-served scheduling.

574 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Cylinder First time
of Request available

8000 0
48000 1
4000 10

40000 20

Figure 13.9: Arrival times for four block-access requests

Exercise 13.3.2: Suppose we use two Megatron 747 disks as mirrors of one
another. However, instead of allowing reads of any block from either disk, we
keep the head of the first disk in the inner half of the cylinders, and the head
of the second disk in the outer half of the cylinders. Assuming read requests
are on random tracks, and we never have to write:

a) What is the average rate at which this system can read blocks?

b) How does this rate compare with the average rate for mirrored Megatron
747 disks with no restriction?

c) What disadvantages do you foresee for this system?

E xercise 13.3.3: Let us explore the relationship between the arrival rate of
requests, the throughput of the elevator algorithm, and the average delay of
requests. To simplify the problem, we shall make the following assumptions:

1. A pass of the elevator algorithm always proceeds from the innermost to
outermost track, or vice-versa, even if there are no requests a t the extreme
cylinders.

2. When a pass starts, only those requests that are already pending will be
honored, not requests that come in while the pass is in progress, even if
the head passes their cylinder.2

3. There will never be two requests for blocks on the same cylinder waiting
on one pass.

Let A be the interarrival rate, that is the time between requests for block ac
cesses. Assume that the system is in steady state, that is, it has been accepting
and answering requests for a long time. For a Megatron 747 disk, compute as
a function of A:

2 T h e p u rpose o f th is assu m p tio n is to avoid having to deal w ith th e fac t th a t a typ ica l pass
of th e e levator a lg o rith m goes fast a t firs t, as th e re w ill b e few w aiting requests w here th e
head h as recen tly been, an d slows dow n as i t m oves in to an a re a of th e d isk w here it has no t
recen tly been. T h e analysis o f th e way request d ensity varies du ring a pass is an in terestin g
exercise in its ow n righ t.

13.4. DISK FAILURES 575

a) The average time taken to perform one pass.

b) The number of requests serviced on one pass.

c) The average time a request waits for service.

!! Exercise 13.3.4: In Example 13.5, we saw how dividing the data to be sorted
among four disks could allow more than one block to be read at a time. Sup
pose our data is divided randomly among n disks, and requests for data are also
random. Requests must be executed in the order in which they are received
because there are dependencies among them that must be respected (see Chap
ter 18, for example, for motivation for this constraint). What is the average
throughput for such a system?

! E xercise 13.3.5: If we read k randomly chosen blocks from one cylinder, on
the average how far around the cylinder must we go before we pass all of the
blocks?

13.4 Disk Failures

In this section we shall consider the ways in which disks can fail and what can
be done to mitigate these failures.

1. The most common form of failure is an intermittent failure, where an
attempt to read or write a sector is unsuccessful, but with repeated tries
we are able to read or write successfully.

2. A more serious form of failure is one in which a bit or bits are permanently
corrupted, and it becomes impossible to read a sector correctly no matter
how many times we try. This form of error is called media decay.

3. A related type of error is a write failure, where we attempt to write
a sector, but we can neither write successfully nor can we retrieve the
previously written sector. A possible cause is that there was a power
outage during the writing of the sector.

4. The most serious form of disk failure is a disk crash, where the entire disk
becomes unreadable, suddenly and permanently.

We shall discuss parity checks as a way to detect intermittent failures. We also
discuss “stable storage,” a technique for organizing a disk so that media decays
or failed writes do not result in permanent loss. Finally, we examine techniques
collectively known as “RAID” for coping with disk crashes.

576 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

13.4.1 Interm ittent Failures

An intermittent failure occurs if we try to read a sector, but the correct content
of that sector is not delivered to the disk controller. If the controller has a way
to tell that the sector is good or bad (as we shall discuss in Section 13.4.2),
then the controller can reissue the read request when bad data is read, until
the sector is returned correctly, or some preset limit, like 100 tries, is reached.

Similarly, the controller may attempt to write a sector, but the contents of
the sector are not what was intended. The only way to check that the write was
correct is to let the disk go around again and read the sector. A straightforward
way to perform the check is to read the sector and compare it with the sector
we intended to write. However, instead of performing the complete comparison
at the disk controller, it is simpler to read the sector and see if a good sector
was read. If so, we assume the write was correct, and if the sector read is bad,
then the write was apparently unsuccessful and must be repeated.

13.4.2 Checksums

How a reading operation can determine the good/bad status of a sector may
appear mysterious at first. Yet the technique used in modern disk drives is quite
simple: each sector has some additional bits, called the checksum, that are set
depending on the values of the data bits stored in that sector. If, on reading,
we find that the checksum is not proper for the data bits, then we know there
is an error in reading. If the checkum is proper, there is still a small chance
that the block was not read correctly, but by using many checksum bits we can
make the probability of missing a bad read arbitrarily small.

A simple form of checksum is based on the parity of all the bits in the sector.
If there is an odd number of l ’s among a collection of bits, we say the bits have
odd parity and add a parity bit that is 1. Similarly, if there is an even number
of l ’s among the bits, then we say the bits have even parity and add parity bit
0. As a result:

• The number of l ’s among a collection of bits and their parity bit is always
even.

When we write a sector, the disk controller can compute the parity bit and
append it to the sequence of bits written in the sector. Thus, every sector will
have even parity.

E xam ple 1 3 .7 : If the sequence of bits in a sector were 01101000, then there
is an odd number of l ’s, so the parity bit is 1. If we follow this sequence by its
parity bit we have 011010001. If the given sequence of bits were 11101110, we
have an even number of l ’s, and the parity bit is 0. The sequence followed by
its parity bit is 111011100. Note that each of the nine-bit sequences constructed
by adding a parity bit has even parity. □

13.4. DISK FAILURES 577

Any one-bit error in reading or writing the bits and their parity bit results
in a sequence of bits that has odd parity, i.e., the number of l ’s is odd. It is
easy for the disk controller to count the number of l ’s and to determine the
presence of an error if a sector has odd parity.

Of course, more than one bit of the sector may be corrupted. If so, the
probability is 50% that the number of 1-bits will be even, and the error will not
be detected. We can increase our chances of detecting errors if we keep several
parity bits. For example, we could keep eight parity bits, one for the first bit
of every byte, one for the second bit of every byte, and so on, up to the eighth
and last bit of every byte. Then, on a massive error, the probability is 50%
that any one parity bit will detect an error, and the chance that none of the
eight do so is only one in 28, or 1/256. In general, if we use n independent bits
as a checksum, then the chance of missing an error is only 1/2". For instance,
if we devote 4 bytes to a checksum, then there is only one chance in about four
billion that the error will go undetected.

13.4.3 Stable Storage
While checksums will almost certainly detect the existence of a media failure
or a failure to read or write correctly, it does not help us correct the error.
Moreover, when writing we could find ourselves in a position where we overwrite
the previous contents of a sector and yet cannot read the new contents correctly.
That situation could be serious if, say, we were adding a small increment to
an account balance and now have lost both the original balance and the new
balance. If we could be assured that the contents of the sector contained either
the new or old balance, then we would only have to determine whether the
write was successful or not.

To deal with the problems above, we can implement a policy known as
stable storage on a disk or on several disks. The general idea is that sectors
are paired, and each pair represents one sector-contents X . We shall refer to
the pair of sectors representing X as the “left” and “right” copies, X l and X r .
We continue to assume that the copies are written with a sufficient number of
parity-check bits so that we can rule out the possibility that a bad sector looks
good when the parity checks are considered. Thus, we shall assume that if the
read function returns a good value w for either X l or X r , then w is the true
value of X . The stable-storage writing policy is:

1. Write the value of X into X l - Check that the value has status “good” ;
i.e., the parity-check bits are correct in the written copy. If not, repeat the
write. If after a set number of write attempts, we have not successfully
written X into X l , assume that there is-a media failure in this sector. A
fix-up such as substituting a spare sector for X l must be adopted.

2. Repeat (1) for X r .

The stable-storage reading policy is to alternate trying to read X l and X r ,

578 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

until a good value is returned. Only if no good value is returned after some
large, prechosen number of tries, is X truly unreadable.

13.4.4 Error-Handling Capabilities of Stable Storage
The policies described in Section 13.4.3 are capable of compensating for several
different kinds of errors. We shall outline them here.

1. Media failures. If, after storing X in sectors X l and X r , one of them
undergoes a media failure and becomes permanently unreadable, we can
always read X from the other. If both X l and X r have failed, then we
cannot read X , but the probability of both failing is extremely small.

2. Write failure. Suppose that as we write X , there is a system failure —
e.g., a power outage. It is possible that X will be lost in main memory,
and also the copy of X being written at the time will be garbled. For
example, half the sector may be written with part of the new value of X ,
while the other half remains as it was. When the system becomes available
and we examine X l and X r , we are sure to be able to determine either
the old or new value of X . The possible cases are:

(a) The failure occurred as we were writing X l ■ Then we shall find that
the status of X l is “bad.” However, since we never got to write X r ,
its status will be “good” (unless there is a coincident media failure
at X r , which is extremely unlikely). Thus, we can obtain the old
value of X . We may also copy X r into X l to repair the damage to
X l .

(b) The failure occurred after we wrote X l- Then we expect that X l
will have status “good,” and we may read the new value of X from
X l - Since X r may or may not have the correct value of X , we
should also copy X l into X r .

13.4.5 Recovery from Disk Crashes
The most serious mode of failure for disks is the “disk crash” or “head crash,”
where data is permanently destroyed. If the data was not backed up on another
medium, such as a tape backup system, or on a mirror disk as we discussed in
Section 13.3.4, then there is nothing we can do to recover the data. This
situation represents a disaster for many DBMS applications, such as banking
and other financial applications.

Several schemes have been developed to reduce the risk of data loss by disk
crashes. They generally involve redundancy, extending the idea of parity checks
from Section 13.4.2 or duplicated sectors, as in Section 13.4.3. The common
term for this class of strategies is RAID, or Redundant Arrays of Independent
Disks.

13.4. DISK FAILURES 579

The rate at which disk crashes occur is generally measured by the mean time
to failure, the time after which 50% of a population of disks can be expected to
fail and be unrecoverable. For modern disks, the mean time to failure is about
10 years. We shall make the convenient assumption that if the mean time to
failure is n years, then in any given year, 1 /nth of the surviving disks fail. In
reality, there is a tendency for disks, like most electronic equipment, to fail early
or fail late. That is, a small percentage have manufacturing defects that lead
to their early demise, while those without such defects will survive for many
years, until wear-and-tear causes a failure.

However, the mean time to a disk crash does not have to be the same as
the mean time to data loss. The reason is that there are a number of schemes
available for assuring that if one disk fails, there are others to help recover the
data of the failed disk. In the remainder of this section, we shall study the most
common schemes.

Each of these schemes starts with one or more disks that hold the data (we’ll
call these the data disks) and adding one or more disks that hold information
that is completely determined by the contents of the data disks. The latter are
called redundant disks. When there is a disk crash of either a data disk or a
redundant disk, the other disks can be used to restore the failed disk, and there
is no permanent information loss.

13.4.6 Mirroring as a Redundancy Technique
The simplest scheme is to mirror each disk, as discussed in Section 13.3.4.
We shall call one of the disks the data disk, while the other is the redundant
disk, which is which doesn’t matter in this scheme. Mirroring, as a protection
against data loss, is often referred to as RAID level 1. It gives a mean time
to memory loss that is much greater than the mean time to disk failure, as
the following example illustrates. Essentially, with mirroring and the other
redundancy schemes we discuss, the only way data can be lost is if there is a
second disk crash while the first crash is being repaired.

E xam ple 13.8: Suppose each disk has a 10-year mean time to failure, which
we shall take to mean that the probability of failure in any given year is 10%.
If disks are mirrored, then when a disk fails, we have only to replace it with a
good disk and copy the mirror disk to the new one. At the end, we have two
disks that are mirrors of each other, and the system is restored to its former
state.

The only thing that could go wrong is that during the copying the mirror
disk fails. Now, both copies of at least part of the data have been lost, and
there is no way to recover.

But how often will this sequence of events occur? Suppose that the process
of replacing the failed disk takes 3 hours, which is 1/8 of a day, or 1/2920 of a
year. Since we assume the average disk lasts 10 years, the probability that the
mirror disk will fail during copying is (1/10) x (1/2920), or one in 29,200. If

580 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

one disk fails every 10 years, then one of the two disks will fail once in 5 years
on the average. One in every 29,200 of these failures results in data loss. Put
another way, the mean time to a failure involving data loss is 5 x 29,200 =
146,000 years. □

13.4.7 Parity Blocks

While mirroring disks is an effective way to reduce the probability of a disk crash
involving data loss, it uses as many redundant disks as there are data disks.
Another approach, often called RAID level 4, uses only one redundant disk, no
m atter how many data disks there are. We assume the disks are identical, so
we can number the blocks on each disk from 1 to some number n. Of course,
all the blocks on all the disks have the same number of bits; for instance, the
16,384-byte blocks of the Megatron 747 have 8 x 16,384 = 131,072 bits. In the
redundant disk, the *th block consists of parity checks for the *th blocks of all
the data disks. That is, the j th bits of all the ith blocks, including both the
data disks and the redundant disk, must have an even number of l ’s among
them, and we always choose the bit of the redundant disk to make this condition
true.

We saw in Example 13.7 how to force the condition to be true. In the
redundant disk, we choose bit j to be 1 if an odd number of the data disks
have 1 in that bit, and we choose bit j of the redundant disk to be 0 if there
are an even number of l ’s in that bit among the data disks. The term for this
calculation is the modulo-2 sum. That is, the modulo-2 sum of bits is 0 if there
are an even number of l ’s among those bits, and 1 if there are an odd number
of l ’s.

E xam p le 1 3 .9 : Suppose for sake of an extremely simple example that blocks
consist of only one byte — eight bits. Let there be three data disks, called
1, 2, and 3, and one redundant disk, called disk 4. Focus on the first block
of all these disks. If the data disks have in their first blocks the following bit
sequences:

disk 1: 11110000
disk 2: 10101010
disk 3: 00111000

then the redundant disk will have in block 1 the parity check bits:

disk 4: 01100010

Notice how in each position, an even number of the four 8-bit sequences have
l ’s. There are two l ’s in positions 1, 2, 4, 5, and 7, four l ’s in position 3, and
zero l ’s in positions 6 and 8. □

13.4. DISK FAILURES 581

R eading

Reading blocks from a data disk is no different from reading blocks from any
disk. There is generally no reason to read from the redundant disk, but we
could.

W riting

When we write a new block of a data disk, we need not only to change that
block, but we need to change the corresponding block of the redundant disk
so it continues to hold the parity checks for the corresponding blocks of all the
data disks. A naive approach would read the corresponding blocks of the n data
disks, take their modulo-2 sum, and rewrite the block of the redundant disk.
That approach requires a write of the data block that is rewritten, the reading
of the n — 1 other data blocks, and a write of the block of the redundant disk.
The total is thus n + 1 disk I /O ’s.

A better approach is to look only at the old and new versions of the data
block i being rewritten. If we take their modulo-2 sum, we know in which
positions there is a change in the number of l ’s among the blocks numbered i
on all the disks. Since these changes are always by one, any even number of l ’s
changes to an odd number. If we change the same positions of the redundant
block, then the number of l ’s in each position becomes even again. We can
perform these calculations using four disk I/O ’s:

1. Read the old value of the data block being changed.

2. Read the corresponding block of the redundant disk.

3. Write the new data block.

4. Recalculate and write the block of the redundant disk.

E xam ple 13.10: Suppose the three first blocks of the data disks are as in
Example 13.9:

disk 1: 11110000
disk 2: 10101010
disk 3: 00111000

Suppose also that the block on the second disk changes from 10101010 to
11001100. We take the modulo-2 sum of the old and new values of the block
on disk 2, to get 01100110. That tells us we must change positions 2, 3, 6, and
7 of the first block of the redundant disk. We read that block: 01100010. We
replace this block by a new block that we get by changing the appropriate po
sitions; in effect we replace the redundant block by the modulo-2 sum of itself
and 01100110, to get 00000100. Another way to express the new redundant
block is that it is the modulo-2 sum of the old and new versions of the block

582 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

The Algebra of Modulo-2 Sums

It may be helpful for understanding some of the tricks used with parity
checks to know the algebraic rules involving the modulo-2 sum opera
tion on bit vectors. We shall denote this operation ©. As an example,
1100 ® 1010 = 0110. Here are some useful rules about ffi:

• The commutative law: x © y = y ffi x.

• The associative law. x © (y © z) — (x © y) © z.

• The all-0 vector of the appropriate length, which we denote 0, is the
identity for ©; that is, x ffi 0 = 0 ffi x = x.

• ffi is its own inverse: x ffi x = 0. As a useful consequence, if x ffi y = 2 ,
then we can “add” x to both sides and get y = x ffi z.

being rewritten and the old value of the redundant block. In our example, the
first blocks of the four disks — three data disks and one redundant — have
become:

disk 1: 11110000
disk 2: 11001100
disk 3: 00111000
disk 4: 00000100

after the write to the block on the second disk and the necessary recomputation
of the redundant block. Notice that in the blocks above, each column continues
to have an even number of l ’s. □

Failure R ecovery

Now, let us consider what we would do if one of the disks crashed. If it is the
redundant disk, we swap in a new disk, and recompute the redundant blocks. If
the failed disk is one of the data disks, then we need to swap in a good disk and
recompute its data from the other disks. The rule for recomputing any missing
data is actually simple, and doesn’t depend on which disk, data or redundant,
is failed. Since we know that the number of l ’s among corresponding bits of all
disks is even, it follows that:

• The bit in any position is the modulo-2 sum of all the bits in the corre
sponding positions of all the other disks.

If one doubts the above rule, one has only to consider the two cases. If the
bit in question is 1, then the number of corresponding bits in the other disks

13.4. DISK FAILURES 583

that are 1 must be odd, so their modulo-2 sum is 1. If the bit in question is 0,
then there are an even number of l ’s among the corresponding bits of the other
disks, and their modulo-2 sum is 0.

E xam ple 13.11: Suppose that disk 2 fails. We need to recompute each block
of the replacement disk. Following Example 13.9, let us see how to recompute
the first block of the second disk. We are given the corresponding blocks of the
first and third data disks and the redundant disk, so the situation looks like:

disk 1: 11110000
disk 2: ????????
disk 3: 00111000
disk 4: 01100010

If we take the modulo-2 sum of each column, we deduce that the missing block
is 10101010, as was initially the case in Example 13.9. □

13.4.8 An Improvement: RAID 5
The RAID level 4 strategy described in Section 13.4.7 effectively preserves data
unless there are two almost simultaneous disk crashes. However, it suffers from
a bottleneck defect that we can see when we re-examine the process of writing
a new data block. Whatever scheme we use for updating the disks, we need to
read and write the redundant disk’s block. If there are n data disks, then the
number of disk writes to the redundant disk will be n times the average number
of writes to any one data disk.

However, as we observed in Example 13.11, the rule for recovery is the
same as for the data disks and redundant disks: take the modulo-2 sum of
corresponding bits of the other disks. Thus, we do not have to treat one disk as
the redundant disk and the others as data disks. Rather, we could treat each
disk as the redundant disk for some of the blocks. This improvement is often
called RAID level 5.

For instance, if there are n + 1 disks numbered 0 through n, we could treat
the ith cylinder of disk j as redundant if j is the remainder when i is divided
by n + 1.

E xam ple 13.12: In our running example, n = 3 so there are 4 disks. The
first disk, numbered 0, is redundant for its cylinders numbered 4, 8, 12, and so
on, because these are the numbers that leave remainder 0 when divided by 4.
The disk numbered 1 is redundant for blocks numbered 1, 5, 9, and so on; disk
2 is redundant for blocks 2, 6, 1 0 ,.. ., and disk 3 is redundant for 3, 7, 1 1 ,... .

As a result, the reading and writing load for each disk is the same. If all
blocks are equally likely to be written, then for one write, each disk has a 1/4
chance that the block is on that disk. If not, then it has a 1/3 chance that
it will be the redundant disk for that block. Thus, each of the four disks is
involved in 1/4 + (3/4) x (1/3) = 1/2 of the writes. □

584 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.4.9 Coping W ith M ultiple Disk Crashes
There is a theory of error-correcting codes that allows us to deal with any
number of disk crashes — data or redundant — if we use enough redundant
disks. This strategy leads to the highest RAID “level,” RAID level 6. We
shall give only a simple example here, where two simultaneous crashes are
correctable, and the strategy is based on the simplest error-correcting code,
known as a Hamming code.

In our description we focus on a system with seven disks, numbered 1
through 7. The first four are data disks, and disks 5 through 7 are redun
dant. The relationship between data and redundant disks is summarized by
the 3 x 7 matrix of 0’s and l ’s in Fig. 13.10. Notice that:

a) Every possible column of three 0’s and l ’s, except for the all-0 column,
appears in the matrix of Fig. 13.10.

b) The columns for the redundant disks have a single 1.

c) The columns for the data disks each have at least two l ’s.

Data Redundant

Disk number 1 2 3 4 5 6 7

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

Figure 13.10: Redundancy pattern for a system that can recover from two
simultaneous disk crashes

The meaning of each of the three rows of 0’s and l ’s is that if we look at
the corresponding bits from all seven disks, and restrict our attention to those
disks that have 1 in that row, then the modulo-2 sum of these bits must be 0.
Put another way, the disks with 1 in a given row of the matrix are treated as
if they were the entire set of disks in a RAID level 4 scheme. Thus, we can
compute the bits of one of the redundant disks by finding the row in which that
disk has 1, and talcing the modulo-2 sum of the corresponding bits of the other
disks that have 1 in the same row.

For the matrix of Fig. 13.10, this rule implies:

1. The bits of disk 5 are the modulo-2 sum of the corresponding bits of disks
1, 2, and 3.

2. The bits of disk 6 are the modulo-2 sum of the corresponding bits of disks
1, 2, and 4.

13.4. DISK FAILURES 585

3. The bits of disk 7 are the modulo-2 sum of the corresponding bits of disks
1, 3, and 4.

We shall see shortly that the particular choice of bits in this matrix gives us a
simple rule by which we can recover from two simultaneous disk crashes.

R eading

We may read data from any data disk normally. The redundant disks can be
ignored.

W riting

The idea is similar to the writing strategy outlined in Section 13.4.8, but now
several redundant disks may be involved. To write a block of some data disk,
we compute the modulo-2 sum of the new and old versions of that block. These
bits are then added, in a modulo-2 sum, to the corresponding blocks of all those
redundant disks that have 1 in a row in which the written disk also has 1.

E xam ple 13.13: Let us again assume that blocks are only eight bits long,
and focus on the first blocks of the seven disks involved in our RAID level 6
example. First, suppose the data and redundant first blocks are as given in
Fig. 13.11. Notice that the block for disk 5 is the modulo-2 sum of the blocks
for the first three disks, the sixth row is the modulo-2 sum of rows 1, 2, and 4,
and the last row is the modulo-2 sum of rows 1, 3, and 4.

Disk Contents

1) 11110000
2) 10101010
3) 00111000
4) 01000001
5) 01100010
6) 00011011
7) 10001001

Figure 13.11: First blocks of all disks

Suppose we rewrite the first block of disk 2 to be 00001111. If we sum this
sequence of bits modulo-2 with the sequence 10101010 that is the old value of
this block, we get 10100101. If we look at the column for disk 2 in Fig. 13.10,
we find that this disk has l ’s in the first two rows, but not the third. Since
redundant disks 5 and 6 have 1 in rows 1 and 2, respectively, we must perform
the sum modulo-2 operation on the current contents of their first blocks and
the sequence 10100101 just calculated. That is, we flip the values of positions 1,
3, 6, and 8 of these two blocks. The resulting contents of the first blocks of all

586 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

disks is shown in Fig. 13.12. Notice that the new contents continue to satisfy the
constraints implied by Fig. 13.10: the modulo-2 sum of corresponding blocks
that have 1 in a particular row of the matrix of Fig. 13.10 is still all 0’s. □

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) 11000111
6) 10111110
7) 10001001

Figure 13.12: First blocks of all disks after rewriting disk 2 and changing the
redundant disks

Failure R ecovery

Now, let us see how the redundancy scheme outlined above can be used to
correct up to two simultaneous disk crashes. Let the failed disks be a and b.
Since all columns of the matrix of Fig. 13.10 are different, we must be able to
find some row r in which the columns for a and b are different. Suppose that a
has 0 in row r, while b has 1 there.

Then we can compute the correct b by taking the modulo-2 sum of corre
sponding bits from all the disks other than b that have 1 in row r. Note that
a is not among these, so none of these disks have failed. Having recomputed b,
we must recompute a, with all other disks available. Since every column of the
matrix of Fig. 13.10 has a 1 in some row, we can use this row to recompute disk
a by taking the modulo-2 sum of bits of those other disks with a 1 in this row.

Disk Contents

1) 11110000
2) ????????
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.13: Situation after disks 2 and 5 fail

13.4. DISK FAILURES 587

E xam ple 13.14: Suppose that disks 2 and 5 fail at about the same time.
Consulting the matrix of Fig. 13.10, we find that the columns for these two
disks differ in row 2, where disk 2 has 1 but disk 5 has 0. We may thus
reconstruct disk 2 by taking the modulo-2 sum of corresponding bits of disks
1, 4, and 6, the other three disks with 1 in row 2. Notice that none of these
three disks has failed. For instance, following from the situation regarding the
first blocks in Fig. 13.12, we would initially have the data of Fig. 13.13 available
after disks 2 and 5 failed.

If we take the modulo-2 sum of the contents of the blocks of disks 1, 4, and
6, we find that the block for disk 2 is 00001111. This block is correct as can be
verified from Fig. 13.12. The situation is now as in Fig. 13.14.

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.14: After recovering disk 2

Now, we see that disk 5’s column in Fig. 13.10 has a 1 in the first row. We
can therefore recompute disk 5 by taking the modulo-2 sum of corresponding
bits from disks 1, 2, and 3, the other three disks that have 1 in the first row.
For block 1, this sum is 11000111. Again, the correctness of this calculation
can be confirmed by Fig. 13.12. □

13.4.10 Exercises for Section 13.4
Exercise 13.4.1: Compute the parity bit for the following bit sequences:

a) 00111011.

b) 00000000.

c) 10101101.

Exercise 13.4.2: We can have two parity bits associated with a string if we
follow the string by one bit that is a parity bit for the odd positions and a
second that is the parity bit for the even positions. For each of the strings in
Exercise 13.4.1, find the two bits that serve in this way.

588 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

Additional Observations About RAID Level 6

1. We can combine the ideas of RAID levels 5 and 6, by varying the
choice of redundant disks according to the block or cylinder number.
Doing so will avoid bottlenecks when writing; the scheme described
in Section 13.4.9 will cause bottlenecks at the redundant disks.

2. The scheme described in Section 13.4.9 is not restricted to four data
disks. The number of disks can be one less than any power of 2, say
2k — 1. Of these disks, k are redundant, and the remaining 2k — k — 1
are data disks, so the redundancy grows roughly as the logarithm of
the number of data disks. For any k , we can construct the matrix
corresponding to Fig. 13.10 by writing all possible columns of k 0’s
and l ’s, except the all-O’s column. The columns with a single 1
correspond to the redundant disks, and the columns with more than
one 1 are the data disks.

E xercise 13.4.3: Suppose we use mirrored disks as in Example 13.8, the
failure rate is 4% per year, and it takes 8 hours to replace a disk. What is the
mean time to a disk failure involving loss of data?

! E xercise 13.4.4: Suppose that a disk has probability F of failing in a given
year, and it takes H hours to replace a disk.

a) If we use mirrored disks, what is the mean time to data loss, as a function
of F and H I

b) If we use a RAID level 4 or 5 scheme, with N disks, what is the mean
time to data loss?

!! E xercise 13.4.5: Suppose we use three disks as a mirrored group; i.e., all
three hold identical data. If the yearly probability of failure for one disk is F,
and it takes H hours to restore a disk, what is the mean time to data loss?

E xercise 13.4.6: Suppose we are using a RAID level 4 scheme with four data
disks and one redundant disk. As in Example 13.9 assume blocks are a single
byte. Give the block of the redundant disk if the corresponding blocks of the
data disks are:

a) 01010110,11000000, 00111011, and 11111011.

b) 11110000, 11111000, 00111111, and 00000001.

13.4. DISK FAILURES 589

Error-Correcting Codes and RAID Level 6

There is a theory that guides our selection of a suitable matrix, like that
of Fig. 13.10, to determine the content of redundant disks. A code of
length n is a set of bit-vectors (called code words) of length n. The Ham
ming distance between two code words is the number of positions in which
they differ, and the minimum distance of a code is the smallest Hamming
distance of any two different code words.

If C is any code of length n, we can require that the corresponding
bits on n disks have one of the sequences that are members of the code. As
a very simple example, if we are using a disk and its mirror, then n = 2,
and we can use the code C — {00,11}. That is, the corresponding bits
of the two disks must be the same. For another example, the matrix of
Fig. 13.10 defines the code consisting of the 16 bit-vectors of length 7 that
have arbitrary values for the first four bits and have the remaining three
bits determined by the rules for the three redundant disks.

If the minimum distance of a code is d, then disks whose corresponding
bits are required to be a vector in the code will be able to tolerate d — 1
simultaneous disk crashes. The reason is that, should we obscure d — 1
positions of a code word, and there were two different ways these positions
could be filled in to make a code word, then the two code words would have
to differ in at most the d — 1 positions. Thus, the code could not have
minimum distance d. As an example, the matrix of Fig. 13.10 actually
defines the well-known Hamming code, which has minimum distance 3.
Thus, it can handle two disk crashes.

E xercise 13.4.7: Using the same RAID level 4 scheme as in Exercise 13.4.6,
suppose that data disk 1 has failed. Recover the block of that disk under the
following circumstances:

a) The contents of disks 2 through 4 are 01010110,11000000, and 00111011,
while the redundant disk holds 11111011.

b) The contents of disks 2 through 4 are 11110000, 11111000, and 00111111,
while the redundant disk holds 00000001.

E xercise 13.4.8: Suppose the block on the first disk in Exercise 13.4.6 is
changed to 10101010. What changes to the corresponding blocks on the other
disks must be made?

Exercise 13.4.9: Suppose we have the RAID level 6 scheme of Example 13.13,
and the blocks of the four data disks are 00111100, 11000111, 01010101, and
10000100, respectively.

590 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

a) What are the corresponding blocks of the redundant disks?

b) If the third disk’s block is rewritten to be 10000000, what steps must be
taken to change other disks?

E xercise 13.4.10: Describe the steps taken to recover from the following fail
ures using the RAID level 6 scheme with seven disks: (a) disks 1 and 7, (b) disks
1 and 4, (c) disks 3 and 6.

13.5 Arranging D ata on Disk
We now turn to the m atter of how disks are used store databases. A data
element such as a tuple or object is represented by a record, which consists of
consecutive bytes in some disk block. Collections such as relations are usually
represented by placing the records that represent their data elements in one or
more blocks. It is normal for a disk block to hold only elements of one relation,
although there are organizations where blocks hold tuples of several relations.
In this section, we shall cover the basic layout techniques for both records and
blocks.

13.5.1 Fixed-Length Records

The simplest sort of record consists of fixed-length fields, one for each attribute
of the represented tuple. Many machines allow more efficient reading and writ
ing of main memory when data begins at an address that is a multiple of 4 or 8;
some even require us to do so. Thus, it is common to begin all fields at a mul
tiple of 4 or 8, as appropriate. Space not used by the previous field is wasted.
Note that, even though records are kept in secondary, not main, memory, they
are manipulated in main memory. Thus it is necessary to lay out the record so
it can be moved to main memory and accessed efficiently there.

Often, the record begins with a header, a fixed-length region where infor
mation about the record itself is kept. For example, we may want to keep in
the record:

1. A pointer to the schema for the data stored in the record. For example,
a tuple’s record could point to the schema for the relation to which the
tuple belongs. This information helps us find the fields of the record.

2. The length of the record. This information helps us skip over records
without consulting the schema.

3. Timestamps indicating the time the record was last modified, or last read.
This information may be useful for implementing database transactions
as will be discussed in Chapter 18.

13.5. ARRANGING DATA ON DISK 591

4. Pointers to the fields of the record. This information can substitute for
schema information, and it will be seen to be important when we consider
variable-length fields in Section 13.7.

CREATE TABLE M ovieStar(
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
gender CHAR(l),
b ir th d a te DATE

);

Figure 13.15: A SQL table declaration

E xam ple 13.15: Figure 13.15 repeats our running MovieStar schema. Let us
assume all fields must start at a byte that is a multiple of four. Tuples of this
relation have a header and the following four fields:

1. The first field is for name, and this field requires 30 bytes. If we assume
that all fields begin at a multiple of 4, then we allocate 32 bytes for the
name.

2. The next attribute is address. A VARCHAR attribute requires a fixed-
length segment of bytes, with one more byte than the maximum length
(for the string’s endmarker). Thus, we need 256 bytes for address.

3. Attribute gender is a single byte, holding either the character ’M’ or ’F ’ .
We allocate 4 bytes, so the next field can start at a multiple of 4.

4. Attribute b ir th d a te is a SQL DATE value, which is a 10-byte string. We
shall allocate 12 bytes to its field, to keep subsequent records in the block
aligned at multiples of 4.

. The header of the record will hold:

a) A pointer to the record schema.

b) The record length.

c) A timestamp indicating when the record was created.

We shall assume each of these items is 4 bytes long. Figure 13.16 shows the
layout of a record for a MovieStar tuple. The length of the record is 316 bytes.
□

592 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

to schem a
length

tim estam p gender

nam e address birthdate

0 12 44

header

300304 316

Figure 13.16: Layout of records for tuples of the MovieStar relation

13.5.2 Packing Fixed-Length Records into Blocks
Records representing tuples of a relation are stored in blocks of the disk and
moved into main memory (along with their entire block) when we need to
access or update them. The layout of a block that holds records is suggested
in Fig. 13.17.

header record 1 record 2 record n

Figure 13.17: A typical block holding records

In addition to the records, there is a block header holding information such
as:

1. Links to one or more other blocks that are part of a network of blocks
such as those that will be described in Chapter 14 for creating indexes to
the tuples of a relation.

2. Information about the role played by this block in such a network.

3. Information about which relation the tuples of this block belong to.

4. A “directory” giving the offset of each record in the block.

5. Timestamp(s) indicating the time of the block’s last modification and/or
access.

By fax the simplest case is when the block holds tuples from one relation,
and the records for those tuples have a fixed format. In that case, following
the header, we pack as many records as we can into the block and leave the
remaining space unused.

E xam ple 13.16: Suppose we are storing records with the layout developed in
Example 13.15. These records are 316 bytes long. Suppose also that we use
4096-byte blocks. Of these bytes, say 12 will be used for a block header, leaving
4084 bytes for data. In this space we can fit twelve records of the given 316-byte
format, and 292 bytes of each block axe wasted space. □

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 593

13.5.3 Exercises for Section 13.5
E xercise 13.5.1: Suppose a record has the following fields in this order: A
character string of length 15, an integer of 2 bytes, a SQL date, and a SQL time
(no decimal point). How many bytes does the record take if:

a) Fields can start at any byte.

b) Fields must start at a byte that is a multiple of 4.

c) Fields must start at a byte that is a multiple of 8.

E xercise 13.5.2: Repeat Exercise 13.5.1 for the list of fields: a real of 8 bytes,
a character string of length 17, a single byte, and a SQL date.

E xercise 13.5.3: Assume fields are as in Exercise 13.5.1, but records also have
a record header consisting of two 4-byte pointers and a character. Calculate
the record length for the three situations regarding field alignment (a) through
(c) in Exercise 13.5.1.

E xercise 13.5.4: Repeat Exercise 13.5.2 if the records also include a header
consisting of an 8-byte pointer, and ten 2-byte integers.

13.6 Representing Block and Record Addresses
When in main memory, the address of a block is the virtual-memory address
of its first byte, and the address of a record within that block is the virtual-
memory address of the first byte of that record. However, in secondary storage,
the block is not part of the application’s virtual-memory address space. Rather,
a sequence of bytes describes the location of the block within the overall system
of data accessible to the DBMS: the device ID for the disk, the cylinder number,
and so on. A record can be identified by giving its block address and the offset
of the first byte of the record within the block.

In this section, we shall begin with a discussion of address spaces, especially
as they pertain to the common “client-server” architecture for DBMS’s (see
Section 9.2.4). We then discuss the options for representing addresses, and
finally look at “pointer swizzling,” the ways in which we can convert addresses
in the data server’s world to the world of the client application programs.

13.6.1 Addresses in Client-Server Systems
Commonly, a database system consists of a server process that provides data
from secondary storage to one or more client processes that are applications
using the data. The server and client processes may be on one machine, or the
server and the various clients can be distributed over many machines.

The client application uses a conventional “virtual” address space, typically
32 bits, or about 4 billion different addresses. The operating system or DBMS

594 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

decides which parts of the address space are currently located in main memory,
and hardware maps the virtual address space to physical locations in main
memory. We shall not think further of this virtual-to-physical translation, and
shall think of the client address space as if it were main memory itself.

The server’s data lives in a database address space. The addresses of this
space refer to blocks, and possibly to offsets within the block. There are several
ways that addresses in this address space can be represented:

1. Physical Addresses. These are byte strings that let us determine the
place within the secondary storage system where the block or record can
be found. One or more bytes of the physical address are used to indicate
each of:

(a) The host to which the storage is attached (if the database is stored
across more than one machine),

(b) An identifier for the disk or other device on which the block is lo
cated,

(c) The number of the cylinder of the disk,
(d) The number of the track within the cylinder,
(e) The number of the block within the track, and
(f) (In some cases) the offset of the beginning of the record within the

block.

2. Logical Addresses. Each block or record has a “logical address,” which is
an arbitrary string of bytes of some fixed length. A map table, stored on
disk in a known location, relates logical to physical addresses, as suggested
in Fig. 13.18.

logical physical

Figure 13.18: A map table translates logical to physical addresses

Notice that physical addresses are long. Eight bytes is about the minimum
we could use if we incorporate all the listed elements, and some systems use
many more bytes. For example, imagine a database of objects that is designed
to last for 100 years. In the future, the database may grow to encompass one

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 595

million machines, and each machine might be fast enough to create one object
every nanosecond. This system would create around 277 objects, which requires
a minimum of ten bytes to represent addresses. Since we would probably prefer
to reserve some bytes to represent the host, others to represent the storage
unit, and so on, a rational address notation would use considerably more than
10 bytes for a system of this scale.

13.6.2 Logical and Structured Addresses
One might wonder what the purpose of logical addresses could be. All the infor
mation needed for a physical address is found in the map table, and following
logical pointers to records requires consulting the map table and then going
to the physical address. However, the level of indirection involved in the map
table allows us considerable flexibility. For example, many data organizations
require us to move records around, either within a block or from block to block.
If we use a map table, then all pointers to the record refer to this map table,
and all we have to do when we move or delete the record is to change the entry
for that record in the table.

Many combinations of logical and physical addresses are possible as well,
yielding structured address schemes. For instance, one could use a physical
address for the block (but not the offset within the block), and add the key value
for the record being referred to. Then, to find a record given this structured
address, we use the physical part to reach the block containing that record, and
we examine the records of the block to find the one with the proper key.

A similar, and very useful, combination of physical and logical addresses is
to keep in each block an offset table that holds the offsets of the records within
the block, as suggested in Fig. 13.19. Notice that the table grows from the front
end of the block, while the records are placed starting at the end of the block.
This strategy is useful when the records need not be of equal length. Then, we
do not know in advance how many records the block will hold, and we do not
have to allocate a fixed amount of the block header to the table initially.

offset
tab le - *"

— header — — unused —

Figure 13.19: A block with a table of offsets telling us the position of each
record within the block

The address of a record is now the physical address of its block plus the offset

596 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

of the entry in the block’s offset table for that record. This level of indirection
within the block offers many of the advantages of logical addresses, without the
need for a global map table.

• We can move the record around within the block, and all we have to do
is change the record’s entry in the offset table; pointers to the record will
still be able to find it.

• We can even allow the record to move to another block, if the offset table
entries are large enough to hold a forwarding address for the record, giving
its new location.

• Finally, we have an option, should the record be deleted, of leaving in its
offset-table entry a tombstone, a special value that indicates the record has
been deleted. Prior to its deletion, pointers to this record may have been
stored at various places in the database. After record deletion, following
a pointer to this record leads to the tombstone, whereupon the pointer
can either be replaced by a null pointer, or the data structure otherwise
modified to reflect the deletion of the record. Had we not left the tomb
stone, the pointer might lead to some new record, with surprising, and
erroneous, results.

13.6.3 Pointer Swizzling

Often, pointers or addresses are part of records. This situation is not typical
for records that represent tuples of a relation, but it is common for tuples
that represent objects. Also, modern object-relational database systems allow
attributes of pointer type (called references), so even relational systems need the
ability to represent pointers in tuples. Finally, index structures are composed
of blocks that usually have pointers within them. Thus, we need to study
the management of pointers as blocks are moved between main and secondary
memory.

As we mentioned earlier, every block, record, object, or other referenceable
data item has two forms of address: its database address in the server’s address
space, and a memory address if the item is currently copied in virtual memory.
When in secondary storage, we surely must use the database address of the
item. However, when the item is in the main memory, we can refer to the item
by either its database address or its memory address. It is more efficient to put
memory addresses wherever an item has a pointer, because these pointers can
be followed using a single machine instruction.

In contrast, following a database address is much more time-consuming. We
need a table that translates from all those database addresses that are currently
in virtual memory to their current memory address. Such a translation table
is suggested in Fig. 13.20. It may look like the map table of Fig. 13.18 that
translates between logical and physical addresses. However:

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 597

a) Logical and physical addresses are both representations for the database
address. In contrast, memory addresses in the translation table are for
copies of the corresponding object in memory.

b) All addressable items in the database have entries in the map table, while
only those items currently in memory are mentioned in the translation
table.

D Baddr m em -addr

Figure 13.20: The translation table turns database addresses into their equiva
lents in memory

To avoid the cost of translating repeatedly from database addresses to mem
ory addresses, several techniques have been developed that are collectively
known as pointer swizzling. The general idea is that when we move a block
from secondary to main memory, pointers within the block may be “swizzled,”
that is, translated from the database address space to the virtual address space.
Thus, a pointer actually consists of:

1. A bit indicating whether the pointer is currently a database address or a
(swizzled) memory address.

2. The database or memory pointer, as appropriate. The same space is used
for whichever address form is present at the moment. Of course, not all
the space may be used when the memory address is present, because it is
typically shorter than the database address.

E xam ple 13.17: Figure 13.21 shows a simple situation in which the Block 1
has a record with pointers to a second record on the same block and to a record
on another block. The figure also shows what might happen when Block 1
is copied to memory. The first pointer, which points within Block 1, can be
swizzled so it points directly to the memory address of the target record.

However, if Block 2 is not in memory at this time, then we cannot swizzle the
second pointer; it must remain unswizzled, pointing to the database address of
its target. Should Block 2 be brought to memory later, it becomes theoretically
possible to swizzle the second pointer of Block 1. Depending on the swizzling
strategy used, there may or may not be a list of such pointers that are in

598 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

memory, referring to Block 2; if so, then we have the option of swizzling the
pointer at that time. □

D isk M em ory

B lock 2

Figure 13.21: Structure of a pointer when swizzling is used

A u to m a tic Sw izzling

There are several strategies we can use to determine when to swizzle pointers. If
we use automatic swizzling, then as soon as a block is brought into memory, we
locate all its pointers and addresses and enter them into the translation table
if they are not already there. These pointers include both the pointers from
records in the block to elsewhere and the addresses of the block itself and/or
its records, if these are addressable items. We need some mechanism to locate
the pointers within the block. For example:

1. If the block holds records with a known schema, the schema will tell us
where in the records the pointers are found.

2. If the block is used for one of the index structures we shall discuss in
Chapter 14, then the block will hold pointers at known locations.

3. We may keep within the block header a list of where the pointers are.

When we enter into the translation table the addresses for the block just
moved into memory, and/or its records, we know where in memory the block
has been buffered. We may thus create the translation-table entry for these
database addresses straightforwardly. When we insert one of these database
addresses A into the translation table, we may find it in the table already,
because its block is currently in memory. In this case, we replace A in the block

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 599

just moved to memory by the corresponding memory address, and we set the
“swizzled” bit to true. On the other hand, if A is not yet in the translation
table, then its block has not been copied into main memory. We therefore
cannot swizzle this pointer and leave it in the block as a database pointer.

Suppose that during the use of this data, we follow a pointer P and we find
that P is still unswizzled, i.e., in the form of a database pointer. We consult the
translation table to see if database address P currently has a memory equivalent.
If not, block B must be copied into a memory buffer. Once B is in memory,
we can “swizzle” P by replacing its database form by the equivalent memory
form.

Sw izzling on D em and

Another approach is to leave all pointers unswizzled when the block is first
brought into memory. We enter its address, and the addresses of its pointers,
into the translation table, along with their memory equivalents. If we follow a
pointer P that is inside some block of memory, we swizzle it, using the same
strategy that we followed when we found an unswizzled pointer using automatic
swizzling.

The difference between on-demand and automatic swizzling is that the latter
tries to get all the pointers swizzled quickly and efficiently when the block is
loaded into memory. The possible time saved by swizzling all of a block’s
pointers at one time must be weighed against the possibility that some swizzled
pointers will never be followed. In that case, any time spent swizzling and
unswizzling the pointer will be wasted.

An interesting option is to arrange that database pointers look like invalid
memory addresses. If so, then we can allow the computer to follow any pointer
as if it were in its memory form. If the pointer happens to be unswizzled, then
the memory reference will cause a hardware trap. If the DBMS provides a
function that is invoked by the trap, and this function “swizzles” the pointer
in the manner described above, then we can follow swizzled pointers in single
instructions, and only need to do something more time consuming when the
pointer is unswizzled.

N o Sw izzling

Of course it is possible never to swizzle pointers. We still need the translation
table, so the pointers may be followed in their unswizzled form. This approach
does offer the advantage that records cannot be pinned in memory, as discussed
in Section 13.6.5, and decisions about which form of pointer is present need not
be made.

P rogram m er C ontrol o f Sw izzling

In some applications, it may be known by the application programmer whether
the pointers in a block are likely to be followed. This programmer may be able

600 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

to specify explicitly that a block loaded into memory is to have its pointers
swizzled, or the programmer may call for the pointers to be swizzled only as
needed. For example, if a programmer knows that a block is likely to be accessed
heavily, such as the root block of a B-tree (discussed in Section 14.2), then the
pointers would be swizzled. However, blocks that are loaded into memory, used
once, and then likely dropped from memory, would not be swizzled.

13.6.4 Returning Blocks to Disk
When a block is moved from memory back to disk, any pointers within that
block must be “unswizzled”; that is, their memory addresses must be replaced
by the corresponding database addresses. The translation table can be used
to associate addresses of the two types in either direction, so in principle it is
possible to find, given a memory address, the database address to which the
memory address is assigned.

However, we do not want each unswizzling operation to require a search of
the entire translation table. While we have not discussed the implementation
of this table, we might imagine that the table of Fig. 13.20 has appropriate
indexes. If we think of the translation table as a relation, then the problem
of finding the memory address associated with a database address x can be
expressed as the query:

SELECT memAddr
FROM T ransla tionT ab le
WHERE dbAddr = x;

For instance, a hash table using the database address as the key might be
appropriate for an index on the dbAddr attribute; Chapter 14 suggests possible
data structures.

If we want to support the reverse query,

SELECT dbAddr
FROM T ransla tionT ab le
WHERE memAddr = y;

then we need to have an index on attribute memAddr as well. Again, Chapter 14
suggests data structures suitable for such an index. Also, Section 13.6.5 talks
about linked-list structures that in some circumstances can be used to go from
a memory address to all main-memory pointers to that address.

13.6.5 Pinned Records and Blocks
A block in memory is said to be pinned if it cannot at the moment be written
back to disk safely. A bit telling whether or not a block is pinned can be located
in the header of the block. There are many reasons why a block could be pinned,
including requirements of a recovery system as discussed in Chapter 17. Pointer
swizzling introduces an important reason why certain blocks must be pinned.

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES 601

If a block Bi has within it a swizzled pointer to some data item in block B 2,
then we must be very careful about moving block B2 back to disk and reusing
its main-memory buffer. The reason is that, should we follow the pointer in
B i, it will lead us to the buffer, which no longer holds B 2\ in effect, the pointer
has become dangling. A block, like B 2, that is referred to by a swizzled pointer
from somewhere else is therefore pinned.

When we write a block back to disk, we not only need to “unswizzle” any
pointers in that block. We also need to make sure it is not pinned. If it is
pinned, we must either unpin it, or let the block remain in memory, occupying
space that could otherwise be used for some other block. To unpin a block
that is pinned because of swizzled pointers from outside, we must “unswizzle”
any pointers to it. Consequently, the translation table must record, for each
database address whose data item is in memory, the places in memory where
swizzled pointers to that item exist. Two possible approaches are:

1. Keep the list of references to a memory address as a linked list attached
to the entry for that address in the translation table.

2. If memory addresses are significantly shorter than database addresses, we
can create the linked list in the space used for the pointers themselves.
That is, each space used for a database pointer is replaced by

(a) The swizzled pointer, and

(b) Another pointer that forms part of a linked list of all occurrences of
this pointer.

Figure 13.22 suggests how two occurrences of a memory pointer y could be
linked, starting at the entry in the translation table for database address
x and its corresponding memory address y.

y !
/

y

Swizzled pointer

Translation table

Figure 13.22: A linked list of occurrences of a swizzled pointer

602 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.6.6 Exercises for Section 13.6

Exercise 13.6.1: If we represent physical addresses for the Megatron 747 disk
by allocating a separate byte or bytes to each of the cylinder, track within
a cylinder, and block within a track, how many bytes do we need? Make a
reasonable assumption about the maximum number of blocks on each track;
recall that the Megatron 747 has a variable number of sectors/track.

Exercise 13.6.2: Repeat Exercise 13.6.1 for the Megatron 777 disk described
in Exercise 13.2.1

Exercise 13.6.3: If we wish to represent record addresses as well as block
addresses, we need additional bytes. Assuming we want addresses for a single
Megatron 747 disk as in Exercise 13.6.1, how many bytes would we need for
record addresses if we:

a) Included the number of the byte within a block as part of the physical
address.

b) Used structured addresses for records. Assume that the stored records
have a 4-byte integer as a key.

Exercise 13.6.4: Today, IP addresses have four bytes. Suppose that block
addresses for a world-wide address system consist of an IP address for the host,
a device number between 1 and 1000, and a block address on an individual
device (assumed to be a Megatron 747 disk). How many bytes would block
addresses require?

Exercise 13.6.5: In IP version 6, IP addresses are 16 bytes long. In addition,
we may want to address not only blocks, but records, which may start at any
byte of a block. However, devices will have their own IP address, so there will
be no need to represent a device within a host, as we suggested was necessary
in Exercise 13.6.4. How many bytes would be needed to represent addresses in
these circumstances, again assuming devices were Megatron 747 disks?

Exercise 13.6.6: Suppose we wish to represent the addresses of blocks on a
Megatron 747 disk logically, i.e., using identifiers of k bytes for some k. We also
need to store on the disk itself a map table, as in Fig. 13.18, consisting of pairs
of logical and physical addresses. The blocks used for the map table itself are
not part of the database, and therefore do not have their own logical addresses
in the map table. Assuming that physical addresses use the minimum possible
number of bytes for physical addresses (as calculated in Exercise 13.6.1), and
logical addresses likewise use the minimum possible number of bytes for logical
addresses, how many blocks of 4096 bytes does the map table for the disk
occupy?

13.7. VARIABLE-LENGTH DATA AND RECORDS 603

! Exercise 13.6.7: Suppose that we have 4096-byte blocks in which we store
records of 100 bytes. The block header consists of an offset table, as in Fig.
13.19, using 2-byte pointers to records within the block. On an average day, two
records per block are inserted, and one record is deleted. A deleted record must
have its pointer replaced by a “tombstone,” because there may be dangling
pointers to it. For specificity, assume the deletion on any day always occurs
before the insertions. If the block is initially empty, after how many days will
there be no room to insert any more records?

Exercise 13.6.8: Suppose that if we swizzle all pointers automatically, we
can perform the swizzling in half the time it would take to swizzle each one
separately. If the probability that a pointer in main memory will be followed at
least once is p, for what values of p is it more efficient to swizzle automatically
than on demand?

! E xercise 13.6.9: Generalize Exercise 13.6.8 to include the possibility that we
never swizzle pointers. Suppose that the important actions take the following
times, in some arbitrary time units:

i. On-demand swizzling of a pointer: 30.

ii. Automatic swizzling of pointers: 20 per pointer.

Hi. Following a swizzled pointer: 1.

iv. Following an unswizzled pointer: 10.

Suppose that in-memory pointers are either not followed (probability 1 — p)
or are followed k times (probability p). For what values of k and p do no-
swizzling, automatic-swizzling, and on-demand-swizzling each offer the best
average performance?

13.7 Variable-Length Data and Records
Until now, we have made the simplifying assumptions that records have a fixed
schema, and that the schema is a list of fixed-length fields. However, in practice,
we also may wish to represent:

1. Data items whose size varies. For instance, in Fig. 13.15 we considered a
MovieStar relation that had an address field of up to 255 bytes. While
there might be some addresses that long, the vast majority of them will
probably be 50 bytes or less. We could save more than half the space used
for storing MovieStar tuples if we used only as much space as the actual
address needed.

2. Repeating fields. If we try to represent a many-many relationship in a
record representing an object, we shall have to store references to as many
objects as are related to the given object.

604 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

3. Variable-format records. Sometimes we do not know in advance what the
fields of a record will be, or how many occurrences of each field there
will be. An important example is a record that represents an XML ele
ment, which might have no constraints at all, or might be allowed to have
repeating subelements, optional attributes, and so on.

4. Enormous fields. Modern DBMS’s support attributes whose values are
very large. For instance, a movie record might have a field that is a 2-
gigabyte MPEG encoding of the movie itself, as well as more mundane
fields such as the title of the movie.

13.7.1 Records W ith Variable-Length Fields

If one or more fields of a record have variable length, then the record must
contain enough information to let us find any field of the record. A simple
but effective scheme is to put all fixed-length fields ahead of the variable-length
fields. We then place in the record header:

1. The length of the record.

2. Pointers to (i.e., offsets of) the beginnings of all the variable-length fields
other than the first (which we know must immediately follow the fixed-
length fields).

E xam p le 1 3 .18 : Suppose we have movie-star records with name, address,
gender, and birthdate. We shall assume that the gender and birthdate are
fixed-length fields, taking 4 and 12 bytes, respectively. However, both name
and address will be represented by character strings of whatever length is ap
propriate. Figure 13.23 suggests what a typical movie-star record would look
like. Note that no pointer to the beginning of the name is needed; that field
begins right after the fixed-length portion of the record. □

other header inform ation
record length

to address
gender

birthdate address

Figure 13.23: A MovieStar record with name and address implemented as
variable-length character strings

13.7. VARIABLE-LENGTH DATA AND RECORDS 605

Representing Null Values

Tuples often have fields that may be NULL. The record format of Fig. 13.23
offers a convenient way to represent NULL values. If a field such as address
is null, then we put a null pointer in the place where the pointer to an
address goes. Then, we need no space for an address, except the place for
the pointer. This arrangement can save space on average, even if address
is a fixed-length field but frequently has the value NULL.

13.7.2 Records W ith Repeating Fields
A similar situation occurs if a record contains a variable number of occurrences
of a field F, but the field itself is of fixed length. It is sufficient to group all
occurrences of field F together and put in the record header a pointer to the
first. We can locate all the occurrences of the field F as follows. Let the number
of bytes devoted to one instance of field F be L. We then add to the offset for
the field F all integer multiples of L, starting at 0, then L, 2L, 3L, and so on.
Eventually, we reach the offset of the field following F or the end of the record,
whereupon we stop.

E xam ple 13.19: Suppose we redesign our movie-star records to hold only
the name and address (which are variable-length strings) and pointers to all
the movies of the star. Figure 13.24 shows how this type of record could be
represented. The header contains pointers to the beginning of the address field
(we assume the name field always begins right after the header) and to the
first of the movie pointers. The length of the record tells us how many movie
pointers there are. □

other header inform ation
record length

to address
to m ovie pointers

address

pointers to movies

Figure 13.24: A record with a repeating group of references to movies

An alternative representation is to keep the record of fixed length, and put
the variable-length portion — be it fields of variable length or fields that repeat

606 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

an indefinite number of times — on a separate block. In the record itself we
keep:

1. Pointers to the place where each repeating field begins, and

2. Either how many repetitions there are, or where the repetitions end.

Figure 13.25 shows the layout of a record for the problem of Example 13.19,
but with the variable-length fields name and address, and the repeating field
s ta r r e d ln (a set of movie references) kept on a separate block or blocks.

Figure 13.25: Storing variable-length fields separately from the record

There are advantages and disadvantages to using indirection for the variable-
length components of a record:

• Keeping the record itself fixed-length allows records to be searched more
efficiently, minimizes the overhead in block headers, and allows records to
be moved within or among blocks with minimum effort.

• On the other hand, storing variable-length components on another block
increases the number of disk I /O ’s needed to examine all components of
a record.

A compromise strategy is to keep in the fixed-length portion of the record
enough space for:

1. Some reasonable number of occurrences of the repeating fields,

13.7. VARIABLE-LENGTH DATA AND RECORDS 607

2. A pointer to a place where additional occurrences could be found, and

3. A count of how many additional occurrences there are.

If there are fewer than this number, some of the space would be unused. If there
are more than can fit in the fixed-length portion, then the pointer to additional
space will be nonnull, and we can find the additional occurrences by following
this pointer.

13.7.3 Variable-Format Records
An even more complex situation occurs when records do not have a fixed
schema. We mentioned an example: records that represent XML elements.
For another example, medical records may contain information about many
tests, but there are thousands of possible tests, and each patient has results for
relatively few of them. If the outcome of each test is an attribute, we would
prefer that the record for each tuple hold only the attributes for which the
outcome is nonnull.

The simplest representation of variable-format records is a sequence of tagged
fields, each of which consists of the value of the field preceded by information
about the role of this field, such as:

1. The attribute or field name,

2. The type of the field, if it is not apparent from the field name and some
readily available schema information, and

3. The length of the field, if it is not apparent from the type.

E xam ple 13.20: Suppose movie stars may have additional attributes such
as movies directed, former spouses, restaurants owned, and a number of other
known but unusual pieces of information. In Fig. 13.26 we see the beginning of
a hypothetical movie-star record using tagged fields. We suppose that single
byte codes are used for the various possible field names and types. Appropriate
codes are indicated on the figure, along with lengths for the two fields shown,
both of which happen to be of type string. □

code for name

icode for string type
T length_________

code fo r restaurant owned
| code fo r string type
| y length_____________

n : 14 Clint Eastwood R 16 Hog's Breath Inri

Figure 13.26: A record with tagged fields

608 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.7.4 Records That Do Not Fit in a Block

Today, DBMS’s frequently are used to manage datatypes with large values;
often values do not fit in one block. Typical examples are video or audio “clips.”
Often, these large values have a variable length, but even if the length is fixed
for all values of the type, we need special techniques to represent values that are
larger than blocks. In this section we shall consider a technique called “spanned
records.” The management of extremely large values (megabytes or gigabytes)
is addressed in Section 13.7.5.

Spanned records also are useful in situations where records are smaller than
blocks, but packing whole records into blocks wastes significant amounts of
space. For instance, the wasted space in Example 13.16 was only 7%, but if
records are just slightly larger than half a block, the wasted space can approach
50%. The reason is that then we can pack only one record per block.

The portion of a record that appears in one block is called a record fragment.
A record with two or more fragments is called spanned, and records that do not
cross a block boundary are unspanned.

If records can be spanned, then every record and record fragment requires
some extra header information:

1. Each record or fragment header must contain a bit telling whether or not
it is a fragment.

2. If it is a fragment, then it needs bits telling whether it is the first or last
fragment for its record.

3. If there is a next and/or previous fragment for the same record, then the
fragment needs pointers to these other fragments.

E xam ple 13.21: Figure 13.27 suggests how records that were about 60% of a
block in size could be stored with three records for every two blocks. The header
for record fragment 2a contains an indicator that it is a fragment, an indicator
that it is the first fragment for its record, and a pointer to next fragment, 2b.
Similarly, the header for 2b indicates it is the last fragment for its record and
holds a back-pointer to the previous fragment 2a. □

13.7.5 BLOBs

Now, let us consider the representation of truly large values for records or fields
of records. The common examples include images in various formats (e.g., GIF,
or JPEG), movies in formats such as MPEG, or signals of all sorts: audio, radar,
and so on. Such values are often called binary, large objects, or BLOBs. When
a field has a BLOB as value, we must rethink at least two issues.

13.7. VARIABLE-LENGTH DATA AND RECORDS 609

block header

record header

record 1
record

2 -a
record

2 -b record 3

b lock 1 block 2

Figure 13.27: Storing spanned records across blocks

Storage o f B L O B s

A BLOB must be stored on a sequence of blocks. Often we prefer that these
blocks are allocated consecutively on a cylinder or cylinders of the disk, so the
BLOB may be retrieved efficiently. However, it is also possible to store the
BLOB on a linked list of blocks.

Moreover, it is possible that the BLOB needs to be retrieved so quickly
(e.g., a movie that must be played in real time), that storing it on one disk
does not allow us to retrieve it fast enough. Then, it is necessary to stripe the
BLOB across several disks, that is, to alternate blocks of the BLOB among
these disks. Thus, several blocks of the BLOB can be retrieved simultaneously,
increasing the retrieval rate by a factor approximately equal to the number of
disks involved in the striping.

R etrieva l o f B L O B s

Our assumption that when a client wants a record, the block containing the
record is passed from the database server to the client in its entirety may not
hold. We may want to pass only the “small” fields of the record, and allow the
client to request blocks of the BLOB one at a time, independently of the rest of
the record. For instance, if the BLOB is a 2-hour movie, and the client requests
that the movie be played, the BLOB could be shipped several blocks at a time
to the client, at just the rate necessary to play the movie.

In many applications, it is also important that the client be able to request
interior portions of the BLOB without having to receive the entire BLOB.
Examples would be a request to see the 45th minute of a movie, or the ending
of an audio clip. If the DBMS is to support such operations, then it requires a
suitable index structure, e.g., an index by seconds on a movie BLOB.

13.7.6 Column Stores
An alternative to storing tuples as records is to store each column as a record.
Since an entire column of a relation may occupy far more than a single block,
these records may span many blocks, much as long files do. If we keep the

610 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

values in each column in the same order, then we can reconstruct the relation
from the column records. Alternatively, we can keep tuple ID’s or integers with
each value, to tell which tuple the value belongs to.

E xam ple 13.22 : Consider the relation

The column for X can be represented by the record (a, c, e) and the column for
Y can be represented by the record (b ,d ,f). If we want to indicate the tuple
to which each value belongs, then we can represent the two columns by the
records ((l,a) , (2 ,c), (3 ,e)) and ((1,6), (2,d), (3 ,/)) , respectively. No matter
how many tuples the relation above had, the columns would be represented by
variable-length records of values or repeating groups of tuple ID’s and values.
□

If we store relations by columns, it is often possible to compress data, the
the values all have a known type. For example, an attribute gender in a relation
might have type CHAR(l), but we would use four bytes in a tuple-based record,
because it is more convenient to have all components of a tuple begin at word
boundaries. However, if all we are storing is a sequence of gender values, then
it would make sense to store the column by a sequence of bits. If we did so, we
would compress the data by a factor of 32.

However, in order for column-based storage to make sense, it must be the
case that most queries call for examination of all, or a large fraction of the values
in each of several columns. Recall our discussion in Section 10.6 of “analytic”
queries, which are the common kind of queries with the desired characteristic.
These “OLAP” queries may benefit from organizing the data by columns.

13.7.7 Exercises for Section 13.7
Exercise 13.7 .1 : A patient record consists of the following fixed-length fields:
the patient’s date of birth, social-security number, and patient ID, each 10 bytes
long. It also has the following variable-length fields: name, address, and patient
history. If pointers within a record require 4 bytes, and the record length is a
4-byte integer, how many bytes, exclusive of the space needed for the variable-
length fields, are needed for the record? You may assume that no alignment of
fields is required.

E xercise 13.7 .2 : Suppose records are as in Exercise 13.7.1, and the variable-
length fields name, address, and history each have a length that is uniformly
distributed. For the name, the range is 10-50 bytes; for address it is 20-80
bytes, and for history it is 0-1000 bytes. W hat is the average length of a
patient record?

13.7. VARIABLE-LENGTH DATA AND RECORDS 611

The Merits of Data Compression

One might think that with storage so cheap, there is little advantage to
compressing data. However, storing data in fewer disk blocks enables us
to read and write the data faster, since we use fewer disk I /O ’s. When
we need to read entire columns, then storage by compressed columns can
result in significant speedups. However, if we want to read or write only
a single tuple, then column-based storage can lose. The reason is that in
order to decompress and find the value for the one tuple we want, we need
to read the entire column. In contrast, tuple-based storage allows us to
read only the block containing the tuple. An even more extreme case is
when the data is not only compressed, but encrypted.

In order to make access of single values efficient, we must both com
press and encrypt on a block-by-block basis. The most efficient compres
sion methods generally perform better when they are allowed to compress
large amounts of data as a group, and they do not lend themselves to
block-based decompression. However, in special cases such as the com
pression of a gender column discussed in Section 13.7.6, we can in fact do
block-by-block compression that is as good as possible.

E xercise 13.7.3: Suppose that the patient records of Exercise 13.7.1 are aug
mented by an additional repeating field that represents cholesterol tests. Each
cholesterol test requires 16 bytes for a date and an integer result of the test.
Show the layout of patient records if:

a) The repeating tests are kept with the record itself.

b) The tests are stored on a separate block, with pointers to them in the
record.

E xercise 13.7.4: Starting with the patient records of Exercise 13.7.1, suppose
we add fields for tests and their results. Each test consists of a test name, a
date, and a test result. Assume that each such test requires 40 bytes. Also,
suppose that for each patient and each test a result is stored with probability
P-

a) Assuming pointers and integers each require 4 bytes, what is the average
number of bytes devoted to test results in a patient record, assuming that
all test results are kept within the record itself, as a variable-length field?

b) Repeat (a), if test results are represented by pointers within the record
to test-result fields kept elsewhere.

! c) Suppose we use a hybrid scheme, where room for k test results are kept
within the record, and additional test results are found by following a

612 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

pointer to another block (or chain of blocks) where those results are kept.
As a function of p, what value of k minimizes the amount of storage used
for test results?

!! d) The amount of space used by the repeating test-result fields is not the
only issue. Let us suppose that the figure of merit we wish to minimize
is the number of bytes used, plus a penalty of 10,000 if we have to store
some results on another block (and therefore will require a disk I/O for
many of the test-result accesses we need to do. Under this assumption,
what is the best value of k as a function of p?

!! E xercise 13.7.5: Suppose blocks have 1000 bytes available for the storage of
records, and we wish to store on them fixed-length records of length r, where
500 < r < 1000. The value of r includes the record header, but a record
fragment requires an additional 16 bytes for the fragment header. For what
values of r can we improve space utilization by spanning records?

!! E xercise 13.7.6: An MPEG movie uses about one gigabyte per hour of play.
If we carefully organized several movies on a Megatron 747 disk, how many
could we deliver with only small delay (say 100 milliseconds) from one disk.
Use the timing estimates of Example 13.2, but remember that you can choose
how the movies are laid out on the disk.

13.8 Record M odifications
Insertions, deletions, and updates of records often create special problems.
These problems are most severe when the records change their length, but
they come up even when records and fields are all of fixed length.

13.8.1 Insertion
First, let us consider insertion of new records into a relation. If the records of
a relation are kept in no particular order, we can just find a block with some
empty space, or get a new block if there is none, and put the record there.

There is more of a problem when the tuples must be kept in some fixed
order, such as sorted by their primary key (e.g., see Section 14.1.1). If we need
to insert a new record, we first locate the appropriate block for that record.
Suppose first that there is space in the block to put the new record. Since
records must be kept in order, we may have to slide records around in the block
to make space available at the proper point. If we need to slide records, then
the block organization that we showed in Fig. 13.19, which we reproduce here
as Fig. 13.28, is useful. Recall from our discussion in Section 13.6.2 that we
may create an “offset table” in the header of each block, with pointers to the
location of each record in the block. A pointer to a record from outside the
block is a “structured address,” that is, the block address and the location of
the entry for the record in the offset table.

13.8. RECORD MODIFICATIONS 613

offset
table

header — unused

/y ///////) record
record 4

I

record 3 2 record 1

Figure 13.28: An offset table lets us slide records within a block to make room
for new records

If we can find room for the inserted record in the block at hand, then we
simply slide the records within the block and adjust the pointers in the offset
table. The new record is inserted into the block, and a new pointer to the record
is added to the offset table for the block. However, there may be no room in
the block for the new record, in which case we have to find room outside the
block. There are two major approaches to solving this problem, as well as
combinations of these approaches.

1. Find space on a “nearby” block. For example, if block Bi has no available
space for a record that needs to be inserted in sorted order into that
block, then look at the following block B 2 in the sorted order of the
blocks. If there is room in B 2, move the highest record(s) of B i to B 2,
leave forwarding addresses (recall Section 13.6.2) and slide the records
around on both blocks.

2. Create an overflow block. In this scheme, each block B has in its header
a place for a pointer to an overflow block where additional records that
theoretically belong in B can be placed. The overflow block for B can
point to a second overflow block, and so on. Figure 13.29 suggests the
structure. We show the pointer for overflow blocks as a nub on the block,
although it is in fact part of the block header.

B lock B overflow block
for B

Figure 13.29: A block and its first overflow block

614 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.8.2 Deletion

When we delete a record, we may be able to reclaim its space. If we use an
offset table as in Fig. 13.28 and records can slide around the block, then we
can compact the space in the block so there is always one unused region in the
center, as suggested by that figure.

If we cannot slide records, we should maintain an available-space list in the
block header. Then we shall know where, and how large, the available regions
are, when a new record is inserted into the block. Note that the block header
normally does not need to hold the entire available space list. It is sufficient to
put the list head in the block header, and use the available regions themselves
to hold the links in the list, much as we did in Fig. 13.22.

There is one additional complication involved in deletion, which we must
remember regardless of what scheme we use for reorganizing blocks. There
may be pointers to the deleted record, and if so, we don’t want these pointers
to dangle or wind up pointing to a new record that is put in the place of the
deleted record. The usual technique, which we pointed out in Section 13.6.2, is
to place a tombstone in place of the record. This tombstone is permanent; it
must exist until the entire database is reconstructed.

Where the tombstone is placed depends on the nature of record pointers.
If pointers go to fixed locations from which the location of the record is found,
then we put the tombstone in that fixed location. Here are two examples:

1. We suggested in Section 13.6.2 that if the offset-table scheme of Fig. 13.28
were used, then the tombstone could be a null pointer in the offset table,
since pointers to the record were really pointers to the offset table entries.

2. If we are using a map table, as in Fig. 13.18, to translate logical record
addresses to physical addresses, then the tombstone can be a null pointer
in place of the physical address.

If we need to replace records by tombstones, we should place the bit that serves
as a tombstone at the very beginning of the record. Then, only this bit must
remain where the record used to begin, and subsequent bytes can be reused for
another record, as suggested by Fig. 13.30.

Figure 13.30: Record 1 can be replaced, but the tombstone remains; record 2
has no tombstone and can be seen when we follow a pointer to it

13.9. SUMMARY OF CHAPTER 13 615

13.8.3 Update
When a fixed-length record is updated, there is no effect on the storage system,
because we know it can occupy exactly the same space it did before the update.
However, when a variable-length record is updated, we have all the problems
associated with both insertion and deletion, except that it is never necessary to
create a tombstone for the old version of the record.

If the updated record is longer than the old version, then we may need
to create more space on its block. This process may involve sliding records
or even the creation of an overflow block. If variable-length portions of the
record are stored on another block, as in Fig. 13.25, then we may need to move
elements around that block or create a new block for storing variable-length
fields. Conversely, if the record shrinks because of the update, we have the
same opportunities as with a deletion to recover or consolidate space.

13.8.4 Exercises for Section 13.8
Exercise 13.8.1: Relational database systems have always preferred to use
fixed-length tuples if possible. Give three reasons for this preference.

13.9 Summary of Chapter 13
♦ Memory Hierarchy: A computer system uses storage components ranging

over many orders of magnitude in speed, capacity, and cost per bit. From
the smallest/most expensive to largest/cheapest, they are: cache, main
memory, secondary memory (disk), and tertiary memory.

♦ Disks/Secondary Storage: Secondary storage devices are principally mag
netic disks with multigigabyte capacities. Disk units have several circular
platters of magnetic material, with concentric tracks to store bits. Plat
ters rotate around a central spindle. The tracks at a given radius from
the center of a platter form a cylinder.

♦ Blocks and Sectors: Tracks are divided into sectors, which are separated
by unmagnetized gaps. Sectors are the unit of reading and writing from
the disk. Blocks are logical units of storage used by an application such
as a DBMS. Blocks typically consist of several sectors.

♦ Disk Controller: The disk controller is a processor that controls one or
more disk units. It is responsible for moving the disk heads to the proper
cylinder to read or write a requested track. It also may schedule competing
requests for disk access and buffers the blocks to be read or written.

♦ Disk Access Time: The latency of a disk is the time between a request to
read or write a block, and the time the access is completed. Latency is
caused principally by three factors: the seek time to move the heads to

the proper cylinder, the rotational latency during which the desired block
rotates under the head, and the transfer time, while the block moves under
the head and is read or written.

♦ Speeding Up Disk Access: There are several techniques for accessing disk
blocks faster for some applications. They include dividing the data among
several disks (striping), mirroring disks (maintaining several copies of the
data, also to allow parallel access), and organizing data that will be ac
cessed together by tracks or cylinders.

♦ Elevator Algorithm: We can also speed accesses by queueing access re
quests and handling them in an order that allows the heads to make one
sweep across the disk. The heads stop to handle a request each time
it reaches a cylinder containing one or more blocks with pending access
requests.

♦ Disk Failure Modes: To avoid loss of data, systems must be able to handle
errors. The principal types of disk failure are intermittent (a read or write
error that will not reoccur if repeated), permanent (data on the disk is
corrupted and cannot be properly read), and the disk crash, where the
entire disk becomes unreadable.

♦ Checksums: By adding a parity check (extra bit to make the number of
l ’s in a bit string even), intermittent failures and permanent failures can
be detected, although not corrected.

♦ Stable Storage: By making two copies of all data and being careful about
the order in which those copies are written, a single disk can be used to
protect against almost all permanent failures of a single sector.

♦ RAID: These schemes allow data to survive a disk crash. RAID level
4 adds a disk whose contents are a parity check on corresponding bits
of all other disks, level 5 varies the disk holding the parity bit to avoid
making the parity disk a writing bottleneck. Level 6 involves the use of
error-correcting codes and may allow survival after several simultaneous
disk crashes.

♦ Records: Records are composed of several fields plus a record header. The
header contains information about the record, possibly including such
matters as a timestamp, schema information, and a record length. If the
record has varying-length fields, the header may also help locate those
fields.

♦ Blocks: Records are generally stored within blocks. A block header, with
information about that block, consumes some of the space in the block,
with the remainder occupied by one or more records. To support in
sertions, deletions and modifications of records, we can put in the block
header an offset table that has pointers to each of the records in the block.

616 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.10. REFERENCES FOR CHAPTER 13 617

♦ Spanned Records: Generally, a record exists within one block. However,
if records are longer than blocks, or we wish to make use of leftover space
within blocks, then we can break records into two or more fragments, one
on each block. A fragment header is then needed to link the fragments of
a record.

♦ BLOBs: Very large values, such as images and videos, are called BLOBs
(binary, large objects). These values must be stored across many blocks
and may require specialized storage techniques such as reserving a cylinder
or striping the blocks of the BLOB.

♦ Database Addresses: Data managed by a DBMS is found among several
storage devices, typically disks. To locate blocks and records in this stor
age system, we can use physical addresses, which are a description of
the device number, cylinder, track, sector(s), and possibly byte within a
sector. We can also use logical addresses, which are arbitrary character
strings that are translated into physical addresses by a map table.

♦ Pointer Swizzling: When disk blocks are brought to main memory, the
database addresses need to be translated to memory addresses, if pointers
are to be followed. The translation is called swizzling, and can either be
done automatically, when blocks are brought to memory, or on-demand,
when a pointer is first followed.

♦ Tombstones: When a record is deleted, pointers to it will dangle. A
tombstone in place of (part of) the deleted record warns the system that
the record is no longer there.

♦ Pinned Blocks: For various reasons, including the fact that a block may
contain swizzled pointers, it may be unacceptable to copy a block from
memory back to its place on disk. Such a block is said to be pinned. If the
pinning is due to swizzled pointers, then they must be unswizzled before
returning the block to disk.

13.10 References for Chapter 13
The RAID idea can be traced back to [8] on disk striping. The name and error-
correcting capability is from [7]. The model of disk failures in Section 13.4
appears in unpublished work of Lampson and Sturgis [5].

There are several useful surveys of disk-related material. A study of RAID
systems is in [2]. [10] surveys algorithms suitable for the secondary storage
model (block model) of computation. [3] is an important study of how one
optimizes a system involving processor, memory, and disk, to perform specific
tasks.

References [4] and [11] have more information on record and block struc
tures. [9] discusses column stores as an alternative to the conventional record

618 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

structures. Tombstones as a technique for dealing with deletion is from [6]. [1]
covers data representation issues, such as addresses and swizzling in the context
of object-oriented DBMS’s.

1. R. G. G. Cattell, Object Data Management, Addison-Wesley, Reading
MA, 1994.

2. P. M. Chen et al., “RAID: high-performance, reliable secondary storage,”
Computing Surveys 26:2 (1994), pp. 145-186.

3. J. N. Gray and F. Putzolo, “The five minute rule for trading memory for
disk accesses and the 10 byte rule for trading memory for CPU time,”
Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp. 395-398,
1987.

4. D. E. Knuth, The Art of Computer Programming, Vol. I, Fundamental
Algorithms, Third Edition, Addison-Wesley, Reading MA, 1997.

5. B. Lampson and H. Sturgis, “Crash recovery in a distributed data storage
system,” Technical report, Xerox Palo Alto Research Center, 1976.

6. D. Lomet, “Scheme for invalidating free references,” IBM J. Research and
Development 19:1 (1975), pp. 26-35.

7. D. A. Patterson, G. A. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks,” Proc. ACM SIGMOD Intl. Conf. on Man
agement of Data, pp. 109-116, 1988.

8. K. Salem and H. Garcia-Molina, “Disk striping,” Proc. Second Intl. Conf.
on Data Engineering, pp. 336-342, 1986.

9. M. Stonebraker et al., “C-Store: a column-oriented DBMS,” Proc. Thirty-
first Intl. Conf. on Very Large Database Systems” (2005).

10. J. S. Vitter, “External memory algorithms,” Proc. Seventeenth Annual
ACM Symposium on Principles of Database Systems, pp. 119-128, 1998.

11. G. Wiederhold, File Organization for Database Design, McGraw-Hill,
New York, 1987.

Chapter 14

Index Structures

It is not sufficient simply to scatter the records that represent tuples of a relation
among various blocks. To see why, think how we would answer the simple query
SELECT * FROM R. We would have to examine every block in the storage system
to find the tuples of R. A better idea is to reserve some blocks, perhaps several
whole cylinders, for R. Now, at least we can find the tuples of R without
scanning the entire data store.

However, this organization offers little help for a query like

SELECT * FROM R WHERE a=10;

Section 8.4 introduced us to the importance of creating indexes to speed up
queries that specify values for one or more attributes. As suggested in Fig. 14.1,
an index is any data structure that takes the value of one or more fields and
finds the records with that value “quickly.” In particular, an index lets us find
a record without having to look at more than a small fraction of all possible
records. The field(s) on whose values the index is based is called the search key,
or just “key” if the index is understood.

value
m atching

records

Figure 14.1: An index takes a value for some field(s) and finds records with the
matching value

619

620 CHAPTER 14. INDEX STRUCTURES

Different Kinds of “Keys”

There are many meanings of the term “key.” We used it in Section 2.3.6
to mean the primary key of a relation. We shall also speak of “sort keys,”
the attribute(s) on which a file of records is sorted. We just introduced
“search keys,” the attribute(s) for which we are given values and asked to
search, through an index, for tuples with matching values. We try to use
the appropriate adjective — “primary,” “sort,” or “search” — when the
meaning of “key” is unclear. However, in many cases, the three kinds of
keys are one and the same.

In this chapter, we shall introduce the most common form of index in
database systems: the B-tree. We shall also discuss hash tables in secondary
storage, which is another important index structure. Finally, we consider other
index structures that are designed to handle multidimensional data. These
structures support queries that specify values or ranges for several attributes
at once.

14.1 Index-Structure Basics

In this section, we introduce concepts that apply to all index structures. Stor
age structures consist of files, which are similar to the files used by operating
systems. A data file may be used to store a relation, for example. The data file
may have one or more index files. Each index file associates values of the search
key with pointers to data-file records that have that value for the attribute(s)
of the search key.

Indexes can be “dense,” meaning there is an entry in the index file for every
record of the data file. They can be “sparse,” meaning that only some of the
data records are represented in the index, often one index entry per block of
the data file. Indexes can also be “primary” or “secondary.” A primary index
determines the location of the records of the data file, while a secondary index
does not. For example, it is common to create a primary index on the primary
key of a relation and to create secondary indexes on some of the other attributes.

We conclude the section with a study of information retrieval from doc
uments. The ideas of the section are combined to yield “inverted indexes,”
which enable efficient retrieval of documents that contain one or more given
keywords. This technique is essential for answering search queries on the Web,
for instance.

14.1. INDEX-STRUCTURE BASICS 621

14.1.1 Sequential Files
A sequential file is created by sorting the tuples of a relation by their primary
key. The tuples are then distributed among blocks, in this order.

E xam ple 14.1: Fig 14.2 shows a sequential file on the right. We imagine
that keys are integers; we show only the key field, and we make the atypical
assumption that there is room for only two records in one block. For instance,
the first block of the file holds the records with keys 10 and 20. In this and
several other examples, we use integers that are sequential multiples of 10 as
keys, although there is surely no requirement that keys form an arithmetic
sequence. □

Although in Example 14.1 we supposed that records were packed as tightly
as possible into blocks, it is common to leave some space initially in each block to
accomodate new tuples that may be added to a relation. Alternatively, we may
accomodate new tuples with overflow blocks, as we suggested in Section 13.8.1.

14.1.2 Dense Indexes
If records Eire sorted, we can build on them a dense index, which is a sequence
of blocks holding only the keys of the records and pointers to the records them
selves; the pointers are addresses in the sense discussed in Section 13.6. The
index blocks of the dense index maintain these keys in the same sorted order as
in the file itself. Since keys and pointers presumably take much less space than
complete records, we expect to use many fewer blocks for the index than for
the file itself. The index is especially advantageous when it, but not the data
file, can fit in main memory. Then, by using the index, we can find any record
given its search key, with only one disk I/O per lookup.

E xam ple 14.2: Figure 14.2 suggests a dense index on a sorted file. The
first index block contains pointers to the first four records (an atypically small
number of pointers for one block), the second block has pointers to the next
four, and so on. □

The dense index supports queries that ask for records with a given search-
key value. Given key value K , we search the index blocks for K , and when we
find it, we follow the associated pointer to the record with key K . It might
appear that we need to examine every block of the index, or half the blocks of
the index, on average, before we find K . However, there are several factors that
make the index-based search more efficient than it seems.

1. The number of index blocks is usually small compared with the number
of data blocks.

2. Since keys are sorted, we can use binary search to find K . If there are n
blocks of the index, we only look at log2 n of them.

622 CHAPTER 14. INDEX STRUCTURES

10
20
30
40

10

20

50
60
70
80

90
100
110 — —•

120 —

30
40

50
60

70
80

90
100

Index file Data file

Figure 14.2: A dense index (left) on a sequential data file (right)

3. The index may be small enough to be kept permanently in main memory
buffers. If so, the search for key K involves only main-memory accesses,
and there are no expensive disk I/O ’s to be performed.

14.1.3 Sparse Indexes
A sparse index typically has only one key-pointer pair per block of the data file.
It thus uses less space than a dense index, at the expense of somewhat more
time to find a record given its key. You can only use a sparse index if the data
file is sorted by the search key, while a dense index can be used for any search
key. Figure 14.3 shows a sparse index with one key-pointer per data block. The
keys are for the first records on each data block.

E xam ple 14.3: As in Example 14.2, we assume that the data file is sorted,
and keys are all the integers divisible by 10, up to some large number. We also
continue to assume that four key-pointer pairs fit on an index block. Thus, the
first sparse-index block has entries for the first keys on the first four blocks,
which are 10, 30, 50, and 70. Continuing the assumed pattern of keys, the
second index block has the first keys of the fifth through eighth blocks, which
we assume are 90, 110, 130, and 150. We also show a third index block with
first keys from the hypothetical ninth through twelfth data blocks. □

To find the record with search-key value K , we search the sparse index for
the largest key less than or equal to K . Since the index file is sorted by key, a

14.1. INDEX-STRUCTURE BASICS 623

10
30
50
70 "■

90
110 •-'

130 ■--

150 —

170 — -
190 —
210 — -
230 —

10

20

30
40

50
60

70
80

90
100

Figure 14.3: A sparse index on a sequential file

binary search can locate this entry. We follow the associated pointer to a data
block. Now, we must search this block for the record with key K . Of course the
block must have enough format information that the records and their contents
can be identified. Any of the techniques from Sections 13.5 and 13.7 can be
used.

14.1.4 Multiple Levels of Index

An index file can cover many blocks. Even if we use binary search to find the
desired index entry, we still may need to do many disk I /O ’s to get to the record
we want. By putting an index on the index, we can make the use of the first
level of index more efficient.

Figure 14.4 extends Fig. 14.3 by adding a second index level (as before, we
assume keys are every multiple of 10). The same idea would let us place a third-
level index on the second level, and so on. However, this idea has its limits,
and we prefer the B-tree structure described in Section 14.2 over building many
levels of index.

In this example, the first-level index is sparse, although we could have chosen
a dense index for the first level. However, the second and higher levels must
be sparse. The reason is that a dense index on an index would have exactly as
many key-pointer pairs as the first-level index, and therefore would take exactly
as much space as the first-level index.

624 CHAPTER 14. INDEX STRUCTURES

10
90
170
250 .

330 — -
410 — ■
490 — ■
570

10
30
50
70

90
110 — -
130 — ■
150 -

170 — -
190 — -
210 — -
230 —

10

20

30
40

50
60

70
80

90
100

Figure 14.4: Adding a second level of sparse index

14.1.5 Secondary Indexes
A secondary index serves the purpose of any index: it is a data structure that
facilitates finding records given a value for one or more fields. However, the
secondary index is distinguished from the primary index in that a secondary
index does not determine the placement of records in the data file. Rather, the
secondary index tells us the current locations of records; that location may have
been decided by a primary index on some other field. An important consequence
of the distinction between primary and secondary indexes is that:

• Secondary indexes are always dense. It makes no sense to talk of a sparse,
secondary index. Since the secondary index does not influence location,
we could not use it to predict the location of any record whose key was
not mentioned in the index file explicitly.

E xam ple 14.4: Figure 14.5 shows a typical secondary index. The data file
is shown with two records per block, as has been our standard for illustration.
The records have only their search key shown; this attribute is integer valued,
and as before we have taken the values to be multiples of 10. Notice that, unlike
the data file in Fig. 14.2, here the data is not sorted by the search key.

However, the keys in the index file are sorted. The result is that the pointers
in one index block can go to many different data blocks, instead of one or a few
consecutive blocks. For example, to retrieve all the records with search key 20,
we not only have to look at two index blocks, but we are sent by their pointers
to three different data blocks. Thus, using a secondary index may result in

14.1. INDEX-STRUCTURE BASICS 625

Figure 14.5: A secondary index

many more disk I /O ’s than if we get the same number of records via a primary
index. However, there is no help for this problem; we cannot control the order
of tuples in the data block, because they are presumably ordered according to
some other attribute(s). □

14.1.6 Applications of Secondary Indexes
Besides supporting additional indexes on relations that are organized as sequen
tial files, there are some data structures where secondary indexes are needed for
even the primary key. One of these is the “heap” structure, where the records
of the relation are kept in no particular order.

A second common structure needing secondary indexes is the clustered file.
Suppose there are relations R and S, with a many-one relationship from the
tuples of R to tuples of S. It may make sense to store each tuple of R with the
tuple of S to which it is related, rather than according to the primary key of R.
An example will illustrate why this organization makes good sense in special
situations.

E xam ple 14.5 : Consider our standard movie and studio relations:

M o v ie (tit le , y ea r, len g th , genre, studioName, producerC#)
Studio(name, add ress, presC#)

Suppose further that the most common form of query is:

626 CHAPTER 14. INDEX STRUCTURES

SELECT t i t l e , year
FROM Movie, S tudio
WHERE presC# = zzz AND Movie. studioName = Studio.nam e;

Here, zzz represents any possible certificate number for a studio president. That
is, given the president of a studio, we need to find all the movies made by that
studio.

If we are convinced that the above query is typical, then instead of ordering
Movie tuples by the primary key t i t l e and year, we can create a clustered
file structure for both relations S tudio and Movie, as suggested by Fig. 14.6.
Following each S tudio tuple are all the Movie tuples for all the movies owned
by that studio.

studio 1 studio 2 studio 3 studio 4

movies by
studio 1

movies by
studio 2

movies by
studio 3

movies by
studio 4

Figure 14.6: A clustered file with each studio clustered with the movies made
by that studio

If we create an index for S tudio with search key presC#, then whatever the
value of zzz is, we can quickly find the tuple for the proper studio. Moreover,
all the Movie tuples whose value of attribute studioName matches the value
of name for that studio will follow the studio’s tuple in the clustered file. As
a result, we can find the movies for this studio by making almost as few disk
I /O ’s as possible. The reason is that the desired Movie tuples are packed
almost as densely as possible onto the following blocks. However, an index on
any attribute(s) of Movie would have to be a secondary index. □

14.1.7 Indirection in Secondary Indexes

There is some wasted space, perhaps a significant amount of wastage, in the
structure suggested by Fig. 14.5. If a search-key value appears n times in the
data file, then the value is written n times in the index file. It would be better
if we could write the key value once for all the pointers to data records with
that value.

A convenient way to avoid repeating values is to use a level of indirection,
called buckets, between the secondary index file and the data file. As shown in
Fig. 14.7, there is one pair for each search key K . The pointer of this pair goes
to a position in a “bucket file,” which holds the “bucket” for K . Following this
position, until the next position pointed to by the index, are pointers to all the
records with search-key value K .

14.1. INDEX-STRUCTURE BASICS 627

Figure 14.7: Saving space by using indirection in a secondary index

E xam ple 14.6: For instance, let us follow the pointer from search key 50
in the index file of Fig. 14.7 to the intermediate “bucket” file. This pointer
happens to take us to the last pointer of one block of the bucket file. We search
forward, to the first pointer of the next block. We stop at that point, because
the next pointer of the index file, associated with search key 60, points to the
next record in the bucket file. □

The scheme of Fig. 14.7 saves space as long as search-key values are larger
than pointers, and the average key appears at least twice. However, even if not,
there is an important advantage to using indirection with secondary indexes:
often, we can use the pointers in the buckets to help answer queries without
ever looking at most of the records in the data file. Specifically, when there are
several conditions to a query, and each condition has a secondary index to help
it, we can find the bucket pointers that satisfy all the conditions by intersecting
sets of pointers in memory, and retrieving only the records pointed to by the
surviving pointers. We thus save the I/O cost of retrieving records that satisfy
some, but not all, of the conditions.1

E xam ple 14.7: Consider the usual Movie relation:

M o v ie (title , y ea r, len g th , genre, studioName, producerC#)

1 We also could use this pointer-intersection trick if we got the pointers directly from the
index, rather than from buckets.

628 CHAPTER 14. INDEX STRUCTURES

Suppose we have secondary indexes with indirect buckets on both studioName
and yeax, and we are asked the query

SELECT t i t l e
FROM Movie
WHERE studioName = ’D isney’ AND year = 2005;

that is, find all the Disney movies made in 2005.

Buckets Buckets
for Movie tuples for

studio year

Studio Year
index index

Figure 14.8: Intersecting buckets in main memory

Figure 14.8 shows how we can answer this query using the indexes. Using
the index on studioName, we find the pointers to all records for Disney movies,
but we do not yet bring any of those records from disk to memory. Instead,
using the index on year, we find the pointers to all the movies of 2005. We then
intersect the two sets of pointers, getting exactly the movies that were made
by Disney in 2005. Finally, we retrieve from disk all data blocks holding one or
more of these movies, thus retrieving the minimum possible number of blocks.
□

14.1.8 Document Retrieval and Inverted Indexes
For many years, the information-retrieval community has dealt with the storage
of documents and the efficient retrieval of documents with a given set of key
words. With the advent of the World-Wide Web and the feasibility of keeping

14.1. INDEX-STRUCTURE BASICS 629

all documents on-line, the retrieval of documents given keywords has become
one of the largest database problems. While there are many kinds of queries
that one can use to find relevant documents, the simplest and most common
form can be seen in relational terms as follows:

• A document may be thought of as a tuple in a relation Doc. This relation
has very many attributes, one corresponding to each possible word in a
document. Each attribute is boolean — either the word is present in the
document, or it is not. Thus, the relation schema may be thought of as

Doc(hasCat, hasDog, ...)

where hasCat is true if and only if the document has the word “cat” at
least once.

• There is a secondary index on each of the attributes of Doc. However,
we save the trouble of indexing those tuples for which the value of the
attribute is FALSE; instead, the index leads us to only the documents for
which the word is present. That is, the index has entries only for the
search-key value TRUE.

• Instead of creating a separate index for each attribute (i.e., for each word),
the indexes are combined into one, called an inverted index. This in
dex uses indirect buckets for space efficiency, as was discussed in Sec
tion 14.1.7.

E xam ple 1 4 .8 : An inverted index is illustrated in Fig. 14.9. In place of a data
file of records is a collection of documents, each of which may be stored on one
or more disk blocks. The inverted index itself consists of a set of word-pointer
pairs; the words are in effect the search key for the index. The inverted index
is kept in a sequence of blocks, just like any of the indexes discussed so far.

The pointers refer to positions in a “bucket” file. For instance, we have
shown in Fig. 14.9 the word “cat” with a pointer to the bucket file. That
pointer leads us to the beginning of a list of pointers to all the documents that
contain the word “cat.” We have shown some of these in the figure. Similarly,
the word “dog” is shown leading to a list of pointers to all the documents with
“dog.” □

Pointers in the bucket file can be:

1. Pointers to the document itself.

2. Pointers to an occurrence of the word. In this case, the pointer might
be a pair consisting of the first block for the document and an integer
indicating the number of the word in the document.

630 CHAPTER 14. INDEX STRUCTURES

Documents

Figure 14.9: An inverted index on documents

When we use “buckets” of pointers to occurrences of each word, we may
extend the idea to include in the bucket array some information about each
occurrence. Now, the bucket file itself becomes a collection of records with
important structure. Early uses of the idea distinguished occurrences of a word
in the title of a document, the abstract, and the body of text. With the growth
of documents on the Web, especially documents using HTML, XML, or another
markup language, we can also indicate the markings associated with words.
For instance, we can distinguish words appearing in titles, headers, tables, or
anchors, as well as words appearing in different fonts or sizes.

E xam ple 14 .9 : Figure 14.10 illustrates a bucket file that has been used to
indicate occurrences of words in HTML documents. The first column indicates
the type of occurrence, i.e., its marking, if any. The second and third columns
are together the pointer to the occurrence. The third column indicates the doc
ument, and the second column gives the number of the word in the document.

We can use this data structure to answer various queries about documents
without having to examine the documents in detail. For instance, suppose we
want to find documents about dogs that compare them with cats. Without a
deep understanding of the meaning of the text, we cannot answer this query
precisely. However, we could get a good hint if we searched for documents that

a) Mention dogs in the title, and

14.1. INDEX-STRUCTURE BASICS 631

Type Position

Figure 14.10: Storing more information in the inverted index

Insertion and Deletion From Buckets

We show buckets in figures such as Fig. 14.9 as compacted arrays of appro
priate size. In practice, they are records with a single field (the pointer)
and are stored in blocks like any other collection of records. Thus, when
we insert or delete pointers, we may use any of the techniques seen so far,
such as leaving extra space in blocks for expansion of the file, overflow
blocks, and possibly moving records within or among blocks. In the latter
case, we must be careful to change the pointer from the inverted index to
the bucket file, as we move the records it points to.

b) Mention cats in an anchor — presumably a link to a document about
cats.

We can answer this query by intersecting pointers. That is, we follow the
pointer associated with “cat” to find the occurrences of this word. We select
from the bucket file the pointers to documents associated with occurrences of
“cat” where the type is “anchor.” We then find the bucket entries for “dog”
and select from them the document pointers associated with the type “title.”
If we intersect these two sets of pointers, we have the documents that meet the
conditions: they mention “dog” in the title and “cat” in an anchor. □

14.1.9 Exercises for Section 14.1
Exercise 14.1.1: Suppose blocks hold either three records, or ten key-pointer
pairs. As a function of n, the number of records, how many blocks do we need
to hold a data file and: (a) A dense index (b) A sparse index?

632 CHAPTER 14. INDEX STRUCTURES

More About Information Retrieval

There are a number of techniques for improving the effectiveness of re
trieval of documents given keywords. While a complete treatment is be
yond the scope of this book, here are two useful techniques:

1. Stemming. We remove suffixes to find the “stem” of each word, be
fore entering its occurrence into the index. For example, plural nouns
can be treated as their singular versions. Thus, in Example 14.8, the
inverted index evidently uses stemming, since the search for word
“dog” got us not only documents with “dog,” but also a document
with the word “dogs.”

2. Stop words. The most common words, such as “the” or “and,” are
called stop words and often are excluded from the inverted index.
The reason is that the several hundred most common words appear in
too many documents to make them useful as a way to find documents
about specific subjects. Eliminating stop words also reduces the size
of the inverted index significantly.

E xercise 14.1.2: Repeat Exercise 14.1.1 if blocks can hold up to 30 records
or 200 key-pointer pairs, but neither data- nor index-blocks are allowed to be
more than 80% full.

! E xercise 14.1.3: Repeat Exercise 14.1.1 if we use as many levels of index as
is appropriate, until the final level of index has only one block.

! E xercise 14.1.4: Consider a clustered file organization like Fig. 14.6, and
suppose that ten records, either studio records or movie records, will fit on
one block. Also assume that the number of movies per studio is uniformly
distributed between 1 and m. As a function of m, what is the average number
of disk I /O ’s needed to retrieve a studio and all its movies? What would the
number be if movies were randomly distributed over a large number of blocks?

E xercise 14.1.5: Suppose that blocks can hold either three records, ten key-
pointer pairs, or fifty pointers. Using the indirect-buckets scheme of Fig. 14.7:

a) If the average search-key value appears in 10 records, how many blocks
do we need to hold 3000 records and its secondary index structure? How
many blocks would be needed if we did not use buckets?

! b) If there are no constraints on the number of records that can have a given
search-key value, what are the minimum and maximum number of blocks
needed?

14.2. B-TREES 633

E xercise 14.1.6: On the assumptions of Exercise 14.1.5(a), what is the av
erage number of disk I /O ’s to find and retrieve the ten records with a given
search-key value, both with and without the bucket structure? Assume nothing
is in memory to begin, but it is possible to locate index or bucket blocks without
incurring additional I /O ’s beyond what is needed to retrieve these blocks into
memory.

E xercise 14.1.7: Suppose we have a repository of 1000 documents, and we
wish to build an inverted index with 10,000 words. A block can hold ten
word-pointer pairs or 50 pointers to either a document or a position within
a document. The distribution of words is Zipfian (see the box on “The Zipfian
Distribution” in Section 16.4.3); the number of occurrences of the ith most
frequent word is 100000/\/i, for i — 1 ,2 ,. .. , 10000.

a) What is the averge number of words per document?

b) Suppose our inverted index only records for each word all the documents
that have that word. What is the maximum number of blocks we could
need to hold the inverted index?

c) Suppose our inverted index holds pointers to each occurrence of each word.
How many blocks do we need to hold the inverted index?

d) Repeat (b) if the 400 most common words (“stop” words) are not included
in the index.

e) Repeat (c) if the 400 most common words are not included in the index.

E xercise 14.1.8: If we use an augmented inverted index, such as in Fig. 14.10,
we can perform a number of other kinds of searches. Suggest how this index
could be used to find:

a) Documents in which “cat” and “dog” appeared within five positions of
each other in the same type of element (e.g., title, text, or anchor).

b) Documents in which “dog” followed “cat” separated by exactly one posi
tion.

c) Documents in which “dog” and “cat” both appear in the title.

14.2 B-Trees
While one or two levels of index are often very helpful in speeding up queries,
there is a more general structure that is commonly used in commercial systems.
This family of data structures is called B-trees, and the particular variant that
is most often used is known as a B+ tree. In essence:

634 CHAPTER 14. INDEX STRUCTURES

• B-trees automatically maintain as many levels of index as is appropriate
for the size of the file being indexed.

• B-trees manage the space on the blocks they use so that every block is
between half used and completely full.

In the following discussion, we shall talk about “B-trees,” but the details will
all be for the B+ tree variant. Other types of B-tree are discussed in exercises.

14.2.1 The Structure of B-trees
A B-tree organizes its blocks into a tree that is balanced, meaning that all paths
from the root to a leaf have the same length. Typically, there are three layers in
a B-tree: the root, an intermediate layer, and leaves, but any number of layers
is possible. To help visualize B-trees, you may wish to look ahead at Figs. 14.11
and 14.12, which show nodes of a B-tree, and Fig. 14.13, which shows an entire
B-tree.

There is a parameter n associated with each B-tree index, and this parameter
determines the layout of all blocks of the B-tree. Each block will have space for
n search-key values and n + 1 pointers. In a sense, a B-tree block is similar to
the index blocks introduced in Section 14.1.2, except that the B-tree block has
an extra pointer, along with n key-pointer pairs. We pick n to be as large as
will allow n -1-1 pointers and n keys to fit in one block.

E xam ple 14.10: Suppose our blocks are 4096 bytes. Also let keys be integers
of 4 bytes and let pointers be 8 bytes. If there is no header information kept
on the blocks, then we want to find the largest integer value of n such that
4n + 8(n + 1) < 4096. That value is n = 340. □

There are several important rules about what can appear in the blocks of a
B-tree:

• The keys in leaf nodes are copies of keys from the data file. These keys
are distributed among the leaves in sorted order, from left to right.

• At the root, there are at least two used pointers.2 All pointers point to
B-tree blocks at the level below.

• At a leaf, the last pointer points to the next leaf block to the right, i.e.,
to the block with the next higher keys. Among the other n pointers in
a leaf block, at least \{n + 1)/2J of these pointers are used and point to
data records; unused pointers are null and do not point anywhere. The
*th pointer, if it is used, points to a record with the ith key.

technically, there is a possibility that the entire B-tree has only one pointer because it is
an index into a data file with only one record. In this case, the entire tree is a root block that
is also a leaf, and this block has only one key and one pointer. We shall ignore this trivial
case in the descriptions that follow.

14.2. B-TREES 635

• At an interior node, all n + 1 pointers can be used to point to B-tree
blocks at the next lower level. At least [(n + 1)/2] of them are actually
used (but if the node is the root, then we require only that at least 2 be
used, regardless of how large n is). If j pointers are used, then there will
be j — 1 keys, say K \ ,K 2 , ■. ■ The first pointer points to a part
of the B-tree where some of the records with keys less than K i will be
found. The second pointer goes to that part of the tree where all records
with keys that are at least K\, but less than will be found, and so
on. Finally, the j th pointer gets us to the part of the B-tree where some
of the records with keys greater than or equal to K j- i are found. Note
that some records with keys far below K\ or far above K j-i may not be
reachable from this block at all, but will be reached via another block at
the same level.

• All used pointers and their keys appear at the beginning of the block,
with the exception of the (n + l)s t pointer in a leaf, which points to the
next leaf.

To record To record To record
with key with key with key

57 81 95

Figure 14.11: A typical leaf of a B-tree

E xam ple 14.11: Our running example of B-trees will use n = 3. That is,
blocks have room for three keys and four pointers, which are atypically small
numbers. Keys are integers. Figure 14.11 shows a leaf that is completely used.
There are three keys, 57, 81, and 95. The first three pointers go to records with
these keys. The last pointer, as is always the case with leaves, points to the
next leaf to the right in the order of keys; it would be null if this leaf were the
last in sequence.

A leaf is not necessarily full, but in our example with n = 3, there must
be at least two key-pointer pairs. That is, the key 95 in Fig. 14.11 might be
missing, and if so, the third pointer would be null.

Figure 14.12 shows a typical interior node. There are three keys, 14, 52,
and 78. There are also four pointers in this node. The first points to a part of
the B-tree from which we can reach only records with keys less than 14 — the
first of the keys. The second pointer leads to all records with keys between the
first and second keys of the B-tree block; the third pointer is for those records

636 CHAPTER 14. INDEX STRUCTURES

14 52 78
/ \

To keys To keys To keys To keys
AT <14 14 < K< 52 52 < AT< 78 K > 78

Figure 14.12: A typical interior node of a B-tree

between the second and third keys of the block, and the fourth pointer lets us
reach some of the records with keys equal to or above the third key of the block.

As with our example leaf, it is not necessarily the case that all slots for keys
and pointers are occupied. However, with n = 3, at least the first key and the
first two pointers must be present in an interior node. □

E xam ple 14.12: Figure 14.13 shows an entire three-level B-tree, with n = 3,
as in Example 14.11. We have assumed that the data file consists of records
whose keys are all the primes from 2 to 47. Notice that at the leaves, each of
these keys appears once, in order. All leaf blocks have two or three key-pointer
pairs, plus a pointer to the next leaf in sequence. The keys are in sorted order
as we look across the leaves from left to right.

The root has only two pointers, the minimum possible number, although it
could have up to four. The one key at the root separates those keys reachable
via the first pointer from those reachable via the second. That is, keys up to
12 could be found in the first subtree of the root, and keys 13 and up are in the
second subtree.

14.2. B-TREES 637

If we look at the first child of the root, with key 7, we again find two pointers,
one to keys less than 7 and the other to keys 7 and above. Note that the second
pointer in this node gets us only to keys 7 and 11, not to all keys > 7, such as
13.

Finally, the second child of the root has all four pointer slots in use. The
first gets us to some of the keys less than 23, namely 13, 17, and 19. The second
pointer gets us to all keys K such that 23 < K <31; the third pointer lets us
reach all keys K such that 31 < K < 43, and the fourth pointer gets us to some
of the keys > 43 (in this case, to all of them). □

14.2.2 Applications of B-trees

The B-tree is a powerful tool for building indexes. The sequence of pointers at
the leaves of a B-tree can play the role of any of the pointer sequences coming
out of an index file that we learned about in Section 14.1. Here are some
examples:

1. The search key of the B-tree is the primary key for the data file, and the
index is dense. That is, there is one key-pointer pair in a leaf for every
record of the data file. The data file may or may not be sorted by primary
key.

2. The data file is sorted by its primary key, and the B-tree is a sparse index
with one key-pointer pair at a leaf for each block of the data file.

3. The data file is sorted by an attribute that is not a key, and this attribute
is the search key for the B-tree. For each key value K that appears in the
data file there is one key-pointer pair at a leaf. That pointer goes to the
first of the records that have K as their sort-key value.

There are additional applications of B-tree variants that allow multiple oc
currences of the search key3 at the leaves. Figure 14.14 suggests what such a
B-tree might look like.

If we do allow duplicate occurrences of a search key, then we need to change
slightly the definition of what the keys at interior nodes mean, which we dis
cussed in Section 14.2.1. Now, suppose there are keys K \ ,K i , . . . , K n at an
interior node. Then Ki will be the smallest new key that appears in the part of
the subtree accessible from the (i + l)st pointer. By “new,” we mean that there
are no occurrences of Ki in the portion of the tree to the left of the (i + l)st
subtree, but at least one occurrence of Ki in that subtree. Note that in some
situations, there will be no such key, in which case Ki can be taken to be null.
Its associated pointer is still necessary, as it points to a significant portion of
the tree that happens to have only one key value within it.

3 Remember that a “search key” is not necessarily a “key” in the sense of being unique.

638 CHAPTER 14. INDEX STRUCTURES

17 _
/rk

- 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Figure 14.14: A B-tree with duplicate keys

E xam ple 14.13: Figure 14.14 shows a B-tree similar to Fig. 14.13, but with
duplicate values. In particular, key 11 has been replaced by 13, and keys 19,
29, and 31 have all been replaced by 23. As a result, the key at the root is 17,
not 13. The reason is that, although 13 is the lowest key in the second subtree
of the root, it is not a new key for that subtree, since it also appears in the first
subtree.

We also had to make some changes to the second child of the root. The
second key is changed to 37, since that is the first new key of the third child
(fifth leaf from the left). Most interestingly, the first key is now null. The reason
is that the second child (fourth leaf) has no new keys at all. Put another way,
if we were searching for any key and reached the second child of the root, we
would never want to start at its second child. If we are searching for 23 or
anything lower, we want to start at its first child, where we will either find
what we are looking for (if it is 17), or find the first of what we are looking for
(if it is 23). Note that:

• We would not reach the second child of the root searching for 13; we would
be directed at the root to its first child instead.

• If we are looking for any key between 24 and 36, we are directed to the
third leaf, but when we don’t find even one occurrence of what we are
looking for, we know not to search further right. For example, if there
were a key 24 among the leaves, it would either be on the 4th leaf, in which
case the null key in the second child of the root would be 24 instead, or
it would be in the 5th leaf, in which case the key 37 at the second child
of the root would be 24.

□

14.2. B-TREES 639

14.2.3 Lookup in B-Trees
We now revert to our original assumption that there are no duplicate keys at
the leaves. We also suppose that the B-tree is a dense index, so every search-key
value that appears in the data file will also appear at a leaf. These assumptions
make the discussion of B-tree operations simpler, but is not essential for these
operations. In particular, modifications for sparse indexes are similar to the
changes we introduced in Section 14.1.3 for indexes on sequential files.

Suppose we have a B-tree index and we want to find a record with search-
key value K . We search for K recursively, starting at the root and ending at a
leaf. The search procedure is:

BASIS: If we are at a leaf, look among the keys there. If the ith key is K , then
the ith pointer will take us to the desired record.

INDUCTION: If we are at an interior node with keys K i ,K 2 , . . . , K n, follow
the rules given in Section 14.2.1 to decide which of the children of this node
should next be examined. That is, there is only one child that could lead to a
leaf with key K . If K < K \ , then it is the first child, if K \ < K < K 2 , it is the
second child, and so on. Recursively apply the search procedure at this child.

E xam ple 14.14: Suppose we have the B-tree of Fig. 14.13, and we want to
find a record with search key 40. We start at the root, where there is one
key, 13. Since 13 < 40, we follow the second pointer, which leads us to the
second-level node with keys 23, 31, and 43.

At that node, we find 31 < 40 < 43, so we follow the third pointer. We are
thus led to the leaf with keys 31, 37, and 41. If there had been a record in the
data file with key 40, we would have found key 40 at this leaf. Since we do not
find 40, we conclude that there is no record with key 40 in the underlying data.

Note that had we been looking for a record with key 37, we would have
taken exactly the same decisions, but when we got to the leaf we would find
key 37. Since it is the second key in the leaf, we follow the second pointer,
which will lead us to the data record with key 37. □

14.2.4 Range Queries
B-trees are useful not only for queries in which a single value of the search key
is sought, but for queries in which a range of values are asked for. Typically,
range queries have a term in the WHERE-clause that compares the search key
with a value or values, using one of the comparison operators other than = or
<>. Examples of range queries using a search-key attribute k are:

SELECT * FROM R SELECT * FROM R
WHERE R.k > 40; WHERE R.k >= 10 AND R.k <= 25;

If we want to find all keys in the range [a, 6] at the leaves of a B-tree, we do
a lookup to find the key a. Whether or not it exists, we are led to a leaf where

640 CHAPTER 14. INDEX STRUCTURES

a could be, and we search the leaf for keys that are a or greater. Each such
key we find has an associated pointer to one of the records whose key is in the
desired range. As long as we do not find a key greater than b in the current
block, we follow the pointer to the next leaf and repeat our search for keys in
the range [a, 6],

The above search algorithm also works if b is infinite; i.e., there is only a
lower bound and no upper bound. In that case, we search all the leaves from
the one that would hold key a to the end of the chain of leaves. If a is — oo
(that is, there is an upper bound on the range but no lower bound), then the
search for “minus infinity” as a search key will always take us to the first leaf.
The search then proceeds as above, stopping only when we pass the key b.

E xam ple 14.15: Suppose we have the B-tree of Fig. 14.13, and we Eure given
the range (10,25) to search for. We look for key 10, which leads us to the second
leaf. The first key is less than 10, but the second, 11, is at least 10. We follow
its associated pointer to get the record with key 11.

Since there are no more keys in the second leaf, we follow the chain to the
third leaf, where we find keys 13, 17, and 19. All are less than or equal to 25,
so we follow their associated pointers and retrieve the records with these keys.
Finally, we move to the fourth leaf, where we find key 23. But the next key
of that leaf, 29, exceeds 25, so we are done with our search. Thus, we have
retrieved the five records with keys 11 through 23. □

14.2.5 Insertion Into B-Trees
We see some of the advantages of B-trees over simpler multilevel indexes when
we consider how to insert a new key into a B-tree. The corresponding record
will be inserted into the file being indexed by the B-tree, using any of the
methods discussed in Section 14.1; here we consider how the B-tree changes.
The insertion is, in principle, recursive:

• We try to find a place for the new key in the appropriate leaf, and we put
it there if there is room.

• If there is no room in the proper leaf, we split the leaf into two and divide
the keys between the two new nodes, so each is half full or just over half
full.

• The splitting of nodes at one level appears to the level above as if a new
key-pointer pair needs to be inserted at that higher level. We may thus
recursively apply this strategy to insert at the next level: if there is room,
insert it; if not, split the parent node and continue up the tree.

• As an exception, if we try to insert into the root, and there is no room,
then we split the root into two nodes and create a new root at the next
higher level; the new root has the two nodes resulting from the split as
its children. Recall that no matter how large n (the number of slots for

14.2. B-TREES 641

keys at a node) is, it is always permissible for the root to have only one
key and two children.

When we split a node and insert it into its parent, we need to be careful how
the keys are managed. First, suppose N is a, leaf whose capacity is n keys. Also
suppose we are trying to insert an (n + l)s t key and its associated pointer. We
create a new node M , which will be the sibling of N , immediately to its right.
The first |"(n + 1)/2] key-pointer pairs, in sorted order of the keys, remain with
N , while the other key-pointer pairs move to M . Note that both nodes N and
M are left with a sufficient number of key-pointer pairs — at least [(n + 1)/2J
pairs.

Now, suppose N is an interior node whose capacity is n keys and n + 1
pointers, and N has just been assigned n + 2 pointers because of a node splitting
below. We do the following:

1. Create a new node M , which will be the sibling of N , immediately to its
right.

2. Leave at N the first |~(n + 2)/2] pointers, in sorted order, and move to
M the remaining [(n + 2)/2J pointers.

3. The first fri/2"| keys stay with N , while the last \n/2\ keys move to
M . Note that there is always one key in the middle left over; it goes with
neither N nor M . The leftover key K indicates the smallest key reachable
via the first of M ’s children. Although this key doesn’t appear in N or
M , it is associated with M , in the sense that it represents the smallest
key reachable via M . Therefore K will be inserted into the parent of N
and M to divide searches between those two nodes.

E xam ple 14.16: Let us insert key 40 into the B-tree of Fig. 14.13. We find
the proper leaf for the insertion by the lookup procedure of Section 14.2.3. As
found in Example 14.14, the insertion goes into the fifth leaf. Since this leaf
now has four key-pointer pairs — 31, 37, 40, and 41 — we need to split the
leaf. Our first step is to create a new node and move the highest two keys, 40
and 41, along with their pointers, to that node. Figure 14.15 shows this split.

Notice that although we now show the nodes on four ranks to save space,
there are still only three levels to the tree. The seven leaves are linked by their
last pointers, which still form a chain from left to right.

We must now insert a pointer to the new leaf (the one with keys 40 and
41) into the node above it (the node with keys 23, 31, and 43). We must also
associate with this pointer the key 40, which is the least key reachable through
the new leaf. Unfortunately, the parent of the split node is already full; it has
no room for another key or pointer. Thus, it too must be split.

We start with pointers to the last five leaves and the list of keys represent
ing the least keys of the last four of these leaves. That is, we have pointers
Pi, P2 , P3 , Pi, P5 to the leaves whose least keys are 13, 23, 31, 40, and 43, and

642 CHAPTER 14. INDEX STRUCTURES

Figure 14.15: Beginning the insertion of key 40

we have the key sequence 23, 31, 40, 43 to separate these pointers. The first
three pointers and first two keys remain with the split interior node, while the
last two pointers and last key go to the new node. The remaining key, 40,
represents the least key accessible via the new node.

Figure 14.16 shows the completion of the insert of key 40. The root now
has three children; the last two are the split interior node. Notice that the key
40, which marks the lowest of the keys reachable via the second of the split
nodes, has been installed in the root to separate the keys of the root’s second
and third children. □

14.2.6 Deletion From B-Trees
If we are to delete a record with a given key K , we must first locate that record
and its key-pointer pair in a leaf of the B-tree. This part of the deletion process
is essentially a lookup, as in Section 14.2.3. We then delete the record itself
from the data file, and we delete the key-pointer pair from the B-tree.

If the B-tree node from which a deletion occurred still has at least the
minimum number of keys and pointers, then there is nothing more to be done.4
However, it is possible that the node was right at the minimum occupancy
before the deletion, so after deletion the constraint on the number of keys is

4If th e d a ta record w ith th e least key a t a leaf is deleted , th en we have th e op tion of raising
th e ap p ro p ria te key a t one of th e ancesto rs of th a t leaf, b u t th e re is no requ irem ent th a t we
do so; all searches will still go to th e ap p ro p ria te leaf.

14.2. B-TREES 643

violated. We then need to do one of two things for a node N whose contents
are subminimum; one case requires a recursive deletion up the tree:

1. If one of the adjacent siblings of node N has more than the minimum
number of keys and pointers, then one key-pointer pair can be moved to
N , keeping the order of keys intact. Possibly, the keys at the parent of N
must be adjusted to reflect the new situation. For instance, if the right
sibling of N , say node M , provides an extra key and pointer, then it must
be the smallest key that is moved from M to N . At the parent of M and
TV, there is a key that represents the smallest key accessible via M ; that
key must be increased to reflect the new M.

2. The hard case is when neither adjacent sibling can be used to provide
an extra key for N . However, in that case, we have two adjacent nodes,
N and a sibling M ; the latter has the minimum number of keys and the
former has fewer than the minimum. Therefore, together they have no
more keys and pointers than are allowed in a single node. We merge these
two nodes, effectively deleting one of them. We need to adjust the keys at
the parent, and then delete a key and pointer at the parent. If the parent
is still full enough, then we are done. If not, then we recursively apply
the deletion algorithm at the parent.

E xam ple 14.17: Let us begin with the original B-tree of Fig. 14.13, before the
insertion of key 40. Suppose we delete key 7. This key is found in the second
leaf. We delete it, its associated pointer, and the record that pointer points to.

644 CHAPTER 14. INDEX STRUCTURES

The second leaf now has only one key, and we need at least two in every
leaf. But we are saved by the sibling to the left, the first leaf, because that
leaf has an extra key-pointer pair. We may therefore move the highest key, 5,
and its associated pointer to the second leaf. The resulting B-tree is shown in
Fig. 14.17. Notice that because the lowest key in the second leaf is now 5, the
key in the parent of the first two leaves has been changed from 7 to 5.

5 11 13 17 19 23 29 31 37 41

1

43 47

Figure 14.17: Deletion of key 7

Next, suppose we delete key 11. This deletion has the same effect on the
second leaf; it again reduces the number of its keys below the minimum. This
time, however, we cannot take a key from the first leaf, because the latter is
down to the minimum number of keys. Additionally, there is no sibling to the
right from which to take a key.5 Thus, we need to merge the second leaf with
a sibling, namely the first leaf.

The three remaining key-pointer pairs from the first two leaves fit in one
leaf, so we move 5 to the first leaf and delete the second leaf. The pointers
and keys in the parent are adjusted to reflect the new situation at its children;
specifically, the two pointers are replaced by one (to the remaining leaf) and
the key 5 is no longer relevant and is deleted. The situation is now as shown in
Fig. 14.18.

The deletion of a leaf has adversely affected the parent, which is the left
child of the root. That node, as we see in Fig. 14.18, now has no keys and only
one pointer. Thus, we try to obtain an extra key and pointer from an adjacent
sibling. This time we have the easy case, since the other child of the root can
afford to give up its smallest key and a pointer.

The change is shown in Fig. 14.19. The pointer to the leaf with keys 13, 17,

BN otice th a t th e leaf to th e rig h t, w ith keys 13, 17, an d 19, is n o t a sibling, because it has
a different p aren t. W e could take a key from th a t node anyway, b u t th e n th e a lgo rithm for
ad ju s tin g keys th ro u g h o u t th e tree becom es m ore com plex. W e leave th is enhancem ent as an
exercise.

14.2. B-TREES 645

13

V—

23 31 43
\ N

13 17 19 23 29 31 37 41 43 47

Figure 14.18: Beginning the deletion of key 11

and 19 has been moved from the second child of the root to the first child. We
have also changed some keys at the interior nodes. The key 13, which used to
reside at the root and represented the smallest key accessible via the pointer
that was transferred, is now needed at the first child of the root. On the other
hand, the key 23, which used to separate the first and second children of the
second child of the root now represents the smallest key accessible from the
second child of the root. It therefore is placed at the root itself. □

14.2.7 Efficiency of B-Trees
B-trees allow lookup, insertion, and deletion of records using very few disk I /O ’s
per file operation. First, we should observe that if n, the number of keys per
block, is reasonably large, then splitting and merging of blocks will be rare
events. Further, when such an operation is needed, it almost always is limited
to the leaves, so only two leaves and their parent are affected. Thus, we can
essentially neglect the disk-I/O cost of B-tree reorganizations.

However, every search for the record(s) with a given search key requires us
to go from the root down to a leaf, to find a pointer to the record. Since we
are only reading B-tree blocks, the number of disk I /O ’s will be the number
of levels the B-tree has, plus the one (for lookup) or two (for insert or delete)
disk I /O ’s needed for manipulation of the record itself. We must thus ask:
how many levels does a B-tree have? For the typical sizes of keys, pointers,
and blocks, three levels are sufficient for all but the largest databases. Thus,
we shall generally take 3 as the number of levels of a B-tree. The following
example illustrates why.

E xam ple 14.18: Recall our analysis in Example 14.10, where we determined
that 340 key-pointer pairs could fit in one block for our example data. Suppose

646 CHAPTER 14. INDEX STRUCTURES

23
/nL

13 31 43
N

13 17 19 23 29

11
31 37 41 43 47

Figure 14.19: Completing the deletion of key 11

that the average block has an occupancy midway between the minimum and
maximum, i.e., a typical block has 255 pointers. With a root, 255 children,
and 2552 = 65025 leaves, we shall have among those leaves 2553, or about 16.6
million pointers to records. That is, files with up to 16.6 million records can be
accommodated by a 3-level B-tree. □

However, we can use even fewer than three disk I /O ’s per search through the
B-tree. The root block of a B-tree is an excellent choice to keep permanently
buffered in main memory. If so, then every search through a 3-level B-tree
requires only two disk reads. In fact, under some circumstances it may make
sense to keep second-level nodes of the B-tree buffered in main memory as well,
reducing the B-tree search to a single disk I/O , plus whatever is necessary to
manipulate the blocks of the data file itself.

14.2.8 Exercises for Section 14.2
Exercise 14.2.1: Suppose that blocks can hold either ten records or 99 keys
and 100 pointers. Also assume that the average B-tree node is 70% full; i.e., it
will have 69 keys and 70 pointers. We can use B-trees as part of several different
structures. For each structure described below, determine (i) the total number
of blocks needed for a 1,000,000-record file, and («) the average number of disk
I /O ’s to retrieve a record given its search key. You may assume nothing is in
memory initially, and the search key is the primary key for the records.

a) The data file is a sequential file, sorted on the search key, with 10 records
per block. The B-tree is a dense index.

b) The same as (a), but the data file consists of records in no particular
order, packed 10 to a block.

14.2. B-TREES 647

Should We Delete From B-Trees?

There are B-tree implementations that don’t fix up deletions at all. If a
leaf has too few keys and pointers, it is allowed to remain as it is. The
rationale is that most files grow on balance, and while there might be an
occasional deletion that makes a leaf become subminimum, the leaf will
probably soon grow again and attain the minimum number of key-pointer
pairs once again.

Further, if records have pointers from outside the B-tree index, then
we need to replace the record by a “tombstone,” and we don’t want to
delete its pointer from the B-tree anyway. In certain circumstances, when
it can be guaranteed that all accesses to the deleted record will go through
the B-tree, we can even leave the tombstone in place of the pointer to the
record at a leaf of the B-tree. Then, space for the record can be reused.

c) The same as (a), but the B-tree is a sparse index.

! d) Instead of the B-tree leaves having pointers to data records, the B-tree
leaves hold the records themselves. A block can hold ten records, but
on average, a leaf block is 70% full; i.e., there are seven records per leaf
block.

e) The data file is a sequential file, and the B-tree is a sparse index, but each
primary block of the data file has one overflow block. On average, the
primary block is full, and the overflow block is half full. However, records
are in no particular order within a primary block and its overflow block.

E xercise 14.2.2: Repeat Exercise 14.2.1 in the case that the query is a range
query that is matched by 1000 records.

E xercise 14.2.3: Suppose pointers are 4 bytes long, and keys are 12 bytes
long. How many keys and pointers will a block of 16,384 bytes have?

Exercise 14.2.4: What are the minimum numbers of keys and pointers in
B-tree (i) interior nodes and (ii) leaves, when:

a) n = 10; i.e., a block holds 10 keys and 11 pointers.

b) n = 11; i.e., a block holds 11 keys and 12 pointers.

E xercise 14.2.5: Execute the following operations on Fig. 14.13. Describe
the changes for operations that modify the tree.

a) Lookup the record with key 41.

b) Lookup the record with key 40.

648 CHAPTER 14. INDEX STRUCTURES

c) Lookup all records in the range 20 to 30.

d) Lookup all records with keys less than 30.

e) Lookup all records with keys greater than 30.

f) Insert a record with key 1.

g) Insert records with keys 14 through 16.

h) Delete the record with key 23.

i) Delete all the records with keys 23 and higher.

Exercise 14.2.6: When duplicate keys are allowed in a B-tree, there are some
necessary modifications to the algorithms for lookup, insertion, and deletion
that we described in this section. Give the changes for: (a) lookup (b) insertion
(c) deletion.

! E xercise 14.2.7: In Example 14.17 we suggested that it would be possible
to borrow keys from a nonsibling to the right (or left) if we used a more com
plicated algorithm for maintaining keys at interior nodes. Describe a suitable
algorithm that rebalances by borrowing from adjacent nodes at a level, regard
less of whether they are siblings of the node that has too many or too few
key-pointer pairs.

! Exercise 14.2.8: If we use the 3-key, 4-pointer nodes of our examples in this
section, how many different B-trees are there when the data file has the following
numbers of records: (a) 6 (b) 10 !! (c) 15.

! Exercise 14.2.9: Suppose we have B-tree nodes with room for three keys and
four pointers, as in the examples of this section. Suppose also that when we
split a leaf, we divide the pointers 2 and 2, while when we split an interior node,
the first 3 pointers go with the first (left) node, and the last 2 pointers go with
the second (right) node. We start with a leaf containing pointers to records
with keys 1, 2, and 3. We then add in order, records with keys 4, 5, 6, and so
on. At the insertion of what key will the B-tree first reach four levels?

14.3 Hash Tables
There are a number of data structures involving a hash table that are useful as
indexes. We assume the reader has seen the hash table used as a main-memory
data structure. In such a structure there is a hash function h that takes a search
key (the hash key) as an argument and computes from it an integer in the range
0 to B — 1, where B is the number of buckets. A bucket array, which is an array
indexed from 0 to B — 1, holds the headers of B linked lists, one for each bucket
of the array. If a record has search key K , then we store the record by linking
it to the bucket list for the bucket numbered h(K).

14.3. HASH TABLES 649

14.3.1 Secondary-Storage Hash Tables
A hash table that holds a very large number of records, so many that they must
be kept mainly in secondary storage, differs from the main-memory version in
small but important ways. First, the bucket array consists of blocks, rather
than pointers to the headers of lists. Records that are hashed by the hash
function h to a certain bucket are put in the block for that bucket. If a bucket
has too many records, a chain of overflow blocks can be added to the bucket to
hold more records.

We shall assume that the location of the first block for any bucket i can be
found given i. For example, there might be a main-memory array of pointers
to blocks, indexed by the bucket number. Another possibility is to put the first
block for each bucket in fixed, consecutive disk locations, so we can compute
the location of bucket i from the integer i.

0 d J

1 e J
c

b J2
a J

3 f

Figure 14.20: A hash table

E xam ple 14.19: Figure 14.20 shows a hash table. To keep our illustrations
manageable, we assume that a block can hold only two records, and that B = 4;
i.e., the hash function h returns values from 0 to 3. We show certain records
populating the hash table. Keys are letters a through / in Fig. 14.20. We
assume that h(d) = 0, h(c) - h(e) = 1, h(b) = 2, and h(a) = h (f) — 3. Thus,
the six records are distributed into blocks as shown. □

Note that we show each block in Fig. 14.20 with a “nub” at the right end.
This nub represents additional information in the block’s header. We shall use
it to chain overflow blocks together, and starting in Section 14.3.5, we shall use
it to keep other critical information about the block.

14.3.2 Insertion Into a Hash Table
When a new record with search key K must be inserted, we compute h(K). If
the bucket numbered h(K) has space, then we insert the record into the block
for this bucket, or into one of the overflow blocks on its chain if there is no room

650 CHAPTER 14. INDEX STRUCTURES

Choice of Hash Function

The hash function should “hash” the key so the resulting integer is a
seemingly random function of the key. Thus, buckets will tend to have
equal numbers of records, which improves the average time to access a
record, as we shall discuss in Section 14.3.4. Also, the hash function
should be easy to compute, since we shall compute it many times.

A common choice of hash function when keys are integers is to com
pute the remainder of K /B , where K is the key value and B is the number
of buckets. Often, B is chosen to be a prime, although there are reasons
to make B a power of 2, as we discuss starting in Section 14.3.5. For
character-string search keys, we may treat each character as an integer,
sum these integers, and take the remainder when the sum is divided by B.

in the first block. If none of the blocks of the chain for bucket h(K) has room,
we add a new overflow block to the chain and store the new record there.

E xam ple 14.20: Suppose we add to the hash table of Fig. 14.20 a record with
key g, and h(g) = 1. Then we must add the new record to the bucket numbered
1. However, the block for that bucket already has two records. Thus, we add a
new block and chain it to the original block for bucket 1. The record with key
g goes in that block, as shown in Fig. 14.21. □

0
d J

1
e 4-
c

2
b J

3
a J
f

Figure 14.21: Adding an additional block to a hash-table bucket

14.3.3 Hash-Table Deletion
Deletion of the record (or records) with search key K follows the same pattern
as insertion. We go to the bucket numbered h(K) and search for records with
that search key. Any that we find are deleted. If we are able to move records

14.3. HASH TABLES 651

around among blocks, then after deletion we may optionally consolidate the
blocks of a bucket into one fewer block.6

E xam ple 14.21: Figure 14.22 shows the result of deleting the record with key
c from the hash table of Fig. 14.21. Recall h(c) = 1, so we go to the bucket
numbered 1 (i.e., the second bucket) and search all its blocks to find a record
(or records if the search key were not the primary key) with key c. We find it
in the first block of the chain for bucket 1. Since there is now room to move
the record with key g from the second block of the chain to the first, we can do
so and remove the second block.

0
d J

1
e J
g
b J

2

3
f J

Figure 14.22: Result of deletions from a hash table

We also show the deletion of the record with key a. For this key, we found
our way to bucket 3, deleted it, and “consolidated” the remaining record at the
beginning of the block. □

14.3.4 Efficiency of Hash Table Indexes
Ideally, there are enough buckets that most of them fit on one block. If so,
then the typical lookup takes only one disk I/O , and insertion or deletion from
the file takes only two disk I /O ’s. That number is significantly better than
straightforward sparse or dense indexes, or B-tree indexes (although hash tables
do not support range queries as B-trees do; see Section 14.2.4).

However, if the file grows, then we shall eventually reach a situation where
there are many blocks in the chain for a typical bucket. If so, then we need to
search long lists of blocks, taking at least one disk I/O per block. Thus, there
is a good reason to try to keep the number of blocks per bucket low.

The hash tables we have examined so far are called static hash tables, because
B, the number of buckets, never changes. However, there are several kinds of
dynamic hash tables, where B is allowed to vary so it approximates the number

®A risk of consolidating blocks of a chain whenever possible is that an oscillation, where
we alternately insert and delete records from a bucket, will cause a block to be created or
destroyed at each step.

652 CHAPTER 14. INDEX STRUCTURES

of records divided by the number of records that can fit on a block; i.e., there
is about one block per bucket. We shall discuss two such methods:

1. Extensible hashing in Section 14.3.5, and

2. Linear hashing in Section 14.3.7.

The first grows B by doubling it whenever it is deemed too small, and the
second grows B by 1 each time statistics of the file suggest some growth is
needed.

14.3.5 Extensible Hash Tables
Our first approach to dynamic hashing is called extensible hash tables. The
major additions to the simpler static hash table structure are:

1. There is a level of indirection for the buckets. That is, an array of pointers
to blocks represents the buckets, instead of the array holding the data
blocks themselves.

2. The array of pointers can grow. Its length is always a power of 2, so in a
growing step the number of buckets doubles.

3. However, there does not have to be a data block for each bucket; certain
buckets can share a block if the total number of records in those buckets
can fit in the block.

4. The hash function h computes for each key a sequence of k bits for some
large k, say 32. However, the bucket numbers will at all times use some
smaller number of bits, say i bits, from the beginning or end of this
sequence. The bucket array will have 2* entries when * is the number of
bits used.

E xam ple 14.22: Figure 14.23 shows a small extensible hash table. We sup
pose, for simplicity of the example, that k = 4; i.e., the hash function produces
a sequence of only four bits. At the moment, only one of these bits is used,
as indicated by * = 1 in the box above the bucket array. The bucket array
therefore has only two entries, one for 0 and one for 1.

The bucket array entries point to two blocks. The first holds all the current
records whose search keys hash to a bit sequence that begins with 0, and the
second holds all those whose search keys hash to a sequence beginning with
1. For convenience, we show the keys of records as if they were the entire bit
sequence to which the hash function converts them. Thus, the first block holds
a record whose key hashes to 0001, and the second holds records whose keys
hash to 1001 and 1100. □

14.3. HASH TABLES 653

Buckets Data blocks

Figure 14.23: An extensible hash table

We should notice the number 1 appearing in the “nub” of each of the blocks
in Fig. 14.23. This number, which would actually appear in the block header,
indicates how many bits of the hash function’s sequence is used to determine
membership of records in this block. In the situation of Example 14.22, there
is only one bit considered for all blocks and records, but as we shall see, the
number of bits considered for various blocks can differ as the hash table grows.
That is, the bucket array size is determined by the maximum number of bits
we are now using, but some blocks may use fewer.

14.3.6 Insertion Into Extensible Hash Tables
Insertion into an extensible hash table begins like insertion into a static hash
table. To insert a record with search key K , we compute h(K), take the first
i bits of this bit sequence, and go to the entry of the bucket array indexed by
these i bits. Note that we can determine i because it is kept as part of the data
structure.

We follow the pointer in this entry of the bucket array and arrive at a
block B. If there is room to put the new record in block B, we do so and we
are done. If there is no room, then there are two possibilities, depending on
the number j , which indicates how many bits of the hash value are used to
determine membership in block B (recall the value of j is found in the “nub”
of each block in figures).

1. If j < i, then nothing needs to be done to the bucket array. We:

(a) Split block B into two.
(b) Distribute records in B to the two blocks, based on the value of their

(j + l)st bit — records whose key has 0 in that bit stay in B and
those with 1 there go to the new block.

(c) Put j + 1 in each block’s “nub” (header) to indicate the number of
bits used to determine membership.

(d) Adjust the pointers in the bucket array so entries that formerly
pointed to B now point either to B or the new block, depending
on their (j + l)st bit.

654 CHAPTER 14. INDEX STRUCTURES

Note that splitting block B may not solve the problem, since by chance
all the records of B may go into one of the two blocks into which it was
split. If so, we need to repeat the process on the overfull block, using the
next higher value of j and the block that is still overfull.

2. If j — i, then we must first increment i by 1. We double the length of
the bucket array, so it now has 2t+1 entries. Suppose w is a sequence
of i bits indexing one of the entries in the previous bucket array. In the
new bucket array, the entries indexed by both wO and w 1 (i.e., the two
numbers derived from w by extending it with 0 or 1) each point to the
same block that the w entry used to point to. That is, the two new entries
share the block, and the block itself does not change. Membership in the
block is still determined by whatever number of bits was previously used.
Finally, we proceed to split block B as in case 1. Since i is now greater
than j , that case applies.

E xam ple 14.23: Suppose we insert into the table of Fig. 14.23 a record whose
key hashes to the sequence 1010. Since the first bit is 1, this record belongs in
the second block. However, that block is already full, so it needs to be split.
We find that j = i = 1 in this case, so we first need to double the bucket array,
as shown in Fig. 14.24. We have also set i — 2 in this figure.

Figure 14.24: Now, two bits of the hash function are used

Notice that the two entries beginning with 0 each point to the block for
records whose hashed keys begin with 0, and that block still has the integer 1
in its “nub” to indicate that only the first bit determines membership in the
block. However, the block for records beginning with 1 needs to be split, so we
partition its records into those beginning 10 and those beginning 11. A 2 in
each of these blocks indicates that two bits are used to determine membership.
Fortunately, the split is successful; since each of the two new blocks gets at least
one record, we do not have to split recursively.

Now suppose we insert records whose keys hash to 0000 and 0111. These
both go in the first block of Fig. 14.24, which then overflows. Since only one bit
is used to determine membership in this block, while i = 2, we do not have to

14.3. HASH TABLES 655

adjust the bucket array. We simply split the block, with 0000 and 0001 staying,
and 0111 going to the new block. The entry for 01 in the bucket array is made
to point to the new block. Again, we have been fortunate that the records did
not all go in one of the new blocks, so we have no need to split recursively.

Figure 14.25: The hash table now uses three bits of the hash function

Now suppose a record whose key hashes to 1000 is inserted. The block for
10 overflows. Since it already uses two bits to determine membership, it is
time to split the bucket array again and set * = 3. Figure 14.25 shows the
data structure at this point. Notice that the block for 10 has been split into
blocks for 100 and 101, while the other blocks continue to use only two bits to
determine membership. □

14.3.7 Linear Hash Tables

Extensible hash tables have some important advantages. Most significant is the
fact that when looking for a record, we never need to search more than one data
block. We also have to examine an entry of the bucket array, but if the bucket
array is small enough to be kept in main memory, then there is no disk I/O
needed to access the bucket array. However, extensible hash tables also suffer
from some defects:

1. When the bucket array needs to be doubled in size, there is a substantial
amount of work to be done (when i is large). This work interrupts access
to the data file, or makes certain insertions appear to take a long time.

656 CHAPTER 14. INDEX STRUCTURES

2. When the bucket array is doubled in size, it may no longer fit in main
memory, or may crowd out other data that we would like to hold in main
memory. As a result, a system that was performing well might suddenly
start using many more disk I/O ’s per operation.

3. If the number of records per block is small, then there is likely to be
one block that needs to be split well in advance of the logical time to
do so. For instance, if there are two records per block as in our running
example, there might be one sequence of 20 bits that begins the keys of
three records, even though the total number of records is much less than
220. In that case, we would have to use i — 20 and a million-bucket array,
even though the number of blocks holding records was much smaller than
a million.

Another strategy, called linear hashing, grows the number of buckets more
slowly. The principal new elements we find in linear hashing are:

• The number of buckets n is always chosen so the average number of records
per bucket is a fixed fraction, say 80%, of the number of records that fill
one block.

• Since blocks cannot always be split, overflow blocks are permitted, al
though the average number of overflow blocks per bucket will be much
less than 1.

• The number of bits used to number the entries of the bucket array is
["log2 n] , where n is the current number of buckets. These bits are always
taken from the right (low-order) end of the bit sequence that is produced
by the hash function.

• Suppose i bits of the hash function are being used to number array en
tries, and a record with key K is intended for bucket aia2 • • ■ a*; that is,
a\a,2 ■ ■ • at are the last i bits of h(K). Then let a\a2 ■•■ai be m, treated
as an i-bit binary integer. If m < n, then the bucket numbered m exists,
and we place the record in that bucket. If n < m < 2®, then the bucket
m does not yet exist, so we place the record in bucket m — 2*-1 , that is,
the bucket we would get if we changed «i (which must be 1) to 0.

E xam ple 14.24: Figure 14.26 shows a linear hash table with n = 2. We
currently are using only one bit of the hash value to determine the buckets
of records. Following the pattern established in Example 14.22, we assume the
hash function h produces 4 bits, and we represent records by the value produced
by h when applied to the search key of the record.

We see in Fig. 14.26 the two buckets, each consisting of one block. The
buckets are numbered 0 and 1. All records whose hash value ends in 0 go in
the first bucket, and those whose hash value ends in 1 go in the second.

Also part of the structure are the parameters i (the number of bits of the
hash function that currently are used), n (the current number of buckets), and r

14.3. HASH TABLES 657

Figure 14.26: A linear hash table

(the current number of records in the hash table). The ratio r /n will be limited
so that the typical bucket will need about one disk block. We shall adopt the
policy of choosing n, the number of buckets, so that there are no more than
1.7n records in the file; i.e., r < 1.7n. That is, since blocks hold two records,
the average occupancy of a bucket does not exceed 85% of the capacity of a
block. □

14.3.8 Insertion Into Linear Hash Tables
When we insert a new record, we determine its bucket by the algorithm outlined
in Section 14.3.7. We compute h(K), where K is the key of the record, and
we use the i bits at the end of bit sequence h(K) as the bucket number, m. If
m < n, we put the record in bucket m, and if m > n, we put the record in
bucket m — 2*-1 . If there is no room in the designated bucket, then we create
an overflow block, add it to the chain for that bucket, and put the record there.

Each time we insert, we compare the current number of records r with the
threshold ratio of r /n , and if the ratio is too high, we add the next bucket to
the table. Note that the bucket we add bears no relationship to the bucket
into which the insertion occurs! If the binary representation of the number of
the bucket we add is ld2 • • • aj, then we split the bucket numbered O02 ■ ■ ■ di,
putting records into one or the other bucket, depending on their last i bits.
Note that all these records will have hash values that end in 02 • ■ - a», and only
the ith bit from the right end will vary.

The last important detail is what happens when n exceeds 2*. Then, i is
incremented by 1. Technically, all the bucket numbers get an additional 0 in
front of their bit sequences, but there is no need to make any physical change,
since these bit sequences, interpreted as integers, remain the same.

E xam ple 14.25: We shall continue with Example 14.24 and consider what
happens when a record whose key hashes to 0101 is inserted. Since this bit
sequence ends in 1, the record goes into the second bucket of Fig. 14.26. There
is room for the record, so no overflow block is created.

However, since there are now 4 records in 2 buckets, we exceed the ratio
1.7, and we must therefore raise n to 3. Since |"log2 3] = 2, we should begin to
think of buckets 0 and 1 as 00 and 01, but no change to the data structure is
necessary. We add to the table the next bucket, which would have number 10.
Then, we split the bucket 00, that bucket whose number differs from the added

658 CHAPTER 14. INDEX STRUCTURES

bucket only in the first bit. When we do the split, the record whose key hashes
to 0000 stays in 00, since it ends with 00, while the record whose key hashes to
1010 goes to 10 because it ends that way. The resulting hash table is shown in
Fig. 14.27.

n=3

Figure 14.27: Adding a third bucket

Next, let us suppose we add a record whose search key hashes to 0001.
The last two bits are 01, so we put it in this bucket, which currently exists.
Unfortunately, the bucket’s block is full, so we add an overflow block. The three
records are distributed among the two blocks of the bucket; we chose to keep
them in numerical order of their hashed keys, but order is not important. Since
the ratio of records to buckets for the table as a whole is 5/3, and this ratio is
less than 1.7, we do not create a new bucket. The result is seen in Fig. 14.28.

Figure 14.28: Overflow blocks are used if necessary

Finally, consider the insertion of a record whose search key hashes to 0111.
The last two bits are 11, but bucket 11 does not yet exist. We therefore redirect
this record to bucket 01, whose number differs by having a 0 in the first bit.
The new record fits in the overflow block of this bucket.

However, the ratio of the number of records to buckets has exceeded 1.7, so
we must create a new bucket, numbered 11. Coincidentally, this bucket is the
one we wanted for the new record. We split the four records in bucket 01, with
0001 and 0101 remaining, and 0111 and 1111 going to the new bucket. Since
bucket 01 now has only two records, we can delete the overflow block. The hash
table is now as shown in Fig. 14.29.

Notice that the next time we insert a record into Fig. 14.29, we shall exceed

14.3. HASH TABLES 659

n=4

0000 J

0001 J
0101
1010 J

0111 J
1111

Figure 14.29: Adding a fourth bucket

the 1.7 ratio of records to buckets. Then, we shall raise n to 5 and i becomes
3. □

Lookup in a linear hash table follows the procedure we described for selecting
the bucket in which an inserted record belongs. If the record we wish to look
up is not in that bucket, it cannot be anywhere.

14.3.9 Exercises for Section 14.3
Exercise 14.3.1: Show what happens to the buckets in Fig. 14.20 if the fol
lowing insertions and deletions occur:

i. Records g through j are inserted into buckets 0 through 3, respectively.

ii. Records a and b are deleted.

Hi. Records k through n are inserted into buckets 0 through 3, respectively.

iv. Records c and d are deleted.

Exercise 14.3.2: We did not discuss how deletions can be carried out in a
linear or extensible hash table. The mechanics of locating the record(s) to
be deleted should be obvious. What method would you suggest for executing
the deletion? In particular, what are the advantages and disadvantages of
restructuring the table if its smaller size after deletion allows for compression
of certain blocks?

! E xercise 14.3.3: The material of this section assumes that search keys are
unique. However, only small modifications are needed to allow the techniques
to work for search keys with duplicates. Describe the necessary changes to
insertion, deletion, and lookup algorithms, and suggest the major problems
that arise when there are duplicates in each of the following kinds of hash
tables: (a) simple (b) linear (c) extensible.

660 CHAPTER 14. INDEX STRUCTURES

! Exercise 14.3.4: Some hash functions do not work as well as theoretically
possible. Suppose that we use the hash function on integer keys i defined by
h(i) = i2 mod B, where B is the number of buckets.

a) What is wrong with this hash function if B — 10?

b) How good is this hash function if B = 16?

c) Are there values of B for which this hash function is useful?

Exercise 14.3.5: In an extensible hash table with n records per block, what
is the probability that an overflowing block will have to be handled recursively;
i.e., all members of the block will go into the same one of the two blocks created
in the split?

E xercise 14.3.6: Suppose keys are hashed to four-bit sequences, as in our
examples of extensible and linear hashing in this section. However, also suppose
that blocks can hold three records, rather than the two-record blocks of our
examples. If we start with a hash table with two empty blocks (corresponding
to 0 and 1), show the organization after we insert records with hashed keys:

a) 0000,0001,... ,1111, and the method of hashing is extensible hashing.

b) 0000,0001,... ,1111, and the method of hashing is linear hashing with a
capacity threshold of 100%.

c) 1111,1110,..., 0000, and the method of hashing is extensible hashing.

d) 1111,1110,... , 0000, and the method of hashing is linear hashing with a
capacity threshold of 75%.

Exercise 14.3.7: Suppose we use a linear or extensible hashing scheme, but
there are pointers to records from outside. These pointers prevent us from mov
ing records between blocks, as is sometimes required by these hashing methods.
Suggest several ways that we could modify the structure to allow pointers from
outside.

!! E xercise 14.3.8: A linear-hashing scheme with blocks that hold k records
uses a threshold constant c, such that the current number of buckets n and
the current number of records r are related by r = ckn. For instance, in
Example 14.24 we used k = 2 and c = 0.85, so there were 1.7 records per
bucket; i.e., r — 1.7n.

a) Suppose for convenience that each key occurs exactly its expected number
of times.7 As a function of c, k, and n, how many blocks, including
overflow blocks, are needed for the structure?

7This assumption does not mean all buckets have the same number of records, because
some buckets represent twice as many keys as others.

14.4. MULTIDIMENSIONAL INDEXES 661

b) Keys will not generally distribute equally, but rather the number of rec
ords with a given key (or suffix of a key) will be Poisson distributed. That
is, if A is the expected number of records with a given key suffix, then
the actual number of such records will be i with probability e~xX /i\.
Under this assumption, calculate the expected number of blocks used, as
a function of c, k, and n.

Exercise 14.3.9: Suppose we have a file of 1,000,000 records that we want to
hash into a table with 1000 buckets. 100 records will fit in a block, and we wish
to keep blocks as full as possible, but not allow two buckets to share a block.
What are the minimum and maximum number of blocks that we could need to
store this hash table?

14.4 M ultidimensional Indexes
All the index structures discussed so far are one dimensional; that is, they
assume a single search key, and they retrieve records that match a given search-
key value. Although the search key may involve several attributes, the one
dimensional nature of indexes such as B-trees comes from the fact that values
must be provided for all attributes of the search key, or the index is useless. So
far in this chapter, we took advantage of a one-dimensional search-key space in
several ways:

• Indexes on sequential files and B-trees both take advantage of having a
single linear order for the keys.

• Hash tables require that the search key be completely known for any
lookup. If a key consists of several fields, and even one is unknown, we
cannot apply the hash function, but must instead search all the buckets.

In the balance of this chapter, we shall look at index structures that are suitable
for multidimensional data. In these structures, any nonempty subset of the
fields that form the dimensions can be given values, and some speedup will
result.

14.4.1 Applications of Multidimensional Indexes
There are a number of applications that require us to view data as existing in a
2-dimensional space, or sometimes in higher dimensions. Some of these appli
cations can be supported by conventional DBMS’s, but there are also some spe
cialized systems designed for multidimensional applications. One way in which
these specialized systems distinguish themselves is by using data structures that
support certain kinds of queries that are not common in SQL applications.

One important application of multidimensional indexes involves geographic
data. A geographic information system stores objects in a (typically) two-
dimensional space. The objects may be points or shapes. Often, these databases

662 CHAPTER 14. INDEX STRUCTURES

are maps, where the stored objects could represent houses, roads, bridges,
pipelines, and many other physical objects. A suggestion of such a map is
in Fig. 14.30.

school

roadl
house2

house1
r
o pipeline
a
d
2

0 100

Figure 14.30: Some objects in 2-dimensional space

However, there are many other uses as well. For instance, an integrated-
circuit design is a two-dimensional map of regions, often rectangles, composed
of specific materials, called “layers.” Likewise, we can think of the windows
and icons on a screen as a collection of objects in two-dimensional space.

The queries asked of geographic information systems are not typical of SQL
queries, although many can be expressed in SQL with some effort. Examples
of these types of queries are:

1. Partial match queries. We specify values for one or more dimensions and
look for all points matching those values in those dimensions.

2. Range queries. We give ranges for one or more of the dimensions, and we
ask for the set of points within those ranges. If shapes are represented,
then we may ask for the shapes that are partially or wholly within the
range. These queries generalize the one-dimensional range queries that
we considered in Section 14.2.4.

3. Nearest-neighbor queries. We ask for the closest point to a given point.
For instance, if points represent cities, we might want to find the city of
over 100,000 population closest to a given small city.

4. Where-am-I queries. We are given a point and we want to know in which
shape, if any, the point is located. A familiar example is what happens

14.4. MULTIDIMENSIONAL INDEXES 663

when you click your mouse, and the system determines which of the dis
played elements you were clicking.

14.4.2 Executing Range Queries Using Conventional
Indexes

Now, let us consider to what extent one-dimensional indexes help in answering
range queries. Suppose for simplicity that there are two dimensions, x and y.
We could put a secondary index on each of the dimensions, x and y. Using a
B-tree for each would make it especially easy to get a range of values for each
dimension.

Given ranges in both dimensions, we could begin by using the B-tree for x
to get pointers to all of the records in the range for x. Next, we use the B-tree
for y to get pointers to the records for all points whose ^/-coordinate is in the
range for y. Then, we intersect these pointers, using the idea of Section 14.1.7.
If the pointers fit in main memory, then the total number of disk I /O ’s is the
number of leaf nodes of each B-tree that need to be examined, plus a few I/O ’s
for finding our way down the B-trees (see Section 14.2.7). To this amount we
must add the disk I /O ’s needed to retrieve all the matching records, however
many they may be.

E xam ple 14.26: Let us consider a hypothetical set of 1,000,000 points dis
tributed randomly in a space in which both the x- and y-coordinates range from
0 to 1000. Suppose that 100 point records fit on a block, and an average B-tree
leaf has about 200 key-pointer pairs (recall that not all slots of a B-tree block
are necessarily occupied, at any given time). We shall assume there are B-tree
indexes on both x and y.

Imagine we are given the range query asking for points in the square of
side 100 surrounding the center of the space, that is, 450 < x < 550 and
450 < y < 550. Using the B-tree for x, we can find pointers to all the records
with x in the range; there should be about 100,000 pointers, and this number of
pointers should fit in main memory. Similarly, we use the B-tree for y to get the
pointers to all the records with y in the desired range; again there are about
100,000 of them. Approximately 10,000 pointers will be in the intersection
of these two sets, and it is the records reached by the 10,000 pointers in the
intersection that form our answer.

Now, let us estimate the number of disk I /O ’s needed to answer the range
query. First, as we pointed out in Section 14.2.7, it is generally feasible to keep
the root of any B-tree in main memory. Section 14.2.4 showed how to access
the 100,000 pointers in either dimension by examining one intermediate-level
node and all the leaves that contain the desired pointers. Since we assumed
leaves have about 200 key-pointer pairs each, we shall have to look at about
500 leaf blocks in each of the B-trees. When we add in one intermediate node
per B-tree, we have a total of 1002 disk I /O ’s.

Finally, we have to retrieve the blocks containing the 10,000 desired records.

664 CHAPTER 14. INDEX STRUCTURES

If they are stored randomly, we must expect that they will be on almost 10,000
different blocks. Since the entire file of a million records is assumed stored over
10,000 blocks, packed 100 to a block, we essentially have to look at every block
of the data file anyway. Thus, in this example at least, conventional indexes
have been little if any help in answering the range query. Of course, if the range
were smaller, then constructing the intersection of the two pointer sets would
allow us to limit the search to a fraction of the blocks in the data file. □

14.4.3 Executing Nearest-Neighbor Queries Using
Conventional Indexes

Almost any data structure we use will allow us to answer a nearest-neighbor
query by picking a range in each dimension, asking the range query, and select
ing the point closest to the target within that range. Unfortunately, there are
two things that could go wrong:

1. There is no point within the selected range.

2. The closest point within the range might not be the closest point overall,
as suggested by Fig. 14.31.

Possible
closer point

Figure 14.31: The point is in the range, but there could be a closer point outside
the range

The general technique we shall use for answering nearest-neighbor queries is
to begin by estimating a range in which the nearest point is likely to be found,
and executing the corresponding range query. If no points are found within that
range, we repeat with a larger range, until eventually we find at least one point.
We then consider whether there is the possibility that a closer point exists, but
that point is outside the range just used, as in Fig. 14.31. If so, we increase the
range once more and retrieve all points in the larger range, to check.

14.4.4 Overview of M ultidimensional Index Structures
Most data structures for supporting queries on multidimensional data fall into
one of two categories:

14.5. HASH STRUCTURES FOR MULTIDIMENSIONAL DATA 665

1. Hash-table-like approaches.

2. Tree-like approaches.

For each of these structures, we give up something that we have in one-dimen
sional index structures. With the hash-based schemes — grid files and parti
tioned hash functions in Section 14.5 — we no longer have the advantage that
the answer to our query is in exactly one bucket. However, each of these schemes
limit our search to a subset of the buckets. With the tree-based schemes, we
give up at least one of these important properties of B-trees:

1. The balance of the tree, where all leaves are at the same level.

2. The correspondence between tree nodes and disk blocks.

3. The speed with which modifications to the data may be performed.

As we shall see in Section 14.6, trees often will be deeper in some parts than in
others; often the deep parts correspond to regions that have many points. We
shall also see that it is common that the information corresponding to a tree
node is considerably smaller than what fits in one block. It is thus necessary to
group nodes into blocks in some useful way.

14.5 Hash Structures for M ultidimensional Data
In this section we shall consider two data structures that generalize hash tables
built using a single key. In each case, the bucket for a point is a function, of
all the attributes or dimensions. One scheme, called the “grid file,” usually
doesn’t “hash” values along the dimensions, but rather partitions the dimen
sions by sorting the values along that dimension. The other, called “partitioned
hashing,” does “hash” the various dimensions, with each dimension contribut
ing to the bucket number.

14.5.1 Grid Files
One of the simplest data structures that often outperforms single-dimension
indexes for queries involving multidimensional data is the grid file. Think of
the space of points partitioned in a grid. In each dimension, grid lines partition
the space into stripes. Points that fall on a grid line will be considered to belong
to the stripe for which that grid line is the lower boundary. The number of grid
lines in different dimensions may vary, and there may be different spacings
between adjacent grid lines, even between lines in the same dimension.

E xam ple 14.27: Let us introduce a running example for multidimensional
indexes: “who buys gold jewelry?” Imagine a database of customers who have
bought gold jewelry. To make things simple, we assume that the only relevant
attributes are the customer’s age and salary. Our example database has twelve
customers, which we can represent by the following age-salary pairs:

666 CHAPTER 14. INDEX STRUCTURES

(25,60) (45,60) (50,75) (50,100)
(50,120) (70,110) (85,140) (30,260)
(25,400) (45,350) (50,275) (60,260)

In Fig. 14.32 we see these twelve points located in a 2-dimensional space. We
have also selected some grid lines in each dimension. For this simple example, we
have chosen two lines in each dimension, dividing the space into nine rectangular
regions, but there is no reason why the same number of lines must be used in
each dimension. In general, a rectangle includes points on its lower and left
boundaries, but not on its upper and right boundaries. For instance, the central
rectangle in Fig. 14.32 represents points with 40 < age < 55 and 90 < salary <
225. □

500K

Salary

225K

90K

0
0 40 55 100

Age

Figure 14.32: A grid file

14.5.2 Lookup in a Grid File
Each of the regions into which a space is partitioned can be thought of as a
bucket of a hash table, and each of the points in that region has its record
placed in a block belonging to that bucket. If needed, overflow blocks can be
used to increase the size of a bucket.

Instead of a one-dimensional array of buckets, as is found in conventional
hash tables, the grid file uses an array whose number of dimensions is the same
as for the data file. To locate the proper bucket for a point, we need to know,
for each dimension, the list of values at which the grid lines occur. Hashing a
point is thus somewhat different from applying a hash function to the values of
its components. Rather, we look at each component of the point and determine
the position of the point in the grid for that dimension. The positions of the
point in each of the dimensions together determine the bucket.

14.5. HASH STRUCTURES FOR MULTIDIMENSIONAL DATA 667

E xam ple 14.28: Figure 14.33 shows the data of Fig. 14.32 placed in buckets.
Since the grids in both dimensions divide the space into three regions, the
bucket array is a 3 x 3 matrix. Two of the buckets:

1. Salary between $90K and $225K and age between 0 and 40, and

2. Salary below $90K and age above 55

are empty, and we do not show a block for that bucket. The other buckets are
shown, with the artificially low maximum of two data points per block. In this
simple example, no bucket has more than two members, so no overflow blocks
are needed. □

Figure 14.33: A grid file representing the points of Fig. 14.32

14.5.3 Insertion Into Grid Files
When we insert a record into a grid file, we follow the procedure for lookup
of the record, and we place the new record in that bucket. If there is room in
the block for the bucket then there is nothing more to do. The problem occurs
when there is no room in the bucket. There are two general approaches:

1. Add overflow blocks to the buckets, as needed.

668 CHAPTER 14. INDEX STRUCTURES

Accessing Buckets of a Grid File

While finding the proper coordinates for a point in a three-by-three grid
like Fig. 14.33 is easy, we should remember that the grid file may have a
very large number of stripes in each dimension. If so, then we must create
an index for each dimension. The search key for an index is the set of
partition values in that dimension.

Given a value v in some coordinate, we search for the greatest key
value w less than or equal to v. Associated with w in that index will be
the row or column of the matrix into which v falls. Given values in each
dimension, we can find where in the matrix the pointer to the bucket falls.
We may then retrieve the block with that pointer directly.

In extreme cases, the matrix is so big, that most of the buckets are
empty and we cannot afford to store all the empty buckets. Then, we
must treat the matrix as a relation whose attributes are the corners of
the nonempty buckets and a final attribute representing the pointer to the
bucket. Lookup in this relation is itself a multidimensional search, but its
size is smaller than the size of the data file itself.

2. Reorganize the structure by adding or moving the grid lines. This ap
proach is similar to the dynamic hashing techniques discussed in Sec
tion 14.3, but there are additional problems because the contents of buck
ets are linked across a dimension. That is, adding a grid line splits all the
buckets along that line. As a result, it may not be possible to select a new
grid line that does the best for all buckets. For instance, if one bucket is
too big, we might not be able to choose either a dimension along which
to split or a point at which to split, without making many empty buckets
or leaving several very full ones.

E xam ple 14.29: Suppose someone 52 years old with an income of 8200K
buys gold jewelry. This customer belongs in the central rectangle of Fig. 14.32.
However, there are now three records in that bucket. We could simply add an
overflow block. If we want to split the bucket, then we need to choose either
the age or salary dimension, and we need to choose a new grid line to create
the division. There are only three ways to introduce a grid line that will split
the central bucket so two points are on one side and one on the other, which is
the most even possible split in this case.

1. A vertical line, such as age = 51, that separates the two 50’s from the
52. This line does nothing to split the buckets above or below, since both
points of each of the other buckets for age 40-55 are to the left of the line
age - 51.

14.5. HASH STRUCTURES FOR MULTIDIMENSIONAL DATA 669

2. A horizontal line that separates the point with salary = 200 from the
other two points in the central bucket. We may as well choose a number
like 130, which also splits the bucket to the right (that for age 55-100 and
salary 90-225).

3. A horizontal line that separates the point with salary = 100 from the
other two points. Again, we would be advised to pick a number like 115
that also splits the bucket to the right.

Choice (1) is probably not advised, since it doesn’t split any other bucket;
we are left with more empty buckets and have not reduced the size of any
occupied buckets, except for the one we had to split. Choices (2) and (3) are
equally good, although we might pick (2) because it puts the horizontal grid
line at salary = 130, which is closer to midway between the upper and lower
limits of 90 and 225 than we get with choice (3). The resulting partition into
buckets is shown in Fig. 14.34. □

500K

Salary

225K

130K
90K

0
0 40 55 100

Age

Figure 14.34: Insertion of the point (52,200) followed by splitting of buckets

14.5.4 Performance of Grid Files
Let us consider how many disk I/O ’s a grid file requires on various types of
queries. We have been focusing on the two-dimensional version of grid files,
although they can be used for any number of dimensions. One major problem
in the high-dimensional case is that the number of buckets grows exponentially
with the number of dimensions. If large portions of a space are empty, then
there will be many empty buckets. We can envision the problem even in two
dimensions. Suppose that there were a high correlation between age and salary,

670 CHAPTER 14. INDEX STRUCTURES

so all points in Fig. 14.32 lay along the diagonal. Then no m atter where we
placed the grid lines, the buckets off the diagonal would have to be empty.

However, if the data is well distributed, and the data file itself is not too
large, then we can choose grid lines so that:

1. There are sufficiently few buckets that we can keep the bucket matrix in
main memory, thus not incurring disk I/O to consult it, or to add rows
or columns to the matrix when we introduce a new grid line.

2. We can also keep in memory indexes on the values of the grid lines in
each dimension (as per the box “Accessing Buckets of a Grid File”), or
we can avoid the indexes altogether and use main-memory binary search
of the values defining the grid lines in each dimension.

3. The typical bucket does not have more than a few overflow blocks, so we
do not incur too many disk I /O ’s when we search through a bucket.

Under those assumptions, here is how the grid file behaves on some important
classes of queries.

L ookup o f Specific P o in ts

We are directed to the proper bucket, so the only disk I/O is what is necessary
to read the bucket. If we are inserting or deleting, then an additional disk
write is needed. Inserts that require the creation of an overflow block cause an
additional write.

P artia l-M atch Q ueries

Examples of this query would include “find all customers aged 50,” or “find all
customers with a salary of $200K.” Now, we need to look at all the buckets in
a row or column of the bucket matrix. The number of disk I /O ’s can be quite
high if there are many buckets in a row or column, but only a small fraction of
all the buckets will be accessed.

R ange Q ueries

A range query defines a rectangular region of the grid, and all points found
in the buckets that cover that region will be answers to the query, with the
exception of some of the points in buckets on the border of the search region.
For example, if we want to find all customers aged 35-45 with a salary of 50-100,
then we need to look in the four buckets in the lower left of Fig. 14.32. In this
case, all buckets are on the border, so we may look at a good number of points
that are not answers to the query. However, if the search region involves a large
number of buckets, then most of them must be interior, and all their points are
answers. For range queries, the number of disk 1/O’s may be large, as we may
be required to examine many buckets. However, since range queries tend to

14.5. HASH STRUCTURES FOR MULTIDIMENSIONAL DATA 671

produce large answer sets, we typically will examine not too many more blocks
than the minimum number of blocks on which the answer could be placed by
any organization whatsoever.

N earest-N eighbor Q ueries

Given a point P, we start by searching the bucket in which that point belongs.
If we find at least one point there, we have a candidate Q for the nearest
neighbor. However, it is possible that there are points in adjacent buckets that
are closer to P than Q is; the situation is like that suggested in Fig. 14.31. We
have to consider whether the distance between P and a border of its bucket is
less than the distance from P to Q. If there are such borders, then the adjacent
buckets on the other side of each such border must be searched also. In fact,
if buckets are severely rectangular — much longer in one dimension than the
other — then it may be necessary to search even buckets that are not adjacent
to the one containing point P.

E xam ple 14.30: Suppose we are looking in Fig. 14.32 for the point nearest
P = (45,200). We find that (50,120) is the closest point in the bucket, at
a distance of 80.2. No point in the lower three buckets can be this close to
(45,200), because their salary component is at most 90, so we can omit searching
them. However, the other five buckets must be searched, and we find that there
are actually two equally close points: (30,260) and (60,260), at a distance of
61.8 from P. Generally, the search for a nearest neighbor can be limited to a
few buckets, and thus a few disk I /O ’s. However, since the buckets nearest the
point P may be empty, we cannot easily put an upper bound on how costly the
search is. □

14.5.5 Partitioned Hash Functions
Hash functions can take a list of values as arguments, although typically there
is only one argument. For instance, if a is an integer-valued attribute and 6 is a
character-string-valued attribute, then we could compute h(a, b) by adding the
value of a to the value of the ASCII code for each character of b, dividing by
the number of buckets, and taking the remainder.

However, such a hash table could be used only in queries that specified
values for both a and b. A preferable option is to design the hash function
so it produces some number of bits, say k. These k bits are divided among n
attributes, so that we produce ki bits of the hash value from the ith attribute,
and Y^i=i ki = k- More precisely, the hash function h is actually a list of hash
functions (h i ,h i , . . . , hn), such that hi applies to a value for the ith attribute
and produces a sequence of ki bits. The bucket in which to place a tuple with
values (v i,v 2 ,- .- ,vn) for the n attributes is computed by concatenating the bit
sequences: hi(v i)h 2 (v2) ■ ■ ■ h„(vn).

E xam ple 14.31: If we have a hash table with 10-bit bucket numbers (1024
buckets), we could devote four bits to attribute a and the remaining six bits to

672 CHAPTER 14. INDEX STRUCTURES

attribute 6. Suppose we have a tuple with o-value A and 6-value B, perhaps
with other attributes that are not involved in the hash. If ha{A) = 0101 and
hb(B) — 111000, then this tuple hashes to bucket 0101111000, the concatenation
of the two bit sequences.

By partitioning the hash function this way, we get some advantage from
knowing values for any one or more of the attributes that contribute to the
hash function. For instance, if we are given a value A for attribute o, and we
find that ha(A) = 0101, then we know that the only tuples with o-value A
are in the 64 buckets whose numbers are of the form 0101 • • • , where the • • •
represents any six bits. Similarly, if we are given the 6-value B of a tuple, we
can isolate the possible buckets of the tuple to the 16 buckets whose number
ends in the six bits ht{B). □

E xam ple 14.32 : Suppose we have the “gold jewelry” data of Example 14.27,
which we want to store in a partitioned hash table with eight buckets (i.e., three
bits for bucket numbers). We assume as before that two records are all that can
fit in one block. We shall devote one bit to the age attribute and the remaining
two bits to the salary attribute.

Figure 14.35: A partitioned hash table

For the hash function on age, we shall take the age modulo 2; that is, a
record with an even age will hash into a bucket whose number is of the form
0xy for some bits x and y. A record with an odd age hashes to one of the buckets
with a number of the form lxy . The hash function for salary will be the salary
(in thousands) modulo 4. For example, a salary that leaves a remainder of 1
when divided by 4, such as 57K, will be in a bucket whose number is zOl for
some bit z.

14.5. HASH STRUCTURES FOR MULTIDIMENSIONAL DATA 673

In Fig. 14.35 we see the data from Example 14.27 placed in this hash table.
Notice that, because we have used mostly ages and salaries divisible by 10, the
hash function does not distribute the points too well. Two of the eight buckets
have four records each and need overflow blocks, while three other buckets are
empty. □

14.5.6 Comparison of Grid Files and Partitioned Hashing
The performance of the two data structures discussed in this section are quite
different. Here are the major points of comparison.

• Partitioned hash tables are actually quite useless for nearest-neighbor
queries or range queries. The problem is that physical distance between
points is not reflected by the closeness of bucket numbers. Of course we
could design the hash function on some attribute a so the smallest values
were assigned the first bit string (all 0’s), the next values were assigned the
next bit string (00 ■ • • 01), and so on. If we do so, then we have reinvented
the grid file.

• A well chosen hash function will randomize the buckets into which points
fall, and thus buckets will tend to be equally occupied. However, grid
files, especially when the number of dimensions is large, will tend to leave
many buckets empty or nearly so. The intuitive reason is that when there
are many attributes, there is likely to be some correlation among at least
some of them, so large regions of the space are left empty. For instance,
we mentioned in Section 14.5.4 that a correlation between age and salary
would cause most points of Fig. 14.32 to lie near the diagonal, with most of
the rectangle empty. As a consequence, we can use fewer buckets, and/or
have fewer overflow blocks in a partitioned hash table than in a grid file.

Thus, if we are required to support only partial match queries, where we
specify some attributes’ values and leave the other attributes completely un
specified, then the partitioned hash function is likely to outperform the grid
file. Conversely, if we need to do nearest-neighbor queries or range queries
frequently, then we would prefer to use a grid file.

14.5.7 Exercises for Section 14.5
Exercise 14.5.1: In Fig. 14.36 are specifications for twelve of the thirteen
PC’s introduced in Fig. 2.21. Suppose we wish to design an index on speed and
hard-disk size only.

a) Choose five grid lines (total for the two dimensions), so that there are no
more than two points in any bucket.

! b) Can you separate the points with at most two per bucket if you use only
four grid lines? Either show how or argue that it is not possible.

674 CHAPTER 14. INDEX STRUCTURES

model speed ram hd
1001 2.66 1024 250
1002 2.10 512 250
1003 1.42 512 80
1004 2.80 1024 250
1005 3.20 512 250
1006 3.20 1024 320
1007 2.20 1024 200
1008 2.20 2048 250
1009 2.00 1024 250
1010 2.80 2048 300
1011 1.86 2048 160
1012 2.80 1024 160

Figure 14.36: Some PC’s and their characteristics

! c) Suggest a partitioned hash function that will partition these points into
four buckets with at most four points per bucket.

! E xercise 14.5.2: Suppose we wish to place the data of Fig. 14.36 in a three-
dimensional grid file, based on the speed, ram, and hard-disk attributes. Sug
gest a partition in each dimension that will divide the data well.

Exercise 14.5.3: Choose a partitioned hash function with one bit for each of
the three attributes speed, ram, and hard-disk that divides the data of Fig. 14.36
well.

Exercise 14.5.4: Suppose we place the data of Fig. 14.36 in a grid file with
dimensions for speed and ram only. The partitions are at speeds of 2.00, 2.20,
and 2.80, and at ram of 1024 and 2048. Suppose also that only two points can
fit in one bucket. Suggest good splits if we insert a point with speed 2.5 and
ram 1536.

E xercise 14.5.5: Suppose we store a relation R (x ,y) in a grid file. Both
attributes have a range of values from 0 to 1000. The partitions of this grid file
happen to be uniformly spaced; for x there are partitions every 20 units, at 20,
40, 60, and so on, while for y the partitions are every 50 units, at 50, 100, 150,
and so on.

a) How many buckets do we have to examine to answer the range query

SELECT * FROM R
WHERE 310 < x AND x < 400 AND 520 < y AND y < 730;

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA 675

! b) We wish to perform a nearest-neighbor query for the point (110,205).
We begin by searching the bucket with lower-left corner at (100,200) and
upper-right corner at (120,250), and we find that the closest point in this
bucket is (115,220). What other buckets must be searched to verify that
this point is the closest?

E xercise 14.5.6: Suppose we have a hash table whose buckets are numbered
0 to 2n — 1; i.e., bucket addresses are n bits long. We wish to store in the table
a relation with two attributes x and y. A query will specify either a value for
x or y, but never both. With probability p, it is x whose value is specified.

a) Suppose we partition the hash function so that m bits are devoted to x
and the remaining n — m bits to y. As a function of m, n, and p, what
is the expected number of buckets that must be examined to answer a
random query?

b) For what value of m (as a function of n and p) is the expected number of
buckets minimized? Do not worry that this m is unlikely to be an integer.

14.6 Tree Structures for M ultidimensional Data
We shall now consider four more structures that are useful for range queries or
nearest-neighbor queries on multidimensional data. In order, we shall consider:

1. Multiple-key indexes.

2. kd-trees.

3. Quad trees.

4. R-trees.

The first three are intended for sets of points. The R-tree is commonly used to
represent sets of regions; it is also useful for points.

14.6.1 M ultiple-Key Indexes
Suppose we have several attributes representing dimensions of our data points,
and we want to support range queries or nearest-neighbor queries on these
points. A simple tree scheme for accessing these points is an index of indexes,
or more generally a tree in which the nodes at each level are indexes for one
attribute.

The idea is suggested in Fig. 14.37 for the case of two attributes. The
“root of the tree” is an index for the first of the two attributes. This index
could be any type of conventional index, such as a B-tree or a hash table. The
index associates with each of its search-key values — i.e., values for the first
attribute — a pointer to another index. If V is a value of the first attribute,

676 CHAPTER 14. INDEX STRUCTURES

Index on
first attribute

Indexes on
second attribute

Figure 14.37: Using nested indexes on different keys

then the index we reach by following key V and its pointer is an index into the
set of points that have V for their value in the first attribute and any value for
the second attribute.

E xam ple 14.33: Figure 14.38 shows a multiple-key index for our running
“gold jewelry” example, where the first attribute is age, and the second attribute
is salary. The root index, on age, is suggested at the left of Fig. 14.38. At the
right of Fig. 14.38 are seven indexes that provide access to the points themselves.
For example, if we follow the pointer associated with age 50 in the root index,
we get to a smaller index where salary is the key, and the four key values in the
index are the four salaries associated with points that have age 50: salaries 75,
100, 120, and 275. □

In a multiple-key index, some of the second- or higher-level indexes may be
very small. For example, Fig 14.38 has four second-level indexes with but a
single pair. Thus, it may be appropriate to implement these indexes as simple
tables that are packed several to a block.

14.6.2 Performance of M ultiple-Key Indexes
Let us consider how a multiple key index performs on various kinds of multidi
mensional queries. We shall concentrate on the case of two attributes, although
the generalization to more than two attributes is unsurprising.

P a rtia l-M a tc h Q ueries

If the first attribute is specified, then the access is quite efficient. We use the
root index to find the one subindex that leads to the points we want. On the

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA 677

Figure 14.38: Multiple-key indexes for age/salary data

other hand, if the first attribute does not have a specified value, then we must
search every subindex, a potentially time-consuming process.

R ange Q ueries

The multiple-key index works quite well for a range query, provided the indi
vidual indexes themselves support range queries on their attribute — B-trees
or indexed-sequential files, for instance. To answer a range query, we use the
root index and the range of the first attribute to find all of the subindexes that
might contain answer points. We then search each of these subindexes, using
the range specified for the second attribute.

N earest-N eig h b o r Q ueries

These queries can be answered by a series of range queries, as described in
Section 14.4.3.

14.6.3 kd-Trees
A kd-tree (fc-dimensional search tree) is a main-memory data structure gener
alizing the binary search tree to multidimensional data. We shall present the
idea and then discuss how the idea has been adapted to the block model of
storage. A kd-trce is a binary tree in which interior nodes have an associated
attribute a and a value V that splits the data points into two parts: those with

678 CHAPTER 14. INDEX STRUCTURES

a-value less than V and those with o-value equal to or greater than V. The
attributes at different levels of the tree are different, with levels rotating among
the attributes of all dimensions.

In the classical fcrf-tree, the data points are placed at the nodes, just as in
a binary search tree. However, we shall make two modifications in our initial
presentation of the idea to take some limited advantage of the block model of
storage.

1. Interior nodes will have only an attribute, a dividing value for that at
tribute, and pointers to left and right children.

2. Leaves will be blocks, with space for as many records as a block can hold.

C^Salaiy 8 0 ^)

50,100 30,260 25,400
50,120 45,350

25,60 45,60
50,75

Figure 14.39: A kd-tree

E xam ple 14.34: In Fig. 14.39 is a kd-tree for the twelve points of our running
gold-jewelry example. We use blocks that hold only two records for simplicity;
these blocks and their contents are shown as square leaves. The interior nodes
are ovals with an attribute — either age or salary — and a value. For instance,
the root splits by salary, with all records in the left subtree having a salary less
than $150K, and all records in the right subtree having a salary at least $150K.

At the second level, the split is by age. The left child of the root splits at
age 60, so everything in its left subtree will have age less than 60 and salary
less than $150K. Its right subtree will have age at least 60 and salary less than
$150K. Figure 14.40 suggests how the various interior nodes split the space
of points into leaf blocks. For example, the horizontal line at salary = 150
represents the split at the root. The space below that line is split vertically at
age 60, while the space above is split at age 47, corresponding to the decision
at the right child of the root. □

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA 679

500K

Salary

100
Age

Figure 14.40: The partitions implied by the tree of Fig. 14.39

14.6.4 Operations on kd -Trees
A lookup of a tuple, given values for all dimensions, proceeds as in a binary
search tree. We make a decision which way to go at each interior node and are
directed to a single leaf, whose block we search.

To perform an insertion, we proceed as for a lookup. We are eventually
directed to a leaf, and if its block has room we put the new data point there.
If there is no room, we split the block into two, and we divide its contents
according to whatever attribute is appropriate at the level of the leaf being
split. We create a new interior node whose children are the two new blocks,
and we install at that interior node a splitting value that is appropriate for the
split we have just made.8

E xam ple 14.35: Suppose someone 35 years old with a salary of S500K buys
gold jewelry. Starting at the root, since the salary is at least $150K we go to
the right. There, we compare the age 35 with the age 47 at the node, which
directs us to the left. At the third level, we compare salaries again, and our
salary is greater than the splitting value, $300K. We are thus directed to a leaf
containing the points (25,400) and (45,350), along with the new point (35,500).

There isn’t room for three records in this block, so we must split it. The
fourth level splits on age, so we have to pick some age that divides the records
as evenly as possible. The median value, 35, is a good choice, so we replace the
leaf by an interior node that splits on age = 35. To the left of this interior node
is a leaf block with only the record (25,400), while to the right is a leaf block
with the other two records, as shown in Fig. 14.41. □

8O ne prob lem th a t m ight arise is a s itu a tio n w here th e re a re so m any p o in ts w ith th e sam e
value in a given d im ension th a t th e bucket has only one value in th a t d im ension an d canno t
be sp lit. W e can t r y sp littin g along an o th e r d im ension, o r we can use an overflow block.

680 CHAPTER 14. INDEX STRUCTURES

Figure 14.41: Tree after insertion of (35,500)

The more complex queries discussed in this chapter are also supported by a
kd-tree. Here are the key ideas and synopses of the algorithms:

P artia l-M atch Q ueries

If we are given values for some of the attributes, then we can go one way when
we are at a level belonging to an attribute whose value we know. When we
don’t know the value of the attribute at a node, we must explore both of its
children. For example, if we ask for all points with age = 50 in the tree of
Fig. 14.39, we must look at both children of the root, since the root splits on
salary. However, at the left child of the root, we need go only to the left, and at
the right child of the root we need only explore its right subtree. For example,
if the tree is perfectly balanced and the index has two dimensions, one of which
is specified in the search, then we would have to explore both ways at every
other level, ultimately reaching about the square root of the total number of
leaves.

R ange Q ueries

Sometimes, a range will allow us to move to only one child of a node, but if
the range straddles the splitting value at the node then we must explore both
children. For example, given the range of ages 35 to 55 and the range of salaries
from $100K to $200K, we would explore the tree of Fig. 14.39 as follows. The
salary range straddles the $150K at the root, so we must explore both children.
At the left child, the range is entirely to the left, so we move to the node with
salary $80K. Now, the range is entirely to the right, so we reach the leaf with
records (50,100) and (50,120), both of which meet the range query. Returning
to the right child of the root, the splitting value age = 47 tells us to look at both

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA 681

subtrees. At the node with salary S300K, we can go only to the left, finding
the point (30,260), which is actually outside the range. At the right child of
the node for age = 47, we find two other points, both of which are outside the
range.

14.6.5 Adapting kd-Trees to Secondary Storage
Suppose we store a file in a kd-tree with n leaves. Then the average length of a
path from the root to a leaf will be about log2 n, as for any binary tree. If we
store each node in a block, then as we traverse a path we must do one disk I/O
per node. For example, if n = 1000, then we need about 10 disk I/O ’s, much
more than the 2 or 3 disk I /O ’s that would be typical for a B-tree, even on a
much larger file. In addition, since interior nodes of a kd-tree have relatively
little information, most of the block would be wasted space. Two approaches
to the twin problems of long paths and unused space are:

1. Multiway Branches at Interior Nodes. Interior nodes of a kd-tree could
look more like B-tree nodes, with many key-pointer pairs. If we had n
keys at a node, we could split values of an attribute a into n +1 ranges. If
there were n-1-1 pointers, we could follow the appropriate one to a subtree
that contained only points with attribute a in that range.

2. Group Interior Nodes Into Blocks. We could pack many interior nodes,
each with two children, into a single block. To minimize the number of
blocks that we must read from disk while traveling down one path, we
are best off including in one block a node and all its descendants for some
number of levels. That way, once we retrieve the block with this node,
we are sure to use some additional nodes on the same block, saving disk
I /O ’s.

14.6.6 Quad Trees
In a quad tree, each interior node corresponds to a square region in two di
mensions, or to a ^-dimensional cube in k dimensions. As with the other data
structures in this chapter, we shall consider primarily the two-dimensional case.
If the number of points in a square is no larger than what will fit in a block,
then we can think of this square as a leaf of the tree, and it is represented by
the block that holds its points. If there are too many points to fit in one block,
then we treat the square as an interior node, with children corresponding to its
four quadrants.

E xam ple 14.36: Figure 14.42 shows the gold-jewelry data points organized
into regions that correspond to nodes of a quad tree. For ease of calculation, we
have restricted the usual space so salary ranges between 0 and S400K, rather
than up to $500K as in other examples of this chapter. We continue to make
the assumption that only two records can fit in a block.

682 CHAPTER 14. INDEX STRUCTURES

400K

Salary

• •

100
Age

Figure 14.42: Data organized in a quad tree

Figure 14.43 shows the tree explicitly. We use the compass designations for
the quadrants and for the children of a node (e.g., SW stands for the southwest
quadrant — the points to the left and below the center). The order of children
is always as indicated at the root. Each interior node indicates the coordinates
of the center of its region.

Since the entire space has 12 points, and only two will fit in one block,
we must split the space into quadrants, which we show by the dashed line in
Fig. 14.42. Two of the resulting quadrants — the southwest and northeast —
have only two points. They can be represented by leaves and need not be split
further.

Figure 14.43: A quad tree

The remaining two quadrants each have more than two points. Both are
split into subquadrants, as suggested by the dotted lines in Fig. 14.42. Each of
the resulting quadrants has at most two points, so no more splitting is necessary.
□

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA 683

Since interior nodes of a quad tree in k dimensions have 2k children, there
is a range of k where nodes fit conveniently into blocks. For instance, if 128, or
27, pointers can fit in a block, then fc = 7 is a convenient number of dimensions.
However, for the 2-dimensional case, the situation is not much better than for
fcd-trees; an interior node has four children. Moreover, while we can choose the
splitting point for a kd-tree node, we are constrained to pick the center of a
quad-tree region, which may or may not divide the points in that region evenly.
Especially when the number of dimensions is large, we expect to find many null
pointers (corresponding to empty quadrants) in interior nodes. Of course we
can be somewhat clever about how high-dimension nodes are represented, and
keep only the non-null pointers and a designation of which quadrant the pointer
represents, thus saving considerable space.

We shall not go into detail regarding the standard operations that we dis
cussed in Section 14.6.4 for kd-trees. The algorithms for quad trees resemble
those for kd-trees.

14.6.7 R-Trees

An R-tree (region tree) is a data structure that captures some of the spirit of
a B-tree for multidimensional data. Recall that a B-tree node has a set of keys
that divide a line into segments. Points along that line belong to only one
segment, as suggested by Fig. 14.44. The B-tree thus makes it easy for us to
find points; if we think the point is somewhere along the line represented by
a B-tree node, we can determine a unique child of that node where the point
could be found.

Figure 14.44: A B-tree node divides keys along a line into disjoint segments

An R-tree, on the other hand, represents data that consists of 2-dimensional,
or higher-dimensional regions, which we call data regions. An interior node of
an R-tree corresponds to some interior region, or just “region,” which is not
normally a data region. In principle, the region can be of any shape, although
in practice it is usually a rectangle or other simple shape. The R-tree node
has, in place of keys, subregions that represent the contents of its children. The
subregions are allowed to overlap, although it is desirable to keep the overlap
small.

Figure 14.45 suggests a node of an R-tree that is associated with the large
solid rectangle. The dotted rectangles represent the subregions associated with
four of its children. Notice that the subregions do not cover the entire region,
which is satisfactory as long as each data region that lies within the large region
is wholly contained within one of the small regions.

684 CHAPTER 14. INDEX STRUCTURES

Figure 14.45: The region of an R-tree node and subregions of its children

14.6.8 Operations on R-Trees

A typical query for which an R-tree is useful is a “where-am-I” query, which
specifies a point P and asks for the data region or regions in which the point lies.
We start at the root, with which the entire region is associated. We examine
the subregions at the root and determine which children of the root correspond
to interior regions that contain point P. Note that there may be zero, one, or
several such regions.

If there are zero regions, then we are done; P is not in any data region. If
there is a t least one interior region that contains P, then we must recursively
search for P at the child corresponding to each such region. When we reach
one or more leaves, we shall find the actual data regions, along with either the
complete record for each data region or a pointer to that record.

When we insert a new region R into an R-tree, we start at the root and try
to find a subregion into which R fits. If there is more than one such region, then
we pick one, go to its corresponding child, and repeat the process there. If there
is no subregion that contains R, then we have to expand one of the subregions.
Which one to pick may be a difficult decision. Intuitively, we want to expand
regions as little as possible, so we might ask which of the children’s subregions
would have their area increased as little as possible, change the boundary of
that region to include R, and recursively insert R at the corresponding child.

Eventually, we reach a leaf, where we insert the region R. However, if there
is no room for R a t that leaf, then we must split the leaf. How we split the
leaf is subject to some choice. We generally want the two subregions to be as
small as possible, yet they must, between them, cover all the data regions of
the original leaf. Having split the leaf, we replace the region and pointer for the
original leaf at the node above by a pair of regions and pointers corresponding
to the two new leaves. If there is room at the parent, we are done. Otherwise,
as in a B-tree, we recursively split nodes going up the tree.

E xam ple 14.37: Let us consider the addition of a new region to the map of
Fig. 14.30. Suppose that leaves have room for six regions. Further suppose that
the six regions of Fig. 14.30 are together on one leaf, whose region is represented
by the outer (solid) rectangle in Fig. 14.46.

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA 685

0 100

Figure 14.46: Splitting the set of objects

Now, suppose the local cellular phone company adds a POP (point of pres
ence, or base station) at the position shown in Fig. 14.46. Since the seven data
regions do not fit on one leaf, we shall split the leaf, with four in one leaf and
three in the other. Our options are many; we have picked in Fig. 14.46 the
division (indicated by the inner, dashed rectangles) that minimizes the overlap,
while splitting the leaves as evenly as possible.

((0,0),(60,50)) ©008£

road l road2 housel school house2 pipeline pop

Figure 14.47: An R-tree

We show in Fig. 14.47 how the two new leaves fit into the R-tree. The parent
of these nodes has pointers to both leaves, and associated with the pointers are
the lower-left and upper-right corners of the rectangular regions covered by each
leaf. □

E xam ple 14.38: Suppose we inserted another house below house2, with lower-
left coordinates (70,5) and upper-right coordinates (80,15). Since this house is

686 CHAPTER 14. INDEX STRUCTURES

100

Figure 14.48: Extending a region to accommodate new data

not wholly contained within either of the leaves’ regions, we must choose which
region to expand. If we expand the lower subregion, corresponding to the first
leaf in Fig. 14.47, then we add 1000 square units to the region, since we extend
it 20 units to the right. If we extend the other subregion by lowering its bottom
by 15 units, then we add 1200 square units. We prefer the first, and the new
regions are changed in Fig. 14.48. We also must change the description of the
region in the top node of Fig. 14.47 from ((0,0), (60,50)) to ((0,0), (80,50)).
□

14.6.9 Exercises for Section 14.6
E xercise 14.6.1: Show a multiple-key index for the data of Fig. 14.36 if the
indexes are on:

a) Speed, then ram.

b) Ram then hard-disk.

c) Speed, then ram, then hard-disk.

E xercise 14.6.2: Place the data of Fig. 14.36 in a fcd-tree. Assume two records
can fit in one block. At each level, pick a separating value that divides the data
as evenly as possible. For an order of the splitting attributes choose:

a) Speed, then ram, alternating.

b) Speed, then ram, then hard-disk, alternating.

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA 687

c) Whatever attribute produces the most even split at each node.

Exercise 14.6.3: Suppose we have a relation R (x ,y ,z) , where the pair of
attributes x and y together form the key. Attribute x ranges from 1 to 100,
and y ranges from 1 to 1000. For each x there are records with 100 different
values of y, and for each y there are records with 10 different values of x. Note
that there are thus 10,000 records in R. We wish to use a multiple-key index
that will help us to answer queries of the form

SELECT z
FROM R
WHERE x = C AND y = D;

where C and D are constants. Assume that blocks can hold ten key-pointer
pairs, and we wish to create dense indexes at each level, perhaps with sparse
higher-level indexes above them, so that each index starts from a single block.
Also assume that initially all index and data blocks are on disk.

a) How many disk I/O ’s are necessary to answer a query of the above form
if the first index is on x l

b) How many disk I/O ’s are necessary to answer a query of the above form
if the first index is on y l

! c) Suppose you were allowed to buffer 11 blocks in memory at all times.
Which blocks would you choose, and would you make x or y the first
index, if you wanted to minimize the number of additional disk I /O ’s
needed?

E xercise 14.6.4: For the structure of Exercise 14.6.3(a), how many disk I /O ’s
cure required to answer the range query in which 20 < x < 35 and 200 < y < 350.
Assume data is distributed uniformly; i.e., the expected number of points will
be found within any given range.

E xercise 14.6.5: In the tree of Fig. 14.39, what new points would be directed
to:

a) The block with point (30,260)?

b) The block with points (50,100) and (50,120)?

Exercise 14.6.6: Show a possible evolution of the tree of Fig. 14.41 if we
insert the points (20,110) and then (40,400).

Exercise 14.6.7: We mentioned that if a kd-tree were perfectly balanced, and
we execute a partial-match query in which one of two attributes has a value
specified, then we wind up looking at about n out of the n leaves.

a) Explain why.

688 CHAPTER 14. INDEX STRUCTURES

b) If the tree split alternately in d dimensions, and we specified values for m
of those dimensions, what fraction of the leaves would we expect to have
to search?

c) How does the performance of (b) compare with a partitioned hash table?

E xercise 14.6 .8 : Place the data of Fig. 14.36 in a quad tree with dimensions
speed and ram. Assume the range for speed is 1.00 to 5.00, and for ram it is
500 to 3500. No leaf of the quad tree should have more than two points.

E xercise 14.6.9: Repeat Exercise 14.6.8 with the addition of a third dimen
sion, hard-disk, that ranges from 0 to 400.

! E xercise 14.6.10: If we are allowed to put the central point in a quadrant of a
quad tree wherever we want, can we always divide a quadrant into subquadrants
with an equal number of points (or as equal as possible, if the number of points
in the quadrant is not divisible by 4)? Justify your answer.

! E xercise 14.6.11: Suppose we have a database of 1,000,000 regions, which
may overlap. Nodes (blocks) of an R-tree can hold 100 regions and pointers.
The region represented by any node has 100 subregions, and the overlap among
these regions is such that the total area of the 100 subregions is 150% of the
area of the region. If we perform a “where-am-I” query for a given point, how
many blocks do we expect to retrieve?

14.7 Bitm ap Indexes
Let us now turn to a type of index that is rather different from those seen so
far. We begin by imagining that records of a file have permanent numbers,
1 ,2 ,... , n. Moreover, there is some data structure for the file that lets us find
the ith record easily for any i. A bitmap index for a field F is a collection of
bit-vectors of length n, one for each possible value that may appear in the field
F. The vector for value v has 1 in position i if the ith record has v in field F,
and it has 0 there if not.

E xam ple 14.39: Suppose a file consists of records with two fields, F and G, of
type integer and string, respectively. The current file has six records, numbered
1 through 6, with the following values in order: (30, foo), (30, bar), (40, baz),
(50, foo), (40, bar), (30, baz).

A bitmap index for the first field, F, would have three bit-vectors, each of
length 6. The first, for value 30, is 110001, because the first, second, and sixth
records have F = 30. The other two, for 40 and 50, respectively, are 001010
and 000100.

A bitmap index for G would also have three bit-vectors, because there are
three different strings appearing there. The three bit-vectors are:

14.7. BITM AP INDEXES 689

Value Vector
foo 100100
bax 010010
baz 001001

In each case, l ’s indicate the records in which the corresponding string appears.
□

14.7.1 Motivation for Bitmap Indexes
It might at first appear that bitmap indexes require much too much space,
especially when there are many different values for a field, since the total number
of bits is the product of the number of records and the number of values. For
example, if the field is a key, and there are n records, then n2 bits are used
among all the bit-vectors for that field. However, compression can be used to
make the number of bits closer to n, independent of the number of different
values, as we shall see in Section 14.7.2.

You might also suspect that there are problems managing the bitmap in
dexes. For example, they depend on the number of a record remaining the same
throughout time. How do we find the ith record as the file adds and deletes
records? Similarly, values for a field may appear or disappear. How do we find
the bitmap for a value efficiently? These and related questions are discussed in
Section 14.7.4.

The compensating advantage of bitmap indexes is that they allow us to
answer partial-match queries very efficiently in many situations. In a sense they
offer the advantages of buckets that we discussed in Example 14.7, where we
found the Movie tuples with specified values in several attributes without first
retrieving all the records that matched in each of the attributes. An example
will illustrate the point.

Example 14.40: Recall Example 14.7, where we queried the Movie relation
with the query

SELECT title FROM Movie
WHERE studioName = ’Disney’ AND yeax = 2005;

Suppose there are bitmap indexes on both attributes studioName and yeax.
Then we can intersect the vectors for year = 2005 and studioName = ’ Disney ’;
that is, we take the bitwise AND of these vectors, which will give us a vector
with a 1 in position i if and only if the ith Movie tuple is for a movie made by
Disney in 2005.

If we can retrieve tuples of Movie given their numbers, then we need to
read only those blocks containing one or more of these tuples, just as we did in
Example 14.7. To intersect the bit vectors, we must read them into memory,
which requires a disk I/O for each block occupied by one of the two vectors. As
mentioned, we shall later address both matters: accessing records given their

690 CHAPTER 14. INDEX STRUCTURES

numbers in Section 14.7.4 and making sure the bit-vectors do not occupy too
much space in Section 14.7.2. □

Bitmap indexes can also help answer range queries. We shall consider an
example next that both illustrates their use for range queries and shows in detail
with short bit-vectors how the bitwise AND and OR of bit-vectors can be used
to discover the answer to a query without looking at any records but the ones
we want.

E xam ple 14.41: Consider the gold-jewelry data first introduced in Exam
ple 14.27. Suppose that the twelve points of that example are records numbered
from 1 to 12 as follows:

1
5
9

For the first component, age, there are seven different values, so the bitmap
index for age consists of the following seven vectors:

: (25,60) 2: (45,60) 3: (50,75) 4: (50,100)
: (50,120) 6: (70,110) 7: (85,140) 8: (30,260)
: (25,400) 10: (45,350) 11: (50,275) 12: (60,260)

25
50
85

100000001000 30: 000000010000 45: 010000000100
001110000010 60: 000000000001 70: 000001000000
000000100000

For the salary component, there are ten different values, so the salary bitmap
index has the following ten bit-vectors:

000100000000
000000100000
000000000100

60: 110000000000 75: 001000000000 100:
110: 000001000000 120: 000010000000 140:
260: 000000010001 275: 000000000010 350:
400: 000000001000

Suppose we want to find the jewelry buyers with an age in the range 45-55
and a salary in the range 100-200. We first find the bit-vectors for the age
values in this range; in this example there are only two: 010000000100 and
001110000010, for 45 and 50, respectively. If we take their bitwise OR, we have
a new bit-vector with 1 in position i if and only if the *th record has an age in
the desired range. This bit-vector is 011110000110.

Next, we find the bit-vectors for the salaries between 100 and 200 thousand.
There are four, corresponding to salaries 100, 110, 120, and 140; their bitwise
OR is 000111100000.

The last step is to take the bitwise AND of the two bit-vectors we calculated
by OR. That is:

011110000110 AND 000111100000 = 000110000000

We thus find that only the fourth and fifth records, which are (50,100) and
(50,120), are in the desired range. □

14.7. BITM AP INDEXES 691

Binary Numbers Won’t Serve as a Run-Length
Encoding

Suppose we represented a run of i 0’s followed by a 1 with the integer i in
binary. Then the bit-vector 000101 consists of two runs, of lengths 3 and 1,
respectively. The binary representations of these integers are 11 and 1, so
the run-length encoding of 000101 is 111. However, a similar calculation
shows that the bit-vector 010001 is also encoded by 111; bit-vector 010101
is a third vector encoded by 111. Thus, 111 cannot be decoded uniquely
into one bit-vector.

14.7.2 Compressed Bitmaps
Suppose we have a bitmap index on field F of a file with n records, and there
are m different values for field F that appear in the file. Then the number of
bits in all the bit-vectors for this index is mn. If, say, blocks are 4096 bytes
long, then we can fit 32,768 bits in one block, so the number of blocks needed
is m n /32768. That number can be small compared to the number of blocks
needed to hold the file itself, but the larger m is, the more space the bitmap
index takes.

But if m is large, then l ’s in a bit-vector will be very rare; precisely, the
probability that any bit is 1 is 1/m. If l ’s are rare, then we have an opportunity
to encode bit-vectors so that they take much less than n bits on the average. A
common approach is called run-length encoding, where we represent a run, that
is, a sequence of i 0’s followed by a 1, by some suitable binary encoding of the
integer i. We concatenate the codes for each run together, and that sequence
of bits is the encoding of the entire bit-vector.

We might imagine that we could just represent integer i by expressing i
as a binary number. However, that simple a scheme will not do, because it
is not possible to break a sequence of codes apart to determine uniquely the
lengths of the runs involved (see the box on “Binary Numbers Won’t Serve as a
Run-Length Encoding”). Thus, the encoding of integers i that represent a run
length must be more complex than a simple binary representation.

We shall study one of many possible schemes for encoding. There are some
better, more complex schemes that can improve on the amount of compression
achieved here, by almost a factor of 2, but only when typical runs are very long.
In our scheme, we first determine how many bits the binary representation of
i has. This number j , which is approximately log2 i, is represented in “unary,”
by j — 1 l ’s and a single 0. Then, we can follow with i in binary.9

E xam ple 14.42: If i = 13, then j = 4; that is, we need 4 bits in the binary

9A ctually , except for th e case th a t j = 1 (i.e., i = 0 or i = 1), we can be sure th a t th e
b inary rep resen ta tion o f i begins w ith 1. T hus, we can save ab o u t one b it p e r num ber if we
om it th is 1 and use only th e rem ain ing j — 1 b its .

692 CHAPTER 14. INDEX STRUCTURES

representation of i. Thus, the encoding for i begins with 1110. We follow with
i in binary, or 1101. Thus, the encoding for 13 is 11101101.

The encoding for i = 1 is 01, and the encoding for i = 0 is 00. In each
case, j = 1, so we begin with a single 0 and follow that 0 with the one bit that
represents i. □

If we concatenate a sequence of integer codes, we can always recover the
sequence of run lengths and therefore recover the original bit-vector. Suppose
we have scanned some of the encoded bits, and we are now at the beginning
of a sequence of bits that encodes some integer i. We scan forward to the first
0, to determine the value of j . That is, j equals the number of bits we must
scan until we get to the first 0 (including that 0 in the count of bits). Once we
know j , we look at the next j bits; i is the integer represented there in binary.
Moreover, once we have scanned the bits representing i, we know where the
next code for an integer begins, so we can repeat the process.

E xam p le 1 4 .4 3 : Let us decode the sequence 11101101001011. Starting at the
beginning, we find the first 0 at the 4th bit, so j = 4. The next 4 bits are 1101,
so we determine that the first integer is 13. We are now left with 001011 to
decode.

Since the first bit is 0, we know the next bit represents the next integer by
itself; this integer is 0. Thus, we have decoded the sequence 13, 0, and we must
decode the remaining sequence 1011.

We find the first 0 in the second position, whereupon we conclude that the
final two bits represent the last integer, 3. Our entire sequence of run-lengths
is thus 13, 0, 3. From these numbers, we can reconstruct the actual bit-vector,
0000000000000110001. □

Technically, every bit-vector so decoded will end in a 1, and any trailing 0’s
will not be recovered. Since we presumably know the number of records in the
file, the additional 0’s can be added. However, since 0 in a bit-vector indicates
the corresponding record is not in the described set, we don’t even have to know
the total number of records, and can ignore the trailing 0’s.

E xam p le 1 4 .4 4 : Let us convert some of the bit-vectors from Example 14.42
to our run-length code. The vectors for the first three ages, 25, 30, and 45,
are 100000001000, 000000010000, and 010000000100, respectively. The first of
these has the run-length sequence (0,7). The code for 0 is 00, and the code for
7 is 110111. Thus, the bit-vector for age 25 becomes 00110111.

Similarly, the bit-vector for age 30 has only one run, with seven 0’s. Thus,
its code is 110111. The bit-vector for age 45 has two runs, (1,7). Since 1 has
the code 01, and we determined that 7 has the code 110111, the code for the
third bit-vector is 01110111. □

The compression in Example 14.44 is not great. However, we cannot see the
true benefits when n, the number of records, is small. To appreciate the value

14.7. BITM AP INDEXES 693

of the encoding, suppose that m — n, i.e., each value for the field on which the
bitmap index is constructed, occurs once. Notice that the code for a run of
length i has about 21og2 i bits. If each bit-vector has a single 1, then it has a
single run, and the length of that run cannot be longer than n. Thus, 2 log2 n
bits is an upper bound on the length of a bit-vector’s code in this case.

Since there are n bit-vectors in the index, the total number of bits to repre
sent the index is at most 2n log2 n. In comparison, the uncompressed bit-vectors
for this data would require n 2 bits.

14.7.3 Operating on Run-Length-Encoded Bit-Vectors
When we need to perform bitwise AND or OR on encoded bit-vectors, we
have little choice but to decode them and operate on the original bit-vectors.
However, we do not have to do the decoding all at once. The compression
scheme we have described lets us decode one run at a time, and we can thus
determine where the next 1 is in each operand bit-vector. If we are taking the
OR, we can produce a 1 at that position of the output, and if we are taking the
AND we produce a 1 if and only if both operands have their next 1 at the same
position. The algorithms involved are complex, but an example may make the
idea adequately clear.

E xam ple 14.45: Consider the encoded bit-vectors we obtained in Exam
ple 14.44 for ages 25 and 30: 00110111 and 110111, respectively. We can decode
their first runs easily; we find they are 0 and 7, respectively. That is, the first
1 of the bit-vector for 25 occurs in position 1, while the first 1 in the bit-vector
for 30 occurs at position 8. We therefore generate 1 in position 1.

Next, we must decode the next run for age 25, since that bit-vector may
produce another 1 before age 30’s bit-vector produces a 1 at position 8. How
ever, the next run for age 25 is 7, which says that this bit-vector next produces
a 1 at position 9. We therefore generate six 0’s and the 1 at position 8 that
comes from the bit-vector for age 30. The 1 at position 9 from age 25’s bit-
vector is produced. Neither bit-vector produces any more l ’s for the output.
We conclude that the OR of these bit-vectors is 100000011. Technically, we
must append 000, since uncompressed bit-vectors are of length twelve in this
example. □

14.7.4 Managing Bitmap Indexes
We have described operations on bitmap indexes without addressing three im
portant issues:

1. When we want to find the bit-vector for a given value, or the bit-vectors
corresponding to values in a given range, how do we find these efficiently?

2. When we have selected a set of records that answer our query, how do we
retrieve those records efficiently?

694 CHAPTER 14. INDEX STRUCTURES

3. When the data file changes by insertion or deletion of records, how do we
adjust the bitmap index on a given field?

F in d in g B it-V ectors

Think of each bit-vector as a record whose key is the value corresponding to
this bit-vector (although the value itself does not appear in this “record”).
Then any secondary index technique will take us efficiently from values to their
bit-vectors.

We also need to store the bit-vectors somewhere. It is best to think of them
as variable-length records, since they will generally grow as more records are
added to the data file. The techniques of Section 13.7 are useful.

F in d in g R ecords

Now let us consider the second question: once we have determined that we need
record k of the data file, how do we find it? Again, techniques we have seen
already may be adapted. Think of the fcth record as having search-key value
k (although this key does not actually appear in the record). We may then
create a secondary index on the data file, whose search key is the number of
the record.

H an d lin g M od ification s to th e D a ta F ile

There are two aspects to the problem of reflecting data-file modifications in a
bitmap index.

1. Record numbers must remain fixed once assigned.

2. Changes to the data file require the bitmap index to change as well.

The consequence of point (1) is that when we delete record i, it is easiest
to “retire” its number. Its space is replaced by a “tombstone” in the data file.
The bitmap index must also be changed, since the bit-vector that had a 1 in
position i must have that 1 changed to 0. Note that we can find the appropriate
bit-vector, since we know what value record i had before deletion.

Next consider insertion of a new record. We keep track of the next available
record number and assign it to the new record. Then, for each bitmap index,
we must determine the value the new record has in the corresponding field and
modify the bit-vector for that value by appending a 1 at the end. Technically,
all the other bit-vectors in this index get a new 0 at the end, but if we are using
a compression technique such as that of Section 14.7.2, then no change to the
compressed values is needed.

As a special case, the new record may have a value for the indexed field
that has not been seen before. In that case, we need a new bit-vector for
this value, and this bit-vector and its corresponding value need to be inserted

14.8. SUMM ARY OF CHAPTER 14 695

into the secondary-index structure that is used to find a bit-vector given its
corresponding value.

Lastly, consider a modification to a record i of the data file that changes
the value of a field that has a bitmap index, say from value v to value w. We
must find the bit-vector for v and change the 1 in position i to 0. If there is a
bit-vector for value w, then we change its 0 in position i to 1. If there is not
yet a bit-vector for w, then we create it as discussed in the paragraph above for
the case when an insertion introduces a new value.

14.7.5 Exercises for Section 14.7
Exercise 14.7.1: For the data of Fig. 14.36, show the bitmap indexes for
the attributes: (a) speed (b) ram (c) hd, both in (?) uncompressed form, and
(ii) compressed form using the scheme of Section 14.7.2.

Exercise 14.7.2: Using the bitmaps of Example 14.41, find the jewelry buyers
with an age in the range 20-40 and a salary in the range 0-100.

Exercise 14.7.3: Consider a file of 1,000,000 records, with a field F that has
m different values.

a) As a function of m, how many bytes does the bitmap index for F have?

! b) Suppose that the records numbered from 1 to 1,000,000 are given values
for the field F in a round-robin fashion, so each value appears every m
records. How many bytes would be consumed by a compressed index?

E xercise 14.7.4: We suggested in Section 14.7.2 that it was possible to reduce
the number of bits taken to encode number i from the 2 log2 i that we used in
that section until it is close to log2 i. Show how to approach that limit as closely
as you like, as long as i is large. Hint: We used a unary encoding of the length
of the binary encoding that we used for i. Can you encode the length of the
code in binary?

E xercise 14.7.5: Encode, using the scheme of Section 14.7.2, the following
bitmaps:

a) 0110000000100000100.

b) 10000010000001001101.

c) 0001000000000010000010000.

14.8 Summary of Chapter 14
♦ Sequential Files: Several simple file organizations begin by sorting the

data file according to some sort key and placing an index on this file.

♦ Dense and Sparse Indexes: Dense indexes have a key-pointer pair for
every record in the data file, while sparse indexes have one key-pointer
pair for each block of the data file.

♦ Multilevel Indexes: It is sometimes useful to put an index on the index
file itself, an index file on that, and so on. Higher levels of index must be
sparse.

♦ Secondary Indexes: An index on a search key K can be created even if
the data file is not sorted by K . Such an index must be dense.

♦ Inverted Indexes: The relation between documents and the words they
contain is often represented by an index structure with word-pointer pairs.
The pointer goes to a place in a “bucket” file where is found a list of
pointers to places where that word occurs.

♦ B-trees: These structures are essentially multilevel indexes, with graceful
growth capabilities. Blocks with n keys and n + 1 pointers are organized
in a tree, with the leaves pointing to records. All nonroot blocks are
between half-full and completely full at all times.

♦ Hash Tables: We can create hash tables out of blocks in secondary mem
ory, much as we can create main-memory hash tables. A hash function
maps search-key values to buckets, effectively partitioning the records of
a data file into many small groups (the buckets). Buckets are represented
by a block and possible overflow blocks.

♦ Extensible Hashing: This method allows the number of buckets to double
whenever any bucket has too many records. It uses an array of pointers
to blocks that represent the buckets. To avoid having too many blocks,
several buckets can be represented by the same block.

♦ Linear Hashing: This method grows the number of buckets by 1 each time
the ratio of records to buckets exceeds a threshold. Since the population
of a single bucket cannot cause the table to expand, overflow blocks for
buckets are needed in some situations.

♦ Queries Needing Multidimensional Indexes: The sorts of queries that
need to be supported on multidimensional data include partial-match (all
points with specified values in a subset of the dimensions), range queries
(all points within a range in each dimension), nearest-neighbor (closest
point to a given point), and where-am-I (region or regions containing a
given point).

♦ Executing Nearest-Neighbor Queries: Many data structures allow nearest-
neighbor queries to be executed by performing a range query around the
target point, and expanding the range if there is no point in that range.
We must be careful, because finding a point within a rectangular range
may not rule out the possibility of a closer point outside that rectangle.

696 CHAPTER 14. INDEX STRUCTURES

14.9. REFERENCES FOR CHAPTER 14 697

♦ Grid Files: The grid file slices the space of points in each of the dimen
sions. The grid lines can be spaced differently, and there can be different
numbers of lines for each dimension. Grid files support range queries,
partial-match queries, and nearest-neighbor queries well, as long as data
is fairly uniform in distribution.

♦ Partitioned Hash Tables: A partitioned hash function constructs some
bits of the bucket number from each dimension. They support partial-
match queries well, and are not dependent on the data being uniformly
distributed.

♦ Multiple-Key Indexes: A simple multidimensional structure has a root
that is an index on one attribute, leading to a collection of indexes on a
second attribute, which can lead to indexes on a third attribute, and so
on. They are useful for range and nearest-neighbor queries.

♦ kd- Trees: These trees are like binary search trees, but they branch on
different attributes at different levels. They support partial-match, range,
and nearest-neighbor queries well. Some careful packing of tree nodes into
blocks must be done to make the structure suitable for secondary-storage
operations.

♦ Quad Trees: The quad tree divides a multidimensional cube into quad
rants, and recursively divides the quadrants the same way if they have too
many points. They support partial-match, range, and nearest-neighbor
queries.

♦ R-Trees: This form of tree normally represents a collection of regions by
grouping them into a hierarchy of larger regions. It helps with where-am-
I queries and, if the atomic regions are actually points, will support the
other types of queries studied in this chapter, as well.

♦ Bitmap Indexes: Multidimensional queries are supported by a form of
index that orders the points or records and represents the positions of the
records with a given value in an attribute by a bit vector. These indexes
support range, nearest-neighbor, and partial-match queries.

♦ Compressed, Bitmaps: In order to save space, the bitmap indexes, which
tend to consist of vectors with very few l ’s, are compressed by using a
run-length encoding.

14.9 References for Chapter 14
The B-tree was the original idea of Bayer and McCreight [2]. Unlike the B+ tree
described here, this formulation had pointers to records at the interior nodes
as well as at the leaves. [8] is a survey of B-tree varieties.

698 CHAPTER 14. INDEX STRUCTURES

Hashing as a data structure goes back to Peterson [19]. Extensible hashing
was developed by [9], while linear hashing is from [15]. The book by Knuth
[14] contains much information on data structures, including techniques for
selecting hash functions and designing hash tables, as well as a number of ideas
concerning B-tree variants. The B+ tree formulation (without key values at
interior nodes) appeared in the 1973 edition of [14].

Secondary indexes and other techniques for retrieval of documents are cov
ered by [23]. Also, [10] and [1] are surveys of index methods for text documents.

The kd-tice is from [4]. Modifications suitable for secondary storage ap
peared in [5] and [21]. Partitioned hashing and its use in partial-match retieval
is from [20] and [7]. However, the design idea from Exercise 14.5.6 is from [22],

Grid files first appeared in [16] and the quad tree in [11]. The R-tree is from
[13], and two extensions [24] and [3] are well known.

The bitmap index has an interesting history. There was a company called
Nucleus, founded by Ted Glaser, that patented the idea and developed a DBMS
in which the bitmap index was both the index structure and the data repre
sentation. The company failed in the late 1980’s, but the idea has recently
been incorporated into several major commercial database systems. The first
published work on the subject was [17]. [18] is a recent expansion of the idea.

There are a number of surveys of multidimensional storage structures. One
of the earliest is [6]. More recent surveys are found in [25] and [12]. The former
also includes surveys of several other important database topics.

1. R. Baeza-Yates, “Integrating contents and structure in text retrieval,”
SIGMOD Record 25:1 (1996), pp. 67-79.

2. R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica 1:3 (1972), pp. 173-189.

3. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
an efficient and robust access method for points and rectangles,” Proc.
ACM SIGMOD Intl. Conf. on Management of Data (1990), pp. 322-331.

4. J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Comm. ACM 18:9 (1975), pp. 509-517.

5. J. L. Bentley, “Multidimensional binary search trees in database applica
tions,” IEEE Trans, on Software Engineering SE-5:4 (1979), pp. 333-340.

6. J. L. Bentley and J. H. Friedman, “Data structures for range searching,”
Computing Surveys 13:3 (1979), pp. 397-409.

7. W. A. Burkhard, “Hashing and trie algorithms for partial match re
trieval,” ACM Trans, on Database Systems 1:2 (1976), pp. 175-187.

8. D. Comer, “The ubiquitous B-tree,” Computing Surveys 11:2 (1979),
pp. 121-137.

14.9. REFERENCES FOR CHAPTER 14 699

9. R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible hash
ing — a fast access method for dynamic files,” ACM Trans, on Database
Systems 4:3 (1979), pp. 315-344.

10. C. Faloutsos, “Access methods for text,” Computing Surveys 17:1 (1985),
pp. 49-74.

11. R. A. Finkel and J. L. Bentley, “Quad trees, a data structure for retrieval
on composite keys,” Acta Informatica 4:1 (1974), pp. 1-9.

12. V. Gaede and 0 . Gunther, “Multidimensional access methods,” Comput
ing Surveys 30:2 (1998), pp. 170-231.

13. A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
Proc. ACM SIGMOD Intl. Conf. on Management of Data (1984), pp. 47-
57.

14. D. E. Knuth, The Art of Computer Programming, Vol. I ll, Sorting and
Searching, Second Edition, Addison-Wesley, Reading MA, 1998.

15. W. Litwin, “Linear hashing: a new tool for file and table addressing,”
Intl. Conf. on Very Large Databases, pp. 212-223, 1980.

16. J. Nievergelt, H. Hinterberger, and K. Sevcik, “The grid file: an adaptable,
symmetric, multikey file structure,” ACM Trans, on Database Systems 9:1
(1984), pp. 38-71.

17. P. O’Neil, “Model 204 architecture and performance,” Proc. Second Intl.
Workshop on High Performance Transaction Systems, Springer-Verlag,
Berlin, 1987.

18. P. O’Neil and D. Quass, “Improved query performance with variant in
dexes,” Proc. ACM SIGMOD Intl. Conf. on Management of Data (1997),
pp. 38-49.

19. W. W. Peterson, “Addressing for random access storage,” IBM J. Re
search and Development 1:2 (1957), pp. 130-146.

20. R. L. Rivest, “Partial match retrieval algorithms,” SIAM J. Computing
5:1 (1976), pp. 19-50.

21. J. T. Robinson, “The K-D-B-tree: a search structure for laxge multidi
mensional dynamic indexes,” Proc. ACM SIGMOD Intl. Conf. on Mam-
agement of Data (1981), pp. 10-18.

22. J. B. Rothnie Jr. and T. Lozano, “Attribute based file organization in a
paged memory environment, Comm. ACM 17:2 (1974), pp. 63-69.

23. G. Salton, Introduction to Modern Information Retrieval, McGraw-Hill,
New York, 1983.

700 CHAPTER 14. INDEX STRUCTURES

24. T. K. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-tree: a dynamic
index for multidimensional objects,” Intl. Conf. on Very Large Databases,
pp. 507-518, 1987.

25. C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian,
and R. Zicari, Advanced Database Systems, Morgan-Kaufmann, San Fran
cisco, 1997.

Chapter 15

Query Execution

The broad topic of query processing will be covered in this chapter and Chap
ter 16. The query processor is the group of components of a DBMS that turns
user queries and data-modification commands into a sequence of database op
erations and executes those operations. Since SQL lets us express queries at a
very high level, the query processor must supply much detail regarding how the
query is to be executed. Moreover, a naive execution strategy for a query may
take far more time than necessary.

Figure 15.1 suggests the division of topics between Chapters 15 and 16.
In this chapter, we concentrate on query execution, that is, the algorithms
that manipulate the data of the database. We focus on the operations of the
extended relational algebra, described in Section 5.2. Because SQL uses a bag
model, we also assume that relations are bags, and thus use the bag versions of
the operators from Section 5.1.

We shall cover the principal methods for execution of the operations of rela
tional algebra. These methods differ in their basic strategy; scanning, hashing,
sorting, and indexing are the major approaches. The methods also differ on
their assumption as to the amount of available main memory. Some algorithms
assume that enough main memory is available to hold at least one of the re
lations involved in an operation. Others assume that the arguments of the
operation are too big to fit in memory, and these algorithms have significantly
different costs and structures.

P rev iew o f Q uery C om pilation

To set the context for query execution, we offer a very brief outline of the
content of the next chapter. Query compilation is divided into the three major
steps shown in Fig. 15.2.

a) Parsing. A parse tree for the query is constructed.

b) Query Rewrite. The parse tree is converted to an initial query plan, which
is usually an algebraic representation of the query. This initial plan is then

701

702 CHAPTER 15. QUERY EXECUTION

query

m etadata

Query
com pilation
(Chapter 16)

Query
execution

(Chapter 15)

query plan

data

Figure 15.1: The major parts of the query processor

transformed into an equivalent plan that is expected to require less time
to execute.

c) Physical Plan Generation. The abstract query plan from (b), often called
a logical query plan, is turned into a physical query plan by selecting
algorithms to implement each of the operators of the logical plan, and by
selecting an order of execution for these operators. The physical plan, like
the result of parsing and the logical plan, is represented by an expression
tree. The physical plan also includes details such as how the queried
relations are accessed, and when and if a relation should be sorted.

Parts (b) and (c) are often called the query optimizer, and these are the hard
parts of query compilation. To select the best query plan we need to decide:

1. Which of the algebraically equivalent forms of a query leads to the most
efficient algorithm for answering the query?

2. For each operation of the selected form, what algorithm should we use to
implement that operation?

3. How should the operations pass data from one to the other, e.g., in a
pipelined fashion, in main-memory buffers, or via the disk?

Each of these choices depends on the metadata about the database. Typical
metadata that is available to the query optimizer includes: the size of each
relation; statistics such as the approximate number and frequency of different
values for an attribute; the existence of certain indexes; and the layout of data
on disk.

15.1. INTRODUCTION TO PHYSICAL-QUERY-PLAN OPERATORS 703

SQL query

Query
optim ization

Execute plan

Figure 15.2: Outline of query compilation

15.1 Introduction to Physical-Query-Plan
Operators

Physical query plans are built from operators, each of which implements one
step of the plan. Often, the physical operators are particular implementations
for one of the operations of relational algebra. However, we also need physical
operators for other tasks that do not involve an operation of relational algebra.
For example, we often need to “scan” a table, that is, bring into main memory
each tuple of some relation. The relation is typically an operand of some other
operation.

In this section, we shall introduce the basic building blocks of physical query
plans. Later sections cover the more complex algorithms that implement op
erators of relational algebra efficiently; these algorithms also form an essential
part of physical query plans. We also introduce here the “iterator” concept,
which is an important method by which the operators comprising a physical
query plan can pass requests for tuples and answers among themselves.

15.1.1 Scanning Tables
Perhaps the most basic thing we can do in a physical query plan is to read the
entire contents of a relation R. A variation of this operator involves a simple
predicate, where we read only those tuples of the relation R that satisfy the

704 CHAPTER 15. QUERY EXECUTION

predicate. There are two basic approaches to locating the tuples of a relation
R.

1. In many cases, the relation R is stored in an area of secondary memory,
with its tuples arranged in blocks. The blocks containing the tuples of R
are known to the system, and it is possible to get the blocks one by one.
This operation is called table-scan.

2. If there is an index on any attribute of R, we may be able to use this index
to get all the tuples of R. For example, a sparse index on R, as discussed
in Section 14.1.3, can be used to lead us to all the blocks holding R, even if
we don’t know otherwise which blocks these are. This operation is called
index-scan.

We shall take up index-scan again in Section 15.6.2, when we talk about
implementing selection. However, the important observation for now is that we
can use the index not only to get all the tuples of the relation it indexes, but
to get only those tuples that have a particular value (or sometimes a particular
range of values) in the attribute or attributes that form the search key for the
index.

15.1.2 Sorting W hile Scanning Tables
There are a number of reasons why we might want to sort a relation as we read
its tuples. For one, the query could include an ORDER BY clause, requiring that
a relation be sorted. For another, some approaches to implementing relational-
algebra operations require one or both arguments to be sorted relations. These
algorithms appear in Section 15.4 and elsewhere.

The physical-query-plan operator sort-scan takes a relation R and a speci
fication of the attributes on which the sort is to be made, and produces R in
that sorted order. There are several ways that sort-scan can be implemented.
If relation R must be sorted by attribute a, and there is a B-tree index on a,
then a scan of the index allows us to produce R in the desired order. If R is
small enough to fit in main memory, then we can retrieve its tuples using a
table scan or index scan, and then use a main-memory sorting algorithm. If R
is too large to fit in main memory, then we can use a multiway merge-sort, as
will be discussed Section 15.4.1.

15.1.3 The Computation M odel for Physical Operators
A query generally consists of several operations of relational algebra, and the
corresponding physical query plan is composed of several physical operators.
Since choosing physical-plan operators wisely is an essential of a good query
processor, we must be able to estimate the “cost” of each operator we use. We
shall use the number of disk I /O ’s as our measure of cost for an operation. This
measure is consistent with our view (see Section 13.3.1) that it takes longer to

INTRODUCTION TO PHYSICAL-QUERY-PLAN OPERATORS 705

get data from disk than to do anything useful with it once the data is in main
memory.

When comparing algorithms for the same operations, we shall make an
assumption that may be surprising at first:

• We assume that the arguments of any operator are found on disk, but the
result of the operator is left in main memory.

If the operator produces the final answer to a query, and that result is indeed
written to disk, then the cost of doing so depends only on the size of the answer,
and not on how the answer was computed. We can simply add the final write
back cost to the total cost of the query. However, in many applications, the
answer is not stored on disk at all, but printed or passed to some formatting
program. Then, the disk I/O cost of the output either is zero or depends upon
what some unknown application program does with the data. In either case,
the cost of writing the answer does not influence our choice of algorithm for
executing the operator.

Similarly, the result of an operator that forms part of a query (rather than
the whole query) often is not written to disk. In Section 15.1.6 we shall discuss
“iterators,” where the result of one operator 0 \ is constructed in main memory,
perhaps a small piece at a time, and passed as an argument to another operator
0-2- In this situation, we never have to write the result of 0 \ to disk, and
moreover, we save the cost of reading from disk an argument of O2 ■

15.1.4 Parameters for Measuring Costs
Now, let us introduce the parameters (sometimes called statistics) that we use to
express the cost of an operator. Estimates of cost are essential if the optimizer
is to determine which of the many query plans is likely to execute fastest.
Section 16.5 will show how to exploit these cost estimates.

We need a parameter to represent the portion of main memory that the
operator uses, and we require other parameters to measure the size of its argu
ment (s). Assume that main memory is divided into buffers, whose size is the
same as the size of disk blocks. Then M will denote the number of main-memory
buffers available to an execution of a particular operator.

Sometimes, we can think of M as the entire main memory, or most of the
main memory. However, we shall also see situations where several operations
share the main memory, so M could be much smaller than the total main
memory. In fact, as we shall discuss in Section 15.7, the number of buffers
available to an operation may not be a predictable constant, but may be decided
during execution, based on what other processes are executing at the same time.
If so, M is really an estimate of the number of buffers available to the operation.

Next, let us consider the parameters that measure the cost of accessing
argument relations. These parameters, measuring size and distribution of data
in a relation, are often computed periodically to help the query optimizer choose
physical operators.

706 CHAPTER 15. QUERY EXECUTION

We shall make the simplifying assumption that data is accessed one block
at a time from disk. In practice, one of the techniques discussed in Section 13.3
might be able to speed up the algorithm if we are able to read many blocks of
the relation at once, and they can be read from consecutive blocks on a track.
There are three parameter families, B, T, and V :

• When describing the size of a relation R, we most often are concerned
with the number of blocks that are needed to hold all the tuples of R.
This number of blocks will be denoted B (R), or just B if we know that
relation R is meant. Usually, we assume that R is clustered; that is, it is
stored in B blocks or in approximately B blocks.

• Sometimes, we also need to know the number of tuples in R, and we
denote this quantity by T(R), or just T if R is understood. If we need
the number of tuples of R that can fit in one block, we can use the ratio
T /B .

• Finally, we shall sometimes want to refer to the number of distinct values
that appear in a column of a relation. If R is a relation, and one of its
attributes is a, then V (R, a) is the number of distinct values of the column
for a in R. More generally, if [01, 02, . . . ,a n] is a list of attributes, then
V(R, [ai, 02, . . . , on]) is the number of distinct n-tuples in the columns of
R for attributes Oi, 02 , . . . , an . Put formally, it is the number of tuples in
< 5 (^ 0 1 , 0 2 , . . . ,a n (-R)) -

15.1.5 I/O Cost for Scan Operators
As a simple application of the parameters that were introduced, we can rep
resent the number of disk I/O ’s needed for each of the table-scan operators
discussed so far. If relation R is clustered, then the number of disk I /O ’s for
the table-scan operator is approximately B. Likewise, if R fits in main-memory,
then we can implement sort-scan by reading R into memory and performing an
in-memory sort, again requiring only B disk I/O ’s.

However, if R is not clustered, then the number of required disk I /O ’s is
generally much higher. If R is distributed among tuples of other relations, then
a table-scan for R may require reading as many blocks as there are tuples of R;
that is, the I/O cost is T. Similarly, if we want to sort R, but R fits in memory,
then T disk I/O ’s are what we need to get all of R into memory.

Finally, let us consider the cost of an index-scan. Generally, an index on
a relation R occupies many fewer than B(R) blocks. Therefore, a scan of the
entire R, which takes at least B disk I /O ’s, will require significantly more I/O ’s
than does examining the entire index. Thus, even though index-scan requires
examining both the relation and its index,

• We continue to use B or T, respectively, to estimate the cost of accessing
a clustered or unclustered relation in its entirety, using an index.

INTRODUCTION TO PHYSICAL-QUERY-PLAN OPERATORS 707

However, if we only want part of R, we often are able to avoid looking at the
entire index and the entire R. We shall defer analysis of these uses of indexes
to Section 15.6.2.

15.1.6 Iterators for Implementation of Physical Operators
Many physical operators can be implemented as an iterator, which is a group
of three methods that allows a consumer of the result of the physical operator
to get the result one tuple at a time. The three methods forming the iterator
for an operation are:

1. 0pen(). This method starts the process of getting tuples, but does not get
a tuple. It initializes any data structures needed to perform the operation
and calls 0pen() for any arguments of the operation.

2. GetNext(). This method returns the next tuple in the result and adjusts
data structures as necessary to allow subsequent tuples to be obtained.
In getting the next tuple of its result, it typically calls GetNextO one
or more times on its argument(s). If there are no more tuples to return,
GetNextO returns a special value NotFound, which we assume cannot be
mistaken for a tuple.

3. Close (). This method ends the iteration after all tuples, or all tuples that
the consumer wanted, have been obtained. Typically, it calls Close () on
any arguments of the operator.

When describing iterators and their methods, we shall assume that there
is a “class” for each type of iterator (i.e., for each type of physical operator
implemented as an iterator), and the class defines OpenO, GetNextO, and
C lose() methods on instances of the class.

E xam ple 15.1: Perhaps the simplest iterator is the one that implements the
table-scan operator. The iterator is implemented by a class TableScan, and a
table-scan operator in a query plan is an instance of this class parameterized
by the relation R we wish to scan. Let us assume that R is a relation clustered
in some list of blocks, which we can access in a convenient way; that is, the
notion of “get the next block of R ” is implemented by the storage system and
need not be described in detail. Further, we assume that within a block there
is a directory of records (tuples), so it is easy to get the next tuple of a block
or tell that the last tuple has been reached.

Figure 15.3 sketches the three methods for this iterator. We imagine a block
pointer b and a tuple pointer t that points to a tuple within block b. We assume
that both pointers can point “beyond” the last block or last tuple of a block,
respectively, and that it is possible to identify when these conditions occur.
Notice that C loseO in this example does nothing. In practice, a C loseO
method for an iterator might clean up the internal structure of the DBMS in
various ways. It might inform the buffer manager that certain buffers are no

708 CHAPTER 15. QUERY EXECUTION

0pen() {
b := th e f i r s t block of R;
t := th e f i r s t tu p le of block b;

}

GetNextO {
IF (t i s p a s t th e l a s t tu p le on block b) {

increm ent b to th e next block;
IF (th e re i s no next block)

RETURN NotFound;
ELSE /* b i s a new block * /

t := f i r s t tu p le on block b;
} /* now we are ready to re tu rn t and increment */
o ld t := t ;
increm ent t to th e next tu p le of b;
RETURN o ld t;

>

CloseO {
>

Figure 15.3: Iterator methods for the table-scan operator over relation R

longer needed, or inform the concurrency manager that the read of a relation
has completed. □

E xam ple 15.2: Now, let us consider an example where the iterator does most
of the work in its 0pen() method. The operator is sort-scan, where we read the
tuples of a relation R but return them in sorted order. We cannot return even
the first tuple until we have examined each tuple of R. For simplicity, assume
that R is small enough to fit in main memory.

0pen() must read the entire R into main memory. It might also sort the
tuples of R, in which case GetNext () needs only to return each tuple in turn, in
the sorted order. Alternatively, 0pen() could leave R unsorted, and GetNextO
could select the first of the remaining tuples, in effect performing one pass of a
selection sort. □

E xam ple 15.3: Finally, let us consider a simple example of how iterators can
be combined by calling other iterators. The operation is the bag union R U S,
in which we produce first all the tuples of R and then all the tuples of 5, without
regard for the existence of duplicates. Let TZ and S denote the iterators that
produce relations R and S, and thus are the “children” of the union operator
in a query plan for R U S. Iterators TZ and S could be table scans applied
to stored relations R and S, or they could be iterators that call a network

15.2. ONE-PASS ALGORITHMS 709

Why Iterators?

We shall see in Section 16.7 how iterators support efficient execution when
they are composed within query plans. They contrast with a material
ization strategy, where the result of each operator is produced in its en
tirety — and either stored on disk or allowed to take up space in main
memory. When iterators are used, many operations are active at once. Tu
ples pass between operators as needed, thus reducing the need for storage.
Of course, as we shall see, not all physical operators support the iteration
approach, or “pipelining,” in a useful way. In some cases, almost all the
work would need to be done by the Open() method, which is tantamount
to materialization.

of other iterators to compute R and S. Regardless, all that is important is
that we have available methods R.OpenO, R.GetNextO, and R .C loseO , and
analogous methods for iterator <S.

The iterator methods for the union are sketched in Fig. 15.4. One subtle
point is that the methods use a shared variable CurRel that is either R or S,
depending on which relation is being read from currently. □

15.2 One-Pass Algorithms
We shall now begin our study of a very important topic in query optimization:
how should we execute each of the individual steps — for example, a join or
selection — of a logical query plan? The choice of algorithm for each operator
is an essential part of the process of transforming a logical query plan into a
physical query plan. While many algorithms for operators have been proposed,
they largely fall into three classes:

1. Sorting-based methods (Section 15.4).

2. Hash-based methods (Sections 15.5 and 20.1).

3. Index-based methods (Section 15.6).

In addition, we can divide algorithms for operators into three “degrees” of
difficulty and cost:

a) Some methods involve reading the data only once from disk. These are
the one-pass algorithms, and they are the topic of this section. Usually,
they require at least one of the arguments to fit in main memory, although
there are exceptions, especially for selection and projection as discussed
in Section 15.2.1.

710 CHAPTER 15. QUERY EXECUTION

OpenO {
R. OpenO;
CurRel := R;

}

GetNextO {
IF (CurRel = R) {

t := R.GetNextO ;
IF (t <> NotFound) /* R i s not exhausted */

RETURN t ;
ELSE /* R i s exhausted */ {

S.OpenO ;
CurRel := S;

}
>
/* h e re , we must read from S * /
RETURN S.G etN extO ;
/* n o tic e th a t i f S i s exhausted , S.GetNextO

w il l r e tu rn NotFound, which i s th e c o rre c t
a c tio n fo r our GetNext as w ell */

C loseO {
R .C loseO ;
S .C lo se O ;

>

Figure 15.4: Building a union iterator from iterators TZ and S

b) Some methods work for data that is too large to fit in available main
memory but not for the largest imaginable data sets. These two-pass
algorithms are characterized by reading data a first time from disk, pro
cessing it in some way, writing all, or almost all, of it to disk, and then
reading it a second time for further processing during the second pass.
We meet these algorithms in Sections 15.4 and 15.5.

c) Some methods work without a limit on the size of the data. These meth
ods use three or more passes to do their jobs, and are natural, recur
sive generalizations of the two-pass algorithms. We shall study multipass
methods in Section 15.8.

In this section, we shall concentrate on the one-pass methods. Here and
subsequently, we shall classify operators into three broad groups:

15.2. ONE-PASS ALGORITHMS 711

1. Tuple-at-a-time, unary operations. These operations — selection and pro
jection — do not require an entire relation, or even a large part of it, in
memory at once. Thus, we can read a block at a time, use one main-
memory buffer, and produce our output.

2. Full-relation, unary operations. These one-argument operations require
seeing all or most of the tuples in memory at once, so one-pass algorithms
are limited to relations that are approximately of size M (the number of
main-memory buffers available) or less. The operations of this class are
7 (the grouping operator) and 6 (the duplicate-elimination operator).

3. Full-relation, binary operations. All other operations are in this class:
set and bag versions of union, intersection, difference, joins, and prod
ucts. Except for bag union, each of these operations requires at least one
argument to be limited to size M, if we are to use a one-pass algorithm.

15.2.1 One-Pass Algorithms for Tuple-at-a-Time
Operations

The tuple-at-a-time operations cr(R) and ir(R) have obvious algorithms, regard
less of whether the relation fits in main memory. We read the blocks of R one
at a time into an input buffer, perform the operation on each tuple, and move
the selected tuples or the projected tuples to the output buffer, as suggested
by Fig. 15.5. Since the output buffer may be an input buffer of some other
operator, or may be sending data to a user or application, we do not count the
output buffer as needed space. Thus, we require only that M > 1 for the input
buffer, regardless of B.

Input Output
buffer buffer

Figure 15.5: A selection or projection being performed on a relation R

The disk I/O requirement for this process depends only on how the argument
relation R is provided. If R is initially on disk, then the cost is whatever
it takes to perform a table-scan or index-scan of R. The cost was discussed
in Section 15.1.5; typically, the cost is B if R is clustered and T if it is not
clustered. However, remember the important exception where the operation
being performed is a selection, and the condition compares a constant to an

712 CHAPTER 15. QUERY EXECUTION

Extra Buffers Can Speed Up Operations

Although tuple-at-a-time operations can get by with only one input buffer
and one output buffer, as suggested by Fig. 15.5, we can often speed up
processing if we allocate more input buffers. The idea appeared first in
Section 13.3.2. If R is stored on consecutive blocks within cylinders, then
we can read an entire cylinder into buffers, while paying for the seek time
and rotational latency for only one block per cylinder. Similarly, if the
output of the operation can be stored on full cylinders, we waste almost
no time writing.

attribute that has an index. In that case, we can use the index to retrieve only
a subset of the blocks holding R, thus improving performance, often markedly.

15.2.2 One-Pass Algorithms for Unary, Full-Relation
Operations

Now, let us consider the unary operations that apply to relations as a whole,
rather than to one tuple at a time: duplicate elimination (S) and grouping (7).

D u p licate E lim ination

To eliminate duplicates, we can read each block of R one at a time, but for each
tuple we need to make a decision as to whether:

1. It is the first time we have seen this tuple, in which case we copy it to the
output, or

2. We have seen the tuple before, in which case we must not output this
tuple.

To support this decision, we need to keep in memory one copy of every tuple
we have seen, as suggested in Fig. 15.6. One memory buffer holds one block of
R ’s tuples, and the remaining M — 1 buffers can be used to hold a single copy
of every tuple seen so far.

When storing the already-seen tuples, we must be careful about the main-
memory data structure we use. Naively, we might just list the tuples we have
seen. When a new tuple from R is considered, we compare it with all tuples
seen so far, and if it is not equal to any of these tuples we both copy it to the
output and add it to the in-memory list of tuples we have seen.

However, if there are n tuples in main memory, each new tuple takes pro
cessor time proportional to n, so the complete operation takes processor time
proportional to n2. Since n could be very large, this amount of time calls into
serious question our assumption that only the disk I/O time is significant. Thus,

15.2. ONE-PASS ALGORITHMS 713

M- 1 buffers Output
buffer

Figure 15.6: Managing memory for a one-pass duplicate-elimination

we need a main-memory structure that allows each us to add a new tuple and
to tell whether a given tuple is already there, in time that grows slowly with n.

For example, we could use a hash table with a large number of buckets, or
some form of balanced binary search tree .1 Each of these structures has some
space overhead in addition to the space needed to store the tuples; for instance,
a main-memory hash table needs a bucket array and space for pointers to link
the tuples in a bucket. However, the overhead tends to be small compared with
the space needed to store the tuples, and we shall in this chpater neglect this
overhead.

On this assumption, we may store in the M — 1 available buffers of main
memory as many tuples as will fit in M — 1 blocks of R. If we want one copy
of each distinct tuple of R to fit in main memory, then B(S(R)) must be no
larger than M — 1. Since we expect M to be much larger than 1, a simpler
approximation to this rule, and the one we shall generally use, is:

• B(S(R)) < M

Note that we cannot in general compute the size of S(R) without computing
S(R) itself. Should we underestimate that size, so B(6(R)) is actually larger
than M, we shall pay a significant penalty due to thrashing, as the blocks
holding the distinct tuples of R must be brought into and out of main memory
frequently.

1See A ho, A. V ., J . E . H opcroft, an d J . D . U llm an, D ata S tru c tu res and A lgorithm s,
Addison-W esley, 1983 for d iscussions o f su itab le m ain-m em ory s tru c tu res . In p articu la r,
hash ing takes on average 0 (n) tim e to process n item s, an d balanced trees take O lji log n)
tim e; e ith e r is sufficiently close to linear for o u r purposes.

714 CHAPTER 15. QUERY EXECUTION

G rouping

A grouping operation 7 l gives us zero or more grouping attributes and presum
ably one or more aggregated attributes. If we create in main memory one entry
for each group — that is, for each value of the grouping attributes — then we
can scan the tuples of R, one block at a time. The entry for a group consists of
values for the grouping attributes and an accumulated value or values for each
aggregation, as follows:

• For a MIN (a) or MAX (a) aggregate, record the minimum or maximum
value, respectively, of attribute a seen for any tuple in the group so far.
Change this minimum or maximum, if appropriate, each time a tuple of
the group is seen.

• For any COUNT aggregation, add one for each tuple of the group that is
seen.

• For SUM (a), add the value of attribute a to the accumulated sum for its
group, provided a is not NULL.

• AVG (a) is the hard case. We must maintain two accumulations: the count
of the number of tuples in the group and the sum of the a-values of these
tuples. Each is computed as we would for a COUNT and SUM aggregation,
respectively. After all tuples of R axe seen, we take the quotient of the
sum and count to obtain the average.

When all tuples of R have been read into the input buffer and contributed
to the aggregation(s) for their group, we can produce the output by writing the
tuple for each group. Note that until the last tuple is seen, we cannot begin to
create output for a 7 operation. Thus, this algorithm does not fit the iterator
framework very well; the entire grouping has to be done by the Open method
before the first tuple can be retrieved by GetNext.

In order that the in-memory processing of each tuple be efficient, we need
to use a main-memory data structure that lets us find the entry for each group,
given values for the grouping attributes. As discussed above for the 6 operation,
common main-memory data structures such as hash tables or balanced trees
will serve well. We should remember, however, that the search key for this
structure is the grouping attributes only.

The number of disk I /O ’s needed for this one-pass algorithm is B, as must
be the case for any one-pass algorithm for a unary operator. The number of
required memory buffers M is not related to B in any simple way, although
typically M will be less than B. The problem is that the entries for the groups
could be longer or shorter than tuples of R, and the number of groups could
be anything equal to or less than the number of tuples of R. However, in most
cases, group entries will be no longer than R ’s tuples, and there will be many
fewer groups than tuples.

15.2. ONE-PASS ALGORITHMS 715

Operations on Nonclustered Data

All our calculations regarding the number of disk I /O ’s required for an
operation are predicated on the assumption that the operand relations are
clustered. In the (typically rare) event that an operand R is not clustered,
then it may take us T(R) disk I /O ’s, rather than B(R) disk I/O ’s to read
all the tuples of R. Note, however, that any relation that is the result of
an operator may always be assumed clustered, since we have no reason to
store a temporary relation in a nonclustered fashion.

15.2.3 One-Pass Algorithms for Binary Operations
Let us now take up the binary operations: union, intersection, difference, prod
uct, and join. Since in some cases we must distinguish the set- and bag-versions
of these operators, we shall subscript them with B or S for “bag” and “set,”
respectively; e.g., Ub for bag union or — s for set difference. To simplify the
discussion of joins, we shall consider only the natural join. An equijoin can
be implemented the same way, after attributes are renamed appropriately, and
theta-joins can be thought of as a product or equijoin followed by a selection
for those conditions that cannot be expressed in an equijoin.

Bag union can be computed by a very simple one-pass algorithm. To com
pute R Ub S, we copy each tuple of R to the output and then copy every tuple
of 5, as we did in Example 15.3. The number of disk I /O ’s is B(R) + B(S), as
it must be for a one-pass algorithm on operands R and S, while M = 1 suffices
regardless of how large R and S are.

Other binary operations require reading the smaller of the operands R and 5
into main memory and building a suitable data structure so tuples can be both
inserted quickly and found quickly, as discussed in Section 15.2.2. As before, a
hash table or balanced tree suffices. Thus, the approximate requirement for a
binary operation on relations R and S to be performed in one pass is:

• m in(B(R),B(S)) < M

More preceisely, one buffer is used to read the blocks of the larger relation,
while approximately M buffers are needed to house the entire smaller relation
and its main-memory data structure.

We shall now give the details of the various operations. In each case, we
assume R is the larger of the relations, and we house 5 in main memory.

Set U nion

We read S into M — 1 buffers of main memory and build a search structure
whose search key is the entire tuple. All these tuples are also copied to the
output. We then read each block of R into the Mth buffer, one at a time. For

716 CHAPTER 15. QUERY EXECUTION

each tuple t of R, we see if t is in S, and if not, we copy t to the output. If t is
also in S, we skip t.

S et In tersection

Read S into M — 1 buffers and build a search structure with full tuples as the
search key. Read each block of R, and for each tuple t of R, see if t is also in
5. If so, copy t to the output, and if not, ignore t.

Set D ifference

Since difference is not commutative, we must distinguish between R ~ s S and
S — s R, continuing to assume that R is the larger relation. In each case, read
S into M — 1 buffers and build a search structure with full tuples as the search
key.

To compute R — ,s S, we read each block of R and examine each tuple t on
that block. If t is in S, then ignore t; if it is not in S then copy t to the output.

To compute S —s R, we again read the blocks of R and examine each tuple
t in turn. If t is in S, then we delete t from the copy of 5 in main memory,
while if t is not in S we do nothing. After considering each tuple of R, we copy
to the output those tuples of S that remain.

B ag In tersection

We read S into M — 1 buffers, but we associate with each distinct tuple a count,
which initially measures the number of times this tuple occurs in S. Multiple
copies of a tuple t are not stored individually. Rather we store one copy of t
and associate with it a count equal to the number of times t occurs.

This structure could take slightly more space than B(S) blocks if there were
few duplicates, although frequently the result is that S is compacted. Thus, we
shall continue to assume that B(S) < M is sufficient for a one-pass algorithm
to work, although the condition is only an approximation.

Next, we read each block of R, and for each tuple t of R we see whether t
occurs in S. If not we ignore t; it cannot appear in the intersection. However, if
t appears in S, and the count associated with t is still positive, then we output
t and decrement the count by 1. If t appears in S, but its count has reached 0,
then we do not output t; we have already produced as many copies of t in the
output as there were copies in S.

B ag D ifference

To compute S —b R, we read the tuples of 5 into main memory, and count the
number of occurrences of each distinct tuple, as we did for bag intersection.
When we read R, for each tuple t we see whether t occurs in 5, and if so, we
decrement its associated count. At the end, we copy to the output each tuple

15.2. ONE-PASS ALGORITHMS 717

in main memory whose count is positive, and the number of times we copy it
equals that count.

To compute R —g S , we also read the tuples of S into main memory and
count the number of occurrences of distinct tuples. We may think of a tuple t
with a count of c as c reasons not to copy t to the output as we read tuples of
R. That is, when we read a tuple t of R, we see if t occurs in S. If not, then we
copy t to the output. If t does occur in S, then we look at the current count c
associated with t. If c = 0, then copy t to the output. If c > 0, do not copy t
to the output, but decrement c by 1.

P rod u ct

Read S into M — 1 buffers of main memory; no special data structure is needed.
Then read each block of R, and for each tuple t of R concatenate t with each
tuple of 5 in main memory. Output each concatenated tuple as it is formed.

This algorithm may take a considerable amount of processor time per tuple
of R , because each such tuple must be matched with M — 1 blocks full of tuples.
However, the output size is also large, and the time per output tuple is small.

N atu ral Join

In this and other join algorithms, let us take the convention that R(X, Y) is
being joined with S(Y, Z), where Y represents all the attributes that R and S
have in common, X is all attributes of R that are not in the schema of 5, and
Z is all attributes of S that are not in the schema of R. We continue to assume
that S is the smaller relation. To compute the natural join, do the following:

1. Read all the tuples of S and form them into a main-memory search struc
ture with the attributes of Y as the search key. Use M — 1 blocks of
memory for this purpose.

2. Read each block of R into the one remaining main-memory buffer. For
each tuple t of R, find the tuples of S that agree with t on all attributes
of Y, using the search structure. For each matching tuple of 5, form a
tuple by joining it with t, and move the resulting tuple to the output.

like all the one-pass, binary algorithms, this one takes B (R) + B(S) disk I /O ’s
•d read the operands. It works as long as B(S) < M — 1, or approximately,
B(S) < M.

We shall not discuss joins other than the natural join. Remember that an
eqnijoin is executed in essentially the same way as a natural join, but we must
account for the fact that “equal” attributes from the two relations may have
different names. A theta-join that is not an equijoin can be replaced by an
equijoin or product followed by a selection.

718 CHAPTER 15. QUERY EXECUTION

15.2.4 Exercises for Section 15.2
E xercise 15.2.1: For each of the operations below, write an iterator that
uses the algorithm described in this section: (a) projection (b) distinct (J)
(c) grouping (j l) (d) set union (e) set intersection (f) set difference (g) bag
intersection (h) bag difference (i) product (j) natural join.

E xercise 15.2.2: For each of the operators in Exercise 15.2.1, tell whether the
operator is blocking, by which we mean that the first output cannot be produced
until all the input has been read. Put another way, a blocking operator is one
whose only possible iterators have all the important work done by Open.

E xercise 15.2.3: Figure 15.9 summarizes the memory and disk-I/O require
ments of the algorithms of this section and the next. However, it assumes all
arguments are clustered. How would the entries change if one or both arguments
were not clustered?

! E xercise 15.2.4: Give one-pass algorithms for each of the following join-like
operators:

a) R X S , assuming R fits in memory (see Exercise 2.4.8 for a definition of
the semijoin).

b) R X S , assuming S fits in memory.

c) R X S, assuming R fits in memory (see Exercise 2.4.9 for a definition
of the antisemijoin).

d) R X S, assuming S fits in memory.

e) R S, assuming R fits in memory (see Section 5.2.7 for definitions
involving outerjoins).

f) R cSj L S, assuming S fits in memory.

g) R txj R S, assuming R fits in memory.

h) R cSi R S, assuming S fits in memory.

i) R c8i S, assuming R fits in memory.

15.3 Nested-Loop Joins
Before proceeding to the more complex algorithms in the next sections, we shall
turn our attention to a family of algorithms for the join operator called “nested-
loop” joins. These algorithms are, in a sense, “one-and-a-half” passes, since in
each variation one of the two arguments has its tuples read only once, while
the other argument will be read repeatedly. Nested-loop joins can be used for
relations of any size; it is not necessary that one relation fit in main memory.

15.3. NESTED-LOOP JOINS 719

15.3.1 Tuple-Based Nested-Loop Join
The simplest variation of nested-loop join has loops that range over individual
tuples of the relations involved. In this algorithm, which we call tuple-based,
nested-loop join, we compute the join R(X, Y) ex S(Y, Z) as follows:

FOR each tu p le s in S DO
FOR each tu p le r in R DO

IF r and s jo in to make a tu p le t THEN
output t ;

If we are careless about how we buffer the blocks of relations R and 5, then
this algorithm could require as many as T(R)T(S) disk I /O ’s. However, there
are many situations where this algorithm can be modified to have much lower
cost. One case is when we can use an index on the join attribute or attributes
of R to find the tuples of R that match a given tuple of S, without having to
read the entire relation R. We discuss index-based joins in Section 15.6.3. A
second improvement looks much more carefully at the way tuples of R and S
are divided among blocks, and uses as much of the memory as it can to reduce
the number of disk I/O ’s as we go through the inner loop. We shall consider
this block-based version of nested-loop join in Section 15.3.3.

15.3.2 An Iterator for Tuple-Based Nested-Loop Join
One advantage of a nested-loop join is that it fits well into an iterator frame
work, and thus, as we shall see in Section 16.7.3, allows us to avoid storing
intermediate relations on disk in some situations. The iterator for R txa S is
easy to build from the iterators for R and 5, which support methods R. OpenO,
and so on, as in Section 15.1.6. The code for the three iterator methods for
nested-loop join is in Fig. 15.7. It makes the assumption that neither relation
R nor S is empty.

15.3.3 Block-Based Nested-Loop Join Algorithm
We can improve on the tuple-based nested-loop join of Section 15.3.1 if we
compute R tx S by:

1. Organizing access to both argument relations by blocks, and

2. Using as much main memory as we can to store tuples belonging to the
relation 5, the relation of the outer loop.

Point (1) makes sure that when we run through the tuples of R in the inner
loop, we use as few disk I /O ’s as possible to read R. Point (2) enables us to join
each tuple of R that we read with not just one tuple of S, but with as many
tuples of 5 as will fit in memory.

720 CHAPTER 15. QUERY EXECUTION

OpenO {
R .0 p en ();
S .0 p e n () ;
s := S.GetNextO ;

>

GetNextO {
REPEAT {

r := R.GetNextO ;
IF (r = NotFound) { /* R i s exhausted fo r

th e cu rren t s */
R .C loseO ;
s := S.GetNextO ;
IF (s = NotFound) RETURN NotFound;

/* both R and S are exhausted */
R.OpenO ;
r := R.GetNextO ;

>
>
UNTIL (r and s jo in) ;
RETURN th e jo in of r and s;

>

C lose() {
R .C loseO ;
S .C lo se O ;

>

Figure 15.7: Iterator methods for tuple-based nested-loop join of R and S

As in Section 15.2.3, let us assume B(S) < B(R) , but now let us also
assume that B(S) > M; i.e., neither relation fits entirely in main memory. We
repeatedly read M —1 blocks of S into main-memory buffers. A search structure,
with search key equal to the common attributes of R and S, is created for the
tuples of S that are in main memory. Then we go through all the blocks of R,
reading each one in turn into the last block of memory. Once there, we compare
all the tuples of R ’s block with all the tuples in all the blocks of S that are
currently in main memory. For those that join, we output the joined tuple.
The nested-loop structure of this algorithm can be seen when we describe the
algorithm more formally, in Fig. 15.8. The algorithm of Fig. 15.8 is sometimes
called “nested-block join.” We shall continue to call it simply nested-loop join,
since it is the variant of the nested-loop idea most commonly implemented in
practice.

15.3. NESTED-LOOP JOINS 721

FOR each chunk of M-l blocks of S DO BEGIN
read th ese blocks in to main-memory b u ffe rs ;
organize t h e i r tu p le s in to a search s tru c tu re whose

search key i s th e common a t t r ib u te s of R and S;
FOR each block b of R DO BEGIN

read b in to main memory;
FOR each tu p le t of b DO BEGIN

fin d th e tu p le s of S in main memory th a t
jo in w ith t ;

output th e jo in of t w ith each of th ese tu p le s ;
END;

END;
END;

Figure 15.8: The nested-loop join algorithm

The program of Fig. 15.8 appears to have three nested loops. However, there
really are only two loops if we look at the code at the right level of abstraction.
The first, or outer loop, runs through the tuples of S. The other two loops
run through the tuples of R. However, we expressed the process as two loops
to emphasize that the order in which we visit the tuples of R is not arbitrary.
Rather, we need to look at these tuples a block at a time (the role of the second
loop), and within one block, we look at all the tuples of that block before moving
on to the next block (the role of the third loop).

E xam ple 15.4: Let B(R) = 1000, B(S) = 500, and M = 101. We shall use
100 blocks of memory to buffer S in 100-block chunks, so the outer loop of
Fig. 15.8 iterates five times. At each iteration, we do 100 disk I /O ’s to read the
chunk of S, and we must read R entirely in the second loop, using 1000 disk
I /O ’s. Thus, the total number of disk I /O ’s is 5500.

Notice that if we reversed the roles of R and S, the algorithm would use
slightly more disk I /O ’s. We would iterate 10 times through the outer loop and
do 600 disk I/O ’s at each iteration, for a total of 6000. In general, there is a
slight advantage to using the smaller relation in the outer loop. □

15.3.4 Analysis of Nested-Loop Join
The analysis of Example 15.4 can be repeated for any B(R), B(S), and M. As
suming S is the smaller relation, the number of chunks, or iterations of the outer
loop is B (S) / (M — 1). At each iteration, we read M — 1 blocks of S and B(R)
blocks of R. The number of disk I /O ’s is thus B(S) (M — 1 + B (R)) / (M — 1),
or B(S)+{B(S)B {R)) / (M - 1).

Assuming all of M, B(S), and B(R) axe large, but M is the smallest of
these, an approximation to the above formula is B(S)B(R)/ M . That is, the

722 CHAPTER 15. QUERY EXECUTION

cost is proportional to the product of the sizes of the two relations, divided by
the amount of available main memory. We can do much better than a nested-
loop join when both relations are large. But for reasonably small examples
such as Example 15.4, the cost of the nested-loop join is not much greater than
the cost of a one-pass join, which is 1500 disk I /O ’s for this example. In fact,
if B(S) < M — 1, the nested-loop join becomes identical to the one-pass join
algorithm of Section 15.2.3.

Although nested-loop join is generally not the most efficient join algorithm
possible, we should note that in some early relational DBMS’s, it was the only
method available. Even today, it is needed as a subroutine in more efficient
join algorithms in certain situations, such as when large numbers of tuples from
each relation share a common value for the join attribute(s). For an example
where nested-loop join is essential, see Section 15.4.6.

15.3.5 Summary of Algorithms so Far
The main-memory and disk I/O requirements for the algorithms we have dis
cussed in Sections 15.2 and 15.3 are shown in Fig. 15.9. The memory require
ments for 7 and 6 are actually more complex than shown, and M — B is only
a loose approximation. For 7 , M depends on the number of groups, and for <5,
M depends on the number of distinct tuples.

Operators
Approximate
M required Disk I/O Section

(J , 7T 1 B 15.2.1
7 , s B B 15.2.2
u, n, x, M min (B(R) ,B(S)) B(R) + B(S) 15.2.3
X any M > 2 B (R)B (S) /M 15.3.3

Figure 15.9: Main memory and disk I/O requirements for one-pass and nested-
loop algorithms

15.3.6 Exercises for Section 15.3
E xercise 15.3.1: Give the three iterator methods for the block-based version
of nested-loop join.

E xercise 15.3.2: Suppose B{R) = B(S) = 10,000, and M = 1000. Calculate
the disk I/O cost of a nested-loop join.

E xercise 15.3.3: For the relations of Exercise 15.3.2, what value of M would
we need to compute R x S using the nested-loop algorithm with no more than
(a) 100,000 ! (b) 25,000 ! (c) 15,000 disk I /O ’s?

15.4. TWO-PASS ALGORITHMS BASED ON SORTING 723

E xercise 15.3.4: If R and S are both unclustered, it seems that nested-loop
join would require about T (R)T (S) /M disk I /O ’s.

a) How can you do significantly better than this cost?

b) If only one of R and S is unclustered, how would you perform a nested-
loop join? Consider both the cases that the larger is unclustered and that
the smaller is unclustered.

E xercise 15.3.5: The iterator of Fig. 15.7 will not work properly if either R
or 5 is empty. Rewrite the methods so they will work, even if one or both
relations are empty.

15.4 Two-Pass Algorithms Based on Sorting
We shall now begin the study of multipass algorithms for performing relational-
algebra operations on relations that are larger than what the one-pass algo
rithms of Section 15.2 can handle. We concentrate on two-pass algorithms,
where data from the operand relations is read into main memory, processed in
some way, written out to disk again, and then reread from disk to complete the
operation. We can naturally extend this idea to any number of passes, where
the data is read many times into main memory. However, we concentrate on
two-pass algorithms because:

a) Two passes are usually enough, even for very large relations.

b) Generalizing to more than two passes is not hard; we discuss these exten
sions in Section 15.4.1 and more generally in Section 15.8.

We begin with an implementation of the sorting operator r that illustrates the
general approach: divide a relation R for which B(R) > M into chucks of size
M, sort them, and then process the sorted sublists in some fashion that requires
only one block of each sorted sublist in main memory at any one time.

15.4.1 Two-Phase, Multiway Merge-Sort
It is possible to sort very large relations in two passes using an algorithm
called Two-Phase, Multiway Merge-Sort (TPMMS), Suppose we have M main-
memory buffers to use for the sort. TPMMS sorts a relation R as follows:

• Phase 1: Repeatedly fill the M buffers with new tuples from R and sort
them, using any main-memory sorting algorithm. Write out each sorted
sublist to secondary storage.

• Phase 2: Merge the sorted sublists. For this phase to work, there can be
at most M — 1 sorted sublists, which limits the size of R. We allocate
one input block to each sorted sublist and one block to the output. The

724 CHAPTER 15. QUERY EXECUTION

Input buffers, one for each sorted list

Pointers
to first
unchosen
records

\ Select sm allest
\ unchosen fo r ,

\ output /

Output

buffer

Figure 15.10: Main-memory organization for multiway merging

use of buffers is suggested by Fig. 15.10. A pointer to each input block
indicates the first element in the sorted order that has not yet been moved
to the output. We merge the sorted sublists into one sorted list with all
the records as follows.

1. Find the smallest key among the first remaining elements of all the
lists. Since this comparison is done in main memory, a linear search
is sufficient, taking a number of machine instructions proportional to
the number of sublists. However, if we wish, there is a method based
on “priority queues”2 that takes time proportional to the logarithm
of the number of sublists to find the smallest element.

2. Move the smallest element to the first available position of the output
block.

3. If the output block is full, write it to disk and reinitialize the same
buffer in main memory to hold the next output block.

4. If the block from which the smallest element was just taken is now
exhausted of records, read the next block from the same sorted sub
list into the same buffer that was used for the block just exhausted.
If no blocks remain, then leave its buffer empty and do not con
sider elements from that list in any further competition for smallest
remaining elements.

In order for TPMMS to work, there must be no more than M — 1 sublists.
Suppose R fits on B blocks. Since each sublist consists of M blocks, the number

2See A ho, A. V. a n d J . D . U llm an , F ounda tions o f C om pu ter Science, C o m p u te r Science
P ress , 1992.

15.4. TWO-PASS ALGORITHMS BASED ON SORTING 725

of sublists is J3 /M . We thus require B / M < M — 1, or B < M (M — 1) (or
about B < M 2).

The algorithm requires us to read B blocks in the first pass, and another B
disk I /O ’s to write the sorted sublists. The sorted sublists are each read again
in the second pass, resulting in a total of 3 5 disk I /O ’s. If, as is customary,
we do not count the cost of writing the result to disk (since the result may be
pipelined and never written to disk), then 2>B is all that the sorting operator r
requires. However, if we need to store the result on disk, then the requirement
is 4 B.

E xam ple 15.5: Suppose blocks are 64K bytes, and we have one gigabyte of
main memory. Then we can afford M of 16K. Thus, a relation fitting in B
blocks can be sorted as long as B is no more than (16K)2 = 228. Since blocks
are of size 64K = 214, a relation can be sorted as long as its size is no greater
than 242 bytes, or 4 terabytes. □

Example 15.5 shows that even on a modest machine, 2PMMS is sufficient to
sort all but an incredibly large relation in two passes. However, if you have an
even bigger relation, then the same idea can be applied recursively. Divide the
relation into chunks of size M (M — 1), use 2PMMS to sort each one, and then
treat the resulting sorted lists as sublists for a third pass. The idea extends
similarly to any number of passes.

15.4.2 Duplicate Elimination Using Sorting

To perform the S(R) operation in two passes, we sort the tuples of R in sublists
as in 2PMMS. In the second pass, we use the available main memory to hold
one block from each sorted sublist and one output block, as we did for 2PMMS.
However, instead of sorting on the second pass, we reapeatedly select the first
(in sorted order) unconsidered tuple t among all the sorted sublists. We write
one copy of t to the output and eliminate from the input blocks all occurrences
of t. Thus, the output will consist of exactly one copy of any tuple in R; they
will in fact be produced in sorted order. When an output block is full or an
input block empty, we manage the buffers exactly as in 2PMMS.

The number of disk I /O ’s performed by this algorithm, as always ignoring
the handling of the output, is the same as for sorting: 3B(R). This figure can
be compared with B(R) for the single-pass algorithm of Section 15.2.2. On
the other hand, we can handle much larger files using the two-pass algorithm
than with the one-pass algorithm. As for 2PMMS, approximately B < M 2
is required for the two-pass algorithm to be feasible, compared with B < M
for the one-pass algorithm. Put another way, to eliminate duplicates with the
two-pass algorithm requires only \ /B{R) blocks of main memory, rather than
the B{R) blocks required for a one-pass algorithm.

726 CHAPTER 15. QUERY EXECUTION

15.4.3 Grouping and Aggregation Using Sorting
The two-pass algorithm for 7l (R) is quite similar to the algorithm for 6(R) or
2PMMS. We summarize it as follows:

1. Read the tuples of R into memory, M blocks at a time. Sort the tuples in
each set of M blocks, using the grouping attributes of L as the sort key.
Write each sorted sublist to disk.

2. Use one main-memory buffer for each sublist, and initially load the first
block of each sublist into its buffer.

3. Repeatedly find the least value of the sort key (grouping attributes)
present among the first available tuples in the buffers. This value, v,
becomes the next group, for which we:

(a) Prepare to compute all the aggregates on list L for this group. As
in Section 15.2.2, use a count and sum in place of an average.

(b) Examine each of the tuples with sort key v, and accumulate the
needed aggregates.

(c) If a buffer becomes empty, replace it with the next block from the
same sublist.

When there are no more tuples with sort key v available, output a tuple
consisting of the grouping attributes of L and the associated values of the
aggregations we have computed for the group.

As for the S algorithm, this two-pass algorithm for 7 takes 3B(R) disk I /O ’s,
and will work as long as B(R) < M 2.

15.4.4 A Sort-Based Union Algorithm
When bag-union is wanted, the one-pass algorithm of Section 15.2.3, where we
simply copy both relations, works regardless of the size of the arguments, so
there is no need to consider a two-pass algorithm for Ub- However, the one-
pass algorithm for Us only works when at least one relation is smaller than the
available main memory, so we must consider a two-pass algorithm for set union.
The methodology we present works for the set and bag versions of intersection
and difference as well, as we shall see in Section 15.4.5. To compute R Us 5,
we modify 2PMMS as follows:

1. In the first phase, create sorted sublists from both R and S.

2. Use one main-memory buffer for each sublist of R and S. Initialize each
with the first block from the corresponding sublist.

15.4. TWO-PASS ALGORITHMS BASED ON SORTING 727

3. Repeatedly find the first remaining tuple t among all the buffers. Copy
t to the output, and remove from the buffers all copies of t (if R and S
are sets there should be at most two copies). Manage empty input buffers
and a full output buffer as for 2PMMS.

We observe that each tuple of R and S is read twice into main memory,
once when the sublists are being created, and the second time as part of one of
the sublists. The tuple is also written to disk once, as part of a newly formed
sublist. Thus, the cost in disk I /O ’s is 3 (B(R) + B(S)).

The algorithm works as long as the total number of sublists among the two
relations does not exceed M — 1, because we need one buffer for each sublist
and one for the output Thus, approximately, the sum of the sizes of the two
relations must not exceed M 2; that is, B(R) + B(S) < M 2.

15.4.5 Sort-Based Intersection and Difference
Whether the set version or the bag version is wanted, the algorithms are es
sentially the same as that of Section 15.4.4, except that the way we handle the
copies of a tuple t at the fronts of the sorted sublists differs. For each algorithm,
we repeatedly consider the tuple t that is least in the sorted order among all
tuples remaining in the input buffers. We produce output as follows, and then
remove all copies of t from the input buffers.

• For set intersection, output t if it appears in both R and S.

• For bag intersection, output t the minimum of the number of times it
appears in R and in S. Note that t is not output if either of these counts
is 0; that is, if t is missing from one or both of the relations.

• For set difference, R — s S, output t if and only if it appears in R but not
in S.

• For bag difference, R ~ b 5, output t the number of times it appears in R
minus the number of times it appears in S. Of course, if t appears in S
at least as many times as it appears in R, then do not output t at all.

One subtlely must be remembered for the bag operations. When counting
occurrences of t, it is possible that all remaining tuples in an input buffer are
t. If so, there may be more it’s on the next block for that sublist. Thus, when
a buffer has only t ’s remaining, we must load the next block for that sublist,
continuing the count of t ’s. This process may continue for several blocks and
may need to be done for several sublists.

The analysis of this family of algorithms is the same as for the set-union
algorithm described in Section 15.4.4:

• 3 (B (R) + B (S)) disk I /O ’s.

• Approximately B(R) + B(S) < M 2 for the algorithm to work.

728 CHAPTER 15. QUERY EXECUTION

15.4.6 A Simple Sort-Based Join Algorithm
There axe several ways that sorting can be used to join large relations. Before
examining the join algorithms, let us observe one problem that can occur when
we compute a join but was not an issue for the binary operations considered
so far. When taking a join, the number of tuples from the two relations that
share a common value of the join attribute(s), and therefore need to be in main
memory simultaneously, can exceed what fits in memory. The extreme example
is when there is only one value of the join attribute (s), and every tuple of one
relation joins with every tuple of the other relation. In this situation, there is
really no choice but to take a nested-loop join of the two sets of tuples with a
common value in the join-attribute(s).

To avoid facing this situation, we can try to reduce main-memory use for
other aspects of the algorithm, and thus make available a large number of buffers
to hold the tuples with a given join-attribute value. In this section we shall dis
cuss the algorithm that makes the greatest possible number of buffers available
for joining tuples with a common value. In Section 15.4.8 we consider another
sort-based algorithm that uses fewer disk I /O ’s, but can present problems when
there are large numbers of tuples with a common join-attribute value.

Given relations R(X, Y) and S(Y, Z) to join, and given M blocks of main
memory for buffers, we do the following:

1. Sort R, using 2PMMS, with Y as the sort key.

2 . Sort S similarly.

3. Merge the sorted R and S. We use only two buffers: one for the current
block of R and the other for the current block of S. The following steps
are done repeatedly:

(a) Find the least value y of the join attributes Y that is currently at
the front of the blocks for R and S.

(b) If y does not appear at the front of the other relation, then remove
the tuple(s) with sort key y.

(c) Otherwise, identify all the tuples from both relations having sort key
y. If necessary, read blocks from the sorted R and/or S, until we are
sure there are no more y ’s in either relation. As many as M buffers
are available for this purpose.

(d) Output all the tuples that can be formed by joining tuples from R
and S that have a common Y -value y.

(e) If either relation has no more unconsidered tuples in main memory,
reload the buffer for that relation.

E xam ple 15.6: Let us consider the relations R and S from Example 15.4.
Recall these relations occupy 1000 and 500 blocks, respectively, and there are
M — 101 main-memory buffers. When we use 2PMMS on a relation and store

15.4. TWO-PASS ALGORITHMS BASED ON SORTING 729

the result on disk, we do four disk I /O ’s per block, two in each of the two
phases. Thus, we use 4 (B(R) + B(S)) disk I /O ’s to sort R and S, or 6000 disk
I /O ’s.

When we merge the sorted R and S to find the joined tuples, we read each
block of R and S a fifth time, using another 1500 disk I /O ’s. In this merge we
generally need only two of the 101 blocks of memory. However, if necessary, we
could use all 101 blocks to hold the tuples of R and S that share a common
F-value y. Thus, it is sufficient that for no y do the tuples of R and S that
have Y -value y together occupy more than 101 blocks.

Notice that the total number of disk I/O ’s performed by this algorithm
is 7500, compared with 5500 for nested-loop join in Example 15.4. However,
nested-loop join is inherently a quadratic algorithm, taking time proportional
to B(R)B(S) , while sort-join has linear I/O cost, taking time proportional to
B(R) + B(S). It is only the constant factors and the small size of the example
(each relation is only 5 or 10 times larger than a relation that fits entirely in
the allotted buffers) that make nested-loop join preferable. □

15.4.7 Analysis of Simple Sort-Join
As we noted in Example 15.6, the algorithm of Section 15.4.6 performs five
disk I /O ’s for every block of the argument relations. We also need to consider
how big M needs to be in order for the simple sort-join to work. The primary
constraint is that we need to be able to perform the two-phase, multiway merge
sorts on R and S. As we observed in Section 15.4.1, we need B(R) < M 2 and
B(S) < M 2 to perform these sorts. In addition, we require that all the tuples
with a common Y -value must fit in M buffers. In summary:

• The simple sort-join uses 5 (B(R) + B(S)) disk I /O ’s.

• It requires B(R) < M 2 and B(S) < M 2 to work.

• It also requires that the tuples with a common value for the join attributes
fit in M blocks.

15.4.8 A More Efficient Sort-Based Join
If we do not have to worry about very large numbers of tuples with a com
mon value for the join attribute(s), then we can save two disk I /O ’s per block
by combining the second phase of the sorts with the join itself. We call this
algorithm sort-join; other names by which it is known include “merge-join”
and “sort-merge-join.” To compute R (X , Y) m S(Y ,Z) using M main-memory
buffers:

1. Create sorted sublists of size M, using Y as the sort key, for both R and
5.

730 CHAPTER 15. QUERY EXECUTION

2. Bring the first block of each sublist into a buffer; we assume there are no
more than M sublists in all.

3. Repeatedly find the least F-value y among the first available tuples of all
the sublists. Identify all the tuples of both relations that have F-value
y , perhaps using some of the M available buffers to hold them, if there
are fewer than M sublists. Output the join of all tuples from R with all
tuples from S that share this common F-value. If the buffer for one of
the sublists is exhausted, then replenish it from disk.

E xam ple 15.7: Let us again consider the problem of Example 15.4: joining
relations R and S of sizes 1000 and 500 blocks, respectively, using 101 buffers.
We divide R into 10 sublists and S into 5 sublists, each of length 100, and sort
them .3 We then use 15 buffers to hold the current blocks of each of the sublists.
If we face a situation in which many tuples have a fixed F-value, we can use
the remaining 86 buffers to store these tuples.

We perform three disk I /O ’s per block of data. Two of those are to cre
ate the sorted sublists. Then, every block of every sorted sublist is read into
main memory one more time in the multiway merging process. Thus, the total
number of disk I /O ’s is 4500. □

This sort-join algorithm is more efficient than the algorithm of Section 15.4.6
when it can be used. As we observed in Example 15.7, the number of disk I /O ’s
is 3 (B(R) + B(S)). We can perform the algorithm-on data that is almost as
large as that of the previous algorithm. The sizes of the sorted sublists are
M blocks, and there can be at most M of them Wnojig the two lists. Thus,
B(R) + B(S) < M 2 is sufficient.

15.4.9 Summary of Sort-Based Algorithms

In Fig. 15.11 is a table of the analysis of the algorithms we have discussed in
Section 15.4. As discussed in Sections 15.4.6 and 15.4.8, the join algorithms
have limitiations on how many tuples can share a common value of the join
attribute(s). If this limit is violated, we may have to use a nest-loop join
instead.

15.4.10 Exercises for Section 15.4

Exercise 15.4.1: For each of the following operations, write an iterator that
uses the algorithm described in this section: (a) distinct (J) (b) grouping (7^)
(c) set intersection (d) bag difference (e) natural join.

te c h n ic a l ly , we could have a rra n g ed fo r th e su b lis ts to have len g th 101 blocks each, w ith
th e las t sub lis t of R hav ing 91 blocks an d th e las t su b lis t o f S having 96 blocks, b u t th e costs
w ould tu rn o u t ex ac tly th e sam e.

15.4. TWO-PASS ALGORITHMS BASED ON SORTING 731

Operators
Approximate
M required Disk I/O Section

r , 7 , S V b 3 B 15.4.1, 15.4.2,
15.4.3

u, n, - y/B(R) + B(S) 3 (B(R) + B(S)) 15.4.4, 15.4.5

tx ^/max(B(R) ,B (S)) 5 (B(R) + B{S)) 15.4.6

IXI y/B(R) + B{S) 3 (B {R)+ B (S)) 15.4.8

Figure 15.11: Main memory and disk I/O requirements for sort-based algo
rithms

Exercise 15.4.2: If B(R) = B(S) = 10,000 and M = 1000, what are the disk
I/O requirements of: (a) set union (b) simple sort-join (c) the more efficient
sort-join of Section 15.4.8.

E xercise 15.4.3: Suppose that the second pass of an algorithm described
in this section does not need all M buffers, because there are fewer than M
sublists. How might we save disk I /O ’s by using the extra buffers?

E xercise 15.4.4: In Example 15.6 we discussed the join of two relations R
and S, with 1000 and 500 blocks, respectively, and M — 101. However, we
need additional additional disk I /O ’s if there are so many tuples with a given
value that neither relation’s tuples could fit in main memory. Calculate the
total number of disk I/O ’s needed if:

a) There are only two y-values, each appearing in half the tuples of R and
half the tuples of S (recall Y is the join attribute or attributes).

b) There are five Y -values, each equally likely in each relation.

c) There are 10 F-values, each equally likely in each relation.

E xercise 15.4.5: Repeat Exercise 15.4.4 for the more efficient sort-join of
Section 15.4.8.

E xercise 15.4.6: How much memory do we need to use a two-pass, sort-based
algorithm for relations of 10,000 blocks each, if the operation is: (a) 8 (b) 7
(c) a binary operation such as join or union.

E xercise 15.4.7: Describe a two-pass, sort-based algorithm for each of the
join-like operators of Exercise 15.2.4.

732 CHAPTER 15. QUERY EXECUTION

! Exercise 15.4.8: Suppose records could be larger than blocks, i.e., we could
have spanned records. How would the memory requirements of two-pass, sort-
based algorithms change?

!! Exercise 15.4.9: Sometimes, it is possible to save some disk I /O ’s if we leave
the last sublist in memory. It may even make sense to use sublists of fewer than
M blocks to take advantage of this effect. How many disk I /O ’s can be saved
this way?

15.5 Two-Pass Algorithm s Based on Hashing
There is a family of hash-based algorithms that attack the same problems as
in Section 15.4. The essential idea behind all these algorithms is as follows.
If the data is too big to store in main-memory buffers, hash all the tuples of
the argument or arguments using an appropriate hash key. For all the common
operations, there is a way to select the hash key so all the tuples that need to be
considered together when we perform the operation fall into the same bucket.

We then perform the operation by working on one bucket at a time (or on
a pair of buckets with the same hash value, in the case of a binary operation).
In effect, we have reduced the size of the operand(s) by a factor equal to the
number of buckets, which is roughly M. Notice that the sort-based algorithms
of Section 15.4 also gain a factor of M by preprocessing, although the sorting
and hashing approaches achieve their similar gains by rather different means.

15.5.1 Partitioning Relations by Hashing
To begin, let us review the way we would take a relation R and, using M buffers,
partition R into M — 1 buckets of roughly equal size. We shall assume that
h is the hash function, and that h takes complete tuples of R as its argument
(i.e., all attributes of R are part of the hash key). We associate one buffer with
each bucket. The last buffer holds blocks of R , one at a time. Each tuple t in
the block is hashed to bucket h(t) and copied to the appropriate buffer. If that
buffer is full, we write it out to disk, and initialize another block for the same
bucket. At the end, we write out the last block of each bucket if it is not empty.
The algorithm is given in more detail in Fig. 15.12.

15.5.2 A Hash-Based Algorithm for Duplicate
Elimination

We shall now consider the details of hash-based algorithms for the various
operations of relational algebra that might need two-pass algorithms. First,
consider duplicate elimination, that is, the operation S(R). We hash R to
M — 1 buckets, as in Fig. 15.12. Note that two copies of the same tuple t will
hash to the same bucket. Thus, we can examine one bucket at a time, perform
<5 on that bucket in isolation, and take as the answer the union of S(Ri), where

15.5. TWO-PASS ALGORITHMS BASED ON HASHING 733

initialize M-l buckets using M-l empty buffers;
FOR each block b of relation R DO BEGIN

read block b into the Mth buffer;
FOR each tuple t in b DO BEGIN

IF the buffer for bucket h(t) has no room for t THEN
BEGIN

copy the buffer to disk;
initialize a new empty block in that buffer;

END;
copy t to the buffer for bucket h(t);

END;
END;
FOR each bucket DO

buffer for this bucket is not empty THEN
ite the buffer to disk;

Figure 15.12: Partitioning a relation R into M — 1 buckets

Ri is the portion of R that hashes to the ith bucket. The one-pass algorithm
of Section 15.2.2 can be used to eliminate duplicates from each Ri in turn and
write out the resulting unique tuples.

This method will work as long as the individual R i ’s are sufficiently small
to fit in main memory and thus allow a one-pass algorithm. Since we may
assume the hash function h partitions R into equal-sized buckets, each Ri will
be approximately B(R)/(M — 1) blocks in size. If that number of blocks is no
larger than M, i.e., B(R) < M(M — 1), then the two-pass, hash-based algorithm
will work. In fact, as we discussed in Section 15.2.2, it is only necessary that the
number of distinct tuples in one bucket fit in M buffers. Thus, a conservative
estimate (assuming M and M — 1 are essentially the same) is B(R) < M 2,
exactly as for the sort-based, two-pass algorithm for 6.

The number of disk I /O ’s is also similar to that of the sort-based algorithm.
We read each block of R once as we hash its tuples, and we write each block
of each bucket to disk. We then read each block of each bucket again in the
one-pass algorithm that focuses on that bucket. Thus, the total number of disk
I /O ’s is 3B(R).

15.5.3 Hash-Based Grouping and Aggregation
To perform the 7 l (R) operation, we again start by hashing all the tuples of
R to M — 1 buckets. However, in order to make sure that all tuples of the
same group wind up in the same bucket, we must choose a hash function that
depends only on the grouping attributes of the list L.

Having partitioned R into buckets, we can then use the one-pass algorithm
for 7 from Section 15.2.2 to process each bucket in turn. As we discussed

734 CHAPTER 15. QUERY EXECUTION

for S in Section 15.5.2, we can process each bucket in main memory provided
B{R) < M 2.

However, on the second pass, we need only one record per group as we
process each bucket. Thus, even if the size of a bucket is larger than M, we
can handle the bucket in one pass provided the records for all the groups in the
bucket take no more than M buffers. As a consequence, if groups are large, then
we may actually be able to handle much larger relations R than is indicated by
the B(R) < M 2 rule. On the other hand, if M exceeds the number of groups,
then we cannot fill all buckets. Thus, the actual limitation on the size of R as a
function of M is complex, but B(R) < M 2 is a conservative estimate. Finally,
we observe that the number of disk I /O ’s for 7 , as for 8, is 3B(R).

15.5.4 Hash-Based Union, Intersection, and Difference

When the operation is binary, we must make sure that we use the same hash
function to hash tuples of both arguments. For example, to compute R Us 5,
we hash both R and S to M — 1 buckets each, say i? i, -R2, - - • , R m - 1 and
S i,5 2, • • • , S m - 1. We then take the set-union of Ri with Si for all i, and
output the result. Notice that if a tuple t appears in both R and S, then for
some i we shall find t in both Ri and Si. Thus, when we take the union of these
two buckets, we shall output only one copy of t , and there is no possibility of
introducing duplicates into the result. For Ub, the simple bag-union algorithm
of Section 15.2.3 is preferable to any other approach for that operation.

To take the intersection or difference of R and S, we create the 2(M — 1)
buckets exactly as for set-union and apply the appropriate one-pass algorithm
to each pair of corresponding buckets. Notice that all these one-pass algorithms
require B(R) -I- B(S) disk I /O ’s. To this quantity w em yst add the two disk
I /O ’s per block that are necessary to hash the tuples of tne two relations and
store the buckets on disk, for a total of 3 (B{R) + 5 (5)) disk I /O ’s.

In order for the algorithms to work, we must be able to take the one-pass
union, intersection, or difference of Ri and Si, whose sizes will be approxi
mately B(R)/(M - 1) and B(S)/(M - 1), respectively. Recall that the one-
pass algorithms for these operations require that the smaller operand occupies
at most M — 1 blocks. Thus, the two-pass, hash-based algorithms require that
min(B(R),B(S)) < M 2, approximately.

15.5.5 The Hash-Join Algorithm

To compute R{X, Y) tx S(Y, Z) using a two-pass, hash-based algorithm, we
act almost as for the other binary operations discussed in Section 15.5.4. The
only difference is that we must use as the hash key just the join attributes,
Y. Then we can be sure that if tuples of R and S join, they will wind up in
corresponding buckets Ri and Si for some i. A one-pass join of all pairs of

15.5. TWO-PASS ALGORITHMS BASED ON HASHING 735

corresponding buckets completes this algorithm, which we call hash-join.4

E xam ple 15.8: Let us renew our discussion of the two relations R and S from
Example 15.4, whose sizes were 1000 and 500 blocks, respectively, and for which
101 main-memory buffers are made available. We may hash each relation to
100 buckets, so the average size of a bucket is 10 blocks for R and 5 blocks
for S. Since the smaller number, 5, is much less than the number of available
buffers, we expect to have no trouble performing a one-pass join on each pair
of buckets.

The number of disk I /O ’s is 1500 to read each of R and S while hashing
into buckets, another 15O0 to write all the buckets to disk, and a third 1500 to
read each pair of buckets into main memory again while taking the one-pass
join of corresponding buckets. Thus, the number of disk I /O ’s required is 4500,
just as for the efficient sort-join of Section 15.4.8. □

We may generalize Example 15.8 to conclude that:

• Hash join requires 3 (B(R) + B(S)) disk I /O ’s to perform its task.

• The two-pass hash-join algorithm will work as long as approximately
min(B(R) ,B(S)) < M 2.

The argument for the latter point is the same as for the other binary operations:
one of each pair of buckets must fit in M — 1 buffers.

15.5.6 Saving Some Disk I /O ’s
If there is more memory available on the first pass than we need to hold one
block per bucket, then we have some opportunities to save disk I /O ’s. One
option is to use several blocks for each bucket, and write them out as a group,
in consecutive blocks of disk. Strictly speaking, this technique doesn’t save disk
I/O ’s, but it makes the I /O ’s go faster, since we save seek time and rotational
latency when we write.

However, there are several tricks that have been used to avoid writing some
of the buckets to disk and then reading them again. The most effective of them,
called hybrid hash-join, works as follows. In general, suppose we decide that to
join R t x S, with S the smaller relation, we need to create k buckets, where k
is much less than M, the available memory. When we hash S, we can choose
to keep m of the k buckets entirely in main memory, while keeping only one
block for each of the other k — m buckets. We can manage to do so provided
the expected size of the buckets in memory, plus one block for each of the other
buckets, does not exceed M ; that is:

m B (S) / k + k — m < M (15.1)

4Som etim es, th e te rm “hash-jo in” is reserved for th e varian t o f th e one-pass jo in a lgo rithm
of Section 15.2.3 in w hich a hash tab le is used as th e m ain-m em ory search s tru c tu re . T hen ,
th e tw o-pass hash-jo in a lgo rithm described here is called “p a r titio n hash-jo in .”

736 CHAPTER 15. QUERY EXECUTION

In explanation, the expected size of a bucket is B (S)/k, and there are m buckets
in memory.

Now, when we read the tuples of the other relation, R, to hash that relation
into buckets, we keep in memory:

1. The rn buckets of 5 that were never written to disk, and

2. One block for each of the k — m buckets of R whose corresponding buckets
of 5 were written to disk.

If a tuple t of R hashes to one of the first m buckets, then we immediately
join it with all the tuples of the corresponding 5-bucket, as if this were a one-
pass, hash-join. It is necessary to organize each of the in-memory buckets of 5
into an efficient search structure to facilitate this join, just as for the one-pass
hash-join. If t hashes to one of the buckets whose corresponding 5-bucket is on
disk, then t is sent to the main-memory block for that bucket, and eventually
migrates to disk, as for a two-pass, hash-based join.

On the second pass, we join the corresponding buckets of R and 5 as usual.
However, there is no need to join the pairs of buckets for which the 5-bucket
was left in memory; these buckets have already been joined and their result
output.

The savings in disk I /O ’s is equal to two for every block of the buckets of 5
that remain in memory, and their corresponding ft-buckets. Since m / k of the
buckets are in memory, the savings is 2(m/k)(B(R) + B(S)) . We must thus
ask how to maximize m/k , subject to the constraint of Equation (15.1). The
surprising answer is: pick m — 1, and then make k as small as possible.

The intuitive justification is that all but k — m of the main-memory buffers
can be used to hold tuples of 5 in main memory, and the more of these tuples,
the fewer the disk I /O ’s. Thus, we want to minimize k, the total number of
buckets. We do so by making each bucket about'as big as can fit in main
memory; that is, buckets are of size M, and therefore k = B (S) /M . If that is
the case, then there is only room for one bucket in the extra main memory; i.e.,
m — 1.

In fact, we really need to make the buckets slightly smaller than B(S) /M ,
or else we shall not quite have room for one full bucket and one block for the
other k — 1 buckets in memory at the same time. Assuming, for simplicity, that
k is about B (S) / M and m = 1, the savings in disk I/O ’s is

2 M (B (R) + B { S)) / B { S)

and the total cost is (3 — 2M /B (S)) (B (R) + B(S)).

E xam ple 15.9: Consider the problem of Example 15.4, where we had to join
relations R and 5 , of 1000 and 500 blocks, respectively, using M = 101. If we
use a hybrid hash-join, then we want k, the number of buckets, to be about
500/101. Suppose we pick k = 5. Then the average bucket will have 100 blocks

15.5. TWO-PASS ALGORITHMS BASED ON HASHING 737

of S ’s tuples. If we try to fit one of these buckets and four extra blocks for the
other four buckets, we need 104 blocks of main memory, and we cannot take
the chance that the in-memory bucket will overflow memory.

Thus, we are advised to choose k = 6 . Now, when hashing S on the first
pass, we have five buffers for five of the buckets, and we have up to 96 buffers
for the in-memory bucket, whose expected size is 500/6 or 83. The number
of disk I/O ’s we use for S on the first pass is thus 500 to read all of S, and
500 — 83 = 417 to write five buckets to disk. When we process R on the first
pass, we need to read alJ,of R (1000 disk I /O ’s) and write 5 of its 6 buckets
(833 disk I /O ’s). (

On the second pass, V e read all the buckets written to disk, or 417 + 833 =
1250 additional disk I /O ’s. T m total number of disk I /O ’s is thus 1500 to read
R and S, 1250 to write 5/6 of these relations, and another 1250 to read those
tuples again, or 4000 disk I /O ’s. This figure compares with the 4500 disk I /O ’s
needed for the straightforward hash-join or sort-join. □

15.5.7 Summary of Hash-Based Algorithms
Figure 15.13 gives the memory requirements and disk I /O ’s needed by each of
the algorithms discussed in this section. As with other types of algorithms, we
should observe that the estimates for 7 and S may be conservative, since they
really depend on the number of duplicates and groups, respectively, rather than
on the number of tuples in the argument relation.

Operators
Approximate
M required Disk I/O Section

7 , <5 V b W 15.5.2, 15.5.3

u, n, - V B (S) 3 (B(R) + B(S)) 15.5.4

CXI V B (S) 3 (B { R)+ B (S)) 15.5.5

IX V B (S) (3 - 2 M /B (S)) (B (R) + B(S)) 15.5.6

Figure 15.13: Main memory and disk I/O requirements for hash-based algo
rithms; for binary operations, assume B(S) < B(R)

Notice that the requirements for sort-based and the corresponding hash-
based algorithms are almost the same. The significant differences between the
two approaches are:

1. Hash-based algorithms for binary operations have a size requirement that
depends only on the smaller of two arguments rather than on the sum of
the argument sizes, that sort-based algorithms require.

738 CHAPTER 15. QUERY EXECUTION

2. Sort-based algorithms sometimes allow us to produce a result in sorted
order and take advantage of that sort later. The result might be used in
another sort-based algorithm for a subsequent operator, or it could be the
answer to a query that is required to be produced in sorted order.

3. Hash-based algorithms depend on the buckets being of equal size. Since
there is generally at least a small variation in size, it is not possible to
use buckets that, on average, occupy M blocks; we must limit them to a
slightly smaller figure. This effect is especially prominent if the number
of different hash keys is small, e.g., performing a group-by on a relation
with few groups or a join with very few values for the join attributes.

4. In sort-based algorithms, the sorted sublists may be written to consecutive
blocks of the disk if we organize the disk properly. Thus, one of the three
disk I /O ’s per block may require little rotational latency or seek time
and therefore may be much faster than the I/O ’s needed for hash-based
algorithms.

5. Moreover, if M is much larger than the number of sorted sublists, then
we may read in several consecutive blocks at a time from a sorted sublist,
again saving some latency and seek time.

6 . On the other hand, if we can choose the number of buckets to be less than
M in a hash-based algorithm, then we can write out several blocks of a
bucket at once. We thus obtain the same benefit on the write step for
hashing that the sort-based algorithms have for the second read, as we
observed in (5). Similarly, we may be able to organize the disk so that a
bucket eventually winds up on consecutive blocks of tracks. If so, buckets
can be read with little latency or seek time, just as sorted sublists were
observed in (4) to be writable efficiently.

15.5.8 Exercises for Section 15.5
E xercise 15.5.1: The hybrid-hash-join jdeS^storing one bucket in main mem
ory, can also be applied to other operations. Show how to save the cost of stor
ing and reading one bucket from each relation when implementing a two-pass,
hash-based algorithm for: (a) 8 (b) 7 (c) C\pf (d) —5 .

E xercise 15.5.2: If B(S) = B(R) = 10,000 and M = 1000, what is the
number of disk I /O ’s required for a hybrid hash join?

E xercise 15.5.3: Write iterators that implement the two-pass, hash-based
algorithms for (a) S (b) 7 (c) C]B (d) ~ s (e) tx.

Exercise 15.5.4: Suppose we are performing a two-pass, hash-based grouping
operation on a relation R of the appropriate size; i.e., B(R) < M 2. However,
there are so few groups, that some groups are larger than M; i.e., they will not

15.6. INDEX-BASED ALGORITHMS 739

fit in main memory at once. What modifications, if any, need to be made to
the algorithm given here?

! E xercise 15.5.5: Suppose that we are using a disk where the time to move
the head to a block is 100 milliseconds, and it takes 1 /2 millisecond to read
one block. Therefore, it takes k/2 milliseconds to read k consecutive blocks,
once the head is positioned^ Suppose we want to compute a two-pass hash-join
R tx S, where B(R) = 1000, B(S) = 500, and M = 101. To speed up the join,
we want to use as few buosets as possible (assuming tuples distribute evenly
among buckets), and read and write as many blocks as we can to consecutive
positions on disk. Counting 100.5 milliseconds for a random disk I/O and
100 + k/2 milliseconds for reading or writing k consecutive blocks from or to
disk:

a) How much time does the disk I/O take?

b) How much time does the disk I/O take if we use a hybrid hash-join as
described in Example 15.9?

c) How much time does a sort-based join take under the same conditions,
assuming we write sorted sublists to consecutive blocks of disk?

15.6 Index-Based Algorithms
The existence of an index on one or more attributes of a relation makes available
some algorithms that would not be feasible without the index. Index-based
algorithms are especially useful for the selection operator, but algorithms for
join and other binary operators also use indexes to very good advantage. In
this section, we shall introduce these algorithms. We also continue with the
discussion of the index-scan operator for accessing a stored table with an index
that we began in Section 15.1.1. To appreciate many of the issues, we first need
to digress and consider “clustering” indexes.

15.6.1 Clustering and Nonclustering Indexes
Recall from Section 15.1.3 that a relation is “clustered” if its tuples axe packed
into roughly as few blocks as can possibly hold those tuples. All the analyses
we have done so far assume that relations are clustered.

We may also speak of clustering indexes, which are indexes on an attribute
or attributes such that all the tuples with a fixed value for the search key of this
index appear on roughly as few blocks as can hold them. Note that a relation
that isn’t clustered cannot have a clustering index,5 but even a clustered relation

t e c h n ic a l ly , if th e index is on a key for th e re la tion , so only one tu p le w ith a given value
in th e index key exists, th en th e index is alw ays “c luste ring ,” even if th e re la tion is not
c lustered . However, if th e re is only one tu p le p er index-key value, th en th e re is no advantage
from clustering , an d th e perform ance m easure for such an index is th e sam e as if it were
considered nonclustering .

740 CHAPTER 15. QUERY EXECUTION

can have nonclustering indexes.

E xam ple 15.10: A relation R(a, b) that is sorted on attribute a and stored in
that order, packed into blocks, is surely clustered. An index on a is a clustering
index, since for a given a-value a\, all the tuples with that value for a are
consecutive. They thus appear packed into blocks, except possibly for the first
and last blocks that contain a-value oi, as suggested in Fig. 15.14. However, an
index on b is unlikely to be clustering, since the tuples with a fixed 6-value will
be spread all over the file unless the values of a and b are very closely correlated.
□

al al al a\ a\ a\ dj tZj £Zj al

All the flj tuples

Figure 15.14: A clustering index has all tuples with a fixed value packed into
(close to) the minimum possible number of blocks

15.6.2 Index-Based Selection
In Section 15.1.1 we discussed implementing a selection ac(R) by reading all
the tuples of relation R, seeing which meet the condition C, and outputting
those that do. If there are no indexes on R, then that is the best we can do;
the number of disk I /O ’s used by the operation is B(R), or even T(R), the
number of tuples of R, should R not be a clustered relation.6 However, suppose
that the condition C is of the form a = v, where a is an attribute for which
an index exists, and v is a value. Then one can search the index with value v
and get pointers to exactly those tuples of R that have a-value v. These tuples
constitute the result of aa=v(R), so all we have to do is retrieve them.

If the index on R.a is a clustering Index, then the number of disk I /O ’s to
retrieve the set aa=v(R) will average B(Rj)/V(R, a). The actual number may
be somewhat higher for several reasons: /

1. Often, the index is not kept entirely in main memory, and some disk I /O ’s
are needed to support the index lookup.

2. Even though all the tuples with a — v might fit in b blocks, they could
be spread over b + 1 blocks because they don’t start at the beginning of
a block.

6R.ecall from Section 15.1.3 th e n o ta tio n we developed: T (R) for th e num ber of tu p les in
R , B (R) for th e num ber o f blocks in w hich R fits, an d V (R ,L) for th e num ber o f d istinc t
tu p le s in 7r/,(/?).

15.6. INDEX-BASED ALGORITHMS 741

3. Even though the tuples of R may be clustered, they may not be packed
as tightly as possible into blocks. For example, there could be extra space
for tuples to be inserted into R later, or R could be in a clustered file, as
discussed in Section 14.1.6.

Moreover, we of course must rpurtJ up if the ratio B(R) /V (R ,a) is not an
integer. Most significant is that should a be a key for R, then V(R, a) = T (R),
which is presumably much bigger than B(R), yet we surely require one disk
I/O to retrieve the tuple with Kgy value v, plus whatever disk I /O ’s are needed
to access the index.

Now, let us consider what happens when the index on R.a is nonclustering.
To a first approximation, each tuple we retrieve will be on a different block,
and we must access T(R)/ V (R ,a) tuples. Thus, T(R)/ V(R ,a) is an estimate
of the number of disk I /O ’s we need. The number could be higher because we
may also need to read some index blocks from disk; it could be lower because
fortuitously some retrieved tuples appear on the same block, and that block
remains buffered in memory.

E xam ple 15.11: Suppose B(R) = 1000, and T(R) — 20,000. That is, R has
20,000 tuples, packed at most 20 to a block. Let a be one of the attributes of
R, suppose there is an index on a, and consider the operation era=o(R). Here
are some possible situations and the worst-case number of disk I /O ’s required.
We shall ignore the cost of accessing the index blocks in all cases.

1. If R is clustered, but we do not use the index, then the cost is 1000 disk
I /O ’s. That is, we must retrieve every block of R.

2. If R is not clustered and we do not use the index, then the cost is 20,000
disk I /O ’s.

3. If V(R, a) — 100 and the index is clustering, then the index-based algo
rithm uses 1000/100 = 10 disk I /O ’s, plus whatever is needed to access
the index.

4. If V(R,a) = 10 and the index is nonclustering, then the index-based
algorithm uses 20,000/10 = 2000 disk I /O ’s. Notice that this cost is
higher than scanning the entire relation R, if R is clustered but the index
is not.

5. If V(R, a) — 20,000, i.e., a is a key, then the index-based algorithm takes 1
disk I/O plus whatever is needed to access the index, regardless of whether
the index is clustering or not.

□

Index-scan as an access method can help in several other kinds of selection
operations.

742 CHAPTER 15. QUERY EXECUTION

a) An index such as a B-tree lets us access the search-key values in a given
range efficiently. If such an index on attribute a of relation R exists, then
we can use the index to retrieve just the tuples of R in the desired range
for selections such as aa>io(R), or even cra>io and o<20(R)-

b) A selection with a complex condition C can sometimes be implemented by
an index-scan followed by another selection on only those tuples retrieved
by the index-scan. If C is of the form a — v AND C', where C' is any
condition, then we can split the selection into a cascade of two selections,
the first checking only for a = v, and the second checking condition C'.
The first is a candidate for use of the index-scan operator. This splitting
of a selection operation is one of many improvements that a query op
timizer may make to a logical query plan; it is discussed particularly in
Section 16.7.1.

15.6.3 Joining by Using an Index

All the binary operations we have considered, and the unary full-relation op
erations of 7 and 6 as well, can use certain indexes profitably. We shall leave
most of these algorithms as exercises, while we focus on the m atter of joins. In
particular, let us examine the natural join R (X , Y) m S(Y,Z); recall that X ,
Y, and Z can stand for sets of attributes, although it is sufficient to think of
them as single attributes.

For our first index-based join algorithm, suppose that S has an index on the
attribute(s) Y. Then one way to compute the join is to examine each block of
R, and within each block consider each tuple t . Let t y be the component or
components of t corresponding to the attribute(s) Y. Use the index to find all
those tuples of 5 that have t y in their F-component(s). These are exactly the
tuples of S that join with tuple t of R, so we output the join of each of these
tuples with t .

The number of disk I /O ’s depends on several factors. First, assuming R is
clustered, we shall have to read B(R) blocks to get all the tuples of R. If R is
not clustered, then up to T(R) disk I /O ’s may be required.

For each tuple t of R we must read an average of T (S) / V (S , Y) tuples
of S. If S has a nonclustered index on K, then the number of disk I /O ’s
required to read 5 is T (R) T (S) /V (S ,Y) , put if the index is clustered, then
only T (R) B (S) / V (S , Y) disk I /O ’s suffice/ In either case, we may have to add
a few disk I /O ’s per Y -value, to account for the reading of the index itself.

Regardless of whether or not R is clustered, the cost of accessing tuples of
S dominates. Ignoring the cost of reading R, we shall take T (R) T (S) /V (S ,Y)
or T (R) (m a x (l ,B (S) /V (S ,Y))) as the cost of this join method, for the cases
of nonclustered and clustered indexes on S, respectively.

7B u t rem em b er th a t B (S) / V (S , Y) m u st be rep laced by 1 if i t is less, a s discussed in
Section 15.6.2.

15.6. INDEX-BASED ALGORITHMS 743

E xam ple 15.12: Let us consider our running example, relations R (X , Y) and
S(Y, Z) covering 1000 and 500 blocks, respectively. Assume ten tuples of either
relation fit on one block, so T(R) = 10,000 and T(S) = 5000. Also, assume
V (S ,Y) = 100; i.e., there are 100 different values of Y among the tuples of S.

Suppose that R is clustered, and th^re is a clustering index on Y for 5. Then
the approximate number of disk I /O s , excluding what is needed to access the
index itself, is 1000 to read the blocks of R plus 10,000 x 500 / 100 = 50,000
disk I /O ’s. This number is consideraBlyjibove the cost of other methods for the
same data discussed previously. If either R or the index on S is not clustered,
then the cost is even higher. □

While Example 15.12 makes it look as if an index-join is a very bad idea,
there are other situations where the join R m 5 by this method makes much
more sense. Most common is the case where R is very small compared with S,
and V(S, Y) is large. We discuss in Exercise 15.6.5 a typical query in which
selection before a join makes R tiny. In that case, most of S will never be
examined by this algorithm, since most Y-values don’t appear in R at all.
However, both sort- and hash-based join methods will examine every tuple of
S at least once.

15.6.4 Joins Using a Sorted Index
When the index is a B-tree, or any other structure from which we easily can
extract the tuples of a relation in sorted order, we have a number of other op
portunities to use the index. Perhaps the simplest is when we want to compute
R (X , Y) tx S(Y,Z) , and we have such an index on Y for either R or S. We
can then perform an ordinary sort-join, but we do not have to perform the
intermediate step of sorting one of the relations on Y.

As an extreme case, if we have sorting indexes on Y for both R and S,
then we need to perform only the final step of the simple sort-based join of
Section 15.4.6. This method is sometimes called zig-zag join, because we jump
back and forth between the indexes finding Y -values that they share in common.
Notice that tuples from R with a Y -value that does not appear in S need never
be retrieved, and similarly, tuples of 5 whose Y-value does not appear in R
need not be retrieved.

E xam ple 15.13: Suppose that we have relations R (X , Y) and S(Y,Z) with
indexes on Y for both relations. In a tiny example, let the search keys (Y-
values) for the tuples of R be in order 1 ,3 ,4 ,4 ,4 ,5 ,6 , and let the search key
values for S be 2 ,2 ,4 ,4 ,6 ,7 . We start with the first keys of R and S, which are
1 and 2, respectively. Since 1 < 2, we skip the first key of R and look at the
second key, 3. Now, the current key of S is less than the current key of R, so
we skip the two 2’s of S to reach 4.

At this point, the key 3 of R is less than the key of S, so we skip the key
of R. Now, both current keys are 4. We follow the pointers associated with
all the keys 4 from both relations, retrieve the corresponding tuples, and join

744 CHAPTER 15. QUERY EXECUTION

them. Notice that until we met the common key 4, no tuples of the relation
were retrieved.

Having dispensed with the 4’s, we go to key 5 of R and key 6 of S. Since
5 < 6, we skip to the next key of R. Now the keys are both 6, so we retrieve
the corresponding tuples and join them. Since R is now exhausted, we know
there are no more pairs of tuples from the two relations that join. □

If the indexes are B-trees, then we can scan the leaves of the two B-trees in
order from the left, using the pointers from leaf to leaf that are built into the
structure, as suggested in Fig. 15.15. If R and S are clustered, then retrieval of
all the tuples with a given key will result in a number of disk I /O ’s proportional
to the fractions of these two relations read. Note that in extreme cases, where
there are so many tuples from R and S that neither fits in the available main
memory, we shall have to use a fixup like that discussed in Section 15.4.6.
However, in typical cases, the step of joining all tuples with a common Y- value
can be carried out with only as many disk I /O ’s as it takes to read them.

E xam ple 15.14: Let us continue with Example 15.12, to see how joins using
a combination of sorting and indexing would typically perform on this data.
First, assume that there is an index on Y for S that allows us to retrieve the
tuples of S sorted by Y. We shall, in this example, also assume both relations
and the index are clustered. Fo jment, we assume there is no index on

Assuming 101 available bloc] in memory, we may use them to create
10 sorted sublists for the 1000-! __ ation R. The number of disk I /O ’s is
2000 to read and write all of R. We next use 11 blocks of memory — 10 for
the sublists of R and one for a block of S ’s tuples, retrieved via the index. We
neglect disk I/O ’s and memory buffers needed to manipulate the index, but if
the index is a B-tree, these numbers will be small anyway. In this second pass,
we read all the tuples of R and S, using a total of 1500 disk I /O ’s, plus the small
amount needed for reading the index blocks once each. We thus estimate the

Figure 15.15: A zig-zag join using two indexes

R.

15.6. INDEX-BASED ALGORITHMS 745

total number of disk I /O ’s at 3500, which is less than that for other methods
considered so far.

Now, assume that both R and »S have indexes on Y . Then there is no need
to sort either relation. We use ju k lSQj) disk I /O ’s to read the blocks of R
and S through their indexes. In fact, if we determine from the indexes alone
that a large fraction of R or S cannot match tuples of the other relation, then
the total cost could be considerably less than 1500 disk I /O ’s. However, in any
event we should add the small number of disk I /O ’s needed to read the indexes
themselves. □

15.6.5 Exercises for Section 15.6
E xercise 15.6.1: Suppose there is an index on attribute R.a. Describe how
this index could be used to improve the execution of the following operations.
Under what circumstances would the index-based algorithm be more efficient
than sort- or hash-based algorithms?

a) R Us S (assume that R and S have no duplicates, although they may
have tuples in common).

b) RC\s S (again, with R and S sets).

c) 6{R).

E xercise 15.6.2: Suppose B(R) — 10,000 and T(R) — 500,000. Let there
be an index on R.a , and let V (R, a) = k for some number k. Give the cost
of cra=o(R), as a function of k, under the following circumstances. You may
neglect disk I /O ’s needed to access the index itself.

a) The index is clustering.

b) The index is not clustering.

c) R is clustered, and the index is not used.

E xercise 15.6.3: Repeat Exercise 15.6.2 if the operation is the range query
ac<a and a<v{R). You may assume that C and D are constants such that k / 10
of the values are in the range.

E xercise 15.6.4: If R is clustered, but the index on R.a is not clustering, then
depending on k we may prefer to implement a query by performing a table-scan
of R or using the index. For what values of k would we prefer to use the index
if the relation and query are as in (a) Exercise 15.6.2 (b) Exercise 15.6.3.

E xercise 15.6.5: Consider the SQL query:

SELECT b ir th d a te FROM S ta rs ln , MovieStar
WHERE m ovieT itle = ’King Kong’ AND starName = name;

746 CHAPTER 15. QUERY EXECUTION

This query uses the “movie” relations:

S ta rs ln (m o v ieT itle , movieYear, starName)
M ovieStar (name, ad d ress , gender, b ir th d a te)

If we translate it to relational algebra, the heart is an equijoin between

and MovieStar, which can be implemented much as a natural join R tx S.
Since there were only three movies named “King Kong,” T(R) is very small.
Suppose that 5, the relation MovieStar, has an index on name. Compare the
cost of an index-join for this R tx 5 with the cost of a sort- or hash-based join.

! Exercise 15.6 .6 : In Example 15.14 we discussed the disk-I/O cost of a join
R tx 5 in which one or both of R and S had sorting indexes on the join
attribute(s). However, the methods described in that example can fail if there
are too many tuples with the same value in the join attribute(s). W hat are
the limits (in number of blocks occupied by tuples with the same value) under
which the methods described will not need to do additional disk I /O ’s?

15.7 Buffer Management
We have assumed that operators on relations have available some number M
of main-memory buffers that they can use to store needed data. In practice,
these buffers are rarely allocated in advance to the operator, and the value
of M may vary depending on system conditions. The central task of making
main-memory buffers available to processes, such as queries, that act on the
database is given to the buffer manager. It is the responsibility of the buffer
manager to allow processes to get the memory they need, while minimizing the
delay and unsatisfiable requests. The role of the buffer manager is illustrated
in Fig. 15.16.

15.7.1 Buffer Management Architecture
There are two broad architectures for a buffer manager:

1. The buffer manager control emory directly, as in many relational

2. The buffer manager allocat in virtual memory, allowing the op
erating system to decide which buffers are actually in main memory at
any time and which are in the “swap space” on disk that the operating
system manages. Many “main-memory” DBMS’s and “object-oriented”
DBMS’s operate this way.

&m o vieT itle= ’King Kong’ (Starsln)

DBMS’s, or

15.7. BUFFER MANAGEMENT 747

Figure 15.16: The buffer manager responds to requests for main-memory access
to disk blocks

Whichever approach a DBMS uses, the same problem arises: the buffer
manager should limit the number of buffers in use so they fit in the available
main memory. When the buffer manager controls main memory directly, and
requests exceed available space, it has to select a buffer to empty, by returning
its contents to disk. If the buffered block has not been changed, then it may
simply be erased from main memory, but if the block has changed it must be
written back to its place on the disk. When the buffer manager allocates space
in virtual memory, it has the option to allocate more buffers than can fit in
main memory. However, if all these buffers are really in use, then there will
be “thrashing,” a common operating-system problem, where many blocks are
moved in and out of the disk’s swap space. In this situation, the system spends
most of its time swapping blocks, while very little useful work gets done.

Normally, the number of buffers is a parameter set when the DBMS is
initialized. We would expect that this number is set so that the buffers occupy
the available main memory, regardless of whether the buffers are allocated in
main or virtual memory. In what follows, we shall not concern ourselves with
which mode of buffering is used, and simply assume that there is a fixed-size
buffer pool, a set of buffers available to queries and other database actions.

15.7.2 Buffer Management Strategies

The critical choice that the buffer manager must make is what block to throw
out of the buffer pool when a buffer is needed for a newly requested block. The
buffer-replacement strategies in common use may be familiar to you from other
applications of scheduling policies, such as in operating systems. These include:

748 CHAPTER 15. QUERY EXECUTION

Memory Management for Query Processing

We are assuming that the buffer manager allocates to an operator M
main-memory buffers, where the value for M depends on system condi
tions (including other operators and queries underway), and may vary
dynamically. Once an operator has M buffers, it may use some of them
for bringing in disk pages, others for index pages, and still others for sort
runs or hash tables. In some DBMS’s, memory is not allocated from a sin
gle pool, but rather there are separate pools of memory — with separate
buffer managers — for different purposes. For example, an operator might
be allocated D buffers from a pool to hold pages brought in from disk and
H buffers to build a hash table. This approach offers more opportunities
for system configuration and “tuning,” but may not make the best global
use of memory.

L east-R ecen tly U sed (LR U)

The LRU rule is to throw out the block that has not been read or written for the
longest time. This method requires that the buffer manager maintain a table
indicating the last time the block in each buffer was accessed. It also requires
that each database access make an entry in this table, so there is significant
effort in maintaining this information. However, LRU is an effective strategy;
intuitively, buffers that have not been used for a long time are less likely to be
accessed sooner than those that have been accessed recently.

F irst-In -F irst-O u t (FIFO)

When a buffer is needed, under the FIFO policy the buffer that has been oc
cupied the longest by the same block is emptied and used for the new block.
In this approach, the buffer manager needs to know only the time at which the
block currently occupying a buffer was loaded into that buffer. An entry into a
table can thus be made when the block is read from disk, and there is no need
to modify the table when the block is accessed. FIFO requires less maintenance
than LRU, but it can make more mistakes. A block that is used repeatedly, say
the root block of a B-tree index, will eventually become the oldest block in a
buffer. It will be written back to disk, only to be reread shortly thereafter into
another buffer.

T he “C lock” A lgorith m (“S econ d C hance”)

This algorithm is a commonly implemented, efficient approximation to LRU.
Think of the buffers as arranged in la circle, as suggested by Fig. 15.17. A
“hand” points to one of the buffers, and will rotate clockwise if it needs to find
a buffer in which to place a disk block. Each buffer has an associated “flag,”

15.7. BUFFER MANAGEMENT 749

which is either 0 or 1. Buffers with a 0 flag are vulnerable to having their
contents sent back to disk; buffers with a 1 are not. When a block is read into
a buffer, its flag is set to 1. Likewise, when the contents of a buffer is accessed,
its flag is set to 1.

Figure 15.17: The clock algorithm visits buffers in a round-robin fashion and
replaces 01 • • • 1 with 10 • • ■ 0

When the buffer manager needs a buffer for a new block, it looks for the
first 0 it can find, rotating clockwise. If it passes l ’s, it sets them to 0. Thus,
a block is only thrown out of its buffer if it remains unaccessed for the time it
takes the hand to make a complete rotation to set its flag to 0 and then make
another complete rotation to find the buffer with its 0 unchanged. For instance,
in Fig. 15.17, the hand will set to 0 the 1 in the buffer to its left, and then move
clockwise to find the buffer with 0, whose block it will replace and whose flag
it will set to 1.

S ystem C ontrol

The query processor or other components of a DBMS can give advice to the
buffer manager in order to avoid some of the mistakes that would occur with
a strict policy such as LRU, FIFO, or Clock. Recall from Section 13.6.5 that
there are sometimes technical reasons why a block in main memory can not
be moved to disk without first modifying certain other blocks that point to it.
These blocks are called “pinned,” and any buffer manager has to modify its
buffer-replacement strategy to avoid expelling pinned blocks. This fact gives us
the opportunity to force other blocks to remain in main memory by declaring
them “pinned,” even if there is no technical reason why they could not be
written to disk. For example, a cure for the problem with FIFO mentioned
above regarding the root of a B-tree is to “pin” the root, forcing it to remain in
memory at all times. Similarly, for an algorithm like a one-pass hash-join, the
query processor may “pin” the blocks of the smaller relation in order to assure
that it will remain in main memory during the entire time.

0
0

750 CHAPTER 15. QUERY EXECUTION

More Tricks Using the Clock Algorithm

The “clock” algorithm for choosing buffers to free is not limited to the
scheme described in Section 15.7.2, where flags had values 0 and 1. For
instance, one can start an important page with a number higher than 1
as its flag, and decrement the flag by 1 each time the “hand” passes that
page. In fact, one can incorporate the concept of pinning blocks by giving
the pinned block an infinite value for its flag, and then having the system
release the pin at the appropriate time by setting the flag to 0 .

15.7.3 The Relationship Between Physical Operator
Selection and Buffer Management

The query optimizer will eventually select a set of physical operators that will
be used to execute a given query. This selection of operators may assume that a
certain number of buffers M is available for execution of each of these operators.
However, as we have seen, the buffer manager may not be willing or able to
guarantee the availability of these M buffers when the query is executed. There
are thus two related questions to ask about the physical operators:

1. Can the algorithm adapt to changes in the value of M, the number of
main-memory buffers available?

2. When the expected M buffers axe not available, and some blocks that axe
expected to be in memory have actually been moved to disk by the buffer
manager, how does the buffer-replacement strategy used by the buffer
manager impact the number of additional I /O ’s that must be performed?

E xam ple 15.15: As an example of the issues, let us consider the block-based
nested-loop join of Fig. 15.8. The basic algorithm does not really depend on
the value of M, although its performance depends on M. Thus, it is sufficient
to find out what M is just before execution begins.

It is even possible that M will change at different iterations of the outer
loop. That is, each time we load main memory with a portion of the relation S
(the relation of the outer loop), we can use all but one of the buffers available at
that time; the remaining buffer is reserved for a block of R, the relation of the
inner loop. Thus, the number of times we go around the outer loop depends on
the average number of buffers available at each iteration. However, as long as
M buffers are available on average, then the cost analysis of Section 15.3.4 will
hold. In the extreme, we might have the good fortune to find that at the first
iteration, enough buffers axe available to hold all of S, in which case nested-loop
join gracefully becomes the one-pass join of Section 15.2.3.

As another example of how nested-loop join interacts with buffering, sup
pose that we use an LRU buffer-replacement strategy, and there are k buffers

15.7. BUFFER M ANAGEM ENT 751

available to hold blocks of R. As we read each block of R, in order, the blocks
that remain in buffers at the end of this iteration of the outer loop will be the
last k blocks of R. We next reload the M — 1 buffers for S with new blocks
of S and start reading the blocks of R again, in the next iteration of the outer
loop. However, if we start from the beginning of R again, then the k buffers for
R will need to be replaced, and we do not save disk I /O ’s just because k > 1.

A better implementation of nested-loop join, when an LRU buffer-replace-
ment strategy is used, visits the blocks of R in an order that alternates: first-
to-last and then last-to-first (called rocking). In that way, if there are k buffers
available to R, we save k disk I /O ’s on each iteration of the outer loop except
the first. That is, the second and subsequent iterations require only B(R) — k
disk I /O ’s for R. Notice that even if k = 1 (i.e., no extra buffers are available
to R), we save one disk I/O per iteration. □

Other algorithms also are impacted by the fact that M can vary and by the
buffer-replacement strategy used by the buffer manager. Here are some useful
observations.

• If we use a sort-based algorithm for some operator, then it is possible to
adapt to changes in M. If M shrinks, we can change the size of a sublist,
since the sort-based algorithms we discussed do not depend on the sublists
being the same size. The major limitation is that as M shrinks, we could
be forced to create so many sublists that we cannot then allocate a buffer
for each sublist in the merging process.

• If the algorithm is hash-based, we can reduce the number of buckets if M
shrinks, as long as the buckets do not then become so large that they do
not fit in allotted main memory. However, unlike sort-based algorithms,
we cannot respond to changes in M while the algorithm runs. Rather,
once the number of buckets is chosen, it remains fixed throughout the first
pass, and if buffers become unavailable, the blocks belonging to some of
the buckets will have to be swapped out.

15.7.4 Exercises for Section 15.7
Exercise 15.7.1: Suppose that we wish to execute a join R x S , and the
available memory will vary between M and M /2 . In terms of M, B(R) , and
B(S), give the conditions under which we can guarantee that the following
algorithms can be executed:

a) A one-pass join.

b) A two-pass, hash-based join.

c) A two-pass, sort-based join.

752 CHAPTER 15. QUERY EXECUTION

! Exercise 15.7.2: How would the number of disk I /O ’s taken by a nested-loop
join improve if extra buffers became available and the buffer-replacement policy
were:

a) First-in-first-out.

b) The clock algorithm.

!! E xercise 15.7.3: In Example 15.15, we suggested that it was possible to take
advantage of extra buffers becoming available during the join by keeping more
than one block of R buffered and visiting the blocks of R in reverse order on
even-numbered iterations of the outer loop. However, we could also maintain
only one buffer for R and increase the number of buffers used for S. Which
strategy yields the fewest disk I /O ’s?

15.8 Algorithms Using More Than Two Passes
While two passes are enough for operations on all but the largest relations, we
should observe that the principal techniques discussed in Sections 15.4 and 15.5
generalize to algorithms that, by using as many passes as necessary, can process
relations of arbitrary size. In this section we shall consider the generalization
of both sort- and hash-based approaches.

15.8.1 Multipass Sort-Based Algorithms
In Section 15.4.1 we alluded to how 2PMMS could be extended to a three-pass
algorithm. In fact, there is a simple recursive approach to sorting that will
allow us to sort a relation, however large, completely, or if we prefer, to create
n sorted sublists for any desired n.

Suppose we have M main-memory buffers available to sort a relation R,
which we shall assume is stored clustered. Then do the following:

BASIS: If R fits in M blocks (i.e., B(R) < M), then read R into main memory,
sort it using any main-memory sorting algorithm, and write the sorted relation
to disk.

INDUCTION: If R does not fit into main memory, partition the blocks holding
R into M groups, which we shall call Ri,R2,... , Rm• Recursively sort Ri for
each * = 1 ,2 ,... ,M. Then, merge the M sorted sublists, as in Section 15.4.1.

If we are not merely sorting R, but performing a unary operation such as 7
or S on R, then we modify the above so that at the final merge we perform the
operation on the tuples at the front of the sorted sublists. That is,

• For a 6, output one copy of each distinct tuple, and skip over copies of
the tuple.

15.8. ALGORITHMS USING MORE THAN TWO PASSES 753

• For a 7 , sort on the grouping attributes only, and combine the tuples with
a given value of these grouping attributes in the appropriate manner, as
discussed in Section 15.4.3.

When we want to perform a binary operation, such as intersection or join, we
use essentially the same idea, except that the two relations are first divided into
a total of M sublists. Then, each sublist is sorted by the recursive algorithm
above. Finally, we read each of the M sublists, each into one buffer, and we
perform the operation in the manner described by the appropriate subsection
of Section 15.4.

We can divide the M buffers between relations R and S as we wish. However,
to minimize the total number of passes, we would normally divide the buffers
in proportion to the number of blocks taken by the relations. That is, R gets
M x B(R) / (B(R) + B(S)) of the buffers, and S gets the rest.

15.8.2 Performance of Multipass, Sort-Based Algorithms
Now, let us explore the relationship between the number of disk I /O ’s required,
the size of the relation(s) operated upon, and the size of main memory. Let
s(M, k) be the maximum size of a relation that we can sort using M buffers
and k passes. Then we can compute s{M, k) as follows:

BASIS: If k = 1, i.e., one pass is allowed, then we must have B(R) < M. Put
another way, s(M, 1) = M.

INDUCTION: Suppose k > 1. Then we partition R into M pieces, each of
which must be sortable in k — 1 passes. If B(R) = s(M,k) , then s(M, k) /M,
which is the size of each of the M pieces of R, cannot exceed s(M, k — 1). That
is: s(M, k) = Ms(M, k — 1).
If we expand the above recursion, we find

s(M, k) = Ms(M, k - 1) = M 2s(M, k - 2) = • • • = 1)

Since s(M, 1) = M, we conclude that s(M,k) = M k. That is, using k passes,
we can sort a relation R if B(R) < M k. Put another way, if we want to sort R
in k passes, then the minimum number of buffers we can use is M = (B(R)) 1̂ .

Each pass of a sorting algorithm reads all the data from disk and writes it
out again. Thus, a fc-pass sorting algorithm requires 2kB(R) disk I /O ’s.

Now, let us consider the cost of a multipass join R (X , Y) x S(Y,Z) , as
representative of a binary operation on relations. Let j (M, k) be the largest
number of blocks such that in k passes, using M buffers, we can join relations
of j (M , k) or fewer total blocks. That is, the join can be accomplished provided
B (R) + B { S) < j (M , k) .

On the final pass, we merge M sorted sublists from the two relations.
Each of the sublists is sorted using k — 1 passes, so they can be no longer
than s (M ,k — 1) = M k_1 each, or a total of M s (M ,k — 1) = M k. That is,

754 CHAPTER 15. QUERY EXECUTION

B(R) + B(S) < M k. Reversing the role of the parameters, we can also state
that to compute the join in k passes requires (B(R) + B (S)) 1̂ buffers.

To calculate the number of disk I/O ’s needed in the multipass algorithms,
we should remember that, unlike for sorting, we do not count the cost of writing
the final result to disk for joins or other relational operations. Thus, we use
2(k — l) (B(R) + B(S)) disk I /O ’s to sort the sublists, and another B (R) + B (S)
disk I /O ’s to read the sorted sublists in the final pass. The result is a total of
(2k - 1){B(R) + B(S)) disk I /O ’s.

15.8.3 Multipass Hash-Based Algorithms
There is a corresponding recursive approach to using hashing for operations on
large relations. We hash the relation or relations into M — 1 buckets, where M
is the number of available memory buffers. We then apply the operation to each
bucket individually, in the case of a unary operation. If the operation is binary,
such as a join, we apply the operation to each pair of corresponding buckets, as
if they were the entire relations. We can describe this approach recursively as:

BASIS: For a unary operation, if the relation fits in M buffers, read it into
memory and perform the operation. For a binary operation, if either relation
fits in M — 1 buffers, perform the operation by reading this relation into main
memory and then read the second relation, one block at a time, into the M th
buffer.

INDUCTION: If no relation fits in main memory, then hash each relation into
M — 1 buckets, as discussed in Section 15.5.1. Recursively perform the operation
on each bucket or corresponding pair of buckets, and accumulate the output
from each bucket or pair.

15.8.4 Performance of Multipass Hash-Based Algorithms
In what follows, we shall make the assumption that when we hash a relation,
the tuples divide as evenly as possible among the buckets. In practice, this as
sumption will be met approximately if we choose a truly random hash function,
but there will always be some unevenness in the distribution of tuples among
buckets.

First, consider a unary operation, like 7 or 5 on a relation R using M buffers.
Let u(M, k) be the number of blocks in the largest relation that a fc-pass hashing
algorithm can handle. We can define u recursively by:

BASIS: u(M, 1) = M, since the relation R must fit in M buffers; i.e., B(R) <
M.

INDUCTION: We assume that the first step divides the relation R into M — 1
buckets of equal size. Thus, we can compute u(M, k) as follows. The buckets
for the next pass must be sufficiently small that they can be handled in k — 1

15.8. ALGORITHMS USING MORE THAN TW O PASSES 755

passes; that is, the buckets are of size u(M, k — 1). Since R is divided into M — 1
buckets, we must have u(M, k) = (M — 1)u(M, k — 1).

If we expand the recurrence above, we find that u(M,k) = M (M — l) fc_1,
or approximately, assuming M is large, u(M,k) — M k. Equivalently, we can
perform one of the unary relational operations on relation R in k passes with
M buffers, provided M > (B(R)) l^k.

We may perform a similar analysis for binary operations. As in Section
15.8.2, let us consider the join. Let j (M , k) be an upper bound on the size of
the smaller of the two relations R and 5 involved in R{X, Y) ix S(Y, Z). Here,
as before, M is the number of available buffers and k is the number of passes
we can use.

BASIS: j (M , 1) = M — 1; that is, if we use the one-pass algorithm to join, then
either R or S must fit in M — 1 blocks, as we discussed in Section 15.2.3.

INDUCTION: j (M ,k) = (M — 1) j (M ,k — 1); that is, on the first of k passes,
we can divide each relation into M — 1 buckets, and we may expect each bucket
to be 1 / (M — 1) of its entire relation, but we must then be able to join each
pair of corresponding buckets in M — 1 passes.
By expanding the recurrence for j (M , k), we conclude that j (M , k) = (M — 1)*.
Again assuming M is large, we can say approximately j (M ,k) = M k. That
is, we can join R (X , Y) ix S(Y ,Z) using k passes and M buffers provided
min(B{R) ,B(S)) < M k.

15.8.5 Exercises for Section 15.8

Exercise 15.8.1: Suppose B(R) = 20,000, B(S) — 50,000, and M = 101.
Describe the behavior of the following algorithms to compute R t x S:

a) A three-pass, sort-based algorithm.

b) A three-pass, hash-based algorithm.

Exercise 15.8.2: There are several “tricks” we have discussed for improving
the performance of two-pass algorithms. For the following, tell whether the
trick could be used in a multipass algorithm, and if so, how?

a) The hybrid-hash-join trick of Section 15.5.6.

b) Improving a sort-based algorithm by storing blocks consecutively on disk
(Section 15.5.7).

c) Improving a hash-based algorithm by storing blocks consecutively on disk
(Section 15.5.7).

756 CHAPTER 15. QUERY EXECUTION

15.9 Summary of Chapter 15
♦ Query Processing: Queries are compiled, which involves extensive op

timization, and then executed. The study of query execution involves
knowing methods for executing operations of relational algebra with some
extensions to match the capabilities of SQL.

♦ Query Plans: Queries are compiled first into logical query plans, which are
often like expressions of relational algebra, and then converted to a physi
cal query plan by selecting an implementation for each operator, ordering
joins and making other decisions, as will be discussed in Chapter 16.

♦ Table Scanning: To access the tuples of a relation, there are several pos
sible physical operators. The table-scan operator simply reads each block
holding tuples of the relation. Index-scan uses an index to find tuples,
and sort-scan produces the tuples in sorted order.

♦ Cost Measures for Physical Operators: Commonly, the number of disk
I/O ’s taken to execute an operation is the dominant component of the
time. In our model, we count only disk I/O time, and we charge for the
time and space needed to read arguments, but not to write the result.

♦ Iterators: Several operations involved in the execution of a query can be
meshed conveniently if we think of their execution as performed by an
iterator. This mechanism consists of three methods, to open the con
struction of a relation, to produce the next tuple of the relation, and to
close the construction.

♦ One-Pass Algorithms: As long as one of the arguments of a relational-
algebra operator can fit in main memory, we can execute the operator by
reading the smaller relation to memory, and reading the other argument
one block at a time.

♦ Nested-Loop Join: This simple join algorithm works even when neither
argument fits in main memory. It reads as much as it can of the smaller
relation into memory, and compares that with the entire other argument;
this process is repeated until all of the smaller relation has had its turn
in memory.

♦ Two-Pass Algorithms: Except for nested-loop join, most algorithms for
arguments that are too large to fit into memory are either sort-based,
hash-based, or index-based.

♦ Sort-Based Algorithms: These partition their argument(s) into main-
memory-sized, sorted sublists. The sorted sublists are then merged ap
propriately to produce the desired result. For instance, if we merge the
tuples of all sublists in sorted order, then we have the important two-
phase-multiway-merge sort.

15.10. REFERENCES FOR CHAPTER 15 757

♦ Hash-Based Algorithms: These use a hash function to partition the ar
gument^) into buckets. The operation is then applied to the buckets
individually (for a unary operation) or in pairs (for a binary operation).

♦ Hashing Versus Sorting: Hash-based algorithms are often superior to sort-
based algorithms, since they require only one of their arguments to be
“small.” Sort-based algorithms, on the other hand, work well when there
is another reason to keep some of the data sorted.

♦ Index-Based Algorithms: The use of an index is an excellent way to speed
up a selection whose condition equates the indexed attribute to a constant.
Index-based joins are also excellent when one of the relations is small, and
the other has an index on the join attribute(s).

♦ The Buffer Manager: The availability of blocks of memory is controlled
by the buffer manager. When a new buffer is needed in memory, the
buffer manager uses one of the familiar replacement policies, such as least-
recently-used, to decide which buffer is returned to disk.

♦ Coping With Variable Numbers of Buffers: Often, the number of main-
memory buffers available to an operation cannot be predicted in advance.
If so, the algorithm used to implement an operation needs to degrade
gracefully as the number of available buffers shrinks.

♦ Multipass Algorithms: The two-pass algorithms based on sorting or hash
ing have natural recursive analogs that take three or more passes and will
work for larger amounts of data.

15.10 References for Chapter 15
Two surveys of query optimization are [6] and [2]. [8] is a survey of distributed
query optimization.

An early study of join methods is in [5]. Buffer-pool management was ana
lyzed, surveyed, and improved by [3].

The use of sort-based techniques was pioneered by [1], The advantage of
tiash-based algorithms for join was expressed by [7] and [4]; the latter is the
Drigin of the hybrid hash-join.

1. M. W. Blasgen and K. P. Eswaran, “Storage access in relational data
bases,” IBM Systems J. 16:4 (1977), pp. 363-378.

2. S. Chaudhuri, “An overview of query optimization in relational systems,”
Proc. Seventeenth Annual ACM Symposium on Principles of Database
Systems, pp. 34-43, June, 1998.

3. H.-T. Chou and D. J. DeWitt, “An evaluation of buffer management
strategies for relational database systems,” Intl. Conf. on Very Large
Databases, pp. 127-141, 1985.

758 CHAPTER 15. QUERY EXECUTION

4. D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker, and D.
Wood, “Implementation techniques for main-memory database systems,”
Proc. ACM SIGMOD Intl. Conf. on Management of Data (1984), pp. 1-8.

5. L. R. Gotlieb, “Computing joins of relations,” Proc. ACM SIGMOD Intl.
Conf. on Management of Data (1975), pp. 55-63.

6. G. Graefe, “Query evaluation techniques for large databases,” Computing
Surveys 25:2 (June, 1993), pp. 73-170.

7. M. Kitsuregawa, H. Tanaka, and T. Moto-oka, “Application of hash to
data base machine and its architecture,” New Generation Computing 1:1
(1983), pp. 66-74.

8. D. Kossman, “The state of the art in distributed query processing,” Com
puting Surveys 32:4 (Dec., 2000), pp. 422-469.

Chapter 16

The Query Compiler

We shall now take up the architecture of the query compiler and its optimizer.
As we noted in Fig. 15.2, there axe three broad steps that the query processor
must take:

1. The query, written in a language like SQL, is parsed, that is, turned into
a paxse tree representing the structure of the query in a useful way.

2. The paxse tree is transformed into an expression tree of relational algebra
(or a similar notation), which we term a logical query plan.

3. The logical query plan must be turned into a physical query plan, which
indicates not only the operations performed, but the order in which they
are performed, the algorithm used to perform each step, and the ways in
which stored data is obtained and data is passed from one operation to
another.

The first step, parsing, is the subject of Section 16.1. The result of this
step is a parse tree for the query. The other two steps involve a number of
choices. In picking a logical query plan, we have opportunities to apply many
different algebraic operations, with the goal of producing the best logical query
plan. Section 16.2 discusses the algebraic laws for relational algebra in the
abstract. Then, Section 16.3 discusses the conversion of parse trees to initial
logical query plans and shows how the algebraic laws from Section 16.2 can be
used in strategies to improve the initial logical plan.

When producing a physical query plan from a logical plan, we must evaluate
the predicted cost of each possible option. Cost estimation is a science of its
own, which we discuss in Section 16.4. We show how to use cost estimates to
evaluate plans in Section 16.5, and the special problems that come up when
we order the joins of several relations are the subject of Section 16.6. Finally,
Section 16.7 covers additional issues and strategies for selecting the physical
query plan: algorithm choice, and pipelining versus materialization.

759

760 CHAPTER 16. THE QUERY COMPILER

16.1 Parsing and Preprocessing
The first stages of query compilation are illustrated in Fig. 16.1. The four boxes
in that figure correspond to the first two stages of Fig. 15.2.

Query

Section 16.1

Section 16.3

Preferred logical
query plan

Figure 16.1: From a query to a logical query plan

In this section, we discuss parsing of SQL and give rudiments of a grammar
that can be used for that language. We also discuss how to handle a query that
involves a virtual view and other steps of preprocessing.

16.1.1 Syntax Analysis and Parse Trees
The job of the parser is to take text written in a language such as SQL and
convert it to a parse tree, which is a tree whose nodes correspond to either:

1. Atoms, which are lexical elements such as keywords (e.g., SELECT), names
of attributes or relations, constants, parentheses, operators such as + or
<, and other schema elements, or

2. Syntactic categories, which are names for families of query subparts that
all play a similar role in a query. We shall represent syntactic categories
by triangular brackets around a descriptive name. For example, <Query>
will be used to represent some queries in the common select-from-where
form, and <Condition> will represent any expression that is a condition;
i.e., it can follow WHERE in SQL.

If a node is an atom, then it has no children. However, if the node is a
syntactic category, then its children are described by one of the rules of the
grammar for the language. We shall present these ideas by example. The
details of how one designs grammars for a language, and how one “parses,” i.e.,

16.1. PARSING AND PREPROCESSING 761

turns a program or query into the correct parse tree, is properly the subject of
a course on compiling.1

16.1.2 A Grammar for a Simple Subset of SQL
We shall illustrate the parsing process by giving some rules that describe a small
subset of SQL queries.

Q ueries

The syntactic category <Query> is intended to represent (some of the) queries
of SQL. We give it only one rule:

<Query> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>

Symbol : := means “can be expressed as.” The syntactic categories <SelList>
and <FromList> represent lists that can follow SELECT and FROM, respectively.
We shall describe limited forms of such lists shortly. The syntactic category
<Condition> represents SQL conditions (expressions that are either true or
false); we shall give some simplified rules for this category later.

Note this rule does not provide for the various optional clauses such as
GROUP BY, HAVING, or ORDER BY, nor for options such as DISTINCT after SELECT,
nor for query expressions using UNION, JOIN, or other binary operators.

Select-L ists

<SelList> ::= < A ttribute> , <SelList>
<SelList> ::= <A ttribute>

These two rules say that a select-list can be any comma-separated list of a t
tributes: either a single attribute or an attribute, a comma, and any list of one
or more attributes. Note that in a full SQL grammar we would also need provi
sion for expressions and aggregation functions in the select-list and for aliasing
of attributes and expressions.

From -Lists

<FromList> ::= <Relation> , <FromList>
<FromList> ::= <Relation>

Here, a from-list is defined to be any comma-separated list of relations. For
simplification, we omit the possibility that elements of a from-list can be ex-
pressionsa, such as joins or subqueries. Likewise, a full SQL grammar would
have to allow tuple variables for relations.

1T hose un fam ilia r w ith th e su b je c t m ay w ish to exam ine A . V. A ho, M. L am , R . S eth i, and
J . D . U llm an , Com pilers: P rincip les, Techniques, and Tools, Addison-W esley, 2007, a lthough
th e exam ples o f Section 16.1.2 should be sufficient to place parsing in th e con tex t o f th e query
processor.

762 CHAPTER 16. THE QUERY COMPILER

C onditions

The rules we shall use are:

<Condition> ::= <Condition> AND <Condition>
<Condition> ::= <A ttribute> IN (<Query>)
<Condition> ::= <A ttribu te> = <A ttribute>
<Condition> ::= <A ttribute> LIKE <Pattern>

Although we have listed more rules for conditions than for other categories,
these rules only scratch the surface of the forms of conditions. We have omit
ted rules introducing operators OR, NOT, and EXISTS, comparisons other than
equality and LIKE, constant operands, and a number of other structures that
are needed in a full SQL grammar.

B ase S yn tactic C ategories

Syntactic categories <Attribute>, <Relation>, and <Pattern> are special,
in that they are not defined by grammatical rules, but by rules about the
atoms for which they can stand. For example, in a parse tree, the one child
of <Attribute> can be any string of characters that identifies an attribute of
the current database schema. Similarly, <Relation> can be replaced by any
string of characters that makes sense as a relation in the current schema, and
<Pattern> can be replaced by any quoted string that is a legal SQL pattern.

E xam ple 16.1: Recall two relations from the running movies example:

S ta rs ln (m o v ieT itle , movieYear, starName)
MovieStar(name, add ress, gender, b ir th d a te)

Our study of parsing and query rewriting will center around two versions of the
query “find the titles of movies that have at least one star born in 1960.” We
identify stars born in 1960 by asking if their birthdate (a SQL string) ends in
’ 1960 ’ , using the LIKE operator.

One way to ask this query is to construct the set of names of those stars
born in 1960 as a subquery, and ask about each S ta rs ln tuple whether the
starName in that tuple is a member of the set returned by this subquery. The
SQL for this variation of the query is shown in Fig. 16.2.

The parse tree for the query of Fig. 16.2, according to the grammar we have
sketched, is shown in Fig. 16.3. At the root is the syntactic category <Query>,
as must be the case for any parse tree of a query. Working down the tree, we
see that this query is a select-from-where form; the select-list consists of only
the attribute m ovieT itle, and the from-list is only the one relation S ta rs ln .

The condition in the outer WHERE-clause is more complex. It has the form
of attribute-IN-parenthesized-query. The subquery has its own singleton select-
and from-lists and a simple condition involving a LIKE operator. □

16.1. PARSING AND PREPROCESSING 763

SELECT m ovieT itle
FROM S ta rs ln
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE b ir th d a te LIKE 17.1960’

Figure 16.2: Find the movies with stars born in 1960

SELECT <SelList> FROM <From List> WHERE <Condition>

SELECT <SelList> FROM <From List> WHERE <Condition>

E xam ple 16.2: Now, let us consider another version of the query of Fig. 16.2,
this time without using a subquery. We may instead equijoin the relations
S ta rs ln and MovieStar, using the condition starName = name, to require that
the star mentioned in both relations be the same. Note that starName is an
attribute of relation S ta rs ln , while name is an attribute of MovieStar. This
form of the query of Fig. 16.2 is shown in Fig. 16.4.2

The parse tree for Fig. 16.4 is seen in Fig. 16.5. Many of the rules used in
this parse tree are the same as in Fig. 16.3. However, notice a from-list with
more than one relation and two conditions connected by AND. □

) ;

<Query>

<Attribute> <RelIN

m ovieTitle S t a r s l n s t a r N a m e <Query>

<Attribute> <RelNam e> <A ttribute> L IK E <Pattem >

n am e M o v i e S t a r b i r t h d a t e '%1960'

Figure 16.3: The parse tree for Fig. 16.2

2T h ere is a sm all difference betw een th e two queries in th a t F ig . 16.4 can p roduce dup lica tes
if a m ovie has m ore th a n one s ta r bo rn in 1960. S tric tly speak ing , we should ad d DISTINCT
to Fig. 16.4, b u t o u r exam ple g ram m ar was sim plified to th e ex ten t o f o m ittin g th a t option .

764 CHAPTER 16. THE QUERY COMPILER

SELECT m ovieT itle
FROM S ta rs ln , MovieStar
WHERE starName = name AND

b ir th d a te LIKE ’*/.1960’ ;

Figure 16.4: Another way to ask for the movies with stars born in 1960

<Query>

SELECT <SelList> FROM <From List> WHERE <Condition>

<A ttribute> = <A ttribute> <A ttribute> L IK E <Pattem >

s t a r N a m e n a m e b i r t h d a t e ' % 1 9 6 0 '

Figure 16.5: The parse tree for Fig. 16.4

16.1.3 The Preprocessor
The preprocessor has several important functions. If a relation used in the query
is actually a virtual view, then each use of this relation in the from-list must
be replaced by a parse tree that describes the view. This parse tree is obtained
from the definition of the view, which is essentially a query. We discuss the
preprocessing of view references in Section 16.1.4.

The preprocessor is also responsible for semantic checking. Even if the query
is valid syntactically, it actually may violate one or more semantic rules on the
use of names. For instance, the preprocessor must:

1. Check relation uses. Every relation mentioned in a FROM-clause must be
a relation or view in the current schema.

2. Check and resolve attribute uses. Every attribute that is mentioned in
the SELECT- or WHERE-clause must be an attribute of some relation in
the current scope. For instance, attribute m ovieT itle in the first select-
list of Fig. 16.3 is in the scope of only relation S ta rs ln . Fortunately,

16.1. PARSING AND PREPROCESSING 765

m ovieT itle is an attribute of S ta rs ln , so the preprocessor validates this
use of m ovieT itle. The typical query processor would at this point resolve
each attribute by attaching to it the relation to which it refers, if that rela
tion was not attached explicitly in the query (e.g., S ta rs ln .m o v ieT itle).
It would also check ambiguity, signaling an error if the attribute is in the
scope of two or more relations with that attribute.

3. Check types. All attributes must be of a type appropriate to their uses.
For instance, b ir th d a te in Fig. 16.3 is used in a LIKE comparison, which
requires that b ir th d a te be a string or a type that can be coerced to
a string. Since b ir th d a te is a date, and dates in SQL normally can be
treated as strings, this use of an attribute is validated. Likewise, operators
are checked to see that they apply to values of appropriate and compatible
types.

16.1.4 Preprocessing Queries Involving Views
When an operand in a query is a virtual view, the preprocessor needs to replace
the operand by a piece of parse tree that represents how the view is constructed
from base tables. The idea is illustrated in Fig. 16.6. A query Q is represented
by its expression tree in relational algebra, and that tree may have some leaves
that are views. We have suggested two such leaves, the views V and W . To
interpret Q in terms of base tables, we find the definition of the views V and
W. These definitions are also queries, so they can be expressed in relational
algebra or as parse trees.

Figure 16.6: Substituting view definitions for view references

To form the query over base tables, we substitute, for each leaf in the tree
for Q that is a view, the root of a copy of the tree that defines that view.
Thus, in Fig. 16.6 we have shown the leaves labeled V and W replaced by the
definitions of these views. The resulting tree is a query over base tables that is
equivalent to the original query about views.

E xam ple 16.3: Let us consider the view definition and query of Example 8.3.
Recall the definition of view ParamountMovies is:

CREATE VIEW ParamountMovies AS
SELECT t i t l e , year

766 CHAPTER 16. THE QUERY COMPILER

FROM Movies
WHERE studioName = ’Paramount’ ;

The tree in Fig. 16.7 is a relational-algebra expression for the query; we use
relational algebra here because it is more succinct than the parse trees we have
been using.

11 title, year

° studioName = ' P a ra m o u n t '

M o v ie s

Figure 16.7: Expression tree for view ParamountMovies

The query of Example 8.3 is

SELECT t i t l e
FROM ParamountMovies
WHERE year = 1979;

asking for the Paramount movies made in 1979. This query has the expression
tree shown in Fig. 16.8. Note that the one leaf of this tree represents the view
ParamountMovies.

71 title

P a r a m o u n tM o v ie s

Figure 16.8: Expression tree for the query

We substitute the tree of Fig. 16.7 for the leaf ParamountMovies in Fig. 16.8.
The resulting tree is shown in Fig. 16.9.

This tree, while the formal result of the view preprocessing, is not a very
good way to express the query. In Section 16.2 we shall discuss ways to improve
expression trees such as Fig. 16.9. In particular, we can push selections and
projections down the tree, and combine them in many cases. Figure 16.10 is
an improved representation that we can obtain by standard query-processing
techniques. □

16.1. PARSING AND PREPROCESSING 767

n title

° year = 1979

TZ ■ , title, year

® studioName = ' P a r a m o u n t '

Movies

Figure 16.9: Expressing the query in terms of base tables

71 title

® ye a r = 1979 AND studioName = 'P a r a m o u n t '

Movies

Figure 16.10: Simplifying the query over base tables

16.1.5 Exercises for Section 16.1
Exercise 16.1.1: Add to or modify the rules for <Query> to include simple
versions of the following features of SQL select-from-where expressions:

a) The ability to produce a set with the DISTINCT keyword.

b) A GROUP BY clause and a HAVING clause.

c) Sorted output with the ORDER BY clause.

d) A query with no where-clause.

Exercise 16.1.2: Add to the rules for <Condition> to allow the following
features of SQL conditionals:

a) Logical operators OR and NOT.

b) Comparisons other than =.

768 CHAPTER 16. THE QUERY COMPILER

c) Parenthesized conditions.

d) EXISTS expressions.

E xercise 16.1.3: Using the simple SQL grammar exhibited in this section,
give parse trees for the following queries about relations R(a,b) and S(b,c):

a) SELECT a , c FROM R, S WHERE R.b = S.b;

b) SELECT a FROM R WHERE b IN
(SELECT a FROM R, S WHERE R.b = S.b) ;

16.2 Algebraic Laws for Improving Query Plans
We resume our discussion of the query compiler in Section 16.3, where we shall
transform the parse tree into an expression of the extended relational algebra.
Also in Section 16.3, we shall see how to apply heuristics that we hope will
improve the algebraic expression of the query, using some of the many algebraic
laws that hold for relational algebra. As a preliminary, this section catalogs
algebraic laws that turn one expression tree into an equivalent expression tree
that may have a more efficient physical query plan. The result of applying
these algebraic transformations is the logical query plan that is the output of
the query-rewrite phase.

16.2.1 Commutative and Associative Laws
A commutative law about an operator says that it does not matter in which
order you present the arguments of the operator; the result will be the same.
For instance, + and x are commutative operators of arithmetic. More precisely,
x + y = y + x and x x y = y x x for any numbers x and y. On the other hand,
— is not a commutative arithmetic operator: x — y ^ y — x.

An associative law about an operator says that we may group two uses of the
operator either from the left or the right. For instance, + and x are associative
arithmetic operators, meaning that (x + y) + z = x + (y + z) and (x x y) x 2 =
x x (y x z). On the other hand, — is not associative: (x — y) — z ^ x — (y — z).
When an operator is both associative and commutative, then any number of
operands connected by this operator can be grouped and ordered as we wish
without changing the result. For example, ((w + x) + y) + z = (y + x) + (z + w).

Several of the operators of relational algebra are both associative and com
mutative. Particularly:

• R x 5 = S x R-, (R x S) x T = R x (S x T).

• R ix S = S tx R; (R tx S) tx T = R m (5 ix T).

• R U S = S U R-, {R U S) U T = R U (S U T) .

16.2. ALGEBRAIC LAWS FOR IMPROVING QUERY PLANS 769

• r n s = s n R; (R n S) n t = R n (s n T).

Note that these laws hold for both sets and bags. We shall not prove each of
these laws, although we give one example of a proof, below.

E xam ple 16.4: Let us verify the commutative law for tx : R tx S = S tx R.
First, suppose a tuple t is in the result of R txi S, the expression on the left.
Then there must be a tuple r in R and a tuple s in S that agree with t on every
attribute that each shares with t. Thus, when we evaluate the expression on
the right, S tx R, the tuples s and r will again combine to form t.

We might imagine that the order of components of t will be different on the
left and right, but formally, tuples in relational algebra have no fixed order of
attributes. Rather, we are free to reorder components, as long as we carry the
proper attributes along in the column headers, as was discussed in Section 2.2.5.

We are not done yet with the proof. Since our relational algebra is an algebra
of bags, not sets, we must also verify that if t appears n times on the left, then
it appears n times on the right, and vice-versa. Suppose t appears n times on
the left. Then it must be that the tuple r from R that agrees with t appears
some number of times Ur , and the tuple s from S that agrees with t appears
some ns times, where urus = n. Then when we evaluate the expression S ixj R
on the right, we find that s appears ns times, and r appears nR times, so we
get nsnR copies of t, or n copies.

We are still not done. We have finished the half of the proof that says
everything on the left appears on the right, but we must show that everything
on the right appears on the left. Because of the obvious symmetry, the argument
is essentially the same, and we shall not go through the details here. □

We did not include the theta-join among the associative-commutative oper
ators. True, this operator is commutative:

• Rt><cS = St><cR-

Moreover, if the conditions involved make sense where they are positioned, then
the theta-join is associative. However, there are examples, such as the following,
where we cannot apply the associative law because the conditions do not apply
to attributes of the relations being joined.

E xam ple 16.5: Suppose we have three relations R(a,b), S(b,c), and T(c,d).
The expression

(R ixi R . t> s .b S) ix a<d T
is transformed by a hypothetical associative law into:

R IX R.b>S.b (S IX a<d T)

However, we cannot join S and T using the condition a < d, because a is an
attribute of neither S nor T. Thus, the associative law for theta-join cannot be
applied arbitrarily. □

770 CHAPTER 16. THE QUERY COMPILER

Laws for Bags and Sets Can Differ

Be careful about applying familiar laws about sets to relations that are
bags. For instance, you may have learned set-theoretic laws such as
A n s (B Us C) = (A fls B) Us {A fls C), which is formally the “distribu
tive law of intersection over union.” This law holds for sets, but not for
bags.

As an example, suppose bags A, B, and C were each {a;}. Then
A flb (B Us C) = {a;} fl^ {a;, a;} = {x}. But (A f ls B) Ub (-4 fls C) =
{a;} Ub {^} = {%, x}, which differs from the left-hand-side, {x}.

16.2.2 Laws Involving Selection
Since selections tend to reduce the size of relations markedly, one of the most
important rules of efficient query processing is to move the selections down the
tree as far as they will go without changing what the expression does. Indeed
early query optimizers used variants of this transformation as their primary
strategy for selecting good logical query plans. As we shall see shortly, the
transformation of “push selections down the tree” is not quite general enough,
but the idea of “pushing selections” is still a major tool for the query optimizer.

To start, when the condition of a selection is complex (i.e., it involves con
ditions connected by AND or OR), it helps to break the condition into its con
stituent parts. The motivation is that one part, involving fewer attributes than
the whole condition, may be moved to a convenient place where the entire con
dition cannot be evaluated. Thus, our first two laws for a are the splitting
laws:

• o'Ci AND Ci(R) = crc\ (ac2(i?)).

• OR C2{R) = (ctCj (R)) Us (<JC2(R))-

However, the second law, for OR, works only if the relation R is a set. No
tice that if R were a bag, the set-union would have the effect of eliminating
duplicates incorrectly.

Notice that the order of Ci and C2 is flexible. For example, we could just as
well have written the first law above with C2 applied after Ci, as ac2 (crci (R))-
In fact, more generally, we can swap the order of any sequence of a operators:

• oCl(oCl(R)) = °C2 {(TCl{R))-

E xam ple 16.6: Let R(a, b, c) be a relation. Then 0(a=i or o=3) and b<c(R) can
be split as aa=i or a=3 {&b<c(R)) ■ We can then split this expression at the OR
into <ra=i {&b<c(R)) U <ra=3 (at,<c(R)) . In this case, because it is impossible for
a tuple to satisfy both a — 1 and a = 3, this transformation holds regardless

16.2. ALGEBRAIC LAWS FOR IMPROVING QUERY PLANS 771

of whether or not R is a set, as long as Ub is used for the union. However, in
general the splitting of an OR requires that the argument be a set and that Us
be used.

Alternatively, we could have started to split by making at,<c the outer op
eration, as <7(,<c((r0=i OR 0=3(R))- When we then split the OR, we would get
&b<c{&a=i(R) U cra=3 (R)), an expression that is equivalent to, but somewhat
different from the first expression we derived. □

The next family of laws involving a allow us to push selections through the
binary operators: product, union, intersection, difference, and join. There are
three types of laws, depending on whether it is optional or required to push the
selection to each of the arguments:

1. For a union, the selection must be pushed to both arguments.

2. For a difference, the selection must be pushed to the first argument and
optionally may be pushed to the second.

3. For the other operators it is only required that the selection be pushed
to one argument. For joins and products, it may not make sense to push
the selection to both arguments, since an argument may or may not have
the attributes that the selection requires. When it is possible to push to
both, it may or may not improve the plan to do so; see Exercise 16.2.1.

Thus, the law for union is:

• ac(R US) = <?c(R) U crc(S).

Here, it is mandatory to move the selection down both branches of the tree.
For difference, one version of the law is:

• ac(R - S) = <j c {R) ~ S.

However, it is also permissible to push the selection to both arguments, as:

• crc(R ~ S) — ac{R) - crc(S).

The next laws allow the selection to be pushed to one or both arguments.
If the selection is ac, then we can only push this selection to a relation that
has all the attributes mentioned in C, if there is one. We shall show the laws
below assuming that the relation R has all the attributes mentioned in C.

• ac{R x S) = crc(R) x S.

• ac{R ixi S) — ac(R) tx S.

• ac(R ix d S) = ac{R) tx d S.

• ac(R n 5) = ac(R) fl S.

772 CHAPTER 16. THE QUERY COMPILER

If C has only attributes of S, then we can instead write:

• a c (R x S) = R x crc(S).

and similarly for the other three operators tx, ex £>, and fl. Should relations R
and S both happen to have all attributes of C, then we can use laws such as:

• ac{R tx 5) = ac(R) >3 &c(S)-

Note that it is impossible for this variant to apply if the operator is x or txi D,
since in those cases R and S have no shared attributes. On the other hand, for
fl this form of law always applies, since the schemas of R and S must then be
the same.

E xam ple 16.7: Consider relations R(a,b) and S(b,c) and the expression

cr(a=1 OR o=3) AND b<c(R ^ S)

The condition b < c applies only to to S, and the condition a = 1 OR a = 3
applies only to R. We thus begin by splitting the AND of the two conditions as
we did in the first alternative of Example 16.6:

°o=l OR a=z{?b<c(R ^

Next, we can push the selection Cb<c to S, giving us the expression:

°a=l OR a=3 (R ^ <76<c(“S'))

Finally, push the first condition to R, yielding: (Ja=i or a=3 {R) M &b<c(S). □

16.2.3 Pushing Selections
As was illustrated in Example 16.3, pushing a selection down an expression
tree — that is, replacing the left side of one of the rules in Section 16.2.2 by its
right side — is one of the most powerful tools of the query optimizer. However,
when queries involve virtual views, it is sometimes necessary first to move a
selection as far up the tree as it can go, and then push the selections down
all possible branches. An example will illustrate the proper selection-pushing
approach.

E xam ple 16.8: Suppose we have the relations

S t a r s l n (t i t l e , y ea r, starName)
M o v ie s (ti t le , y ea r, le n g th , genre, studioName, producerC#)

Note that we have altered the first two attributes of S ta r s ln from the usual
m ovieT itle and movieYear to make this example simpler to follow. Define
view MoviesOf 1996 by:

16.2. ALGEBRAIC LAWS FOR IMPROVING QUERY PLANS 773

Some Trivial Laws

We are not going to state every true law for the relational algebra. The
reader should be alert, in particular, for laws about extreme cases: a
relation that is empty, a selection or theta-join whose condition is always
true or always false, or a projection onto the list of all attributes, for
example. A few of the many possible special-case laws:

• Any selection on an empty relation is empty.

• If C is an always-true condition (e.g., x > 10 OR x < 10 on a relation
that forbids x = NULL), then ac(R) = R-

• If R is empty, then R U S = S.

CREATE VIEW Movies0fl996 AS
SELECT *
FROM Movies
WHERE year = 1996;

We can ask the query “which stars worked for which studios in 1996?” by the
SQL query:

SELECT starName, studioName
FROM MoviesOf1996 NATURAL JOIN S ta rs ln ;

The view MoviesOf 1996 is defined by the relational-algebra expression

& y e a r= 1996 (Movies)

Thus, the query, which is the natural join of this expression with S ta rs ln ,
followed by a projection onto attributes starName and studioName, has the
expression shown in Fig. 16.11.

Here, the selection is already as far down the tree as it will go, so there
is no way to “push selections down the tree.” However, the rule ctc{R x
S) = ac(R) t*3 S can be applied “backwards,” to bring the selection (Ty ea r = i 996

above the join in Fig. 16.11. Then, since year is an attribute of both Movies
and S ta rs ln , we may push the selection down to both children of the join node.
The resulting logical query plan is shown in Fig. 16.12. It is likely to be an
improvement, since we reduce the size of the relation S ta rs ln before we join it
with the movies of 1996. □

774 CHAPTER 16. THE QUERY COMPILER

71 starName, studioName

[X]

® year = 1996 Starsln

Movies

Figure 16.11: Logical query plan constructed from definition of a query and
view

71 starName, studioName

CXI

® year= 1996 ^ year= 1996

Movies Starsln

Figure 16.12: Improving the query plan by moving selections up and down the
tree

16.2.4 Laws Involving Projection
Projections, like selections, can be “pushed down” through many other opera
tors. Pushing projections differs from pushing selections in that when we push
projections, it is quite usual for the projection also to remain where it is. Put
another way, “pushing” projections really involves introducing a new projection
somewhere below an existing projection.

Pushing projections is useful, but generally less so than pushing selections.
The reason is that while selections often reduce the size of a relation by a large
factor, projection keeps the number of tuples the same and only reduces the
length of tuples. In fact, the extended projection operator of Section 5.2.5 can
actually increase the length of tuples.

To describe the transformations of extended projection, we need to introduce
some terminology. Consider a term £ - > i o n the list for a projection, where
E is an attribute or an expression involving attributes and constants. We say
all attributes mentioned in E are input attributes of the projection, and x is
an output attribute. If a term is a single attribute, then it is both an input
and output attribute. If a projection list consists only of attributes, with no
renaming or expressions other than a single attribute, then we say the projection
is simple.

E xam ple 16.9: Projection ira,b,c(R) is simple; a, b, and c are both its input

16.2. ALGEBRAIC LAWS FOR IMPROVING QUERY PLANS 775

attributes and its output attributes. On the other hand, 7ra+/,->x, c(R) is not
simple. It has input attributes a, b, and c, and its output attributes are x and
c. □

The principle behind laws for projection is that:

• We may introduce a projection anywhere in an expression tree, as long as
it eliminates only attributes that are neither used by an operator above
nor are in the result of the entire expression.

In the most basic form of these laws, the introduced projections are always
simple, although the pre-existing projections, such as L below, need not be.

• t t l (R ixi S) — 717, (ttm(R) cxi 7rjv(S)), where M and N are the join at
tributes and the input attributes if L that are found among the attributes
of R and S, respectively.

• 7tl(R t x c S) = til(k m (R) txia nrv(S)) , where M and N are the join
attributes (i.e., those mentioned in condition C) and the input attributes
of L that are found among the attributes of R and S respectively.

• 7rl {R x S) = ttl(k m (R) x 7r/v(S)), where M and N are the lists of all
attributes of R and S, respectively, that are input attributes of L.

E xam ple 16 .10: Let R(a,b,c) and S{c,d,e) be two relations. Consider the
expression ira+e->.x, b->y{R x S). The input attributes of the projection are a,
b, and e, and c is the only join attribute. We may apply the law for pushing
projections below joins to get the equivalent expression:

7*"a+e—tx, b—ty{^a,byc(R) 1̂ ^ ^ (S))

Notice that the projection ira,b,c{R) is trivial; it projects onto all the at
tributes of R. We may thus eliminate this projection and get a third equivalent
expression: Tra+e->Xi b->y(R 1x1 7rCie(S)). That is, the only change from the
original is that we remove the attribute d from S before the join. □

We can perform a projection entirely before a bag union. That is:

• 7tl (R Ub S) = 7tl(R) Us nl (S).

On the other hand, projections cannot be pushed below set unions or either the
set or bag versions of intersection or difference at all.

E xam ple 16 .11: Let R(a,b) consist of the one tuple {(1 ,2)} and S(a,b)
consist of the one tuple {(1 ,3)}. Then TTa(R f~l S) = na(0) = 0. However,
TTa(R) n 7rB(S) = {(l)} n {(1)} = {(1)}. □

776 CHAPTER 16. THE QUERY COMPILER

If the projection involves some computations, and the input attributes of
a term on the projection list belong entirely to one of the arguments of a join
or product below the projection, then we have the option, although not the
obligation, to perform the computation directly on that argument. An example
should help illustrate the point.

E xam ple 16.12: Again let R(a,b,c) and S(c,d,e) be relations, and consider
the join and projection na+i,^Xt d+e-sy { R M S). We can move the sum a + b
and its renaming to x directly onto the relation R, and move the sum d + e to
S similarly. The resulting equivalent expression is

^ x , y (tTo+6—\ x , c (R) ̂ ̂d+e—fy, c(5))
One special case to handle is if x or y were c. Then, we could not rename

a sum to c, because a relation cannot have two attributes named c. Thus,
we would have to invent a temporary name and do another renaming in the
projection above the join. For example, 7r0+j_>Ci a+e->y(R x S) could become
TTz—»c, y (j ta+b—tz , c (R) ^ ^ d + e —yy, c(5)). ^

It is also possible to push a projection below a selection.

• (o c{R)) = kl (o ' c , where M is the list of all attributes that
are either input attributes of L or mentioned in condition C.

As in Example 16.12, we have the option of performing computations on the
list L in the list M instead, provided the condition C does not need the input
attributes of L that are involved in a computation.

16.2.5 Laws About Joins and Products
We saw in Section 16.2.1 many of the important laws involving joins and prod
ucts: their commutative and associative laws. However, there are a few addi
tional laws that follow directly from the definition of the join, as was mentioned
in Section 2.4.12.

• R tx c & — ac (R x S).

• R x S = ttl(<7c (R x S)), where C is the condition that equates each
pair of attributes from R and S with the same name, and L is a list that
includes one attribute from each equated pair and all the other attributes
of R and S.

In practice, we usually want to apply these rules from right to left. That is, we
identify a product followed by a selection as a join of some kind. The reason for
doing so is that the algorithms for computing joins are generally much faster
than algorithms that compute a product followed by a selection on the (very
large) result of the product.

16.2. ALGEBRAIC LAWS FOR IMPROVING QUERY PLANS 777

16.2.6 Laws Involving Duplicate Elimination
The operator S, which eliminates duplicates from a bag, can be pushed through
many, but not all operators. In general, moving a 6 down the tree reduces the
size of intermediate relations and may therefore be beneficial. Moreover, we
can sometimes move the S to a position where it can be eliminated altogether,
because it is applied to a relation that is known not to possess duplicates:

• 5(R) = R if R has no duplicates. Important cases of such a relation R
include

a) A stored relation with a declared primary key, and
b) The result of a 7 operation, since grouping creates a relation with

no duplicates.
c) The result of a set union, intersection, or difference.

Several laws that “push” S through other operators are:

• S(R x S) = S(R) x S(S).

• S (R t x S) = 6(R) \x6(S).

• 5 (R x c S) = 5(R)*3C d{S).

. S{ac (R)) =<tc {6(R)).

We can also move the S to either or both of the arguments of an intersection:

• 5{R n B S) = S(R) n B S = R n B 6{S) = S(R) n B <5(5).

On the other hand, 6 generally cannot be pushed through the operators Ub,
- b , or 7r.

E xam ple 16.13: Let R have two copies of the tuple t and 5 have one copy of
t. Then S(R UB 5) has one copy of t, while 5(R) Ub S(S) has two copies of t.
Also, S (R —b 5) has one copy of t, while S(R) —B S(S) has no copy of t.

Now, consider relation T(a,b) with one copy each of the tuples (1,2) and
(1,3), and no other tuples. Then <5(7r0(T)) has one copy of the tuple (1), while
ira(d(T)) has two copies of (1). □

16.2.7 Laws Involving Grouping and Aggregation
When we consider the operator 7 , we find that the applicability of many trans
formations depends on the details of the aggregate operators used. Thus, we
cannot state laws in the generality that we used for the other operators. One
exception is the law, mentioned in Section 16.2.6, that a 7 absorbs a S. Pre
cisely:

778 CHAPTER 16. THE QUERY COMPILER

• % l(-R)) = i l (R)-

Another general rule is that we may project useless attributes from the ar
gument should we wish, prior to applying the 7 operation. This law can be
written:

• 7l (R) = 7 l (k m (R)) if M is a list containing at least all those attributes
of R that are mentioned in L.

The reason that other transformations depend on the aggregation (s) in
volved in a 7 is that some aggregations — MIN and MAX in particular — are not
affected by the presence or absence of duplicates. The other aggregations —
SUM, COUNT, and AVG — generally produce different values if duplicates are elim
inated prior to application of the aggregation.

Thus, let us call an operator 7^ duplicate-impervious if the only aggregations
in L are MIN and/or MAX. Then:

• 7l (R) = 7 l (<5(i?)) provided 7 1 is duplicate-impervious.

E xam ple 16.14: Suppose we have the relations

MovieStar(name, addr, gender, b ir th d a te)
S ta rs ln (m o v ieT itle , movieYear, starName)

and we want to know for each year the birthdate of the youngest star to appear
in a movie that year. We can express this query as

SELECT movieYear, MAX(birthdate)
FROM M ovieStar, S ta rs ln
WHERE name = starName
GROUP BY movieYear;

^ movieYear, MAX (birthdate)

° name - starName

X

MovieStar Starsln

Figure 16.13: Initial logical query plan for the query of Example 16.14

An initial logical query plan constructed directly from the query is shown
in Fig. 16.13. The FROM list is expressed by a product, and the WHERE clause
by a selection above it. The grouping and aggregation are expressed by the 7
operator above those. Some transformations that we could apply to Fig. 16.13
if we wished are:

16.2. ALGEBRAIC LAWS FOR IMPROVING QUERY PLANS 779

1. Combine the selection and product into an equijoin.

2. Generate a 6 below the 7 , since the 7 is duplicate-impervious.

3. Generate a n between the 7 and the introduced S to project onto movie
Year and b ir th d a te , the only attributes relevant to the 7 .

The resulting plan is shown in Fig. 16.14.

^ movieYear, MAX (birthdate)

^ movieYear, birthdate

s

XI
name = starName

MovieStar Starsln

Figure 16.14: Another query plan for the query of Example 16.14

We can now push the <5 below the x and introduce 7r’s below that if we wish.
This new query plan is shown in Fig. 16.15. If name is a key for MovieStar, the
6 can be eliminated along the branch leading to that relation. □

^ movieYear, MAX (birthdate)

71 movieYear, birthdate

M
name = starName

8 8

K Itbirthdate, name movieYear, starName

MovieStar Starsln

Figure 16.15: A third query plan for Example 16.14

780 CHAPTER 16. THE QUERY COMPILER

16.2.8 Exercises for Section 16.2
Exercise 16.2.1: When it is possible to push a selection to both arguments
of a binary operator, we need to decide whether or not to do so. How would
the existence of indexes on one of the arguments affect our choice? Consider,
for instance, an expression a c (R fl 5), where there is an index on S.

E xercise 16.2.2: Give examples to show that:

a) Projection cannot be pushed below set union.

b) Projection cannot be pushed below set or bag difference.

c) Duplicate elimination ((5) cannot be pushed below projection.

d) Duplicate elimination cannot be pushed below bag union or difference.

! Exercise 16.2 .3 : Prove that we can always push a projection below both
branches of a bag union.

! E xercise 16.2 .4 : Some laws that hold for sets hold for bags; others do not.
For each of the laws below that are true for sets, tell whether or not it is true
for bags. Either give a proof the law for bags is true, or give a counterexample.

a) R U R = R (the idempotent law for union).

b) R fl R = R (the idempotent law for intersection).

c) R — R = 0.

d) R U (S fl T) = (R U S) fl (R U T) (distribution of union over intersec
tion).

! Exercise 16.2.5: We can define C for bags by: R C S if and only if for every
element x, the number of times x appears in R is less than or equal to the
number of times it appears in S. Tell whether the following statements (which
are all true for sets) are true for bags; give either a proof or a counterexample:

a) If R C S, then R U 5 = S.

b) If R C S, then R n 5 = R.

c) If R C S and S C R , then R = S.

E xercise 16.2.6: Starting with an expression 7vi[R(a,b,c) tx S(b,c,d,e)),
push the projection down as far as it can go if L is:

a) b + c - > x , c + d - ^ y .

b) a, b, a + d -» z.

16.3. FROM PARSE TREES TO LOGICAL QUERY PLANS 781

! E xercise 16.2.7: We mentioned in Example 16.14 that none of the plans we
showed is necessarily the best plan. Can you think of a better plan?

! E xercise 16.2.8: The following are possible equalities involving operations on
a relation R(a,b). Tell whether or not they are true; give either a proof or a
counterexample.

a) lMIN(a)->y, x(la, SUM(b)-+x(R)) = ly,SUM(b)^yx{lMIN(a)^y, b(R)) ■

b) rYMIN(a)—>y, x{la, MAX(b)^x{R)) = Jy,MAX(b)~tx {lMIN(a)^y, b(R)) ■

!! Exercise 16.2.9: The join-like operators of Exercise 15.2.4 obey some of the
familiar laws, and others do not. Tell whether each of the following is or is not
true. Give either a proof that the law holds or a counterexample.

a) <tc(R X S) = crc(R) ■><S.

b) ac (R & S) = ac {R)& S.

c) crciR&L S) = crc{R) S, where C involves only attributes of R.

d) a c (R & l S) = R &c(S), where C involves only attributes of S.

e) itl{R X S) = ni(R) X 5.

f) (R & S) cSi T = R dSi (S m T).

g) R & S = S tS R.

h) R & L S = S & L R-

i) R X S = S X R .

!! E xercise 16.2.10: While it is not precisely an algebraic law, because it in
volves an indeterminate number of operands, it is generally true that

SUM(ai,a2, . . . ,a„) = ai + a2 -\------ 1- a„

SQL has both a SUM operator and addition for integers and reals. Considering
the possibility that one or more of the a*’s could be NULL, rather than an integer
or real, does this “law” hold in SQL?

16.3 From Parse Trees to Logical Query Plans
We now resume our discussion of the query compiler. Having constructed a
parse tree for a query in Section 16.1, we next need to turn the parse tree
into the preferred logical query plan. There are two steps, as was suggested in
Fig. 16.1.

782 CHAPTER 16. THE QUERY COMPILER

The first step is to replace the nodes and structures of the parse tree, in
appropriate groups, by an operator or operators of relational algebra. We shall
suggest some of these rules and leave some others for exercises. The second step
is to take the relational-algebra expression produced by the first step and to
turn it into an expression that we expect can be converted to the most efficient
physical query plan.

16.3.1 Conversion to Relational Algebra
We shall now describe informally some rules for transforming SQL parse trees to
algebraic logical query plans. The first rule, perhaps the most important, allows
us to convert all “simple” select-from-where constructs to relational algebra
directly. Its informal statement:

• If we have a <Query> with a <Condition> that has no subqueries, then
we may replace the entire construct — the select-list, from-list, and con
dition — by a relational-algebra expression consisting, from bottom to
top, of:

1. The product of all the relations mentioned in the <FromList>, which
is the argument of:

2. A selection ac, where C is the <Condition> expression in the con
struct being replaced, which in turn is the argument of:

3. A projection ttl, where L is the list of attributes in the <SelList>.

E xam ple 16.15: Let us consider the parse tree of Fig. 16.5. The select-
from-where transformation applies to the entire tree of Fig. 16.5. We take the
product of the two relations S ta rs ln and MovieStar of the from-list, select for
the condition in the subtree rooted at <Condition>, and project onto the select-
list, m ovieT itle. The resulting relational-algebra expression is Fig. 16.16.

^ movieTitle

I
® starName = name AND birthdate LIK E '% 1 9 6 0 '

X

Starsln MovieStar

Figure 16.16: Translation of a parse tree to an algebraic expression tree

The same transformation does not apply to the outer query of Fig. 16.3.
The reason is that the condition involves a subquery, a m atter we defer to
Section 16.3.2. However, we can apply the transformation to the subquery in

16.3. FROM PARSE TREES TO LOGICAL QUERY PLANS 783

Limitations on Selection Conditions

One might wonder why we do not allow C, in a selection operator ac, to
involve a subquery. It is conventional in relational algebra for the argu
ments of an operator — the elements that do not appear in subscripts —
to be expressions that yield relations. On the other hand, parameters —
the elements that appear in subscripts — have a type other than rela
tions. For instance, parameter C in ac is a boolean-valued condition, and
parameter L in 7tl is a list of attributes or formulas.

If we follow this convention, then whatever calculation is implied by a
parameter can be applied to each tuple of the relation argument(s). That
limitation on the use of parameters simplifies query optimization. Suppose,
in contrast, that we allowed an operator like ac(R), where C involves a
subquery. Then the application of C to each tuple of R involves computing
the subquery. Do we compute it anew for every tuple of R I That would
be unnecessarily expensive, unless the subquery were correlated, i.e., its
value depends on something defined outside the query, as the subquery of
Fig. 16.3 depends on the value of starName. Even correlated subqueries
can be evaluated without recomputation for each tuple, in most cases,
provided we organize the computation correctly.

Fig. 16.3. The expression of relational algebra that we get from the subquery
is ITname {^birthdate LIKE ’y.1960’ (MovieStar)) . O

16.3.2 Removing Subqueries From Conditions
For parse trees with a <Condition> that has a subquery, we shall introduce
an intermediate form of operator, between the syntactic categories of the parse
tree and the relational-algebra operators that apply to relations. This operator
is often called two-argument selection. We shall represent a two-argument selec
tion in a transformed parse tree by a node labeled a, with no parameter. Below
this node is a left child that represents the relation R upon which the selection
is being performed, and a right child that is an expression for the condition
applied to each tuple of R. Both arguments may be represented as parse trees,
as expression trees, or as a mixture of the two.

E xam ple 16.16: In Fig. 16.17 is a rewriting of the parse tree of Fig. 16.3
that uses a two-argument selection. Several transformations have been made
to construct Fig. 16.17 from Fig. 16.3:

1. The subquery in Fig. 16.3 has been replaced by an expression of relational
algebra, as discussed at the end of Example 16.15.

784 CHAPTER 16. THE QUERY COMPILER

i t m ovieTitle

a

Starsln <Condition>

\
<Attribute> IN 7tname

starName ° birthdate L IK E ' % 1960 '

MovieStar

Figure 16.17: An expression using a two-argument a, midway between a parse
tree and relational algebra

2. The outer query has also been replaced, using the rule for select-from-
where expressions from Section 16.3.1. However, we have expressed the
necessary selection as a two-argument selection, rather than by the con
ventional a operator of relational algebra. As a result, the upper node of
the parse tree labeled <Condition> has not been replaced, but remains as
an argument of the selection, with its parentheses and <Query> replaced
by relational algebra, per point (1).

This tree needs further transformation, which we discuss next. □

We need rules that allow us to replace a two-argument selection by a one-
argument selection and other operators of relational algebra. Each form of
condition may require its own rule. In common situations, it is possible to re
move the two-argument selection and reach an expression that is pure relational
algebra. However, in extreme cases, the two-argument selection can be left in
place and considered part of the logical query plan.

We shall give, as an example, the rule that lets us deal with the condition in
Fig. 16.17 involving the IN operator. Note that the subquery in this condition is
uncorrelated; that is, the subquery’s relation can be computed once and for all,
independent of the tuple being tested. The rule for eliminating such a condition
is stated informally as follows:

• Suppose we have a two-argument selection in which the first argument
represents some relation R and the second argument is a <Condition> of
the form t IN S, where expression 5 is an uncorrelated subquery, and t
is a tuple composed of (some) attributes of R. We transform the tree as
follows:

a) Replace the <Condition> by the tree that is the expression for S. If
S may have duplicates, then it is necessary to include a 6 operation

16.3. FROM PARSE TREES TO LOGICAL QUERY PLANS 785

at the root of the expression for S, so the expression being formed
does not produce more copies of tuples than the original query does.

b) Replace the two-argument selection by a one-argument selection ac,
where C is the condition that equates each component of the tuple
t to the corresponding attribute of the relation S.

c) Give ac an argument that is the product of R and S.

Figure 16.18 illustrates this transformation.

Figure 16.18: This rule handles a two-argument selection with a condition in
volving IN

E xam ple 16.17: Consider the tree of Fig. 16.17, to which we shall apply the
rule for IN conditions described above. In this figure, relation R is S ta rs ln ,
and relation S is the result of the relational-algebra expression consisting of
the subtree rooted at 7rname. The tuple t has one component, the attribute
starName.

The two-argument selection is replaced by <Js ta r N a m e = n a m e ', its condition C
equates the one component of tuple t to the attribute of the result of query
S. The child of the a node is a x node, and the arguments of the x node
are the node labeled S ta rs ln and the root of the expression for S. Notice
that, because name is the key for MovieStar, there is no need to introduce a
duplicate-eliminating <5 in the expression for S. The new expression is shown
in Fig. 16.19. It is completely in relational algebra, and is equivalent to the
expression of Fig. 16.16, although its structure is quite different. □

The strategy for translating subqueries to relational algebra is more com
plex when the subquery is correlated. Since correlated subqueries involve un
known values defined outside themselves, they cannot be translated in isolation.
Rather, we need to translate the subquery so that it produces a relation in which
certain extra attributes appear — the attributes that must later be compared
with the externally defined attributes. The conditions that relate attributes
from the subquery to attributes outside are then applied to this relation, and

786 CHAPTER 16. THE QUERY COMPILER

x
starName - name

° birthdate L IK E ' % 19 6 0 '

MovieStar

Figure 16.19: Applying the rule for IN conditions

the extra attributes that are no longer necessary can then be projected out.
During this process, we must avoid introducing duplicate tuples, if the query
does not eliminate duplicates at the end. The following example illustrates this
technique.

SELECT DISTINCT m l.m ovieT itle , ml.movieYear
FROM S ta rs ln ml
WHERE ml.movieYear - 40 <= (

SELECT AVG(birthdate)
FROM S ta rs ln m2, MovieStar s
WHERE m2.starName = s .name AND

m l.m ovieT itle = m2.m ovieT itle AND
ml.movieYear = m2.movieYear

) ;

Figure 16.20: Finding movies with high average star age

E xam ple 16.18: Figure 16.20 is a SQL rendition of the query: “find the
movies where the average age of the stars was at most 40 when the movie was
made.” To simplify, we treat b ir th d a te as a birth year, so we can take its
average and get a value that can be compared with the movieYear attribute of
S ta rs ln . We have also written the query so that each of the three references
to relations has its own tuple variable, in order to help remind us where the
various attributes come from.

Fig. 16.21 shows the result of parsing the query and performing a partial
translation to relational algebra. During this initial translation, we split the
WHERE-clause of the subquery in two, and used part of it to convert the product
of relations to an equijoin. We have retained the aliases ml, m2 , and s in
the nodes of this tree, in order to make clearer the origin of each attribute.

8

TT m l .movieTitle, m l.m ovieYear

16.3. FROM PARSE TREES TO LOGICAL QUERY PLANS 787

G

Starsln ml <Condition>

Starsln m2 MovieStar s

Figure 16.21: Partially transformed parse tree for Fig. 16.20

Alternatively, we could have used projections to rename attributes and thus
avoid conflicting attribute names, but the result would be harder to follow.

In order to remove the <Condition> node and eliminate the two-argument
<r, we need to create an expression that describes the relation in the right
branch of the <Condition>. However, because the subquery is correlated, there
is no way to obtain the attributes ml .m ovieT itle or ml.movieYear from the
relations mentioned in the subquery, which are S ta rs ln (with alias m2) and
MovieStar. Thus, we need to defer the selection

&m 2 .m o v ie T i t le ~ m l .m o v ie T i t le AND m2,m o v ie Y e a r = m l .m o v ie Y e a r

until after the relation from the subquery is combined with the copy of S ta rs ln
from the outer query (the copy aliased ml). To transform the logical query plan
in this way, we need to modify the 7 to group by the attributes m2 .m ovieT itle
and m2.movieYear, so these attributes will be available when needed by the
selection. The net effect is that we compute for the subquery a relation con
sisting of movies, each represented by its title and year, and the average star
birth year for that movie.

The modified group-by operator appears in Fig. 16.22; in addition to the
two grouping attributes, we need to rename the average abd (average birthdate)
so we can refer to it later. Figure 16.22 also shows the complete translation to
relational algebra. Above the 7 , the S ta rs ln from the outer query is joined with
the result of the subquery. The selection from the subquery is then applied to
the product of S ta rs ln and the result of the subquery; we show this selection as

788 CHAPTER 16. THE QUERY COMPILER

8

IT
m l .movieTitle, m l.m ovieYear

® m l.m ovieY ear-40 < abd

I "
M

m2.movieTitle = m l.m ovieTitle AND m2.movieYear = m l.m ovieYear

Starsln ml ^ m2.movieTitle, m l.m ovieYear, A V G (s .b ir thda te)— ^ abd

X I
m2.starName = s. name

Starsln m2 MovieStar s

Figure 16.22: Translation of Fig. 16.21 to a logical query plan

a theta-join, which it would become after normal application of algebraic laws.
Above the theta-join is another selection, this one corresponding to the selection
of the outer query, in which we compare the movie’s year to the average birth
year of its stars. The algebraic expression finishes at the top like the expression
of Fig. 16.21, with the projection onto the desired attributes and the elimination
of duplicates.

As we shall see in Section 16.3.3, there is much more that a query opti
mizer can do to improve the query plan. This particular example satisfies three
conditions that let us improve the plan considerably. The conditions are:

1. Duplicates are eliminated at the end,

2. Star names from S ta rs ln ml axe projected out, and

3. The join between S ta rs ln ml and the rest of the expression equates the
title and year attributes from S ta rs ln ml and S ta rs ln m2.

Because these conditions hold, we can replace all uses of m l.m ovieT itle and
ml .movieYear by m2.m ovieT itle and m2.movieYear, respectively. Thus, the
upper join in Fig. 16.22 is unnecessary, as is the argument S ta rs ln ml. This
logical query plan is shown in Fig. 16.23. □

16.3.3 Improving the Logical Query Plan
When we convert our query to relational algebra we obtain one possible logical
query plan. The next step is to rewrite the plan using the algebraic laws outlined

16.3. FROM PARSE TREES TO LOGICAL QUERY PLANS 789

8

71 m2.movieTitle, m2.movieYear

® m 2.m ovieYear-40 < abd

m2.movieTitle, m2.movieYear, A V G (s.b irthda te) — abd

M
m2.starName = s.name

Starsln m2 MovieStar s

Figure 16.23: Simplification of Fig. 16.22

in Section 16.2. Alternatively, we could generate more than one logical plan,
representing different orders or combinations of operators. But in this book we
shall assume that the query rewriter chooses a single logical query plan that it
believes is “best,” meaning that it is likely to result ultimately in the cheapest
physical plan.

We do, however, leave open the matter of what is known as “join ordering,”
so a logical query plan that involves joining relations can be thought of as a
family of plans, corresponding to the different ways a join could be ordered
and grouped. We discuss choosing a join order in Section 16.6. Similarly, a
query plan involving three or more relations that are arguments to the other
associative and commutative operators, such as union, should be assumed to
allow reordering and regrouping as we convert the logical plan to a physical plan.
We begin discussing the issues regarding ordering and physical plan selection
in Section 16.4.

There are a number of algebraic laws from Section 16.2 that tend to improve
logical query plans. The following are most commonly used in optimizers:

• Selections can be pushed down the expression tree as far as they can go. If
a selection condition is the AND of several conditions, then we can split the
condition and push each piece down the tree separately. This strategy is
probably the most effective improvement technique, but we should recall
the discussion in Section 16.2.3, where we saw that in some circumstances
it was necessary to push the selection up the tree first.

• Similarly, projections can be pushed down the tree, or new projections
can be added. As with selections, the pushing of projections should be
done with care, as discussed in Section 16.2.4.

• Duplicate eliminations can sometimes be removed, or moved to a more

790 CHAPTER 16. THE QUERY COMPILER

convenient position in the tree, as discussed in Section 16.2.6.

• Certain selections can be combined with a product below to turn the pair
of operations into an equijoin, which is generally much more efficient to
evaluate than are the two operations separately. We discussed these laws
in Section 16.2.5.

E xam ple 16.19: Let us consider the query of Fig. 16.16. First, we may split
the two parts of the selection into OstarNavne=name and ^birthdate LIKE ’ y»1960 ’ ■
The latter can be pushed down the tree, since the only attribute involved,
b ir th d a te , is from the relation MovieStar. The first condition involves at
tributes from both sides of the product, but they are equated, so the product
and selection is really an equijoin. The effect of these transformations is shown
in Fig. 16.24. □

movieTitle

t x
starName = name

MovieStar

Figure 16.24: The effect of query rewriting

16.3.4 Grouping Associative/Comm utative Operators
An operator that is associative and commutative operators may be thought of
as having any number of operands. Thinking of an operator such as join as
having any number of operands lets us reorder those operands so that when
the multiway join is executed as a sequence of binary joins, they take less time
than if we had executed the joins in the order implied by the parse tree. We
discuss ordering multiway joins in Section 16.6.

Thus, we shall perform a last step before producing the final logical query
plan: for each portion of the subtree that consists of nodes with the same
associative and commutative operator, we group the nodes with these oper
ators into a single node with many children. Recall that the usual associa
tive/commutative operators are natural join, union, and intersection. Natural
joins and theta-joins can also be combined with each other under certain cir
cumstances:

1. We must replace the natural joins with theta-joins that equate the at
tributes of the same name.

2. We must add a projection to eliminate duplicate copies of attributes in
volved in a natural join that has become a theta-join.

3. The theta-join conditions must be associative. Recall there are cases, as
discussed in Section 16.2.1, where theta-joins are not associative.

In addition, products can be considered as a special case of natural join and
combined with joins if they are adjacent in the tree. Figure 16.25 illustrates
this transformation in a situation where the logical query plan has a cluster of
two union operators and a cluster of three natural join operators. Note that
the letters R through W stand for any expressions, not necessarily for stored
relations.

16.3. FROM PARSE TREES TO LOGICAL QUERY PLANS 791

/ \
* u

/ \
S T

Figure 16.25: Final step in producing the logical query plan: group the asso
ciative and commutative operators

16.3.5 Exercises for Section 16.3
E xercise 16.3.1: Replace the natural joins in the following expressions by
equivalent theta-joins and projections. Tell whether the resulting theta-joins
form a commutative and associative group.

a) (R(a,b) tx S(b,c)) x 5c>T.c T(c,d).

b) (fl(a, b) cx S{b, c)) m (T (c , d) tx U(d, e)).

c) (R(a , b) ix 5(6, c)) ex (T(c, d) tx U(a, d)).

E xercise 16.3.2: Convert to relational algebra your parse trees from Exer
cise 16.1.3(a) and (b). For (b), show both the form with a two-argument selec
tion and its eventual conversion to a one-argument (conventional ac) selection.

! E xercise 16.3.3: Give a rule for converting each of the following forms of
<Condition> to relational algebra. All conditions may be assumed to be ap
plied (by a two-argument selection) to a relation R. You may assume that the

792 CHAPTER 16. THE QUERY COMPILER

subquery is not correlated with R. Be careful that you do not introduce or
eliminate duplicates in opposition to the formal definition of SQL.

a) A condition of the form EXISTS(<Query>).

b) A condition of the form a — ANY <Query>, where a is an attribute of R.

c) A condition of the form a — ALL <Query>, where a is an attribute of R.

!! E xercise 16.3.4: Repeat Exercise 16.3.3, but allow the subquery to be corol-
lated with R. For simplicity, you may assume that the subquery has the simple
form of select-from-where expression described in this section, with no further
subqueries.

!! E xercise 16.3.5: From how many different expression trees could the grouped
tree on the right of Fig. 16.25 have come? Remember that the order of chil
dren after grouping is not necessarily reflective of the ordering in the original
expression tree.

16.4 Estim ating the Cost of Operations
Having parsed a query and transformed it into a logical query plan, we must
next turn the logical plan into a physical plan. We normally do so by con
sidering many different physical plans that are derived from the logical plan,
and evaluating or estimating the cost of each. After this evaluation, often called
cost-based enumeration, we pick the physical query plan with the least estimated
cost; that plan is the one passed to the query-execution engine. When enumer
ating possible physical plans derivable from a given logical plan, we select for
each physical plan:

1. An order and grouping for associative-and-commutative operations like
joins, unions, and intersections.

2. An algorithm for each operator in the logical plan, for instance, deciding
whether a nested-loop join or a hash-join should be used.

3. Additional operators — scanning, sorting, and so on — that are needed
for the physical plan but that were not present explicitly in the logical
plan.

4. The way in which arguments are passed from one operator to the next, for
instance, by storing the intermediate result on disk or by using iterators
and passing an argument one tuple or one main-memory buffer at a time.

To make each of these choices, we need to understand what the costs of
the various physical plans are. We cannot know these costs exactly without
executing the plan. But almost always, the cost of executing a query plan is

16.4. ESTIMATING THE COST OF OPERATIONS 793

Review of Notation

Recall from Section 15.1.3 the following size parameters:

• B(R) is the number of blocks needed to hold relation R.

• T(R) is the number of tuples of relation R.

• V(R, a) is the value count for attribute a of relation R, that is,
the number of distinct values relation R has in attribute a. Also,
V(R, [a i,a2, . . . , an]) is the number of distinct values R has when
all of attributes 01, 02,••• , an are considered together, that is, the
number of tuples in (R))-

significantly greater than all the work done by the query compiler in selecting
a plan. Thus, we do not want to execute more than one plan for one query, and
we are forced to estimate the cost of any plan without executing it.

Therefore, our first problem is how to estimate costs of plans accurately.
Such estimates are based on parameters of the data (see the box on “Review of
Notation”) that must be either computed exactly from the data or estimated
by a process of “statistics gathering” that we discuss in Section 16.5.1. Given
values for these parameters, we may make a number of reasonable estimates of
relation sizes that can be used to predict the cost of a complete physical plan.

16.4.1 Estimating Sizes of Intermediate Relations
The physical plan is selected to minimize the estimated cost of evaluating the
query. No matter what method is used for executing query plans, and no matter
how costs of query plans are estimated, the sizes of intermediate relations of the
plan have a profound influence on costs. Ideally, we want rules for estimating
the number of tuples in an intermediate relation so that the rules:

1. Give accurate estimates.

2. Are easy to compute.

3. Are logically consistent; that is, the size estimate for an intermediate re
lation should not depend on how that relation is computed. For instance,
the size estimate for a join of several relations should not depend on the
order in which we join the relations.

There is no universally agreed-upon way to meet these three conditions. We
shall give some simple rules that serve in most situations. Fortunately, the goal
of size estimation is not to predict the exact size; it is to help select a physical

794 CHAPTER 16. THE QUERY COMPILER

query plan. Even an inaccurate size-estimation method will serve that purpose
well if it errs consistently, that is, if the size estimator assigns the least cost to
the best physical query plan, even if the actual cost of that plan turns out to
be different from what was predicted.

16.4.2 Estimating the Size of a Projection
The extended projection of Section 5.2.5 is a bag projection and does not elim
inate duplicates. We shall treat a clasical, duplicate-eliminating projection as a
bag-projection followed by a 6. The extended projection of bags is different from
the other operators, in that the size of the result is computable exactly. Nor
mally, tuples shrink during a projection, as some components are eliminated.
However, the extended projection allows the creation of new components that
are combinations of attributes, and so there are situations where a tt operator
actually increases the size of the relation.

E xam ple 16.20: Suppose R(a,b,c) is a relation, where a and b are integers
of four bytes each, and c is a string of 100 bytes. Let tuple headers require 12
bytes. Then each tuple of R requires 120 bytes. Let blocks be 1024 bytes long,
with block headers of 24 bytes. We can thus fit 8 tuples in one block. Suppose
T(R) = 10,000; i.e., there are 10,000 tuples in R. Then B(R) = 1250.

Consider S — na+f,^x,c(R)', that is, we replace a and b by their sum. Tuples
of S require 116 bytes: 12 for header, 4 for the sum, and 100 for the string.
Although tuples of S are slightly smaller than tuples of R, we can still fit only
8 tuples in a block. Thus, T(S) = 10,000 and B(S) = 1250.

Now consider U — tta,b(R), where we eliminate the string component. Tuples
of U are only 20 bytes long. T(U) is still 10,000. However, we can now pack
50 tuples of U into one block, so B(U) = 200. This projection thus shrinks the
relation by a factor slightly more than 6. □

16.4.3 Estimating the Size of a Selection
When we perform a selection, we generally reduce the number of tuples, al
though the sizes of tuples remain the same. In the simplest kind of selection,
where an attribute is equated to a constant, there is an easy way to estimate the
size of the result, provided we know, or can estimate, the number of different
values the attribute has. Let S = oa=c{R), where A is an attribute of R and c
is a constant. Then we recommend as an estimate:

• T(S) = T (R) /V (R ,A)

This rule surely holds if the value of A is chosen randomly from among all the
possible values.

The size estimate is more problematic when the selection involves an in
equality comparison, for instance, 5 = <ra<io(R)- One might think that on the
average, half the tuples would satisfy the comparison and half not, so T(R)/2

16.4. ESTIMATING THE COST OF OPERATIONS 795

The Zipflan Distribution

In estimating the size of a selection <ta=c it is not necessary to assume
that values of A appear equally often. In fact, many attributes have val
ues whose occurrences follow a Zipfian distribution, where the frequencies
of the *th most common values are in proportion to 1 / \ / i . For example, if
the most common value appears 1000 times, then the second most common
value would be expected to appear about 1000/\/2 times, or 707 times,
and the third most common value would appear about 1000/^3 times,
or 577 times. Originally postulated as a way to describe the relative fre
quencies of words in English sentences, this distribution has been found
to appear in many sorts of data. For example, in the US, state popula
tions follow an approximate Zipfian distribution. The three most populous
states, California, Texas, and New York, have populations in ratio approx
imately 1:0.62:0.56, compared with the Zipfian ideal of 1:0.71:0.58. Thus,
if s ta te were an attribute of a relation describing US people, say a list of
magazine subscribers, we would expect the values of s ta te to distribute
in the Zipfian, rather than uniform manner.

As long as the constant in the selection condition is chosen randomly,
it doesn’t m atter whether the values of the attribute involved have a uni
form, Zipfian, or other distribution; the average size of the matching set
will still be T(R)/V(R , a). However, if the constants are also chosen with a
Zipfian distribution, then we would expect the average size of the selected
set to be somewhat larger than T(R)/V(R ,a) .

would estimate the size of S. However, there is an intuition that queries involv
ing an inequality tend to retrieve a small fraction of the possible tuples.3 Thus,
we propose a rule that acknowledges this tendency, and assumes the typical
inequality will return about one third of the tuples, rather than half the tuples.
If S = <70<c(i?), then our estimate for T(S) is:

• T(S) = T (R) /3

The case of a “not equals” comparison is rare. However, should we encounter
a selection like S = Oa^io(-R), we recommend assuming that essentially all
tuples will satisfy the condition. That is, take T(S) = T(R) as an estimate.
Alternatively, we may use T(S) = T(R) (V(R, a) — l) /V (R , a), which is slightly
less, as an estimate, acknowledging that about fraction l /V (R ,a) tuples of R
will fail to meet the condition because their a-value does equal the constant.

When the selection condition C is the AND of several equalities and inequal
ities, we can treat the selection ac(R) as a cascade of simple selections, each of

3For instance, if you h ad d a ta ab o u t facu lty sa laries, would you be m ore likely to query
for those facu lty w ho m ade less th a n $200,000 o r m ore th a n $200,000?

796 CHAPTER 16. THE QUERY COMPILER

which checks for one of the conditions. Note that the order in which we place
these selections doesn’t matter. The effect will be that the size estimate for the
result is the size of the original relation multiplied by the selectivity factor for
each condition. That factor is 1/3 for any inequality, 1 for / , and 1/V(R ,A)
for any attribute A that is compared to a constant in the condition C.

E xam ple 16.21: Let R(a, b, c) be a relation, and 5 = cra=io and 6<2o(^)- Also,
let T{R) — 10,000, and V (it!, a) — 50. Then our best estimate of T(S) is
T (ii)/(50 x 3), or 67. That is, l/50 th of the tuples of R will survive the a = 10
filter, and 1/3 of those will survive the b < 20 filter.

An interesting special case where our analysis breaks down is when the
condition is contradictory. For instance, consider S = cra=io and a> 2 0 (R)- Ac
cording to our rule, T(S) — T(R) /3V(R, a), or 67 tuples. However, it should
be clear that no tuple can have both a = 10 and a > 20, so the correct answer is
T (S) = 0. When rewriting the logical query plan, the query optimizer can look
for instances of many special-case rules. In the above instance, the optimizer
can apply a rule that finds the selection condition logically equivalent to FALSE
and replaces the expression for 5 by the empty set. □

When a selection involves an OR of conditions, say S = o c x or c 2(R), then
we have less certainty about the size of the result. One simple assumption
is that no tuple will satisfy both conditions, so the size of the result is the
sum of the number of tuples that satisfy each. That measure is generally an
overestimate, and in fact can sometimes lead us to the absurd conclusion that
there are more tuples in S than in the original relation R.

A less simple, but possibly more accurate estimate of the size of

S — O Cr OR C2 {R)

is to assume that Ci and C2 are independent. Then, if R has n tuples, mi of
which satisfy C\ and m 2 of which satisfy C2, we would estimate the number of
tuples in S as n (l — (1 — m i/n) (l — m 2/n)) . In explanation, 1 — m i / n is the
fraction of tuples that do not satisfy Ci, and 1 — m 2/ n is the fraction that do
not satisfy C2. The product of these numbers is the fraction of R s tuples that
are not in 5 , and 1 minus this product is the fraction that are in S.

E xam ple 16.22: Suppose R(a,b) has T(R) = 10,000 tuples, and

S = <Ta = 10 or b < 2 o (R)

Let V(R, a) = 50. Then the number of tuples that satisfy a = 10 we estimate at
200, i.e., T(R) /V(R ,a) . The number of tuples that satisfy 6 < 20 we estimate
at T (R) / 3, or 3333.

The simplest estimate for the size of S is the sum of these numbers, or 3533.
The more complex estimate based on independence of the conditions a = 10
and b < 20 gives 10000(1 - (1 - 200/10000)(l - 3333/10000)), or 3466. In this
case, there is little difference between the two estimates, and it is very unlikely

16.4. ESTIMATING THE COST OF OPERATIONS 797

that choosing one over the other would change our estimate of the best physical
query plan. □

The final operator that could appear in a selection condition is NOT. The
estimated number of tuples of R that satisfy condition NOT C is T(R) minus
the estimated number that satisfy C.

16.4.4 Estimating the Size of a Join
We shall consider here only the natural join. Other joins can be handled ac
cording to the following outline:

1. The number of tuples in the result of an equijoin can be computed exactly
as for a natural join, after accounting for the change in variable names.
Example 16.24 will illustrate this point.

2. Other theta-joins can be estimated as if they were a selection following a
product. Note that the number of tuples in a product is the product of
the number of tuples in the relations involved.

We shall begin our study with the assumption that the natural join of two
relations involves only the equality of two attributes. That is, we study the
join R (X , Y) ix S(Y,Z) , but initially we assume that Y is a single attribute
although X and Z can represent any set of attributes.

The problem is that we don’t know how the Y -values in R and S relate. For
instance:

1. The two relations could have disjoint sets of Y-values, in which case the
join is empty and T (R ix S) = 0 .

2. Y might be the key of S and the corresponding foreign key of R, so each
tuple of R joins with exactly one tuple of S, and T (R tx S) = T(R).

3. Almost all the tuples of R and S could have the same Y -value, in which
case T (R tx S) is about T(R)T(S) .

To focus on the most common situations, we shall make two simplifying
assumptions:

• Containment of Value Sets. If Y is an attribute appearing in several rela
tions, then each relation chooses its values from the front of a fixed list of
values j/i, 2/2 , 2/3, • • • and has all the values in that prefix. As a consequence,
if R and 5 are two relations with an attribute Y, and V (R, Y) < V (5, Y),
then every Y-value of R will be a Y - value of S.

• Preservation of Value Sets. If we join a relation R with another relation,
then an attribute A that is not a join attribute (i.e., not present in both re
lations) does not lose values from its set of possible values. More precisely,
if A is an attribute of R but not of S, then V (R ix 5, A) = V(R, A).

798 CHAPTER 16. THE QUERY COMPILER

Assumption (1), containment of value sets, clearly might be violated, but it is
satisfied when Y is a key in S and the corresponding foreign key in R. It also is
approximately true in many other cases, since we would intuitively expect that
if S has many Y-values, then a given Y-value that appears in R has a good
chance of appearing in S.

Assumption (2), preservation of value sets, also might be violated, but it is
true when the join attribute(s) of R m S are a key for S and the corresponding
foreign key of R. In fact, (2) can only be violated when there are “dangling
tuples” in R, that is, tuples of R that join with no tuple of 5; and even if there
are dangling tuples in R, the assumption might still hold.

Under these assumptions, we can estimate the size of R(X , Y) tx S(Y, Z) as
follows. Suppose r is a tuple in R, and S is a tuple in S. W hat is the probability
that r and s agree on attribute Y? Suppose that V(R, Y) > V(S ,Y) . Then the
Y-value of s is surely one of the Y values that appear in R, by the containment-
of-value-sets assumption. Hence, the chance that r has the same Y-value as s
is 1 /V (R ,Y) . Similarly, if V (R , Y) < V (S ,Y) , then the value of Y in r will
appear in S, and the probability is 1/V(S, Y) that r and s will share the same
Y-value. In general, we see that the probability of agreement on the Y value is
1/ m ax(V (R, Y), V(S, Y)) . Thus:

• T (R tx S) = T (R)T (S) / m ax (V {R , Y), V(S, Y))

That is, the estimated number of tuples in T (R tx 5) is the number of pairs of
tuples — one from R and one from S, times the probability that such a pair
shares a common Y value.

E xam ple 16.23: Let us consider the following three relations and their im
portant statistics:

R(a,b) S(b,c) U(c,d)
T(R) = 1000 T(S) = 2000 T(U) = 5000
V (R, b) = 20 V (S ,b)= 50

V (S, c) = 100 V (U, c) — 500

Suppose we want to compute the natural join R tx S cx U. One way is
to group R and S first, as (R cx 5) ix U. Our estimate for T (R cx S) is
T(R)T(S) /m ax (V(R ,b) , V(S,b)), which is 1000 x 2000/50, or 40,000.

We then need to join R tx S with U. Our estimate for the size of the
result is T (R tx S)T(U)/ max(V(R cx 5, c), V(U, c)). By our assumption that
value sets are preserved, V (R tx S, c) is the same as V(S,c), or 100; that is
no values of attribute c disappeared when we performed the join. In that case,
we get as our estimate for the number of tuples in R tx S tx U the value
40,000 x 5000/max(100,500), or 400,000.

We could also start by joining S and U. If we do, then we get the estimate
T (S ix U) = T(S)T(U)/max(V{S,c) ,V{U,c)) = 2000 x 5000/500 = 20,000.

16.4. ESTIMATING THE COST OF OPERATIONS 799

By our assumption that value sets are preserved, V (5 cx U, 6) = V (S , b) = 50,
so the estimated size of the result is

T(R)T (S cx U) / max(V(R, b), V (S m U, b))

which is 1000 x 20,000/50, or 400,000. □

16.4.5 Natural Joins W ith Multiple Join Attributes
When the set of attributes Y in the join R (X , Y) cx S(Y ,Z) consists of more
than one attribute, the same argument as we used for a single attribute Y
applies to each attribute in Y. That is:

• The estimate of the size of R x S is computed by multiplying T(R) by
T(5) and dividing by the larger of V (R, y) and V (S , y) for each attribute
y that is common to R and S.

E xam ple 16.24: The following example uses the rule above. It also illustrates
that the analysis we have been doing for natural joins applies to any equijoin.
Consider the join

R(a,b,c) tX R .b = s .d and R .c = s .e S(d ,e , f)

Suppose we have the following size parameters:

R(a,b,c) S (d ,e , f)
T(R) = 1000 T(S) = 2000
V(R,b) = 20 V (S , d) = 50
V(R,c) — 100 V (5, e) = 50

We can think of this join as a natural join if we regard R.b and S.d as the
same attribute and also regard R.c and S.e as the same attribute. Then the
rule given above tells us the estimate for the size of R cx S is the product
1000 x 2000 divided by the larger of 20 and 50 and also divided by the larger of
100 and 50. Thus, the size estimate for the join is 1000 x 2000/(50 x 100) = 400
tuples. □

E xam ple 16.25: Let us reconsider Example 16.23, but consider the third
possible order for the joins, where we first take R(a,b) cx U(c,d). This join
is actually a product, and the number of tuples in the result is T(R)T(U) —
1000 x 5000 = 5,000,000. Note that the number of different 6’s in the product
is V (R, b) = 20, and the number of different c’s is V(U, c) = 500.

When we join this product with 5(6, c), we multiply the numbers of tu
ples and divide by both max(V(.R, 6), V(S, b)) and max(V^(U,c) ,V(5, c)). This
quantity is 2000 x 5,000,000/(50 x 500) = 400,000. Note that this third way
of joining gives the same estimate for the size of the result that we found in
Example 16.23. □

800 C H APTER 16. THE QU ERY COMPILER

16.4.6 Joins o f M any R elations
Finally, let us consider the general case of a natural join:

S = R i IX i ?2 >xi • • • x R n

Suppose tha t attribu te A appears in k of the Ri s, and the numbers of its
sets of values in these k relations — th a t is, the various values of V(Ri , A) for
i = 1 , 2 , . . . , k — are v\ < v2 < • ■ • < Vk, in order from smallest to largest.
Suppose we pick a tuple from each relation. W hat is the probability th a t all
tuples selected agree on attribu te A l

In answer, consider the tuple t\ chosen from the relation th a t has the small
est number of ^4-values, v\ . By the containment-of-value-sets assumption, each
of these Vi values is among the A-values found in the other relations th a t have
attribu te A. Consider the relation tha t has Vi values in attribu te A. Its selected
tuple ti has probability 1/vi of agreeing with t\ on A. Since this claim is true
for a l i i = 2 , 3 , . . . , k, the probability th a t all k tuples agree on A is the product
1 / V2 V3 •••Vk- This analysis gives us the rule for estimating the size of any join.

• S tart with the product of the number of tuples in each relation. Then,
for each attribu te A appearing at least twice, divide by all but the least
of the V(R , A) ’s.

Likewise, we can estimate the number of values tha t will remain for attribute
A after the join. By the preservation-of-value-sets assumption, it is the least of
these V (R , A) ’s.

E x am p le 16 .26 : Consider the join R(a,b ,c) cx S(b,c,d) tx U(b,e), and sup
pose the im portant statistics are as given in Fig. 16.26. To estimate the size
of this join, we begin by multiplying the relation sizes; 1000 x 2000 x 5000.
Next, we look a t the attributes th a t appear more than once; these are b, which
appears three times, and c, which appears twice. We divide by the two largest
of V(R , b), V (S , b), and V(U, 6); these are 50 and 200. Finally, we divide by the
larger of V(R,c) and V(S,c) , which is 200. The resulting estimate is

1000 x 2000 x 5000/(50 x 200 x 200) = 5000

We can also estimate the number of values for each of the attributes in the
join. Each estimate is the least value count for the attribu te among all the
relations in which it appears. These numbers are, for a, b, c, d, e respectively:
100, 20, 100, 400, and 500. □

Based on the two assumptions we have made — containment and preser
vation of value sets — we have a surprising and convenient property of the
estimating rule given above.

• No m atter how we group and order the terms in a natural join of n
relations, the estimation rules, applied to each join individually, yield the

16.4. ESTIMATING THE COST OF OPERATIONS 801

R(a,b,c) S(b,c,d) U(b,e)
T(R) = 1000
V(R, a) = 100
V(R, b) = 20
V (R ,c) = 200

Figure 16.26:

T(S) = 2000

V (S, b) — 50
V{S,c) = 100
V(S,d) =400

T(U) = 5000

V (U, b) = 200

V(U,e) = 500

Parameters for Example 16.26

same estimate for the size of the result. Moreover, this estimate is the
same that we get if we apply the rule for the join of all n relations as a
whole.

Examples 16.23 and 16.25 form an illustration of this rule for the three groupings
of a three-relation join, including the grouping where one of the “joins” is
actually a product.

16.4.7 Estimating Sizes for Other Operations
We have seen two operations — selection and join — with reasonable estimating
techniques. In addition, projections do not change the number of tuples in a
relation, and products multiply the numbers of tuples in the argument relations.
However, for the remaining operations, the size of the result is not easy to
determine. We shall review the other relational-algebra operators and give
some suggestions as to how this estimation could be done.

U nion

If the bag union is taken, then the size is exactly the sum of the sizes of the
arguments. A set union can be as large as the sum of the sizes or as small as
the larger of the two arguments. We suggest that something in the middle be
chosen, e.g., the larger plus half the smaller.

In tersection

The result can have as few as 0 tuples or as many as the smaller of the two
arguments, regardless of whether set- or bag-intersection is taken. One approach
is to take the average of the extremes, which is half the smaller.

D ifference

When we compute R — S, the result can have between T(R) and T(R) — T(S)
tuples. We suggest the average as an estimate: T(R) — T(S)/2.

802 CHAPTER 16. THE QUERY COMPILER

D uplicate E lim ination

If R(ai,a.2 , ■ ■ ■ ,an) is a relation, then V(R, [01, 02, . . . ,a n]) is the size of S(R).
However, often we shall not have this statistic available, so it must be approxi
mated. In the extremes, the size of S(R) could be the same as the size of R (no
duplicates) or as small as 1 (all tuples in R are the same).4 Another upper limit
on the number of tuples in S(R) is the maximum number of distinct tuples that
could exist: the product of V(R,a,i) for i — 1 ,2, . . . ,n. That number could be
smaller than other estimates of T(S(R)). There are several rules that could be
used to estimate T(6(R)). One reasonable one is to take the smaller of T(R)/2
and the product of all the V(R,a,i)’s.

G roup ing an d A ggregation

Suppose we have an expression 'Jl (R), the size of whose result we need to
estimate. If the statistic V(R, [gi, <72> • • • , 9k]), where the gi s are the grouping
attributes in L, is available, then that is our answer. However, that statistic
may well not be obtainable, so we need another way to estimate the size of
7l (R)- The number of tuples in 7i (R) is the same as the number of groups.
There could be as few as one group in the result or as many groups as there
are tuples in R. As with 6, we can also upper-bound the number of groups
by a product of V (R, A)’s, but here attribute A ranges over only the grouping
attributes of L. We again suggest an estimate that is the smaller of T(R)/2
and this product.

16.4.8 Exercises for Section 16.4

E xercise 16.4.1: Below are the vital statistics for four relations, W, X , Y,
and Z:

W (a, b) X (6, c) Y(c ,d) Z(d,e)
T(W) = 100 T (X) = 200 T{Y) = 300 T(Z) = 400
V(W, a) = 20 V(X, b) = 50 V(Y, c) = 50 V(Z, d) = 40
V{W, b) = 60 F(X , c) = 100 V(Y, d) = 50 V{Z, e) = 100

Estimate the sizes of relations that are the results of the following expressions:

(a) W x X x Y x Z (b) cra=io(W) (c) ac=20(Y)
(d) ctc=20(Y) x Z (e) W x Y (f) ad>10(Z)
(g) 00=1 AND 6=2 (W0 (h) <7a=l AND b>2 (W) (i) X l X X.c<r.c ^

E xercise 16.4.2: Here are the statistics for four relations E, F, G, and H:

4S tric tly speaking , if R is em p ty th e re are no tu p les in e ith e r R o r S(R), so th e lower
b o u n d is 0. However, we are rare ly in te rested in th is special case.

E(a,b,c) F(a,b,d) G(a,c,d) H(b,c,d)
T(E) = 1000 T(F) = 2000 T(G) = 3000 T(H) = 4000
V(E, a) = 1000 V (F, a) = 50 V{G, a) = 50 V{H, b) = 40
V(E, b) = 50 V(F, b) = 100 V(G, c) = 300 V (if, c) = 100
V(E, c) = 20 V(F, d) = 200 V(G, d) = 500 V(H, d) = 400

How many tuples does the join of these tuples have, using the techniques for
estimation from this section?

! Exercise 16.4.3: How would you estimate the size of a semijoin?

!! Exercise 16.4.4: Suppose we compute R(a,b) tx S(a,c), where R and 5 each
have 1000 tuples. The a attribute of each relation has 100 different values, and
they are the same 100 values. If the distribution of values was uniform; i.e.,
each a-value appeared in exactly 10 tuples of each relation, then there would be
10,000 tuples in the join. Suppose instead that the 100 o-values have the same
Zipfian distribution in each relation. Precisely, let the values be a i , a2, . ■ ■ , aioo-
Then the number of tuples of both R and 5 that have a-value a* is proportional
to 1 /y/l. Under these circumstances, how many tuples does the join have? You
should ignore the fact that the number of tuples with a given a-value may not
be an integer.

16.5. INTRODUCTION TO COST-BASED PLAN SELECTION 803

16.5 Introduction to Cost-Based Plan Selection
Whether selecting a logical query plan or constructing a physical query plan
from a logical plan, the query optimizer needs to estimate the cost of evaluating
certain expressions. We study the issues involved in cost-based plan selection
here, and in Section 16.6 we consider in detail one of the most important and
difficult problems in cost-based plan selection: the selection of a join order for
several relations.

As before, we shall assume that the “cost” of evaluating an expression is
approximated well by the number of disk I /O ’s performed. The number of disk
I/O ’s, in turn, is influenced by:

1. The particular logical operators chosen to implement the query, a matter
decided when we choose the logical query plan.

2. The sizes of intermediate results, whose estimation we discussed in Sec
tion 16.4.

3. The physical operators used to implement logical operators, e.g., the
choice of a one-pass or two-pass join, or the choice to sort or not sort
a given relation; this m atter is discussed in Section 16.7.

4. The ordering of similar operations, especially joins as discussed in Sec
tion 16.6.

804 CHAPTER 16. THE QUERY COMPILER

5. The method of passing arguments from one physical operator to the next,
which is also discussed in Section 16.7.

Many issues need to be resolved in order to perform effective cost-based
plan selection. In this section, we first consider how the size parameters, which
were so essential for estimating relation sizes in Section 16.4, can be obtained
from the database efficiently. We then revisit the algebraic laws we introduced
to find the preferred logical query plan. Cost-based analysis justifies the use
of many of the common heuristics for transforming logical query plans, such as
pushing selections down the tree. Finally, we consider the various approaches to
enumerating all the physical query plans that can be derived from the selected
logical plan. Especially important are methods for reducing the number of plans
that need to be evaluated, while making it likely that the least-cost plan is still
considered.

16.5.1 Obtaining Estimates for Size Parameters
The formulas of Section 16.4 were predicated on knowing certain important
parameters, especially T(R), the number of tuples in a relation R, and V(R, a),
the number of different values in the column of relation R for attribute a. A
modern DBMS generally allows the user or administrator explicitly to request
the gathering of statistics, such as T(R) and V(R,a). These statistics are
then used in query optimization, unchanged until the next command to gather
statistics.

By scanning an entire relation R, it is straightforward to count the number of
tuples T(R) and also to discover the number of different values V (R, a) for each
attribute a. The number of blocks in which R can fit, B(R), can be estimated
either by counting the actual number of blocks used (if R is clustered), or by
dividing T(R) by the number of R ’s tuples that can fit in one block.

In addition, a DBMS may compute a histogram of the values for a given
attribute. If V(R, A) is not too large, then the histogram may consist of the
number (or fraction) of the tuples having each of the values of attribute A. If
there are many values of this attribute, then only the most frequent values may
be recorded individually, while other values are counted in groups. The most
common types of histograms are:

1. Equal-width. A width w is chosen, along with a constant vq. Counts are
provided of the number of tuples with values v in the ranges Vo < v <
Vo + w, Vo + w < v < vo + 2w, and so on. The value vq may be the lowest
possible value or a lower bound on values seen so far. In the latter case,
should a new, lower value be seen, we can lower the value of vo by w and
add a new count to the histogram.

2. Equal-height. These are the common “percentiles.” We pick some fraction
p, and list the lowest value, the value that is fraction p from the lowest,
the fraction 2p from the lowest, and so on, up to the highest value.

16.5. INTRODUCTION TO COST-BASED PLAN SELECTION 805

3. Most-frequent-values. We may list the most common values and their
numbers of occurrences. This information may be provided along with a
count of occurrences for all the other values as a group, or we may record
frequent values in addition to an equal-width or equal-height histogram
for the other values.

One advantage of keeping a histogram is that the sizes of joins can be es
timated more accurately than by the simplified methods of Section 16.4. In
particular, if a value of the join attribute appears explicitly in the histograms
of both relations being joined, then we know exactly how many tuples of the
result will have this value. For those values of the join attribute that do not ap
pear explicitly in the histogram of one or both relations, we estimate their effect
on the join as in Section 16.4. However, if we use an equal-width histogram,
with the same bands for the join attributes of both relations, then we can es
timate the size of the joins of corresponding bands, and sum those estimates.
The result will be a good estimate, because only tuples in corresponding bands
can join. The following examples will suggest how to carry out histogram-based
estimation; we shall not use histograms in estimates subsequently.

E xam ple 16.27: Consider histograms that mention the three most frequent
values and their counts, and group the remaining values. Suppose we want to
compute the join R(a , 6) tx S(b, c). Let the histogram for R.b be:

1: 200, 0: 150, 5: 100, others: 550

That is, of the 1000 tuples in R, 200 of them have 6-value 1, 150 have 6-value
0, and 100 have 6-value 5. In addition, 550 tuples have 6-values other than 0,
1, or 5, and none of these other values appears more than 100 times.

Let the histogram for S.b be:

0: 100, 1: 80, 2: 70, others: 250

Suppose also that V {R, b) = 14 and V (S, 6) = 13. That is, the 550 tuples of R
with unknown 6-values are divided among eleven values, for an average of 50
tuples each, and the 250 tuples of S with unknown 6-values are divided among
ten values, each with an average of 25 tuples each.

Values 0 and 1 appear explicitly in both histograms, so we can calculate
that the 150 tuples of R with 6 = 0 join with the 100 tuples of S having the
same 6-value, to yield 15,000 tuples in the result. Likewise, the 200 tuples of R
with 6 = 1 join with the 80 tuples of S having 6 = 1 to yield 16,000 more tuples
in the result.

The estimate of the effect of the remaining tuples is more complex. We shall
continue to make the assumption that every value appearing in the relation with
the smaller set of values (S in this case) will also appear in the set of values of
the other relation. Thus, among the eleven remaining 6-values of S, we know
one of those values is 2, and we shall assume another of the values is 5, since

806 CHAPTER 16. THE QUERY COMPILER

that is one of the most frequent values in R. We estimate that 2 appears 50
times in R, and 5 appears 25 times in S. These estimates are each obtained by
assuming that the value is one of the “other” values for its relation’s histogram.
The number of additional tuples from 6-value 2 is thus 70 x 50 = 3500, and the
number of additional tuples from fo-value 5 is 100 x 25 = 2500.

Finally, there are nine other 6-values that appear in both relations, and we
estimate that each of them appears in 50 tuples of R and 25 tuples of S. Each
of the nine values thus contributes 50 x 25 = 1250 tuples to the result. The
estimate of the output size is thus:

15000 + 16000 + 3500 + 2500 + 9 x 1250

or 48,250 tuples. Note that the simpler estimate from Section 16.4 would be
1000 x 500/14, or 35,714, based on the assumptions of equal numbers of occur
rences of each value in each relation. □

E xam ple 16.28: In this example, we shall assume an equal-width histogram,
and we shall demonstrate how knowing that values of two relations are almost
disjoint can impact the estimate of a join size. Our relations are:

Jan(day, temp)
July(day, temp)

and the query is:

SELECT Jan.day, July.day
FROM Jan, July
WHERE Jan.temp = July.temp;

That is, find pairs of days in January and July that had the same temperature.
The query plan is to equijoin Jan and Ju ly on the temperature, and project
onto the two day attributes.

Suppose the histogram of temperatures for the relations Jan and Ju ly are
as given in the table of Fig. 16.27.5 In general, if both join attributes have
equal-width histograms with the same set of bands, then we can estimate the
size of the join by considering each pair of corresponding bands and summing.

If two corresponding bands have Ti and T2 tuples, respectively, and the
number of values in a band is V, then the estimate for the number of tuples
in the join of those bands is T1 T2 / V , following the principles laid out in Sec
tion 16.4.4. For the histograms of Fig. 16.27, many of these products are 0,
because one or the other of T\ and T% is 0. The only bands for which neither is
0 are 40-49 and 50-59. Since V = 10 is the width of a band, the 40-49 band
contributes 10 x 5/10 = 5 tuples, and the 50-59 band contributes 5 x 20/10 = 10
tuples.

5O u r friends so u th o f th e eq u a to r shou ld reverse th e colum ns for Ja n u a ry an d Ju ly , and
convert to cen tig rade as well.

16.5. INTRODUCTION TO COST-BASED PLAN SELECTION 807

Range Jan Ju ly
0-9 40 0

10-19 60 0
20-29 80 0
30-39 50 0
40-49 10 5
50-59 5 20
60-69 0 50
70-79 0 100
80-89 0 60
90-99 0 10

Figure 16.27: Histograms of temperature

Thus our estimate for the size of this join is 5 + 10 = 15 tuples. If we
had no histogram, and knew only that each relation had 245 tuples distributed
among 100 values from 0 to 99, then our estimate of the join size would be
245 x 245/100 = 600 tuples. □

16.5.2 Computation of Statistics
Statistics normally are computed only periodically, for several reasons. First,
statistics tend not to change radically in a short time. Second, even somewhat
inaccurate statistics are useful as long as they are applied consistently to all
the plans. Third, the alternative of keeping statistics up-to-date can make the
statistics themselves into a “hot-spot” in the database; because statistics are
read frequently, we prefer not to update them frequently too.

The recomputation of statistics might be triggered automatically after some
period of time, or after some number of updates. However, a database admin
istrator, noticing that poor-performing query plans are being selected by the
query optimizer on a regular basis, might request the recomputation of statistics
in an attempt to rectify the problem.

Computing statistics for an entire relation R can be very expensive, partic
ularly if we compute V (R, a) for each attribute a in the relation (or even worse,
compute histograms for each a). One common approach is to compute approx
imate statistics by sampling only a fraction of the data. For example, let us
suppose we want to sample a small fraction of the tuples to obtain an estimate
for V(R,a). A statistically reliable calculation can be complex, depending on a
number of assumptions, such as whether values for a are distributed uniformly,
according to a Zipfian distribution, or according to some other distribution.
However, the intuition is as follows. If we look at a small sample of R, say 1%
of its tuples, and we find that most of the a-values we see are different, then
it is likely that V (R ,a) is close to T(R). If we find that the sample has very
few different values of a, then it is likely that we have seen most of the a-values

808 CHAPTER 16. THE QUERY COMPILER

that exist in the current relation.

16.5.3 Heuristics for Reducing the Cost of Logical Query
Plans

One important use of cost estimates for queries or subqueries is in the appli
cation of heuristic transformations of the query. We already have observed
in Section 16.3.3 how certain heuristics, such as pushing selections down the
tree, can be expected almost certainly to improve the cost of a logical query
plan, regardless of relation sizes. However, there axe other points in the query
optimization process where estimating the cost both before and after a trans
formation will allow us to apply a transformation where it appears to reduce
cost and avoid the transformation otherwise. In particular, when the preferred
logical query plan is being generated, we may consider a number of optional
transformations and the costs before and after.

Because we are estimating the cost of a logical query plan, and so we have
not yet made decisions about the physical operators that will be used to imple
ment the operators of relational algebra, our cost estimate cannot be based on
disk I /O ’s. Rather, we estimate the sizes of all intermediate results using the
techniques of Section 16.4, and their sum is our heuristic estimate for the cost
of the entire logical plan. One example will serve to illustrate the issues and
process.

8

° a = 1 0

X]

R S

Figure 16.28: Logical query plan for Example 16.29

E xam ple 16.29: Consider the initial logical query plan of Fig. 16.28, and let
the statistics for the relations R and S be as follows:

R(a,b) S(b,c)
T(R) = 5000 T{S) = 2000
V(R,a) = 50
V(i?,6) = 100 V(S,b) = 200

V(S,c) = 100

To generate a final logical query plan from Fig. 16.28, we shall insist that the
selection be pushed down as far as possible. However, we are not sure whether

16.5. INTRODUCTION TO COST-BASED PLAN SELECTION 809

it makes sense to push the 6 below the join or not. Thus, we generate from
Fig. 16.28 the two query plans shown in Fig. 16.29; they differ in whether we
have chosen to eliminate duplicates before or after the join. Notice that in
plan (a) the 6 is pushed down both branches of the tree. If R and/or S is
known to have no duplicates, then the 6 along its branch could be eliminated.

250
X

50

100 ° a =10

5000

1000

500
5

X
1000

5
2000

100 ° a = 1 0 5

I 2000
5000 R

fa) fb)

Figure 16.29: Two candidates for the best logical query plan

We know how to estimate the size of the result of the selections, from Sec
tion 16.4.3; we divide T(R) by V(R,a) — 50. We also know how to estimate
the size of the joins; we multiply the sizes of the arguments and divide by
max(F(jR, b), V(S, 6)), which is 200. What we don’t know is how to estimate
the size of the relations with duplicates eliminated.

First, consider the size estimate for 6((ra=io(R))- Since <ra=io(R) has only
one value for a and up to 100 values for b, and there are an estimated 100 tuples
in this relation, the rule from Section 16.4.7 tells us that the product of the value
counts for each of the attributes is not a limiting factor. Thus, we estimate the
size of the result of S as half the tuples in aa=io(R), and Fig. 16.29(a) shows
an estimate of 50 tuples for S(cra=io(R)) ■

Now, consider the estimate of the result of the S in Fig. 16.29(b). The join
has one value for a, an estimated min(V (R, b), V (S , b)) = 100 values for 6, and
an estimated V(S, c) = 100 values for c. Thus again the product of the value
counts does not limit how big the result of the 5 can be. We estimate this result
as 500 tuples, or half the number of tuples in the join.

To compare the two plans of Fig. 16.29, we add the estimated sizes for all the
nodes except the root and the leaves. We exclude the root and leaves, because
these sizes are not dependent on the plan chosen. For plan (a) this cost, the
sum of the estimated sizes of the interior nodes, is 100 + 50 + 1000 = 1150,
while for plan (b) the sum is 100 + 1000 = 1100. Thus, by a small margin we
conclude that deferring the duplicate elimination to the end is a better plan.
We would come to the opposite conclusion if, say, R or S had fewer 6-values.
Then the join size would be greater, making the cost of plan (b) greater. □

810 CHAPTER 16. THE QUERY COMPILER

Estim ates for Result Sizes Need Not Be the Same

Notice that in Fig. 16.29 the estimates at the roots of the two trees are
different: 250 in one case and 500 in the other. Because estimation is
an inexact science, these sorts of anomalies will occur. In fact, it is the
exception when we can offer a guarantee of consistency, as we did in Section
16.4.6.

Intuitively, the estimate for plan (b) is higher because if there are
duplicates in both R and 5, these duplicates will be multiplied in the join;
e.g., for tuples that appear 3 times in R and twice in S, their join will
appear six times in R tx S. Our simple formula for estimating the size of
the result of a <5 does not take into account the possibility that the effect
of duplicates has been amplified by previous operations.

16.5.4 Approaches to Enumerating Physical Plans
Now, let us consider the use of cost estimates in the conversion of a logical
query plan to a physical query plan. The baseline approach, called exhaustive,
is to consider all combinations of choices for each of the issues outlined at the
beginning of Section 16.4 (order of joins, physical implementation of operators,
and so on). Each possible physical plan is assigned an estimated cost, and the
one with the smallest cost is selected.

However, there are a number of other approaches to selection of a physical
plan. In this section, we shall outline various approaches that have been used,
while Section 16.6 focuses on selecting a join order. Before proceeding, let us
comment that there are two broad approaches to exploring the space of possible
physical plans:

• Top-down: Here, we work down the tree of the logical query plan from
the root. For each possible implementation of the operation at the root,
we consider each possible way to evaluate its argument (s), and compute
the cost of each combination, taking the best.6

• Bottom-up: For each subexpression of the logical-query-plan tree, we com
pute the costs of all possible ways to compute that subexpression. The
possibilities and costs for a subexpression E are computed by consider
ing the options for the subexpressions of E, and combining them in all
possible ways with implementations for the root operator of E.

There is actually not much difference between the two approaches in their
broadest interpretations, since either way, all possible combinations of ways to

6R em em ber from Section 16.3.4 th a t a single node of th e logical-query-p lan tree m ay
rep resen t m an y uses o f a single com m u ta tiv e an d associative o p e ra to r, such as jo in . T hus,
th e co nsidera tion o f all possib le p lan s for a single node m ay itse lf involve enu m era tio n o f very
m any choices.

16.5. INTRODUCTION TO COST-BASED PLAN SELECTION 811

implement each operator in the query tree are considered. We shall concentrate
on bottom-up methods in what follows.

You may, in fact, have noticed that there is an apparent simplification of the
bottom-up method, where we consider only the best plan for each subexpression
when we compute the plans for a larger subexpression. This approach, called
dynamic programming in the list of methods below, is not guaranteed to yield
the best overall plan, although often it does. The approach called Selinger-style
(or System-R-style) optimization, also listed below, exploits additional proper
ties that some of the plans for a subexpression may have, in order to produce
optimal overall plans from plans that are not optimal for certain subexpressions.

H euristic S election

One option is to use the same approach to selecting a physical plan that is
generally used for selecting a logical plan: make a sequence of choices based
on heuristics. In Section 16.6.6, we shall discuss a “greedy” heuristic for join
ordering, where we start by joining the pair of relations whose result has the
smallest estimated size, then repeat the process for the result of that join and
the other relations in the set to be joined. There are many other heuristics that
may be applied; here are some of the most commonly used ones:

1. If the logical plan calls for a selection cta=c(R), and stored relation R has
an index on attribute A, then perform an index-scan (as in Section 15.1.1)
to obtain only the tuples of R with ^4-value equal to c.

2. More generally, if the selection involves one condition like A = c above,
and other conditions as well, we can implement the selection by an index-
scan followed by a further selection on the tuples, which we shall represent
by the physical operator filter. This m atter is discussed further in Sec
tion 16.7.1.

3. If an argument of a join has an index on the join attribute(s), then use
an index-join with that relation in the inner loop.

4. If one argument of a join is sorted on the join attribute(s), then prefer a
sort-join to a hash-join, although not necessarily to an index-join if one is
possible.

5. When computing the union or intersection of three or more relations,
group the smallest relations first.

B ranch-and-B ound P lan E num eration

This approach, often used in practice, begins by using heuristics to find a good
physical plan for the entire logical query plan. Let the cost of this plan be C.
Then as we consider other plans for subqueries, we can eliminate any plan for
a subquery that has a cost greater than C, since that plan for the subquery

812 CHAPTER 16. THE QUERY COMPILER

could not possibly participate in a plan for the complete query that is better
than what we already know. Likewise, if we construct a plan for the complete
query that has cost less than C, we replace C by the cost of this better plan in
subsequent exploration of the space of physical query plans.

An important advantage of this approach is that we can choose when to cut
off the search and take the best plan found so far. For instance, if the cost C
is small, then even if there are much better plans to be found, the time spent
finding them may exceed C, so it does not make sense to continue the search.
However, if C is large, then investing time in the hope of finding a faster plan
is wise.

H ill C lim bing

This approach, in which we really search for a “valley” in the space of physical
plans and their costs, starts with a heuristically selected physical plan. We can
then make small changes to the plan, e.g., replacing one method for executing
an operator by another, or reordering joins by using the associative and/or
commutative laws, to find “nearby” plans that have lower cost. When we find
a plan such that no small modification yields a plan of lower cost, we make that
plan our chosen physical query plan.

D yn am ic P rogram m ing

In this variation of the general bottom-up strategy, we keep for each subexpres
sion only the plan of least cost. As we work up the tree, we consider possible
implementations of each node, assuming the best plan for each subexpression
is also used. We examine this approach extensively in Section 16.6.

S elin ger-S ty le O ptim ization

This approach improves upon the dynamic-programming approach by keeping
for each subexpression not only the plan of least cost, but certain other plans
that have higher cost, yet produce a result that is sorted in an order that may
be useful higher up in the expression tree. Examples of such interesting orders
are when the result of the subexpression is sorted on one of:

1. The attribute(s) specified in a sort (r) operator at the root.

2. The grouping attribute(s) of a later group-by (7) operator.

3. The join attribute(s) of a later join.

If we take the cost of a plan to be the sum of the sizes of the intermediate
relations, then there appears to be no advantage to having an argument sorted.
However, if we use the more accurate measure, disk I /O ’s, as the cost, then the
advantage of having an argument sorted becomes clear if we can use one of the
sort-based algorithms of Section 15.4, and save the work of the first pass for
the argument that is sorted already.

16.5. INTRODUCTION TO COST-BASED PLAN SELECTION 813

16.5.5 Exercises for Section 16.5
E xercise 16.5.1: Estimate the size of the join R(a,b) txi 5(6, e) using his
tograms for R.b and S.b. Assume V(R,b) — V{S,b) = 20, and the histograms
for both attributes give the frequency of the four most common values, as tab
ulated below:

0 1 2 3 4 others
~RJ> 5 6 4 5 32

S.b 10 8 5 7 48

How does this estimate compare with the simpler estimate, assuming that all
20 values are equally likely to occur, with T(R) — 52 and T(S) — 78?

E xercise 16.5.2: Estimate the size of the join R(a, b) xi 5(6, c) if we have the
following histogram information:

6 < 0

OII 6 > 0
R 500 100 400
S 300 200 500

! Exercise 16.5.3: In Example 16.29 we suggested that reducing the number
of values that either attribute named 6 had could make plan (a) better than
plan (b) of Fig. 16.29. For what values of:

a) V{R,b)

b) V{S,b)

will plan (a) have a lower estimated cost than plan (b)?

! E xercise 16.5.4: Consider four relations R, 5, T, and V. Respectively, they
have 200, 300, 400, and 500 tuples, chosen randomly and independently from
the same pool of 1000 tuples (e.g., the probabilities of a given tuple being in R
is 1/5, in 5 is 3/10, and in both is 3/50).

a) What is the expected size of R U 5 U T U VI

b) What is the expected size of R fl 5 fl T fl V?

c) What order of unions gives the least cost (estimated sum of the sizes of
the intermediate relations)?

d) What order of intersections gives the least cost (estimated sum of the sizes
of the intermediate relations)?

! E xercise 16.5.5: Repeat Exercise 16.5.4 if all four relations have 500 of the
1000 tuples, at random.

814 CHAPTER 16. THE QUERY COMPILER

!! Exercise 16.5.6: Suppose we wish to compute the expression

Tb (R (a , b) x 5 (b, c) x T (c , d))

That is, we join the three relations and produce the result sorted on attribute
b. Let us make the simplifying assumptions:

i. We shall not “join” R and T first, because that is a product.

ii. Any other join can be performed with a two-pass sort-join or hash-join,
but in no other way.

iii. Any relation, or the result of any expression, can be sorted by a two-phase,
multiway merge-sort, but in no other way.

iv. The result of the first join will be passed as an argument to the last join
one block at a time and not stored temporarily on disk.

v. Each relation occupies 1000 blocks, and the result of either join of two
relations occupies 5000 blocks.

Answer the following based on these assumptions:

a) What are all the subexpressions and orders that a Selinger-style optimiza
tion would consider?

b) Which query plan uses the fewest disk I /O ’s?7

!! Exercise 16.5.7: Give an example of a logical query plan of the form E x F,
for some expressions E and F (which you may choose), where using the best
plans to evaluate E and F does not allow any choice of algorithm for the final
join that minimizes the total cost of evaluating the entire expression. Make
whatever assumptions you wish about the number of available main-memory
buffers and the sizes of relations mentioned in E and F.

16.6 Choosing an Order for Joins
In this section we focus on a critical problem in cost-based optimization: se
lecting an order for the (natural) join of three or more relations. Similar ideas
can be applied to other binary operations like union or intersection, but these
operations are less important in practice, because they typically take less time
to execute than joins, and they more rarely appear in clusters of three or more.

7N otice th a t , because we have m ad e som e very specific assum ptions ab o u t th e jo in m eth o d s
to be used , we can e s tim a te d isk I / O ’s, in stead of rely ing on th e sim pler, b u t less accu ra te ,
counts o f tu p les as o u r cost m easure.

16.6. CHOOSING A N ORDER FOR JOINS 815

16.6.1 Significance of Left and Right Join Arguments
When ordering a join, we should remember that many of the join methods
discussed in Chapter 15 are asymmetric. That is, the roles played by the two
argument relations are different, and the cost of the join depends on which
relation plays which role. Perhaps most important, the one-pass join of Sec
tion 15.2.3 reads one relation — preferably the smaller — into main memory,
creating a structure such as a hash table to facilitate matching of tuples from
the other relation. It then reads the other relation, one block at a time, to join
its tuples with the tuples stored in memory.

For instance, suppose that when we select a physical plan we decide to use
a one-pass join. Then we shall assume the left argument of the join is the
smaller relation and store it in a main-memory data structure. This relation
is called the build relation. The right argument of the join, called the probe
relation, is read a block at a time and its tuples are matched in main memory
with those of the build relation. Other join algorithms that distinguish between
their arguments include:

1. Nested-loop join, where we assume the left argument is the relation of the
outer loop.

2. Index-join, where we assume the right argument has the index.

16.6.2 Join Trees
When we have the join of two relations, we need to order the arguments. We
shall conventionally select the one whose estimated size is the smaller as the
left argument. It is quite common for there to be a significant and discernible
difference in the sizes of arguments, because a query involving joins often also
involves a selection on at least one attribute, and that selection reduces the
estimated size of one of the relations greatly.

E xam ple 16.30: Recall the query

SELECT movieTitle
FROM Starsln, MovieStar
WHERE starName = name AND

birthdate LIKE ’*/.1960’;

from Fig. 16.4, which leads to the preferred logical query plan of Fig. 16.24, in
which we take the join of relation S ta rs ln and the result of a selection on rela
tion MovieStar. We have not given estimates for the sizes of relations S ta rs ln
or MovieStar, but we can assume that selecting for stars born in a single year
will produce about l/50 th of the tuples in MovieStar. Since there are generally
several stars per movie, we expect S ta rs ln to be larger than MovieStar to begin
with, so the second argument of the join, obiTthdate LIKE .^geo' (MovieStar), is
much smaller than the first argument S ta rs ln . We conclude that the order of

816 CHAPTER 16. THE QUERY COMPILER

arguments in Fig. 16.24 should be reversed, so that the selection on MovieStar
is the left argument. □

There are only two choices for a join tree when there are two relations —
take either of the two relations to be the left argument. When the join involves
more than two relations, the number of possible join trees grows rapidly. For
example, Fig. 16.30 shows three of the five shapes of trees in which four relations
R, S, T, and U, are joined. However, each of these trees has the four relations
in alphabetical order from the left. Since order of arguments matters, and there
are n! ways to order n things, each tree represents 4! = 24 different trees when
the possible labelings of the leaves are considered.

M M X
/ \ / \ / \

M u M M R M
/ \ / \ / \ / \

M r r s t u s M
/ \

(a) fb) fc)

Figure 16.30: Ways to join four relations

16.6.3 Left-Deep Join Trees
Figure 16.30(a) is an example of what is called a left-deep tree. In general,
a binary tree is left-deep if all right children are leaves. Similarly, a tree like
Fig. 16.30(c), all of whose left children are leaves, is called a right-deep tree.
A tree such as Fig. 16.30(b), that is neither left-deep nor right-deep, is called
bushy. We shall argue below that there is a two-fold advantage to considering
only left-deep trees as possible join orders.

1. The number of possible left-deep trees with a given number of leaves is
large, but not nearly as large as the number of all trees. Thus, searches
for query plans can be used for larger queries if we limit the search to
left-deep trees.

2. Left-deep trees for joins interact well with common join algorithms —
nested-loop joins and one-pass joins in particular. Query plans based
on left-deep trees plus these join implementations will tend to be more
efficient than the same algorithms used with non-left-deep trees.

The “leaves” in a left- or right-deep join tree can actually be interior nodes,
with operators other than a join. Thus, for instance, Fig. 16.24 is technically a

16.6. CHOOSING A N ORDER FOR JOINS 817

left-deep join tree with one join operator. The fact that a selection is applied
to the right operand of the join does not take the tree out of the left-deep join
class.

The number of left-deep trees does not grow nearly as fast as the number of
all trees for the multiway join of a given number of relations. For n relations,
there is only one left-deep tree shape, to which we may assign the relations in n!
ways. There are the same number of right-deep trees for n relations. However,
the total number of tree shapes T (n) for n relations is given by the recurrence:

r (i) = 1
T(n) = E £ T (i) T (n - i)

The explanation for the second equation is that we may pick any number i
between 1 and n — 1 to be the number of leaves in the left subtree of the root,
and those leaves may be arranged in any of the T(i) ways that trees with i leaves
can be arranged. Similarly, the remaining n — i leaves in the right subtree can
be arranged in any of T(n — i) ways.

The first few values of T(n) are:

n 1 2 3 4 5 6
T(n) 1 1 2 5 14 42

To get the total number of trees once relations are assigned to the leaves, we
multiply T(n) by n\. Thus, for instance, the number of leaf-labeled trees of 6
leaves is 42 x 6! or 30,240, of which 6!, or 720, are left-deep trees and another
720 are right-deep trees.

Now, let us consider the second advantage mentioned for left-deep join trees:
their tendency to produce efficient plans. We shall give two examples:

1. If one-pass joins are used, and the build relation is on the left, then the
amount of memory needed at any one time tends to be smaller than if we
used a right-deep tree or a bushy tree for the same relations.

2. If we use nested-loop joins, with the relation of the outer loop on the left,
then we avoid constructing any intermediate relation more than once.

E xam ple 16.31: Consider the left-deep tree in Fig. 16.30(a), and suppose
that we use a simple one-pass join for each of the three tx operators. As always,
the left argument is the build relation; i.e., it will be held in main memory.
To compute R tx S, we need to keep R in main memory, and as we compute
R tx S we need to keep the result in main memory as well. Thus, we need
B(R) + B (R ix S) main-memory buffers. If we pick R to be the smallest of the
relations, and a selection has made R be rather small, then there is likely to be
no problem making this number of buffers available.

Having computed R ix S, we must join this relation with T. However, the
buffers used for R are no longer needed and can be reused to hold (some of)
the result of (R ix S) tx T. Similarly, when we join this relation with U, the

818 CHAPTER 16. THE QUERY COMPILER

Role of the Buffer Manager

The reader may notice a difference between our approach in the series of
examples such as Example 15.4 and 15.6, where we assumed that there
was a fixed limit on the number of main-memory buffers available for a
join, and the more flexible assumption taken here, where we assume that
as many buffers as necessary are available, but we try not to use “too
many.” Recall from Section 15.7 that the buffer manager has significant
flexibility to allocate buffers to operations. However, if too many buffers
are allocated at once, there will be thrashing, thus degrading the assumed
performance of the algorithm being used.

relation R xi S is no longer needed, and its buffers can be reused for the result
of the final join. In general, a left-deep join tree that is computed by one-pass
joins requires main-memory space for at most two of the temporary relations
any time.

Now, let us consider a similar implementation of the right-deep tree of Fig.
16.30(c). The first thing we need to do is load R into main-memory buffers,
since left arguments are always the build relation. Then, we need to construct
S xi (T cx U) and use that as the probe relation for the join at the root. To
compute S xi (T ix U) we need to bring S into buffers and then compute
T x] U as the probe relation for S. But T xi U requires that we first bring
T into buffers. Now we have all three of R, S, and T in memory at the same
time. In general, if we try to compute a right-deep join tree with n leaves, we
shall have to bring n — 1 relations into memory simultaneously.

Of course it is possible that the total size B(R) + B(S) + B(T) is less
than the amount of space we need at either of the two intermediate stages
of the computation of the left-deep tree, which are B(R) + B (R xi S) and
B (R xi S) + B[(R cx S) i x T) , respectively. However, as we pointed out in
Example 16.30, queries with several joins often will have a small relation with
which we can start as the leftmost argument in a left-deep tree. If R is small,
we might expect R ix S to be significantly smaller than S and (R ex S) cx T to
be smaller than T, further justifying the use of a left-deep tree. □

E xam ple 16.32: Now, let us suppose we are going to implement the four
way join of Fig. 16.30 by nested-loop joins, and that we use an iterator (as in
Section 15.1.6) for each of the three joins involved. Also, assume for simplicity
that each of the relations R, S, T, and U are stored relations, rather than
expressions. If we use the left-deep tree of Fig. 16.30(a), then the iterator at
the root gets a main-memory-sized chunk of its left argument (R xi S) xi T. It
then joins the chunk with all of U, but as long as U is a stored relation, it is
only necessary to scan U, not to construct it. When the next chunk of the left
argument is obtained and put in memory, U will be read again, but nested-loop

16.6. CHOOSING A N ORDER FOR JOINS 819

join requires that repetition, which cannot be avoided if both arguments are
large.

Similarly, to get a chunk of (R xi S) xi T, we get a chunk of R xi S into
memory and scan T. Several scans of T may eventually be necessary, but cannot
be avoided. Finally, to get a chunk of R xi S requires reading a chunk of R and
comparing it with S, perhaps several times. However, in all this action, only
stored relations are read multiple times, and this repeated reading is an artifact
of the way nested-loop join works when the main memory is insufficient to hold
an entire relation.

Now, compare the behavior of iterators on the left-deep tree with the be
havior of iterators on the right-deep tree of Fig. 16.30(c). The iterator at the
root starts by reading a chunk of R. It must then construct the entire rela
tion 5 xi (T xi U) and compare it with that chunk of R. When we read the
next chunk of R into memory, S xi (T x> U) must be constructed again. Each
subsequent chunk of R likewise requires constructing this same relation.

Of course, we could construct S xi (T xi U) once and store it, either in
memory or on disk. If we store it on disk, we are using extra disk I /O ’s compared
with the left-deep tree’s plan, and if we store it in memory, then we run into
the same problem with overuse of memory that we discussed in Example 16.31.
□

16.6.4 Dynamic Programming to Select a Join Order and
Grouping

To pick an order for the join of many relations we have three choices:

1. Consider them all.

2. Consider a subset.

3. Use a heuristic to pick one.

We shall here consider a sensible approach to enumeration called dynamic pro
gramming. It can be used either to consider all orders, or to consider certain
subsets only, such as orders restricted to left-deep trees. In Section 16.6.6 we
consider a heuristic for selecting a single ordering. Dynamic programming is
a common algorithmic paradigm.8 The idea behind dynamic programming is
that we fill in a table of costs, remembering only the minimum information we
need to proceed to a conclusion.

Suppose we want to join Ri xi R 2 xi • • • xi R n. In a dynamic programming
algorithm, we construct a table with an entry for each subset of one or more of
the n relations. In that table we put:

1. The estimated size of the join of these relations. For this quantity we may
use the formula of Section 16.4.6.

8See A ho, H opcroft an d U llm an , D ata S tru c tu res and A lgorithm s, A ddison-W esley, 1983,
for a general tre a tm e n t o f dynam ic program m ing .

820 CHAPTER 16. THE QUERY COMPILER

2. The least cost of computing the join of these relations. We shall use in our
examples the sum of the sizes of the intermediate relations (not including
the R i ’s themselves or the join of the full set of relations associated with
this table entry).

3. The expression that yields the least cost. This expression joins the set
of relations in question, with some grouping. We can optionally restrict
ourselves to left-deep expressions, in which case the expression is just an
ordering of the relations.

The construction of this table is an induction on the subset size. There are two
variations, depending on whether we wish to consider all possible tree shapes
or only left-deep trees. We explain the difference when we discuss the inductive
step of table construction.

BASIS: The entry for a single relation R consists of the size of R, a cost of 0,
and an expression that is just R itself. The entry for a pair of relations {Ri, Rj}
is also easy to compute. The cost is 0, since there are no intermediate relations
involved, and the size estimate is given by the rule of Section 16.4.6; it is the
product of the sizes of Ri and Rj divided by the larger value-set size for each
attribute shared by Ri and Rj, if any. The expression is either Ri tx Rj or
Rj tx Rt. Following the idea introduced in Section 16.6.1, we pick the smaller
of Ri and Rj as the left argument.

IN D U C TIO N : Now, we can build the table, computing entries for all subsets
of size 3, 4, and so on, until we get an entry for the one subset of size n. That
entry tells us the best way to compute the join of all the relations; it also gives
us the estimated cost of that method, which is needed as we compute later
entries. We need to see how to compute the entry for a set of k relations TZ.

If we wish to consider only left-deep trees, then for each of the k relations
R in TZ we consider the possibility that we compute the join for TZ by first
computing the join of TZ — {i?} and then joining it with R. The cost of the
join for TZ is the cost of TZ — {R} plus the size of the result for TZ — {i?}. We
pick whichever R yields the least cost. The expression for TZ has the best join
expression for TZ — {-R} as the left argument of a final join, and R as the right
argument. The size for TZ is whatever the formula from Section 16.4.6 gives.

If we wish to consider all trees, then computing the entry for a set of relations
TZ is somewhat more complex. We need to consider all ways to partition TZ into
disjoint sets TZi and TZ2. For each such subset, we consider the sum of:

1. The best costs of TZi and TZ2.

2. The sizes of the results for TZ\ and TZ2.

For whichever partition gives the best cost, we use this sum as the cost for TZ,
and the expression for TZ is the join of the best join orders for TZi and TZ2.

16.6. CHOOSING A N ORDER FOR JOINS 821

E xam ple 16.33: Consider the join of four relations R, S, T, and U. For
simplicity, we shall assume they each have 1000 tuples. Their attributes and the
estimated sizes of values sets for the attributes in each relation are summarized
in Fig. 16.31.

R(a,b) S(b,c) T(c,d) U(d,a)
V (R, a) = 100 V (U, a) — 50
V(R,b) = 200 V(S,b) = 100

V (5, c) = 500 V (T, c) = 20
V (T, d) — 50 V(U,d) = 1000

Figure 16.31: Parameters for Example 16.33

For the singleton sets, the sizes, costs, and best plans are as in the table of
Fig. 16.32. That is, for each single relation, the size is as given, 1000 for each,
the cost is 0 since there are no intermediate relations needed, and the best (and
only) expression is the relation itself.

{R} {5} {T} {U}
Size 1000 1000 1000 1000
Cost 0 0 0 0
Best plan R s T u

Figure 16.32: The table for singleton sets

Now, consider the pairs of relations. The cost for each is 0, since there are
still no intermediate relations in a join of two. There are two possible plans,
since either of the two relations can be the left argument, but since the sizes
happen to be the same for each relation we have no basis on which to choose
between the plans. We shall take the first, in alphabetical order, to be the left
argument in each case. The sizes of the resulting relations are computed by the
usual formula. The results are summarized in Fig. 16.33.

{R ,S } { R ,T} {R,U} {S , T } {S ,U } {T,U}
Size 5000 1,000,000 10,000 2000 1,000,000 1000
Cost 0 0 0 0 0 0
Best plan R x S R x T R x U S x T S x U T x U

Figure 16.33: The table for pairs of relations

Now, consider the table for joins of three out of the four relations. The only
way to compute a join of three relations is to pick two to join first. The size
estimate for the result is computed by the standard formula, and we omit the

822 CHAPTER 16. THE QUERY COMPILER

details of this calculation; remember that we’ll get the same size regardless of
which way we compute the join.

The cost estimate for each triple of relations is the size of the one interme
diate relation — the join of the first two chosen. Since we want this cost to be
as small as possible, we consider each pair of two out of the three relations and
take the pair with the smallest size.

For the expression, we group the two chosen relations first, but these could
be either the left or right argument. Let us suppose that we are only interested
in left-deep trees, so we always use the join of the first two relations as the left
argument. Since in all cases the estimated size for the join of two of our relations
is at least 1000 (the size of each individual relation), were we to allow non-left-
deep trees we would always select the single relation as the left argument in
this example. The summary table for the triples is shown in Fig. 16.34.

{R ,S ,T } {R ,S ,U} {R,T,U} {S,T,U}
Size 10,000 50,000 10,000 2,000
Cost 2,000 5,000 1,000 1,000
Best plan (S tx T) m R (R tx S) tx U (T tx U) tx R (T tx U) tx S

Figure 16.34: The table for triples of relations

Let us consider {R, S, T} as an example of the calculation. We must consider
each of the three pairs in turn. If we start with R xa S, then the cost is the
size of this relation, which is 5000 (see Fig. 16.33). Starting with R tx T gives
us a cost of 1,000,000 for the intermediate relation, and starting with S xi T
has a cost of 2000. Since the latter is the smallest cost of the three options,
we choose that plan. The choice is reflected not only in the cost entry of the
{/?, S ,T} column, but in the best-plan row, where the plan that groups S and
T first appears.

Now, we must consider the situation for the join of all four relations. There
are two general ways we can compute the join of all four:

1. Pick three to join in the best possible way, and then join in the fourth.

2. Divide the four relations into two pairs of two, join the pairs and then
join the results.

Of course, if we consider only left-deep trees then the second type of plan is
excluded, because it yields bushy trees. The table of Fig. 16.35 summarizes the
seven possible ways to group the joins, based on the preferred groupings from
Figs. 16.33 and 16.34.

For instance, consider the first expression in Fig. 16.35. It represents joining
R, S, and T first, and then joining that result with U. From Fig. 16.34, we
know that the best way to join R, S, and T is to join S and T first. We have
used the left-deep form of this expression, and joined U on the right to continue

16.6. CHOOSING A N ORDER FOR JOINS 823

Grouping Cost
US 1x3 T) tx R) tx U
\ (R tx: S) txi U) tx T

12,000
55.000
11.000
3.000
6.000

i (T cx £/) tx fl) tx S
((T cx U) tx S) txi R
(T tx U) cx (R tx S)
(R tx T) tx (5 tx U)
(S ix T) tx (R tx U)

2,000,000
12,000

Figure 16.35: Join groupings and their costs

the left-deep form. If we consider only left-deep trees, then this expression and
relation order is the only option. If we allowed bushy trees, we would join U
on the left, since it is smaller than the join of the other three. The cost of this
join is 12,000, which is the sum of the cost and size of (S tx T) ix R, which are
2000 and 10,000, respectively.

The last three expressions in Fig. 16.35 represent additional options if we
include bushy trees. These are formed by joining relations first in two pairs.
For example, the last line represents the strategy of joining R t x U and S sxT,
and then joining the result. The cost of this expression is the sum of the sizes
and costs of the two pairs. The costs are 0, as must be the case for any pair, and
the sizes are 10,000 and 2000, respectively. Since we generally select the smaller
relation to be the left argument, we show the expression as (S tx T) cx (R tx U).

In this example, we see that the least of all costs is associated with the
fourth expression: ((T tx TJ) ix S) tx R. This expression is the one we select
for computing the join; its cost is 3000. Since it is a left-deep tree, it is the
selected logical query plan regardless of whether our dynamic-programming
strategy considers all plans or just left-deep plans. □

16.6.5 Dynamic Programming W ith More Detailed Cost
Functions

Using relation sizes as the cost estimate simplifies the calculations in a dynamic-
programming algorithm. However, a disadvantage of this simplification is that
it does not involve the actual costs of the joins in the calculation. As an extreme
example, if one possible join R(a,b) ix S(b,c) involves a relation R with one
tuple and another relation S that has an index on the join attribute 6, then the
join takes almost no time. On the other hand, if S has no index, then we must
scan it, taking B(S) disk I /O ’s, even when R is a singleton. A cost measure
that only involved the sizes of R, S, and R tx S cannot distinguish these two
cases, so the cost of using R tx S in the grouping will be either overestimated
or underestimated.

However, modifying the dynamic programming algorithm to take join algo
rithms into account is not hard. First, the cost measure we use becomes disk

824 CHAPTER 16. THE QUERY COMPILER

I /O ’s. When computing the cost of TZi tx IZ2 , we sum the cost of Hi, the cost
of 72-2) and the least cost of joining these two relations using the best available
algorithm. Since the latter cost usually depends on the sizes of Hi and 1Z-2, we
must also compute estimates for these sizes as we did in Example 16.33.

An even more powerful version of dynamic programming is based on the
Selinger-style optimization mentioned in Section 16.5.4. Now, for each set of
relations that might be joined, we keep not only one cost, but several costs.
Recall that Selinger-style optimization considers not only the least cost of pro
ducing the result of the join, but also the least cost of producing that relation
sorted in any of a number of “interesting” orders. These interesting sorts in
clude any that might be used to advantage in a later sort-join or that could be
used to produce the output of the entire query in the sorted order desired by
the user. When sorted relations must be produced, the use of sort-join, either
one-pass or multipass, must be considered as an option, while without consid
ering the value of sorting a result, hash-joins are always at least as good as the
corresponding sort-join.

16.6.6 A Greedy Algorithm for Selecting a Join Order
As Example 16.33 suggests, even the carefully limited search of dynamic pro
gramming leads to a number of calculations that is exponential in the number
of relations joined. It is reasonable to use an exhaustive method like dynamic
programming or branch-and-bound search to find optimal join orders of five or
six relations. However, when the number of joins grows beyond that, or if we
choose not to invest the time necessary for an exhaustive search, then we can
use a join-order heuristic in our query optimizer.

The most common choice of heuristic is a greedy algorithm, where we make
one decision at a time about the order of joins and never backtrack or reconsider
decisions once made. We shall consider a greedy algorithm that only selects a
left-deep tree. The “greediness” is based on the idea that we want to keep the
intermediate relations as small as possible at each level of the tree.

BASIS: Start with the pair of relations whose estimated join size is smallest.
The join of these relations becomes the current tree.

INDUCTIO N: Find, among all those relations not yet included in the current
tree, the relation that, when joined with the current tree, yields the relation of
smallest estimated size. The new current tree has the old current tree as its left
argument and the selected relation as its right argument.

E xam ple 16.34: Let us apply the greedy algorithm to the relations of Exam
ple 16.33. The basis step is to find the pair of relations that have the smallest
join. Consulting Fig. 16.33, we see that this honor goes to the join T ix U, with
a cost of 1000. Thus, T cx U is the “current tree.”

We now consider whether to join R or 5 into the tree next. Thus we compare
the sizes of (T tx U) ix R and (T cx U) cx S. Figure 16.34 tells us that the

16.6. CHOOSING A N ORDER FOR JOINS 825

Join Selectivity

A useful way to view heuristics such as the greedy algorithm for selecting
a left-deep join tree is that each relation R, when joined with the current
tree, has a selectivity, which is the ratio of the size of the join result to size
of the current tree’s result. Since we usually do not have the exact sizes
of either relation, we estimate these sizes as we have done previously. A
greedy approach to join ordering is to pick that relation with the smallest
selectivity.

For example, if a join attribute is a key for R, then the selectivity
is at most 1, which is usually a favorable situation. Notice that, judging
from the statistics of Fig. 16.31, attribute d is a key for U, and there are
no keys for other relations, which suggests why joining T with U is the
best way to start the join.

latter, with a size of 2000 is better than the former, with a size of 10,000. Thus,
we pick as the new current tree (T tx U) tx S.

Now there is no choice; we must join R at the last step, leaving us with
a total cost of 3000, the sum of the sizes of the two intermediate relations.
Note that the tree resulting from the greedy algorithm is the same as that
selected by the dynamic-programming algorithm in Example 16.33. However,
there are examples where the greedy algorithm fails to find the best solution,
while the dynamic-programming algorithm guarantees to find the best; see Ex
ercise 16.6.4. □

16.6.7 Exercises for Section 16.6
Exercise 16.6.1: For the relations of Exercise 16.4.1, give the dynamic-pro-
gramming table entries that evaluates all possible join orders allowing: a) All
trees b) Left-deep trees only. What is the best choice in each case?

Exercise 16.6.2: Repeat Exercise 16.6.1 with the following modifications:

i. The schema for Z is changed to Z(d,a).

ii. V{Z,a) = 100.

E xercise 16.6.3: Repeat Exercise 16.6.1 with the relations of Exercise 16.4.2.

E xercise 16.6.4: Consider the join of relations R(a,b), S(b,c), T(c,d), and
U(a,d), where R and U each have 1000 tuples, while S and T each have 100
tuples. Further, there are 100 values of all attributes of all relations, except for
attribute c, where V(S,c) = V{T,c) — 10.

a) What is the order selected by the greedy algorithm? What is its cost?

826 CHAPTER 16. THE QUERY COMPILER

b) What is the optimum join ordering and its cost?

E xercise 16.6.5: How many trees are there for the join of (a) seven (b) eight
relations? How many of these are neither left-deep nor right-deep?

! E xercise 16.6.6: Suppose we wish to join the relations R, S, T, and U in
one of the tree structures of Fig. 16.30, and we want to keep all intermedi
ate relations in memory until they are no longer needed. Following our usual
assumption, the result of the join of all four will be consumed by some other
process as it is generated, so no memory is needed for that relation. In terms
of the number of blocks required for the stored relations and the intermediate
relations [e.g., B(R) or B (R tx 5)], give a lower bound on M, the number of
blocks of memory needed, for each of the trees in Fig. 16.30? What assumptions
let us conclude that one tree is certain to use less memory than another?

! E xercise 16.6.7: If we use dynamic programming to select an order for the
join of k relations, how many entries of the table do we have to fill?

16.7 Completing the Physical-Query-Plan
We have parsed the query, converted it to an initial logical query plan, and
improved that logical query plan with transformations described in Section 16.3.
Part of the process of selecting the physical query plan is enumeration and cost-
estimation for all of our options, which we discussed in Section 16.5. Section 16.6
focused on the question of enumeration, cost estimation, and ordering for joins
of several relations. By extension, we can use similar techniques to order groups
of unions, intersections, or any associative/commutative operation.

There are still several steps needed to turn the logical plan into a complete
physical query plan. The principal issues that we must yet cover are:

1. Selection of algorithms to implement the operations of the query plan,
when algorithm-selection was not done as part of some earlier step such
as selection of a join order by dynamic programming.

2. Decisions regarding when intermediate results will be materialized (cre
ated whole and stored on disk), and when they will be pipelined (created
only in main memory, and not necessarily kept in their entirety at any
one time).

3. Notation for physical-query-plan operators, which must include details
regarding access methods for stored relations and algorithms for imple
mentation of relational-algebra operators.

We shall not discuss the subject of selection of algorithms for operators
in its entirety. Rather, we sample the issues by discussing two of the most
important operators: selection in Section 16.7.1 and joins in Section 16.7.2.

16.7. COMPLETING THE PHYSICAL-QUERY-PLAN 827

Then, we consider the choice between pipelining and materialization in Sec
tions 16.7.3 through 16.7.5. A notation for physical query plans is presented in
Section 16.7.6.

16.7.1 Choosing a Selection M ethod
One of the important steps in choosing a physical query plan is to pick algo
rithms for each selection operator. In Section 15.2.1 we mentioned the obvious
implementation of a ac (R) operator, where we access the entire relation R and
see which tuples satisfy condition C. Then in Section 15.6.2 we considered the
possibility that C was of the form “attribute equals constant,” and we had an
index on that attribute. If so, then we can find the tuples that satisfy condition
C without looking at all of R. Now, let us consider the generalization of this
problem, where we have a selection condition that is the AND of several condi
tions. Assume at least one condition is of the form AOc, where A is an attribute
with an index, c is a constant, and 6 is a comparison operator such as = or <.

Each physical plan uses some number of attributes that each:

a) Have an index, and

b) Are compared to a constant in one of the terms of the selection.

We then use these indexes to identify the sets of tuples that satisfy each of the
conditions. Sections 14.1.7 and 14.4.3 discussed how we could use pointers ob
tained from these indexes to find only the tuples that satisfied all the conditions
before we read these tuples from disk.

For simplicity, we shall not consider the use of several indexes in this way.
Rather, we limit our discussion to physical plans that:

1. Retrieve all tuples that satisfy a comparison for which an index exists,
using the index-scan physical operator discussed in Section 15.1.1.

2. Consider each tuple selected in (1) to decide whether it satisfies the rest
of the selection condition. The physical operator that performs this step
is callled F i l te r .

In addition to physical plans of this form, we must also consider the plan that
uses no index but reads the entire relation (using the table-scan physical oper
ator) and passes each tuple to the F i l t e r operator to check for satisfaction of
the selection condition.

We decide among the possible physical plans for a selection by estimating
the cost of reading data with each plan. To compare costs of alternative plans
we cannot continue using the simplified cost estimate of intermediate-relation
size. The reason is that we are now considering implementations of a single
step of the logical query plan, and intermediate relations are independent of
implementation.

828 CHAPTER 16. THE QUERY COMPILER

Thus, we shall refocus our attention and resume counting disk I /O ’s, as we
did when we discussed algorithms and their costs in Chapter 15. To simplify
as before, we shall count only the cost of accessing the data blocks, not the
index blocks. Recall that the number of index blocks needed is generally much
smaller than the number of data blocks needed, so this approximation to disk
I/O cost is usually accurate enough.

The following is an outline of how costs for the various plans are estimated.
We assume that the operation is <t c (R), where condition C is the AND of one or
more terms.

1. The cost of the table-scan algorithm coupled with a filter step is:

(a) B(R) if R is clustered, and
(b) T(R) if R is not clustered.

2. The cost of a plan that picks an equality term such as a = 10 for which an
index on attribute a exists, uses index-scan to find the matching tuples,
and then filters the retrieved tuples to see if they satisfy the full condition
C is:

(a) B(R) /V (R ,a) if the index is clustering, and
(b) T(R)/ V(R ,a) if the index is not clustering.

3. The cost of a plan that picks an inequality term such as b < 20 for which
an index on attribute b exists, uses index-scan to retrieve the matching
tuples, and then filters the retrieved tuples to see if they satisfy the full
condition C is:

(a) B (R) /3 if the index is clustering,9 and
(b) T (R) /3 if the index is not clustering.

E xam ple 16.35: Consider selection ax=i and y = 2 and z<b(R), where R(x, y, z)
has the following parameters: T(R) = 5000, B{R) = 200, V(R,x) = 100, and
V(R, y) — 500. Further, suppose R is clustered, and there are indexes on all of
x, y, and z, but only the index on z is clustering. The following are the options
for implementing this selection:

1. Table-scan followed by filter. The cost is B(R), or 200 disk I /O ’s, since
R is clustered.

2. Use the index on x and the index-scan operator to find those tuples with
x = 1, then use the filter operator to check that y = 2 and z < 5. Since
there are about T (R) /V (R , x) — 50 tuples with x — 1, and the index is
not clustering, we require about 50 disk I /O ’s.

9Recall th a t we assum e th e typ ica l inequality retrieves only 1 /3 th e tu p les, for reasons
discussed in Section 16.4.3.

16.7. COMPLETING THE PHYSICAL-QUERY-PLAN 829

3. Use the index on y and index-scan to find those tuples with y — 2, then
filter these tuples to see that x = 1 and z < 5. The cost for using this
nonclustering index is about T(R)/V (R ,y) , or 10 disk I /O ’s.

4. Use the clustering index on z and index-scan to find those tuples with
z < 5, then filter these tuples to see that x = 1 and y = 2. The number
of disk I /O ’s is about B (R) / 3 = 67.

We see that the least cost plan is the third, with an estimated cost of 10 disk
I /O ’s. Thus, the preferred physical plan for this selection retrieves all tuples
with y = 2 and then filters for the other two conditions. □

16.7.2 Choosing a Join Method
We saw in Chapter 15 the costs associated with the various join algorithms. On
the assumption that we know (or can estimate) how many buffers are available
to perform the join, we can apply the formulas in Section 15.4.9 for sort-joins,
Section 15.5.7 for hash-joins, and Sections 15.6.3 and 15.6.4 for indexed joins.

However, if we axe not sure of, or cannot know, the number of buffers that
will be available during the execution of this query (because we do not know
what else the DBMS is doing at the same time), or if we do not have estimates
of important size parameters such as the V(R, a)’s, then there are still some
principles we can apply to choosing a join method. Similar ideas apply to other
binary operations such as unions, and to the full-relation, unary operators, 7
and S.

• One approach is to call for the one-pass join, hoping that the buffer man
ager can devote enough buffers to the join, or that the buffer manager
can come close, so thrashing is not a major cost. An alternative (for joins
only, not for other binary operators) is to choose a nested-loop join, hop
ing that if the left argument cannot be granted enough buffers to fit in
memory at once, then that argument will not have to be divided into too
many pieces, and the resulting join will still be reasonably efficient.

• A sort-join is a good choice when either:

1. One or both arguments are already sorted on their join attribute(s),
or

2. There are two or more joins on the same attribute, such as

(R(a, b) xi S(a, c)) ix T(a, d)

where sorting R and S on a will cause the result of R x 5 to be
sorted on a and used directly in a second sort-join.

• If there is an index opportunity such as a join R(a, b) tx S(b, c), where R
is expected to be small (perhaps the result of a selection on a key that
must yield only one tuple), and there is an index on the join attribute
S.b, then we should choose an index-join.

830 CHAPTER 16. THE QUERY COMPILER

• If there is no opportunity to use already-sorted relations or indexes, and
a multipass join is needed, then hashing is probably the best choice, be
cause the number of passes it requires depends on the size of the smaller
argument rather than on both arguments.

16.7.3 Pipelining Versus Materialization
The last major issue we shall discuss in connection with choice of a physical
query plan is pipelining of results. The naive way to execute a query plan is
to order the operations appropriately (so an operation is not performed until
the argument(s) below it have been performed), and store the result of each
operation on disk until it is needed by another operation. This strategy is
called materialization, since each intermediate relation is materialized on disk.

A more subtle, and generally more efficient, way to execute a query plan
is to interleave the execution of several operations. The tuples produced by
one operation are passed directly to the operation that uses it, without ever
storing the intermediate tuples on disk. This approach is called pipelining, and
it typically is implemented by a network of iterators (see Section 15.1.6), whose
methods call each other at appropriate times. Since it saves disk I /O ’s, there
is an obvious advantage to pipelining, but there is a corresponding disadvan
tage. Since several operations must share main memory at any time, there is a
chance that algorithms with higher disk-I/O requirements must be chosen, or
thrashing will occur, thus giving back all the disk-I/O savings that were gained
by pipelining, and possibly more.

16.7.4 Pipelining Unary Operations
Unary operations — selection and projection — are excellent candidates for
pipelining. Since these operations are tuple-at-a-time, we never need to have
more than one block for input, and one block for the output. This mode of
operation was suggested by Fig. 15.5.

We may implement a pipelined unary operation by iterators, as discussed in
Section 15.1.6. The consumer of the pipelined result calls GetNextO each time
another tuple is needed. In the case of a projection, it is only necessary to call
GetNextO once on the source of tuples, project that tuple appropriately, and
return the result to the consumer. For a selection a c (technically, the physical
operator Filter(C)), it may be necessary to call GetNextO several times at
the source, until one tuple that satisfies condition C is found. Figure 16.36
illustrates this process.

16.7.5 Pipelining Binary Operations
The results of binary operations can also be pipelined. We use one buffer to
pass the result to its consumer, one block at a time. However, the number of
other buffers needed to compute the result and to consume the result varies,

16.7. COMPLETING THE PHYSICAL-QUERY-PLAN 831

Consum er

GetNext Tuple that
satisfies C

Test for C

GetNext
repeated

R

Figure 16.36: Execution of a pipelined selection using iterators

Materialization in Memory

One might imagine that there is an intermediate approach, between
pipelining and materialization, where the entire result of one operation
is stored in main-memory buffers (not on disk) before being passed to
the consuming operation. We regard this possible mode of operation as
pipelining, where the first thing that the consuming operation does is or
ganize the entire relation, or a large portion of it, in memory. An example
of this sort of behavior is a selection whose result becomes the left (build)
argument to one of several join algorithms, including the simple one-pass
join, multipass hash-join, or sort-join.

depending on the size of the result and the sizes of the arguments. We shall
use an extended example to illustrate the tradeoffs and opportunities.

E xam ple 16.36: Let us consider physical query plans for the expression

We make the following assumptions:

1. R occupies 5000 blocks; S and U each occupy 10,000 blocks.

2. The intermediate result R tx 5 occupies k blocks for some k.

3. Both joins will be implemented as hash-joins, either one-pass or two-pass,
depending on k.

4. There are 101 buffers available. This number, as usual, is set artificially

(R(w, x) tx S(x, y)) tx U (y , z)

low.

832 CHAPTER 16. THE QUERY COMPILER

XI
k blocks \

X U(y,z)

\ 10,000
blocksR 0 , x) S (x,y)

5000
blocks

10,000
blocks

Figure 16.37: Logical query plan and parameters for Example 16.36

A sketch of the expression with key parameters is in Fig. 16.37.
First, consider the join R tx S. Neither relation fits in main memory, so

we need a two-pass hash-join. If the smaller relation R is partitioned into
the maximum-possible 100 buckets on the first pass, then each bucket for R
occupies 50 blocks.10 If R ’s buckets have 50 blocks, then the second pass of the
hash-join R tx S uses 51 buffers, leaving 50 buffers to use for the join of the
result of R tx 5 with U.

Now, suppose that k < 49; that is, the result of jR cx S occupies at most 49
blocks. Then we can pipeline the result of R tx S into 49 buffers, organize them
for lookup as a hash table, and we have one buffer left to read each block of
U in turn. We may thus execute the second join as a one-pass join. The total
number of disk I/O ’s is:

a) 45,000 to perform the two-pass hash join of R and 5.

b) 10,000 to read U in the one-pass hash-join of (R tx S) tx U.

The total is 55,000 disk I /O ’s.
Now, suppose k > 49, but k < 5000. We can still pipeline the result of

R tx S, but we need to use another strategy, in which this relation is joined
with U in a 50-bucket, two-pass hash-join.

1. Before we start on R cx S, we hash U into 50 buckets of 200 blocks each.

2. Next, we perform a two-pass hash join of R and S using 51 buckets as
before, but as each tuple of R ix 5 is generated, we place it in one of the
50 remaining buffers that is used to help form the 50 buckets for the join
of R tx S with U. These buffers are written to disk when they get full, as
is normal for a two-pass hash-join.

3. Finally, we join R cx S with U bucket by bucket. Since k < 5000, the
buckets of R tx S will be of size at most 100 blocks, so this join is feasible.
The fact that buckets of U are of size 200 blocks is not a problem, since

— in---------- -̂-------------10We shall assiime for convenience that all buckets wind up with exactly their fair share of
tuples.

16.7. COMPLETING THE PHYSICAL-QUERY-PLAN 833

we are using buckets of R m S as the build relation and buckets of U as
the probe relation in the one-pass joins of buckets.

The number of disk I /O ’s for this pipelined join is:

a) 20,000 to read U and write its tuples into buckets.

b) 45,000 to perform the two-pass hash-join R cx S.

c) k to write out the buckets of R ix S.

d) k + 10,000 to read the buckets of R tx 5 and U in the final join.

The total cost is thus 75,000 + 2k. Note that there is an apparent discontinuity
as k grows from 49 to 50, since we had to change the final join from one-pass
to two-pass. In practice, the cost would not change so precipitously, since we
could use the one-pass join even if there were not enough buffers and a small
amount of thrashing occurred.

Last, let us consider what happens when k > 5000. Now, we cannot perform
a two-pass join in the 50 buffers available if the result of R tx S is pipelined.
We could use a three-pass join, but that would require an extra 2 disk I /O ’s per
block of either argument, or 20,000 + 2k more disk I /O ’s. We can do better if
we instead decline to pipeline R ix S. Now, an outline of the computation of
the joins is:

1. Compute R tx S using a two-pass hash join and store the result on disk.

2. Join R tx S with U, also using a two-pass hash-join. Note that since
B(U) = 10,000, we can perform a two-pass hash-join using 100 buckets,
regardless of how large k is. Technically, U should appear as the left
argument of its join in Fig. 16.37 if we decide to make U the build relation
for the hash join.

The number of disk I /O ’s for this plan is:

a) 45,000 for the two-pass join of R and S.

b) k to store R tx S on disk.

c) 30,000 -I- 3k for the two-pass hash-join of U with R tx 5.

The total cost is thus 75,000 + 4k, which is less than the cost of going to a
three-pass join at the final step. The three complete plans are summarized in
the table of Fig. 16.38. □

834 CHAPTER 16. THE QUERY COMPILER

Range
of k

Pipeline or
Materialize

Algorithm for
final join

Total Disk
I /O ’s

k < 49 Pipeline one-pass 55,000
50 < k < 5000 Pipeline 50-bucket,

two-pass
75,000 + 2k

5000 < k Materialize 100-bucket,
two-pass

75,000 + 4k

Figure 16.38: Costs of physical plans as a function of the size of R m S

16.7.6 Notation for Physical Query Plans
We have seen many examples of the operators that can be used to form a physi
cal query plan. In general, each operator of the logical plan becomes one or more
operators of the physical plan, and leaves (stored relations) of the logical plan
become, in the physical plan, one of the scan operators applied to that relation.
In addition, materialization would be indicated by a S to re operator applied to
the intermediate result that is to be materialized, followed by a suitable scan op
erator (usually TableScan, since there is no index on the intermediate relation
unless one is constructed explicitly) when the materialized result is accessed by
its consumer. However, for simplicity, in our physical-query-plan trees we shall
indicate that a certain intermediate relation is materialized by a double line
crossing the edge between that relation and its consumer. All other edges are
assumed to represent pipelining between the supplier and consumer of tuples.

We shall now catalog the various operators that are typically found in physi
cal query plans. Unlike the relational algebra, whose notation is fairly standard,
each DBMS will use its own internal notation for physical query plans.

O perators for Leaves

Each relation R that is a leaf operand of the logical-query-plan tree will be
replaced by a scan operator. The options are:

1. TableScan (R): All blocks holding tuples of R are read in arbitrary order.

2. SortScan(R ,L): Tuples of R are read in order, sorted according to the
attribute(s) on list L.

3. IndexScan(R,C): Here, C is a condition of the form .40c, where A is an
attribute of R, 0 is a comparison such as = or <, and c is a constant. Tu
ples of R are accessed through an index on attribute A. If the comparison
6 is not then the index must be one, such as a B-tree, that supports
range queries.

4. IndexScan(R, A): Here A is an attribute of R. The entire relation R is
retrieved via an index on R.A. This operator behaves like TableScan,

16.7. COMPLETING THE PHYSICAL-QUERY-PLAN 835

but may be more efficient if R is not clustered.

P h ysica l O perators for S election

A logical operator crc(R) is often combined, or partially combined, with the
access method for relation R, when R is a stored relation. Other selections,
where the argument is not a stored relation or an appropriate index is not
available, will be replaced by the corresponding physical operator we have called
Filter. Recall the strategy for choosing a selection implementation, which we
discussed in Section 16.7.1. The notation we shall use for the various selection
implementations are:

1. We may simply replace ac(R) by the operator F il te r (C) . This choice
makes sense if there is no index on R, or no index on an attribute that
condition C mentions. If R, the argument of the selection, is actually an
intermediate relation being pipelined to the selection, then no other op
erator besides F i l t e r is needed. If R is a stored or materialized relation,
then we must use an operator, TableScan or SortScan(R,L), to access
R. We prefer sort-scan if the result of ac(R) will later be passed to an
operator that requires its argument sorted.

2. If condition C can be expressed as AOc AND D for some other condition
D, and there is an index on R.A, then we may:

(a) Use the operator IndexScan(R, kdc) to access R, and

(b) Use F ilte r (D) in place of the selection ac(R)-

P h ysica l Sort O perators

Sorting of a relation can occur at any point in the physical query plan. We have
already introduced the SortScan(R,L) operator, which reads a stored relation
R and produces it sorted according to the list of attributes L. When we apply a
sort-based algorithm for operations such as join or grouping, there is an initial
phase in which we sort the argument according to some list of attributes. It is
common to use an explicit physical operator Sort(L) to perform this sort on
an operand relation that is not stored. This operator can also be used at the
top of the physical-query-plan tree if the result needs to be sorted because of
an ORDER BY clause in the original query, thus playing the same role as the r
operator of Section 5.2.6.

O ther R ela tional-A lgebra O perations

All other operations are replaced by a suitable physical operator. These oper
ators can be given designations that indicate:

1. The operation being performed, e.g., join or grouping.

836 CHAPTER 16. THE QUERY COMPILER

2. Necessary parameters, e.g., the condition in a theta-join or the list of
elements in a grouping.

3. A general strategy for the algorithm: sort-based, hash-based, or index-
based, e.g.

4. A decision about the number of passes to be used: one-pass, two-pass, or
multipass (recursive, using as many passes as necessary for the data at
hand). Alternatively, this choice may be left until run-time.

5. An anticipated number of buffers the operation will require.

E xam ple 16.37: Figure 16.39 shows the physical plan developed in Exam
ple 16.36 for the case k > 5000. In this plan, we access each of the three
relations by a table-scan. We use a two-pass hash-join for the first join, mate
rialize it, and use a two-pass hash-join for the second join. By implication of
the double-line symbol for materialization, the left argument of the top join is
also obtained by a table-scan, and the result of the first join is stored using the
S to re operator.

In contrast, if k < 49, then the physical plan developed in Example 16.36 is
that shown in Fig. 16.40. Notice that the second join uses a different number
of passes, a different number of buffers, and a left argument that is pipelined,
not materialized. □

E xam ple 16.38: Consider the selection operation in Example 16.35, where we
decided that the best of options was to use the index on y to find those tuples
with y — 2, then check these tuples for the other conditions x — 1 and z < 5.
Figure 16.41 shows the physical query plan. The leaf indicates that R will be
accessed through its index on y, retrieving only those tuples with y = 2. The
filter operator says that we complete the selection by further selecting those of
the retrieved tuples that have both x = 1 and z <5. □

two-pass
hash-join
101 buffers

hash-join
101 buffers

TableScanfftl TableScanfS 1

Figure 16.39: A physical plan from Example 16.36

16.7. COMPLETING THE PHYSICAL-QUERY-PLAN 837

one-pass
hash-join
50 buffers

two-pass
hash-join
101 buffers

TableScan(t/)

TableScanf/J ■)

Figure 16.40: Another physical plan for the case where R x S is expected to
be very small

Filter(x=l AND z<5)

IndexScan(R, y=2)

Figure 16.41: Annotating a selection to use the most appropriate index

16.7.7 Ordering of Physical Operations
Our final topic regarding physical query plans is the m atter of order of oper
ations. The physical query plan is generally represented as a tree, and trees
imply something about order of operations, since data must flow up the tree.
However, since bushy trees may have interior nodes that axe neither ancestors
nor descendants of one another, the order of evaluation of interior nodes may
not always be clear. Moreover, since iterators can be used to implement opera
tions in a pipelined manner, it is possible that the times of execution for various
nodes overlap, and the notion of “ordering” nodes makes no sense.

If materialization is implemented in the obvious store-and-later-retrieve way,
and pipelining is implemented by iterators, then we may establish a fixed se
quence of events whereby each operation of a physical query plan is executed.
The following rules summarize the ordering of events implicit in a physical-
query-plan tree:

1. Break the tree into subtrees at each edge that represents materialization.
The subtrees will be executed one-at-a-time.

2. Order the execution of the subtrees in a bottom-up, left-to-right manner.
To be precise, perform a preorder traversal of the entire tree. Order
the subtrees in the order in which the preorder traversal exits from the
subtrees.

838 CHAPTER 16. THE QUERY COMPILER

3. Execute all nodes of each subtree using a network of iterators. Thus, all
the nodes in one subtree are executed simultaneously, with GetNext calls
among their operators determining the exact order of events.

Following this strategy, the query optimizer can now generate executable code,
perhaps a sequence of function calls, for the query.

16.7.8 Exercises for Section 16.7
E xercise 16.7.1: Consider a relation R(a,b,c,d) that has a clustering index
on a and nonclustering indexes on each of the other attributes. The relevant
parameters are: B(R) = 1000, T(R) - 5000, V (R ,a) = 20, V(R,b) = 1000,
V(R,c) = 5000, and V(R ,d) = 500. Give the best query plan (index-scan
or table-scan followed by a filter step) and the disk-I/O cost for each of the
following selections:

a) Oa=l AND 6=2 AND d=s{R)-

b) <Ta=l AND 6=2 AND c > 3 (R)-

c) cra= l AND 6<2 AND c>3(R)-

! Exercise 16.7.2: In terms of B(R), T(R), V (R ,x), and V (R ,y), express the
following conditions about the cost of implementing a selection on R:

a) It is better to use index-scan with a nonclustering index on x and a term
that equates a; to a constant than a nonclustering index on y and a term
that equates y to a constant.

b) It is better to use index-scan with a nonclustering index on x and a term
that equates a; to a constant than a clustering index on y and a term that
equates y to a constant.

c) It is better to use index-scan with a nonclustering index on x and a term
that equates x to a constant than a clustering index on y and a term of
the form y > C for some constant C.

E xercise 16.7.3: How would the conclusions about when to pipeline in Ex
ample 16.36 change if the size of relation R were not 5000 blocks, but: (a) 2000
blocks ! (b) 10,000 blocks ! (c) 100 blocks?

! Exercise 16.7.4: Suppose we want to compute (R(a,b) tx S(a,c)) tx T(a,d)
in the order indicated. We have M — 101 main-memory buffers, and B(R) =
B (S) = 2000. Because the join attribute a is the same for both joins, we decide
to implement the first join R tx 5 by a two-pass sort-join, and we shall use
the appropriate number of passes for the second join, first dividing T into some
number of sublists sorted on a, and merging them with the sorted and pipelined
stream of tuples from the join R tx S. For what values of B (T) should we choose
for the join of T with R ix S:

16.8. SUMM ARY OF CHAPTER 16 839

a) A one-pass join; i.e., we read T into memory, and compare its tuples with
the tuples of R cx 5 as they are generated.

b) A two-pass join; i.e., we create sorted sublists for T and keep one buffer
in memory for each sorted sublist, while we generate tuples of R tx S.

16.8 Summary of Chapter 16
♦ Compilation of Queries: Compilation turns a query into a physical query

plan, which is a sequence of operations that can be implemented by the
query-execution engine. The principal steps of query compilation are
parsing, semantic checking, selection of the preferred logical query plan
(algebraic expression), and generation from that of the best physical plan.

♦ The Parser: The first step in processing a SQL query is to parse it, as
one would for code in any programming language. The result of parsing
is a parse tree with nodes corresponding to SQL constructs.

♦ View Expansion: Queries that refer to virtual views must have these
references in the parse tree replaced by the tree for the expression that
defines the view. This expansion often introduces several opportunities
to optimize the complete query.

♦ Semantic Checking: A preprocessor examines the parse tree, checks that
the attributes, relation names, and types make sense, and resolves at
tribute references.

♦ Conversion to a Logical Query Plan: The query processor must convert
the semantically checked parse tree to an algebraic expression. Much
of the conversion to relational algebra is straightforward, but subqueries
present a problem. One approach is to introduce a two-argument selection
that puts the subquery in the condition of the selection, and then apply
appropriate transformations for the common special cases.

♦ Algebraic Transformations: There are many ways that a logical query plan
can be transformed to a better plan by using algebraic transformations.
Section 16.2 enumerates the principal ones.

♦ Choosing a Logical Query Plan: The query processor must select that
query plan that is most likely to lead to an efficient physical plan. In
addition to applying algebraic transformations, it is useful to group asso
ciative and commutative operators, especially joins, so the physical query
plan can choose the best order and grouping for these operations.

♦ Estimating Sizes of Relations: When selecting the best logical plan, or
when ordering joins or other associative-commutative operations, we use
the estimated size of intermediate relations as a surrogate for the true

840 CHAPTER 16. THE QUERY COMPILER

running time. Knowing, or estimating, both the size (number of tuples)
of relations and the number of distinct values for each attribute of each
relation helps us get good estimates of the sizes of intermediate relations.

♦ Histograms: Some systems keep histograms of the values for a given
attribute. This information can be used to obtain better estimates of
intermediate-relation sizes than the simple methods stressed here.

♦ Cost-Based Optimization: When selecting the best physical plan, we need
to estimate the cost of each possible plan. Various strategies axe used to
generate all or some of the possible physical plans that implement a given
logical plan.

♦ Plan-Enumeration Strategies: The common approaches to searching the
space of physical plans for the best include dynamic programming (tab-
ularizing the best plan for each subexpression of the given logical plan),
Selinger-style dynamic programming (which includes the sort-order of re
sults as part of the table, giving best plans for each sort-order and for an
unsorted result), greedy approaches (making a series of locally optimal
decisions, given the choices for the physical plan that have been made so
far), and branch-and-bound (enumerating only plans that are not imme
diately known to be worse than the best plan found so far).

♦ Left-Deep Join Trees: When picking a grouping and order for the join
of several relations, it is common to restrict the search to left-deep trees,
which axe binaxy trees with a single spine down the left edge, with only
leaves as right children. This form of join expression tends to yield efficient
plans and also limits significantly the number of physical plans that need
to be considered.

♦ Physical Plans for Selection: If possible, a selection should be broken into
an index-scan of the relation to which the selection is applied (typically
using a condition in which the indexed attribute is equated to a constant),
followed by a filter operation. The filter examines the tuples retrieved by
the index-scan and passes through only those that meet the portions of
the selection condition other than that on which the index scan is based.

♦ Pipelining Versus Materialization: Ideally, the result of each physical op
erator is consumed by another operator, with the result being passed be
tween the two in main memory (“pipelining”), perhaps using an iterator to
control the flow of data from one to the other. However, sometimes there
is an advantage to storing (“materializing”) the result of one operator
to save space in main memory for other operators. Thus, the physical-
query-plan generator should consider both pipelining and materialization
of intermediates.

16.9. REFERENCES FOR CHAPTER 16 841

16.9 References for Chapter 16
The surveys mentioned in the bibliographic notes to Chapter 15 also contain
material relevant to query compilation. In addition, we recommend the survey
[1], which contains material on the query optimizers of commercial systems.

Three of the earliest studies of query optimization are [4], [5], and [3]. Pa
per [6], another early study, incorporates the idea of pushing selections down
the tree with the greedy algorithm for join-order choice. [2] is the source for
“Selinger-style optimization” as well as describing the System R optimizer,
which was one of the most ambitious attempts at query optimization of its
day.

1. G. Graefe (ed.), Data Engineering 16:4 (1993), special issue on query
processing in commercial database management systems, IEEE.

2. P. Griffiths-Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database system,” Proc.
ACM SIGMOD Intl. Conf. on Management of Data (1979), pp. 23-34.

3. P. A. V. Hall, “Optimization of a single relational expression in a rela
tional database system,” IBM J. Research and Development 20:3 (1976),
pp. 244-257.

4. F. P. Palermo, “A database search problem,” in: J. T. Tou (ed.) Infor
mation Systems COINS IV, Plenum, New York, 1974.

5. J. M. Smith and P. Y. Chang, “Optimizing the performance of a relational
algebra database interface,” Comm. ACM 18:10 (1975), pp. 568-579.

6. E. Wong and K. Youssefi, “Decomposition — a strategy for query pro
cessing,” ACM Trans, on Database Systems 1:3 (1976), pp. 223-241.

Chapter 17

Coping W ith System
Failures

Starting with this chapter, we focus our attention on those parts of a DBMS
that control access to data. There are two major issues to address:

1. Data must be protected in the face of a system failure. This chapter deals
with techniques for supporting the goal of resilience, that is, integrity of
the data when the system fails in some way.

2. Data must not be corrupted simply because several error-free queries or
database modifications are being done at once. This matter is addressed
in Chapters 18 and 19.

The principal technique for supporting resilience is a log, which records
securely the history of database changes. We shall discuss three different styles
of logging, called “undo,” “redo,” and “undo/redo.” We also discuss recovery,
the process whereby the log is used to reconstruct what has happened to the
database when there has been a failure. An important aspect of logging and
recovery is avoidance of the situation where the log must be examined into
the distant past. Thus, we shall learn about “checkpointing,” which limits the
length of log that must be examined during recovery.

In a final section, we discuss “archiving,” which allows the database to
survive not only temporary system failures, but situations where the entire
database is lost. Then, we must rely on a recent copy of the database (the
archive) plus whatever log information survives, to reconstruct the database as
it existed at some point in the recent past.

17.1 Issues and M odels for Resilient Operation
We begin our discussion of coping with failures by reviewing the kinds of things
that can go wrong, and what a DBMS can and should do about them. We

843

844 CHAPTER 17. COPING W ITH SYSTE M FAILURES

initially focus on “system failures” or “crashes,” the kinds of errors that the
logging and recovery methods are designed to fix. We also introduce in Sec
tion 17.1.4 the model for buffer management that underlies all discussions of
recovery from system errors. The same model is needed in the next chapter as
we discuss concurrent access to the database by several transactions.

17.1.1 Failure Modes
There are many things that can go wrong as a database is queried and modified.
Problems range from the keyboard entry of incorrect data to an explosion in the
room where the database is stored on disk. The following items are a catalog
of the most important failure modes and what the DBMS can do about them.

E rroneous D a ta E ntry

Some data errors are impossible to detect. For example, if a clerk mistypes one
digit of your phone number, the data will still look like a phone number that
could be yours. On the other hand, if the clerk omits a digit from your phone
number, then the data is evidently in error, since it does not have the form of
a phone number. The principal technique for addressing data-entry errors is to
write constraints and triggers that detect data believed to be erroneous.

M ed ia Failures

A local failure of a disk, one that changes only a bit or a few bits, can nor
mally be detected by parity checks associated with the sectors of the disk, as
we discussed in Section 13.4.2. Head crashes, where the entire disk becomes
unreadable, are generally handled by one or both of the following approaches:

1. Use one of the RAID schemes discussed in Section 13.4, so the lost disk
can be restored.

2. Maintain an archive, a copy of the database on a medium such as tape
or optical disk. The archive is periodically created, either fully or incre
mentally, and stored at a safe distance from the database itself. We shall
discuss archiving in Section 17.5.

3. Instead of an archive, one could keep redundant copies of the database
on-line, distributed among several sites. These copies are kept consistent
by mechanisms we shall discuss in Section 20.6.

C atastrophic Failure

In this category are a number of situations in which the media holding the
database is completely destroyed. Examples include explosions, fires, or van
dalism at the site of the database. RAID will not help, since all the data disks
and their parity check disks become useless simultaneously. However, the other

17.1. ISSUES AND MODELS FOR RESILIENT OPERATION 845

approaches that can be used to protect against media failure — archiving and
redundant, distributed copies — will also protect against a catastrophic failure.

S ystem Failures

The processes that query and modify the database are called transactions. A
transaction, like any program, executes a number of steps in sequence; often,
several of these steps will modify the database. Each transaction has a state,
which represents what has happened so far in the transaction. The state in
cludes the current place in the transaction’s code being executed and the values
of any local variables of the transaction that will be needed later on.

System failures are problems that cause the state of a transaction to be lost.
Typical system failures are power loss and software errors. Since main mem
ory is “volatile,” as we discussed in Section 13.1.3, a power failure will cause
the contents of main memory to disappear, along with the result of any trans
action step that was kept only in main memory, rather than on (nonvolatile)
disk. Similarly, a software error may overwrite part of main memory, possibly
including values that were part of the state of the program.

When main memory is lost, the transaction state is lost; that is, we can no
longer tell what parts of the transaction, including its database modifications,
were made. Running the transaction again may not fix the problem. For
example, if the transaction must add 1 to a value in the database, we do not
know whether to repeat the addition of 1 or not. The principal remedy for the
problems that arise due to a system error is logging of all database changes in
a separate, nonvolatile log, coupled with recovery when necessary. However,
the mechanisms whereby such logging can be done in a fail-safe manner are
surprisingly intricate, as we shall see starting in Section 17.2.

17.1.2 More About Transactions

We introduced the idea of transactions from the point of view of the SQL pro
grammer in Section 6.6. Before proceeding to our study of database resilience
and recovery from failures, we need to discuss the fundamental notion of a
transaction in more detail.

The transaction is the unit of execution of database operations. For example,
if we are issuing ad-hoc commands to a SQL system, then each query or database
modification statement (plus any resulting trigger actions) is a transaction.
When using an embedded SQL interface, the programmer controls the extent
of a transaction, which may include several queries or modifications, as well
as operations performed in the host language. In the typical embedded SQL
system, transactions begin as soon as operations on the database are executed
and end with an explicit COMMIT or ROLLBACK (“abort”) command.

As we shall discuss in Section 17.1.3, a transaction must execute atomically,
that is, all-or-nothing and as if it were executed at an instant in time. Assuring

846 CHAPTER 17. COPING WITH SYSTEM FAILURES

that transactions are executed correctly is the job of a transaction manager, a
subsystem that performs several functions, including:

1. Issuing signals to the log manager (described below) so that necessary
information in the form of “log records” can be stored on the log.

2. Assuring that concurrently executing transactions do not interfere with
each other in ways that introduce errors (“scheduling” ; see Section 18.1).

Figure 17.1: The log manager and transaction manager

The transaction manager and its interactions are suggested by Fig. 17.1.
The transaction manager will send messages about actions of transactions to
the log manager, to the buffer manager about when it is possible or necessary to
copy the buffer back to disk, and to the query processor to execute the queries
and other database operations that comprise the transaction.

The log manager maintains the log. It must deal with the buffer manager,
since space for the log initially appears in main-memory buffers, and at certain
times these buffers must be copied to disk. The log, as well as the data, occupies
space on the disk, as we suggest in Fig. 17.1.

Finally, we show a recovery manager in Fig. 17.1. When there is a crash,
the recovery manager is activated. It examines the log and uses it to repair the
data, if necessary. As always, access to the disk is through the buffer manager.

17.1.3 Correct Execution of Transactions
Before we can deal with correcting system errors, we need to understand what
it means for a transaction to be executed “correctly.” To begin, we assume that
the database is composed of “elements.” We shall not specify precisely what
an “element” is, except to say it has a value and can be accessed or modified
by transactions. Different database systems use different notions of elements,
but they are usually chosen from one or more of the following:

17.1. ISSUES AND MODELS FOR RESILIENT OPERATION 847

1. Relations.

2. Disk blocks or pages.

3. Individual tuples or objects.

In examples to follow, one can imagine that database elements are tuples,
or in many examples, simply integers. However, there are several good reasons
in practice to use choice (2) — disk blocks or pages — as the database element.
In this way, buffer-contents become single elements, allowing us to avoid some
serious problems with logging and transactions that we shall explore periodically
as we learn various techniques. Avoiding database elements that are bigger than
disk blocks also prevents a situation where part but not all of an element has
been placed in nonvolatile storage when a crash occurs.

A database has a state, which is a value for each of its elements.1 Intuitively,
we regard certain states as consistent, and others as inconsistent. Consistent
states satisfy all constraints of the database schema, such as key constraints
and constraints on values. However, consistent states must also satisfy implicit
constraints that are in the mind of the database designer. The implicit con
straints may be maintained by triggers that are part of the database schema,
but they might also be maintained only by policy statements concerning the
database, or warnings associated with the user interface through which updates
are made.

A fundamental assumption about transactions is:

• The Correctness Principle: If a transaction executes in the absence of any
other transactions or system errors, and it starts with the database in a
consistent state, then the database is also in a consistent state when the
transaction ends.

There is a converse to the correctness principle that forms the motivation
for both the logging techniques discussed in this chapter and the concurrency
control mechanisms discussed in Chapter 18. This converse involves two points:

1. A transaction is atomic-, that is, it must be executed as a whole or not
at all. If only part of a transaction executes, then the resulting database
state may not be consistent.

2. Transactions that execute simultaneously are likely to lead to an incon
sistent state unless we take steps to control their interactions, as we shall
in Chapter 18.

1 We shou ld n o t confuse th e d a tab ase s ta te w ith th e s ta te o f a tran sac tio n ; th e la t te r is
values for th e tra n sa c tio n ’s local variables, no t d a tab ase elem ents.

848 CHAPTER 17. COPING W ITH SYSTE M FAILURES

Is the Correctness Principle Believable?

Given that a database transaction could be an ad-hoc modification com
mand issued at a terminal, perhaps by someone who doesn’t understand
the implicit constraints in the mind of the database designer, is it plausible
to assume all transactions take the database from a consistent state to an
other consistent state? Explicit constraints are enforced by the database,
so any transaction that violates them will be rejected by the system and
not change the database at all. As for implicit constraints, one cannot
characterize them exactly under any circumstances. Our position, justi
fying the correctness principle, is that if someone is given authority to
modify the database, then they also have the authority to judge what the
implicit constraints are.

17.1.4 The Prim itive Operations of Transactions
Let us now consider in detail how transactions interact with the database. There
are three address spaces that interact in important ways:

1. The space of disk blocks holding the database elements.

2. The virtual or main memory address space that is managed by the buffer
manager.

3. The local address space of the transaction.

For a transaction to read a database element, that element must first be
brought to a main-memory buffer or buffers, if it is not already there. Then,
the contents of the buffer(s) can be read by the transaction into its own address
space. Writing a new value for a database element by a transaction follows the
reverse route. The new value is first created by the transaction in its own space.
Then, this value is copied to the appropriate buffer(s).

The buffer may or may not be copied to disk immediately; that decision is
the responsibility of the buffer manager in general. As we shall soon see, one of
the principal tools for assuring resilience is forcing the buffer manager to write
the block in a buffer back to disk at appropriate times. However, in order to
reduce the number of disk I/O ’s, database systems can and will allow a change
to exist only in volatile main-memory storage, at least for certain periods of
time and under the proper set of conditions.

In order to study the details of logging algorithms and other transaction-
management algorithms, we need a notation that describes all the operations
that move data between address spaces. The primitives we shall use are:

1. INPUT(X): Copy the disk block containing database element X to a mem
ory buffer.

17.1. ISSUES AND MODELS FOR RESILIENT OPERATION 849

Buffers in Query Processing and in Transactions

If you got used to the analysis of buffer utilization in the chapters on
query processing, you may notice a change in viewpoint here. In Chapters
15 and 16 we were interested in buffers principally as they were used
to compute temporary relations during the evaluation of a query. That
is one important use of buffers, but there is never a need to preserve
a temporary value, so these buffers do not generally have their values
logged. On the other hand, those buffers that hold data retrieved from
the database do need to have those values preserved, especially when the
transaction updates them.

2. READ(X,t): Copy the database element X to the transaction’s local vari
able t. More precisely, if the block containing database element X is not
in a memory buffer then first execute INPUT (X). Next, assign the value of
X to local variable t.

3. WRITE(X.t): Copy the value of local variable t to database element X in
a memory buffer. More precisely, if the block containing database element
X is not in a memory buffer then execute INPUT(X). Next, copy the value
of t to X in the buffer.

4. OUTPUT (X): Copy the block containing X from its buffer to disk.

The above operations make sense as long as database elements reside within
a single disk block, and therefore within a single buffer. If a database element
occupies several blocks, we shall imagine that each block-sized portion of the
element is an element by itself. The logging mechanism to be used will assure
that the transaction cannot complete without the write of X being atomic; i.e.,
either all blocks of X are written to disk, or none are. Thus, we shall assume
for the entire discussion of logging that

• A database element is no larger than a single block.

Different DBMS components issue the various commands we just intro
duced. READ and WRITE are issued by transactions. INPUT and OUTPUT are
normally issued by the buffer manager. OUTPUT can also be initiated by the log
manager under certain conditions, as we shall see.

E xam ple 17.1: To see how the above primitive operations relate to what a
transaction might do, let us consider a database that has two elements, A and
B, with the constraint that they must be equal in all consistent states.2

Transaction T consists logically of the following two steps:

2 O ne reasonab ly m igh t ask w hy we shou ld b o th e r to have tw o different e lem ents th a t are
co nstra ined to be equal, ra th e r th a n m ain ta in ing only one elem ent. However, th is sim ple

850 CHAPTER 17. COPING WITH SYSTEM FAILURES

A := A*2;
B := B*2;

If T starts in a consistent state (i.e., A = B) and completes its activities without
interference from another transaction or system error, then the final state must
also be consistent. That is, T doubles two equal elements to get new, equal
elements.

Execution of T involves reading A and B from disk, performing arithmetic
in the local address space of T, and writing the new values of A and B to their
buffers. The relevant steps of T are thus:

READ(A,t); t := t*2 ; WRITE(A.t); READ(B.t); t := t* 2 ; WRITE(B,t);

In addition, the buffer manager will eventually execute the OUTPUT steps to
write these buffers back to disk. Figure 17.2 shows the primitive steps of T,
followed by the two OUTPUT commands from the buffer manager. We assume
that initially A — B — 8 . The values of the memory and disk copies of A and
B and the local variable t in the address space of transaction T are indicated
for each step.

Action t Mem A Mem B Disk A Disk B
READ(A,t) 8 8 8 8
t := t *2 16 8 8 8
WRITE(A ,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t := t *2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Figure 17.2: Steps of a transaction and its effect on memory and disk

At the first step, T reads A, which generates an INPUT (A) command for the
buffer manager if A’s block is not already in a buffer. The value of A is also
copied by the READ command into local variable t of T ’s address space. The
second step doubles t ; it has no affect on A, either in a buffer or on disk. The
third step writes t into A of the buffer; it does not affect A on disk. The next
three steps do the same for B, and the last two steps copy A and B to disk.

Observe that as long as all these steps execute, consistency of the database
is preserved. If a system error occurs before OUTPUT (A) is executed, then there
is no effect to the database stored on disk; it is as if T never ran, and consistency
is preserved. However, if there is a system error after OUTPUT (A) but before

num erical co n s tra in t c ap tu re s th e sp irit o f m an y m ore rea listic co n s tra in ts , e.g ., th e num ber
of sea ts sold on a flight m u st n o t exceed th e n u m b er o f sea ts on th e p lane by m ore th a n 10%,
o r th e sum of th e loan balances a t a ban k m u st equal th e to ta l d eb t o f th e bank.

17.2. UNDO LOGGING 851

OUTPUT (B), then the database is left in an inconsistent state. We cannot prevent
this situation from ever occurring, but we can arrange that when it does occur,
the problem can be repaired — either both A and B will be reset to 8 , or both
will be advanced to 16. □

17.1.5 Exercises for Section 17.1
E xercise 17.1.1: Suppose that the consistency constraint on the database is
0 < A < B. Tell whether each of the following transactions preserves consis
tency.

a) A := A+B; B := A+B

b) B := A+B; A := A+B

c) A := B+l; B := A+l

E xercise 17.1.2: For each of the transactions of Exercise 17.1.1, add the
read- and write-actions to the computation and show the effect of the steps on
main memory and disk. Assume that initially A — 5 and B = 10. Also, tell
whether it is possible, with the appropriate order of OUTPUT actions, to assure
that consistency is preserved even if there is a crash while the transaction is
executing.

17.2 Undo Logging
A log is a file of log records, each telling something about what some transaction
has done. If log records appear in nonvolatile storage, we can use them to
restore the database to a consistent state after a system crash. Our first style
of logging — undo logging — makes repairs to the database state by undoing
the effects of transactions that may not have completed before the crash.

Additionally, in this section we introduce the basic idea of log records, in
cluding the commit (successful completion of a transaction) action and its effect
on the database state and log. We shall also consider how the log itself is cre
ated in main memory and copied to disk by a “flush-log” operation. Finally,
we examine the undo log specifically, and learn how to use it in recovery from
a crash. In order to avoid having to examine the entire log during recovery, we
introduce the idea of “checkpointing,” which allows old portions of the log to
be thrown away.

17.2.1 Log Records
Imagine the log as a file opened for appending only. As transactions execute,
the log manager has the job of recording in the log each important event. One
block of the log at a time is filled with log records, each representing one of
these events. Log blocks are initially created in main memory and are allocated

852 CHAPTER 17. COPING WITH SYSTEM FAILURES

Why Might a Transaction Abort?

One might wonder why a transaction would abort rather than commit.
There are actually several reasons. The simplest is when there is some
error condition in the code of the transaction itself, e.g., an attempted
division by zero. The DBMS may also abort a transaction for one of
several reasons. For instance, a transaction may be involved in a deadlock,
where it and one or more other transactions each hold some resource that
the other needs. Then, one or more transactions must be forced by the
system to abort (see Section 19.2).

by the buffer manager like any other blocks that the DBMS needs. The log
blocks are written to nonvolatile storage on disk as soon as is feasible; we shall
have more to say about this matter in Section 17.2.2.

There are several forms of log record that are used with each of the types
of logging we discuss in this chapter. These are:

1. <START T>: This record indicates that transaction T has begun.

2. CCOMMIT T>: Transaction T has completed successfully and will make no
more changes to database elements. Any changes to the database made by
T should appear on disk. However, because we cannot control when the
buffer manager chooses to copy blocks from memory to disk, we cannot
in general be sure that the changes are already on disk when we see the
<C0MMIT T> log record. If we insist that the changes already be on disk,
this requirement must be enforced by the log manager (as is the case for
undo logging).

3. < ABORT T>: Transaction T could not complete successfully. If transac
tion T aborts, no changes it made can have been copied to disk, and it is
the job of the transaction manager to make sure that such changes never
appear on disk, or that their effect on disk is cancelled if they do. We
shall discuss the matter of repairing the effect of aborted transactions in
Section 19.1.1.

For an undo log, the only other kind of log record we need is an update
record, which is a triple < T ,X ,v> . The meaning of this record is: transaction
T has changed database element X , and its former value was v. The change
reflected by an update record normally occurs in memory, not disk; i.e., the log
record is a response to a WRITE action into memory, not an OUTPUT action to
disk. Notice also that an undo log does not record the new value of a database
element, only the old value. As we shall see, should recovery be necessary in
a system using undo logging, the only thing the recovery manager will do is
cancel the possible effect of a transaction on disk by restoring the old value.

17.2. UNDO LOGGING 853

Preview of Other Logging Methods

In “redo logging” (Section 17.3), on recovery we redo any transaction that
has a COMMIT record, and we ignore all others. Rules for redo logging assure
that we may ignore transactions whose COMMIT records never reached the
log on disk. “Undo/redo logging” (Section 17.4) will, on recovery, undo
any transaction that has not committed, and will redo those transactions
that have committed. Again, log-management and buffering rules will
assure that these steps successfully repair any damage to the database.

17.2.2 The Undo-Logging Rules
An undo log is sufficient to allow recovery from a system failure, provided
transactions and the buffer manager obey two rules:

U\: If transaction T modifies database element X , then the log record of the
form < T ,X ,v> must be written to disk before the new value of X is
written to disk.

C/2: If a transaction commits, then its COMMIT log record must be written to
disk only after all database elements changed by the transaction have
been written to disk, but as soon thereafter as possible.

To summarize rules Ui and U2, material associated with one transaction must
be written to disk in the following order:

a) The log records indicating changed database elements.

b) The changed database elements themselves.

c) The COMMIT log record.

However, the order of (a) and (b) applies to each database element individually,
not to the group of update records for a transaction as a whole.

In order to force log records to disk, the log manager needs a fiush-log
command that tells the buffer manager to copy to disk any log blocks that have
not previously been copied to disk or that have been changed since they were
last copied. In sequences of actions, we shall show FLUSH LOG explicitly. The
transaction manager also needs to have a way to tell the buffer manager to
perform an OUTPUT action on a database element. We shall continue to show
the OUTPUT action in sequences of transaction steps.

E xam ple 17.2: Let us reconsider the transaction of Example 17.1 in the light
of undo logging. Figure 17.3 expands on Fig. 17.2 to show the log entries and
fiush-log actions that have to take place along with the actions of the transaction

854 CHAPTER 17. COPING W ITH SYSTEM FAILURES

Step Action t M-A M-J5 D -A D-B Log
1) <START T>
2) READ(A,t) 8 8 8 8
3) t := t*2 16 8 8 8
4) WRITE(A,t) 16 16 8 8 < T,A , 8>
5) READ(B,t) 8 16 8 8 8
6) t := t*2 16 16 8 8 8
7) WRITE(B,t) 16 16 16 8 8 <T, B, 8>
8) FLUSH LOG
9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16
11) CCOMMIT T>
12) FLUSH LOG

Figure 17.3: Actions and their log entries

T. Note we have shortened the headers to M-A for “the copy of A in a memory
buffer” or D-B for “the copy of B on disk,” and so on.

In line (1) of Fig. 17.3, transaction T begins. The first thing that happens is
that the <START T> record is written to the log. Line (2) represents the read
of A by T. Line (3) is the local change to t, which affects neither the database
stored on disk nor any portion of the database in a memory buffer. Neither
lines (2) nor (3) require any log entry, since they have no affect on the database.

Line (4) is the write of the new value of A to the buffer. This modification
to A is reflected by the log entry <T, A, 8> which says that A was changed by
T and its former value was 8 . Note that the new value, 16, is not mentioned in
an undo log.

Lines (5) through (7) perform the same three steps with B instead of A.
At this point, T has completed and must commit. The changed A and B must
migrate to disk, but in order to follow the two rules for undo logging, there is
a fixed sequence of events that must happen.

First, A and B cannot be copied to disk until the log records for the changes
are on disk. Thus, at step (8) the log is flushed, assuring that these records
appear on disk. Then, steps (9) and (10) copy A and B to disk. The transaction
manager requests these steps from the buffer manager in order to commit T.

Now, it is possible to commit T, and the <C0MMIT T> record is written to
the log, which is step (11). Finally, we must flush the log again at step (12)
to make sure that the <C0MMIT T> record of the log appears on disk. Notice
that without writing this record to disk, we could have a situation where a
transaction has committed, but for a long time a review of the log does not
tell us that it has committed. That situation could cause strange behavior if
there were a crash, because, as we shall see in Section 17.2.3, a transaction that
appeared to the user to have completed long ago would then be undone and
effectively aborted. □

17.2. UNDO LOGGING 855

Background Activity Affects the Log and Buffers

As we look at a sequence of actions and log entries like Fig. 17.3, it is tempt
ing to imagine that these actions occur in isolation. However, the DBMS
may be processing many transactions simultaneously. Thus, the four log
records for transaction T may be interleaved on the log with records for
other transactions. Moreover, if one of these transactions flushes the log,
then the log records from T may appear on disk earlier than is implied by
the flush-log actions of Fig. 17.3. There is no harm if log records reflecting
a database modification appear earlier than necessary. The essential pol
icy for undo logging is that we don’t write the <C0MMIT T> record until
the OUTPUT actions for T are completed.

A trickier situation occurs if two database elements A and B share a
block. Then, writing one of them to disk writes the other as well. In the
worst case, we can violate rule Ui by writing one of these elements pre
maturely. It may be necessary to adopt additional constraints on transac
tions in order to make undo logging work. For instance, we might use a
locking scheme where database elements are disk blocks, as described in
Section 18.3, to prevent two transactions from accessing the same block
at the same time. This and other problems that appear when database
elements are fractions of a block motivate our suggestion that blocks be
the database elements.

17.2.3 Recovery Using Undo Logging

Suppose now that a system failure occurs. It is possible that certain database
changes made by a given transaction were written to disk, while other changes
made by the same transaction never reached the disk. If so, the transaction was
not executed atomically, and there may be an inconsistent database state. The
recovery manager must use the log to restore the database to some consistent
state.

In this section we consider only the simplest form of recovery manager, one
that looks at the entire log, no matter how long, and makes database changes
as a result of its examination. In Section 17.2.4 we consider a more sensible
approach, where the log is periodically “checkpointed,” to limit the distance
back in history that the recovery manager must go.

The first task of the recovery manager is to divide the transactions into
committed and uncommitted transactions. If there is a log record <C0MMIT T>,
then by undo rule U2 all changes made by transaction T were previously written
to disk. Thus, T by itself could not have left the database in an inconsistent
state when the system failure occurred.

However, suppose that we find a <START T> record on the log but no
<C0MMIT T> record. Then there could have been some changes to the database

856 CHAPTER 17. COPING WITH SYSTEM FAILURES

made by T that were written to disk before the crash, while other changes by T
either were not made, or were made in the main-memory buffers but not copied
to disk. In this case, T is an incomplete transaction and must be undone. That
is, whatever changes T made must be reset to their previous value. Fortunately,
rule Ui assures us that if T changed X on disk before the crash, then there will
be a < T ,X ,v> record on the log, and that record will have been copied to
disk before the crash. Thus, during the recovery, we must write the value v
for database element X . Note that this rule begs the question whether X had
value v in the database anyway; we don’t even bother to check.

Since there may be several uncommitted transactions in the log, and there
may even be several uncommitted transactions that modified X , we have to
be systematic about the order in which we restore values. Thus, the recovery
manager must scan the log from the end (i.e., from the most recently written
record to the earliest written). As it travels, it remembers all those transactions
T for which it has seen a <C0MMIT T> record or an <AB0RT T> record. Also
as it travels backward, if it sees a record < T ,X ,v> , then:

1. If T is a transaction whose COMMIT record has been seen, then do nothing.
T is committed and must not be undone.

2. Otherwise, T is an incomplete transaction, or an aborted transaction.
The recovery manager must change the value of X in the database to v,
in case X had been altered just before the crash.

After making these changes, the recovery manager must write a log record
<AB0RT T> for each incomplete transaction T that was not previously aborted,
and then flush the log. Now, normal operation of the database may resume,
and new transactions may begin executing.

E xam ple 17.3: Let us consider the sequence of actions from Fig. 17.3 and
Example 17.2. There are several different times that the system crash could
have occurred; let us consider each significantly different one.

1. The crash occurs after step (12). Then the <C0MMIT T> record reached
disk before the crash. When we recover, we do not undo the results of T,
and all log records concerning T are ignored by the recovery manager.

2. The crash occurs between steps (11) and (12). It is possible that the
log record containing the COMMIT got flushed to disk; for instance, the
buffer manager may have needed the buffer containing the end of the log
for another transaction, or some other transaction may have asked for
a log flush. If so, then the recovery is the same as in case (1) as far
as T is concerned. However, if the COMMIT record never reached disk,
then the recovery manager considers T incomplete. When it scans the log
backward, it comes first to the record < T,B , 8>. It therefore stores 8 as
the value of B on disk. It then comes to the record <T, A, 8> and makes
A have value 8 on disk. Finally, the record < ABORT T> is written to the
log, and the log is flushed.

17.2. UNDO LOGGING 857

Crashes During Recovery

Suppose the system again crashes while we axe recovering from a previous
crash. Because of the way undo-log records axe designed, giving the old
value rather than, say, the change in the value of a database element, the
recovery steps are idempotent, that is, repeating them many times has
exactly the same effect as performing them once. We already observed
that if we find a record < T ,X ,v> , it does not matter whether the value
of X is already v — we may write v for X regardless. Similarly, if we
repeat the recovery process, it does not matter whether the first recovery
attempt restored some old values; we simply restore them again. The same
reasoning holds for the other logging methods we discuss in this chapter.
Since the recovery operations are idempotent, we can recover a second
time without worrying about changes made the first time.

3. The crash occurs between steps (10) and (11). Now, the COMMIT record
surely was not written, so T is incomplete and is undone as in case (2).

4. The crash occurs between steps (8) and (10). Again, T is undone. In this
case the change to A and/or B may not have reached disk. Nevertheless,
the proper value, 8 , is restored for each of these database elements.

5. The crash occurs prior to step (8). Now, it is not certain whether any of
the log records concerning T have reached disk. However, we know by rule
Ui that if the change to A and/or B reached disk, then the corresponding
log record reached disk. Therefore if there were changes to A and/or
B made on disk by T, then the corresponding log record will cause the
recovery manager to undo those changes.

17.2.4 Checkpointing
As we observed, recovery requires that the entire log be examined, in principle.
When logging follows the undo style, once a transaction has its COMMIT log
record written to disk, the log records of that transaction are no longer needed
during recovery. We might imagine that we could delete the log prior to a
COMMIT, but sometimes we cannot. The reason is that often many transactions
execute at once. If we truncated the log after one transaction committed, log
records pertaining to some other active transaction T might be lost and could
not be used to undo T if recovery were necessary.

The simplest way to untangle potential problems is to checkpoint the log
periodically. In a simple checkpoint, we:

858 CHAPTER 17. COPING W ITH SYSTE M FAILURES

1. Stop accepting new transactions.

2. Wait until all currently active transactions commit or abort and have
written a COMMIT or ABORT record on the log.

3. Flush the log to disk.

4. Write a log record <CKPT>, and flush the log again.

5. Resume accepting transactions.

Any transaction that executed prior to the checkpoint will have finished,
and by rule U2 its changes will have reached the disk. Thus, there will be no
need to undo any of these transactions during recovery. During a recovery,
we scan the log backwards from the end, identifying incomplete transactions
as in Section 17.2.3. However, when we find a <CKPT> record, we know that
we have seen all the incomplete transactions. Since no transactions may begin
until the checkpoint ends, we must have seen every log record pertaining to the
incomplete transactions already. Thus, there is no need to scan prior to the
<CKPT>, and in fact the log before that point can be deleted or overwritten
safely.

E xam ple 17.4: Suppose the log begins:

< START Ti>
< Ti,A ,5>
<START T2>
<T2 ,B ,10>

At this time, we decide to do a checkpoint. Since Ti and T2 are the active
(incomplete) transactions, we shall have to wait until they complete before
writing the <CKPT> record on the log.

A possible extension of the log is shown in Fig. 17.4. Suppose a crash
occurs at this point. Scanning the log from the end, we identify T3 as the only
incomplete transaction, and restore E and F to their former values 25 and 30,
respectively. When we reach the <CKPT> record, we know there is no need to
examine prior log records and the restoration of the database state is complete.
□

17.2.5 Nonquiescent Checkpointing
A problem with the checkpointing technique described in Section 17.2.4 is that
effectively we must shut down the system while the checkpoint is being made.
Since the active transactions may take a long time to commit or abort, the
system may appear to users to be stalled. Thus, a more complex technique
known as nonquiescent checkpointing, which allows new transactions to enter the
system during the checkpoint, is usually preferred. The steps in a nonquiescent
checkpoint are:

17.2. UNDO LOGGING 859

< START Ti>
< Ti,A ,5>
< START T2>
<T2 ,B , 10>
< t 2, c , i5>
<Ti,D , 20>
<COMMITTi>
<COMMIT r 2>
<CKPT>
<START T3>
<T3, E, 25>
<T3,F , 30>

Figure 17.4: An undo log

1. Write a log record <START CKPT (7 \ , . . . , T*)> and flush the log. Here,
T i , . . . ,7*. are the names or identifiers for all the active transactions (i.e.,
transactions that have not yet committed and written their changes to
disk).

2. Wait until all of T i, . . . , T* commit or abort, but do not prohibit other
transactions from starting.

3. When all of T i , . . . , T* have completed, write a log record <END CKPT>
and flush the log.

With a log of this type, we can recover from a system crash as follows. As
usual, we scan the log from the end, finding all incomplete transactions as we go,
and restoring old values for database elements changed by these transactions.
There are two cases, depending on whether, scanning backwards, we first meet
an <END CKPT> record or a < START CKPT (Ti, . . . , Tk)> record.

• If we first meet an <END CKPT> record, then we know that all incomplete
transactions began after the previous <START CKPT (T i,. . . ,T*)> record.
We may thus scan backwards as far as the next START CKPT, and then
stop; previous log is useless and may as well have been discarded.

• If we first meet a record < START CKPT (T i,. . . , T^)>, then the crash oc
curred during the checkpoint. However, the only incomplete transactions
are those we met scanning backwards before we reached the START CKPT
and those of T i , . . . , T* that did not complete before the crash. Thus, we
need scan no further back than the start of the earliest of these incom
plete transactions. The previous START CKPT record is certainly prior to
any of these transaction starts, but often we shall find the starts of the

860 CHAPTER 17. COPING W ITH SYSTE M FAILURES

Finding the Last Log Record

It is common to recycle blocks of the log file on disk, since checkpoints
allow us to drop old portions of the log. However, if we overwrite old log
records, then we need to keep a serial number, which may only increase,
as suggested by:

4 5 6 7 8
9 10 11

Then, we can find the record whose serial number is greater than that of
the next record; the latter record will be the current end of the log, and
the entire log is found by ordering the current records by their present
serial numbers.

In practice, a large log may be composed of many files, with a “top”
file whose records indicate the files that comprise the log. Then, to recover,
we find the last record of the top file, go to the file indicated, and find the
last record there.

incomplete transactions long before we reach the previous checkpoint.3
Moreover, if we use pointers to chain together the log records that belong
to the same transaction, then we need not search the whole log for records
belonging to active transactions; we just follow their chains back through
the log.

As a general rule, once an <END CKPT> record has been written to disk, we can
delete the log prior to the previous START CKPT record.

E xam ple 17.5: Suppose that, as in Example 17.4, the log begins:

< START Tx>
< Ti,A , 5>
<STARTT2>
< t 2 ,b , 10>

Now, we decide to do a nonquiescent checkpoint. Since Ti and T2 are the active
(incomplete) transactions at this time, we write a log record

< START CKPT (T1 :T2)>

Suppose that while waiting for T\ and T2 to complete, another transaction, T3,
initiates. A possible continuation of the log is shown in Fig. 17.5.

Suppose that at this point there is a system crash. Examining the log from
the end, we find that T3 is an incomplete transaction and must be undone.

3N otice, how ever, th a t because th e checkpoint is nonquiescen t, one o f th e incom plete
tra n sa c tio n s could have begun betw een th e s ta r t an d end of th e p rev ious checkpoint.

17.2. UNDO LOGGING 861

< START Ti>
< T U A ,5 >
< START T2>
< t 2,b , io >
<START CKPT (TU T2)>
<T2,C, 15>
< START Ta>
< T i , D , 20>
<CDMMITTi>
<Ta,E, 25>
< com m itt2>
<END CKPT>
<T3,F, 30>

Figure 17.5: An undo log using nonquiescent checkpointing

The final log record tells us to restore database element F to the value 30.
When we find the <END CKPT> record, we know that all incomplete transactions
began after the previous START CKPT. Scanning further back, we find the record
<T3,E ,2 5> , which tells us to restore E to value 25. Between that record, and
the START CKPT there are no other transactions that started but did not commit,
so no further changes to the database are made.

<STARTTi>
<T i ,A , 5>
< START T2>
<T2,B , 10>
< START CKPT (TU T2)>
<T2,C,15>
< START T3>
< T i , £ > , 2 0 >
<C0MMIT T\>
<T3,E, 25>

Figure 17.6: Undo log with a system crash during checkpointing

Now suppose the crash occurs during the checkpoint, and the end of the
log after the crash is as shown in Fig. 17.6. Scanning backwards, we identify
T3 and then T2 as incomplete transactions and undo changes they have made.
When we find the <START CKPT (Ti,T2)> record, we know that the only other
possible incomplete transaction is Ti. However, we have already scanned the
<C0MMIT Ti > record, so we know that Ti is not incomplete. Also, we have
already seen the <START T3> record. Thus, we need only to continue backwards
until we meet the START record for T2, restoring database element B to value

862 CHAPTER 17. COPING W ITH SYSTEM FAILURES

10 as we go. □

17.2.6 Exercises for Section 17.2
Exercise 17.2.1: Show the undo-log records for each of the transactions (call
each T) of Exercise 17.1.1, assuming that initially A = 5 and B = 10.

Exercise 17.2.2: For each of the sequences of log records representing the
actions of one transaction T, tell all the sequences of events that are legal
according to the rules of undo logging, where the events of interest are the
writing to disk of the blocks containing database elements, and the blocks of
the log containing the update and commit records. You may assume that log
records are written to disk in the order shown; i.e., it is not possible to write
one log record to disk while a previous record is not written to disk.

a) < START T>; < T ,A , 10>; <T ,B ,20> ; <C0MMIT T>;

b) < START 2 > ; < T,A , 10>; < T ,B , 20>; <T, C, 30XC0MMIT T>;

Exercise 17.2.3: The pattern introduced in Exercise 17.2.2 can be extended
to a transaction that writes new values for n database elements. How many
legal sequences of events are there for such a transaction, if the undo-logging
rules are obeyed?

Exercise 17.2.4: The following is a sequence of undo-log records written by
two transactions T and U : < START T>; <T, A, 10>; < START U>; <U, B, 20>;
<T, C, 30>; <U, D, 40>; <C0MMIT U>; < T ,E , 50>; <C0MMIT T>. Describe
the action of the recovery manager, including changes to both disk and the log,
if there is a crash and the last log record to appear on disk is:

(a) < START U> (b) <C0MMIT U> (c) < T ,E , 50> (d) <C0MMIT T>.

E xercise 17.2.5: For each of the situations described in Exercise 17.2.4, what
values written by T and U must appear on disk? Which values might appear
on disk?

E xercise 17.2.6: Suppose that the transaction U in Exercise 17.2.4 is changed
so that the record <17, D ,40> becomes <U, A, 40>. What is the effect on the
disk value of A if there is a crash at some point during the sequence of events?
What does this example say about the ability of logging by itself to preserve
atomicity of transactions?

Exercise 17.2.7: Consider the following sequence of log records: <START S>;
<S,A ,60>; <C0MMIT S>; <START T>; < T ,A , 10>; < START U>; <U,B, 20>;
<T,C, 30>; <START V >; <U,D, 40>; <V,F,70>; <C0MMIT J7>; < T ,E , 50>;
<C0MMIT T>; < V,B , 80>; <C0MMIT V>. Suppose that we begin a nonquies
cent checkpoint immediately after one of the following log records has been
written (in memory):

17.3. REDO LOGGING 863

(a) <S, j4, 60> (b) <T, A, 10> (c) <U,B,20>
(d) <U,D, 40> (e) < T,E , 50>

For each, tell:

i. When the <END CKPT> record is written, and

ii. For each possible point at which a crash could occur, how far back in the
log we must look to find all possible incomplete transactions.

17.3 Redo Logging
Undo logging has a potential problem that we cannot commit a transaction
without first writing all its changed data to disk. Sometimes, we can save disk
I /O ’s if we let changes to the database reside only in main memory for a while.
As long as there is a log to fix things up in the event of a crash, it is safe to do
so.

The requirement for immediate backup of database elements to disk can
be avoided if we use a logging mechanism called redo logging. The principal
differences between redo and undo logging are:

1. While undo logging cancels the effect of incomplete transactions and ig
nores committed ones during recovery, redo logging ignores incomplete
transactions and repeats the changes made by committed transactions.

2. While undo logging requires us to write changed database elements to
disk before the COMMIT log record reaches disk, redo logging requires that
the COMMIT record appear on disk before any changed values reach disk.

3. While the old values of changed database elements are exactly what we
need to recover when the undo rules U\ and U2 are followed, to recover
using redo logging, we need the new values instead.

17.3.1 The Redo-Logging Rule
In redo logging the meaning of a log record <T, X , v> is “transaction T wrote
new value v for database element X .” There is no indication of the old value
of X in this record. Every time a transaction T modifies a database element
X , a record of the form < T ,X ,v> must be written to the log.

For redo logging, the order in which data and log entries reach disk can be
described by a single “redo rule,” called the write-ahead logging rule.

R\: Before modifying any database element X on disk, it is necessary that
all log records pertaining to this modification of X , including both the
update record < T ,X ,v> and the <C0MMIT T> record, must appear on
disk.

864 CHAPTER 17. COPING W ITH SYSTE M FAILURES

The COMMIT record for a transaction can only be written to the log when the
transaction completes, so the commit record must follow all the update log
records. Thus, when redo logging is in use, the order in which material associ
ated with one transaction gets written to disk is:

1. The log records indicating changed database elements.

2. The COMMIT log record.

3. The changed database elements themselves.

E xam ple 17.6: Let us consider the same transaction T as in Example 17.2.
Figure 17.7 shows a possible sequence of events for this transaction.

Step Action t M-A M-B D -A D-B Log
1) < START T>
2) READ(A,t) 8 8 8 8
3) t := t*2 16 8 8 8
4) WRITE(A,t) 16 16 8 8 <T, A, 16>
5) READ(B,t) 8 16 8 8 8
6) t := t*2 16 16 8 8 8
7) WRITE(B,t) 16 16 16 8 8 < T ,B , 16>
8) <C0MMIT T>
9) FLUSH LOG

10) OUTPUT (A) 16 16 16 16 8
11) OUTPUT(B) 16 16 16 16 16

Figure 17.7: Actions and their log entries using redo logging

The major differences between Figs. 17.7 and 17.3 are as follows. First, we
note in lines (4) and (7) of Fig. 17.7 that the log records reflecting the changes
have the new values of A and B, rather than the old values. Second, we see
that the <C0MMIT T> record comes earlier, at step (8). Then, the log is flushed,
so all log records involving the changes of transaction T appear on disk. Only
then can the new values of A and B be written to disk. We show these values
written immediately, at steps (10) and (11), although in practice they might
occur later. □

17.3.2 Recovery W ith Redo Logging
An important consequence of the redo rule R i is that unless the log has a
<C0MMIT T> record, we know that no changes to the database made by trans
action T have been written to disk. Thus, incomplete transactions may be
treated during recovery as if they had never occurred. However, the committed
transactions present a problem, since we do not know which of their database
changes have been written to disk. Fortunately, the redo log has exactly the

17.3. REDO LOGGING 865

Order of Redo Matters

Since several committed transactions may have written new values for the
same database element X , we have required that during a redo recovery,
we scan the log from earliest to latest. Thus, the final value of X in the
database will be the one written last, as it should be. Similarly, when
describing undo recovery, we required that the log be scanned from latest
to earliest. Thus, the final value of X will be the value that it had before
any of the incomplete transactions changed it.

However, if the DBMS enforces atomicity, then we would not expect
to find, in an undo log, two uncommitted transactions, each of which had
written the same database element. In contrast, with redo logging we
focus on the committed transactions, as these need to be redone. It is
quite normal for there to be two committed transactions, each of which
changed the same database element at different times. Thus, order of redo
is always important, while order of undo might not be if the right kind of
concurrency control were in effect.

information we need: the new values, which we may write to disk regardless of
whether they were already there. To recover, using a redo log, after a system
crash, we do the following.

1. Identify the committed transactions.

2. Scan the log forward from the beginning. For each log record <T, X , v>
encountered:

(a) If T is not a committed transaction, do nothing.
(b) If T is committed, write value v for database element X .

3. For each incomplete transaction T , write an <AB0RT T> record to the log
and flush the log.

E xam ple 17.7: Let us consider the log written in Fig. 17.7 and see how
recovery would be performed if the crash occurred after different steps in that
sequence of actions.

1. If the crash occurs any time after step (9), then the CCOMMIT T> record
has been flushed to disk. The recovery system identifies T as a committed
transaction. When scanning the log forward, the log records <T, A, 16>
and <T, B , 16> cause the recovery manager to write values 16 for A and
B . Notice that if the crash occurred between steps (10) and (11), then
the write of A is redundant, but the write of B had not occurred and

866 CHAPTER 17. COPING W ITH SYSTEM FAILURES

changing B to 16 is essential to restore the database state to consistency.
If the crash occurred after step (11), then both writes are redundant but
harmless.

2. If the crash occurs between steps (8) and (9), then although the record
< COMMIT T> was written to the log, it may not have gotten to disk (de
pending on whether the log was flushed for some other reason). If it did
get to disk, then the recovery proceeds as in case (1), and if it did not get
to disk, then recovery is as in case (3), below.

3. If the crash occurs prior to step (8), then <C0MMIT T> surely has not
reached disk. Thus, T is treated as an incomplete transaction. No changes
to A or B on disk are made on behalf of T , and eventually an <AB0RT T>
record is written to the log.

□

17.3.3 Checkpointing a Redo Log
Redo logs present a checkpointing problem that we do not see with undo logs.
Since the database changes made by a committed transaction can be copied to
disk much later than the time at which the transaction commits, we cannot limit
our concern to transactions that are active at the time we decide to create a
checkpoint. Regardless of whether the checkpoint is quiescent or nonquiescent,
between the start and end of the checkpoint we must write to disk all database
elements that have been modified by committed transactions. To do so requires
that the buffer manager keep track of which buffers are dirty, that is, they
have been changed but not written to disk. It is also required to know which
transactions modified which buffers.

On the other hand, we can complete the checkpoint without waiting for
the active transactions to commit or abort, since they are not allowed to write
their pages to disk at that time anyway. The steps to perform a nonquiescent
checkpoint of a redo log are as follows:

1. Write a log record <START CKPT (T i,.. . ,Tk)>, where T \ , . . . ,Tk are all
the active (uncommitted) transactions, and flush the log.

2. Write to disk all database elements that were written to buffers but not yet
to disk by transactions that had already committed when the START CKPT
record was written to the log.

3. Write an <END CKPT> record to the log and flush the log.

E xam ple 17.8: Figure 17.8 shows a possible redo log, in the middle of which
a checkpoint occurs. When we start the checkpoint, only T2 is active, but the
value of A written by T\ may have reached disk. If not, then we must copy A

17.3. REDO LOGGING 867

< START Ti>
<Tu A,b>
< START T2>
<COMMIT T\>
<T2 ,B , 10>
< START CKPT (T2)>
<T2 ,C, 15>
< START T3>
<T3 ,D , 20>
<END CKPT>
<C0MMITT2>
< committ3>

Figure 17.8: A redo log

to disk before the checkpoint can end. We suggest the end of the checkpoint
occurring after several other events have occurred: T2 wrote a value for database
element C , and a new transaction T3 started and wrote a value of D. After the
end of the checkpoint, the only things that happen are that T2 and T3 commit.
□

17.3.4 Recovery W ith a Checkpointed Redo Log

As for an undo log, the insertion of records to mark the start and end of a
checkpoint helps us limit our examination of the log when a recovery is neces
sary. Also as with undo logging, there are two cases, depending on whether the
last checkpoint record is START or END.

Suppose first that the last checkpoint record on the log before a crash is
<END CKPT>. Now, we know that every value written by a transaction that
committed before the corresponding <START CKPT (T i,.. . ,T*)> has had its
changes written to disk, so we need not concern ourselves with recovering the
effects of these transactions. However, any transaction that is either among the
T is or that started after the beginning of the checkpoint can still have changes
it made not yet migrated to disk, even though the transaction has committed.
Thus, we must perform recovery as described in Section 17.3.2, but may limit
our attention to the transactions that are either one of the TVs mentioned in the
last < START CKPT (T i,. . . ,T k)> or that started after that log record appeared
in the log. In searching the log, we do not have to look further back than the
earliest of the <START T*> records. Notice, however, that these START records
could appear prior to any number of checkpoints. Linking backwards all the
log records for a given transaction helps us to find the necessary records, as it
did for undo logging.

Now, suppose the last checkpoint record on the log is

868 CHAPTER 17. COPING W ITH SYSTE M FAILURES

<START CKPT (Tu . . . ,T k)>

We cannot be sure that committed transactions prior to the start of this check
point had their changes written to disk. Thus, we must search back to the
previous <END CKPT> record, find its matching <START CKPT (S i , . . . ,Sm)>
record,4 and redo all those committed transactions that either started after that
START CKPT or are among the Si’s.

E xam ple 17.9: Consider again the log of Fig. 17.8. If a crash occurs at the
end, we search backwards, finding the <END CKPT> record. We thus know that
it is sufficient to consider as candidates to redo all those transactions that either
started after the <START CKPT (T2)> record was written or that are on its list
(i.e., T-i). Thus, our candidate set is {T2, T3}. We find the records <C0MMIT T2>
and CCOMMIT T3>, so we know that each must be redone. We search the log as
far back as the <START T2> record, and find the update records <T2,B, 10>,
<T2,C, 15>, and <T3, D, 20> for the committed transactions. Since we don’t
know whether these changes reached disk, we rewrite the values 10, 15, and 20
for B, C, and D, respectively.

Now, suppose the crash occurred between the records <C0MMIT T2> and
<C0MMIT X3>. The recovery is similar to the above, except that T3 is no longer
a committed transaction. Thus, its change <T3 ,D , 20> must not be redone,
and no change is made to D during recovery, even though that log record is in
the range of records that is examined. Also, we write an < ABORT T3> record
to the log after recovery.

Finally, suppose that the crash occurs just prior to the <END CKPT> record.
In principal, we must search back to the next-to-last START CKPT record and
get its list of active transactions. However, in this case there is no previous
checkpoint, and we must go all the way to the beginning of the log. Thus, we
identify Ti as the only committed transaction, redo its action <Ti,A, 5>, and
write records <AB0RT T2> and <AB0RT T3> to the log after recovery. □

Since transactions may be active during several checkpoints, it is convenient
to include in the < START CKPT (Ti, . . . ,Tk)> records not only the names of the
active transactions, but pointers to the place on the log where they started. By
doing so, we know when it is safe to delete early portions of the log. When we
write an <END CKPT>, we know that we shall never need to look back further
than the earliest of the < START Ti> records for the active transactions Tj. Thus,
anything prior to that START record may be deleted.

17.3.5 Exercises for Section 17.3
E xercise 17.3.1: Show the redo-log records for each of the transactions (call
each T) of Exercise 17.1.1, assuming that initially A — 5 and B = 10.

4T h ere is a sm all techn ica lity th a t th e re could be a START CKPT record th a t , because of a
prev ious crash , has no m atch in g <END CKPT> record . T herefore, we m u st look n o t ju s t for
th e prev ious START CKPT, b u t first fo r an <END CKPT> an d th e n th e prev ious START CKPT.

17.4. UNDO/REDO LOGGING 869

E xercise 17.3.2: Repeat Exercise 17.2.2 for redo logging.

E xercise 17.3.3: Repeat Exercise 17.2.4 for redo logging.

E xercise 17.3.4: Repeat Exercise 17.2.5 for redo logging.

E xercise 17.3.5: Using the data of Exercise 17.2.7, answer for each of the
positions (a) through (e) of that exercise:

i. At what points could the <END CKPT> record be written, and

it. For each possible point at which a crash could occur, how far back in the
log we must look to find all possible incomplete transactions. Consider
both the case that the <END CKPT> record was or was not written prior
to the crash.

17.4 U ndo/R edo Logging

We have seen two different approaches to logging, differentiated by whether the
log holds old values or new values when a database element is updated. Each
has certain drawbacks:

• Undo logging requires that data be written to disk immediately after a
transaction finishes, perhaps increasing the number of disk I /O ’s that
need to be performed.

• On the other hand, redo logging requires us to keep all modified blocks
in buffers until the transaction commits and the log records have been
flushed, perhaps increasing the average number of buffers required by
transactions.

• Both undo and redo logs may put contradictory requirements on how
buffers are handled during a checkpoint, unless the database elements are
complete blocks or sets of blocks. For instance, if a buffer contains one
database element A that was changed by a committed transaction and
another database element B that was changed in the same buffer by a
transaction that has not yet had its COMMIT record written to disk, then
we are required to copy the buffer to disk because of A but also forbidden
to do so, because rule Ri applies to B.

We shall now see a kind of logging called undo/redo logging, that provides
increased flexibility to order actions, at the expense of maintaining more infor
mation on the log.

870 CHAPTER 17. COPING W ITH SYSTEM FAIL URES

17.4.1 The U ndo/R edo Rules
An undo/redo log has the same sorts of log records as the other kinds of log,
with one exception. The update log record that we write when a database
element changes value has four components. Record < T ,X ,v ,w > means that
transaction T changed the value of database element X; its former value was
v, and its new value is w. The constraints that an undo/redo logging system
must follow are summarized by the following rule:

URi Before modifying any database element X on disk because of changes
made by some transaction T , it is necessary that the update record
<T, X , v, w> appear on disk.

Rule URi for undo/redo logging thus enforces only the constraints enforced
by both undo logging and redo logging. In particular, the <C0MMIT T> log
record can precede or follow any of the changes to the database elements on
disk.

E xam ple 17.10 : Figure 17.9 is a variation in the order of the actions associ
ated with the transaction T that we last saw in Example 17.6. Notice that the
log records for updates now have both the old and the new values of A and B.
In this sequence, we have written the <C0MMIT T> log record in the middle of
the output of database elements A and B to disk. Step (10) could also have
appeared before step (8) or step (9), or after step (11). □

Step Action t M-A M-B D -A D-B Log
1) < START T>
2) READ(A,t) 8 8 8 8
3) t := t *2 16 8 8 8
4) WRITE(A,t) 16 16 8 8 <T,A,&, 16>
5) READ(B,t) 8 16 8 8 8
6) t := t *2 16 16 8 8 8
7) WRITE(B,t) 16 16 16 8 8 < T ,B , 8 ,16>
8) FLUSH LOG
9) OUTPUT(A) 16 16 16 16 8

10) CCOMMIT T>
11) OUTPUT(B) 16 16 16 16 16

Figure 17.9: A possible sequence of actions and their log entries using undo/redo
logging

17.4.2 Recovery W ith U ndo/R edo Logging
When we need to recover using an undo/redo log, we have the information in
the update records either to undo a transaction T by restoring the old values of

17.4. UNDO/REDO LOGGING 871

A Problem W ith Delayed Commitment

Like undo logging, a system using undo/redo logging can exhibit a behavior
where a transaction appears to the user to have been completed (e.g., they
booked an airline seat over the Web and disconnected), and yet because
the <C0MMIT T> record was not flushed to disk, a subsequent crash causes
the transaction to be undone rather than redone. If this possibility is a
problem, we suggest the use of an additional rule for undo/redo logging:

UR2 A <C0MMIT T> record must be flushed to disk as soon as it appears
in the log.

For instance, we would add FLUSH LOG after step (10) of Fig. 17.9.

the database elements that T changed, or to redo T by repeating the changes
it has made. The undo/redo recovery policy is:

1. Redo all the committed transactions in the order earliest-first, and

2. Undo all the incomplete transactions in the order latest-first.

Notice that it is necessary for us to do both. Because of the flexibility allowed
by undo/redo logging regarding the relative order in which COMMIT log records
and the database changes themselves are copied to disk, we could have either
a committed transaction with some or all of its changes not on disk, or an
uncommitted transaction with some or all of its changes on disk.

E xam ple 17.11: Consider the sequence of actions in Fig. 17.9. Here are the
different ways that recovery would take place on the assumption that there is
a crash at various points in the sequence.

1. Suppose the crash occurs after the <C0MMIT T> record is flushed to disk.
Then T is identified as a committed transaction. We write the value 16
for both A and B to the disk. Because of the actual order of events, A
already has the value 16, but B may not, depending on whether the crash
occurred before or after step (11).

2. If the crash occurs prior to the <C0MMIT T> record reaching disk, then
T is treated as an incomplete transaction. The previous values of A and
B , 8 in each case, are written to disk. If the crash occurs between steps
(9) and (10), then the value of A was 16 on disk, and the restoration to
value 8 is necessary. In this example, the value of B does not need to
be undone, and if the crash occurs before step (9) then neither does the
value of A. However, in general we cannot be sure whether restoration is
necessary, so we always perform the undo operation.

□

872 CHAPTER 17. COPING W ITH SYSTE M FAILURES

Strange Behavior of Transactions During Recovery

You may have noticed that we did not specify whether undo’s or redo’s
are done first during recovery using an undo/redo log. In fact, whether we
perform the redo’s or undo’s first, we are open to the following situation:
a transaction T has committed and is redone. However, T read a value
X written by some transaction U that has not committed and is undone.
The problem is not whether we redo first, and leave X with its value prior
to U, or we undo first and leave X with its value written by T. The
situation makes no sense either way, because the final database state does
not correspond to the effect of any sequence of atomic transactions.

In reality, the DBMS must do more than log changes. It must assure
that such situations do not occur at all. In Chapter 18, there is a discussion
about the means to isolate transactions like T and U, so the interaction
between them through database element X cannot occur. In Section 19.1,
we explicitly address means for preventing this situation where T reads a
“dirty” value of X — one that has not been committed.

17.4.3 Checkpointing an U ndo/R edo Log
A nonquiescent checkpoint is somewhat simpler for undo/redo logging than for
the other logging methods. We have only to do the following:

1. Write a <START CKPT (7 \, . . . , Tk)> record to the log, where T i , . . . , T*
are all the active transactions, and flush the log.

2. Write to disk all the buffers that are dirty; i.e., they contain one or more
changed database elements. Unlike redo logging, we flush all dirty buffers,
not just those written by committed transactions.

3. Write an <END CKPT> record to the log, and flush the log.

Notice in connection with point (2) that, because of the flexibility undo/redo
logging offers regarding when data reaches disk, we can tolerate the writing to
disk of data written by incomplete transactions. Therefore we can tolerate
database elements that are smaller than complete blocks and thus may share
buffers. The only requirement we must make on transactions is:

• A transaction must not write any values (even to memory buffers) until
it is certain not to abort.

As we shall see in Section 19.1, this constraint is almost certainly needed any
way, in order to avoid inconsistent interactions between transactions. Notice
that under redo logging, the above condition is not sufficient, since even if
the transaction that wrote B is certain to commit, rule R i requires that the
transaction’s COMMIT record be written to disk before B is written to disk.

17.4. UNDO/REDO LOGGING 873

E xam ple 17.12: Figure 17.10 shows an undo/redo log analogous to the redo
log of Fig. 17.8. We have changed only the update records, giving them an old
value as well as a new value. For simplicity, we have assumed that in each case
the old value is one less than the new value.

< START Ti>
<TU A,4,5>
<START T2>
<C0MMITTi>
<T2 ,B ,9 ,10>
< START CKPT (T2)>
< 72 ,(7 , 14, 15>
<START T3>
<T3 ,D , 19,20>
<END CKPT>
<C0MMIT T2>
<C0MMIT T3>

Figure 17.10: An undo/redo log

As in Example 17.8, T2 is identified as the only active transaction when the
checkpoint begins. Since this log is an undo/redo log, it is possible that T2’s new
23-value 10 has been written to disk, which was not possible under redo logging.
However, it is irrelevant whether or not that disk write has occurred. During
the checkpoint, we shall surely flush B to disk if it is not already there, since
we flush all dirty buffers. Likewise, we shall flush A, written by the committed
transaction Ti, if it is not already on disk.

If the crash occurs at the end of this sequence of events, then T2 and T3 are
identified as committed transactions. Transaction Ti is prior to the checkpoint.
Since we find the <END CKPT> record on the log, T\ is correctly assumed to
have both completed and had its changes written to disk. We therefore redo
both T2 and T3, as in Example 17.8, and ignore Ti. However, when we redo a
transaction such as T2, we do not need to look prior to the <START CKPT (T2)>
record, even though T2 was active at that time, because we know that T2’s
changes prior to the start of the checkpoint were flushed to disk during the
checkpoint.

For another instance, suppose the crash occurs just before the <C0MMIT T3>
record is written to disk. Then we identify T2 as committed but T3 as incom
plete. We redo T2 by setting C to 15 on disk; it is not necessary to set B to
10 since we know that change reached disk before the <END CKPT>. However,
unlike the situation with a redo log, we also undo T3; that is, we set D to 19 on
disk. If T3 had been active at the start of the checkpoint, we would have had
to look prior to the START-CKPT record to find if there were more actions by T3
that may have reached disk and need to be undone. □

874 CHAPTER 17. COPING W ITH SYSTEM FAILURES

17.4.4 Exercises for Section 17.4
E xercise 17.4.1: Show the undo/redo-log records for each of the transactions
(call each T) of Exercise 17.1.1, assuming that initially A — 5 and B — 10.

E xercise 17.4 .2 : For each of the sequences of log records representing the
actions of one transaction T, tell all the sequences of events that are legal
according to the rules of undo/redo logging, where the events of interest are the
writing to disk of the blocks containing database elements, and the blocks of
the log containing the update and commit records. You may assume that log
records are written to disk in the order shown; i.e., it is not possible to write
one log record to disk while a previous record is not written to disk.

a) <START T>; <T ,A ,10,11>; <T, B, 20,21>; <C0MMIT T>;

b) < START T>; < T ,A , 10,21>; <T, B, 20,21>; <T,C , 30,31>;
<C0MMIT T>;

E xercise 17.4 .3 : The following is a sequence of undo/redo-log records writ
ten by two transactions T and U: <START T>; <T, A, 10 ,11>; <START U>;
<U, B , 20,21 >; <T, (7,30,31>; <U,D, 40,41>; <C0MMIT U>; < T ,E , 50,51>;
<C0MMIT T>. Describe the action of the recovery manager, including changes
to both disk and the log, if there is a crash and the last log record to appear
on disk is:

(a) <START U> (b) <C0MMIT U> (c) < T ,E , 50,51> (d) <C0MMIT T>.

E xercise 17.4 .4 : For each of the situations described in Exercise 17.4.3, what
values written by T and U must appear on disk? Which values might appear
on disk?

E xercise 17.4 .5 : Consider the following sequence of log records: < START S>;
<5, A, 60,61>; <C0MMIT5>; <START T>; < T ,A , 61,62>; < START f/> ;
<U ,B, 20,21>; <T ,C , 30,31>; < START V>; <U,D, 40,41>; <V,F, 70,71>;
<C0MMIT U>; <T, E, 50,51>; <C0MMIT T>; < V,B , 21,22>; <C0MMIT V>.
Suppose that we begin a nonquiescent checkpoint immediately after one of the
following log records has been written (in memory):

(a) <5, A, 60,61> (b) <T, A, 61,62> (c) <U, B , 20,21>
(d) <£/,£>, 40,41> (e) < T ,E , 50,51 >

For each, tell:

i. At what points could the <END CKPT> record be written, and

ii. For each possible point at which a crash could occur, how far back in the
log we must look to find all possible incomplete transactions. Consider
both the case that the <END CKPT> record was or was not written prior
to the crash.

17.5. PROTECTING AG AINST MEDIA FAILURES 875

17.5 Protecting Against M edia Failures
The log can protect us against system failures, where nothing is lost from disk,
but temporary data in main memory is lost. However, as we discussed in
Section 17.1.1, more serious failures involve the loss of one or more disks. An
archiving system, which we cover next, is needed to enable a database to survive
losses involving disk-resident data.

17.5.1 The Archive
To protect against media failures, we are thus led to a solution involving archiv
ing — maintaining a copy of the database separate from the database itself. If
it were possible to shut down the database for a while, we could make a backup
copy on some storage medium such as tape or optical disk, and store the copy
remote from the database, in some secure location. The backup would preserve
the database state as it existed at the time of the backup, and if there were a
media failure, the database could be restored to this state.

To advance to a more recent state, we could use the log, provided the log
had been preserved since the archive copy was made, and the log itself survived
the failure. In order to protect against losing the log, we could transmit a copy
of the log, almost as soon as it is created, to the same remote site as the archive.
Then, if the log as well as the data is lost, we can use the archive plus remotely
stored log to recover, at least up to the point that the log was last transmitted
to the remote site.

Since writing an archive is a lengthy process, we try to avoid copying the
entire database at each archiving step. Thus, we distinguish between two levels
of archiving:

1. A full dump, in which the entire database is copied.

2. An incremental dump, in which only those database elements changed
since the previous full or incremental dump are copied.

It is also possible to have several levels of dump, with a full dump thought of as
a “level 0” dump, and a “level i” dump copying everything changed since the
last dump at a level less than or equal to i.

We can restore the database from a full dump and its subsequent incremental
dumps, in a process much like the way a redo or undo/redo log can be used
to repair damage due to a system failure. We copy the full dump back to the
database, and then in an earliest-first order, make the changes recorded by the
later incremental dumps.

17.5.2 Nonquiescent Archiving
The problem with the simple view of archiving in Section 17.5.1 is that most
databases cannot be shut down for the period of time (possibly hours) needed

876 CHAPTER 17. COPING W ITH SYSTE M FAILURES

W hy Not Just Back Up the Log?

We might question the need for an archive, since we have to back up the log
in a secure place anyway if we are not to be stuck at the state the database
was in when the previous archive was made. While it may not be obvious,
the answer lies in the typical rate of change of a large database. While
only a small fraction of the database may change in a day, the changes,
each of which must be logged, will over the course of a year become much
larger than the database itself. If we never archived, then the log could
never be truncated, and the cost of storing the log would soon exceed the
cost of storing a copy of the database.

to make a backup copy. We thus need to consider nonquiescent archiving,
which is analogous to nonquiescent checkpointing. Recall that a nonquiescent
checkpoint attempts to make a copy on the disk of the (approximate) database
state that existed when the checkpoint started. We can rely on a small portion
of the log around the time of the checkpoint to fix up any deviations from that
database state, due to the fact that during the checkpoint, new transactions
may have started and written to disk.

Similarly, a nonquiescent dump tries to make a copy of the database that
existed when the dump began, but database activity may change many database
elements on disk during the minutes or hours that the dump takes. If it is
necessary to restore the database from the archive, the log entries made during
the dump can be used to sort things out and get the database to a consistent
state. The analogy is suggested by Fig. 17.11.

C heckpoint gets data
from m em ory to disk;
log allows recovery from
system failure

D um p gets data from
disk to archive;
archive plus log allows
recovery from m edia failure

Archive

Figure 17.11: The analogy between checkpoints and dumps

17.5. PROTECTING AGAINST MEDIA FAILURES 877

A nonquiescent dump copies the database elements in some fixed order,
possibly while those elements are being changed by executing transactions. As
a result, the value of a database element that is copied to the archive may or
may not be the value that existed when the dump began. As long as the log
for the duration of the dump is preserved, the discrepancies can be corrected
from the log.

E xam ple 17.13 : For a very simple example, suppose that our database con
sists of four elements, A, B , C, and D, which have the values 1 through 4,
respectively, when the dump begins. During the dump, A is changed to 5, C
is changed to 6, and B is changed to 7. However, the database elements are
copied in order, and the sequence of events shown in Fig. 17.12 occurs. Then
although the database at the beginning of the dump has values (1,2,3,4), and
the database at the end of the dump has values (5,7,6,4), the copy of the
database in the archive has values (1,2,6,4), a database state that existed at
no time during the dump. □

Disk Archive
Copy A

A := 5
Copy B

C := 6
Copy C

B := 7
Copy D

Figure 17.12: Events during a nonquiescent dump

In more detail, the process of making an archive can be broken into the
following steps. We assume that the logging method is either redo or undo/redo;
an undo log is not suitable for use with archiving.

1. Write a log record <START DUMP>.

2. Perform a checkpoint appropriate for whichever logging method is being
used.

3. Perform a full or incremental dump of the data disk(s), as desired, making
sure that the copy of the data has reached the secure, remote site.

4. Make sure that enough of the log has been copied to the secure, remote
site that at least the prefix of the log up to and including the checkpoint
in item (2) will survive a media failure of the database.

5. Write a log record <END DUMP>.

878 CHAPTER 17. COPING W ITH SYSTE M FAIL URES

At the completion of the dump, it is safe to throw away log prior to the beginning
of the checkpoint previous to the one performed in item (2) above.

E xam ple 17.14: Suppose that the changes to the simple database in Exam
ple 17.13 were caused by two transactions T\ (which writes A and B) and T2
(which writes C) that were active when the dump began. Figure 17.13 shows
a possible undo/redo log of the events during the dump.

< START DUMP>
< START CKPT (Ti ,T2)>
< T i,A , 1,5>
<T2,C ,3 ,6 >
<C0MMIT T2>
<T i ,B ,2 ,7 >
<END CKPT>
Dump completes
<END DUMP>

Figure 17.13: Log taken during a dump

Notice that we did not show 7\ committing. It would be unusual that a
transaction remained active during the entire time a full dump was in progress,
but that possibility doesn’t affect the correctness of the recovery method that
we discuss next. □

17.5.3 Recovery Using an Archive and Log
Suppose that a media failure occurs, and we must reconstruct the database
from the most recent archive and whatever prefix of the log has reached the
remote site and has not been lost in the crash. We perform the following steps:

1. Restore the database from the archive.

(a) Find the most recent full dump and reconstruct the database from
it (i.e., copy the archive into the database).

(b) If there axe later incremental dumps, modify the database according
to each, earliest first.

2. Modify the database using the surviving log. Use the method of recovery
appropriate to the log method being used.

E xam ple 17.15: Suppose there is a media failure after the dump of Exam
ple 17.14 completes, and the log shown in Fig. 17.13 survives. Assume, to make
the process interesting, that the surviving portion of the log does not include a
<C0MMIT T\> record, although it does include the CCOMMIT T2> record shown

17.6. SUMMARY OF CHAPTER 17 879

in that figure. The database is first restored to the values in the archive, which
is, for database elements A, B , C, and D, respectively, (1,2,6,4).

Now, we must look at the log. Since T2 has completed, we redo the step
that sets C to 6. In this example, C already had the value 6, but it might be
that:

a) The archive for C was made before T2 changed C, or

b) The archive actually captured a later value of C, which may or may not
have been written by a transaction whose commit record survived. Later
in the recovery, C will be restored to the value found in the archive if the
transaction was committed.

Since Ti does not have a COMMIT record, we must undo T i. We use the log
records for T\ to determine that A must be restored to value 1 and B to 2. It
happens that they had these values in the archive, but the actual archive value
could have been different because the modified A and/or B had been included
in the archive. □

17.5.4 Exercises for Section 17.5
E xercise 17.5.1: If a redo log, rather than an undo/redo log, were used in
Examples 17.14 and 17.15:

a) What would the log look like?

! b) If we had to recover using the archive and this log, what would be the
consequence of Tj not having committed?

c) What would be the state of the database after recovery?

17.6 Summary of Chapter 17
♦ Transaction Management: The two principal tasks of the transaction

manager are assuring recoverability of database actions through logging,
and assuring correct, concurrent behavior of transactions through the
scheduler (discussed in the next chapter).

♦ Database Elements: The database is divided into elements, which are typ
ically disk blocks, but could be tuples or relations, for instance. Database
elements are the units for both logging and scheduling.

♦ Logging: A record of every important action of a transaction — beginning,
changing a database element, committing, or aborting — is stored on a
log. The log must be backed up on disk at a time that is related to
when the corresponding database changes migrate to disk, but that time
depends on the particular logging method used.

880 CHAPTER 17. COPING W ITH SYSTEM FAILURES

♦ Recovery: When a system crash occurs, the log is used to repair the
database, restoring it to a consistent state.

♦ Logging Methods: The three principal methods for logging are undo, redo,
and undo/redo, named for the way(s) that they are allowed to fix the
database during recovery.

♦ Undo Logging: This method logs the old value, each time a database
element is changed. With undo logging, a new value of a database element
can be written to disk only after the log record for the change has reached
disk, but before the commit record for the transaction performing the
change reaches disk. Recovery is done by restoring the old value for every
uncommitted transaction.

♦ Redo Logging: Here, only the new value of database elements is logged.
With this form of logging, values of a database element can be written to
disk only after both the log record of its change and the commit record
for its transaction have reached disk. Recovery involves rewriting the new
value for every committed transaction.

4- Undo/Redo Logging In this method, both old and new values are logged.
Undo/redo logging is more flexible than the other methods, since it re
quires only that the log record of a change appear on the disk before
the change itself does. There is no requirement about when the commit
record appears. Recovery is effected by redoing committed transactions
and undoing the uncommitted transactions.

4- Checkpointing: Since all recovery methods require, in principle, looking
at the entire log, the DBMS must occasionally checkpoint the log, to
assure that no log records prior to the checkpoint will be needed during a
recovery. Thus, old log records can eventually be thrown away and their
disk space reused.

4 Nonquiescent Checkpointing: To avoid shutting down the system while a
checkpoint is made, techniques associated with each logging method allow
the checkpoint to be made while the system is in operation and database
changes are occurring. The only cost is that some log records prior to the
nonquiescent checkpoint may need to be examined during recovery.

4 Archiving: While logging protects against system failures involving only
the loss of main memory, archiving is necessary to protect against failures
where the contents of disk are lost. Archives are copies of the database
stored in a safe place.

4 Incremental Backups: Instead of copying the entire database to an archive
periodically, a single complete backup can be followed by several incre
mental backups, where only the changed data is copied to the archive.

17.7. REFERENCES FOR CHAPTER 17 881

♦ Nonquiescent Archiving: We can create a backup of the data while the
database is in operation. The necessary techniques involve making log
records of the beginning and end of the archiving, as well as performing
a checkpoint for the log during the archiving.

♦ Recovery From Media Failures: When a disk is lost, it may be restored by
starting with a full backup of the database, modifying it according to any
later incremental backups, and finally recovering to a consistent database
state by using an archived copy of the log.

17.7 References for Chapter 17
The major textbook on all aspects of transaction processing, including logging
and recovery, is by Gray and Reuter [5]. This book was partially fed by some
informal notes on transaction processing by Jim Gray [3] that were widely
circulated; the latter, along with [4] and [8] are the primary sources for much
of the logging and recovery technology.

[2] is an earlier, more concise description of transaction-processing technol
ogy. [7] is a recent treatment of recovery.

Two early surveys, [1] and [6] both represent much of the fundamental work
in recovery and organized the subject in the undo-redo-undo/redo tricotomy
that we followed here.

1. P. A. Bernstein, N. Goodman, and V. Hadzilacos, “Recovery algorithms
for database systems,” Proc. 1983 IFIP Congress, North Holland, Ams
terdam, pp. 799-807.

2. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems, Addison-Wesley, Reading MA, 1987.

3. J. N. Gray, “Notes on database operating systems,” in Operating Systems:
an Advanced Course, pp. 393-481, Springer-Verlag, 1978.

4. J. N. Gray, P. R. McJones, and M. Blasgen, “The recovery manager of the
System R database manager,” Computing Surveys 13:2 (1981), pp. 223-
242.

5. J. N. Gray and A. Reuter, Transaction Processing: Concepts and Tech
niques, Morgan-Kaufmann, San Francisco, 1993.

6. T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery — a taxonomy,” Computing Surveys 15:4 (1983), pp. 287-317.

7. V. Kumar and M. Hsu, Recovery Mechanisms in Database Systems, Pren-
tice-Hall, Englewood Cliffs NJ, 1998.

882 CHAPTER 17. COPING W ITH SYSTEM FAILURES

8. C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: a transaction recovery method supporting fine-granularity lock
ing and partial rollbacks using write-ahead logging,” ACM Trans, on
Database Systems 17:1 (1992), pp. 94-162.

Chapter 18

Concurrency Control

Interactions among concurrently executing transactions can cause the database
state to become inconsistent, even when the transactions individually preserve
correctness of the state, and there is no system failure. Thus, the timing of
individual steps of different transactions needs to be regulated in some manner.
This regulation is the job of the scheduler component of the DBMS, and the
general process of assuring that transactions preserve consistency when execut
ing simultaneously is called concurrency control. The role of the scheduler is
suggested by Fig. 18.1.

Buffers

Read/W rite
requests

Reads and
writes

Figure 18.1: The scheduler takes read/write requests from transactions and
either executes them in buffers or delays them

As transactions request reads and writes of database elements, these requests
are passed to the scheduler. In most situations, the scheduler will execute the
reads and writes directly, first calling on the buffer manager if the desired
database element is not in a buffer. However, in some situations, it is not
safe for the request to be executed immediately. The scheduler must delay the
request; in some concurrency-control techniques, the scheduler may even abort
the transaction that issued the request.

883

884 CHAPTER 18. CONCURRENCY CONTROL

We begin by studying how to assure that concurrently executing trans
actions preserve correctness of the database state. The abstract requirement
is called serializability, and there is an important, stronger condition called
conflict-serializability that most schedulers actually enforce. We consider the
most important techniques for implementing schedulers: locking, timestamp-
ing, and validation. Our study of lock-based schedulers includes the important
concept of “two-phase locking,” which is a requirement widely used to assure
serializability of schedules.

18.1 Serial and Serializable Schedules
Recall the “correctness principle” from Section 17.1.3: every transaction, if ex
ecuted in isolation (without any other transactions running concurrently), will
transform any consistent state to another consistent state. In practice, transac
tions often run concurrently with other transactions, so the correctness principle
doesn’t apply directly. This section introduces the notion of “schedules,” the se
quence of actions performed by transactions and “serializable schedules,” which
produce the same result as if the transactions executed one-at-a-time.

18.1.1 Schedules
A schedule is a sequence of the important actions taken by one or more trans
actions. When studying concurrency control, the important read and write ac
tions take place in the main-memory buffers, not the disk. That is, a database
element A that is brought to a buffer by some transaction T may be read or
written in that buffer not only by T but by other transactions that access A.

Ti
READ(A,t)
t := t+100
WRITE(A,t)
READ(B,t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Figure 18.2: Two transactions

E xam ple 18.1: Let us consider two transactions and the effect on the data
base when their actions are executed in certain orders. The important actions
of the transactions Ti and T2 are shown in Fig. 18.2. The variables t and s are
local variables of Ti and T2, respectively; they are not database elements.

We shall assume that the only consistency constraint on the database state
is that A = B. Since Ti adds 100 to both A and B , and T2 multiplies both

18.1. SERIAL AND SERIALIZABLE SCHEDULES 885

A and B by 2, we know that each transaction, run in isolation, will preserve
consistency. □

18.1.2 Serial Schedules
A schedule is serial if its actions consist of all the actions of one transaction,
then all the actions of another transaction, and so on. No mixing of the actions
is allowed.

Ti r 2 A B
25 25

READ(A,t)
t := t+100
WRITE(A,t) 125
READ(B,t)
t := t+100
WRITE(B,t) 125

READ(A,s)
s := s*2
WRITE(A,s) 250
READ(B,s)
s := s*2
WRITE(B,s) 250

Figure 18.3: Serial schedule in which T\ precedes T2

E xam ple 18.2: For the transactions of Fig. 18.2, there are two serial sched
ules, one in which 7\ precedes T2 and the other in which T2 precedes 7 \. Fig
ure 18.3 shows the sequence of events when T\ precedes T2, and the initial state
is A = B = 25. We shall take the convention that when displayed vertically,
time proceeds down the page. Also, the values of A and B shown refer to their
values in main-memory buffers, not necessarily to their values on disk.

Figure 18.4 shows another serial schedule in which T2 precedes Ti; the initial
state is again assumed to be A = B = 25. Notice that the final values of A and
B are different for the two schedules; they both have value 250 when T\ goes
first and 150 when T2 goes first. In general, we would not expect the final state
of a database to be independent of the order of transactions. □

We can represent a serial schedule as in Fig. 18.3 or Fig. 18.4, listing each
of the actions in the order they occur. However, since the order of actions in
a serial schedule depends only on the order of the transactions themselves, we
shall sometimes represent a serial schedule by the list of transactions. Thus, the
schedule of Fig. 18.3 is represented (T i,T2), and that of Fig. 18.4 is (T2 ,Ti).

886 CHAPTER 18. CONCURRENCY CONTROL

Ti T2 A B
25 25

READ(A.s)
s := s*2
WRITE(A,s) 50
READ(B,s)
s := s*2
WRITE(B,s) 50

READ(A,t)
t := t+100
WRITE(A,t) 150
READ(B,t)
t := t+100
WRITE(B.t) 150

Figure 18.4: Serial schedule in which T2 precedes Ti

18.1.3 Serializable Schedules

The correctness principle for transactions tells us that every serial schedule will
preserve consistency of the database state. But are there any other schedules
that also are guaranteed to preserve consistency? There are, as the following
example shows. In general, we say a schedule S is serializable if there is a serial
schedule S' such that for every initial database state, the effects of S and S'
are the same.

Ti T2 A B
25 25

READ(A,t)
t := t+100
WRITE(A,t) 125

READ(A,s)
s := s*2
WRITE(A,s) 250

READ(B,t)
t := t+100
WRITE(B,t) 125

READ(B,s)
s := s*2
WRITE(B,s) 250

Figure 18.5: A serializable, but not serial, schedule

18.1. SERIAL AND SERIALIZABLE SCHEDULES 887

E xam ple 18.3: Figure 18.5 shows a schedule of the transactions from Ex
ample 18.1 that is serializable but not serial. In this schedule, Ta acts on A
after T\ does, but before Ti acts on B. However, we see that the effect of the
two transactions scheduled in this manner is the same as for the serial schedule
(Ti,T2) from Fig. 18.3. To convince ourselves of the truth of this statement,
we must consider not only the effect from the database state A = B = 25,
which we show in Fig. 18.5, but from any consistent database state. Since all
consistent database states have A — B = c for some constant c, it is not hard
to deduce that in the schedule of Fig. 18.5, both A and B will be left with the
value 2 (c + 100), and thus consistency is preserved from any consistent state.

T i T 2 A B
25 25

READ(A,t)
t := t+100
WRITE(A,t) 125

READ(A,s)
s := s *2
WRITE(A,s) 250
READ(B,s)
s := s *2
WRITE(B,s) 50

READ(B,t)
t := t+100
WRITE(B,t) 150

Figure 18.6: A nonserializable schedule

On the other hand, consider the schedule of Fig. 18.6, which is not seri
alizable. The reason we can be sure it is not serializable is that it takes the
consistent state A = B = 25 and leaves the database in an inconsistent state,
where A = 250 and B = 150. Notice that in this order of actions, where Ti op
erates on A first, but T2 operates on B first, we have in effect applied different
computations to A and B, that is A := 2(A + 100) versus B := 2B + 100.
The schedule of Fig. 18.6 is the sort of behavior that concurrency control mech
anisms must avoid. □

18.1.4 The Effect of Transaction Semantics

In our study of serializability so far, we have considered in detail the opera
tions performed by the transactions, to determine whether or not a schedule is
serializable. The details of the transactions do matter, as we can see from the
following example.

888 CHAPTER 18. CONCURRENCY CONTROL

Ti T2 A B
25 25

READ(A,t)
t := t+100
WRITE(A,t) 125

READ(A,s)
s := s+200
WRITE(A,s) 325
READ(B,s)
s := s+200
WRITE(B,s) 225

READ(B,t)
t := t+100
WRITE(B,t) 325

Figure 18.7: A schedule that is serializable only because of the detailed behavior
of the transactions

E xam ple 18.4: Consider the schedule of Fig. 18.7, which differs from Fig. 18.6
only in the computation that T2 performs. That is, instead of multiplying A
and B by 2, T2 adds 200 to each. One can easily check that regardless of the
consistent initial state, the final state is the one that results from the serial
schedule (Ti,T2). Coincidentally, it also results from the other serial schedule,
(r2,Ti). □

Unfortunately, it is not realistic for the scheduler to concern itself with the
details of computation undertaken by transactions. Since transactions often
involve code written in a general-purpose programming language as well as
SQL or other high-level-language statements, it is impossible to say for certain
what a transaction is doing. However, the scheduler does get to see the read and
write requests from the transactions, so it can know what database elements
each transaction reads, and what elements it might change. To simplify the job
of the scheduler, it is conventional to assume that:

• Any database element A that a transaction T writes is given a value
that depends on the database state in such a way that no arithmetic
coincidences occur.

An example of a “coincidence” is that in Example 18.4, where A +100 + 200 =
B + 200 +100 whenever A = B, even though the two operations are carried out
in different orders on the two variables. Put another way, if there is something
that T could do to a database element to make the database state inconsistent,
then T will do that.

18.1. SERIAL AND SERIALIZABLE SCHEDULES 889

18.1.5 A Notation for Transactions and Schedules
If we assume “no coincidences,” then only the reads and writes performed by
the transaction matter, not the actual values involved. Thus, we shall represent
transactions and schedules by a shorthand notation, in which the actions are
rx (X) and w t (X), meaning that transaction T reads, or respectively writes,
database element X . Moreover, since we shall usually name our transactions
Tu T2, . . . , we adopt the convention that ri(X) and Wi(X) are synonyms for
rTi(X) and WTi(X), respectively.

E xam ple 18.5 : The transactions of Fig. 18.2 can be written:

Tn n (A)\ tui(^); n (B); w ^B);
T2: r2 (A); w2 (A); r2 (B); w2 (B);

As another example,

ri(A); wi{A); r2 (A); w2 {A); r x(S); w i(B); r2 (B); w2 {B);

is the serializable schedule from Fig. 18.5. □

To make the notation precise:

1. An action is an expression of the form ri(X) or Wi(X), meaning that
transaction T, reads or writes, respectively, the database element X .

2. A transaction Ti is a sequence of actions with subscript i.

3. A schedule S of a set of transactions T is a sequence of actions, in which
for each transaction Ti in T , the actions of Ti appear in S in the same
order that they appear in the definition of Tj itself. We say that S is an
interleaving of the actions of the transactions of which it is composed.

For instance, the schedule of Example 18.5 has all the actions with subscript
1 appearing in the same order that they have in the definition of I \ , and the
actions with subscript 2 appear in the same order that they appear in the
definition of T2.

18.1.6 Exercises for Section 18.1
Exercise 18.1.1: A transaction Ti, executed by an airline-reservation system,
performs the following steps:

i. The customer is queried for a desired flight time and cities. Information
about the desired flights is located in database elements (perhaps disk
blocks) A and B, which the system retrieves from disk.

ii. The customer is told about the options, and selects a flight whose data,
including the number of reservations for that flight is in B. A reservation
on that flight is made for the customer.

890 CHAPTER 18. CONCURRENCY CONTROL

Hi. The customer selects a seat for the flight; seat data for the flight is in
database element C.

iv. The system gets the customer’s credit-card number and appends the bill
for the flight to a list of bills in database element D.

v. The customer’s phone and flight data is added to another list on database
element E for a fax to be sent confirming the flight.

Express transaction Ti as a sequence of r and w actions.

! E xercise 18.1.2: If two transactions consist of 4 and 6 actions, respectively,
how many interleavings of these transactions are there?

18.2 Conflict-Serializability
Schedulers in commercial systems generally enforce a condition, called “conflict-
serializability,” that is stronger than the general notion of serializability intro
duced in Section 18.1.3. It is based on the idea of a conflict: a pair of consecutive
actions in a schedule such that, if their order is interchanged, then the behavior
of at least one of the transactions involved can change.

18.2.1 Conflicts
To begin, let us observe that most pairs of actions do not conflict. In what
follows, we assume that T, and Tj are different transactions; i.e., i ^ j .

1 . ri(X)\ rj(Y) is never a conflict, even if X — Y. The reason is that neither
of these steps change the value of any database element.

2. ri(X); Wj(Y) is not a conflict provided X ^ Y. The reason is that should
Tj write Y before Ti reads X, the value of X is not changed. Also, the
read of X by T* has no effect on Tj, so it does not affect the value Tj
writes for Y.

3. Wi(X); rj(Y) is not a conflict if X / Y, for the same reason as (2).

4. Similarly, Wi{X); Wj(Y) is not a conflict as long as X ^ Y.

On the other hand, there are three situations where we may not swap the order
of actions:

a) Two actions of the same transaction, e.g., ri(X); Wi(Y), always conflict.
The reason is that the order of actions of a single transaction are fixed
and may not be reordered.

18.2. CONFLICT-SERIALIZABILITY 891

b) Two writes of the same database element by different transactions conflict.
That is, Wi(X); Wj(X) is a conflict. The reason is that as written, the
value of X remains afterward as whatever Tj computed it to be. If we swap
the order, as Wj(X); Wi(X), then we leave X with the value computed by
T,. Our assumption of “no coincidences” tells us that the values written by
Ti and Tj will be different, at least for some initial states of the database.

c) A read and a write of the same database element by different transactions
also conflict. That is, r,(X); Wj(X) is a conflict, and so is Wi(X); rj(X).
If we move Wj(X) ahead of ri(X), then the value of X read by Ti will
be that written by Tj, which we assume is not necessarily the same as
the previous value of X. Thus, swapping the order of ri(X) and Wj(X)
affects the value T* reads for X and could therefore affect what Ti does.

The conclusion we draw is that any two actions of different transactions may
be swapped unless:

1. They involve the same database element, and

2 . At least one is a write.

Extending this idea, we may take any schedule and make as many nonconflicting
swaps as we wish, with the goal of turning the schedule into a serial schedule.
If we can do so, then the original schedule is serializable, because its effect on
the database state remains the same as we perform each of the nonconflicting
swaps.

We say that two schedules are conflict-equivalent if they can be turned one
into the other by a sequence of nonconflicting swaps of adjacent actions. We
shall call a schedule conflict-serializable if it is conflict-equivalent to a serial
schedule. Note that conflict-serializability is a sufficient condition for serializ
ability; i.e., a conflict-serializable schedule is a serializable schedule. Conflict-
serializability is not required for a schedule to be serializable, but it is the
condition that the schedulers in commercial systems generally use when they
need to guarantee serializability.

E xam ple 18.6: Consider the schedule

n (^) ; w j (A) ; r2(A); w2(A); n (S) ; wi(B); r2(B); w2(B);

from Example 18.5. We claim this schedule is conflict-serializable. Figure 18.8
shows the sequence of swaps in which this schedule is converted to the serial
schedule (T\,T2), where all of T i’s actions precede all those of T2. We have
underlined the pair of adjacent actions about to be swapped at each step. □

892 CHAPTER 18. CONCURRENCY CONTROL

n (A); u>i(A); r2 (A); w2 (A); n (B)\ w ^B); r2 {B); w2 {B);
n (A); wi(A); r 2 (A); n (B) ; w2 (A); w ^B); r2 (B); w2 (B);
rx(A); wi(A); ri(B); r2 (A); w2 {A); Wi(B); r2 (B)-, w2 (B);
ri(A); wx(A); ri(B); r2 (A); w ^ B) ; w2 (A); r2 (B); w2 (B);
n (A); wi (A); rx{B); w ^B); r2 {A); w2 (A)\ r2 (B); w2 (B);

Figure 18.8: Converting a conflict-serializable schedule to a serial schedule by
swaps of adjacent actions

18.2.2 Precedence Graphs and a Test for
Conflict-Serializability

It is relatively simple to examine a schedule S and decide whether or not it is
conflict-serializable. When a pair of conflicting actions appears anywhere in 5,
the transactions performing those actions must appear in the same order in any
conflict-equivalent serial schedule as the actions appear in S. Thus, conflicting
pairs of actions put constraints on the order of transactions in the hypothetical,
conflict-equivalent serial schedule. If these constraints are not contradictory,
we can find a conflict-equivalent serial schedule. If they are contradictory, we
know that no such serial schedule exists.

Given a schedule S, involving transactions Ti and T2, perhaps among other
transactions, we say that T\ takes precedence overT2, written Ti <s T2, if there
are actions A i of Ti and A 2 of T2, such that:

1. Ai is ahead of A 2 in S,

2. Both A \ and A 2 involve the same database element, and

3. At least one of A\ and A 2 is a write action.

Notice that these are exactly the conditions under which we cannot swap the
order of A i and A2. Thus, A \ will appear before A 2 in any schedule that is
conflict-equivalent to 5. As a result, a conflict-equivalent serial schedule must
have T\ before T2.

We can summarize these precedences in a precedence graph. The nodes of the
precedence graph are the transactions of a schedule S. When the transactions
are Ti for various i, we shall label the node for Tj by only the integer i. There
is an arc from node i to node j if Tj < 5 Tj.

E xam ple 18.7: The following schedule 5 involves three transactions, Ti, T2,
and T3.

5: r 2 (A); r^ B); w2 (A); r 3(A); Wi(5); w3(A); r2(B); w2 (B)]

If we look at the actions involving A, we find several reasons why T2 <s T3.
For example, r 2 (A) comes ahead of W3 (A) in S, and w2 (A) comes ahead of both

18.2. CONFLICT-SERIALIZABILITY 893

W hy Conflict-Serializability is not Necessary for
Serializability

Consider three transactions Ti, T2, and T3 that each write a value for X .
Ti and T2 also write values for Y before they write values for X . One
possible schedule, which happens to be serial, is

Si leaves X with the value written by T3 and Y with the value written by
T2. However, so does the schedule

Intuitively, the values of X written by Ti and T2 have no effect, since T3
overwrites their values. Thus, X has the same value after either Si or
S2, and likewise Y has the same value after either Si or S2. Since Si is
serial, and S 2 has the same effect as Si on any database state, we know
that S 2 is serializable. However, since we cannot swap w \(Y) with w2 (Y),
and we cannot swap w i(X) with w2 (X), therefore we cannot convert S2 to
any serial schedule by swaps. That is, S 2 is serializable, but not conflict-
serializable.

Figure 18.9: The precedence graph for the schedule S of Example 18.7

rs(A) and W3 (A). Any one of these three observations is sufficient to justify the
arc in the precedence graph of Fig. 18.9 from 2 to 3.

Similarly, if we look at the actions involving B, we find that there are several
reasons why Ti <s T2. For instance, the action r\(B) comes before w2 (B).
Thus, the precedence graph for S also has an arc from 1 to 2. However, these
are the only arcs we can justify from the order of actions in schedule S. □

To tell whether a schedule S is conflict-serializable, construct the precedence
graph for S and ask if there are any cycles. If so, then S is not conflict-
serializable. But if the graph is acyclic, then 5 is conflict-serializable, and
moreover, any topological order of the nodes1 is a conflict-equivalent serial
order.

1A topological order of an acyclic g raph is any o rder of th e nodes such th a t for every arc
a —> b, node a p recedes node b in th e topological o rder. W e can find a topological o rder
for any acyclic g raph by rep ea ted ly rem oving nodes th a t have no predecessors am ong th e
rem ain ing nodes.

Si'. Wi(Y); wi(X); w2(Y); w2(X)-, w^X);

S2: w i(Y); w2 (Y); w2 (X); Wi(X); w3 (X)-,

894 CHAPTER 18. CONCURRENCY CONTROL

E xam ple 18.8: Figure 18.9 is acyclic, so the schedule S of Example 18.7
is conflict-serializable. There is only one order of the nodes or transactions
consistent with the arcs of that graph: (Ti,T 2 ,T3). Notice that it is indeed
possible to convert S into the schedule in which all actions of each of the three
transactions occur in this order; this serial schedule is:

S': ri(B); Wi(B)\ r2 (A); w2 (A); r2 {B); w2(B); r3 (A); w3 {A);

To see that we can get from S to S' by swaps of adjacent elements, first notice
we can move r \(B) ahead of r2 (A) without conflict. Then, by three swaps
we can move wi(B) just after r\{B), because each of the intervening actions
involves A and not B. We can then move r2 (B) and w2 (B) to a position just
after w2 (A), moving through only actions involving A; the result is S'. □

E xam ple 18.9: Consider the schedule

Si: r2 (A); ri(B); w2 (A); r2 (B); r3 (A); Wx(B); w3 (A); w2 (B);

which differs from S only in that action r2 (B) has been moved forward three
positions. Examination of the actions involving A still give us only the prece
dence T2 <Sj T3. However, when we examine B we get not only Ti <Sj T2

[because ri(B) and wx(B) appear before w2 (B)\, but also T2 < sx Ti [because
r2 (B) appears before Wi (£?)]. Thus, we have the precedence graph of Fig. 18.10
for schedule Si.

(i5— —Kl)-- KD
Figure 18.10: A cyclic precedence graph; its schedule is not conflict-serializable

This graph evidently has a cycle. We conclude that Si is not conflict-
serializable. Intuitively, any conflict-equivalent serial schedule would have to
have Ti both ahead of and behind T2, so therefore no such schedule exists. □

18.2.3 W hy the Precedence-Graph Test Works
If there is a cycle involving n transactions Ti —» T2 -¥ . . . —> Tn —> T i, then in
the hypothetical serial order, the actions of Ti must precede those of T2, which
precede those of T3, and so on, up to T„. But the actions of Tn, which therefore
come after those of Ti, are also required to precede those of Ti because of the
arc Tn -» T i . Thus, if there is a cycle in the precedence graph, then the schedule
is not conflict-serializable.

The converse is a bit harder. We must show that if the precedence graph
has no cycles, then we can reorder the schedule’s actions using legal swaps of
adjacent actions, until the schedule becomes a serial schedule. If we can do so,
then we have our proof that every schedule with an acyclic precedence graph is
conflict-serializable. The proof is an induction on the number of transactions
involved in the schedule.

18.2. CONFLICT-SERIALIZABILITY 895

BASIS: If n = 1, i.e., there is only one transaction in the schedule, then the
schedule is already serial, and therefore surely conflict-serializable.

IN DU CTIO N: Let the schedule S consist of the actions of n transactions

Ti,T2,... ,Tn

We suppose that S has an acyclic precedence graph. If a finite graph is acyclic,
then there is at least one node that has no arcs in; let the node i corresponding
to transaction T* be such a node. Since there are no arcs into node i, there can
be no action A in S that:

1. Involves any transaction Tj other than T*,

2. Precedes some action of Ti, and

3. Conflicts with that action.

For if there were, we should have put an arc from node j to node i in the
precedence graph.

It is thus possible to swap all the actions of Ti, keeping them in order, but
moving them to the front of S. The schedule has now taken the form

(Actions of Ti) (Actions of the other n — 1 transactions)

Let us now consider the tail of S — the actions of all transactions other than
Ti. Since these actions maintain the same relative order that they did in 5 , the
precedence graph for the tail is the same as the precedence graph for S, except
that the node for Ti and any arcs out of that node are missing.

Since the original precedence graph was acyclic, and deleting nodes and arcs
cannot make it cyclic, we conclude that the tail’s precedence graph is acyclic.
Moreover, since the tail involves n — 1 transactions, the inductive hypothesis
applies to it. Thus, we know we can reorder the actions of the tail using
legal swaps of adjacent actions to turn it into a serial schedule. Now, 5 itself
has been turned into a serial schedule, with the actions of Tj first and the
actions of the other transactions following in some serial order. The induction
is complete, and we conclude that every schedule with an acyclic precedence
graph is conflict-serializable.

18.2.4 Exercises for Section 18.2
Exercise 18.2.1: Below are two transactions, described in terms of their effect
on two database elements A and B, which we may assume are integers.

Ti: READ(A,t); t := t+ 2 ; WRITE(A , t) ; READ(B,t); t := t* 3 ; WRITE(B,t);
T2: READ(B,s); s:=s*2; WRITE(B,s); READ(A,s); s:=s+3; WRITE(A.s);

896 CHAPTER 18. CONCURRENCY CONTROL

We assume that, whatever consistency constraints there are on the database,
these transactions preserve them in isolation. Note that A = B is not the
consistency constraint.

a) It turns out that both serial orders have the same effect on the database;
that is, (Ti ,T2) and (T2,T i) are equivalent. Demonstrate this fact by
showing the effect of the two transactions on an arbitrary initial database
state.

b) Give examples of a serializable schedule and a nonserializable schedule of
the 12 actions above.

c) How many serial schedules of the 12 actions are there?

!! d) How many serializable schedules of the 12 actions are there?

Exercise 18.2.2: The two transactions of Exercise 18.2.1 can be written in
our notation that shows read- and write-actions only, as:

Tn r i (4) ; Wi{A); n(B); Wx(B);
T2: r2(B); w2(B); r2(A); w2(A);

Answer the following:

! a) Among the possible schedules of the eight actions above, how many are
conflict-equivalent to the serial order (2\ ,T 2)?

b) How many schedules of the eight actions are equivalent to the serial order
(la , TO?

!! c) How many schedules of the eight actions are equivalent (not necessarily
conflict-equivalent) to the serial schedule (Ti,T2), assuming the transac
tions have the effect on the database described in Exercise 18.2.1?

! d) Why are the answers to (c) above and Exercise 18.2.1(d) different?

Exercise 18.2.3: Suppose the transactions of Exercise 18.2.2 are changed to
be:

Tn n{A)\ w\(A)\ r\(B); wi(B);
T2: r2(A); w2(A); r2(S); w2(B);

That is, the transactions retain their semantics from Exercise 18.2.1, but T2
has been changed so A is processed before B. Give:

a) The number of conflict-serializable schedules.

b) The number of serializable schedules, assuming the transactions have the
same effect on the database state as in Exercise 18.2.1.

18.3. ENFORCING SERIALIZABILITY B Y LOCKS 897

E xercise 18.2.4: For each of the following schedules:

a) ri{A); r2 (A); r3 (B); u>i(A); r 2 (C); r2 (B); w2 (B); Wx(C);

b) n{A); Wi(B); r2{B): w2 (C); r3 (C)\ w3 (A);

c) w3 (A)-, r i (A); tti(S); r2 (B): w2 (C); r3 (C);

d) ri(A); r2 (A); wx(B); w2 (B); n (B)] r2(S); w2 (C); wx{D)\

e) n(A); r2 (A); n (B) \ r 2(S); r3(A); r4 (B); wx{A); w2 (B);

Answer the following questions:

i. What is the precedence graph for the schedule?

ii. Is the schedule conflict-serializable? If so, what are all the equivalent
serial schedules?

! Hi. Are there any serial schedules that must be equivalent (regardless of what
the transactions do to the data), but are not conflict-equivalent?

!! E xercise 18.2 .5 : Say that a transaction T precedes a transaction U in a sched
ule S if every action of T precedes every action of U in S. Note that if T and U
are the only transactions in S, then saying T precedes U is the same as saying
that S is the serial schedule (T ,U). However, if S involves transactions other
than T and U, then S might not be serializable, and in fact, because of the
effect of other transactions, S might not even be conflict-serializable. Give an
example of a schedule S such that:

i. In S, T\ precedes T2, and

ii. S is conflict-serializable, but

Hi. In every serial schedule conflict-equivalent to S, T2 precedes Ti.

! E xercise 18.2.6: Explain how, for any n > 1, one can find a schedule whose
precedence graph has a cycle of length n, but no smaller cycle.

18.3 Enforcing Serializability by Locks
In this section we consider the most common architecture for a scheduler, one
in which “locks” are maintained on database elements to prevent unserializable
behavior. Intuitively, a transaction obtains locks on the database elements it
accesses to prevent other transactions from accessing these elements at roughly
the same time and thereby incurring the risk of unserializability.

In this section, we introduce the concept of locking with an (overly) simple
locking scheme. In this scheme, there is only one kind of lock, which transac
tions must obtain on a database element if they want to perform any operation
whatsoever on that element. In Section 18.4, we shall learn more realistic lock
ing schemes, with several kinds of lock, including the common shared/exclusive
locks that correspond to the privileges of reading and writing, respectively.

898 CHAPTER 18. CONCURRENCY CONTROL

18.3.1 Locks
In Fig. 18.11 we see a scheduler that uses a lock table to help perform its job.
Recall from the chapter introduction that the responsibility of the scheduler
is to take requests from transactions and either allow them to operate on the
database or block the transaction until such time as it is safe to allow it to
continue. A lock table will be used to guide this decision in a manner that we
shall discuss at length.

requests from
transactions

lock
table

Scheduler

I Serial!
< ± > 1 <

Serializable schedule
o f actions

Figure 18.11: A scheduler that uses a lock table to guide decisions

Ideally, a scheduler would forward a request if and only if its execution can
not possibly lead to an inconsistent database state after all active transactions
commit or abort. A locking scheduler, like most types of scheduler, instead en
forces conflict-serializability, which as we learned is a more stringent condition
than correctness, or even than serializability.

When a scheduler uses locks, transactions must request and release locks,
in addition to reading and writing database elements. The use of locks must
be proper in two senses, one applying to the structure of transactions, and the
other to the structure of schedules.

• Consistency of Transactions: Actions and locks must relate in the ex
pected ways:

1. A transaction can only read or write an element if it previously was
granted a lock on that element and hasn’t yet released the lock.

2. If a transaction locks an element, it must later unlock that element.

• Legality of Schedules: Locks must have their intended meaning: no two
transactions may have locked the same element without one having first
released the lock.

We shall extend our notation for actions to include locking and unlocking
actions:

h(X): Transaction Ti requests a lock on database element X .
Ui(X): Transaction Ti releases (“unlocks”) its lock on database element X.

18.3. ENFORCING SERIALIZABILITY B Y LOCKS 899

Thus, the consistency condition for transactions can be stated as: “Whenever
a transaction T, has an action ri(X) or Wi(X), then there is a previous action
li(X) with no intervening action Ui(X), and there is a subsequent Ui(X).” The
legality of schedules is stated: “If there are actions h (X) followed by Ij(X)
in a schedule, then somewhere between these actions there must be an action

E xam ple 18.10: Let us consider the two transactions Ti and T? that we
introduced in Example 18.1. Recall that T\ adds 100 to database elements A
and B, while doubles them. Here are specifications for these transactions,
in which we have included lock actions as well as arithmetic actions to help us
remember what the transactions are doing.2

Ti: h(A); n (A); A := A+100; wx(A); ui(A); h(B)-, n (B) \ B := B+100;
Wi(B); Ui(B);

T2: h{A); r2 (A)\ A := A*2; w2 (A); u2 {A)\ h{B); r2 {B); B := B*2; w2 (B);
u 2 {B)\

Each of these transactions is consistent. They each release the locks on A and
B that they take. Moreover, they each operate on A and B only at steps where
they have previously requested a lock on that element and have not yet released
the lock.

Ti T2 A B
25 25

h(A); n(AY,
A := A+100;
Wi(A); Ui(A); 125

h(A); r2 (A);
A := A*2;
w 2(A); u 2(A); 250
h{B)', r 2 (B);
B := B*2;
w2(B); u 2 (B); 50

h(B); n (S) ;
B := B+100;
toi(.B); ux(B); 150

Figure 18.12: A legal schedule of consistent transactions; unfortunately it is not
serializable

Figure 18.12 shows one legal schedule of these two transactions. To save
space we have put several actions on one line. The schedule is legal because

2 R em em ber th a t th e a c tu a l co m p u ta tio n s o f th e tran sac tio n usua lly are n o t represen ted in
ou r cu rre n t n o ta tio n , since th e y are n o t considered by th e schedu ler w hen decid ing w hether
to g ran t o r deny tran sac tio n requests.

900 CHAPTER 18. CONCURRENCY CONTROL

the two transactions never hold a lock on A at the same time, and likewise for
B. Specifically, T2 does not execute l2 (A) until after Ti executes ui(A), and T\
does not execute h (B) until after T2 executes u2 (B). As we see from the trace
of the values computed, the schedule, although legal, is not serializable. We
shall see in Section 18.3.3 the additional condition, “two-phase locking,” that
we need to assure that legal schedules are conflict-serializable. □

18.3.2 The Locking Scheduler
It is the job of a scheduler based on locking to grant requests if and only if the
request will result in a legal schedule. If a request is not granted, the requesting
transaction is delayed; it waits until the scheduler grants its request at a later
time. To aid its decisions, the scheduler has a lock table that tells, for every
database element, the transaction (if any) that currently holds a lock on that
element. We shall discuss the structure of a lock table in more detail in Sec
tion 18.5.2. However, when there is only one kind of lock, as we have assumed so
fax, the table may be thought of as a relation Locks (elem ent, t r a n s a c t io n) ,
consisting of pairs (X , T) such that transaction T currently has a lock on
database element X . The scheduler has only to query and modify this rela
tion.

E xam ple 18.11: The schedule of Fig. 18.12 is legal, as we mentioned, so
the locking scheduler would grant every request in the order of arrival shown.
However, sometimes it is not possible to grant requests. Here are T\ and T2

from Example 18.10, with simple but important changes, in which Ti and T2

each lock B before releasing the lock on A.

Ti: h{A); ri(A); A := A+100; Wi(A); h{B)-, Ui(A); r i (B); B := B+100;
wi(B); ui(B);

T2: 12 {A)\ r2 (A); A := A*2; w2 (A)-, l2 (B); u 2 (A); r2 (B); B := B*2; w2 (B);
u 2 {B);

In Fig. 18.13, when T2 requests a lock on B, the scheduler must deny the
lock, because T\ still holds a lock on B. Thus, T2 is delayed, and the next
actions are from Ti. Eventually, Ti executes u\(B), which unlocks B. Now, T2

can get its lock on B, which is executed at the next step. Notice that because
T2 was forced to wait, it wound up multiplying B by 2 after T\ added 100,
resulting in a consistent database state. □

18.3.3 Two-Phase Locking
There is a surprising condition, called two-phase locking (or 2PL) under which
we can guarantee that a legal schedule of consistent transactions is conflict-
serializable:

• In every transaction, all lock actions precede all unlock actions.

18.3. ENFORCING SERIALIZABILITY B Y LOCKS 901

Ti T2 A B
25 25

h(A); ri(A)-,
A := A+100;
wi(A); h(B); uxiA); 125

hiA); r2 (A);
A := A*2;
w2 (A); 250
l2 (B) D enied

n (B); B := B+100;
wi(B); ui(B); 125

1 2 (B); u 2 (A); t 2 (B);
B := B*2;
w2 (B); u2 (B); 250

Figure 18.13: The locking scheduler delays requests that would result in an
illegal schedule

The “two phases” referred to by 2PL are thus the first phase, where locks
are obtained, and the second phase, where locks are relinquished. Two-phase
locking is a condition, like consistency, on the order of actions in a transaction.
A transaction that obeys the 2PL condition is said to be a two-phase-locked
transaction, or 2PL transaction.

E xam ple 18.12: In Example 18.10, the transactions do not obey the two-
phase locking rule. For instance, Ti unlocks A before it locks B. However,
the versions of the transactions found in Example 18.11 do obey the 2PL con
dition. Notice that T\ locks both A and B within the first five actions and
unlocks them within the next five actions; T2 behaves similarly. If we com
pare Figs. 18.12 and 18.13, we see how the 2PL transactions interact properly
with the scheduler to assure consistency, while the non-2PL transactions allow
non-conflict-serializable behavior. □

18.3.4 W hy Two-Phase Locking Works
Intuitively, each two-phase-locked transaction may be thought to execute in
its entirety at the instant it issues its first unlock request, as suggested by
Fig. 18.14. Thus, there is always at least one conflict-equivalent serial schedule
for a schedule S of 2PL transactions: the one in which the transactions appear
in the same order as their first unlocks.

We shall show how to convert any legal schedule S of consistent, two-phase-
locked transactions to a conflict-equivalent serial schedule. The conversion is
best described as an induction on n, the number of transactions in 5. In what
follows, it is important to remember that the issue of conflict-equivalence refers

902 CHAPTER 18. CONCURRENCY CONTROL

Instantaneously
executes now

t
locks

acquired

time —

Figure 18.14: Every two-phase-locked transaction has a point at which it may
be thought to execute instantaneously

to the read and write actions only. As we swap the order of reads and writes,
we ignore the lock and unlock actions. Once we have the read and write actions
ordered serially, we can place the lock and unlock actions around them as the
various transactions require. Since each transaction releases all locks before its
end, we know that the serial schedule is legal.

BASIS: If n = 1, there is nothing to do; 5 is already a serial schedule.

IN DU CTIO N: Suppose S involves n transactions Ti,T2, . . . , Tn, and let Ti be
the transaction with the first unlock action in the entire schedule S, say U i { X) .
We claim it is possible to move all the read and write actions of Ti forward to
the beginning of the schedule without passing any conflicting reads or writes.

Consider some action of T j, say Wi(Y). Could it be preceded in S by some
conflicting action, say wj(Y)? If so, then in schedule 5 , actions uj(Y) and k(Y)
must intervene, in a sequence of actions

Since Ti is the first to unlock, Ui(X) precedes uj (Y) in S; that is, S might look
like:

or Ui(X) could even appear before Wj(Y). In any case, Ui(X) appears before
h{Y), which means that Tj is not two-phase-locked, as we assumed. While
we have only argued the nonexistence of conflicting pairs of writes, the same
argument applies to any pair of potentially conflicting actions, one from Tj and
the other from another Tj.

We conclude that it is indeed possible to move all the actions of Tj forward
to the beginning of S, using swaps of nonconflicting read and write actions,
followed by restoration of the lock and unlock actions of Tj. That is, S can be
written in the form

• • • ; Wj{Y)-• • • ; U i (X) ; • - • ; Uj(Y); • • • ; h (Y) - • • • ; Wi(Y); ■ ■ ■

(Actions of Tj)(Actions of the other n — 1 transactions)

The tail of n — 1 transactions is still a legal schedule of consistent, 2PL trans
actions, so the inductive hypothesis applies to it. We convert the tail to a

18.3. ENFORCING SERIALIZABILITY B Y LOCKS 903

A Risk of Deadlock

One problem that is not solved by two-phase locking is the potential for
deadlocks, where several transactions are forced by the scheduler to wait
forever for a lock held by another transaction. For instance, consider the
2PL transactions from Example 18.11, but with T2 changed to work on B
first:

Tf. h(A); n(A); A := A+100; u>i(^4); h(B); iii(A); r\(B); B := B+100;
« i(5);

T2: l2 (B); r2 (B)\ B := B*2; w2 (B); l2 (A); u 2 (B); r2 {A)\ A := A*2;
w2 (A); u 2 (A);

A possible interleaving of the actions of these transactions is:

Ti T2 A B
25 25

h(A); n(A);
l2(B); r2(B);

A := A+100;
B := B*2;

125
w2(B)\ 50

l \ (B) D en ied l2(A) D en ied

Now, neither transaction can proceed, and they wait forever. In Sec
tion 19.2, we shall discuss methods to remedy this situation. However,
observe that it is not possible to allow both transactions to proceed, since
if we do so the final database state cannot possibly have A = B.

conflict-equivalent serial schedule, and now all of S has been shown conflict-
serializable.

18.3.5 Exercises for Section 18.3

E xercise 18.3.1: Below are two transactions, with lock requests and the se
mantics of the transactions indicated. Recall from Exercise 18.2.1 that these
transactions have the unusual property that they can be scheduled in ways that
are not conflict-serializable, but, because of the semantics, are serializable.

Ti: h(A); ri(A); A := A+2; wi(A); wi(4); li(B); rj(B); B := B*3; w i(£);
Ui(B);

904 CHAPTER 18. CONCURRENCY CONTROL

T2: l2 (B); r 2 {B); B := B*2; w2 {B); u 2 (B); /2(A); r2 (A); A := A+3; w2 (A);
u 2 (A);

In the questions below, consider only schedules of the read and write actions,
not the lock, unlock, or assignment steps.

a) Give an example of a schedule that is prohibited by the locks.

! b) Of the (*) = 70 orders of the eight read and write actions, how many are
legal schedules (i.e., they are permitted by the locks)?

! c) Of the legal schedules, how many are serializable (according to the se
mantics of the transactions given)?

! d) Of those schedules that are legal and serializable, how many are conflict-
serializable?

!! e) Since Ti and T2 are not two-phase-locked, we would expect that some
nonserializable behaviors would occur. Are there any legal schedules that
are unserializable? If so, give an example, and if not, explain why.

! Exercise 18.3.2 : Here are the transactions of Exercise 18.3.1, with all unlocks
moved to the end so they are two-phase-locked.

Ti: h(A); ri(A); A := A+2; w>i(A); h(B); n (B); B := B*3; Wi(B); Ui(A);
ui(B);

T2: l2 (B); r2(B); B := B*2; w2 (B); 12{A); r 2 (A); A := A+3; w2(A); u 2 {B);
u2(A);

How many legal schedules of all the read and write actions of these transactions
are there?

E xercise 18.3 .3 : For each of the schedules of Exercise 18.2.4, assume that
each transaction takes a lock on each database element immediately before it
reads or writes the element, and that each transaction releases its locks immedi
ately after the last time it accesses an element. Tell what the locking scheduler
would do with each of these schedules; i.e., what requests would get delayed,
and when would they be allowed to resume?

! E xercise 18.3 .4 : For each of the transactions described below, suppose that
we insert one lock and one unlock action for each database element that is
accessed.

a) ri (A); wx(B);

b) r2(A); w2 (A)-, w2 (B);

Tell how many orders of the lock, unlock, read, and write actions are:

18.4. LOCKING SYSTEM S W ITH SEVERAL LOCK MODES 905

i. Consistent and two-phase locked.

ii. Consistent, but not two-phase locked.

Hi. Inconsistent, but two-phase locked.

iv. Neither consistent nor two-phase locked.

18.4 Locking System s W ith Several Lock M odes
The locking scheme of Section 18.3 illustrates the important ideas behind lock
ing, but it is too simple to be a practical scheme. The main problem is that a
transaction T must take a lock on a database element X even if it only wants
to read X and not write it. We cannot avoid taking the lock, because if we
didn’t, then another transaction might write a new value for X while T was
active and cause unserializable behavior. On the other hand, there is no reason
why several transactions could not read X at the same time, as long as none is
allowed to write X .

We are thus motivated to introduce the most common locking scheme, where
there are two different kinds of locks, one for reading (called a “shared lock” or
“read lock”), and one for writing (called an “exclusive lock” or “write lock”).
We then examine an improved scheme where transactions are allowed to take
a shared lock and “upgrade” it to an exclusive lock later. We also consider
“increment locks,” which treat specially write actions that increment a database
element; the important distinction is that increment operations commute, while
general writes do not. These examples lead us to the general notion of a lock
scheme described by a “compatibility matrix” that indicates what locks on a
database element may be granted when other locks are held.

18.4.1 Shared and Exclusive Locks
The lock we need for writing is “stronger” than the lock we need to read,
since it must prevent both reads and writes. Let us therefore consider a locking
scheduler that uses two different kinds of locks: shared locks and exclusive locks.
For any database element X there can be either one exclusive lock on X, or no
exclusive locks but any number of shared locks. If we want to write X , we need
to have an exclusive lock on X, but if we wish only to read X we may have
either a shared or exclusive lock on X. If we want to read X but not write it,
it is better to take only a shared lock.

We shall use sli(X) to mean “transaction T j requests a shared lock on
database element X ” and xli(X) for “T j requests an exclusive lock on X.” We
continue to use Ui(X) to mean that Ti unlocks X; i.e., it relinquishes whatever
lock(s) it has on X .

The three kinds of requirements — consistency and 2PL for transactions,
and legality for schedules — each have their counterpart for a shared/exclusive
lock system. We summarize these requirements here:

906 CHAPTER 18. CONCURRENCY CONTROL

1. Consistency of transactions: A transaction may not write without holding
an exclusive lock, and you may not read without holding some lock. More
precisely, in any transaction Ti,

(a) A read action ri(X) must be preceded by sli(X) or xk (X) , with no
intervening U i (X) .

(b) A write action Wi(X) must be preceded by xli(X), with no interven
ing Ui{X).

All locks must be followed by an unlock of the same element.

2. Two-phase locking of transactions: Locking must precede unlocking. To
be more precise, in any two-phase locked transaction T*, no action sli(X)
or xli(X) can be preceded by an action Ui(Y), for any Y.

3. Legality of schedules: An element may either be locked exclusively by one
transaction or by several in shared mode, but not both. More precisely:

(a) If xli(X) appears in a schedule, then there cannot be a following
x lj(X) or slj(X), for some j other than i, without an intervening
Ui(X).

(b) If sli(X) appears in a schedule, then there cannot be a following
x lj(X), for j / i, without an intervening Ui(X).

Note that we do allow one transaction to request and hold both shared
and exclusive locks on the same element, provided its doing so does not
conflict with the lock(s) of other transactions. If transactions know in
advance their needs for locks, then only the exclusive lock would have to
be requested, but if lock needs are unpredictable, then it is possible that
one transaction would request both shared and exclusive locks at different
times.

E xam ple 18.13: Let us examine a possible schedule of the following two
transactions, using shared and exclusive locks:

Ti: sli(A); ri{A); xli(B); n (B); Wi(B); «i(A); iti(B);
T2: sl2 (A); r2 (A.)-, sl2 (B)-, r2 (B); u 2 (A); u2 (B);

Both Ti and T2 read A and B, but only T\ writes B. Neither writes A.
In Fig. 18.15 is an interleaving of the actions of Ti and T2 in which Ti begins

by getting a shared lock on A. Then, T2 follows by getting shared locks on both
A and B. Now, Ti needs an exclusive lock on B, since it will both read and
write B. However, it cannot get the exclusive lock because T2 already has a
shared lock on B. Thus, the scheduler forces T% to wait. Eventually, T2 releases
the lock on B. At that time, Ti may complete. □

18.4. LOCKING SYSTEM S WITH SEVERAL LOCK MODES 907

T\ 2~2
sh(Ay, n (A)-,

sl2 {A); r2 (A);
sl2 (B); r2 (B);

xl\{B) D enied
u 2(A) ; u 2(B)

xh(B)\ r i (B); wi_(B)\
ui(A)\ ui{B);

Figure 18.15: A schedule using shared and exclusive locks

Notice that the resulting schedule in Fig 18.15 is conflict-serializable. The
conflict-equivalent serial order is (T2,Xi), even though T% started first. The
argument we gave in Section 18.3.4 to show that legal schedules of consistent,
2PL transactions are conflict-serializable applies to systems with shared and
exclusive locks as well. In Fig. 18.15, T2 unlocks before Ti, so we would expect
T2 to precede Ti in the serial order.

18.4.2 Compatibility Matrices
If we use several lock modes, then the scheduler needs a policy about when it
can grant a lock request, given the other locks that may already be held on the
same database element. A compatibility matrix is a convenient way to describe
lock-management policies. It has a row and column for each lock mode. The
rows correspond to a lock that is already held on an element X by another
transaction, and the columns correspond to the mode of a lock on X that is
requested. The rule for using a compatibility matrix for lock-granting decisions
is:

• We can grant the lock on X in mode C if and only if for every row R such
that there is already a lock on X in mode R by some other transaction,
there is a “Yes” in column C.

Lock requested
S X

Lock held S Yes No
in mode X No No

Figure 18.16: The compatibility matrix for shared and exclusive locks

E xam ple 18.14: Figure 18.16 is the compatibility matrix for shared (S) and
exclusive (X) locks. The column for S says that we can grant a shared lock on

908 CHAPTER 18. CONCURRENCY CONTROL

an element if the only locks held on that element currently are shared locks.
The column for X says that we can grant an exclusive lock only if there are no
other locks held currently. □

18.4.3 Upgrading Locks
A transaction T that takes a shared lock on X is being “friendly” toward other
transactions, since they are allowed to read X at the same time T is. Thus,
we might wonder whether it would be friendlier still if a transaction T that
wants to read and write a new value of X were first to take a shared lock
on X , and only later, when T was ready to write the new value, upgrade the
lock to exclusive (i.e., request an exclusive lock on X in addition to its already
held shared lock on X). There is nothing that prevents a transaction from
issuing requests for locks on the same database element in different modes. We
adopt the convention that Ui(X) releases all locks on X held by transaction Tj,
although we could introduce mode-specific unlock actions if there were a use
for them.

E xam ple 18.15: In the following example, transaction Ti is able to perform
its computation concurrently with T2, which would not be possible had T\ taken
an exclusive lock on B initially. The two transactions are:

Ti: sh(A)\ n (A); s h (B); n{B); xh(B); w ^B); ui(A); « i(£);
T2: sl2 (A)\ r 2 (A); sl2 (B); r 2 (B); u2 (A); u2 (B);

Here, T\ reads A and B and performs some (possibly lengthy) calculation with
them, eventually using the result to write a new value of B. Notice that Ti
takes a shared lock on B first, and later, after its calculation involving A and B
is finished, requests an exclusive lock on B. Transaction T2 only reads A and
B, and does not write.

Xi T2
sli(A); ri(A);

sl2 (A); r2 (A);
sl2 {B)\ r2 (B)-,

sli(B); r\(B)]
xli(B) D enied

u 2(A) ; u 2(B)
xli(B); w i{B);
ui(A); u 2 (B)\

Figure 18.17: Upgrading locks allows more concurrent operation

Figure 18.17 shows a possible schedule of actions. T2 gets a shared lock on
B before Ti does, but on the fourth line, Ti is also able to lock B in shared

18.4. LOCKING SYSTEM S WITH SEVERAL LOCK MODES 909

mode. Thus, 7\ has both A and B and can perform its computation using their
values. It is not until Ti tries to upgrade its lock on B to exclusive that the
scheduler must deny the request and force Ti to wait until T 2 releases its lock
on B. At that time, T j gets its exclusive lock on B, writes B, and finishes.

Notice that had Ti asked for an exclusive lock on B initially, before reading
B, then the request would have been denied, because T 2 already had a shared
lock on B. Ti could not perform its computation without reading B, and so
Ti would have more to do after T 2 releases its locks. As a result, T\ finishes
later using only an exclusive lock on B than it would if it used the upgrading
strategy. □

E xam ple 18.16: Unfortunately, indiscriminate use of upgrading introduces a
new and potentially serious source of deadlocks. Suppose, that Ti and T2 each
read database element A and write a new value for A. If both transactions use
an upgrading approach, first getting a shared lock on A and then upgrading it to
exclusive, the sequence of events suggested in Fig. 18.18 will happen whenever
I i and T2 initiate at approximately the same time.

Ti T2
sh(A)

sl2 (A)
xli (A) D enied

x l 2 (A) D enied

Figure 18.18: Upgrading by two transactions can cause a deadlock

Ti and T2 are both able to get shared locks on A. Then, they each try to
upgrade to exclusive, but the scheduler forces each to wait because the other
has a shared lock on A. Thus, neither can make progress, and they will each
wait forever, or until the system discovers that there is a deadlock, aborts one
of the two transactions, and gives the other the exclusive lock on A. □

18.4.4 Update Locks
We can avoid the deadlock problem of Example 18.16 with a third lock mode,
called update locks. An update lock uli(X) gives transaction T j only the privi
lege to read X , not to write X . However, only the update lock can be upgraded
to a write lock later; a read lock cannot be upgraded. We can grant an update
lock on X when there are already shared locks on X , but once there is an up
date lock on X we prevent additional locks of any kind — shared, update, or
exclusive — from being taken on X . The reason is that if we don’t deny such
locks, then the updater might never get a chance to upgrade to exclusive, since
there would always be other locks on X .

This rule leads to an asymmetric compatibility matrix, because the update
(U) lock looks like a shared lock when we are requesting it and looks like an

910 CHAPTER 18. CONCURRENCY CONTROL

exclusive lock when we already have it. Thus, the columns for U and S locks
are the same, and the rows for U and X locks are the same. The matrix is
shown in Fig. 18.19.3

s X U
s Yes No Yes
X No No No
u No No No

Figure 18.19: Compatibility matrix for shared, exclusive, and update locks

E xam ple 18.17: The use of update locks would have no effect on Exam
ple 18.15. As its third action, Tj would take an update lock on B, rather than
a shared lock. But the update lock would be granted, since only shared locks
are held on B, and the same sequence of actions shown in Fig. 18.17 would
occur.

However, update locks fix the problem shown in Example 18.16. Now, both
Xi and T2 first request update locks on A and only later take exclusive locks.
Possible descriptions of Ti and T2 are:

Ti: uli{A); n (A); xh{A)-, Wi(A); iti(A);
T2: ul2 (A); r2 (A); xl2 (A); w2 (A); u 2 (A);

The sequence of events corresponding to Fig. 18.18 is shown in Fig. 18.20. Now,
T2, the second to request an update lock on A, is denied. I i is allowed to finish,
and then T2 may proceed. The lock system has effectively prevented concurrent
execution of Ti and T2, but in this example, any significant amount of concur
rent execution will result in either a deadlock or an inconsistent database state.
□

Ti____________________n ________________
uh {A);n {A);

ul2 (A) D enied
xli(A); Wi(A); ux{A);

ul2 (A); r2 (A);
xl2 (A); w2 (A); u 2 (A);

Figure 18.20: Correct execution using update locks

3Remember, however, that there is an additional condition regarding legality of schedules
that is not reflected by this matrix: a transaction holding a shared lock but not an update
lock on an element X cannot be given an exclusive lock on X, even though we do not in
general prohibit a transaction from holding multiple locks on an element.

18.4. LOCKING SYSTEM S W ITH SEVERAL LOCK MODES 911

18.4.5 Increment Locks
Another interesting kind of lock that is useful in some situations is an “incre
ment lock.” Many transactions operate on the database only by incrementing or
decrementing stored values. For example, consider a transaction that transfers
money from one bank account to another.

The useful property of increment actions is that they commute with each
other, since if two transactions add constants to the same database element, it
does not m atter which goes first, as the diagram of database state transitions in
Fig. 18.21 suggests. On the other hand, incrementation commutes with neither
reading nor writing; If you read A before or after it is incremented, you leave
different values, and if you increment A before or after some other transaction
writes a new value for A, you get different values of A in the database.

Figure 18.21: Two increment actions commute, since the final database state
does not depend on which went first

Let us introduce as a possible action in transactions the increment action,
written INC(A,c). Informally, this action adds constant c to database element
A, which we assume is a single number. Note that c could be negative, in
which case we are really decrementing A. In practice, we might apply INC to a
component of a tuple, while the tuple itself, rather than one of its components,
is the lockable element. More formally, we use INC(A,c) to stand for the atomic
execution of the following steps: READ(A,t); t := t+ c ; WRITE(A,t) ;.

Corresponding to the increment action, we need an increment lock. We
shall denote the action of Tj requesting an increment lock on X by ili(X). We
also use shorthand mCj(X) for the action in which transaction Ti increments
database element X by some constant; the exact constant doesn’t matter.

The existence of increment actions and locks requires us to make several
modifications to our definitions of consistent transactions, conflicts, and legal
schedules. These changes are:

a) A consistent transaction can only have an increment action on X if it
holds an increment lock on X at the time. An increment lock does not
enable either read or write actions, however.

b) In a legal schedule, any number of transactions can hold an increment
lock on X at any time. However, if an increment lock on X is held by
some transaction, then no other transaction can hold either a shared or
exclusive lock on X at the same time. These requirements axe expressed

912 CHAPTER 18. CONCURRENCY CONTROL

by the compatibility matrix of Fig. 18.22, where I represents a lock in
increment mode.

c) The action inCi(X) conflicts with both r j(X) and Wj(X), for j / i, but
does not conflict with incj(X).

s X I
s Yes No No
X No No No
I No No Yes

Figure 18.22: Compatibility matrix for shared, exclusive, and increment locks

E xam ple 18.18: Consider two transactions, each of which read database ele
ment A and then increment B.

Ti: sh(A); n (A); ili(B)-, inci(B); tti(A); «i(B);
T2: sl2 (A); r 2(A); il2 (B); inc2 {B); u 2 (A); u2 (B);

Notice that the transactions are consistent, since they only perform an incre
mentation while they have an increment lock, and they only read while they
have a shared lock. Figure 18.23 shows a possible interleaving of and T2. Ti
reads A first, but then T2 both reads A and increments B. However, Ti is then
allowed to get its increment lock on B and proceed.

Ti______________ Th___________
sh(A); n{A);

sl2 {A); r2 (A);
il2 (B); inc2 (B);

ili(B); inci(B);
u 2{A)-, u 2{ B) \

mi (A); Mi {B)\

Figure 18.23: A schedule of transactions with increment actions and locks

Notice that the scheduler did not have to delay any requests in Fig. 18.23.
Suppose, for instance, that Ti increments B by A, and T2 increments B by 2A.
They can execute in either order, since the value of A does not change, and the
incrementations may also be performed in either order.

Put another way, we may look at the sequence of non-lock actions in the
schedule of Fig. 18.23; they are:

S: ri(A); r 2 (A); inc2 (B); m ci(B);

18.4. LOCKING SYSTEM S WITH SEVERAL LOCK MODES 913

We may move the last action, inci(B), to the second position, since it does
not conflict with another increment of the same element, and surely does not
conflict with a read of a different element. This sequence of swaps shows that
S is conflict-equivalent to the serial schedule ri(A); inci(B); r2 (A); inc2 (B)\.
Similarly, we can move the first action, r\(A) to the third position by swaps,
giving a serial schedule in which T2 precedes T i. □

18.4.6 Exercises for Section 18.4
Exercise 18.4.1: For each of the schedules of transactions Ti, T2, and T3

below:

a) n(A); r2 (B); r 3(C); w2 (C); w3(D);

b) ri(A); r2 (B)\ r3 (C); wi(B); w2 (C); w3 {A);

c) ri(A); r2(S); r 3 (C); n (B); r 2(C); r3 {D); tui(C); w2(D); w3 (E);

d) n(A); r2 (B); r3(C); n (B); r2 (C); r3 (D); w ^A); w2 (B); w3 (C);

e) ri(A); r2(B); r3 (C); n (B); r2 (C); r3 (A); w 1 (A); w2 {B)-, w3 (C)\

do each of the following:

i. Insert shared and exclusive locks, and insert unlock actions. Place a
shared lock immediately in front of each read action that is not followed
by a write action of the same element by the same transaction. Place
an exclusive lock in front of every other read or write action. Place the
necessary unlocks at the end of every transaction.

ii. Tell what happens when each schedule is run by a scheduler that supports
shared and exclusive locks.

iii. Insert shared and exclusive locks in a way that allows upgrading. Place
a shared lock in front of every read, an exclusive lock in front of every
write, and place the necessary unlocks at the ends of the transactions.

iv. Tell what happens when each schedule from (iii) is run by a scheduler
that supports shared locks, exclusive locks, and upgrading.

v. Insert shared, exclusive, and update locks, along with unlock actions.
Place a shared lock in front of every read action that is not going to be
upgraded, place an update lock in front of every read action that will be
upgraded, and place an exclusive lock in front of every write action. Place
unlocks at the ends of transactions, as usual.

vi. Tell what happens when each schedule from (v) is run by a scheduler that
supports shared, exclusive, and update locks.

914 CHAPTER 18. CONCURRENCY CONTROL

! E xercise 18.4.2: Consider the two transactions:

Tx\ n (A); n{B); inci(A); mci(J5);
T2: r2 (A); r2 (B); inc2 (A)\ inc2 (B);

Answer the following:

a) How many interleavings of these transactions are serializable?

b) If the order of incrementation in T2 were reversed [i.e., inc2 (B) followed
by inc2 {A)], how many serializable interleavings would there be?

E xercise 18.4.3: For each of the following schedules, insert appropriate locks
(read, write, or increment) before each action, and unlocks at the ends of trans
actions. Then tell what happens when the schedule is run by a scheduler that
supports these three types of locks.

a) ri (A); r2(S); inci(B); inc2 (C)\ wi{C); w2 (D);

b) n(A); r2(£); inci(B); inc2(A); Wi(C); w2 (D);

c) inci(A); inc2 (B); inci(B); inc2(C); Wi(C'); w2 {D)\

Exercise 18.4.4: In Exercise 18.1.1, we discussed a hypothetical transaction
involving an airline reservation. If the transaction manager had available to it
shared, exclusive, update, and increment locks, what lock would you recommend
for each of the steps of the transaction?

E xercise 18.4.5: The action of multiplication by a constant factor can be
modeled by an action of its own. Suppose MC(X,c) stands for an atomic execu
tion of the steps READ(X,t) ; t := c * t ; WRITE(X.t);. We can also introduce
a lock mode that allows only multiplication by a constant factor.

a) Show the compatibility matrix for read, write, and multiplication-by-a-
constant locks.

! b) Show the compatibility matrix for read, write, incrementation, and mult-
iplication-by-a-constant locks.

! Exercise 18.4.6: Suppose for sake of argument that database elements are
two-dimensional vectors. There are four operations we can perform on vectors,
and each will have its own type of lock.

i. Change the value along the x-axis (an X-lock).

ii. Change the value along the y-axis (a F-lock).

Hi. Change the angle of the vector (an A-lock).

iv. Change the magnitude of the vector (an M-lock).

18.5. A N ARCHITECTURE FOR A LOCKING SCHEDULER 915

Answer the following questions.

a) Which pairs of operations commute? For example, if we rotate the vector
so its angle is 120° and then change the ^-coordinate to be 10, is that
the same as first changing the x-coordinate to 10 and then changing the
angle to 120°?

b) Based on your answer to (a), what is the compatibility matrix for the four
types of locks?

!! c) Suppose we changed the four operations so that instead of giving new
values for a measure, the operations incremented the measure (e.g., “add
10 to the ^-coordinate,” or “rotate the vector 30° clockwise”). What
would the compatibility matrix then be?

E xercise 18.4.7: Here is a schedule with one action missing:

n (A) ; r 2(B); ???; Wl(C); w2 (A);

Your problem is to figure out what actions of certain types could replace the
??? and make the schedule not be serializable. Tell all possible nonserializable
replacements for each of the following types of action: (a) Read (b) Write
(c) Update (d) Increment.

18.5 An Architecture for a Locking Scheduler
Having seen a number of different locking schemes, we next consider how a
scheduler that uses one of these schemes operates. We shall consider here only
a simple scheduler architecture based on several principles:

1. The transactions themselves do not request locks, or cannot be relied
upon to do so. It is the job of the scheduler to insert lock actions into the
stream of reads, writes, and other actions that access data.

2. Transactions do not release locks. Rather, the scheduler releases the locks
when the transaction manager tells it that the transaction will commit or
abort.

18.5.1 A Scheduler That Inserts Lock Actions
Figure 18.24 shows a two-part scheduler that accepts requests such as read,
write, commit, and abort, from transactions. The scheduler maintains a lock
table, which, although it is shown as secondary-storage data, may be partially
or completely in main memory. Normally, the main memory used by the lock
table is not part of the buffer pool that is used for query execution and logging.
Rather, the lock table is just another component of the DBMS, and will be

916 CHAPTER 18. CONCURRENCY CONTROL

From transactions

Figure 18.24: A scheduler that inserts lock requests into the transactions’ re
quest stream

allocated space by the operating system like other code and internal data of the
DBMS.

Actions requested by a transaction are generally transmitted through the
scheduler and executed on the database. However, under some circumstances
a transaction is delayed, waiting for a lock, and its requests are not (yet) trans
mitted to the database. The two parts of the scheduler perform the following
actions:

1. Part I takes the stream of requests generated by the transactions and
inserts appropriate lock actions ahead of all database-access operations,
such as read, write, increment, or update. The database access actions
are then transmitted to Part II. Part I of the scheduler must select an
appropriate lock mode from whatever set of lock modes the scheduler is
using.

2. Part II takes the sequence of lock and database-access actions passed
to it by Part I, and executes each appropriately. If a lock or database-
access request is received by Part II, it determines whether the issuing
transaction T is already delayed, because a lock has not been granted.
If so, then the action is itself delayed and added to a list of actions that
must eventually be performed for transaction T. If T is not delayed (i.e.,
all locks it previously requested have been granted already), then

(a) If the action is a database access, it is transmitted to the database
and executed.

(b) If a lock action is received by Part II, it examines the lock table to
see if the lock can be granted.

i. If so, the lock table is modified to include the lock just granted.

18.5. A N ARCHITECTURE FOR A LOCKING SCHEDULER 917

ii. If not, then an entry must be made in the lock table to indicate
that the lock has been requested. Part II of the scheduler then
delays transaction T until such time as the lock is granted.

3. When a transaction T commits or aborts, Part I is notified by the trans
action manager, and releases all locks held by T. If any transactions are
waiting for any of these locks, Part I notifies Part II.

4. When Part II is notified that a lock on some database element X is avail
able, it determines the next transaction or transactions that can now be
given a lock on X . The transaction(s) that receive a lock are allowed to
execute as many of their delayed actions as can execute, until they either
complete or reach another lock request that cannot be granted.

E xam ple 18.19: If there is only one kind of lock, as in Section 18.3, then the
task of Part I of the scheduler is simple. If it sees any action on database element
X , and it has not already inserted a lock request on X for that transaction,
then it inserts the request. When a transaction commits or aborts, Part I can
forget about that transaction after releasing its locks, so the memory required
for Part I does not grow indefinitely.

When there are several kinds of locks, the scheduler may require advance
notice of what future actions on the same database element will occur. Let us
reconsider the case of shared-exclusive-update locks, using the transactions of
Example 18.15, which we now write without any locks at all:

Ti: ri(A); n (B); Wi(B);
Tf. r2 (A); r 2(S);

The messages sent to Part I of the scheduler must include not only the read
or write request, but an indication of future actions on the same element. In
particular, when ri(B) is sent, the scheduler needs to know that there will be
a later wi(B) action (or might be such an action). There are several ways
the information might be made available. For example, if the transaction is a
query, we know it will not write anything. If the transaction is a SQL database
modification command, then the query processor can determine in advance the
database elements that might be both read and written. If the transaction is
a program with embedded SQL, then the compiler has access to all the SQL
statements (which are the only ones that can access the database) and can
determine the potential database elements written.

In our example, suppose that events occur in the order suggested by Fig.
18.17. Then Ti first issues rj (A). Since there will be no future upgrading of
this lock, the scheduler inserts sh(A) ahead of r\(A). Next, the requests from
T2 — r2(A) and r2 (B) — arrive at the scheduler. Again there is no future
upgrade, so the sequence of actions sl2 (A); r 2(A); .s/2(B); r2(B) are issued by
Part I.

Then, the action r i (B) arrives at the scheduler, along with a warning that
this lock may be upgraded. The scheduler Part I thus emits uli(B); r i(B) to

918 CHAPTER 18. CONCURRENCY CONTROL

Part II. The latter consults the lock table and finds that it can grant the update
lock on B to Ti, because there are only shared locks on B.

When the action wi(B) arrives at the scheduler, Part I emits xl\{B)\ wi(B).
However, Part II cannot grant the xli(B) request, because there is a shared lock
on B for T2. This and any subsequent actions from Ti are delayed, stored by
Part II for future execution. Eventually, TV-commits, and Part I releases the
locks on A and B that T2 held. At that time, it is found that Ti is waiting for
a lock on B. Part II of the scheduler is notified, and it finds the lock xl\{B)
is now available. It enters this lock into the lock table and proceeds to execute
stored actions from Ti to the extent possible. In this case, T\ completes. □

Lock inform ation fo r A

Figure 18.25: A lock table is a mapping from database elements to their lock
information

18.5.2 The Lock Table
Abstractly, the lock table is a relation that associates database elements with
locking information about that element, as suggested by Fig. 18.25. The table
might, for instance, be implemented with a hash table, using (addresses of)
database elements as the hash key. Any element that is not locked does not
appear in the table, so the size is proportional to the number of locked elements
only, not to the size of the entire database.

In Fig. 18.26 is an example of the sort of information we would find in a lock-
table entry. This example structure assumes that the shared-exclusive-update
lock scheme of Section 18.4.4 is used by the scheduler. The entry shown for a
typical database element A is a tuple with the following components:

1. The group mode is a summary of the most stringent conditions that a
transaction requesting a new lock on A faces. Rather than comparing
the lock request with every lock held by another transaction on the same
element, we can simplify the grant/deny decision by comparing the request
with only the group mode.4 For the shared-exclusive-update (S X U) lock
scheme, the rule is simple: the group mode:

4T h e lock m an ag er m u st, however, deal w ith th e p o ssib ility th a t th e requesting tran sac tio n
already has a lock in an o th e r m ode on th e sam e elem ent. For in stan ce , in th e S X U lock
sys tem discussed , th e lock m an ag er m ay be able to g ran t an Jf-lock request if th e requesting

18.5. A N ARCHITECTURE FOR A LOCKING SCHEDULER 919

Figure 18.26: Structure of lock-table entries

(a) S means that only shared locks are held.
(b) U means that there is one update lock and perhaps one or more

shared locks.
(c) X means there is one exclusive lock and no other locks.

For other lock schemes, there is usually an appropriate system of sum
maries by a group mode; we leave examples as exercises.

2. The waiting bit tells that there is at least one transaction waiting for a
lock on A.

3. A list describing all those transactions that either currently hold locks on
A or are waiting for a lock on A. Useful information that each list entry
has might include:

(a) The name of the transaction holding or waiting for a lock.

(b) The mode of this lock.
(c) Whether the transaction is holding or waiting for the lock.

We also show in Fig. 18.26 two links for each entry. One links the entries
themselves, and the other links all entries for a particular transaction
(Tnext in the figure). The latter link would be used when a transaction
commits or aborts, so that we can easily find all the locks that must be
released.

tran sac tio n is th e one th a t holds a U lock on th e sam e elem ent. For system s th a t do not
su p p o rt m u ltip le locks held by one tran sac tio n on one elem ent, th e g roup m ode alw ays tells
w h a t th e lock m anager needs to know.

920 CHAPTER 18. CONCURRENCY CONTROL

H an d lin g Lock R eq u ests

Suppose transaction T requests a lock on A. If there is no lock-table entry for
A, then surely there are no locks on A, so the entry is created and the request
is granted. If the lock-table entry for A exists, we use it to guide the decision
about the lock request. We find the group mode, which in Fig. 18.26 is U,
or “update.” Once there is an update lock on an element, no other lock can
be granted (except in the case that T itself TTolds the U lock and other locks
are compatible with T ’s request). Thus, this request by T is denied, and an
entry will be placed on the list saying T requests a lock (in whatever mode was
requested), and Wait? = ’y e s ’ .

If the group mode had been X (exclusive), then the same thing would hap
pen, but if the group mode were S (shared), then another shared or update
lock could be granted. In that case, the entry for T on the list would have
Wait? = ’no ’, and the group mode would be changed to U if the new lock
were an update lock; otherwise, the group mode would remain S. Whether or
not the lock is granted, the new list entry is linked properly, through its Tnext
and Next fields. Notice that whether or not the lock is granted, the entry in the
lock table tells the scheduler what it needs to know without having to examine
the list of locks.

H andling U nlocks

Now suppose transaction T unlocks A. T ’s entry on the list for A is deleted. If
the lock held by T is not the same as the group mode (e.g., T held an S lock,
while the group mode was U), then there is no reason to change the group mode.
On the other hand, if T ’s lock is in the group mode, we may have to examine the
entire list to find the new group mode. In the example of Fig. 18.26, we know
there can be only one U lock on an element, so if that lock is released, the new
group mode could be only S (if there are shared locks remaining) or nothing
(if no other locks are currently held).5 If the group mode is X , we know there
are no other locks, and if the group mode is S, we need to determine whether
there are other shared locks.

If the value of W aiting is ’y e s ’ , then we need to grant one or more locks
from the list of requested locks. There are several different approaches, each
with its advantages:

1. First-come-first-served: Grant the lock request that has been waiting the
longest. This strategy guarantees no starvation, the situation where a
transaction can wait forever for a lock.

2. Priority to shared locks: First grant all the shared locks waiting. Then,
grant one update lock, if there are any waiting. Only grant an exclusive
lock if no others are waiting. This strategy can allow starvation, if a
transaction is waiting for a U or X lock.

5W e w ould never a c tu a lly see a g roup m ode of “n o th in g ,” since if th e re are no locks and
no lock requests on an elem en t, th en th e re is no lock -tab le e n try fo r th a t elem ent.

18.6. HIERARCHIES OF DATABASE ELEMENTS 921

3. Priority to upgrading-. If there is a transaction with a U lock waiting to
upgrade it to an X lock, grant that first. Otherwise, follow one of the
other strategies mentioned.

18.5.3 Exercises for Section 18.5
E xercise 18.5.1: What are suitable group modes for a lock table if the lock
modes used are:

a) Shared and exclusive locks.

! b) Shared, exclusive, and increment locks.

!! c) The lock modes of Exercise 18.4.6.

Exercise 18.5.2: For each of the schedules of Exercise 18.2.4, tell the steps
that the locking scheduler described in this section would execute.

18.6 Hierarchies of Database Elements
Let us now return to the exploration of different locking schemes that we began
in Section 18.4. In particular, we shall focus on two problems that come up
when there is a tree structure to our data.

1. The first kind of tree structure we encounter is a hierarchy of lockable
elements. We shall discuss in this section how to allow locks on both large
elements, e.g., relations, and smaller elements contained within these, such
as blocks holding several tuples of the relation, or individual tuples.

2. The second kind of hierarchy that is important in concurrency-control
systems is data that is itself organized in a tree. A major example is
B-tree indexes. We may view nodes of the B-tree as database elements,
but if we do, then as we shall see in Section 18.7, the locking schemes
studied so far perform poorly, and we need to use a new approach.

18.6.1 Locks W ith M ultiple Granularity
Recall that the term “database element” was purposely left undefined, because
different systems use different sizes of database elements to lock, such as tuples,
pages or blocks, and relations. Some applications benefit from small database
elements, such as tuples, while others are best off with large elements.

E xam ple 18.20: Consider a database for a bank. If we treated relations as
database elements, and therefore had only one lock for an entire relation such
as the one giving account balances, then the system would allow very little
concurrency. Since most transactions will change an account balance either
positively or negatively, most transactions would need an exclusive lock on the

922 CHAPTER 18. CONCURRENCY CONTROL

accounts relation. Thus, only one deposit or withdrawal could take place at
any time, no m atter how many processors we had available to execute these
transactions. A better approach is to lock individual pages or data blocks.
Thus, two accounts whose tuples are on different blocks can be updated at the
same time, offering almost all the concurrency that is possible in the system.
The extreme would be to provide a lock for every tuple, so any set of accounts
whatsoever could be updated at once, but this fine a grain of locks is probably
not worth the extra effort.

In contrast, consider a database of documents. These documents may be
edited from time to time, but most transactions will retrieve whole documents.
The sensible choice of database element is a complete document. Since most
transactions are read-only (i.e., they do not perform any write actions), locking
is only necessary to avoid the reading of a document that is in the middle of
being edited. Were we to use smaller-granularity locks, such as paragraphs,
sentences, or words, there would be essentially no benefit but added expense.
The only activity a smaller-granularity lock would support is the ability for two
people to edit different parts of a document simultaneously. □

Some applications could use both large- and small-grained locks. For in
stance, the bank database discussed in Example 18.20 clearly needs block- or
tuple-level locking, but might also at some time need a lock on the entire ac
counts relation in order to audit accounts (e.g., check that the sum of the
accounts is correct). However, permitting a shared lock on the accounts rela
tion, in order to compute some aggregation on the relation, while at the same
time there are exclusive locks on individual account tuples, can lead easily to
unserializable behavior. The reason is that the relation is actually changing
while a supposedly frozen copy of it is being read by the aggregation query.

18.6.2 Warning Locks
The solution to the problem of managing locks at different granularities involves
a new kind of lock called a “warning.” These locks are useful when the database
elements form a nested or hierarchical structure, as suggested in Fig. 18.27.
There, we see three levels of database elements:

1. Relations are the largest lockable elements.

2. Each relation is composed of one or more block or pages, on which its
tuples are stored.

3. Each block contains one or more tuples.

The rules for managing locks on a hierarchy of database elements constitute
the warning protocol, which involves both “ordinary” locks and “warning” locks.
We shall describe the lock scheme where the ordinary locks are 5 and X (shared
and exclusive). The warning locks will be denoted by prefixing I (for “intention

18.6. HIERARCHIES OF DATABASE ELEMENTS 923

Figure 18.27: Database elements organized in a hierarchy

to”) to the ordinary locks; for example I S represents the intention to obtain a
shared lock on a subelement. The rules of the warning protocol are:

1. To place an ordinary S or X lock on any element, we must begin at the
root of the hierarchy.

2. If we are at the element that we want to lock, we need look no farther.
We request an S or X lock on that element.

3. If the element we wish to lock is further down the hierarchy, then we
place a warning at this node; that is, if we want to get a shared lock on a
subelement we request an I S lock at this node, and if we want an exclusive
lock on a subelement, we request an I X lock on this node. When the lock
on the current node is granted, we proceed to the appropriate child (the
one whose subtree contains the node we wish to lock). We then repeat
step (2) or step (3), as appropriate, until we reach the desired node.

IS IX S X
IS Yes Yes Yes No
IX Yes Yes No No
s Yes No Yes No

_x No No No No

Figure 18.28: Compatibility matrix for shared, exclusive, and intention locks

In order to decide whether or not one of these locks can be granted, we use
the compatibility matrix of Fig. 18.28. To see why this matrix makes sense,
consider first the I S column. When we request an I S lock on a node N , we
intend to read a descendant of N. The only time this intent could create a
problem is if some other transaction has already claimed the right to write a
new copy of the entire database element represented by N; thus we see “No”
in the row for X . Notice that if some other transaction plans to write only a
subelement, indicated by an I X lock at N , then we can afford to grant the I S

924 CHAPTER 18. CONCURRENCY CONTROL

Group Modes for Intention Locks

The compatibility matrix of Fig. 18.28 exhibits a situation we have not seen
before regarding the power of lock modes. In prior lock schemes, whenever
it was possible for a database element to be locked in both modes M and
N at the same time, one of these modes dominates the other, in the sense
that its row and column each has “No” in whatever positions the other
mode’s row or column, respectively, has “No.” For example, in Fig. 18.19
we see that U dominates S, and X dominates both S and U. An advantage
of knowing that there is always one dominant lock on an element is that we
can summarize the effect of many locks with a “group mode,” as discussed
in Section 18.5.2.

As we see from Fig. 18.28, neither of modes S and I X dominate the
other. Moreover, it is possible for an element to be locked in both modes
S and I X at the same time, provided the locks are requested by the
same transaction (recall that the “No” entries in a compatibility matrix
only apply to locks held by some other transaction). A transaction might
request both locks if it wanted to read an entire element and then write
a few of its subelements. If a transaction has both S and I X locks on an
element, then it restricts other transactions to the extent that either lock
does. That is, we can imagine another lock mode S I X , whose row and
column have “No” everywhere except in the entry for IS . The lock mode
S I X serves as the group mode if there is a transaction with locks in S and
I X modes, but not X mode.

Incidentally, we might imagine that the same situation occurs in the
matrix of Fig 18.22 for increment locks. That is, one transaction could
hold locks in both S and I modes. However, this situation is equivalent to
holding a lock in X mode, so we could use X as the group mode in that
situation.

lock at N , and allow the conflict to be resolved at a lower level, if indeed the
intent to write and the intent to read happen to involve a common element.

Now consider the column for I X . If we intend to write a subelement of
node N , then we must prevent either reading or writing of the entire element
represented by N. Thus, we see “No” in the entries for lock modes S and X .
However, per our discussion of the I S column, another transaction that reads
or writes a subelement can have potential conflicts dealt with at that level, so
I X does not conflict with another I X at N or with an I S at N.

Next, consider the column for S. Reading the element corresponding to
node N cannot conflict with either another read lock on iV or a read lock on
some subelement of N , represented by I S at N. Thus, we see “Yes” in the rows
for both 5 and IS . However, either an X or an I X means that some other
transaction will write at least a part of the element represented by N . Thus,

18.6. HIERARCHIES OF DATABASE ELEMENTS 925

we cannot grant the right to read all of N , which explains the “No” entries in
the column for S.

Finally, the column for X has only “No” entries. We cannot allow writing
of all of node N if any other transaction already has the right to read or write
N , or to acquire that right on a subelement.

E xam ple 18.21: Consider the relation

Movie(title, year, length, studioName)

Let us postulate a lock on the entire relation and locks on individual tuples.
Then transaction T i, which consists of the query

SELECT *
FROM Movie
WHERE title = ’King Kong’;

starts by getting an I S lock on the entire relation. It then moves to the in
dividual tuples (there are three movies with the title King Kong), and gets S
locks on each of them.

Now, suppose that while we are executing the first query, transaction T%,
which changes the year component of a tuple, begins:

UPDATE Movie
SET year = 1939
WHERE title = ’Gone With the Wind’;

T2 needs an I X lock on the relation, since it plans to write a new value for one
of the tuples. T i’s I S lock on the relation is compatible, so the lock is granted.
When T2 goes to the tuple for Gone With the Wind, it finds no lock there, and
so gets its X lock and rewrites the tuple. Had T2 tried to write a new value in
the tuple for one of the King Kong movies, it would have had to wait until T\
released it£ S lock, since S and X are not compatible. The collection of locks
is suggested by Fig. 18.29. □

7]-IS
T f IX Movies

King Kong King K ong King Kong

T .-S Z - S T .-S

Gone With the Wind

Figure 18.29: Locks granted to two transactions accessing Movie tuples

926 CHAPTER 18. CONCURRENCY CONTROL

18.6.3 Phantoms and Handling Insertions Correctly
When transactions create new subelements of a lockable element, there are some
opportunities to go wrong. The problem is that we can only lock existing items;
there is no easy way to lock database elements that do not exist but might later
be inserted. The following example illustrates the point.

E xam ple 18.22: Suppose we have the same Movie relation as in Exam
ple 18.21, and the first transaction to execute is T3, which is the query

SELECT SUM(length)
FROM Movie
WHERE studioName = ’Disney’;

T3 needs to read the tuples of all the Disney movies, so it might start by getting
an I S lock on the Movie relation and S locks on each of the tuples for Disney
movies.6

Now, a transaction T4 comes along and inserts a new Disney movie. It
seems that T4 needs no locks, but it has made the result of T3 incorrect. That
fact by itself is not a concurrency problem, since the serial order (T3, X4) is
equivalent to what actually happened. However, there could also be some other
element X that both T3 and T4 write, with T4 writing first, so there could be
an unserializable behavior of more complex transactions.

To be more precise, suppose that D\ and are pre-existing Disney movies,
and Dz is the new Disney movie inserted by T4. Let L be the sum of the lengths
of the Disney movies computed by T3, and assume the consistency constraint
on the database is that L should be equal to the sum of all the lengths of the
Disney movies that existed the last time L was computed. Then the following
is a sequence of events that is legal under the warning protocol:

»*3 (-D i); r3(D2y, w4{D3)\ Wi(X); w3(L); w3(X);

Here, we have used w<i(Dz) to represent the creation of D 3 by transaction X4.
The schedule above is not serializable. In particular, the value of L is not the
sum of the lengths of D\, D2, and D 3, which are the current Disney movies.
Moreover, the fact that X has the value written by T3 and not X4 rules out the
possibility that T3 was ahead of T4 in a supposed equivalent serial order. □

The problem in Example 18.22 is that the new Disney movie has a phantom
tuple, one that should have been locked but wasn’t, because it didn’t exist
at the time the locks were taken. There is, however, a simple way to avoid
the occurrence of phantoms. We must regard the insertion or deletion of a
tuple as a write operation on the relation as a whole. Thus, transaction T4

in Example 18.22 must obtain an X lock on the relation Movie. Since T3 has
already locked this relation in mode IS , and that mode is not compatible witk
mode X, T4 would have to wait until after T3 completes.

6However, if th e re w ere m an y D isney m ovies, it m igh t be m ore efficient ju s t to get an S
lock on th e en tire re la tion .

18.7. THE TREE PROTOCOL 927

18.6.4 Exercises for Section 18.6
E xercise 18.6.1: Consider, for variety, an object-oriented database. The ob
jects of class C are stored on two blocks, B\ and B2 - Block Bi contains objects
Oi and O2 , while block B2 contains objects O3 , O4 , and 0 5. The entire set of
objects of class C, the blocks, and the individual objects form a hierarchy of
lockable database elements. Tell the sequence of lock requests and the response
of a warning-protocol-based scheduler to the following sequences of requests.
You may assume all requests occur just before they axe needed, and all unlocks
occur at the end of the transaction.

a) n (O i); w2 {0 2); r2 (0 3); wx(0 4);

b) n (0 6); w2 (0 5); r2(0 3); w i(0 4);

c) ri(O i); r i (0 3); r 2(Oi); w2(0 4); w2 (0 5);

d) ri(O i); r 2(0 2); r3(Oi); w i(0 3); w2(0 4); w3 (0 5); io i(02);

E xercise 18.6.2: Change the sequence of actions in Example 18.22 so that the
u>4(£>3) action becomes a write by T4 of the entire relation Movie. Then, show
the action of a warning-protocol-based scheduler on this sequence of requests.

E xercise 18.6.3: Show how to add increment locks to a warning-protocol-
based scheduler.

18.7 The Tree Protocol
Like Section 18.6, this section deals with data in the form of a tree. However,
here, the nodes of the tree do not form a hierarchy based on containment.
Rather, cjatabase elements are disjoint pieces of data, but the only way to get
to a node is through its parent; B-trees are an important example of this sort of
data. Knowing that we must traverse a particular path to an element gives us
some important freedom to manage locks differently from the two-phase locking
approaches we have seen so far.

18.7.1 M otivation for Tree-Based Locking
Let us consider a B-tree index in a system that treats individual nodes (i.e.,
blocks) as lockable database elements. The node is the right level of lock granu
larity, because treating smaller pieces as elements offers no benefit, and treating
the entire B-tree as one database element prevents the sort of concurrent use
of the index that can be achieved via the mechanisms that form the subject of
this section.

If we use a standard set of lock modes, like shared, exclusive, and update
locks, and we use two-phase locking, then concurrent use of the B-tree is almost
impossible. The reason is that every transaction using the index must begin by

928 CHAPTER 18. CONCURRENCY CONTROL

locking the root node of the B-tree. If the transaction is 2PL, then it cannot
unlock the root until it has acquired all the locks it needs, both on B-tree nodes
and other database elements.7 Moreover, since in principle any transaction that
inserts or deletes could wind up rewriting the root of the B-tree, the transaction
needs at least an update lock on the root node, or an exclusive lock if update
mode is not available. Thus, only one transaction that is not read-only can
access the B-tree at any time.

However, in most situations, we can deduce almost immediately that a B-
tree node will not be rewritten, even if the transaction inserts or deletes a tuple.
For example, if the transaction inserts a tuple, but the child of the root that
we visit is not completely full, then we know the insertion cannot propagate up
to the root. Similarly, if the transaction deletes a single tuple, and the child
of the root we visit has more than the minimum number of keys and pointers,
then we can be sure the root will not change.

Thus, as soon as a transaction moves to a child of the root and observes
the (quite usual) situation that rules out a rewrite of the root, we would like to
release the lock on the root. The same observation applies to the lock on any
interior node of the B-tree. Unfortunately, releasing the lock on the root early
will violate 2PL, so we cannot be sure that the schedule of several transactions
accessing the B-tree will be serializable. The solution is a specialized protocol
for transactions that access tree-structured data such as B-trees. The protocol
violates 2PL, but uses the fact that accesses to elements must proceed down
the tree to assure serializability.

18.7.2 Rules for Access to Tree-Structured Data
The following restrictions on locks form the tree protocol. We assume that
there is only one kind of lock, represented by lock requests of the form li(X),
but the idea generalizes to any set of lock modes. We assume that transactions
are consistent, and schedules must be legal (i.e., the scheduler will enforce the
expected restrictions by granting locks on a node only when they do not conflict
with locks already on that node), but there is no two-phase locking requirement
on transactions.

1. A transaction’s first lock may be at any node of the tree .8

2. Subsequent locks may only be acquired if the transaction currently has a
lock on the parent node.

3. Nodes may be unlocked at any time.

4. A transaction may not relock a node on which it has released a lock, even
if it still holds a lock on the node’s parent.

7A dditionally , th e re are good reasons w hy a tra n sa c tio n w ill hold all its locks un til it is
read y to com m it; see Section 19.1.

8In th e B -tree exam ple of Section 18.7.1, th e firs t lock w ould alw ays be a t th e roo t.

18.7. THE TREE PROTOCOL 929

Figure 18.30: A tree of lockable elements

E xam ple 18.23: Figure 18.30 shows a hierarchy of nodes, and Fig. 18.31
indicates the action of three transactions on this data. T\ starts at the root A,
and proceeds downward to B, C, and D. T2 starts at B and tries to move to
E, but its move is initially denied because of the lock by Tz on E. Transaction
T3 starts at E and moves to F and G. Notice that Ti is not a 2PL transaction,
because the lock on A is relinquished before the lock on D is acquired. Similarly,
Tz is not a 2PL transaction, although T2 happens to be 2PL. □

18.7.3 W hy the Tree Protocol Works
The tree protocol implies a serial order on the transactions involved in a sched
ule. We can define an order of precedence as follows. Say that T, <s Tj if in
schedule S, the transactions T* and Tj lock a node in common, and T, locks the
node first.

E xam ple 18.24: In the schedule S of Fig 18.31, we find T\ and T2 lock B in
common, and Ti locks it first. Thus, Ti <s T2. We also find that T2 and T3
lock E/ in common, and T3 locks it first; thus Tz <s T2. However, there is no
precedence between Ti and Tz, because they lock no node in common. Thus,
the precedence graph derived from these precedence relations is as shown in
Fig. 18.32. □

If the precedence graph drawn from the precedence relations that we defined
above has no cycles, then we claim that any topological order of the transactions
is an equivalent serial schedule. For example, either (Ti,T3,T2) or (T3,T i,T 2)
is an equivalent serial schedule for Fig. 18.31. The reason is that in such a serial
schedule, all nodes are touched in the same order as they are in the original
schedule.

To understand why the precedence graph described above must always be
acyclic if the tree protocol is obeyed, observe the following:

• If two transactions lock several elements in common, then they are all
locked in the same order.

930 CHAPTER 18. CONCURRENCY CONTROL

Ti T2 T3
h(A); n(A);

Zi(C -); n (C) ;
Wi(A); Ui(A);

hiD); n(D);
W].(B); tti(B);

J2 (B) ; r a (B) ;
/3(F); r3 (E);

W! (£»); «i(£>);
u*(C);

12(E) D en ied
J3(F); r3(F);
W3(F); u3(F);
13(G); r3 (G)
w3 (E); u3 (E);

h (E y ra(E);
w 3(G) ; u 3(G)

w2 (B); u 2(B)■
w2 (E); 1 1 2(E);

Figure 18.31: Three transactions following the tree protocol

To see why, consider some transactions T and U, which lock two or more items
in common. First, notice that each transaction locks a set of elements that form
a tree, and the intersection of two trees is itself a tree. Thus, there is some one
highest element X that both T and U lock. Suppose that T locks X first, but
that there is some other element Y that U locks before T. Then there is a path
in the tree of elements from X to Y , and both T and U must lock each element
along the path, because neither can lock a node without having a lock on its
parent.

Consider the first element along this path, say Z, that U locks first, as
suggested by Fig. 18.33. Then T locks the parent P of Z before U does. But
then T is still holding the lock on P when it locks Z , so U has not yet locked

Figure 18.32: Precedence graph derived from the schedule of Fig. 18.31

18.7. THE TREE PROTOCOL 931

Figure 18.33: A path of elements locked by two transactions

P when it locks Z. It cannot be that Z is the first element U locks in common
with T, since they both lock ancestor X (which could also be P, but not Z).
Thus, U cannot lock Z until after it has acquired a lock on P, which is after T
locks Z. We conclude that T precedes U at every node they lock in common.

Now, consider an arbitrary set of transactions 7 \, T2, . . . , Tn that obey the
tree protocol and lock some of the nodes of a tree according to schedule S.
First, among those that lock the root, they do so in some order, and by the rule
just observed:

• If Ti locks the root before Tj, then Tj locks every node in common with
Tj before Tj does. That is, Tj <s Tj, but not Tj <s Ti.

We can show by induction on the number of nodes of the tree that there is some
serial order equivalent to S for the complete set of transactions.

BASIS: If there is only one node, the root, then as we just observed, the order
in which the transactions lock the root serves.

INDUCTIO N: If there is more than one node in the tree, consider for each
subtree of the root the set of transactions that lock one or more nodes in that
subtree. Note that transactions locking the root may belong to more than one
subtree, but a transaction that does not lock the root will belong to only one
subtree. For instance, among the transactions of Fig. 18.31, only Ti locks the
root, and it belongs to both subtrees — the tree rooted at B and the tree rooted
at C. However, T2 and T3 belong only to the tree rooted at B.

By the inductive hypothesis, there is a serial order for all the transactions
that lock nodes in any one subtree. We have only to blend the serial orders
for the various subtrees. Since the only transactions these lists of transactions
have in common are the transactions that lock the root, and we established
that these transactions lock every node in common in the same order that they
lock the root, it is not possible that two transactions locking the root appear in
different orders in two of the sublists. Specifically, if Tj and Tj appear on the
list for some child C of the root, then they lock C in the same order as they lock

932 CHAPTER 18. CONCURRENCY CONTROL

the root and therefore appear on the list in that order. Thus, we can build a
serial order for the full set of transactions by starting with the transactions that
lock the root, in their appropriate order, and interspersing those transactions
that do not lock the root in any order consistent with the serial order of their
subtrees.

E xam ple 18.25: Suppose there are 10 transactions Ti,T2, . . . ,T i0, and of
these, Ti, T2, and T3 lock the root in that order. Suppose also that there
are two children of the root, the first locked by Ti through T7 and the second
locked by T2, T3, Tg, T9, and Tio- Hypothetically, let the serial order for the
first subtree be (T4, Ti, T5, T2, T6, T3, TV); note that this order must include T1;
T2, and T3 in that order. Also, let the serial order for the second subtree be
(T8,T2,T9)Tio,T3). As must be the case, the transactions T2 and T3, which
locked the root, appear in this sequence in the order in which they locked the
root.

Figure 18.34: Combining serial orders for the subtrees into a serial order for all
transactions

The constraints imposed on the serial order of these transactions are as
shown in Fig. 18.34. Solid lines represent constraints due to the order at the
first child of the root, while dashed lines represent the order at the second child.
(T4, Tg, Ti, T5, T2, Tg, Tg, Tio, T3, T7) is one of the many topological sorts of this
graph. □

18.7.4 Exercises for Section 18.7
E xercise 18.7.1: Suppose we perform the following actions on the B-tree of
Fig. 14.13. If we use the tree protocol, when can we release a write-lock on each
of the nodes searched?

(a) Insert 10 (b) Insert 20 (c) Delete 5 (d) Delete 23.

! Exercise 18.7.2: Consider the following transactions that operate on the tree
of Fig. 18.30.

Ti: ri(j4); ri(B); ri(E);
T2: r2(A); r2 (C); r2 (B);
T3: r 3(S); r3 (E); r3 (F);

18.8. CONCURRENCY CONTROL B Y TIMESTAMPS 933

If schedules follow the tree protocol, in how many ways can we interleave:
(a) Ti and T2 (b) Ti and T3 !! (c) all three?

! E xercise 18.7.3: Suppose there are eight transactions Ti, T2, . . . , Tg, of which
the odd-numbered transactions, Ti, Ta, T-a, and TV, lock the root of a tree, in
that order. There are three children of the root, the first locked by Ti, T2, T3,
and T4 in that order. The second child is locked by T3, Tq, and T5, in that
order, and the third child is locked by Tg and TV, in that order. How many
serial orders of the transactions are consistent with these statements?

!! E xercise 18.7.4: Suppose we use the tree protocol with shared and exclusive
locks for reading and writing, respectively. Rule (2), which requires a lock on
the parent to get a lock on a node, must be changed to prevent unserializable
behavior. What is the proper rule (2) for shared and exclusive locks? Hint:
Does the lock on the parent have to be of the same type as the lock on the
child?

18.8 Concurrency Control by Timestamps
Next, we shall consider two methods other than locking that are used in some
systems to assure serializability of transactions:

1. Timestamping. Assign a “timestamp” to each transaction. Record the
timestamps of the transactions that last read and write each database
element, and compare these values with the transactions timestamps, to
assure that the serial schedule according to the transactions’ timestamps
is equivalent to the actual schedule of the transactions. This approach is
the subject of the present section.

2. Validation. Examine timestamps of the transaction and the database
elements when a transaction is about to commit; this process is called
“validation” of the transaction. The serial schedule that orders transac
tions according to their validation time must be equivalent to the actual
schedule. The validation approach is discussed in Section 18.9.

Both these approaches are optimistic, in the sense that they assume that no
unserializable behavior will occur and only fix things up when a violation is
apparent. In contrast, all locking methods assume that things will go wrong
unless transactions are prevented in advance from engaging in nonserializable
behavior. The optimistic approaches differ from locking in that the only rem
edy when something does go wrong is to abort and restart a transaction that
tries to engage in unserializable behavior. In contrast, locking schedulers de
lay transactions, but do not abort them .9 Generally, optimistic schedulers are

® That is n o t to say th a t a system using a locking scheduler will never a b o rt a transaction ;
for instance , Section 19.2 discusses ab o rtin g tran sac tio n s to fix deadlocks. However, a locking
scheduler never uses a tran sac tio n a b o r t sim ply as a response to a lock request th a t it canno t
g ran t.

934 CHAPTER 18. CONCURRENCY CONTROL

better than locking when many of the transactions are read-only, since those
transactions can never, by themselves, cause unserializable behavior.

18.8.1 Timestamps
To use timestamping as a concurrency-control method, the scheduler needs to
assign to each transaction T a unique number, its timestamp TS (T). Time
stamps must be issued in ascending order, at the time that a transaction first
notifies the scheduler that it is beginning. Two approaches to generating time
stamps are:

a) We can use the system clock as the timestamp, provided the scheduler
does not operate so fast that it could assign timestamps to two transac
tions on one tick of the clock.

b) The scheduler can maintain a counter. Each time a transaction starts, the
counter is incremented by 1, and the new value becomes the timestamp
of the transaction. In this approach, timestamps have nothing to do
with “time,” but they have the important property that we need for any
timestamp-generating system: a transaction that starts later has a higher
timestamp than a transaction that starts earlier.

Whatever method of generating timestamps is used, the scheduler must main
tain a table of currently active transactions and their timestamps.

To use timestamps as a concurrency-control method, we need to associate
with each database element X two timestamps and an additional bit:

/
1. R T (X) , the read time of X , which is the highest timestamp of a transaction

that has read X .

2. WT(X), the write time of X , which is the highest timestamp of a trans
action that has written X .

3. C(X), the commit bit for X , which is true if and only if the most recent
transaction to write X has already committed. The purpose of this bit
is to avoid a situation where one transaction T reads data written by
another transaction U, and U then aborts. This problem, where T makes
a “dirty read” of uncommitted data, certainly can cause the database
state to become inconsistent, and any scheduler needs a mechanism to
prevent dirty reads.10

18.8.2 Physically Unrealizable Behaviors
In order to understand the architecture and rules of a timestamp scheduler, we
need to remember that the scheduler assumes the timestamp order of trans
actions is also the serial order in which they must appear to execute. Thus,

10A lthough com m ercial sy s tem s generally give th e user an op tion to allow d ir ty read s, as
suggested by th e SQ L iso la tion level READ UNCOMMITTED in Section 6.6.5.

18.8. CONCURRENCY CONTROL B Y TIMESTAMPS 935

the job of the scheduler, in addition to assigning timestamps and updating RT,
W T , and C for the database elements, is to check that whenever a read or write
occurs, what happens in real time could have happened if each transaction had
executed instantaneously at the moment of its timestamp. If not, we say the
behavior is physically unrealizable. There are two kinds of problems that can
occur:

1. Read too late: Transaction T tries to read database element X , but the
write time of X indicates that the current value of X was written after T
theoretically executed; that is, T S (T) < W T (X) . Figure 18.35 illustrates
the problem. The horizontal axis represents the real time at which events
occur. Dotted lines link the actual events to the times at which they
theoretically occur — the timestamp of the transaction that performs the
event. Thus, we see a transaction U that started after transaction T, but
wrote a value for X before T reads X . T should not be able to read
the value written by U, because theoretically, U executed after T did.
However, t has no choice, because C/’s value of X is the one that T now
sees. The solution is to abort T when the problem is encountered.

U writes X
T reads X

T start U start

Figure 18.35: Transaction T tries to read too late

2. Write too late: Transaction T tries to write database element X . How
ever, the read time of X indicates that some other transaction should have
read the value written by T, but read some other value instead. That is,
W T (X) < T S (T) < R T (X) . The problem is shown in Fig. 18.36. There
we see a transaction U that started after T, but read X before T got a
chance to write X . When T tries to write X , we find RT(.X ’) > T S (T),
meaning that X has already been read by a transaction U that theoreti
cally executed later than T. We also find W T (X) < ts (T), which means
that no other transaction wrote into X a value that would have overwrit
ten T ’s value, thus, negating T ’s responsibility to get its value into X so
transaction U could read it.

18.8.3 Problems W ith Dirty Data
There is a class of problems that the commit bit is designed to solve. One of
these problems, a “dirty read,” is suggested in Fig. 18.37. There, transaction

936 CHAPTER 18. CONCURRENCY CONTROL

U reads X
T w rites X

1 1 * J

T start U start

Figure 18.36: Transaction T tries to write too late

T reads X , and X was last written by U. The timestamp of U is less than that
of T, and the read by T occurs after the write by U in real time, so the event
seems to be physically realizable. However, it is possible that after T reads the
value of X written by U, transaction U will abort; perhaps U encounters an
error condition in its own data, such as a division by 0, or as we shall see in
Section 18.8.4, the scheduler forces U to abort because it tries to do something
physically unrealizable. Thus, although there is nothing physically unrealizable
about T reading X , it is better to delay T ’s read until U commits or aborts.
We can tell that U is not committed because the commit bit C (X) will be false.

U w rites X

T reads X

p—r
U start T start U aborts

Figure 18.37: T could perform a dirty read if it reads X when shown

A second potential problem is suggested by Fig. /18.38. Here, U, a trans
action with a later timestamp than T, has written X first. When T tries to
write, the appropriate action is to do nothing. Evidently no other transaction
V that should have read T ’s value of X got f /’s value instead, because if V
tried to read X it would have aborted because of a too-late read. Future reads
of X will want U’s value or a later value of X , not T ’s value. This idea, that
writes can be skipped when a write with a later write-time is already in place,
is called the Thomas write rule.

There is a potential problem with the Thomas write rule, however. If U later
aborts, as is suggested in Fig. 18.38, then its value of X should be removed and
the previous value and write-time restored. Since T is committed, it would
seem that the value of X should be the one written by T for future reading.
However, we already skipped the write by T and it is too late to repair the
damage.

While there are many ways to deal with the problems just described, we

18.8. CONCURRENCY CONTROL B Y TIMESTAMPS 937

U writes X
T w rites X

i V ~ S— r
T start U start T com m its U aborts

Figure 18.38: A write is cancelled because of a write with a later timestamp,
but the writer then aborts

shall adopt a relatively simple policy based on the following assumed capability
of the timestamp-based scheduler.

• When a transaction T writes a database element X , the write is “tenta
tive” and may be undone if T aborts. The commit bit C (X) is set to false,
and the scheduler makes a copy of the old value of X and its previous
W T (X) .

18.8.4 The Rules for Timestamp-Based Scheduling
We can now summarize the rules that a scheduler using timestamps must follow
to make sure that nothing physically unrealizable may occur. The scheduler,
in response to a read or write request from a transaction T has the choice of:

a) Granting the request,

b) Aborting T (if T would violate physical reality) and restarting T with a
new timestamp (abort followed by restart is often called rollback), or

c) Delaying T and later deciding whether to abort T or to grant the request
(if the request is a read, and the read might be dirty, as in Section 18.8.3).

The rules are as follows:

1. Suppose the scheduler receives a request rr (X).

(a) If T S (T) > W T (X) , the read is physically realizable.
i. If c (X) is true, grant the request. If T S (T) > R T (X) , set

R T (X) := T S (T); otherwise do not change R T (X) .

ii. If C(X) is false, delay T until C(X) becomes true, or the trans
action that wrote X aborts.

(b) If T S (T) < W T (X) , the read is physically unrealizable. Rollback T;
that is, abort T and restart it with a new, larger timestamp.

2. Suppose the scheduler receives a request w t (X) .

938 CHAPTER 18. CONCURRENCY CONTROL

(a) If TS(T) > RT(X) and TS(T) > WT(X), the write is physically
realizable and must be performed.

i. Write the new value for X ,
ii. Set WT(X) := TS(T), and

iii. Set C(X) := f a l s e .

(b) If TS(T) > RT(X), but TS(T) < WT(X), then the write is physically
realizable, but there is already a later value in X . If C(X) is true,
then the previous writer of X is committed, and we simply ignore
the write by T; we allow T to proceed and make no change to the
database. However, if C (X) is false, then we must delay T as in
point l(a)ii.

(c) If TS(T) < RT(X), then the write is physically unrealizable, and T
must be rolled back.

3. Suppose the scheduler receives a request to commit T. It must find (using
a list the scheduler maintains) all the database elements X written by T,
and set c (X) := tru e . If any transactions are waiting for X to be com
mitted (found from another scheduler-maintained list), these transactions
are allowed to proceed.

4. Suppose the scheduler receives a request to abort T or decides to rollback
T as in lb or 2c. Then any transaction that was waiting on an element X
that T wrote must repeat its attempt to read or write, and see whether
the action is now legal after T ’s writes are cancelled.

E xam ple 18.26: Figure 18.39 shows a schedule of three transactions, Ti, T2,
and T3 that access three database elements, A, B, and C. The real time at
which events occur increases down the page, as usual. We have also indicated
the timestamps of the transactions and the read and write times of the elements.
At the beginning, each of the database elements has both a read and write time
of 0. The timestamps of the transactions are acquired when they notify the
scheduler that they are beginning. Notice that even though Ti executes the
first data access, it does not have the least timestamp. Presumably T2 was the
first to notify the scheduler of its start, and T3 did so next, with Ti last to start.

In the first action, Ti reads B. Since the \yrite time of B is less than the
timestamp of T i, this read is physically realizable and allowed to happen. The
read time of B is set to 200, the timestamp of Ti. The second and third read
actions similarly are legal and result in the read time of each database element
being set to the timestamp of the transaction that read it.

At the fourth step, Ti writes B. Since the read time of B is not bigger than
the timestamp of T \ , the write is physically realizable. Since the write time of
B is no larger than the timestamp of Ti, we must actually perform the write.
When we do, the write time of B is raised to 200, the timestamp of the writing
transaction T \ .

18.8. CONCURRENCY CONTROL B Y TIMESTAMPS 939

Ti Ti Tz A B C
200 150 175 RT=0

W T=0
RT=0
W T=0

RT=0
WT=0

n(B) ;
r2 (A); RT=150

n 11 to 0 0

wi (B);
rz{<py,

WT=200
RT=175

u>i(A);
w2 (C);
A bort;

wz{A)\

WT=200

Figure 18.39: Three transactions executing under a timestamp-based scheduler

Next, Ti tries to write C. However, C was already read by transaction T3,
which theoretically executed at time 175, while T% would have written its value
at time 150. Thus, T2 is trying to do something that s physically unrealizable,
and Ti must be rolled back.

The last step is the write of A by T3. Since the read time of A, 150, is less
than the timestamp of T3, 175, the write is legal. However, there is already a
later value of A stored in that database element, namely the value written by
Xi, theoretically at time 200. Thus, T3 is not rolled back, but neither does it
write its value. □

18.8.5 Multiversion Timestamps
An important variation of timestamping maintains old versions of database
elements in addition to the current version that is stored in the database itself.
The purpose is to allow reads r?{X) that otherwise would cause transaction
T to abort (because the current version of X was written in T ’s future) to
proceed by reading the version of X that is appropriate for a transaction with
T ’s timestamp. The method is especially useful if database elements are disk
blocks or pages, since then all that must be done is for the buffer manager to
keep in memory certain blocks that might be useful for some currently active
transaction.

E xam ple 18.27: Consider the set of transactions accessing database element
A shown in Fig. 18.40. These transactions are operating under an ordinary
timestamp-based scheduler, and when T3 tries to read A, it finds WT(A) to
be greater than its own timestamp, and must abort. However, there is an old
value of A written by Ti and overwritten by Ti that would have been suitable
for T3 to read; this version of A had a write time of 150, which is less than T3’s
timestamp of 175. If this old value of A were available, T3 could be allowed to
read it, even though it is not the “current” value of A. □

940 CHAPTER 18. CONCURRENCY CONTROL

Tx T2 T3 T4 A
150 200 175 225 RT=0

WT=0
ri (A) RT=150
wi(A) WT=150

r2 (A) 3 II to o o

w2 (A) WT=200
r3 (A)
A b o rt

u (A) RT=225

Figure 18.40: T3 must abort because it cannot access an old value of A

A multiversion-timestamp scheduler differs from the scheduler described in
Section 18.8.4 in the following ways:

1. When a new write w t {X) occurs, if it is legal, then a new version of
database element X is created. Its write time is TS(T), and we shall refer
to it as X t, where t = TS(T).

2. When a read rr{X) occurs, the scheduler finds the version X t of X such
that t < TS(T), but there is no other version X f with t < t' < TS(T).
That is, the version of X written immediately before T theoretically ex
ecuted is the version that T reads.

3. Write times axe associated with versions of an element, and they never
change.

4. Read times axe also associated with versions. They are used to reject
certain writes, namely one whose time is less than the read time of the
previous version. Figure 18.41 suggests the problem, where X has versions
X 5o and .Xioo, the former was read by a transaction with timestamp 80,
and a new write by a transaction T whose timestamp is 60 occurs. This
write must cause T to abort, because its value of X should have been read
by the transaction with timestamp 80, had T been allowed to execute.

5. When a version X t has a write time t such that no active transaction has
a timestamp less than t, then we may delete any version of X previous to
X t .

E xam ple 18.28: Let us reconsider the actions of Fig. 18.40 if multiversion
timestamping is used. First, there are three versions of A: Aq, which exists
before these transactions staxt, A150, written by Ti, and -A2oo; written by T2.
Figure 18.42 shows the sequence of events, when the versions are created, and
when they are read. Notice in particular that T3 does not have to abort, because
it can read an earlier version of A. □

18.8. CONCURRENCY CONTROL B Y TIMESTAMPS 941

RT = 80

It ! t
X 50 ' X 100

A ttem pt to
w rite by transaction

with tim estam p 60

Figure 18.41: A transaction tries to write a version of X that would make events
physically unrealizable

Tx t 2 t 3 Ti A q -*4-150 ^200
150 200 175 225
r i (A)
wi(A)

r 2 (A)
w2 (A)

r3^4)
r4 (A)

Read
Create
Read

Read
Create

Read

Figure 18.42: Execution of transactions using multiversion concurrency control

18.8.6 Timestamps Versus Locking
Generally, timestamping is superior in situations where either most transactions
are read-only, or it is rare that concurrent transactions will try to read and
write the same element. In high-conflict situations, locking performs better.
The argument for this rule-of-thumb is:

• Locking will frequently delay transactions as they wait for locks.

• But if concurrent transactions frequently read and write elements in com
mon, then rollbacks will be frequent in a timestamp scheduler, introducing
even more delay than a locking system.

There is an interesting compromise used in several commercial systems. The
scheduler divides the transactions into read-only transactions and read/write
transactions. Read/write transactions are executed using two-phase locking, to
keep all transactions from accessing the elements they lock.

Read-only transactions are executed using multiversion timestamping. As
the read/write transactions create new versions of a database element, those
versions are managed as in Section 18.8.5. A read-only transaction is allowed to
read whatever version of a database element is appropriate for its timestamp. A
read-only transaction thus never has to abort, and will only rarely be delayed.

942 CHAPTER 18. CONCURRENCY CONTROL

18.8.7 Exercises for Section 18.8
E xercise 18.8.1: Below are several sequences of events, including start events,
where sti means that transaction Tj starts. These sequences represent real time,
and the timestamp scheduler will allocate timestamps to transactions in the
order of their starts. Tell what happens as each executes.

a) sti; st2; n(A)-, r2 (B); w2 (A); Wi(B);

b) sti; ri(A); st2; w2 (B); r2 (A); wi(B);

c) sti; st2; st3; n (A) \ r2 (B); wj(C'); r 3 (B); r3 (C); w2 (B); w3 (A);

d) st3; st2; n(A); r2 {B); Wi(C); r3 (B); r3 (C); w2 [B); w3 (A);

E xercise 18.8.2: Tell what happens during the following sequences of events
if a multiversion, timestamp scheduler is used. What happens instead, if the
scheduler does not maintain multiple versions?

a) sti; st2; st3; st4; wi(-A); w2 (A); w3(A); r 2 {A); r4 (A);

b) sti; st2; st3; st4; wi(A); w3 (A); r4 (A); r2 (A);

c) sti; st2; st3; st4; wi(A); w4 (A); r3 {A); w2 (A);

!! Exercise 18.8.3: We observed in our study of lock-based schedulers that there
are several reasons why transactions that obtain locks could deadlock. Can a
timestamp scheduler using the commit bit C (X) have a deadlock?

18.9 Concurrency Control by Validation
Validation is another type of optimistic concurrency control, where we allow
transactions to access data without locks, and at the appropriate time we check
that the transaction has behaved in a serializable manner. Validation differs
from timestamping principally in that the scheduler maintains a record of what
active transactions are doing, rather than keeping read and write times for all
database elements. Just before a transaction starts to write values of database
elements, it goes through a “validation phase,” where the sets of elements it has
read and will write are compared with the write sets of other active transactions.
Should there be a risk of physically unrealizable behavior, the transaction is
rolled back.

18.9.1 Architecture of a Validation-Based Scheduler
When validation is used as the concurrency-control mechanism, the scheduler
must be told for each transaction T the sets of database elements T reads and
writes, the read set, RS(T), and the write set, WS(T), respectively. Transactions
are executed in three phases:

18.9. CONCURRENCY CONTROL B Y VALIDATION 943

1. Read. In the first phase, the transaction reads from the database all the
elements in its read set. The transaction also computes in its local address
space all the results it is going to write.

2. Validate. In the second phase, the scheduler validates the transaction by
comparing its read and write sets with those of other transactions. We
shall describe the validation process in Section 18.9.2. If validation fails,
then the transaction is rolled back; otherwise it proceeds to the third
phase.

3. Write. In the third phase, the transaction writes to the database its values
for the elements in its write set.

Intuitively, we may think of each transaction that successfully validates as ex
ecuting at the moment that it validates. Thus, the validation-based scheduler
has an assumed serial order of the transactions to work with, and it bases its
decision to validate or not on whether the transactions’ behaviors are consistent
with this serial order.

To support the decision whether to validate a transaction, the scheduler
maintains three sets:

1. START, the set of transactions that have started, but not yet completed
validation. For each transaction T in this set, the scheduler maintains
STA R T (T), the time at which T started.

2. VAL, the set of transactions that have been validated but not yet finished
the writing of phase 3. For each transaction T in this set, the scheduler
maintains both START(T) and VAL(T), the time at which T validated.
Note that VAL(T) is also the time at which T is imagined to execute in
the hypothetical serial order of execution.

3. FIN, the set of transactions that have completed phase 3. For these
transactions T, the scheduler records START(r), VAL(T), and f in (T) , the
time at which T finished. In principle this set grows, but as we shall see,
we do not have to remember transaction T if f in (T) < START(C/) for any
active transaction U (i.e., for any U in START or VAL). The scheduler
may thus periodically purge the FIN set to keep its size from growing
beyond bounds.

18.9.2 The Validation Rules
The information of Section 18.9.1 is enough for the scheduler to detect any
potential violation of the assumed serial order of the transactions — the order
in which the transactions validate. To understand the rules, let us first consider
what can be wrong when we try to validate a transaction T.

1. Suppose there is a transaction U such that:

944 CHAPTER 18. CONCURRENCY CONTROL

T reads X

U w rites X

t t 1 l :L i
U start T start U validated T validating

Figure 18.43: T cannot validate if an earlier transaction is now writing some
thing that T should have read

(a) U is in VAL or FIN; that is, U has validated.
(b) F l N (t /) > S T A R T (T); that is, U did not finish before T started.11
(c) RS(T) n WS(C/) is not empty; in particular, let it contain database

element X .

Then it is possible that U wrote X after T read X . In fact, U may not
even have written X yet. A situation where U wrote X , but not in time
is shown in Fig. 18.43. To interpret the figure, note that the dotted lines
connect the events in real time with the time at which they would have
occurred had transactions been executed at the moment they validated.
Since we don’t know whether or not T got to read f / ’s value, we must
rollback T to avoid a risk that the actions of T and U will not be consistent
with the assumed serial order.

2. Suppose there is a transaction U such that:

(a) U is in VAL; i.e., U has successfully validated.
(b) F I N ([/) > VAL(T); that is, U did not finish before T entered its

validation phase.
(c) WS(T) fl WS(U) / 0; in particular, let X be in both write sets.

Then the potential problem is as shown in Fig. 18.44. T and U must both
write values of X , and if we let T validate, it is possible that it will write
X before U does. Since we cannot be sure, we rollback T to make sure it
does not violate the assumed serial order in which it follows U.

The two problems described above are the only situations in which a write
by T could be physically unrealizable. In Fig. 18.43, if U finished before T
started, then surely T would read the value of X that either U or some later
transaction wrote. In Fig. 18.44, if U finished before T validated, then surely

11N ote th a t if U is in V A L, th e n U h a s n o t ye t finished w hen T va lidates . In th a t case,
FIN (E/) is techn ically undefined. However, we know it m u st be la rg er th a n ST A R T (T) in th is
case.

18.9. CONCURRENCY CONTROL B Y VALIDATION 945

T writes X
U writes X

U validated T validating U finish

Figure 18.44: T cannot validate if it could then write something ahead of an
earlier transaction

U wrote X before T did. We may thus summarize these observations with the
following rule for validating a transaction T:

• Check that RS(T) n WS(J7) — 0 for any previously validated U that did
not finish before T started, i.e., if FIN(C/) > START(T).

• Check that WS (T) D WS({7) = 0 for any previously validated U that did
not finish before T validated, i.e., if fin({7) > VAL(T).

E xam ple 18.29: Figure 18.45 shows a time line during which four transactions
T, U, V, and W attempt to execute and validate. The read and write sets for
each transaction are indicated on the diagram. T starts first, although U is the
first to validate.

RS = {B }
WS = { D }

U

RS = [A, D }
WS = { A, C }

W

I = start

X = validate

O = finishT V

RS = {A, B } RS = {B }
WS = [A, C } WS = { D, E }

Figure 18.45: Four transactions and their validation

1. Validation of U: When U validates there are no other validated transac
tions, so there is nothing to check. U validates successfully and writes a
value for database element D.

946 CHAPTER 18. CONCURRENCY CONTROL

2. Validation of T : When T validates, U is validated but not finished. Thus,
we must check that neither the read nor write set of T has anything
in common with ws([7) = {£>}. Since RS(T) - {A, B}, and ws(T) =
{A, C}, both checks are successful, and T validates.

3. Validation of V : When V validates, U is validated and finished, and T
is validated but not finished. Also, V started before U finished. Thus,
we must compare both RS(V) and WS(V) against WS(T), but only RS(V)
needs to be compared against WS(U). we find:

• rs(V) n ws(T) = {5} n {A ,C } = 0.
• ws(V) n ws(T) = { D, E} n {A, C} = 0.
• rs(V) n ws(t7) = {B} n {D} = 0.

Thus, V also validates successfully.

4. Validation of W : When W validates, we find that U finished before W
started, so no comparison between W and U is performed. T is finished
before W validates but did not finish before W started, so we compare
only RS(W) with WS(T). V is validated but not finished, so we need to
compare both RS(W/) and WS(W/) with WS(V). These tests are:

• rs(W) D WS(T) = {A, D} n {A,C} = {A}.
• rs (v f) n ws(V) = {A, d } n {d , e } = {D}.
• ws(W) n ws(F) - { A, C} n { D, E} = 0.

Since the intersections are not all empty, W is not validated. Rather, W
is rolled back and does not write values for A or C.

□

18.9.3 Comparison of Three Concurrency-Control
Mechanisms

The three approaches to serializability that we have considered — locks, times
tamps, and validation — each have their advantages. First, they can be com
pared for their storage utilization:

• Locks: Space in the lock table is proportional to the number of database
elements locked.

• Timestamps: In a naive implementation, space is needed for read- and
write-times with every database element, whether or not it is currently
accessed. However, a more careful implementation will treat all time
stamps that are prior to the earliest active transaction as “minus infinity”
and not record them. In that case, we can store read- and write-times in
a table analogous to a lock table, in which only those database elements
that have been accessed recently are mentioned at all.

18.9. CONCURRENCY CONTROL B Y VALIDATION 947

Just a Moment

You may have been concerned with a tacit notion that validation takes
place in a moment, or indivisible instant of time. For example, we imagine
that we can decide whether a transaction U has already validated before
we start to validate transaction T. Could U perhaps finish validating while
we are validating T?

If we are running on a uniprocessor system, and there is only one
scheduler process, we can indeed think of validation and other actions of
the scheduler as taking place in an instant of time. The reason is that if
the scheduler is validating T, then it cannot also be validating U, so all
during the validation of T, the validation status of U cannot change.

If we are running on a multiprocessor, and there are several sched
uler processes, then it might be that one is validating T while the other
is validating U. If so, then we need to rely on whatever synchroniza
tion mechanism the multiprocessor system provides to make validation an
atomic action.

• Validation: Space is used for timestamps and read/write sets for each
currently active transaction, plus a few more transactions that finished
after some currently active transaction began.

Thus, the amounts of space used by each approach is approximately propor
tional to the sum over all active transactions of the number of database elements
the transaction accesses. Timestamping and validation may use slightly more
space because they keep track of certain accesses by recently committed trans
actions that a lock table would not record. A potential problem with validation
is that the write set for a transaction must be known before the writes occur
(but after the transaction’s local computation has been completed).

We can also compare the methods for their effect on the ability of transac
tions to complete without delay. The performance of the three methods depends
on whether interaction among transactions (the likelihood that a transaction
will access an element that is also being accessed by a concurrent transaction)
is high or low.

• Locking delays transactions but avoids rollbacks, even when interaction
is high. Timestamps and validation do not delay transactions, but can
cause them to rollback, which is a more serious form of delay and also
wastes resources.

• If interference is low, then neither timestamps nor validation will cause
many rollbacks, and may be preferable to locking because they generally
have lower overhead than a locking scheduler.

948 CHAPTER 18. CONCURRENCY CONTROL

• When a rollback is necessary, timestamps catch some problems earlier
than validation, which always lets a transaction do all its internal work
before considering whether the transaction must rollback.

18.9.4 Exercises for Section 18.9
E x e r c i s e 1 8 . 9 .1 : In the following sequences of events, we use Ri(X) to mean
“transaction Tj starts, and its read set is the list of database elements X.” Also,
Vj means “Ti attempts to validate,” and Wi(X) means that “Tj finishes, and
its write set was X.” Tell what happens when each sequence is processed by a
validation-based scheduler.

a) R M , B) ; R2(B,C)-, Vi; R3(C,D); l/3; W^A); V2; W2(A); W3(B);

b) Ri(A,B); R2{B,Cy, Vi; R3(C,D); V3; W1(A); V2 ; W2(A); W3{D);

c) i?i(A,£0; R2(B,C); Fi; R3(C,D)-, F3; WX{C)-, V2 ; Wa(A); W3(D);

d) R i i A B) ; R2(B,C); R3(C); Vi; V2 ; F3; Wi(A); W2(B)-, W3{C);

e) Ri(A,B)-, R2(B,C); Vi; V2; V3; W^C); W2(B); W3{A\,

f) Ri(A,B); R2(B,C)-, R3(C)-, Vl5 V2; V3; W\(A)\ W2(C); W3(S);

18.10 Summary of Chapter 18
♦ Consistent Database States: Database states that obey whatever implied

or declared constraints the designers intended are called consistent. It
is essential that operations on the database preserve consistency, that is,
they turn one consistent database state into another.

♦ Consistency of Concurrent Transactions: It is normal for several trans
actions to have access to a database at the same time. Transactions, run
in isolation, are assumed to preserve consistency of the database. It is the
job of the scheduler to assure that concurrently operating transactions
also preserve the consistency of the database.

♦ Schedules: Transactions are broken into actions, mainly reading and writ
ing from the database. A sequence of these actions from one or more
transactions is called a schedule.

♦ Serial Schedules: If transactions execute one at a time, the schedule is
said to be serial.

♦ Serializable Schedules: A schedule that is equivalent in its effect on the
database to some serial schedule is said to be serializable. Interleaving of
actions from several transactions is possible in a serializable schedule that
is not itself serial, but we must be very careful what sequences of actions

18.10. SUMM ARY OF CHAPTER 18 949

we allow, or an interleaving will leave the database in an inconsistent
state.

♦ Conflict-Serializability: A simple-to-test, sufficient condition for serializ
ability is that the schedule can be made serial by a sequence of swaps
of adjacent actions without conflicts. Such a schedule is called conflict-
serializable. A conflict occurs if we try to swap two actions of the same
transaction, or to swap two actions that access the same database element,
at least one of which actions is a write.

♦ Precedence Graphs: An easy test for conflict-serializability is to construct
a precedence graph for the schedule. Nodes correspond to transactions,
and there is an arc T -¥ U if some action of T in the schedule conflicts
with a later action of U. A schedule is conflict-serializable if and only if
the precedence graph is acyclic.

♦ Locking: The most common approach to assuring serializable schedules is
to lock database elements before accessing them, and to release the lock
after finishing access to the element. Locks on an element prevent other
transactions from accessing the element.

4 Two-Phase Locking: Locking by itself does not assure serializability. How
ever, two-phase locking, in which all transactions first enter a phase where
they only acquire locks, and then enter a phase where they only release
locks, will guarantee serializability.

4- Lock Modes: To avoid locking out transactions unnecessarily, systems
usually use several lock modes, with different rules for each mode about
when a lock can be granted. Most common is the system with shared
locks for read-only access and exclusive locks for accesses that include
writing.

4 Compatibility Matrices: A compatibility matrix is a useful summary of
when it is legal to grant a lock in a certain lock mode, given that there
may be other locks, in the same or other modes, on the same element.

4 Update Locks: A scheduler can allow a transaction that plans to read and
then write an element first to take an update lock, and later to upgrade
the lock to exclusive. Update locks can be granted when there are already
shared locks on the element, but once there, an update lock prevents other
locks from being granted on that element.

4 Increment Locks: For the common case where a transaction wants only to
add or subtract a constant from an element, an increment lock is suitable.
Increment locks on the same element do not conflict with each other,
although they conflict with shared and exclusive locks.

950 CHAPTER 18. CONCURRENCY CONTROL

♦ Locking Elements With a Granularity Hierarchy: When both large and
small elements — relations, disk blocks, and tuples, perhaps — may need
to be locked, a warning system of locks enforces serializability. Transac
tions place intention locks on large elements to warn other transactions
that they plan to access one or more of its subelements.

♦ Locking Elements Arranged in a Tree: If database elements are only ac
cessed by moving down a tree, as in a B-tree index, then a non-two-phase
locking strategy can enforce serializability. The rules require a lock to be
held on the parent while obtaining a lock on the child, although the lock
on the parent can then be released and additional locks taken later.

♦ Optimistic Concurrency Control: Instead of locking, a scheduler can as
sume transactions will be serializable, and abort a transaction if some
potentially nonserializable behavior is seen. This approach, called opti
mistic, is divided into timestamp-based, and validation-based scheduling.

♦ Timestamp-Based Schedulers: This type of scheduler assigns timestamps
to transactions as they begin. Database elements have associated read-
and write-times, which are the timestamps of the transactions that most
recently performed those actions. If an impossible situation, such as a
read by one transaction of a value that was written in that transaction’s
future is detected, the violating transaction is rolled back, i.e., aborted
and restarted.

♦ Multiversion Timestamps: A common technique in practice is for read
only transactions to be scheduled by timestamps, but with multiple ver
sions, where a write of an element does not overwrite earlier values of that
element until all transactions that could possibly need the earlier value
have finished. Writing transactions are scheduled by conventional locks.

♦ Validation-Based Schedulers: These schedulers validate transactions after
they have read everything they need, but before they write. Transactions
that have read, or will write, an element that some other transaction is in
the process of writing, will have an ambiguous result, so the transaction
is not validated. A transaction that fails to validate is rolled back.

18.11 References for Chapter 18
The book [6] is an important source for material on scheduling, as well as
locking. [3] is another important source. Two recent surveys of concurrency
control are [12] and [11].

Probably the most significant paper in the field of transaction processing is
[4] on two-phase locking. The warning protocol for hierarchies of granularity
is from [5]. Non-two-phase locking for trees is from [10]. The compatibility
matrix was introduced to study behavior of lock modes in [7].

18.11. REFERENCES FOR CHAPTER 18 951

Timestamps as a concurrency control method appeared in [2] and [1]. Sched
uling by validation is from [8]. The use of multiple versions was studied by [9].

1. P. A. Bernstein and N. Goodman, “Timestamp-based algorithms for con
currency control in distributed database systems,” Intl. Conf. on Very
Large Databases, pp. 285-300, 1980.

2. P. A. Bernstein, N. Goodman, J. B. Rothnie, Jr., and C. H. Papadim-
itriou, “Analysis of serializability in SDD-1: a system of distributed data
bases (the fully redundant case),” IEEE Trans, on Software Engineering
SE-4:3 (1978), pp. 154-168.

3. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems, Addison-Wesley, Reading MA, 1987.

4. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The notions
of consistency and predicate locks in a database system,” Comm. ACM
19:11 (1976), pp. 624-633.

5. J. N. Gray, F. Putzolo, and I. L. Traiger, “Granularity of locks and degrees
of consistency in a shared data base,” in G. M. Nijssen (ed.), Modeling in
Data Base Management Systems, North Holland, Amsterdam, 1976.

6. J. N. Gray and A. Reuter, Transaction Processing: Concepts and Tech
niques, Morgan-Kaufmann, San Francisco, 1993.

7. H. F. Korth, “Locking primitives in a database system,” J. ACM 30:1
(1983), pp. 55-79.

8. H.-T. Kung and J. T. Robinson, “Optimistic concurrency control,” ACM
Trans, on Database Systems 6:2 (1981), pp. 312-326.

9. C. H. Papadimitriou and P. C. Kanellakis, “On concurrency control by
multiple versions,” ACM Trans, on Database Systems 9:1 (1984), pp. 89 -
99.

10. A. Silberschatz and Z. Kedem, “Consistency in hierarchical database sys
tems,” J. ACM 27:1 (1980), pp. 72-80.

11. A. Thomasian, “Concurrency control: methods, performance, and analy
sis,” Computing Surveys 30:1 (1998), pp. 70-119.

12. B. Thuraisingham and H.-P. Ko, “Concurrency control in trusted data
base management systems: a survey,” SIGMOD Record 22:4 (1993),
pp. 52-60.

Chapter 19

More About Transaction
Management

In this chapter we cover several issues about transaction management that
were not addressed in Chapters 17 or 18. We begin by reconciling the points of
view of these two chapters: how do the needs to recover from errors, to allow
transactions to abort, and to maintain serializability interact? Then, we discuss
the management of deadlocks among transactions, which typically result from
several transactions each having to wait for a resource, such as a lock, that is
held by another transaction.

Finally, we consider the problems that arise due to “long transactions.”
There are applications, such as CAD systems or “workflow” systems, in which
human and computer processes interact, perhaps over a period of days. These
systems, like short-transaction systems such as banking or airline reservations,
need to preserve consistency of the database state. However, the concurrency-
control methods discussed in Chapter 18 do not work reasonably when locks
are held for days, or human decisions are part of a “transaction.”

19.1 Serializability and Recoverability
In Chapter 17 we discussed the creation of a log and its use to recover the
database state when a system crash occurs. We introduced the view of database
computation in which values move between nonvolatile disk, volatile main-
memory, and the local address space of transactions. The guarantee the various
logging methods give is that, should a crash occur, it will be able to reconstruct
the actions of the committed transactions on the disk copy of the database.
A logging system makes no attempt to support serializability; it will blindly
reconstruct a database state, even if it is the result of a nonserializable sched
ule of actions. In fact, commercial database systems do not always insist on
serializability, and in some systems, serializability is enforced only on explicit

953

954 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

request of the user.
On the other hand, Chapter 18 talked about serializability only. Schedulers

designed according to the principles of that chapter may do things that the log
manager cannot tolerate. For instance, there is nothing in the serializability
definition that forbids a transaction with a lock on an element A from writing
a new value of A into the database before committing, and thus violating a rule
of the logging policy. Worse, a transaction might write into the database and
then abort without undoing the write, which could easily result in an incon
sistent database state, even though there is no system crash and the scheduler
theoretically maintains serializability.

19.1.1 The Dirty-Data Problem

Recall from Section 6.6.5 that data is “dirty” if it has been written by a trans
action that is not yet committed. The dirty data could appear either in the
buffers, or on disk, or both; either can cause trouble.

Ti T2 A B
25 25

h(A); n (A);
A := A+100;
wi(A); Zi(B); «i(A); 125

l2 (A); r 2 (A);
A := A*2;
w2 (A); 250
l2 (B) D enied

n(B y ,
A b o rt; ui(B);

h(B); u 2 (A); r2 (B);
B := B*2;
w2 (B); u 2 (B); 50

Figure 19.1: Ti writes dirty data and then aborts

E xam ple 19.1: Let us reconsider the serializable schedule from Fig. 18.13,
but suppose that after reading B, Ti has to abort for some reason. Then the
sequence of events is as in Fig. 19.1. After Ti aborts, the scheduler releases the
lock on B that Ti obtained; that step is essential, or else the lock on B would
be unavailable to any other transaction, forever.

However, T2 has now read data that does not represent a consistent state
of the database. That is, Ta read the value of A that Ti changed, but read
the value of B that existed prior to T\ ’s actions. It doesn’t matter in this case
whether or not the value 125 for A that Ti created was written to disk or not; T2

19.1. SERIALIZABILITY AND RECO VERABILITY 955

gets that value from a buffer, regardless. Because it read an inconsistent state,
I 2 leaves the database (on disk) with an inconsistent state, where A ^ B.

The problem in Fig. 19.1 is that A written by Ti is dirty data, whether
it is in a buffer or on disk. The fact that Ti read A and used it in its own
calculation makes TVs actions questionable. As we shall see in Section 19.1.2,
it is necessary, if such a situation is allowed to occur, to abort and roll back T2
as well as Ti. □

Ti t 2 Tz A B C
200 150 175 RT=0

W T=0
RT=0
W T=0

RT=0
WT=0

w2 (B); WT=150
n(B);

rz(A)-, RT=150

M c y ,
A bort;

r s ^) ;

w3(A); WT=175
W T=0

RT=175

Figure 19.2: Ti has read dirty data from T2 and must abort when T2 does

E xam ple 19.2 : Now, consider Fig. 19.2, which shows a sequence of actions un
der a timestamp-based scheduler as in Section 18.8. However, we imagine that
this scheduler does not use the commit bit that was introduced in Section 18.8.1.
Recall that the purpose of this bit is to prevent a value that was written by
an uncommitted transaction to be read by another transaction. Thus, when Ti
reads B at the second step, there is no commit-bit check to tell Ti to delay.
Ti can proceed and could even write to disk and commit; we have not shown
further details of what T\ does.

Eventually, T2 tries to write C in a physically unrealizable way, and T2
aborts. The effect of T2’s prior write of B is cancelled; the value and write-time
of B is reset to what it was before T2 wrote. Yet T\ has been allowed to use this
cancelled value of B and can do anything with it, such as using it to compute
new values of A, B, and/or C and writing them to disk. Thus, Ti, having read
a dirty value of B, can cause an inconsistent database state. Note that, had
the commit bit been recorded and used, the read rL (B) at step (2) would have
been delayed, and not allowed to occur until after T2 aborted and the value of
B had been restored to its previous (presumably committed) value. □

19.1.2 Cascading Rollback
As we see from the examples above, if dirty data is available to transactions,
then we sometimes have to perform a cascading rollback. That is, when a

956 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

transaction T aborts, we must determine which transactions have read data
written by T, abort them, and recursively abort any transactions that have
read data written by an aborted transaction. To cancel the effect of an aborted
transaction, we can use the log, if it is one of the types (undo or undo/redo)
that provides former values. We may also be able to restore the data from the
disk copy of the database, if the effect of the dirty data has not migrated to
disk.

As we have noted, a timestamp-based scheduler with a commit bit pre
vents a transaction that may have read dirty data from proceeding, so there is
no possibility of cascading rollback with such a scheduler. A validation-based
scheduler avoids cascading rollback, because writing to the database (even in
buffers) occurs only after it is determined that the transaction will commit.

19.1.3 Recoverable Schedules
For any of the logging methods we have discussed in Chapter 17 to allow re
covery, the set of transactions that are regarded as committed after recovery
must be consistent. That is, if a transaction T\ is, after recovery, regarded
as committed, and Ti used a value written by T2, then T2 must also remain
committed, after recovery. Thus, we define:

• A schedule is recoverable if each transaction commits only after each trans
action from which it has read has committed.

E xam ple 19.3: In this and several subsequent examples of schedules with
read- and write-actions, we shall use c* for the action “transaction Ti commits.”
Here is an example of a recoverable schedule:

Si: Wi{A)\ w i (£); w2(A); r2(B); ci\ c2;

Note that T2 reads a value (B) written by Ti, so T2 must commit after Ti for
the schedule to be recoverable.

Schedule Si above is evidently serial (and therefore serializable) as well as
recoverable, but the two concepts are orthogonal. For instance, the following
variation on Si is still recoverable, but not serializable.

S2: w2{A)\ w\{B)\ w1(A); r2(B); c i; c2;

In schedule S2, T2 must precede Ti in a serial order because of the writing of
A, but Ti must precede T2 because of the writing and reading of B.

Finally, observe the following variation on S i, which is serializable but not
recoverable:

S3: wx(A); wi(B); 10 2(A); r2(B); c2; Ci;

In schedule S3, Ti precedes T2, but their commitments occur in the wrong order.
If before a crash, the commit record for T2 reached disk, but the commit record
for Ti did not, then regardless of whether undo, redo, or undo/redo logging
were used, T2 would be committed after recovery, but T\ would not. □

19.1. SERIALIZABILITY AND RECOVERABILITY 957

In order for recoverable schedules to be truly recoverable under any of the
three logging methods, there is one additional assumption we must make re
garding schedules:

• The log’s commit records reach disk in the order in which they are written.

As we observed in Example 19.3 concerning schedule S 3 , should it be possible for
commit records to reach disk in the wrong order, then consistent recovery might
be impossible. We shall return to and exploit this principle in Section 19.1.6.

19.1.4 Schedules That Avoid Cascading Rollback
Recoverable schedules sometimes require cascading rollback. For instance, if
after the first four steps of schedule Si in Example 19.3 Ti had to roll back,
it would be necessary to roll back T2 as well. To guarantee the absence of
cascading rollback, we need a stronger condition than recoverability. We say
that:

• A schedule avoids cascading rollback (or “is an ACR schedule?’) if trans
actions may read only values written by committed transactions.

Put another way, an ACR schedule forbids the reading of dirty data. As for re
coverable schedules, we assume that “committed” means that the log’s commit
record has reached disk.

E xam ple 19.4: The schedules of Example 19.3 are not ACR. In each case, T2
reads B from the uncommitted transaction T \ . However, consider:

Si'. wi(A); w i (B); w2 (A); a ; r2 (B); c2;

Now, T2 reads B only after I i , the transaction that last wrote B, has commit
ted, and its log record written to disk. Thus, schedule S4 is ACR, as well as
recoverable. □

Notice that should a transaction such as T2 read a value written by Tj after
T\ commits, then surely T2 either commits or aborts after Ti commits. Thus:

• Every ACR schedule is recoverable.

19.1.5 Managing Rollbacks Using Locking
Our prior discussion applies to schedules that are generated by any kind of
scheduler. In the common case that the scheduler is lock-based, there is a simple
and commonly used way to guarantee that there are no cascading rollbacks:

• Strict Locking: A transaction must not release any exclusive locks (or
other locks, such as increment locks that allow values to be changed)
until the transaction has either committed or aborted, and the commit or
abort log record has been flushed to disk.

958 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

A schedule of transactions that follow the strict-locking rule is called a strict
schedule. Two important properties of these schedules are:

1. Every strict schedule is ACR. The reason is that a transaction T? cannot
read a value of element X written by Ti until T\ releases any exclusive
lock (or similar lock that allows X to be changed). Under strict locking,
the release does not occur until after commit.

2. Every strict schedule is serializable. To see why, observe that a strict
schedule is equivalent to the serial schedule in which each transaction
runs instantaneously at the time it commits.

With these observations, we can now picture the relationships among the dif
ferent kinds of schedules we have seen so far. The containments are suggested
in Fig. 19.3.

Figure 19.3: Containments and noncontainments among classes of schedules

Clearly, in a strict schedule, it is not possible for a transaction to read dirty
data, since data written to a buffer by an uncommitted transaction remains
locked until the transaction commits. However, we still have the problem of
fixing the data in buffers when a transaction aborts, since these changes must
have their effects cancelled. How difficult it is to fix buffered data depends on
whether database elements are blocks or something smaller. We shall consider
each.

R ollback for B locks

If the lockable database elements are blocks, then there is a simple rollback
method that never requires us to use the log. Suppose that a transaction T has
obtained an exclusive lock on block A, written a new value for A in a buffer,
and then had to abort. Since A has been locked since T wrote its value, no
other transaction has read A. It is easy to restore the old value of A provided
the following rule is followed:

19.1. SERIALIZABILITY AND RECOVERABILITY 959

• Blocks written by uncommitted transactions are pinned in main memory;
that is, their buffers are not allowed to be written to disk.

In this case, we “roll back” T when it aborts by telling the buffer manager to
ignore the value of A. That is, the buffer occupied by A is not written anywhere,
and its buffer is added to the pool of available buffers. We can be sure that the
value of A on disk is the most recent value written by a committed transaction,
which is exactly the value we want A to have.

There is also a simple rollback method if we are using a multiversion system
as in Sections 18.8.5 and 18.8.6. We must again assume that blocks written by
uncommitted transactions are pinned in memory. Then, we simply remove the
value of A that was written by T from the list of available values of .4. Note
that because T was a writing transaction, its value of A was locked from the
time the value was written to the time it aborted (assuming the timestamp/lock
scheme of Section 18.8.6 is used).

R ollback for Sm all D atabase E lem ents

When lockable database elements are fractions of a block (e.g., tuples or ob
jects), then the simple approach to restoring buffers that have been modified by
aborted transactions will not work. The problem is that a buffer may contain
data changed by two or more transactions; if one of them aborts, we still must
preserve the changes made by the other. We have several choices when we must
restore the old value of a small database element A that was written by the
transaction that has aborted:

1. We can read the original value of A from the database stored on disk and
modify the buffer contents appropriately.

2. If the log is an undo or undo/redo log, then we can obtain the former
value from the log itself. The same code used to recover from crashes
may be used for “voluntary” rollbacks as well.

3. We can keep a separate main-memory log of the changes made by each
transaction, preserved for only the time that transaction is active. The
old value can be found from this “log.”

None of these approaches is ideal. The first surely involves a disk access.
The second (examining the log) might not involve a disk access, if the relevant
portion of the log is still in a buffer. However, it could also involve extensive
examination of portions of the log on disk, searching for the update record that
tells the correct former value. The last approach does not require disk accesses,
but may consume a large fraction of memory for the main-memory “logs.”

19.1.6 Group Commit
Under some circumstances, we can avoid reading dirty data even if we do not
flush every commit record on the log to disk immediately. As long as we flush

960 CHAPTER 19. MORE ABOU T TRANSACTION M ANAGEM ENT

log records in the order that they are written, we can release locks as soon as
the commit record is written to the log in a buffer.

E xam p le 19.5: Suppose transaction 7\ writes X , finishes, writes its COMMIT
record on the log, but the log record remains in a buffer. Even though Ti
has not committed in the sense that its commit record can survive a crash,
we shall release T i’s locks. Then T2 reads X and “commits,” but its commit
record, which follows that of T \ , also remains in a buffer. Since we are flushing
log records in the order written, T2 cannot be perceived as committed by a
recovery manager (because its commit record reached disk) unless Ti is also
perceived as committed. Thus, the recovery manager will find either one of two
things:

1. T\ is committed on disk. Then regardless of whether or not T2 is commit
ted on disk, we know T2 did not read X from an uncommitted transaction.

2. Ti is not committed on disk. Then neither is T2, and both are aborted
by the recovery manager. In this case, the fact that T2 read X from an
uncommitted transaction has no effect on the database.

On the other hand, suppose that the buffer containing T2’s commit record
got flushed to disk (say because the buffer manager decided to use the buffer
for something else), but the buffer containing T i’s commit record did not. If
there is a crash at that point, it will look to the recovery manager that T\ did
not commit, but T2 did. The effect of Ta will be permanently reflected in the
database, but this effect was based on the dirty read of X by T2. □

Our conclusion from Example 19.5 is that we can release locks earlier than
the time that the transaction’s commit record is flushed to disk. This policy,
often called group commit, is:

• Do not release locks until the transaction finishes, and the commit log
record at least appears in a buffer.

• Flush log blocks in the order that they were created.

Group commit, like the policy of requiring “recoverable schedules” as discussed
in Section 19.1.3, guarantees that there is never a read of dirty data.

19.1.7 Logical Logging
We saw in Section 19.1.5 that dirty reads are easier to fix up when the unit of
locking is the block or page. However, there are at least two problems presented
when database elements are blocks.

1. All logging methods require either the old or new value of a database
element, or both, to be recorded in the log. When the change to a block

19.1. SERIALIZABILITY AND REC O VERABILITY 961

W hen is a Transaction Really Committed?

The subtlety of group commit reminds us that a completed transaction can
be in several different states between when it finishes its work and when it
is truly “committed,” in the sense that under no circumstances, including
the occurrence of a system failure, will the effect of that transaction be
lost. As we noted in Chapter 17, it is possible for a transaction to finish
its work and even write its COMMIT record to the log in a main-memory
buffer, yet have the effect of that transaction lost if there is a system crash
and the COMMIT record has not yet reached disk. Moreover, we saw in
Section 17.5 that even if the COMMIT record is on disk but not yet backed
up in the archive, a media failure can cause the transaction to be undone
and its effect to be lost.

In the absence of failure, all these states are equivalent, in the sense
that each transaction will surely advance from being finished to having its
effects survive even a media failure. However, when we need to take failures
and recovery into account, it is important to recognize the differences
among these states, which otherwise could all be referred to informally as
“committed.”

is small, e.g., a rewritten attribute of one tuple, or an inserted or deleted
tuple, then there is a great deal of redundant information written on the
log.

2. The requirement that the schedule be recoverable, releasing its locks only
after commit, can inhibit concurrency severely. For example, recall our
discussion in Section 18.7.1 of the advantage of early lock release as we
access data through a B-tree index. If we require that locks be held until
commit, then this advantage cannot be obtained, and we effectively allow
only one writing transaction to access a B-tree at any time.

Both these concerns motivate the use of logical logging, where only the
changes to the blocks are described. There are several degrees of complexity,
depending on the nature of the change.

1. A small number of bytes of the database element are changed, e.g., the
update of a fixed-length field. This situation can be handled in a straight
forward way, where we record only the changed bytes and their positions.
Example 19.6 will show this situation and an appropriate form of update
record.

2. The change to the database element is simply described, and easily re
stored, but it has the effect of changing most or all of the bytes in the
database element. One common situation, discussed in Example 19.7, is

962 CHAPTER 19. MORE ABO U T TRANSACTION M ANAGEM ENT

when a variable-length field is changed and much of its record, and even
other records, must slide within the block. The new and old values of the
block look very different unless we realize and indicate the simple cause
of the change.

3. The change affects many bytes of a database element, and further changes
can prevent this change from ever being undone. This situation is true
“logical” logging, since we cannot even see the undo/redo process as occur
ring on the database elements themselves, but rather on some higher-level
“logical” structure that the database elements represent. We shall, in Ex
ample 19.8, take up the m atter of B-trees, a logical structure represented
by database elements that are disk blocks, to illustrate this complex form
of logical logging.

E xam ple 19.6: Suppose database elements are blocks that each contain a set
of tuples from some relation. We can express the update of an attribute by a
log record that says something like “tuple t had its attribute a changed from
value vi to V2 ” An insertion of a new tuple into empty space on the block can
be expressed as “a tuple t with value (a i,a 2, . . . , a*) was inserted beginning
at offset position p.” Unless the attribute changed or the tuple inserted are
comparable in size to a block, the amount of space taken by these records will
be much smaller than the entire block. Moreover, they serve for both undo and
redo operations.

Notice that both these operations are idempotent; if you perform them sev
eral times on a block, the result is the same as performing them once. Likewise,
their implied inverses, where the value of i[a] is restored from v2 back to v\, or
the tuple t is removed, are also idempotent. Thus, records of these types can
be used for recovery in exactly the same way that update log records were used
throughout Chapter 17. □

E xam ple 19.7: Again assume database elements are blocks holding tuples,
but the tuples have some variable-length fields. If a change to a field such as
was described in Example 19.6 occurs, we may have to slide large portions of
the block to make room for a longer field, or to preserve space if a field becomes
smaller. In extreme cases, we could have to create an overflow block (recall
Section 13.8) to hold part of the contents of the original block, or we could
remove an overflow block if a shorter field allows us to combine the contents of
two blocks into one.

As long as the block and its overflow block(s) are considered part of one
database element, then it is straightforward to use the old and/or new value of
the changed field to undo or redo the change. However, the block-plus-overflow-
block(s) must be thought of as holding certain tuples at a “logical” level. We
may not even be able to restore the bytes of these blocks to their original state
after an undo or redo, because there may have been reorganization of the blocks
due to other changes that varied the length of other fields. Yet if we think of a
database element as being a collection of blocks that together represent certain

19.1. SERIALIZABILITY AND RECO VERABILITY 963

tuples, then a redo or undo can indeed restore the logical “state” of the element.
□

However, it may not be possible, as we suggested in Example 19.7, to treat
blocks as expandable through the mechanism of overflow blocks. We may thus
be able to undo or redo actions only at a level higher than blocks. The next
example discusses the important case of B-tree indexes, where the management
of blocks does not permit overflow blocks, and we must think of undo and redo
as occurring at the “logical” level of the B-tree itself, rather than the blocks.

E xam ple 19.8: Let us consider the problem of logical logging for B-tree nodes.
Instead of writing the old and/or new value of an entire node (block) on the
log, we write a short record that describes the change. These changes include:

1. Insertion or deletion of a key/pointer pair for a child.

2. Change of the key associated with a pointer.

3. Splitting or merging of nodes.

Each of these changes can be indicated with a short log record. Even the
splitting operation requires only telling where the split occurs, and where the
new nodes are. Likewise, merging requires only a reference to the nodes in
volved, since the manner of merging is determined by the B-tree management
algorithms used.

Using logical update records of these types allows us to release locks earlier
than would otherwise be required for a recoverable schedule. The reason is
that dirty reads of B-tree blocks are never a problem for the transaction that
reads them, provided its only purpose is to use the B-tree to locate the data
the transaction needs to access.

For instance, suppose that transaction T reads a leaf node N , but the trans
action U that last wrote N later aborts, and some change made to N (e.g., the
insertion of a new key/pointer pair into N due to an insertion of a tuple by U)
needs to be undone. If T has also inserted a key/pointer pair into N , then it is
not possible to restore N to the way it was before U modified it. However, the
effect oiU on N can be undone; in this example we would delete the key/pointer
pair that U had inserted. The resulting N is not the same as that which ex
isted before U operated; it has the insertion made by T. However, there is no
database inconsistency, since the B-tree as a whole continues to reflect only the
changes made by committed transactions. That is, we have restored the B-tree
at a logical level, but not at the physical level. □

19.1.8 Recovery From Logical Logs
If the logical actions are idempotent — i.e., they can be repeated any number
of times without harm — then we can recover easily using a logical log. For

964 CHAPTER 19. MORE ABOU T TRANSACTION M ANAGEM ENT

instance, we discussed in Example 19.6 how a tuple insertion could be repre
sented in the logical log by the tuple and the place within a block where the
tuple was placed. If we write that tuple in the same place two or more times,
then it is as if we had written it once. Thus, when recovering, should we need
to redo a transaction that inserted a tuple, we can repeat the insertion into
the proper block at the proper place, without worrying whether we had already
inserted that tuple.

In contrast, consider a situation where tuples can move around within blocks
or between blocks, as in Examples 19.7 and 19.8. Now, we cannot associate a
particular place into which a tuple is to be inserted; the best we can do is place
in the log an action such as “the tuple t was inserted somewhere on block B.”
If we need to redo the insertion of t during recovery, we may wind up with two
copies of t in block B. Worse, we may not know whether the block B with the
first copy of t made it to disk. Another transaction writing to another database
element on block B may have caused a copy of B to be written to disk, for
example.

To disambiguate situations such as this when we recover using a logical log,
a technique called log sequence numbers has been developed.

• Each log record is given a number one greater than that of the previous
log record.1 Thus, a typical logical log record has the form <L, T, A, B>,
where:

- L is the log sequence number, an integer.
— T is the transaction involved.
- A is the action performed by T, e.g., “insert of tuple t.”
— B is the block on which the action was performed.

• For each action, there is a compensating action that logically undoes the
action. As discussed in Example 19.8, the compensating action may not
restore the database to exactly the same state 5 it would have been in
had the action never occurred, but it restores the database to a state that
is logically equivalent to S. For instance, the compensating action for
“insert tuple t” is “delete tuple t.”

• If a transaction T aborts, then for each action performed on the database
by T, the compensating action is performed, and the fact that this action
was performed is also recorded in the log.

• Each block maintains, in its header, the log sequence number of the last
action that affected that block.

Suppose now that we need to use the logical log to recover after a crash.
Here is an outline of the steps to take.

E v e n tu a l ly th e log sequence num bers m u st r e s ta r t a t 0, b u t th e tim e betw een re s ta r ts of
th e sequence is so large th a t no am bigu ity can occur.

19.1. SERIALIZABILITY AND RECO VERABILITY 965

1. Our first step is to reconstruct the state of the database at the time of the
crash, including blocks whose current values were in buffers and therefore
got lost. To do so:

(a) Find the most recent checkpoint on the log, and determine from it
the set of transactions that were active at that time.

(b) For each log entry <L,T, A, B>, compare the log sequence number
N on block B with the log sequence number L for this log record.
If N < L, then redo action A; that action was never performed on
block B. However, if N > L, then do nothing; the effect of A was
already felt by B.

(c) For each log entry that informs us that a transaction T started, com
mitted, or aborted, adjust the set of active transactions accordingly.

2. The set of transactions that remain active when we reach the end of the
log must be aborted. To do so:

(a) Scan the log again, this time from the end back to the previous check
point. Each time we encounter a record < L ,T ,A ,B > for a transac
tion T that must be aborted, perform the compensating action for
A on block B and record in the log the fact that that compensating
action was performed.

(b) If we must abort a transaction that began prior to the most recent
checkpoint (i.e., that transaction was on the active list for the check
point), then continue back in the log until the start-records for all
such transactions have been found.

(c) Write abort-records in the log for each of the transactions we had to
abort.

19.1.9 Exercises for Section 19.1
Exercise 19.1.1: What are all the ways to insert locks (of a single type only,
as in Section 18.3) into the sequence of actions

ri{A); n (B); wx(A); wx(B);

so that the transaction Ti is:

a) Two-phase locked, and strict.

b) Two-phase locked, but not strict.

Exercise 19.1.2: Suppose that each of the sequences of actions below is fol
lowed by an abort action for transaction T \ . Tell which transactions need to be
rolled back.

a) ri(A); r2 (B); Wi{B); w2 (C); r3 {B); r3 (C); w3 (D)-,

966 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

b) n(A); Wi(B); r2 (B); w2 (C); r3 (C)\ w3 {D);

c) r2 (A); r3 (A); n (A); w i(5); r2{B); r3 (B); w2 (C); r 3(C);

d) r2 {A); r3 (A); ri(A); wi(B); r3 (B); w2 {C)\ r 3((7);

E xercise 1 9 .1 .3 : Consider each of the sequences of actions in Exercise 19.1.2,
but now suppose that all three transactions commit and write their commit
record on the log immediately after their last action. However, a crash occurs,
and a tail of the log was not written to disk before the crash and is therefore
lost. Tell, depending on where the lost tail of the log begins:

i. What transactions could be considered uncommitted?

ii. Are any dirty reads created during the recovery process? If so, what
transactions need to be rolled back?

Hi. What additional dirty reads could have been created if the portion of the
log lost was not a tail, but rather some portions in the middle?

! E xercise 19 .1 .4 : Consider the following two transactions:

I i : Wi(A); Wi{B); n(C); Ci;
T2: w2 (A); r 2 (B); w2 (C); c 2 ;

a) How many schedules of 7\ and T2 are recoverable?

b) Of these, how many are ACR schedules?

c) How many are both recoverable and serializable?

d) How many are both ACR and serializable?

E xercise 19 .1 .5 : Give an example of an ACR schedule with shared and ex
clusive locks that is not strict.

19.2 Deadlocks
Several times we have observed that concurrently executing transactions can
compete for resources and thereby reach a state where there is a deadlock: each
of several transactions is waiting for a resource held by one of the others, and
none can make progress.

• In Section 18.3.4 we saw how ordinary operation of two-phase-locked
transactions can still lead to a deadlock, because each has locked some
thing that another transaction also needs to lock.

• In Section 18.4.3 we saw how the ability to upgrade locks from shared to
exclusive can cause a deadlock because each transaction holds a shared
lock on the same element and wants to upgrade the lock.

19.2. DEADLOCKS 967

There are two broad approaches to dealing with deadlock. We can detect
deadlocks and fix them, or we can manage transactions in such a way that
deadlocks are never able to form.

19.2.1 Deadlock Detection by Timeout
When a deadlock exists, it is generally impossible to repair the situation so that
all transactions involved can proceed. Thus, at least one of the transactions will
have to be aborted and restarted.

The simplest way to detect and resolve deadlocks is with a timeout. Put a
limit on how long a transaction may be active, and if a transaction exceeds this
time, roll it back. For example, in a simple transaction system, where typical
transactions execute in milliseconds, a timeout of one minute would affect only
transactions that are caught in a deadlock.

Notice that when one deadlocked transaction times out and rolls back, it
releases its locks or other resources. Thus, there is a chance that the other
transactions involved in the deadlock will complete before reaching their timeout
limits. However, since transactions involved in a deadlock are likely to have
started at approximately the same time (or else, one would have completed
before another started), it is also possible that spurious timeouts of transactions
that are no longer involved in a deadlock will occur.

19.2.2 The Waits-For Graph
Deadlocks that are caused by transactions waiting for locks held by another
can be detected by a waits-for graph, indicating which transactions are waiting
for locks held by another transaction. This graph can be used either to detect
deadlocks after they have formed or to prevent deadlocks from ever forming.
We shall assume the latter, which requires us to maintain the waits-for graph
at all times, refusing to allow an action that creates a cycle in the graph.

Recall from Section 18.5.2 that a lock table maintains for each database
element X a list of the transactions that are waiting for locks on X , as well as
transactions that currently hold locks on X . The waits-for graph has a node for
each transaction that currently holds any lock or is waiting for one. There is
an arc from node (transaction) T to node U if there is some database element
A such that:

1. U holds a lock on A,

2. T is waiting for a lock on A, and

3. T cannot get a lock on A in its desired mode unless U first releases its
lock on A ?

2 In com m on s itu a tio n s , such as shared an d exclusive locks, every w aiting tran sac tio n will
have to w ait un til all cu rren t lock ho lders release th e ir locks, b u t th e re are exam ples o f system s
of lock m odes w here a tran sac tio n can get its lock a fte r only som e of th e cu rren t locks are
released; see E xercise 19.2.6.

968 CHAPTER 19. MORE ABOU T TRANSACTION M ANAGEM ENT

If there are no cycles in the waits-for graph, then each transaction can
complete eventually. There will be at least one transaction waiting for no other
transaction, and this transaction surely can complete. At that time, there will
be at least one other transaction that is not waiting, which can complete, and
so on.

However, if there is a cycle, then no transaction in the cycle can ever make
progress, so there is a deadlock. Thus, a strategy for deadlock avoidance is to
roll back any transaction that makes a request that would cause a cycle in the
waits-for graph.

E xam ple 19.9: Suppose we have the following four transactions, each of which
reads one element and writes another:

Ti: h{A); n (A); h{B); Wi(B)-, ui(A); ui(B);

Tr. h(cy , r 2 (C) ; l2 (A); w2(A); u2(C); u2(A)-,

T3: i3(B); r 3(B); l3(C); w3(C); u„(B); u3(C);
T4: h{D); r4(D); h{A); w4(A)\ u4(D); u4(A);

Ti_____________ la_____________ Tz_____________ Ti_________
1) h(A); n(A);
2) i2(cy, r2(cy
3) lz(B); r s (B);
4) l4 (D); r4 (D);
5) fa (A); D en ied
6) hiC); D en ied
7) h{A); D en ied
8) h(B); D en ied

Figure 19.4: Beginning of a schedule with a deadlock

We use a simple locking system with only one lock mode, although the same
effect would be noted if we were to use a shared/exclusive system. In Fig. 19.4
is the beginning of a schedule of these four transactions. In the first four steps,
each transaction obtains a lock on the element it wants to read. At step (5),
T2 tries to lock A, but the request is denied because already has a lock on
A. Thus, T2 waits for Ti, and we draw an arc from the node for T2 to the node
for I i .

Similarly, at step (6) I 3 is denied a lock on C because of T2, and at step (7),
T4 is denied a lock on A because of I i . The waits-for graph at this point is as
shown in Fig. 19.5. There is no cycle in this graph.

At step (8), Ti must wait for the lock on B held by Tz- If we allow Ti to
wait, there is a cycle in the waits-for graph involving T\, T2 , and Tz, as seen

19.2. DEADLOCKS 969

©

©---KD---kJ)
Figure 19.5: Waits-for graph after step (7) of Fig. 19.4

©

Figure 19.6: Waits-for graph with a cycle caused by step (8) of Fig. 19.4

in Fig. 19.6. Since each of these transactions is waiting for another to finish,
none can make progress, and therefore there is a deadlock involving these three
transactions. Incidentally, X4 can not finish either, although it is not in the
cycle, because TVs progress depends on making progress.

Since we roll back any transaction that causes a cycle, Ti must be rolled
back, yielding the waits-for graph of Fig. 19.7. Tj relinquishes its lock on A,
which may be given to either T2 or T4. Suppose it is given to T2. Then T2 can
complete, whereupon it relinquishes its locks on A and C. Now T3, which needs
a lock on C, and I 4, which needs a lock on A, can both complete. At some
time, Ti is restarted, but it cannot get locks on A and B until T2, T3 , and T4
have completed. □

Figure 19.7: Waits-for graph after 7i is rolled back

970 CHAPTER 19. MORE ABOUT TRANSACTION M ANAGEM ENT

19.2.3 Deadlock Prevention by Ordering Elements
Now, let us consider several more methods for deadlock prevention. The first
requires us to order database elements in some arbitrary but fixed order. For
instance, if database elements are blocks, we could order them lexicographically
by their physical address.

If every transaction is required to request locks on elements in order, then
there can be no deadlock due to transactions waiting for locks. For suppose T2
is waiting for a lock on A\ held by I i ; T3 is waiting for a lock on A 2 held by
I 2, and so on, while Tn is waiting for a lock on A n- 1 held by Tn_i, and Ti is
waiting for a lock on A n held by Tn. Since T2 has a lock on A 2 but is waiting
for A \ , it must be that A 2 < Ai in the order of elements. Similarly, Ai < Ai- 1
for i = 3 ,4 ,. . . , n. But since I i has a lock on Ai while it is waiting for A„, it
also follows that A\ < A n. We now have A\ < A n < A n- 1 < • • • < A 2 < A \ l
which is impossible, since it implies A\ < Ai.

E xam ple 19.10: Let us suppose elements are ordered alphabetically. Then if
the four transactions of Examplel9.9 are to lock elements in alphabetical order,
I 2 and I 4 must be rewritten to lock elements in the opposite order. Thus, the
four transactions are now:

I i : h(A)-, r i (A); h{B)- Wl(B); Ul{A)- Ul(B);

T2: l2 (A); l2 (C)-, r2 (C); w2 (A); u 2 (C)-, «2(A);

T3: l3 (B); r3 (B); /3(C); «*(£?); u3(S); «s(C);

T4: k{A)\ I a (D); n iD); wi{A)\ Ui(D); u4(A);

Figure 19.8 shows what happens if the transactions execute with the same
timing as Fig. 19.4. Ti begins and gets a lock on A. T2 tries to begin next by
getting a lock on A, but must wait for I i . Then, T3 begins by getting a lock
on B, but Ta is unable to begin because it too needs a lock on A , for which it
must wait.

Since T2 is stalled, it cannot proceed, and following the order of events in
Fig. 19.4, T3 gets a turn next. It is able to get its lock on C, whereupon it
completes at step (6). Now, with T3 s locks on B and C released, Ti is able
to complete, which it does at step (8). At this point, the lock on A becomes
available, and we suppose that it is given on a first-come-first-served basis to T2.
Then, T2 can get both locks that it needs and completes at step (11). Finally,
Ti can get its locks and completes. □

19.2.4 D etecting Deadlocks by Timestamps
We can detect deadlocks by maintaining the waits-for graph, as we discussed
in Section 19.2.2. However, this graph can be large, and analyzing it for cy
cles each time a transaction has to wait for a lock can be time-consuming. An

19.2. DEADLOCKS 971

Ti T2 T3 Ti
1) hiA); niA);
2) h(A); D en ied
3) k (B) ; rs (B);
4) h{A)\ D en ied
5) l3 (C); w3 (C)-,
6) u3(B)\ u3(C);
7) h(B); Wi(B);
8) «i(A); ui(B);
9) h{A)-, i2(cy,

10) r2(C); w2 {A);
11) u 2 (A); u 2 (C);
12) h{A)\ u{py
13) r4 (D); w4 (A);
14) 114(A); U i (D y

Figure 19.8: Locking elements in alphabetical order prevents deadlock

alternative to maintaining the waits-for graph is to associate with each trans
action a timestamp. This timestamp is for deadlock detection only; it is not
the same as the timestamp used for concurrency control in Section 18.8, even
if timestamp-based concurrency control is in use. In particular, if a transac
tion is rolled back, it restarts with a new, later concurrency timestamp, but its
timestamp for deadlock detection never changes.

The timestamp is used when a transaction T has to wait for a lock that
is held by another transaction U. Two different things happen, depending on
whether T or U is older (has the earlier timestamp). There are two different
policies that can be used to manage transactions and detect deadlocks.

1. The Wait-Die Scheme:

(a) If T is older than U (i.e., the timestamp of T is smaller than C/’s
timestamp), then T is allowed to wait for the lock(s) held by U.

(b) If U is older than T, then T “dies” ; it is rolled back.

2. The Wound-Wait Scheme:

(a) If T is older than U, it “wounds” U. Usually, the “wound” is fatal:
U must roll back and relinquish to T the lock(s) that T needs from
U. There is an exception if, by the time the “wound” takes effect, U
has already finished and released its locks. In that case, U survives
and need not be rolled back.

(b) If U is older than T, then T waits for the lock(s) held by U.

972 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

E xam ple 19.11: Let us consider the wait-die scheme, using the transactions
of Example 19.10. We shall assume that Ti, T2, T3, X4 is the order of times; i.e.,
Ti is the oldest transaction. We also assume that when a transaction rolls back,
it does not restart soon enough to become active before the other transactions
finish.

Figure 19.9 shows a possible sequence of events under the wait-die scheme.
Ti gets the lock on A first. When T2 asks for a lock on A, it dies, because Ti
is older than Ta. In step (3), T3 gets a lock on B, but in step (4), T4 asks for
a lock on A and dies because Ti, the holder of the lock on A, is older than T4.
Next, T3 gets its lock on C and completes. When Ti continues, it finds the lock
on B available and also completes at step (8).

Now, the two transactions that rolled back — T2 and T4 — start again.
Their timestamps, as far as deadlock is concerned, do not change; T2 is still
older than T4. However, we assume that T4 restarts first, at step (9), and when
the older transaction T2 requests a lock on A at step (10), it is forced to wait,
but does not abort. T4 completes at step (12), and then T2 is allowed to run to
completion, as shown in the last three steps. □

E xam ple 19.12: Next, let us consider the same transactions running under
the wound-wait policy, as shown in Fig. 19.10. As in Fig. 19.9, Ti begins by
locking A. When Ta requests a lock on A at step (2), it waits, since T\ is older
than T2. After T3 gets its lock on B at step (3), T4 is also made to wait for the
lock on A.

Then, suppose that Ti continues at step (5) with its request for the lock on
B. That lock is already held by T3, but Ti is older than T3. Thus, Ti “wounds”
T3. Since I 3 is not yet finished, the wound is fatal: T3 relinquishes its lock and
rolls back. Thus, I \ is able to complete.

When Ti makes the lock on A available, suppose it is given to T2, which
is then able to proceed. After T2, the lock is given to T4, which proceeds to
completion. Finally, T3 restarts and completes without interference. □

19.2.5 Comparison of Deadlock-Management Methods
In both the wait-die and wound-wait schemes, older transactions kill off newer
transactions. Since transactions restart with their old timestamp, eventually
each transaction becomes the oldest in the system and is sure to complete. This
guarantee, that every transaction eventually completes, is called no starvation.
Notice that other schemes described in this section do not necessarily prevent
starvation; if extra measures are not taken, a transaction could repeatedly start,
get involved in a deadlock, and be rolled back, (see Exercise 19.2.7).

There is, however, a subtle difference in the way wait-die and wound-wait be
have. In wound-wait, a newer transaction is killed whenever an old transaction
asks for a lock held by the newer transaction. If we assume that transactions
take their locks near the time that they begin, it will be rare that an old trans
action was beaten to a lock by a new transaction. Thus, we expect rollback to
be rare in wound-wait.

19.2. DEADLOCKS 973

1) h{A)\n{A)\
2) MA); D ies
3) ^(B); r3(S);
4) /4(A); D ies
5) l3(C)-, w3(C);
6) U3 (B); u 3 (C);
7) !!(£);« ;!(£);
8) «i(A); wi(B);
9) k (A); /4(£>);

10) /2(A); W aits
11) r-4(-0); w4(A);
12) «4(A); u4{Dy,
13) h{A)\ l2(C);
14) r2 (C); w2(A);
15) «2(A); ^ (C);

Ti T2 T3 T4

Figure 19.9: Actions of transactions detecting deadlock under the wait-die
scheme

______ Ti____________ T2____________ n ____________ T_______
1) IX(A); n (A);
2) h(A); W aits
3) h(B); r3 (B);
4) /4(A); W aits
5) h(B); wi(B); W ounded
6) «i(A); ui{B);
7) h{Ay i2(cy
8) r2(c y Iy2(A);
9) u 2 (A); u2 {C);

10) Z4(A); h (D y
11) r4 (D); w4 (A);
12) «4(A); u4 (D);
13) h(B); r3 (B);
14) l3 (C); w3 (C);
15) u 3 (B); u3 (C);

Figure 19.10: Actions of transactions detecting deadlock under the wound-wait
scheme

974 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

Why Timestamp-Based Deadlock Detection Works

We claim that in either the wait-die or wound-wait scheme, there can be
no cycle in the waits-for graph, and hence no deadlock. Suppose there is
a cycle such as Ti -> Ta —> T3 —¥ T \ . One of the transactions is the oldest,
say T2.

In the wait-die scheme, you can only wait for younger transactions.
Thus, it is not possible that Ti is waiting for T2, since T2 is surely older
than Ti. In the wound-wait scheme, you can only wait for older transac
tions. Thus, there is no way T2 could be waiting for the younger T3. We
conclude that the cycle cannot exist, and therefore there is no deadlock.

On the other hand, when a rollback does occur, wait-die rolls back a trans
action that is still in the stage of gathering locks, presumably the earliest phase
of the transaction. Thus, although wait-die may roll back more transactions
than wound-wait, these transactions tend to have done little work. In contrast,
when wound-wait does roll back a transaction, it is likely to have acquired its
locks and for substantial processor time to have been invested in its activity.
Thus, either scheme may turn out to cause more wasted work, depending on
the population of transactions processed.

We should also consider the advantages and disadvantages of both wound-
wait and wait-die when compared with a straightforward construction and use
of the waits-for graph. The important points are:

• Both wound-wait and wait-die are easier to implement than a system that
maintains or periodically constructs the waits-for graph.

• Using the waits-for graph minimizes the number of times we must abort
a transaction because of deadlock. If we abort a transaction, there really
is a deadlock. On the other hand, either wound-wait or wait-die will
sometimes roll back a transaction when there really is no deadlock.

19.2.6 Exercises for Section 19.2
E xercise 19.2.1: For each of the sequences of actions below, assume that
shared locks are requested immediately before each read action, and exclusive
locks are requested immediately before every write action. Also, unlocks occur
immediately after the final action that a transaction executes. Tell what actions
are denied, and whether deadlock occurs. Also tell how the waits-for graph
evolves during the execution of the actions. If there are deadlocks, pick a
transaction to abort, and show how the sequence of actions continues.

a) ri(A); r 2(B); Wi(C); r3 (D); r4 (E); w3 (B); w2 (C); w4 (A); wi(D);

19.3. LONG-DURATION TRANSACTIONS 975

b) n(A); r2(B); r3 (C); w2 (C); w3 (D);

c) ri(A); r2(£); r3 (C); wi(-B); tw2 (C); w3 (A);
d) n(A); r2 {B); u>i(C); w2(£>); r 3(C); wi(B); w4(£>); ^ 2(^)5

E xercise 19.2.2: For each of the action sequences in Exercise 19.2.1, tell what
happens under the wound-wait deadlock avoidance system. Assume the order of
deadlock-timestamps is the same as the order of subscripts for the transactions,
that is, Ti,T 2 ,T 3 ,T4. Also assume that transactions that need to restart do so
in the order that they were rolled back.

Exercise 19.2.3: For each of the action sequences in Exercise 19.2.1, tell
what happens under the wait-die deadlock avoidance system. Make the same
assumptions as in Exercise 19.2.2.

! Exercise 19.2.4: Can one have a waits-for graph with a cycle of length n, but
no smaller cycle, for any integer n > 1? What about n = 1, i.e., a loop on a
node?

!! Exercise 19.2.5: One approach to avoiding deadlocks is to require each trans
action to announce all the locks it wants at the beginning, and to either grant
all those locks or deny them all and make the transaction wait. Does this ap
proach avoid deadlocks due to locking? Either explain why, or give an example
of a deadlock that can arise.

! E xercise 19.2.6: Consider the intention-locking system of Section 18.6. De
scribe how to construct the waits-for graph for this system of lock modes. Espe
cially, consider the possibility that a database element A is locked by different
transactions in modes I S and also either S or I X . If a request for a lock on A
has to wait, what arcs do we draw?

! E xercise 19.2.7: In Section 19.2.5 we pointed out that deadlock-detection
methods other than wound-wait and wait-die do not necessarily prevent star
vation, where a transaction is repeatedly rolled back and never gets to finish.
Give an example of how using the policy of rolling back any transaction that
would cause a cycle can lead to starvation. Does requiring that transactions
request locks on elements in a fixed order necessarily prevent starvation? What
about timeouts as a deadlock-resolution mechanism?

19.3 Long-Duration Transactions
There is a family of applications for which a database system is suitable for
maintaining data, but the model of many short transactions on which database
concurrency-control mechanisms are predicated, is inappropriate. In this sec
tion we shall examine some examples of these applications and the problems
that arise. We then discuss a solution based on “compensating transactions”
that negate the effects of transactions that were committed, but shouldn’t have
been.

976 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

19.3.1 Problems of Long Transactions
Roughly, a long transaction is one that takes too long to be allowed to hold locks
that another transaction needs. Depending on the environment, “too long”
could mean seconds, minutes, or hours. Three broad classes of applications
that involve long transactions are:

1. Conventional DBMS Applications. While common database applications
run mostly short transactions, many applications require occasional long
transactions. For example, one transaction might examine all of a bank’s
accounts to verify that the total balance is correct. Another application
may require that an index be reconstructed occasionally to keep perfor
mance at its peak.

2. Design Systems. Whether the thing being designed is mechanical like
an automobile, electronic like a microprocessor, or a software system, the
common element of design systems is that the design is broken into a set of
components (e.g., files of a software project), and different designers work
on different components simultaneously. We do not want two designers
taking a copy of a file, editing it to make design changes, and then writing
the new file versions back, because then one set of changes would overwrite
the other. Thus, a check-out-check-in system allows a designer to “check
out” a file and check it in when the changes are finished, perhaps hours or
days later. Even if the first designer is changing the file, another designer
might want to look at the file to learn something about its contents. If
the check-out operation were tantamount to an exclusive lock, then some
reasonable and sensible actions would be delayed, possibly for days.

3. Workflow Systems. These systems involve collections of processes, some
executed by software alone, some involving human interaction, and per
haps some involving human action alone. We shall give shortly an example
of office paperwork involving the payment of a bill. Such applications may
take days to perform, and during that entire time, some database elements
may be subject to change. Were the system to grant an exclusive lock on
data involved in a transaction, other transactions could be locked out for
days.

E xam ple 19.13: Consider the problem of an employee vouchering travel ex
penses. The intent of the traveler is to be reimbursed from account A123, and
the process whereby the payment is made is shown in Fig. 19.11. The process
begins with action Ai, where the traveler’s secretary fills out an on-line form
describing the travel, the account to be charged, and the amount. We assume
in this example that the account is A123, and the amount is $1000.

The traveler’s receipts are sent physically to the departmental authorization
office, while the form is sent on-line to an automated action A2. This process
checks that there is enough money in the charged account (A123) and reserves
the money for expenditure; i.e., it tentatively deducts $1000 from the account

19.3. LONG-DURATION TRANSACTIONS 977

Figure 19.11: Workflow for a traveler requesting expense reimbursement

but does not issue a check for that amount. If there is not enough money in
the account, the transaction aborts, and presumably it will restart when either
enough money is in the account or after changing the account to be charged.

Action A 3 is performed by the departmental administrator, who examines
the receipts and the on-line form. This action might take place the next day.
If everything is in order, the form is approved and sent to the corporate ad
ministrator, along with the physical receipts. If not, the transaction is aborted.
Presumably the traveler will be required to modify the request in some way and
resubmit the form.

In action A 4 , which may take place several days later, the corporate admin
istrator either approves or denies the request, or passes the form to an assistant,
who will then make the decision in action A$. If the form is denied, the trans
action again aborts and the form must be resubmitted. If the form is approved,
then at action A$ the check is written, and the deduction of $1000 from account
A123 is finalized.

However, suppose that the only way we could implement this workflow is
by conventional locking. In particular, since the balance of account A123 may
be changed by the complete transaction, it has to be locked exclusively at
action A 2 and not unlocked until either the transaction aborts or action Ag
completes. This lock may have to be held for days, while the people charged
with authorizing the payment get a chance to look at the matter. If so, then
there can be no other charges made to account A123, even tentatively. On

978 CHAPTER 19. MORE ABO U T TRANSACTION M ANAGEM ENT

the other hand, if there are no controls at all over how account A123 can be
accessed, then it is possible that several transactions will reserve or deduct
money from the account simultaneously, leading to an overdraft. Thus, some
compromise between rigid, long-term locks on one hand, and anarchy on the
other, is required. □

19.3.2 Sagas
A saga is a collection of actions, such as those of Example 19.13, that together
form a long-duration “transaction.” That is, a saga consists of:

1. A collection of actions.

2. A directed graph whose nodes are either actions or the terminal nodes
Abort and Complete. No arcs leave the terminal nodes.

3. An indication of the node at which the action starts, called the start node.

The paths through the graph, from the start node to either of the terminal
nodes, represent possible sequences of actions. Those paths that lead to the
Abort node represent sequences of actions that cause the overall transaction
to be rolled back, and these sequences of actions should leave the database
unchanged. Paths to the Complete node represent successful sequences of ac
tions, and all the changes to the database system that these actions perform
will remain in the database.

E xam ple 19.14: The paths in the graph of Fig. 19.11 that lead to the Abort
node are: A \A 2, A iA 2 A 3, A iA 2 A 3 A 4 , and A1A2A3A4A5. The paths that lead
to the Complete node are A iA 2 A 3 A 4 A§, and A iA 2 A 3 AiA^A^. Notice that in
this case the graph has no cycles, so there are a finite number of paths leading
to a terminal node. However, in general, a graph can have cycles and an infinite
number of paths. □

Concurrency control for sagas is managed by two facilities:

1. Each action may be considered itself a (short) transaction, that when exe
cuted uses a conventional concurrency-control mechanism, such as locking.
For instance, A 2 may be implemented to (briefly) obtain a lock on account
A123, decrement the amount indicated on the travel voucher, and release
the lock. This locking prevents two transactions from trying to write new
values of the account balance at the same time, thereby losing the effect
of the first to write and making money “appear by magic.”

2. The overall transaction, which can be any of the paths to a terminal
node, is managed through the mechanism of “compensating transactions,”
which are inverses to the transactions at the nodes of the saga. Their job is
to roll back the effect of a committed action in a way that does not depend
on what has happened to the database between the time the action was
executed and the time the compensating transaction is executed.

19.3. LONG-D URATION TRANSACTIONS 979

When are Database States “The Same”?

When discussing compensating transactions, we should be careful about
what it means to return the database to “the same” state that it had
before. We had a taste of the problem when we discussed logical logging
for B-trees in Example 19.8. There we saw that if we “undid” an oper
ation, the state of the B-tree might not be identical to the state before
the operation, but would be equivalent to it as far as access operations
on the B-tree were concerned. More generally, executing an action and
its compensating transaction might not restore the database to a state
literally identical to what existed before, but the differences must not be
detectable by whatever application programs the database supports.

19.3.3 Compensating Transactions
In a saga, each action A has a compensating transaction, which we denote A -1 .
Intuitively, if we execute A, and later execute A ~ 1, then the resulting database
state is the same as if neither A nor A ~ 1 had executed. More formally:

• If D is any database state, and B \B 2 ■ ■ ■ B n is any sequence of actions
and compensating transactions (whether from the saga in question or any
other saga or transaction that may legally execute on the database) then
the same database states result from running the sequences B \B 2 -Bn
and A B 1 B 2 ■ • ■ B nA ~ l starting in database state D.

If a saga execution leads to the Abort node, then we roll back the saga
by executing the compensating transactions for each executed action, in the
reverse order of those actions. By the property of compensating transactions
stated above, the effect of the saga is negated, and the database state is the same
as if it had never happened. An explanation of why the effect is guaranteed to
be negated is given in Section 19.3.4

E xam ple 19.15: Let us consider the actions in Fig. 19.11 and see what the
compensating transactions for Ai through A 6 might be. First, A\ creates an on
line document. If the document is stored in the database, then Aj"1 must remove
it from the database. Notice that this compensation obeys the fundamental
property for compensating transactions: If we create the document, do any
sequence of actions a (including deletion of the document if we wish), then the
effect of AiccA^ 1 is the same as the effect of a.

A i must be implemented carefully. We “reserve” the money by deducting
it from the account. The money will stay removed unless restored by the com
pensating transaction AJ 1. We claim that this A ^ 1 is a correct compensating
transaction if the usual rules for how accounts may be managed Eire followed.
To appreciate the point, it is useful to consider a similar transaction where the

980 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

obvious compensation will not work; we consider such a case in Example 19.16,
next.

The actions A%, A 4 , and Ag each involve adding an approval to a form.
Thus, their compensating transactions can remove that approval.3

Finally, A 5 , which writes the check, does not have an obvious compensating
transaction. In practice none is needed, because once A 5 is executed, this saga
cannot be rolled back. However, technically A 5 does not affect the database
anyway, since the money for the check was deducted by A2. Should we need
to consider the “database” as the larger world, where effects such as cashing a
check affected the database, then we would have to design A ^ 1 to first try to
cancel the check, next write a letter to the payee demanding the money back,
and if all remedies failed, restoring the money to the account by declaring a
loss due to a bad debt. □

Next, let us take up the example, alluded to in Example 19.15, where a
change to an account cannot be compensated by an inverse change. The prob
lem is that accounts normally are not allowed to go negative.

E xam ple 19.16: Suppose B is a transaction that adds $1000 to an account
that has $2000 in it initially, and B -1 is the compensating transaction that
removes the same amount of money. Also, it is reasonable to assume that
transactions may fail if they try to delete money from an account and the
balance would thereby become negative. Let C be a transaction that deletes
$2500 from the same account. Then B C B -1 ^ C. The reason is that C by
itself fails, and leaves the account with $2000, while if we execute B then C,
the account is left with $500, whereupon B ~ x fails.

Our conclusion that a saga with arbitrary transfers among accounts and a
rule about accounts never being allowed to go negative cannot be supported
simply by compensating transactions. Some modification to the system must
be done, e.g., allowing negative balances in accounts. □

19.3.4 W hy Compensating Transactions Work
Let us say that two sequences of actions are equivalent (=) if they take any
database state D to the same state. The fundamental assumption about com
pensating transactions can be stated:

• If A is any action and a is any sequence of legal actions and compensating
transactions, then A a A -1 = a.

Now, we need to show that if a saga execution Ai A 2 ■ ■ ■ An is followed by its
compensating transactions in reverse order, A ~ [■ ■ ■ A 2 l A ^ 1, with any inter
vening actions whatsoever, then the effect is as if neither the actions nor the
compensating transactions executed. The proof is an induction on n.

3In the saga of Fig. 19.11, the only time these actions are compensated is when we are
going to delete the form anyway, but the definition of compensating transactions require that
they work in isolation, regardless of whether some other compensating transaction was going
to make their changes irrelevant.

19.3. LONG-DURATION TRANSACTIONS 981

BASIS: If n = 1, then the sequence of all actions between Ai and its compen
sating transaction A f 1 looks like A ia A ^ 1. By the fundamental assumption
about compensating transactions, A^aA ^ 1 = a.

INDUCTION: Assume the statement for paths of up to n — 1 actions, and
consider a path of n actions, followed by its compensating transactions in reverse
order, with any other transactions intervening. The sequence looks like

AiOiA 2 a 2 ■ ■ ■ a n-.1 A„j3A~1 'Yn- i ■ ■ ■ ̂ A ^ j i A ^ 1 (19.1)

where all Greek letters represent sequences of zero or more actions. By the
definition of compensating transaction, A nfiA~l = /?. Thus, (19.1) is equivalent
to

A \a \A 2 a 2 ■ ■ ■ A n- 1 a n- i ^ n^ 1 A ~ l 1 'yn - 2 ■ ■ - ^ A ^ ^ A ^ 1 (19.2)

By the inductive hypothesis, expression (19.2) is equivalent to

ot\a2 ■ ■ ■ a n- i/?7„_i • ■ • 7271

since there are only n — 1 actions in (19.2). That is, the saga and its compen
sation leave the database state the same as if the saga had never occurred.

19.3.5 Exercises for Section 19.3
! Exercise 19.3.1: The process of “uninstalling” software can be thought of as

a compensating transaction for the action of installing the same software. In a
simple model of installing and uninstalling, suppose that an action consists of
loading one or more files from the source (e.g., a CD-ROM) onto the hard disk
of the machine. To load a file / , we copy / from CD-ROM. If there was a file
/ ' with the same path name, we back up / ' before replacement. To distinguish
files with the same path name, we may assume each file has a timestamp.

a) What is the compensating transaction for the action that loads file /?
Consider both the case where no file with that path name existed, and
where there was a file / ' with the same path name.

b) Explain why your answer to (a) is guaranteed to compensate. Hint : Con
sider carefully the case where after replacing / ' by / , a later action re
places / by another file with the same path name.

! Exercise 19.3.2: Describe the process of booking an airline seat as a saga.
Consider the possibility that the customer will query about a seat but not book
it. The customer may book the seat, but cancel it, or not pay for the seat
within the required time limit. The customer may or may not show up for the
flight. For each action, describe the corresponding compensating transaction.

982 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

19.4 Summary of Chapter 19
♦ Dirty Data: Data that has been written, either into main-memory buffers

or on disk, by a transaction that has not yet committed is called “dirty.”

♦ Cascading Rollback: A combination of logging and concurrency control
that allows a transaction to read dirty data may have to roll back trans
actions that read such data from a transaction that later aborts.

♦ Strict Locking: The strict locking policy requires transactions to hold
their locks (except for shared-locks) until not only have they committed,
but the commit record on the log has been flushed to disk. Strict locking
guarantees that no transaction can read dirty data, even retrospectively
after a crash and recovery.

♦ Group Commit: We can relax the strict-locking condition that requires
commit records to reach disk if we assure that log records are written to
disk in the order that they are written. There is still then a guarantee of
no dirty reads, even if a crash and recovery occurs.

♦ Restoring Database State After an Abort: Tf a transaction aborts but has
written values to buffers, then we can restore old values either from the
log or from the disk copy of the database. If the new values have reached
disk, then the log may still be used to restore the old value.

♦ Logical Logging: For large database elements such as disk blocks, it saves
much space if we record old and new values on the log incrementally, that
is, by indicating only the changes. In some cases, recording changes logi
cally, that is, in terms of an abstraction of what blocks contain, allows us
to restore state logically after a transaction abort, even if it is impossible
to restore the state literally.

♦ Deadlocks: These occur when each of a set of transactions is waiting for a
resource, such as a lock, currently held by another transaction in the set.

♦ Waits-For Graphs: Create a node for each waiting transaction, with an
arc to the transaction it is waiting for. The existence of a deadlock is
the same as the existence of one or more cycles in the waits-for graph.
We can avoid deadlocks if we maintain the waits-for graph and abort any
transaction whose waiting would cause a cycle.

♦ Deadlock Avoidance by Ordering Resources: Requiring transactions to
acquire resources according to some lexicographic order of the resources
will prevent a deadlock from arising.

♦ Timestamp-Based Deadlock Avoidance: Other schemes maintain a time
stamp and base their abort/wait decision on whether the requesting trans
action is newer or older than the one with the resource it wants. In the

19.5. REFERENCES FOR CHAPTER 19 983

wait-die scheme, an older requesting transaction waits, and a newer one
is rolled back with the same timestamp. In the wound-wait scheme, a
newer transaction waits and an older one forces the transaction with the
resource to roll back and give up the resource.

♦ Sagas: When transactions involve long-duration steps that may take
hours or days, conventional locking mechanisms may limit concurrency
too much. A saga consists of a network of actions, each of which may
lead to one or more other actions, to the completion of the entire saga, or
to a requirement that the saga abort.

♦ Compensating Transactions: For a saga to make sense, each action must
have a compensating action that will undo the effects of the first action on
the database state, while leaving intact any other actions that have been
made by other sagas that have completed or are currently in operation.
If a saga aborts, the appropriate sequence of compensating actions is
executed.

19.5 References for Chapter 19
Some useful general sources for topics covered here are [2], [1], and [7]. The
material on logical logging follows [6].

Deadlock prevention was surveyed in [5]; the waits-for graph is from there.
The wait-die and wound-wait schemes are from [8].

Long transactions were introduced by [4]. Sagas were described in [3].

1. N. S. Barghouti and G. E. Kaiser, “Concurrency control in advanced
database applications,” Computing Surveys 23:3 (Sept., 1991), pp. 269-
318.

2. S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems,
McGraw-Hill, New York, 1984.

3. H. Garcia-Molina and K. Salem, “Sagas,” Proc. ACM SIGMOD Intl.
Conf. on Management of Data (1987), pp. 249-259.

4. J. N. Gray, “The transaction concept: virtues and limitations,” Intl. Conf.
on Very Large Databases (1981), pp. 144-154.

5. R. C. Holt, “Some deadlock properties of computer systems,” Computing
Surveys 4:3 (1972), pp. 179-196.

6. C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: a transaction recovery method supporting fine-granularity lock
ing and partial rollbacks using write-ahead logging,” ACM Trans, on
Database Systems 17:1 (1992), pp. 94-162.

984 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

7. M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems,
Prentice-Hall, Englewood Cliffs NJ, 1999.

8. D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II, “System-level
concurrency control for distributed database systems,” ACM Trans, on
Database Systems 3:2 (1978), pp. 178-198.

Chapter 20

Parallel and Distributed
Databases

While many databases sit at a single machine, a database can also be distributed
over many machines. There are other databases that reside at a single highly
parallel machine. When computation is either parallel or distributed, there axe
many database-implementation issues that need to be reconsidered.

In this chapter, we first look at the different kinds of parallel architectures
that have been used. On a parallel machine it is important that the most
expensive operations take advantage of parallelism, and for databases, these
operations are the full-relation operations such as join. We then discuss the
map-reduce paradigm for expressing large-scale computations. This formula
tion of algorithms is especially amenable to execution on large-scale parallel
machines, and it is simple to express important database processes in this man
ner.

We then turn to distributed architectures. These include grids and networks
of workstations, as well as corporate databases that are distributed around the
world. Now, we must worry not only about exploiting the many available
processors for query execution, but some database operations become much
harder to perform correctly in a distributed environment. Notable among these
are distributed commitment of transactions and distributed locking.

The extreme case of a distributed architecture is a collection of independent
machines, often called “peer-to-peer” networks, In these networks, even data
lookup becomes problematic. We shall therefore discuss distributed hash tables
and distributed search in peer-to-peer networks.

20.1 Parallel Algorithms on Relations
Database operations, frequently being time-consuming and involving a lot of
data, can generally profit from parallel processing. In this section, we shall

985

986 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

review the principal architectures for parallel machines. We then concentrate on
the “shared-nothing” architecture, which appears to be the most cost effective
for database operations, although it may not be superior for other parallel
applications. There are simple modifications of the standard algorithms for
most relational operations that will exploit parallelism almost perfectly. That
is, the time to complete an operation on a p-processor machine is about l / p of
the time it takes to complete the operation on a uniprocessor.

20.1.1 Models of Parallelism
At the heart of all parallel machines is a collection of processors. Often the
number of processors p is large, in the hundreds or thousands. We shall assume
that each processor has its own local cache, which we do not show explicitly
in our diagrams. In most organizations, each processor also has local memory,
which we do show. Of great importance to database processing is the fact that
along with these processors are many disks, perhaps one or more per processor,
or in some architectures a large collection of disks accessible to all processors
directly.

Additionally, parallel computers all have some communications facility for
passing information among processors. In our diagrams, we show the com
munication as if there were a shared bus for all the elements of the machine.
However, in practice a bus cannot interconnect as many processors or other
elements as are found in the largest machines, so the interconnection system
in many architectures is a powerful switch, perhaps augmented by busses that
connect subsets of the processors in local clusters. For example, the processors
in a single rack are typically connected.

Figure 20.1: A shared-memory machine

We can classify parallel architectures into three broad groups. The most
tightly coupled architectures share their main memory. A less tightly coupled

20.1. PARALLEL ALGORITHMS ON RELATIONS 987

architecture shares disk but not memory. Architectures that are often used for
databases do not even share disk; these are called “shared nothing” architec
tures, although the processors are in fact interconnected and share data through
message passing.

Shared-M em ory M achines

In this architecture, illustrated in Fig. 20.1, each processor has access to all the
memory of all the processors. That is, there is a single physical address space
for the entire machine, rather than one address space for each processor. The
diagram of Fig. 20.1 is actually too extreme, suggesting that processors have
no private memory at all. Rather, each processor has some local main memory,
which it typically uses whenever it can. However, it has direct access to the
memory of other processors when it needs to. Large machines of this class are of
the NUMA (nonuniform memory access) type, meaning that it takes somewhat
more time for a processor to access data in a memory that “belongs” to some
other processor than it does to access its “own” memory, or the memory of
processors in its local cluster. However, the difference in memory-access times
are not great in current architectures. Rather, all memory accesses, no matter
where the data is, take much more time than a cache access, so the critical issue
is whether or not the data a processor needs is in its own cache.

Figure 20.2: A shared-disk machine

Shared-D isk M achines

In this architecture, suggested by Fig. 20.2, every processor has its own memory,
which is not accessible directly from other processors. However, the disks jure
accessible from any of the processors through the communication network. Disk
controllers manage the potentially competing requests from different processors.

988 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

The number of disks and processors need not be identical, as it might appear
from Fig. 20.2.

This architecture today appears in two forms, depending on the units of
transfer between the disks and processors. Disk farms called network attached
storage (NAS) store and transfer files. The alternative, storage area networks
(SAN) transfer disk blocks to and from the processors.

S h ared -N oth in g M achines

Here, all processors have their own memory and their own disk or disks, as in
Fig. 20.3. All communication is via the network, from processor to processor.
For example, if one processor P wants to read tuples from the disk of another
processor Q, then processor P sends a message to Q asking for the data. Q
obtains the tuples from its disk and ships them over the network in another
message, which is received by P.

Figure 20.3: A shared-nothing machine

As we mentioned, the shared-nothing architecture is the most commonly
used architecture for database systems. Shared-nothing machines are relatively
inexpensive to build; one buys racks of commodity machines and connects them
with the network connection that is typically built into the rack. Multiple racks
can be connected by an external network.

But when we design algorithms for these machines we must be aware that
it is costly to send data from one processor to another. Normally, data must
be sent between processors in a message, which has considerable overhead as
sociated with it. Both processors must execute a program that supports the
message transfer, and there may be contention or delays associated with the
communication network as well. Typically, the cost of a message can be broken
into a large fixed overhead plus a small amount of time per byte transmitted.
Thus, there is a significant advantage to designing a parallel algorithm so that
communications between processors involve large amounts of data sent at once.
For instance, we might buffer several blocks of data at processor P, all bound
for processor Q. If Q does not need the data immediately, it may be much
more efficient to wait until we have a long message at P and then send it to

20.1. PARALLEL ALGORITHMS ON RELATIONS 989

Q. Fortunately, the best known parallel algorithms for database operations can
use long messages effectively.

20.1.2 Tuple-at-a-Time Operations in Parallel
Let us begin our discussion of parallel algorithms for a shared-nothing machine
by considering the selection operator. First, we must consider how data is best
stored. As first suggested by Section 13.3.3, it is useful to distribute our data
across as many disks as possible. For convenience, we shall assume there is one
disk per processor. Then if there are p processors, divide any relation R ’s tuples
evenly among the p processor’s disks.

To compute ac(R), we may use each processor to examine the tuples of R
on its own disk. For each, it finds those tuples satisfying condition C and copies
those to the output. To avoid communication among processors, we store those
tuples t in crc(R) at the same processor that has t on its disk. Thus, the result
relation crc{R) is divided among the processors, just like R is.

Since ac(R) may be the input relation to another operation, and since we
want to minimize the elapsed time and keep all the processors busy all the
time, we would like crc{R) to be divided evenly among the processors. If we
were doing a projection, rather than a selection, then the number of tuples in
7xl{R) at each processor would be the same as the number of tuples of R at
that processor. Thus, if R is distributed evenly, so would be its projection.
However, a selection could radically change the distribution of tuples in the
result, compared to the distribution of R.

E xam ple 20.1: Suppose the selection is <Ta=io(R), that is, find all the tuples
of R whose value in the attribute a is 10. Suppose also that we have divided R
according to the value of the attribute a. Then all the tuples of R with a = 10
are at one processor, and the entire relation ffa=io(R) is at one processor. □

To avoid the problem suggested by Example 20.1, we need to think carefully
about the policy for partitioning our stored relations among the processors.
Probably the best we can do is to use a hash function h that involves all the
components of a tuple in such a way that changing one component of a tuple
t can change h(t) to be any possible bucket number. For example, if we want
B buckets, we might convert each component somehow to an integer between
0 and B — 1, add the integers for each component, divide the result by B, and
take the remainder as the bucket number. If B is also the number of processors,
then we can associate each processor with a bucket and give that processor the
contents of its bucket.

20.1.3 Parallel Algorithms for Full-Relation Operations
First, let us consider the operation S(R). If we use a hash function to distribute
the tuples of R as in Section 20.1.2, then we shall place duplicate tuples of R at
the same processor. We can produce S(R) in parallel by applying a standard,

990 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

uniprocessor algorithm (as in Section 15.4.2 or 15.5.2, e.g.) to the portion of R
at each processor. Likewise, if we use the same hash function to distribute the
tuples of both R and S, then we can take the union, intersection, or difference
of R and S by working in parallel on the portions of R and S at each processor.

However, suppose that R and S are not distributed using the same hash
function, and we wish to take their union.1 In this case, we first must make
copies of all the tuples of R and S and distribute them according to a single
hash function h?

In parallel, we hash the tuples of R and 5 at each processor, using hash
function h. The hashing proceeds as described in Section 15.5.1, but when the
buffer corresponding to a bucket i at one processor j is filled, instead of moving
it to the disk at j , we ship the contents of the buffer to processor i. If we have
room for several blocks per bucket in main memory, then we may wait to fill
several buffers with tuples of bucket i before shipping them to processor i.

Thus, processor i receives all the tuples of R and S that belong in bucket i.
In the second stage, each processor performs the union of the tuples from R and
S belonging to its bucket. As a result, the relation R U 5 will be distributed
over all the processors. If hash function h truly randomizes the placement of
tuples in buckets, then we expect approximately the same number of tuples of
R U S to be at each processor.

The operations of intersection and difference may be performed just like
a union; it does not m atter whether these are set or bag versions of these
operations. Moreover:

• To take a join R (X ,Y) tx S (Y ,Z), we hash the tuples of R and S to
a number of buckets equal to the number of processors. However, the
hash function h we use must depend only on the attributes of Y , not all
the attributes, so that joining tuples are always sent to the same bucket.
As with union, we ship tuples of bucket i to processor i. We may then
perform the join at each processor using any uniprocessor join algorithm.

• To perform grouping and aggregation 7l (R), we distribute the tuples of
R using a hash function h that depends only on the grouping attributes
in list L. If each processor has all the tuples corresponding to one of the
buckets of h, then we can perform the 7 l operation on these tuples locally,
using any uniprocessor 7 algorithm.

20.1.4 Performance of Parallel Algorithms
Now, let us consider how the running time of a parallel algorithm on a p-
processor machine compares with the time to execute an algorithm for the

1In princip le , th is un ion could be e ith e r a set- o r bag-un ion . B u t th e sim ple bag-union
techn ique from Section 15.2.3 o f copying all th e tu p le s from b o th a rg u m en ts w orks in paralle l,
so we p ro b ab ly w ould n o t w ant to use th e a lg o rith m described here fo r a bag-union.

2 If th e h ash function used to d is tr ib u te tu p les o f R o r S is know n, we can use th a t hash
function for th e o th e r a n d n o t d is tr ib u te b o th re la tions.

20.1. PARALLEL ALGORITHMS ON RELATIONS 991

same operation on the same data, using a uniprocessor. The total work — disk
I /O ’s and processor cycles — cannot be smaller for a parallel machine than
for a uniprocessor. However, because there axe p processors working with p
disks, we can expect the elapsed, or wall-clock, time to be much smaller for the
multiprocessor than for the uniprocessor.

A unary operation such as crc(R) can be completed in 1/p th of the time it
would take to perform the operation at a single processor, provided relation R
is distributed evenly, as was supposed in Section 20.1.2. The number of disk
I /O ’s is essentially the same as for a uniprocessor selection. The only difference
is that there will, on average, be p half-full blocks of R, one at each processor,
rather than a single half-full block of R had we stored all of R on one processor’s
disk.

Now, consider a binary operation, such as join. We use a hash function on
the join attributes that sends each tuple to one of p buckets, where p is the
number of processors. To distribute the tuples belonging to one processor, we
must read each tuple from disk to memory, compute the hash function, and
ship all tuples except the one out of p tuples that happens to belong to the
bucket at its own processor.

If we are computing R(X , Y) x S(Y, Z), then we need to do B(R) + B(S)
disk I /O ’s to read all the tuples of R and S and determine their buckets. We
then must ship ((p — 1)/p) (B (R) + B(S)) blocks of data across the machine’s
internal interconnection network to their proper processors; only the (l/p)th
of the tuples already at the right processor need not be shipped. The cost of
shipment can be greater or less than the cost of the same number of disk I /O ’s,
depending on the architecture of the machine. However, we shall assume that
shipment across the internal network is significantly cheaper than movement
of data between disk and memory, because no physical motion is involved in
shipment among processors, while it is for disk I/O .

In principle, we might suppose that the receiving processor has to store the
data on its own disk, then execute a local join on the tuples received. For
example, if we used a two-pass sort-join at each processor, a naive parallel
algorithm would use 3(B(R) + B (S)) /p disk I/O ’s at each processor, since
the sizes of the relations in each bucket would be approximately B (R)/p and
B(S) /p, and this type of join takes three disk I /O ’s per block occupied by each of
the argument relations. To this cost we would add another 2 (B(R) + B (S)) /p
disk I /O ’s per processor, to account for the first read of each tuple and the
storing away of each tuple by the processor receiving the tuple during the hash
and distribution of tuples. We should also add the cost of shipping the data,
but we have elected to consider that cost negligible compared with the cost of
disk I/O for the same data.

The above comparison demonstrates the value of the multiprocessor. While
we do more disk I/O in total — five disk I /O ’s per block of data, rather than
three — the elapsed time, as measured by the number of disk I/O ’s performed
at each processor has gone down from 3 (B(R) + B(S)) to 5 (B(R) + B(S)) /p,
a significant win for large p.

992 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

Biiig Mistake

When using hash-based algorithms to distribute relations among proces
sors and to execute operations, as in Example 20.2, we must be careful
not to overuse one hash function. For instance, suppose we used a hash
function h to hash the tuples of relations R and S among processors, in
order to take their join. We might be tempted to use h to hash the tu
ples of S locally into buckets as we perform a one-pass hash-join at each
processor. But if we do so, all those tuples will go to the same bucket,
and the main-memory join suggested in Example 20.2 will be extremely
inefficient.

Moreover, there are ways to improve the speed of the parallel algorithm so
that the total number of disk I /O ’s is not greater than what is required for a
uniprocessor algorithm. In fact, since we operate on smaller relations at each
processor, we may be able to use a local join algorithm that uses fewer disk
I /O ’s per block of data. For instance, even if R and S were so large that we
need a two-pass algorithm on a uniprocessor, we may be able to use a one-pass
algorithm on (l/p)th of the data.

We can avoid two disk I /O ’s per block if, when we ship a block to the
processor of its bucket, that processor can use the block immediately as part
of its join algorithm. Many algorithms known for join and the other relational
operators allow this use, in which case the parallel algorithm looks just like
a multipass algorithm in which the first pass uses the hashing technique of
Section 15.8.3.

E xam ple 20 .2 : Consider our running example from Chapter 15 of the join
R (X ,Y) ix S (Y ,Z) , where R and S occupy 1000 and 500 blocks, respectively.
Now, let there be 101 buffers at each processor of a 10-processor machine. Also,
assume that R and S are distributed uniformly among these 10 processors.

We begin by hashing each tuple of R and S to one of 10 “buckets,” us
ing a hash function h that depends only on the join attributes Y. These 10
“buckets” represent the 10 processors, and tuples are shipped to the processor
corresponding to their “bucket.” The total number of disk I /O ’s needed to read
the tuples of R and S is 1500, or 150 per processor. Each processor will have
about 15 blocks worth of data for each other processor, so it ships 135 blocks
to the other nine processors. The total communication is thus 1350 blocks.

We shall arrange that the processors ship the tuples of S before the tuples
of R. Since each processor receives about 50 blocks of tuples from S, it can
store those tuples in a main-memory data structure, using 50 of its 101 buffers.
Then, when processors start sending i?-tuples, each one is compared with the
local S'-tuples, and any resulting joined tuples are output.

In this way, the only cost of the join is 1500 disk I /O ’s. Moreover, the

20.2. THE MAP-REDUCE PARALLELISM FRAMEWORK 993

elapsed time is primarily the 150 disk I /O ’s performed at each processor, plus
the time to ship tuples between processors and perform the main-memory com
putations. Note that 150 disk I /O ’s is less than l/10 th of the time to perform
the same algorithm on a uniprocessor; we have not only gained because we had
10 processors working for us, but the fact that there are a total of 1010 buffers
among those 10 processors gives us additional efficiency. □

20.1.5 Exercises for Section 20.1
Exercise 2 0 .1 .1 : Suppose that a disk I/O takes 100 milliseconds. Let B(R) =
100, so the disk I /O ’s for computing <rc(R) on a uniprocessor machine will take
about 10 seconds. What is the speedup if this selection is executed on a parallel
machine with p processors, where: (a) p = 8 (b) p = 100 (c) p = 1000.

! Exercise 20 .1 .2 : In Example 20.2 we described an algorithm that computed
the join R txi S in parallel by first hash-distributing the tuples among the
processors and then performing a one-pass join at the processors. In terms of
B(R) and B(S), the sizes of the relations involved, p (the number of processors),
and M (the number of blocks of main memory at each processor), give the
condition under which this algorithm can be executed successfully.

20.2 The M ap-Reduce Parallelism Framework
Map-reduce is a high-level programming system that allows many important
database processes to be written simply. The user writes code for two functions,
map and reduce. A master controller divides the input data into chunks, and
assigns different processors to execute the map function on each chunk. Other
processors, perhaps the same ones, are then assigned to perform the reduce
function on pieces of the output from the map function.

20.2.1 The Storage Model
For the map-reduce framework to make sense, we should assume a massively
parallel machine, most likely shared-nothing. Typically, the processors are com
modity computers, mounted in racks with a simple communication network
among the processors on a rank. If there is more than one rack, the racks Eire
also connected by a simple network.

Data is assumed stored in files. Typically, the files are very large compared
with the files found in conventional systems. For example, one file might be all
the tuples of a very large relation. Or, the file might be a terabyte of “market-
baskets,” as discussed in Section 22.1.4. For another example of a single file,
we shall talk in Section 23.2.2 of the “transition matrix of the Web,” which is
a representation of the graph with all Web pages as nodes and hyperlinks as
edges.

994 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

Files are divided into chunks, which might be complete cylinders of a disk,
and are typically many megabytes. For resiliency, each chunk is replicated
several times, so it will not be lost if the disk holding it crashes.

Map Reduce

Input
Key-Value

Pairs

Output
Lists

Sort Intermediate
Key-Value

Pairs by Key

Figure 20.4: Execution of map and reduce functions

2 0 .2.2 The Map Function
The outline of what user-defined map and reduce functions do is suggested
in Fig. 20.4. The input is generally thought of as a set of key-value records,
although in fact the input could be objects of any type.3 The function map is
executed by one or more processes, located at any number of processors. Each
map process is given a chunk of the entire input data on which to work.

The map function is designed to take one key-value pair as input and to
produce a list of key-value pairs as output. However:

• The types of keys and values for the output of the map function need not
be the same as the types of input keys and values.

• The “keys” that are output from the map function are not true keys in
the database sense. That is, there can be many pairs with the same key
value. However, the key field of output pairs plays a special role in the
reduce process to be explained next.

The result of executing all the map processes is a collection of key-value pairs
called the intermediate result. These key-value pairs are the outputs of the map
function applied to every input pair. Each pair appears at the processor that
generated it. Remember that there may be many map processes executing the
same algorithm on a different part of the input file at different processors.

3 A s we shall see, th e o u tp u t of a m ap-reduce a lg o rith m is alw ays a se t o f key-value pairs.
Since it is useful in som e app lica tio n s to com pose tw o o r m ore m ap-reduce opera tio n s, it is
conventional to assum e th a t b o th in p u t an d o u tp u t are se ts o f key-value pairs.

20.2. THE MAP-RED UCE PARALLELISM FRAM EW ORK 995

E xam ple 20 .3 : We shall consider as an example, constructing an inverted
index for words in documents, as was discussed in Section 14.1.8. That is, our
input is a collection of documents, and we desire to construct as the final output
(not as the output of map) a list for each word of the documents that contain
that word at least once. The input is a set of pairs each of whose keys are
document ID’s and whose values are the corresponding documents.

The map function takes a pair consisting of a document ID i and a document
d. This function scans d character by character, and for each word w it finds,
it emits the pair (w, i). Notice that in the output, the word is the key and
the document ID is the associated value. The output of map for a single ID-
document pair is a list of word-ID pairs. It is not necessary to catch duplicate
words in the document; the elimination of duplicates can be done later, at the
reduce phase. The intermediate result is the collection of all word-ID pairs
created from all the documents in the input database. □

20.2.3 The Reduce Function
The second user-defined function, reduce, is also executed by one or more pro
cesses, located at any number of processors. The input to reduce is a single
key value from the intermediate result, together with the list of all values that
appear with this key in the intermediate result. Duplicate values are not elim
inated.

In Fig. 20.4, we suggest that the output of map at each of four processors
is distributed to four processors, each of which will execute reduce for a subset
of the intermediate keys. However, there are a number of ways in which this
distribution could be managed. For example, Each map process could leave its
output on its local disk, and a reduce process could retrieve the portion of the
intermediate result that it needed, over whatever network or bus interconnects
the processors.

The reduce function itself combines the list of values associated with a given
key k. The result is k paired with a value of some type. In many simple cases,
the reduce function is associative and commutative, and the entire list of values
is reduced to a single value of the same type as the list elements. For instance,
if reduce is addition, the result is the some of a list of numbers.

When reduce is associative and commutative, it is possible to speed up the
execution of reduce by starting to apply its operation to the pairs produced by
the map processes, even before they finish. Moreover, if a given map process
produces more than one intermediate pair with the same key, then the reduce
operation can be applied on the spot to combine the pairs, without waiting for
them to be passed to the reduce process for that key.

E xam ple 20.4: Let us consider the reduce function that lets us complete
Example 20.3 to produce inverted indexes. The intermediate result consists of
pairs of the form (w , [*i,*2 , • • • ,*«]), where the i ’s are a list of document ID’s,
one for each occurrence of word w. The reduce function we need takes a list of
ID’s, eliminates duplicates, and sorts the list of unique ID’s.

996 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

Notice how this organization of the computation makes excellent use of
whatever parallelism is available. The map function works on a single document,
so we could have as many processes and processors as there are documents in
the database. The reduce function works on a single word, so we could have as
many processes and processors as there are words in the database. Of course,
it is unlikely that we would use so many processors in practice. □

E xam ple 20.5: Suppose rather than constructing an inverted index, we want
to construct a word count. That is, for each word w that appears at least
once in our database of documents, we want our output to have the pair (w, c),
where c is the number of times w appears among all the documents. The map
function takes an input document, goes through the document character by
character, and each time it encounters another word w, it emits the pair (w , 1).
The intermediate result is a list of pairs {w\, 1), (w2 , 1),__

In this example, the reduce function is addition of integers. That is, the
input to reduce is a pair (w, [1 ,1 ,... ,1]), with a 1 for each occurrence of the
word w. The reduce function sums the l ’s, producing the count. □

E xam ple 20.6: It is a little trickier to express the join of relations in the
map-reduce framework. In this simple special case, we shall take the natural
join of relations R (A ,B) and S(B ,C). First, the input to the map function is
key-value pairs (x, t), where x is either R or S, and t is a tuple of the relation
named by x. The output is a single pair consisting of the join value B taken
from the tuple t and a pair consisting of x (to let us remember which relation
this tuple came from) and the other component of t, either A (if x = R) or
C (if x = S). All these records of the form (b,(R,a)) or (b,(S,c)) form the
intermediate result.

The reduce function takes a -B-value b, the key, together with a list that
consists of pairs of the form (R ,a) or (5, c). The result of the join will have
as many tuples with B-value 6 as we can form by pairing an a from an (R, a)
element on the list with a c from an (S,c) element on the list. Thus, reduce
must extract from the list all the ^4-values associated with R and the list of all
C-values associated with S. These are paired in all possible ways, with the b
in the middle to form a tuple of the result. □

20.2.4 Exercises for Section 20.2

Exercise 20.2 .1 : Modify Example 20.5 to count the number of documents in
which each word w appears.

Exercise 20.2.2: Express, in the map-reduce framework, the following oper
ations on relations: (a) ac (b) t t l (c) R cx c S (d) R U 5 (e) R n S.

20.3. DISTRIBUTED DATABASES 997

20.3 Distributed Databases
We shall now consider the elements of distributed database systems. In a dis
tributed system, there are many, relatively autonomous processors that may
participate in database operations. The difference between a distributed sys
tem and a shared-nothing parallel system is in the assumption about the cost
of communication. Shared-nothing parallel systems usually have a message-
passing cost that is small compared with disk accesses and other costs. In a
distributed system, the processors are typically physically distant, rather than
in the same room. The network connecting processors may have much less
capacity than the network in a shared-nothing system.

Distributed databases offer significant advantages. Like parallel systems, a
distributed system can use many processors and thereby accelerate the response
to queries. Further, since the processors are widely separated, we can increase
resilience in the face of failures by replicating data at several sites.

On the other hand, distributed processing increases the complexity of every
aspect of a database system, so we need to rethink how even the most basic
components of a DBMS are designed. Since the cost of communicating may
dominate the cost of processing in main memory, a critical issue is how many
messages are sent between sites. In this section we shall introduce the principal
issues, while the next sections concentrate on solutions to two important prob
lems that come up in distributed databases: distributed commit and distributed
locking.

20.3.1 Distribution of Data
One important reason to distribute data is that the organization is itself dis
tributed among many sites, and the sites each have data that is germane pri
marily to that site. Some examples are:

1. A bank may have many branches. Each branch (or the group of branches
in a given city) will keep a database of accounts maintained at that branch
(or city). Customers can choose to bank at any branch, but will normally
bank at “their” branch, where their account data is stored. The bank
may also have data that is kept in the central office, such as employee
records and policies such as current interest rates. Of course, a backup of
the records at each branch is also stored, probably in a site that is neither
a branch office nor the central office.

2. A chain of department stores may have many individual stores. Each
store (or a group of stores in one city) has a database of sales at that
store and inventory at that store. There may also be a central office
with data about employees, a chain-wide inventory, data about credit-
card customers, and information about suppliers such as unfilled orders,
and what each is owed. In addition, there may be a copy of all the stores’

998 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

sales data in a data warehouse that is used to analyze and predict sales
through ad-hoc queries issued by analysts.

3. A digital library may consist of a consortium of universities that each hold
on-line books and other documents. Search at any site will examine the
catalog of documents available at all sites and deliver an electronic copy
of the document to the user if any site holds it.

In some cases, what we might think of logically as a single relation has
been partitioned among many sites. For example, the chain of stores might be
imagined to have a single sales relation, such as

Sales(item, date, price, purchaser)

However, this relation does not exist physically. Rather, it is the union of a
number of relations with the same schema, one at each of the stores in the
chain. These local relations are called fragments, and the partitioning of a
logical relation into physical fragments is called horizontal decomposition of
the relation S ales. We regard the partition as “horizontal” because we may
visualize a single S ales relation with its tuples separated, by horizontal lines,
into the sets of tuples at each store.

In other situations, a distributed database appears to have partitioned a
relation “vertically,” by decomposing what might be one logical relation into
two or more, each with a subset of the attributes, and with each relation at a
different site. For instance, if we want to find out which sales at the Boston store
were made to customers who are more than 90 days in arrears on their credit-
card payments, it would be useful to have a relation (or view) that included the
item, date, and purchaser information from Sales, along with the date of the
last credit-card payment by that purchaser. However, in the scenario we are
describing, this relation is decomposed vertically, and we would have to join the
credit-card-customer relation at the central headquarters with the fragment of
S ales at the Boston store.

20.3.2 Distributed Transactions
A consequence of the distribution of data is that a transaction may involve pro
cesses at several sites. Thus, our model of what a transaction is must change.
No longer is a transaction a piece of code executed by a single processor com
municating with a single scheduler and a single log manager at a single site.
Rather, a transaction consists of communicating transaction components, each
at a different site and communicating with the local scheduler and logger. Two
important issues that must thus be looked at anew are:

1. How do we manage the commit/abort decision when a transaction is dis
tributed? What happens if one component of the transaction wants to
abort the whole transaction, while others encountered no problem and

20.3. DISTRIBUTED DATABASES 999

want to commit? We discuss a technique called “two-phase commit” in
Section 20.5; it allows the decision to be made properly and also frequently
allows sites that are up to operate even if some other site(s) have failed.

2. How do we assure serializability of transactions that involve components
at several sites? We look at locking in particular, in Section 20.6 and
see how local lock tables can be used to support global locks on database
elements and thus support serializability of transactions in a distributed
environment.

20.3.3 Data Replication
One important advantage of a distributed system is the ability to replicate data,
that is, to make copies of the data at different sites. One motivation is that if a
site fails, there may be other sites that can provide the same data that was at
the failed site. A second use is in improving the speed of query answering by
making a copy of needed data available at the sites where queries are initiated.
For example:

1. A bank may make copies of current interest-rate policy available at each
branch, so a query about rates does not have to be sent to the central
office.

2. A chain store may keep copies of information about suppliers at each
store, so local requests for information about suppliers (e.g., the manager
needs the phone number of a supplier to check on a shipment) can be
handled without sending messages to the central office.

3. A digital library may temporarily cache a copy of a popular document at
a school where students have been assigned to read the document.

However, there are several problems that must be faced when data is repli
cated.

a) How do we keep copies identical? In essence, an update to a replicated
data element becomes a distributed transaction that updates all copies.

b) How do we decide where and how many copies to keep? The more copies,
the more effort is required to update, but the easier queries become. For
example, a relation that is rarely updated might have copies everywhere
for maximum efficiency, while a frequently updated relation might have
only one copy and a backup.

c) What happens when there is a communication failure in the network, and
different copies of the same data have the opportunity to evolve separately
and must then be reconciled when the network reconnects?

1000 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

20.3.4 Exercises for Section 20.3
!! E xercise 20 .3 .1 : The following exercise will allow you to address some of

the problems that come up when deciding on a replication strategy for data.
Suppose there is a relation R that is accessed from n sites. The ith site issues
qi queries about R and Ui updates to R per second, for i = 1 ,2 , . . . , n. The
cost of executing a query if there is a copy of R at the site issuing the query is
c, while if there is no copy there, and the query must be sent to some remote
site, then the cost is 10c. The cost of executing an update is d for the copy of
R at the issuing site and lOd for every copy of R that is not at the issuing site.
As a function of these parameters, how would you choose, for large n, a set of
sites at which to replicate R.

20.4 D istributed Query Processing
We now turn to optimizing queries on a network of distributed machines. When
communication among processors is a significant cost, there are some query
plans that can be more efficient than the ones we developed in Section 20.1 for
processors that could communicate locally. Our principal objective is a new
way of computing joins, using the semijoin operator that was introduced in
Exercise 2.4.8.

20.4.1 The Distributed Join Problem
Suppose we want to compute R (A ,B) txi S(B ,C). However, R and S reside at
different nodes of a network, as suggested in Fig. 20.5. There are two obvious
ways to compute the join.

T ' —

R (A,B) S(B,C)

Figure 20.5: Joining relations at different nodes of a network

1. Send a copy of R to the site of S, and compute the join there.

2. Send a copy of S to the site of R and compute the join there.

In many situations, either of these methods is fine. However, problems can
arise, such as:

a) What happens if the channel between the sites has low-capacity, e.g., a
phone line or wireless link? Then, the cost of the join is primarily the
time it takes to copy one of the relations, so we need to design our query
plan to minimize communication.

20.4. DISTRIBUTED QUERY PROCESSING 1001

b) Even if communication is fast, there may be a better query plan if the
shared attribute B has values that are much smaller than the values of
A and C. For example, B could be an identifier for documents or videos,
while A and C are the documents or videos themselves.

20.4.2 Semijoin Reductions
Both these problems can be dealt with using the same type of query plan, in
which only the relevant part of each relation is shipped to the site of the other.
Recall that the semijoin of relations R (X , Y) and S(Y, Z), where X , Y , and Z
are sets of attributes, is R X S = R tx (7Ty (5)). That is, we project S onto the
common attributes, and then take the natural join of that projection with R.
tty(S) is a set-projection, so duplicates are eliminated. It is unusual to take a
natural join where the attributes of one argument are a subset of the attributes
of the other, but the definition of the join covers this case. The effect is that
R X S contains all those tuples of R that join with at least one tuple of S. Put
another way, the semijoin R X S eliminates the dangling tuples of R.

Having sent 7ry(5) to the site of R, we can compute R X S there. We
know those tuples of R that are not in R X S cannot participate in R ix S.
Therefore it is sufficient to send R X S , rather than all of R, to the site of
S and to compute the join there. This plan is suggested by Fig. 20.6 for the
relations R (A ,B) and S(B, C). Of course there is a symmetric plan where the
roles of R and S are interchanged.

^ --- Jtj'(S)

R \ X S

Figure 20.6: Exploiting the semijoin to minimize communication

Whether this semijoin plan, or the plan with R and S interchanged is more
efficient than one of the obvious plans depends on several factors. First, if the
projection of S onto Y results in a relation much smaller than 5, then it is
cheaper to send tty(S) to the site of R, rather than S itself. tty(S) will be
small compared with S if either or both of the following hold:

1. There are many duplicates to be eliminated; i.e., many tuples of S share
Y -values.

2. The components for the attributes of Z are large compared with the
components of Y; e.g., Z includes attributes whose values are audios,
videos, or documents.

In order for the semijoin plan to be superior, we also need to know that the size
of R X S is smaller than R. That is, R must contain many dangling tuples in
its join with S.

1002 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

20.4.3 Joins of Many Relations
When we want to take the natural join of two relations, only one semijoin is
useful. The same holds for an equijoin, since we can act as if the equated pairs of
attributes had the same name and treat the equijoin as if it were a natural join.
However, when we take the natural join or equijoin of three or more relations
at different sites, several surprising things happen.

• We may need several semijoins to eliminate all the dangling tuples from
the relations before shipping them to other sites for joining.

• There are sets of relation schemas such that no finite sequence of semijoins
eliminates all dangling tuples.

• It is possible to identify those sets of relation schemas such that there is
a finite way to eliminate dangling tuples by semijoins.

E xam ple 20 .7 : To see what can go wrong when we take the natural join of
more than two relations, consider R(A ,B), S (B ,C), and T(C,A). Suppose R
and S have exactly the same n tuples: {(1,1), (2 ,2),... , (n, n)}. T has n — 1
tuples: {(1,2), (2 ,3),... , (n — 1, n)}. The relations are shown in Fig. 20.7.

A B B C C A
1 1 1 1 1 2
2 2 2 2 2 3

n n n n n — 1
R S T

Figure 20.7: Three relations for which elimination of dangling tuples by semi
joins is very slow

Notice that while R and S join to produce the n tuples

{(1,1,1), (2 ,2 ,2) , . . . , (n ,n ,n) }

none of these tuples can join with any tuple of T. The reason is that all tuples
of R cxi S agree in their A and C components, while the tuples of T disagree
in their A and C components. That is, R txi 5 x T is empty, and all tuples of
each relation are dangling.

However, no one semijoin can eliminate more than one tuple from any re
lation. For example, S X T eliminates only (n ,n) from S, because ttc(T) =
{ 1 ,2 ,... ,n — 1}. Similarly, R X T eliminates only (1,1) from R, because
tta(T) = { 2 ,3 ,... ,n}. We can then continue, say, with R X S , which elim
inates (n ,n) from R, and T X R , which eliminates (n — 1 ,n) from T. Now

20.4. DISTRIBUTED QUERY PROCESSING 1003

we can compute S X T again and eliminate (n — l ,n — 1) from S, and so on.
While we shall not prove it, we in fact need 3n — 1 semijoins to make all three
relations empty. □

Since n in Example 20.7 is arbitrary, we see that for the particular relations
discussed there, no fixed, finite sequence of semijoins is guaranteed to eliminate
all dangling tuples, regardless of the data currently held in the relations. On
the other hand, as we shall see, many typical joins of three or more relations
do have fixed, finite sequences of semijoins that are guaranteed to eliminate all
the dangling tuples. We call such a sequence of semijoins a full reducer for the
relations in question.

20.4.4 Acyclic Hypergraphs
Let us assume that we are taking a natural join of several relations, although
as mentioned, we can also handle equijoins by pretending the names of equated
attributes from different relations are the same, and renaming attributes to
make that pretense a reality. If we do, then we can draw a useful picture of
every natural join as a hypergraph, that is a set of nodes with hyperedges that are
sets of nodes. A traditional graph is then a hypergraph all of whose hyperedges
are sets of size two.

The hypergraph for a natural join is formed by creating one node for each
attribute name. Each relation is represented by a hyperedge containing all of
its attributes.

Figure 20.8: The hypergraph for Example 20.7

E xam ple 20.8: Figure 20.8 is the hypergraph for the three relations from
Example 20.7. The relation R(A, B) is represented by the hyperedge {̂ 4, B } m, S
is represented by the hyperedge {B, C}, and T is the hyperedge {A, C }. Notice
that this hypergraph is actually a graph, since the hyperedges are each pairs of
nodes. Also observe that the three hyperedges form a cycle in the graph. As
we shall see, it is this cyclicity that causes there to be no full reducer.

However, the question of when a hypergraph is cyclic has a somewhat unin
tuitive answer. In Fig. 20.9 is another hypergraph, which could be used, for in
stance, to represent the join of the relations R(A, E, F), S(A, B, C), T(C, D, E),

1004 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

and U(A, C, E). This hypergraph is a true hypergraph, since it has hyperedges
with more than two nodes. It also happens to be an “acyclic” hypergraph, even
though it appears to have cycles. □

Figure 20.9: An acyclic hypergraph

To define acyclic hypergraphs correctly, and thus get the condition under
which a full reducer exists, we first need the notion of an “ear” in a hyper
graph. A hyperedge i f is an ear if there is some other hyperedge G in the same
hypergraph such that every node of H is either:

1. Found only in H, or

2. Also found in G.

We shall say that G consumes H, for a reason that will become apparent when
we discuss reduction of the hypergraph.

E xam ple 20 .9 : In Fig. 20.9, hyperedge H = { A ,E ,F } is an ear. The role
of G is played by {A, C, E}. Node F is unique to H; it appears in no other
hyperedge. The other two nodes of H (A and E) are also members of G. □

A hypergraph is acyclic if it can be reduced to a single hyperedge by a
sequence of ear reductions. An ear reduction is simply the elimination of one
ear from the hypergraph, along with any nodes that appear only in that ear.
Note that an ear, if not eliminated at one step, remains an ear after another
ear is eliminated. However, it is possible that a hyperedge that was not an ear,
becomes an ear after another hyperedge is eliminated.

E xam ple 20.10: Figure 20.8 is not acyclic. No hyperedge is an ear, so we
cannot get started with any ear reduction. For example, {A, B } is not an ear
because neither A nor B is unique to this hyperedge, and no other hyperedge
contains both A and B.

On the other hand, Fig. 20.9 is acyclic. As we mentioned in Example 20.9,
{A, E, F} is an ear; so are {A, B, C] and {C, D, E}. We can therefore eliminate
hyperedge {A, E, F} from the hypergraph. When we eliminate this ear, node F

20.4. DISTRIBUTED QUERY PROCESSING 1005

Figure 20.10: After one ear reduction

disappears, but the other five nodes and three hyperedges remain, as suggested
in Fig. 20.10.

Since {A, B, C} is an ear in Fig. 20.10, we may eliminate it and node B in
a second ear reduction. Now, we are left with only hyperedges {A, C, E} and
{C, D, E}. Each is now an ear; notice that {A, C, E \ was not an ear until now.
We can eliminate either, leaving a single hyperedge and proving that Fig. 20.9
is an acyclic hypergraph. □

20.4.5 Full Reducers for Acyclic Hypergraphs
We can construct a full reducer for any acyclic hypergraph by following the
sequence of ear reductions. We construct the sequence of semijoins as follows,
by induction on the number of hyperedges in an acyclic hypergraph.

BASIS: If there is only one hyperedge, do nothing. The “join” of one relation
is the relation itself, and there are surely no dangling tuples.

IN DU CTIO N: If the acyclic hypergraph has more than one hyperedge, then it
must have at least one ear. Pick one, say H, and suppose it is consumed by
hyperedge G.

1. Execute the semijoin G G X i7 ; that is, eliminate from G any of its
tuples that do not join with H . 4

2. Recursively, find a semijoin sequence for the hypergraph with ear H elim
inated.

3. Execute the semijoin H := H X G.

E xam ple 20.11: Let us construct the full reducer for the relations R(A, E, F),
S(A, B, C), T(C, D, E), and U (A , C, E), whose hypergraph we saw in Fig. 20.9.

4W e are identify ing hyperedges w ith th e re la tions th a t th ey represen t for convenience in
n o ta tio n . M oreover, if th e se ts o f tup les corresponding to a hyperedge a re s to red tab le s ,ra th e r
th a n te m p o ra ry re la tions, we do n o t ac tually replace a re lation by a sem ijoin, as w ould be
suggested by a s tep like G := G IX H , b u t instead we sto re th e resu lt in a new tem porary ,
G'.

1006 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

We shall use the sequence of ears R, then S, then U, as in Example 20.10. Since
U consumes R, we begin with the semijoin U := U X R .

Recursively, we reduce the remaining three hyperedges. That reduction
starts with U consuming S, so the next step is U U X S . Another level of
recursion has T consuming U, so we add the step T := T X U . With only T
remaining, we have the basis case and do nothing.

Finally, we complete the elimination of ear U by adding U : = U X T . Then,
we complete the elimination of S by adding S := S X U , and we complete the
elimination of R with R := R X U . The entire sequence of semijoins that forms
a full reducer for Fig. 20.9 is shown in Fig. 20.11. □

U : = U X R
U : = U X S
T := T X U
U : =U X T
S : = S X U
R : = R X U

Figure 20.11: A full reducer for Fig. 20.9

Once we have executed all the semijoins in the full reducer, we can copy all
the reduced relations to the site of one of them, knowing that the relations to
be shipped contain no dangling tuples and therefore are as small as can be. In
fact, if we know at which site the join will be performed, then we do not have
to eliminate all dangling tuples for relations at that site. We can stop applying
semijoins to a relation as soon as that relation will no longer be used to reduce
other relations.

E xam ple 20.12: If the full reducer of Fig. 20.11 will be followed by a join at
the site of S, then we do not have to do the step S S X U . However, if the
join is to be conducted at the site of T, then we still have to do the reduction
T T X U , because T is used to reduce other relations at later steps. □

20.4.6 W hy the Full-Reducer Algorithm Works
We can show that the algorithm produces a full reducer for any acyclic hyper
graph by induction on the number of hyperedges.

BASIS: One hyperedge. There are no dangling tuples, so nothing needs to be
done.

IN DU CTIO N: When we eliminate the ear H, we eliminate, from the hyperedge
G that consumes H, all tuples that will not join with at least one tuple of
H. Thus, whatever further reductions are done, the join of the relations for
all the hyperedges besides H cannot contain a tuple that will not join with H.

20.4. DISTRIBUTED QUERY PROCESSING 1007

Note that this statement is true because G is the only link between H and the
remaining relations.

By induction, all tuples that are dangling in the join of the remaining rela
tions are eliminated. When we do the final semijoin H H X G to eliminate
dangling tuples from H, we know that no relation has dangling tuples.

20.4.7 Exercises for Section 20.4
! E xercise 20.4.1: Suppose we want to take the natural join of R (A ,B) and

S(B , C), where R and S are at different sites, and the size of the data commu
nicated is the dominant cost of the join. Suppose the sizes of R and S are sr
and ss, respectively. Suppose that the size of 7Tb (R) is fraction pu of the size of
R and itb (S) is fraction ps of the size of S. Finally, suppose that fractions d,R
and ds of relations R and 5, respectively, are dangling. Write expressions, in
terms of these six parameters, for the costs of the four strategies for evaluating
R txi S, and determine the conditions under which each is the best strategy.
The four strategies are:

i) Ship R to the site of S.

ii) Ship 5 to the site of R.

iii) Ship 7tb (S) to the site of R, and then R X S to the site of S.

iv) Ship nB{R) to the site of S, and then S X f i t o the site of R.

E xercise 20.4.2: Determine which of the following hypergraphs are acyclic.
Each hypergraph is represented by a list of its hyperedges.

a) {A ,B } , {.B ,C ,D }, { B ,E ,F } , {F ,G ,H }, {G ,I},

b) {A ,B } , {B ,C ,D }, { B ,E ,F } , {F ,G ,H }, {G ,I} , {B ,H }.

c) {A ,B ,C ,D }, {A ,B ,E } , {B ,D ,F } , {C ,D,G}, {A ,C ,H }.

Exercise 20.4.3: For those hypergraphs of Exercise 20.4.2 that are acyclic,
construct a full reducer.

! Exercise 20.4.4: Besides the full reducer of Example 20.11, how many other
full reducers of six steps can be constructed for the hypergraph of Fig. 20.9 by
choosing other orders for the elimination of ears?

! Exercise 20.4.5: A well known property of acyclic graphs is that if you delete
an edge from an acyclic graph it remains acyclic. Is the analogous statement
true for hypergraphs? That is, if you eliminate a hyperedge from an acyclic
hypergraph, is the remaining hypergraph always acyclic? Hint: consider the
acyclic hypergraph of Fig. 20.9.

1008 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

!! Exercise 20.4 .6 : Not all binary operations on relations located at different
nodes of a network can have their execution time reduced by preliminary op
erations like the semijoin. Is it possible to improve on the obvious algorithm
(ship one of the relations to the other site) when the operation is (a) union
(b) intersection (c) difference?

20.5 Distributed Commit
In this section, we shall address the problem of how a distributed transaction
that has components at several sites can execute atomically. The next section
discusses another important property of distributed transactions: executing
them serializably.

20.5.1 Supporting Distributed Atomicity
We shall begin with an example that illustrates the problems that might arise.

E xam ple 20.13: Consider our example of a chain of stores mentioned in Sec
tion 20.3. Suppose a manager of the chain wants to query all the stores, find the
inventory of toothbrushes at each, and issue instructions to move toothbrushes
from store to store in order to balance the inventory. The operation is done
by a single global transaction T that has component Ti at the ith store and
a component T0 at the office where the manager is located. The sequence of
activities performed by T are summarized below:

1. Component To is created at the site of the manager.

2. To sends messages to all the stores instructing them to create components
Ti.

3. Each Ti executes a query at store i to discover the number of toothbrushes
in inventory and reports this number to To.

4. To takes these numbers and determines, by some algorithm we do not
need to discuss, what shipments of toothbrushes axe desired. To then
sends messages such as “store 10 should ship 500 toothbrushes to store
7” to the appropriate stores (stores 7 and 10 in this instance).

5. Stores receiving instructions update their inventory and perform the ship
ments.

□

There axe a number of things that could go wrong in Example 20.13, and
many of these result in violations of the atomicity of T. That is, some of the
actions comprising T get executed, but others do not. Mechanisms such as
logging and recovery, which we assume are present at each site, will assure that
each Tj is executed atomically, but do not assure that T itself is atomic.

20.5. DISTRIBUTED COMMIT 1009

E xam ple 20.14: Suppose a bug in the algorithm to redistribute toothbrushes
might cause store 10 to be instructed to ship more toothbrushes than it has. T10
will therefore abort, and no toothbrushes will be shipped from store 10; neither
will the inventory at store 10 be changed. However, TV detects no problems
and commits at store 7, updating its inventory to reflect the supposedly shipped
toothbrushes. Now, not only has T failed to execute atomically (since Tio never
completes), but it has left the distributed database in an inconsistent state. □

Another source of problems is the possibility that a site will fail or be dis
connected from the network while the distributed transaction is running.

E xam ple 20.15: Suppose Tw replies to T0’s first message by telling its inven
tory of toothbrushes. However, the machine at store 10 then crashes, and the
instructions from To are never received by Ti0. Can distributed transaction T
ever commit? What should Tio do when its site recovers? □

20.5.2 Two-Phase Commit
In order to avoid the problems suggested in Section 20.5.1, distributed DBMS’s
use a complex protocol for deciding whether or not to commit a distributed
transaction. In this section, we shall describe the basic idea behind these pro
tocols, called two-phase commit. 5 By making a global decision about commit
ting, each component of the transaction will commit, or none will. As usual,
we assume that the atomicity mechanisms at each site assure that either the
local component commits or it has no effect on the database state at that site;
i.e., components of the transaction are atomic. Thus, by enforcing the rule
that either all components of a distributed transaction commit or none does,
we make the distributed transaction itself atomic.

Several salient points about the two-phase commit protocol follow:

• In a two-phase commit, we assume that each site logs actions at that site,
but there is no global log.

• We also assume that one site, called the coordinator, plays a special role
in deciding whether or not the distributed transaction can commit. For
example, the coordinator might be the site at which the transaction orig
inates, such as the site of To in the examples of Section 20.5.1.

• The two-phase commit protocol involves sending certain messages be
tween the coordinator and the other sites. As each message is sent, it is
logged at the sending site, to aid in recovery should it be necessary.

With these points in mind, we can describe the two phases in terms of the
messages sent between sites.

5 Do no t confuse tw o-phase com m it w ith tw o-phase locking. T hey are independent ideas,
designed to solve different problem s.

1010 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

P h ase I

In phase 1 of the two-phase commit, the coordinator for a distributed trans
action T decides when to attempt to commit T. Presumably the attem pt to
commit occurs after the component of T at the coordinator site is ready to
commit, but in principle the steps must be carried out even if the coordina
to r’s component wants to abort (but with obvious simplifications as we shall
see). The coordinator polls the sites of all components of the transaction T to
determine their wishes regarding the commit/abort decision, as follows:

1. The coordinator places a log record <Prepare T> on the log at its site.

2. The coordinator sends to each component’s site (in principle including
itself) the message p repare T.

3. Each site receiving the message p repare T decides whether to commit or
abort its component of T. The site can delay if the component has not
yet completed its activity, but must eventually send a response.

4. If a site wants to commit its component, it must enter a state called
precommitted. Once in the precommitted state, the site cannot abort its
component of T without a directive to do so from the coordinator. The
following steps are done to become precommitted:

(a) Perform whatever steps are necessary to be sure the local component
of T will not have to abort, even if there is a system failure followed
by recovery at the site. Thus, not only must all actions associated
with the local T be performed, but the appropriate actions regarding
the log must be taken so that T will be redone rather than undone
in a recovery. The actions depend on the logging method, but surely
the log records associated with actions of the local T must be flushed
to disk.

(b) Place the record <Ready T> on the local log and flush the log to
disk.

(c) Send to the coordinator the message ready T.

However, the site does not commit its component of T at this time; it
must wait for phase 2.

5. If, instead, the site wants to abort its component of T, then it logs the
record <Don’t commit T> and sends the message don’t commit T to
the coordinator. It is safe to abort the component at this time, since T
will surely abort if even one component wants to abort.

The messages of phase 1 are summarized in Fig. 20.12.

20.5. DISTRIBUTED COMMIT 1011

Figure 20.12: Messages in phase 1 of two-phase commit

P h ase II

The second phase begins when responses ready or don ’ t commit are received
from each site by the coordinator. However, it is possible that some site fails to
respond; it may be down, or it has been disconnected by the network. In that
case, after a suitable timeout period, the coordinator will treat the site as if it
had sent don’t commit.

1. If the coordinator has received ready T from all components of T, then
it decides to commit T. The coordinator logs <Commit T> at its site and
then sends message commit T to all sites involved in T.

2. However, if the coordinator has received don’t commit T from one or
more sites, it logs <Abort T> at its site and then sends ab o rt T mes
sages to all sites involved in T.

3. If a site receives a commit T message, it commits the component of T at
that site, logging <Commit T> as it does.

4. If a site receives the message abort T, it aborts T and writes the log
record < Abort T>.

The messages of phase 2 are summarized in Fig. 20.13.

Figure 20.13: Messages in phase 2 of two-phase commit

20.5.3 Recovery of Distributed Transactions
At any time during the two-phase commit process, a site may fail. We need
to make sure that what happens when the site recovers is consistent with the

1012 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

global decision that was made about a distributed transaction T. There are
several cases to consider, depending on the last log entry for T.

1. If the last log record for T was <Coimnit T>, then T must have been
committed by the coordinator. Depending on the log method used, it
may be necessary to redo the component of T at the recovering site.

2. If the last log record is < Abort T > , then similarly we know that the
global decision was to abort T. If the log method requires it, we undo the
component of T at the recovering site.

3. If the last log record is <Don’t commit T>, then the site knows that the
global decision must have been to abort T. If necessary, effects of T on
the local database are undone.

4. The hard case is when the last log record for T is <Ready T>. Now, the
recovering site does not know whether the global decision was to commit
or abort T. This site must communicate with at least one other site to
find out the global decision for T. If the coordinator is up, the site can
ask the coordinator. If the coordinator is not up at this time, some other
site may be asked to consult its log to find out what happened to T. In
the worst case, no other site can be contacted, and the local component
of T must be kept active until the commit/abort decision is determined.

5. It may also be the case that the local log has no records about T that
come from the actions of the two-phase commit protocol. If so, then the
recovering site may unilaterally decide to abort its component of T, which
is consistent with all logging methods. It is possible that the coordinator
already detected a timeout from the failed site and decided to abort T. If
the failure was brief, T may still be active at other sites, but it will never
be inconsistent if the recovering site decides to abort its component of T
and responds with don’t commit T if later polled in phase 1.

The above analysis assumes that the failed site is not the coordinator. When
the coordinator fails during a two-phase commit, new problems arise. First, the
surviving participant sites must either wait for the coordinator to recover or
elect a new coordinator. Since the coordinator could be down for an indefinite
period, there is good motivation to elect a new leader, at least after a brief
waiting period to see if the coordinator comes back up.

The m atter of leader election is in its own right a complex problem of dis
tributed systems, beyond the scope of this book. However, a simple method
will work in most situations. For instance, we may assume that all participant
sites have unique identifying numbers, e.g., IP addresses. Each participant
sends messages announcing its availability as leader to all the other sites, giv
ing its identifying number. After a suitable length of time, each participant
acknowledges as the new coordinator the lowest-numbered site from which it
has heard, and sends messages to that effect to all the other sites. If all sites

20.5. DISTRIBUTED COMMIT 1013

receive consistent messages, then there is a unique choice for new coordinator,
and everyone knows about it. If there is inconsistency, or a surviving site has
failed to respond, that too will be universally known, and the election starts
over.

Now, the new leader polls the sites for information about each distributed
transaction T. Each site reports the last record on its log concerning T, if there
is one. The possible cases are:

1. Some site has <Commit T> on its log. Then the original coordinator
must have wanted to send commit T messages everywhere, and it is safe
to commit T.

2. Similarly, if some site has < Abort T> on its log, then the original coordi
nator must have decided to abort T, and it is safe for the new coordinator
to order that action.

3. Suppose now that no site has <Coimnit T> or <Abort T> on its log, but
at least one site does not have <Ready T> on its log. Then since actions
are logged before the corresponding messages are sent, we know that the
old coordinator never received ready T from this site and therefore could
not have decided to commit. It is safe for the new coordinator to decide
to abort T.

4. The most problematic situation is when there is no <Commit T> or
< Abort T > to be found, but every surviving site has <Ready T>. Now,
we cannot be sure whether the old coordinator found some reason to abort
T or not; it could have decided to do so because of actions at its own site,
or because of a don’t commit T message from another failed site, for
example. Or the old coordinator may have decided to commit T and al
ready committed its local component of T. Thus, the new coordinator is
not able to decide whether to commit or abort T and must wait until the
original coordinator recovers. In real systems, the database administrator
has the ability to intervene and manually force the waiting transaction
components to finish. The result is a possible loss of atomicity, but the
person executing the blocked transaction will be notified to take some
appropriate compensating action.

20.5.4 Exercises for Section 20.5
! Exercise 20.5.1: Consider a transaction T initiated at a home computer that

asks bank B to transfer $10,000 from an account at B to an account at another
bank C.

a) What are the components of distributed transaction T? What should the
components at B and C do?

b) What can go wrong if there is not $10,000 in the account at B ?

1014 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

c) What can go wrong if one or both banks’ computers crash, or if the
network is disconnected?

d) If one of the problems suggested in (c) occurs, how could the transaction
resume correctly when the computers and network resume operation?

E xercise 20.5 .2 : In this exercise, we need a notation for describing sequences
of messages that can take place during a two-phase commit. Let (i,j, M) mean
that site i sends the message M to site j , where the value of M and its meaning
can be P (prepare), R (ready), D (don’t commit), C (commit), or A (abort).
We shall discuss a simple situation in which site 0 is the coordinator, but not
otherwise part of the transaction, and sites 1 and 2 are the components. For
instance, the following is one possible sequence of messages that could take
place during a successful commit of the transaction:

(0 ,1 ,P), (0 ,2 ,P), (2 ,0 ,R), (1,0 ,R), (0 ,2 ,C), (0,1, C)

a) Give an example of a sequence of messages that could occur if site 1 wants
to commit and site 2 wants to abort.

! b) How many possible sequences of messages such as the above are there, if
the transaction successfully commits?

! c) If site 1 wants to commit, but site 2 does not, how many sequences of
messages are there, assuming no failures occur?

! d) If site 1 wants to commit, but site 2 is down and does not respond to
messages, how many sequences are there?

!! Exercise 20.5 .3 : Using the notation of Exercise 20.5.2, suppose the sites are
a coordinator and n other sites that are the transaction components. As a
function of n, how many sequences of messages are there if the transaction
successfully commits?

20.6 Distributed Locking
In this section we shall see how to extend a locking scheduler to an environment
where transactions are distributed and consist of components at several sites.
We assume that lock tables are managed by individual sites, and that the
component of a transaction at a site can request locks on the data elements
only at that site.

When data is replicated, we must arrange that the copies of a single ele
ment X are changed in the same way by each transaction. This requirement
introduces a distinction between locking the logical database element X and
locking one or more of the copies of X . In this section, we shall offer a cost
model for distributed locking algorithms that applies to both replicated and
nonreplicated data. However, before introducing the model, let us consider an
obvious (and sometimes adequate) solution to the problem of maintaining locks
in a distributed database — centralized locking.

20.6. DISTRIBUTED LOCKING 1015

20.6.1 Centralized Lock Systems
Perhaps the simplest approach is to designate one site, the lock site, to maintain
a lock table for logical elements, whether or not they have copies at that site.
When a transaction wants a lock on logical element X , it sends a request to
the lock site, which grants or denies the lock, as appropriate. Since obtaining a
global lock on X is the same as obtaining a local lock on X at the lock site, we
can be sure that global locks behave correctly as long as the lock site administers
locks conventionally. The usual cost is three messages per lock (request, grant,
and release), unless the transaction happens to be running at the lock site.

The use of a single lock site can be adequate in some situations, but if there
are many sites and many simultaneous transactions, the lock site could become
a bottleneck. Further, if the lock site crashes, no transaction at any site can
obtain locks. Because of these problems with centralized locking, there are a
number of other approaches to maintaining distributed locks, which we shall
introduce after discussing how to estimate the cost of locking.

20.6.2 A Cost Model for Distributed Locking Algorithms
Suppose that each data element exists at exactly one site (i.e., there is no
data replication) and that the lock manager at each site stores locks and lock
requests for the elements at its site. Transactions may be distributed, and each
transaction consists of components at one or more sites.

While there are several costs associated with managing locks, many of them
are fixed, independent of the way transactions request locks over a network.
The one cost factor over which we have control is the number of messages
sent between sites when a transaction obtains and releases its locks. We shall
thus count the number of messages required for various locking schemes on the
assumption that all locks are granted when requested. Of course, a lock request
may be denied, resulting in an additional message to deny the request and a
later message when the lock is granted. However, since we cannot predict the
rate of lock denials, and this rate is not something we can control anyway, we
shall ignore this additional requirement for messages in our comparisons.

E xam ple 20.16: As we mentioned in Section 20.6.1, in the central locking
method, the typical lock request uses three messages, one to request the lock,
one from the central site to grant the lock, and a third to release the lock. The
exceptions are:

1. The messages are unnecessary when the requesting site is the central lock
site, and

2. Additional messages must be sent when the initial request cannot be
granted.

However, we assume that both these situations are relatively rare; i.e., most lock
requests are from sites other than the central lock site, and most lock requests

1016 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

can be granted. Thus, three messages per lock is a good estimate of the cost of
the centralized lock method. □

Now, consider a situation more flexible than central locking, where there is
no replication, but each database element X can maintain its locks at its own
site. It might seem that, since a transaction wanting to lock X will have a
component at the site of X , there are no messages between sites needed. The
local component simply negotiates with the lock manager at that site for the
lock on X . However, if the distributed transaction needs locks on several ele
ments, say X , Y , and Z, then the transaction cannot complete its computation
until it has locks on all three elements. If X , Y , and Z are at different sites,
then the components of the transactions at those sites must at least exchange
synchronization messages to prevent the transaction from proceeding before it
has all the locks it needs.

Rather than deal with all the possible variations, we shall take a simple
model of how transactions gather locks. We assume that one component of each
transaction, the lock coordinator for that transaction, has the responsibility to
gather all the locks that all components of the transaction require. The lock
coordinator locks elements at its own site without messages, but locking an
element X at any other site requires three messages:

1. A message to the site of X requesting the lock.

2. A reply message granting the lock (recall we assume all locks are granted
immediately; if not, a denial message followed by a granting message later
will be sent).

3. A message to the site of X releasing the lock.

If we pick as the lock coordinator the site where the most locks are needed by
the transaction, then we minimize the requirement for messages. The number
of messages required is three times the number of database elements at the
other sites.

20.6.3 Locking Replicated Elements
When an element X has replicas at several sites, we must be careful how we
interpret the locking of X .

E xam ple 20.17: Suppose there are two copies, X i and X 2, of a database
element X . Suppose also that a transaction T gets a shared lock on the copy
Xi at the site of that copy, while transaction U gets an exclusive lock on the
copy X 2 at its site. Now, U can change X 2 but cannot change X i , resulting in
the two copies of the element X becoming different. Moreover, since T and U
may lock other elements as well, and the order in which they read and write
X is not forced by the locks they hold on the copies of X , there is also an
opportunity for T and U to engage in unserializable behavior. □

20.6. DISTRIBUTED LOCKING 1017

The problem illustrated by Example 20.17 is that when data is replicated,
we must distinguish between getting a shared or exclusive lock on the logical
element X and getting a local lock on a copy of X . That is, in order to
assure serializability, we need for transactions to take global locks on the logical
elements. But the logical elements don’t exist physically — only their copies
do — and there is no global lock table. Thus, the only way that a transaction
can obtain a global lock on X is to obtain local locks on one or more copies
of X at the site(s) of those copies. We shall now consider methods for turning
local locks into global locks that have the required property:

• A logical element X can have either one exclusive lock and no shared lock,
or any number of shared locks and no exclusive locks.

20.6.4 Primary-Copy Locking
An improvement on the centralized locking approach, one which also allows
replicated data, is to distribute the function of the lock site, but still maintain
the principle that each logical element has a single site responsible for its global
lock. This distributed-lock method, called primary copy, avoids the possibility
that the central lock site will become a bottleneck, while still maintaining the
simplicity of the centralized method.

In the primary copy lock method, each logical element X has one of its
copies designated the “primary copy.” In order to get a lock on logical element
X , a transaction sends a request to the site of the primary copy of X . The site
of the primary copy maintains an entry for X in its lock table and grants or
denies the request as appropriate. Again, global (logical) locks will be adminis
tered correctly as long as each site administers the locks for the primary copies
correctly.

Also as with a centralized lock site, most lock requests require three mes
sages, except for those where the transaction and the primary copy are at the
same site. However, if we choose primary copies wisely, then we expect that
these sites will frequently be the same.

E xam ple 20.18: In the chain-of-stores example, we should make each store’s
sales data have its primary copy at the store. Other copies of this data, such
as at the central office or at a data warehouse used by sales analysts, are not
primary copies. Probably, the typical transaction is executed at a store and
updates only sales data for that store. No messages are needed when this type
of transaction takes its locks. Only if the transaction examined or modified
data at another store would lock-related messages be sent. □

20.6.5 Global Locks From Local Locks
Another approach is to synthesize global locks from collections of local locks. In
these schemes, no copy of a database element X is “primary”; rather they are
symmetric, and local shared or exclusive locks can be requested on any of these

1018 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

Distributed Deadlocks

There are many opportunities for transactions to get deadlocked as they
try to acquire global locks on replicated data. There are also many ways to
construct a global waits-for graph and thus detect deadlocks. However, in
a distributed environment, it is often simplest and also most effective to use
a timeout. Any transaction that has not completed after an appropriate
amount of time is assumed to have gotten deadlocked and is rolled back.

copies. The key to a successful global locking scheme is to require transactions
to obtain a certain number of local locks on copies of X before the transaction
can assume it has a global lock on X .

Suppose database element A has n copies. We pick two numbers:

1. s is the number of copies of A that must be locked in shared mode in
order for a transaction to have a global shared lock on A.

2. x is the number of copies of A that must be locked in exclusive mode in
order for a transaction to have an exclusive lock on A.

As long as 2x > n and s + x > n, we have the desired properties: there
can be only one global exclusive lock on A, and there cannot be both a global
shared and global exclusive lock on A. The explanation is as follows. Since
2x > n, if two transactions had global exclusive locks on A, there would be at
least one copy that had granted local exclusive locks to both (because there are
more local exclusive locks granted than there are copies of A). However, then
the local locking method would be incorrect. Similarly, since s + x > n, if one
transaction had a global shared lock on A and another had a global exclusive
lock on A, then some copy granted both local shared and exclusive locks at the
same time.

In general, the number of messages needed to obtain a global shared lock is
3s, and the number to obtain a global exclusive lock is 3a;. That number seems
excessive, compared with centralized methods that require 3 or fewer messages
per lock on the average. However, there are compensating arguments, as the
following two examples of specific (s, x) choices shows.

R ead-L ocks-O ne; W rite-L ocks-A ll

Here, s = 1 and x = n. Obtaining a global exclusive lock is very expensive,
but a global shared lock requires three messages at the most. Moreover, this
scheme has an advantage over the primary-copy method: while the latter allows
us to avoid messages when we read the primary copy, the read-locks-one scheme
allows us to avoid messages whenever the transaction is at the site of any copy
of the database element we desire to read. Thus, this scheme can be superior

20.6. DISTRIBUTED LOCKING 1019

when most transactions are read-only, but transactions to read an element X
initiate at different sites. An example would be a distributed digital library
that caches copies of documents where they are most frequently read.

M ajo rity Locking

Here, s = x = \(n + l)/2]. It seems that this system requires many messages
no matter where the transaction is. However, there are several other factors
that may make this scheme acceptable. First, many network systems support
broadcast, where it is possible for a transaction to send out one general request
for local locks on an element X , which will be received by all sites. Similarly,
the release of locks may be achieved by a single message.

Moreover, this selection of s and x provides an advantage others do not:
it allows partial operation even when the network is disconnected. As long as
there is one component of the network that contains a majority of the sites with
copies of X , then it is possible for a transaction to obtain a lock on X . Even if
other sites are active while disconnected, we know that they cannot even get a
shared lock on X , and thus there is no risk that transactions running in different
components of the network will engage in behavior that is not serializable.

20.6.6 Exercises for Section 20.6
! E xercise 20.6.1: We showed how to create global shared and exclusive locks

from local locks of that type. How would you create:

a) Global shared, exclusive, and increment locks

b) Global shared, exclusive, and update locks

!! c) Global shared, exclusive, and intention locks for each type

from local locks of the same types?

E xercise 20.6.2: Suppose there are five sites, each with a copy of a database
element X . One of these sites P is the dominant site for X and will be used
as I ’s primary site in a primary-copy distributed-lock system. The statistics
regarding accesses to X are:

i. 50% of all accesses are read-only accesses originating at P.

ii. Each of the other four sites originates 10% of the accesses, and these are
read-only.

Hi. The remaining 10% of accesses require exclusive access and may originate
at any of the five sites with equal probability (i.e., 2% originate at each).

For each of the lock methods below, give the average number of messages needed
to obtain a lock. Assume that all requests are granted, so no denial messages
are needed.

1020 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

Grid Computing

Grid computing is a term that means almost the same as peer-to-peer
computing. However, the applications of grids usually involve sharing of
computing resources rather than data, and there is often a master node
that controls what the others do. Popular examples include SETI, which
attempts to distribute the analysis of signals for signs of extraterrestrial
intelligence among participating nodes, and Folding-at-Home, which at
tempts to do the same for protein-folding.

a) Read-locks-one; write-locks-all.

b) Majority locking.

c) Primary-copy locking, with the primary copy at P.

20.7 Peer-to-Peer Distributed Search
In this section, we examine peer-to-peer distributed systems. When these sys
tems are used to store and deliver data, the problem of search becomes surpris
ingly hard. That is, each node in the peer-to-peer network has a subset of the
data elements, but there is no centralized index that says where something is
located. The method called “distributed hashing” allows peer-to-peer networks
to grow and shrink, yet allows us to find available data much more efficiently
than sending messages to every node.

20.7.1 Peer-to-Peer Networks
A peer-to-peer network is a collection of nodes or peers (participating machines)
that:

1. Are autonomous: participants do not respect any central control and can
join or leave the network at will.

2 . Are loosely coupled; they communicate over a general-purpose network
such as the Internet, rather than being hard-wired together like the pro
cessors in a parallel machine.

3. Are equal in functionality; there is no leader or controlling node.

4. Share resources with one another.

Peer-to-peer networks initially received a bad name, because their first pop
ular use was in sharing copyrighted files such as music. However, they have

20.7. PEER-TO-PEER DISTRIBUTED SEARCH 1021

Copyright Issues in Digital Libraries

In order for a distributed world-wide digital library to become a reality,
there will have to be some resolution of the severe copyright issues that
arise. Current, small-scale versions of this network have partial solutions.
For example, on-line university libraries often pass accesses to the ACM
digital library only from IP addresses in the university’s domain. Other
arrangements are based on the idea that only one user at a time can
access a particular copyrighted document. The digital library can “loan”
the right to another library, but then users of the first library cannot access
the document. The world awaits a solution that is easily implementable
and fair to all interests.

many legitimate uses. For example, as libraries replace books by digital im
ages, it becomes feasible for all the world’s libraries to share what they have.
It should not be necessary for each library to store a copy of every book or
document in the world. But then, when you request a book from your local
library, that library’s node needs to find a peer library that does have a copy
of what you want.

As another example, we might imagine a peer-to-peer network for the shar
ing of personal collections of photographs or videos, that is, a peer-to-peer
version of Flickr or YouTube. The images are housed on participants’ personal
computers, so they will be turned on and off periodically. There can be millions
of participants, and each has only a small fraction of the resources of the entire
network.

20.7.2 The Distributed-Hashing Problem
Early peer-to-peer networks such as Napster used a centralized table that told
where data elements could be found. Later systems distributed the function
of locating elements, either by replication or division of the task among the
peers. When the database is truly large, such as a shared worldwide library or
photo-sharing network, there is no choice but to share the task in some way.

We shall abstract the problem to one of lookup of records in a (very large)
set of key-value pairs. Associated with each key K is a value V. For example,
K might be the identifier of a document. V could be the document itself, or it
could be the set of nodes at which the document can be found.

If the size of the key-value data is small, there are several simple solutions.
We could use a central node that holds the entire key-value table. All nodes
would query the central node when they wanted the value V associated with a
given key K . In that case, a pair of query-response messages would answer any
lookup question for any node. Alternatively, we could replicate the entire table
at each node, so there would be no messages needed at all.

1022 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

The problem becomes more interesting when the key-value table is too large
to be handled by a single node. We shall consider this problem, using the
following constraints:

1. At any time, only one node among the peers knows the value associated
with any given key K.

2. The key-value pairs are distributed roughly equally among the peers.

3. Any node can ask the peers for the value V associated with a chosen key
K. The value of V should be obtained in a way such that the number of
messages sent among the peers grows much more slowly than the number
of peers.

4. The amount of routing information needed at each node to help locate
keys must also grow much more slowly than the number of nodes.

20.7.3 Centralized Solutions for Distributed Hashing
If the set of participants in the network is fixed once and for all, or the set
of participants changes slowly, then there are straightforward ways to manage
lookup of keys. For example, we could use a hash function h that hashes keys
into node numbers. We place the key-value pair (K , V) at the node h(K).

In fact, Google and similar search engines effectively maintain a centralized
index of the entire Web and manage huge numbers of requests. They do so by
behaving logically as if there were a centralized index, when in fact the index
is replicated at a very large number of nodes. Each node consists of many
machines that together share the index of the Web.

However, machines at Google are not really “peers.” They cannot decide
to leave the network, and they each have a specific function to perform. While
machines can fail, their load is simply assumed by a node of similar machines
until the failed machine is replaced. In the balance of this section, we shall
consider the more complex solution that is needed when the data is maintained
by a true collection of peer nodes.

20.7.4 Chord Circles
We shall now describe one of several possible algorithms for distributed hashing,
an algorithm with the desirable property that it uses a number of messages that
is logarithmic in the number of peers. In addition, the amount of information
other than key-value peers needed at each node grows logarithmically in the
number of nodes.

In this algorithm, we arrange the peers in a “chord circle.” Each node
knows its predecessor and successor around the circle, and nodes also have
links to nodes located at an exponentially growing set of distances around the
circle (these links are the “chords”). Figure 20.14 suggests what the chord circle
looks like.

20.7. PEER-TO-PEER DISTRIBUTED SEARCH 1023

Figure 20.14: A chord circle

To place a node in the circle, we hash its ID i, and place it at position
h(i). We shall henceforth refer to this node as N ^ . Thus, for example, in
Fig. 20.14, AT2i is a node whose ID i has h(i) = 21. The successor of each node
is the next higher one clockwise around the circle. For example, the successor
of N 2 1 is N 3 2 , and Ni is the successor of -/V56. Likewise, N2i is the predecessor
of N 3 2 , and IV56 is the predecessor of N i .

The nodes are located around the circle using a hash function h that is capa
ble of mapping both keys and node ID’s (e.g., IP-addresses) to m-bit numbers,
for some m. In Fig. 20.14, we suppose that m = 6 , so there are 64 different
possible locations for nodes around the circle. In a real application, m would
be much larger.

Key-value pairs are also distributed around the circle using the hash function
h. If (K, V) is a key-value pair, then we compute h(K) and place (K, V) at the
lowest numbered node Nj such that h(K) < j . As a special case, if h(K) is
above the highest-numbered node, then it is assigned to the lowest-numbered
node. That is, key K goes to the first node at or clockwise of the position h(K)
in the circle.

E xam ple 20.19: In Fig. 20.14, any (K ,V) pair such that 42 < h{K) < 48
would be stored at N ^ . If h{K) is any of 57 ,58 ,... , 63,0,1, then (K , V") would
be placed at N\. □

1024 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

20.7.5 Links in Chord Circles
Each node around the circle stores links to its predecessor and successor. Thus,
for example, in Fig. 20.14, Ni has successor Ns and predecessor iV56. These
links are sufficient to send messages around the circle to look up the value
associated with any key. For instance, if Ns wants to find the value associated
with a key K such that h(K) = 54, it can send the request forward around
the circle until a node Nj is found such that j > 54; it would be node N 5 6 in
Fig. 20.14.

However, linear search is much too inefficient if the circle is large. To speed
up the search, each node has a finger table that gives the first nodes found at
distances around the circle that are a power of two. That is, suppose that the
hash function h produces m-bit numbers. Node Ni has entries in its finger table
for distances 1 ,2 ,4 ,8 , . . . , 2m_1. The entry for 2̂ is the first node we meet after
going distance 2J clockwise around the circle. Notice that some entries may be
the same node, and there are only m — 1 entries, even though the number of
nodes could be as high as 2m.

Distance 1 2 4 8 16 32
Node iVl4 N u N u N 2 1 N 3 2 N 4 2

Figure 20.15: Finger table for Ng

E xam ple 20.20: Referring to Fig. 20.14, let us construct the finger table for
Ng; this table is shown in Fig. 20.15. For distance 1, we ask what is the lowest
numbered node whose number is at least 8 + 1 = 9. That node is N 1 4 , since
there are no nodes numbered 9 ,1 0 ,... , 13. For distance 2, we ask for the lowest
node that is at least 8 + 2 = 10; the answer is N 1 4 again. Likewise, for distance
4, N 1 4 is is lowest-numbered node that is at least 8 + 4 = 1 2 .

For distance 8 , we look for the lowest-numbered node that is at least 8 + 8 =
16. Now, N 1 4 is too low. The lowest-numbered node that is at least 16 is N 2 i ,
so that is the entry in the finger table for 8 . For 16, we need a node numbered
at least 24, so the entry for 16 is N 32. For 32, we need a node numbered at
least 40, and the proper entry is N 4 2 . Figure 20.16 shows the four links that
are in the finger table for N 8. □

20.7.6 Search Using Finger Tables
Suppose we are at node Ni and we want to find the key-value pair (K , V) where
h(K) — j . We know that (K , V), if it exists, will be at the lowest-numbered
node that is a t least j . 6 We can use the finger table and knowledge of successors

6 A s alw ays, “low est” m u st be tak en in th e circu lar sense, as th e first node you m eet
traveling clockwise a ro u n d th e circle, a f te r reach ing th e po in t j .

20.7. PEER-TO-PEER DISTRIBUTED SEARCH 1025

Figure 20.16: Links in the finger table for Ns

to find (K , V), if it exists, using at most m-1-1 messages, where m is the number
of bits in the hash values produced by hash function h. Note that messages do
not have to follow the entries of the finger table, which is needed only to help
each node find out what other nodes exist.

A lgorithm 20.21: Lookup in a Chord Circle.

IN PU T : An initial request by a node N, for the value associated with key value
K , where h(K) = j .

O U TPU T: A sequence of messages sent by various nodes, resulting in a message
to Ni with either the value of V in the key-value pair (K, V), or a statement
that such a pair does not exist.

METHOD: The steps of the algorithm are actually executed by different nodes.
At any time, activity is at some “current” node N c, and initially N c is Ni. Steps
(1) and (2) below are done repeatedly. Note that Ni is a part of each request
message, so the current node always knows that Ni is the node to which the
answer must be sent.

1. End the search if c < j < s, where N s is the successor of Nc, around the
circle. Then, N c sends a message to N s asking for (K, V) and informing
N s that the originator of the request is Ni. N s will send a message to Ni
with either the value V or a statement that (K , V) does not exist.

2 . Otherwise, N c consults its finger table to find the highest-numbered node
Nh that is less than j . N c sends Nh a message asking it to search for

1026 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

(K ,V) on behalf of Ni. Nh becomes the current node N c, and steps (1)
and (2) are repeated with the new N c.

□

E xam ple 20.22: Suppose Ns wants to find the value V for key K , where
h(K) = 54. Since the successor of N s is N u , and 54 is not in the range
9 ,1 0 ,... , 14, Ns knows (K , V) is not at N u . N% thus examines its finger table,
and finds that all the entries are below 54. Thus it takes the largest, Ar42, and
sends a message to 7V42 asking it to look for key K and have the result sent to
Ns.

N 4 2 finds that 54 is not in the range 43 ,4 4 ,... ,48 between iV42 and its
successor jV48. Thus, 7V42 examines its own finger table, which is:

Distance 1 2 4 8 16 32
Node iV48 N i8 £ 00 n 51 Ni 7V14

The last node (in the circular sense) that is less than 54 is N 5i , so N 4 2 sends a
message to 7V51, asking it to search for (K , V) on behalf of N&.

N$i finds that 54 is no greater than its successor, N 56. Thus, if (K, V) exists,
it is at N 5q. N 51 sends a request to A756, which replies to N%. The sequence of
messages is shown in Fig. 20.17. □

Figure 20.17: Message sequence in the search for (K , V)

In general, this recursive algorithm sends no more than m request messages.
The reason is that whenever a node N c has to consult its finger table, it messages

20.7. PEER-TO-PEER DISTRIBUTED SEARCH 1027

Dealing with Hash Collisions

Occasionally, when we insert a node, the hash value of its ID will be the
same as that of some node already in the circle. The actual position of a
particular node doesn’t matter, as long as it knows its position and acts
as if that position was the hash value of its ID. Thus, we can adjust the
position of the new node up or down, until we find a position around the
circle that is unoccupied.

a node that is no more than half the distance (measured clockwise around the
circle) from the node holding (K , V) as N c is. One response message is sent in
all cases.

20.7.7 Adding New Nodes
Suppose a new node Ni (i.e., a node whose ID hashes to i) wants to join the
network of peers. If Ni does not know how to communicate with any peer, it
is not possible for Ni to join. However, if Ni knows even one peer, Ni can ask
that peer what node would be N i’s successor around the circle. To answer, the
known peer performs Algorithm 20.21 as if it were looking for a key that hashed
to i. The node at which this hypothetical key would reside is the successor of
Ni. Suppose that the successor of JV< is Nj.

We need to do two things:

1. Change predecessor and successor links, so JV* is properly linked into the
circle.

2. Rearrange data so TV, gets all the data at Nj that belongs to Ni, that is,
key-value pairs whose key hashes to something i or less.

We could link N into the circle at once, although it is difficult to do so correctly,
because of concurrency problems. That is, several nodes whose successor would
be Nj may be adding themselves at once. To avoid concurrency problems, we
proceed in two steps. The first step is to set the successor of N to Nj and its
predecessor to nil. N has no data at this time, and it has an empty finger table.

E xam ple 20.23: Suppose we add to the circle of Fig. 20.14 a node N 2 e, i.e.,
a node whose ID hashes to 26. Whatever peer N 26 contacted will be told that
N 2$’s successor is N 32. N2e sets its successor to N 32 and its predecessor to
nil. The predecessor of N 32 remains N 2i for the moment. The situation is
suggested by Fig. 20.18. There, solid lines are successor links and dashed lines
are predecessor links. □

1028 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

The second step is done automatically by all nodes, and is not a direct
response to the insertion of iVj. All nodes must periodically perform a stabi
lization check, during which time predecessors and successors are updated, and
if necessary, data is shared between a new node and its successor. Surely, N2§
in Fig. 20.18 will have to perform a stabilization to get N 3 2 to accept N2% as
its predecessor, but N 2\ also needs to perform a stabilization in order to re
alize that N 26 is its new successor. Note that N 2\ has not been informed of
the existence of N 2q, and will not be informed until N 2i discovers this fact for
itself during its own stabilization. The stabilization process at any node N is
as follows.

1. Let S be the successor of N. N sends a message to S asking for P, the
predecessor of 5, and S replies. In normal cases, P = N , and if so, skip
to step (4).

2. If P lies strictly between N and S, then N records that P is its successor.

3. Let S' be the current successor of N; S' could be either S or P, depending
on what step (2) decided. If the predecessor of S' is nil or N lies strictly
between S' and its predecessor, then N sends a message to S' telling S'
that N is the predecessor of S'. S' sets its predecessor to N.

4. S ' shares its data with N . That is, all (K ,V) pairs at S' such that
h(K) < N are moved to N.

E xam ple 20.24: Following the events of Example 20.23, with the predecessor
and successor links in the state of Fig. 20.18, node N 2 6 will perform a stabiliza
tion. For this stabilization, N = N 2 e, S = N 32, and P = N 2±. Since P does not
lie between N and S, step (2) makes no change, so S' = S = N 3 2 at step (3).
Since N = N 2q lies strictly between S' — N 32 and its predecessor N2i, we make
N 2q the predecessor of N32. The state of the links is shown in Fig. 20.19. At
step (4), all key-value pairs whose keys hash to 22 through 26 are moved from
N 3 2 to N 2§.

20.7. PEER-TO-PEER DISTRIBUTED SEARCH 1029

The circle has still not stabilized, since A^i and many other nodes do not
know about N 2 6 - Searches for keys in the 22-26 range will still wind up at N32.
However, iV32 knows that it no longer has keys in this range. 7V32, which is N c
in Algorithm 20.21, simply continues the search according to this algorithm,
which in effect causes the search to go around the circle again, possibly several
times.

Eventually, iV21 runs the stabilization operation, which it, like all nodes,
does periodically. Now, N = N2i, S = N 3 2 , and P = N 2<j. The test of step (2)
is satisfied, so N2q becomes the successor of N 2i . At step (3), S' — AT26. Since
the predecessor of N 2 6 is nil, we make N 2\ the predecessor of iV26- No data is
shared at step (4), since all data at N2q belongs there. The final state of the
predecessor and successor links is shown in Fig. 20.20.

At this time, the search for a key in the range 22-26 will reach N2a and
be answered properly. It is possible, under rare circumstances, that insertion
of many new nodes will keep the network from becoming completely stable
for a long time. In that case, the search for a key in the range 22-26 could
continue running until the network finally does stabilize. However, as soon as
the network does stablize, the search comes to an end. □

There is still more to do, however. In terms of the running example, the
finger table for iV26 needs to be constructed, and other finger tables may now
be wrong because they will link to N 3 2 in some cases when they should link
to iV26. Thus, it is necessary that every node N periodically checks its finger
table. For each i = 1 ,2 ,4 ,8 , . . . , node N must execute Algorithm 20.21 with
j = N + i mod 2m. When it gets back the node at which the network thinks
such a key would be located, N sets its finger-table entry for distance i to that
value.

Notice that a new node, such as N 2 6 in our running example, can construct
its initial finger table this way, since the construction of any entry requires only
entries that have already been constructed. That is, the entry for distance 1 is
always the successor. For distance 2i, either the successor is the correct entry, or
we can find the correct entry by calling upon whatever node is the finger-table

1030 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

entry for distance i.

20.7.8 When a Peer Leaves the Network
A central tenet of peer-to-peer systems is that a node cannot be compelled to
participate. Thus, a node can leave the circle at any time. The simple case is
when a node leaves “gracefully,” that is, cooperating with other nodes to keep
the data available. To leave gracefully, a node:

1. Notifies its predecessor and successor that it is leaving, so they can become
each other’s predecessor and successor.

2. Transfers its data to its successor.

The network is still in a state that has errors; in particular the node that left
may still appear in the finger tables of some nodes. These nodes will discover
the error, either when they periodically update their finger tables, as discussed
in Section 20.7.7, or when they try to communicate with the node that has
disappeared. In the latter case, they can recompute the erroneous finger-table
entry exactly as they would during periodic update.

20.7.9 When a Peer Fails
A harder problem occurs when a node fails, is turned off, or decides to leave
without doing the “graceful” steps of Section 20.7.8. If the data is not replicated,
then data at the failed node is now unavailable to the network. To avoid total
unavailability of data, we can replicate it at several nodes. For example, we can
place each (K , V) pair at three nodes: the correct node, its predecessor in the
circle, and its successor.

To reestablish the circle when a node leaves, we can have each node record
not only its predecessor and successor, but the predecessor of its predecessor
and the successor of its successor. An alternative approach is to cluster nodes

20.8. SUMMARY OF CHAPTER 20 1031

into groups of (say) three or more. Nodes in a cluster replicate their data
and can substitute for one another, if one leaves or fails. When clusters get
too large, they can be split into two clusters that are adjacent on the circle,
using an algorithm similar to that described in Section 20.7.7 for node insertion.
Similarly, clusters that get too small can be combined with a neighbor, a process
similar to graceful leaving as in Section 20.7.8. Insertion of a new node is
executed by having the node join its nearest cluster.

20.7.10 Exercises for Section 20.7
Exercise 20.7.1: Given the circle of nodes of Fig. 20.14, where do key-value
pairs reside if the key hashes to: (a) 24 (b) 60?

Exercise 20.7.2: Given the circle of nodes of Fig. 20.14, construct the finger
tables for: (a) Ni (b) N48 (c) N 56.

Exercise 20.7.3: Given the circle of nodes of Fig. 20.14, what is the sequence
of messages sent if:

a) iVi searches for a key that hashes to 27.

b) Ni searches for a key that hashes to 0 .

c) N51 searches for a key that hashes to 45.

E xercise 20.7.4: Show the sequence of steps that adjust successor and pre
decessor pointers and share data, for the circle of Fig. 20.14 when nodes are
added that hash to: (a) 41 (b) 62.

E xercise 20.7.5: Suppose we want to guard against node failures by having
each node maintain the predecessor information, successor information, and
data of its predecessor and successor, as well as its own, as discussed in Sec
tion 20.7.9. How would you modify the node-insertion algorithm described in
Section 20.7.7?

20.8 Summary of Chapter 20
♦ Parallel Machines: Parallel machines can be characterized as shared-

memory, shared-disk, or shared-nothing. For database applications, the
shared-nothing architecture is generally the most cost-effective.

♦ Parallel Algorithms: The operations of relational algebra can generally
be sped up on a parallel machine by a factor close to the number of
processors. The preferred algorithms start by hashing the data to buckets
that correspond to the processors, and shipping data to the appropriate
processor. Each processor then performs the operation on its local data.

♦ The Map-Reduce Framework: Often, highly parallel algorithms on mas
sive files can be expressed by a map function and a reduce function. Many
map processes execute on parts of the file in parallel, to produce key-value
pairs. These pairs are then distributed so each key’s pairs can be handled
by one reduce process.

♦ Distributed Data: In a distributed database, data may be partitioned hor
izontally (one relation has its tuples spread over several sites) or vertically
(a relation’s schema is decomposed into several schemas whose relations
are at different sites). It is also possible to replicate data, so presumably
identical copies of a relation exist at several sites.

♦ Distributed Joins: In an environment with expensive communication,
semijoins can speed up the join of two relations that are located at differ
ent sites. We project one relation onto the join attributes, send it to the
other site, and return only the tuples of the second relation that are not
dangling tuples.

♦ Full Reducers: When joining more than two relations at different sites, it
may or may not be possible to eliminate all dangling tuples by performing
semijoins. A finite sequence of semijoins that is guaranteed to eliminate
all dangling tuples, no matter how large the relations are, is called a full
reducer.

♦ Hypergraphs: A natural join of several relations can be represented by a
hypergraph, which has a node for each attribute name and a hyperedge
for each relation, which contains the nodes for all the attributes of that
relation.

♦ Acyclic Hypergraphs: These are the hypergraphs that can be reduced to a
single hyperedge by a series of ear-reductions — elimination of hyperedges
all of whose nodes are either in no other hyperedge, or in one particular
other hyperedge. Full reducers exist for all and only the hypergraphs that
are acyclic.

♦ Distributed Transactions: In a distributed database, one logical trans
action may consist of components, each executing at a different site. To
preserve consistency, these components must all agree on whether to com
mit or abort the logical transaction.

♦ Two-Phase Commit: This algorithm enables transaction components to
decide whether to commit or abort, often allowing a resolution even in the
face of a system crash. In the first phase, a coordinator component polls
the components whether they want to commit or abort. In the second
phase, the coordinator tells the components to commit if and only if all
have expressed a willingness to commit.

1032 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

20.9. REFERENCES FOR CHAPTER 20 1033

♦ Distributed Locks: If transactions must lock database elements found at
several sites, a method must be found to coordinate these locks. In the
centralized-site method, one site maintains locks on all elements. In the
primary-copy method, the home site for an element maintains its locks.

♦ Locking Replicated Data: When database elements are replicated at sev
eral sites, global locks on an element must be obtained through locks on
one or more replicas. The majority locking method requires a read- or
write-lock on a majority of the replicas to obtain a global lock. Alterna
tively, we may allow a global read lock by obtaining a read lock on any
copy, while allowing a global write lock only through write locks on every
copy.

♦ Peer-to-Peer Networks: These networks consist of independent, autono
mous nodes that all play the same role in the network. Such networks axe
generally used to share data among the peer nodes.

♦ Distributed Hashing: Distributed hashing is a central database problem in
peer-to-peer networks. We are given a set of key-value pairs to distribute
among the peers, and we must find the value associated with a given
key without sending messages to all, or a large fraction of the peers, and
without relying on any one peer that has all the key-value pairs.

♦ Chord Circles: A solution to the distributed hashing problem begins by
using a hash function that hashes both node ID’s and keys into the same
m-bit values, which we perceive as forming a circle with 2m positions.
Keys are placed at the node at the position immediately clockwise of the
position to which the key hashes. By use of a finger-table, which gives the
nodes at distances 1, 2 ,4 ,8 , . . . around the circle from a given node, key
lookup can be accomplished in time that is logarithmic in the number of
nodes.

20.9 References for Chapter 20
The use of hashing in parallel join and other operations has been proposed
several times. The earliest source we know of is [8]. The map-reduce framework
for parallelism was expressed in [2]. There is an open-souce implementation
available [6].

The relationship between full reducers and acyclic hypergraphs is from [1],
The test for whether a hypergraph is acyclic was discovered by [5] and [13].

The two-phase commit protocol was proposed in [7]. A more powerful
scheme (not covered here) called three-phase commit is from [9]. The leader-
election aspect of recovery was examined in [4].

Distributed locking methods have been proposed by [3] (the centralized lock
ing method) [11] (primary-copy) and [12] (global locks from locks on copies).

The chord algorithm for distributed hashing is from [10].

1034 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

1. P. A. Bernstein and N. Goodman, “The power of natural semijoins,”
SIAM J. Computing 10:4 (1981), pp. 751-771.

2. J. Dean and S. Ghemawat, “MapReduce: simplified processing on large
clusters,” Sixth Symp. on Operating System Design and Implementation,
2004.

3. H. Garcia-Molina, “Performance comparison of update algorithms for dis
tributed databases,” TR Nos. 143 and 146, Computer Systems Labora
tory, Stanford Univ., 1979.

4. H. Garcia-Molina, “Elections in a distributed computer system,” IEEE
Trans, on Computers C -31:l (1982), pp. 48-59.

5. M. H. Graham, “On the universal relation,” Technical report, Dept, of
CS, Univ. of Toronto, 1979.

6 . Hadoop home page lucene.apache.org/hadoop.

7. B. Lampson and H. Sturgis, “Crash recovery in a distributed data storage
system,” Technical report, Xerox Palo Alto Research Center, 1976.

8 . D. E. Shaw, “Knowledge-based retrieval on a relational database ma
chine,” Ph. D. thesis, Dept, of CS, Stanford Univ. (1980).

9. D. Skeen, “Nonblocking commit protocols,” Proc. ACM SIGMOD Intl.
Conf. on Management of Data (1981), pp. 133-142.

10. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalabale peer-to-peer lookup service for Internet applica
tions,” Proc. ACM SIGCOMM (2001) pp. 149-160.

11. M. Stonebraker, “Retrospection on a database system,” ACM Trans, on
Database Systems 5:2 (1980), pp. 225-240.

12. R. H. Thomas, “A majority consensus approach to concurrency control,”
ACM Trans, on Database Systems 4:2 (1979), pp. 180-219.

13. C. T. Yu and M. Z. Ozsoyoglu, “An algorithm for tree-query membership
of a distributed query,” Proc. IEEE COMPSAC (1979), pp. 306-312.

Part V

Other Issues in
Management of Massive

Data

1035

Chapter 21

Information Integration

Information integration is the process of taking several databases or other in
formation sources and making the data in these sources work together as if
they were a single database. The integrated database may be physical (a
“warehouse”) or virtual (a “mediator” or “middleware” that may be queried
even though its does not exist physically). The sources may be conventional
databases or other types of information, such as collections of Web pages.

We begin by exploring the ways in which seemingly similar databases can
actually embody conflicts that are hard to resolve correctly. The solution lies
in the design of “wrappers” — translators between the schema and data values
at a source and the schema and data values at the integrated database.

Information-integration systems require special kinds of query-optimization
techniques for their efficient operation. Mediator systems can be divided into
two classes: “global-as-view” (the data at the integrated database is defined by
how it is constructed from the sources) and “local-as-view” (the content of the
sources is defined in terms of the schema that the integrated database supports).
We examine capability-based optimization for global-as-view mediators. We
also consider local-as-view mediation, which requires effort even to figure out
how to compose the answer to a query from defined views, but which offers
advantages in flexibility of operation.

In the last section, we examine another important issue in information in
tegration, called “entity resolution.” Different information sources may talk
about the same entities (e.g., people) but contain discrepancies such as mis
spelled names or out-of-date addresses. We need to make a best estimate of
which data elements at the different sources actually refer to the same entity.

21.1 Introduction to Information Integration
In this section, we discuss the ways in which information-integration is essential
for many database applications. We then sample some of the problems that
make information integration difficult.

1037

1038 CHAPTER 21. INFORMATION INTEGRATION

21.1.1 W hy Information Integration?
If we could start anew with an architecture and schema for all the data in
the world, and we could put that data in a single database, there would be no
need for information integration. However, in the real world, matters are rather
different.

• Databases are created independently, even if they later need to work to
gether.

• The use of databases evolves, so we cannot design a database to support
every possible future use.

To see the need for information integration, we shall consider two typical scenar
ios: building applications for a university and integrating employee databases.
In both scenarios, a key problem is that the overall data-management system
must make use of legacy data sources — databases that were created indepen
dently of any other data source. Each legacy source is used by applications that
expect the structure of “their” database not to change, so modification of the
schema or data of legacy sources is not an option.

U n iversity D atab ases

As databases came into common use, each university started using them for
several functions that were once done by hand. Here is a typical scenario. The
Registrar builds a database of courses, and uses it to record the courses each
student took and their grades. Applications are built using this database, such
as a transcript generator.

The Bursar builds another database for recording tuition payments by stu
dents. The Human Resources Department builds a database for recording em
ployees, including those students with teaching-assistant or research-assistant
jobs. Applications include generation of payroll checks, calculation of taxes and
social-security payments to the government, and many others. The Grants Of
fice builds a database to keep track of expenditures on grants, which includes
salaries to certain faculty, students, and staff. It may also include information
about biohazards, use of human subjects, and many other matters related to
research projects.

Pretty soon, the university realizes that all these databases are not helping
nearly as much as they could, and are sometimes getting in the way. For
example, suppose we want to make sure that the Registrar does not record
grades for students that the Bursar says did not pay tuition. Someone has to
get a list of students who paid tuition from the Bursar’s database and compare
that with a list of students from the Registrar’s database. As another example,
when Sally is appointed on grant 123 as a research assistant, someone needs to
tell the Grants Office that her salary should be charged to grant 123. Someone
also needs to tell Human Resources that they should pay her salary. And the
salaries in the two databases had better be exactly the same.

21.1. INTRODUCTION TO INFORMATION INTEGRATION 1039

So at some point, the university decides that it needs one database for all
functions. The first thought might be: start over. Build one database that
contains all the information of all the legacy databases and rewrite all the
applications to use the new database. This approach has been tried, with great
pain resulting. In addition to paying for a very expensive software-architecture
task, the university has to run both the old and new systems in parallel for
a long time to see that the new system actually works. And when they cut
over to the new system, the users find that the applications do not work in the
accustomed way, and turmoil results.

A better way is to build a layer of abstraction, called middleware, on top
of all the legacy databases and allow the legacy databases to continue serving
their current applications. The layer of abstraction could be relational views —
either virtual or materialized. Then, SQL can be used to “query” the middle
ware layer. Often, this layer is defined by a collection of classes and queried
in an object-oriented language. Or the middleware layer could use XML docu
ments, which are queried using XQuery. We mentioned in Section 9.1 that this
middleware may be an important component of the application tier in a 3-tier
architecture, although we did not show it explicitly.

Once the middleware layer is built, new applications can be written to access
this layer for data, while the legacy applications continue to run using the legacy
databases. For example, we can write a new application that enters grades for
students only if they have paid their tuition. Another new application could
appoint a research assistant by getting their name, grant, and salary from the
user. This application would then enter the name and salary into the Human-
Resources database and the name, salary, and grant into the Grants-Office
database.

Integrating E m ployee D atabases

Compaq bought DEC and Tandem, and then Hewlett-Packard bought Com
paq. Each company had a database of employees. Because the companies were
previously independent, the schemas and architecture of their databases nat
urally differed. Moreover, each company actually had many databases about
employees, and these databases probably differed on matters as basic as who is
an employee. For example, the Payroll Department would not include retirees,
but might include contractors. The Benefits Department would include retirees
but not contractors. The Safety Office would include not only regular employees
and contractors, but the employees of the company that runs the cafeteria.

For reasons we discussed in connection with the university database, it may
not be practical to shut down these legacy databases and with them all the
applications that run on them. However, it is possible to create a middleware
layer that holds — virtually or physically — all information available for each
employee.

1040 CHAPTER 21. INFORMATION INTEGRATION

21.1.2 The Heterogeneity Problem
When we try to connect information sources that were developed independently,
we invariably find that the sources differ in many ways, even if they are intended
to store the same kinds of data. Such sources are called heterogeneous, and the
problem of integrating them is referred to as the heterogeneity problem. We
shall introduce a running example of an automobile database and then discuss
examples of the different levels at which heterogeneity can make integration
difficult.

E xam ple 2 1 .1 : The Aardvark Automobile Co. has 1000 dealers, each of which
maintains a database of their cars in stock. Aardvark wants to create an inte
grated database containing the information of all 1000 sources.1 The integrated
database will help dealers locate a particular model at another dealer, if they
don’t have one in stock. It also can be used by corporate analysts to predict
the' market and adjust production to provide the models most likely to sell.

However, the dealers’ databases may differ in a great number of ways. We
shall enumerate below the most important ways and give some examples in
terms of the Aardvark database. □

C om m unication H eterogen eity

Today, it is common to allow access to your information using the HTTP proto
col that drives the Web. However, some dealers may not make their databases
available on the Web, but instead accept remote accesses via remote procedure
calls or anonymous FTP, for instance.

Q uery-L anguage H eterogen eity

The manner in which we query or modify a dealer’s database may vary. It
would be nice if the database accepted SQL queries and modifications, but not
all do. Of those that do, each accepts a dialect of SQL — the version supported
by the vendor of the dealer’s DBMS. Another dealer may not have a relational
database at all. They could use an Excel Spreadsheet, or an object-oriented
database, or an XML database using XQuery as the language.

Schem a H ete rogene ity

Even assuming that all the dealers use a relational DBMS supporting SQL as
the query language, we can find many sources of heterogeneity. At the highest
level, the schemas can differ. For example, one dealer might store cars in a
single relation that looks like:

1 M ost real au tom ob ile com panies have sim ilar facilities in p lace, an d th e h is to ry o f th e ir
developm ent m ay be different from o u r exam ple; e.g ., th e cen tralized d a ta b a se m ay have com e
firs t, w ith dealers la te r able to dow nload relevant p o rtio n s to th e ir own d a tab ase . However,
th is scenario serves as an exam ple o f w h at com panies in m an y in d u stries a re a tte m p tin g
today.

21.2. MODES OF INFORMATION INTEGRATION 1041

C ars(se ria lN o , model, co lo r, autoTrans, n a v i , . . .)

with one boolean-valued attribute for every possible option. Another dealer
might use a schema in which options are separated out into a second relation,
such as:

A u to s (se r ia l, model, co lor)
O p tio n s (se r ia l, option)

Notice that not only is the schema different, but apparently equivalent relation
or attribute names have changed: Cars becomes Autos, and serialNo becomes
serial.

Moreover, one dealer’s schema might not record information that most of
the other dealers provide. For instance, one dealer might not record colors at
all. To deal with missing values, sometimes we can use NULL’s or default values.
However, because missing schema elements are a common problem, there is a
trend toward using semistructured data such as XML as the data model for
integrating middleware.

D ata ty p e differences

Serial numbers might be represented by character strings of varying length at
one source and fixed length at another. The fixed lengths could differ, and some
sources might use integers rather than character strings.

Value H eterogen eity

The same concept might be represented by different constants at different
sources. The color black might be represented by an integer code at one source,
the string BLACK at another, and the code BL at a third. The code BL might
stand for “blue” at yet another source.

Sem antic H eterogen eity

Terms may be given different interpretations at different sources. One dealer
might include trucks in the Cars relation, while another puts only automobile
data in the Cars relation. One dealer might distinguish station wagons from
minivans, while another doesn’t.

21.2 M odes of Information Integration
There are several ways that databases or other distributed information sources
can be made to work together. In this section, we consider the three most
common approaches:

1. Federated databases. The sources are independent, but one source can call
on others to supply information.

1042 CHAPTER 21. INFORMATION INTEGRATION

2. Warehousing. Copies of data from several sources are stored in a single
database, called a (data) warehouse. Possibly, the data stored at the
warehouse is first processed in some way before storage; e.g., data may
be filtered, and relations may be joined or aggregated. The warehouse is
updated periodically, perhaps overnight. As the data is copied from the
sources, it may need to be transformed in certain ways to make all data
conform to the schema at the warehouse.

3. Mediation. A mediator is a software component that supports a virtual
database, which the user may query as if it were materialized (physi
cally constructed, like a warehouse). The mediator stores no data of its
own. Rather, it translates the user’s query into one or more queries to
its sources. The mediator then synthesizes the answer to the user’s query
from the responses of those sources, and returns the answer to the user.

We shall introduce each of these approaches in turn. One of the key issues for
all approaches is the way that data is transformed when it is extracted from an
information source. We discuss the architecture of such transformers — called
wrappers, adapters, or extractors — in Section 21.3.

21.2.1 Federated Database Systems
Perhaps the simplest architecture for integrating several databases is to imple
ment one-to-one connections between all pairs of databases that need to talk to
one another. These connections allow one database system D\ to query another
D2 in terms that Da can understand. The problem with this architecture is
that if n databases each need to talk to the n — 1 other databases, then we
must write n(n — 1) pieces of code to support queries between systems. The
situation is suggested in Fig. 21.1. There, we see four databases in a federation.
Each of the four needs three components, one to access each of the other three
databases.

Figure 21.1: A federated collection of four databases needs 12 components to
translate queries from one to another

21.2. MODES OF INFORMATION INTEGRATION 1043

Nevertheless, a federated system may be the easiest to build in some circum
stances, especially when the communications between databases are limited in
nature. An example will show how the translation components might work.

E xam ple 21.2: Suppose the Aardvark Automobile dealers want to share in
ventory, but each dealer only needs to query the database of a few local dealers
to see if they have a needed car. To be specific, consider Dealer 1, who has a
relation

NeededCars(model, co lo r, autoTrans)

whose tuples represent cars that customers have requested, by model, color, and
whether or not they want an automatic transmission (’y e s ’ or ’no ’ are the
possible values). Dealer 2 stores inventory in the two-relation schema discussed
in Example 21.1:

A u to s (se r ia l, model, co lo r)
O p tio n s (se r ia l, option)

Dealer 1 writes an application program that queries Dealer 2 remotely for cars
that match each of the cars described in NeededCars. Figure 21.2 is a sketch
of a program with embedded SQL that would find the desired cars. The intent
is that the embedded SQL represents remote queries to the Dealer 2 database,
with results returned to Dealer 1. We use the convention from standard SQL of
prefixing a colon to variables that represent constants retrieved from a database.

These queries address the schema of Dealer 2. If Dealer 1 also wants to ask
the same question of Dealer 3, who uses the first schema discussed in Exam
ple 21.1, with a single relation

C ars(se ria lN o , model, co lo r, a u to T ra n s ,. . .)

the query would look quite different. But each query works properly for the
database to which it is addressed. □

21.2.2 Data Warehouses
In the data warehouse integration architecture, data from several sources is
extracted and combined into a global schema. The data is then stored at the
warehouse, which looks to the user like an ordinary database. The arrangement
is suggested by Fig. 21.3, although there may be many more than the two
sources shown.

Once the data is in the warehouse, queries may be issued by the user exactly
as they would be issued to any database. There are at least three approaches
to constructing the data in the warehouse:

1. The warehouse is periodically closed to queries and reconstructed from
the current data in the sources. This approach is the most common, with
reconstruction occurring once a night or at even longer intervals.

1044 CHAPTER 21. INFORMATION INTEGRATION

fo r(each tu p le (:m, :c , :a) in NeededCars) {
i f (: a = TRUE) { /* autom atic tran sm issio n wanted */

SELECT s e r ia l FROM Autos, Options
WHERE A u to s .se r ia l = O p tio n s .se r ia l AND

O ptions.op tion = ’au toT rans’ AND
Autos.model = :m AND A utos.co lo r = :c;

>
e ls e { /* autom atic transm ission not wanted */

SELECT s e r ia l
FROM Autos
WHERE Autos.model = :m AND A utos.co lo r = :c AND

NOT EXISTS (
SELECT * FROM Options
WHERE s e r ia l = A u to s .se r ia l AND

option = ’au toT rans’
);

}
}

Figure 21.2: Dealer 1 queries Dealer 2 for needed cars

2. The warehouse is updated periodically (e.g., each night), based on the
changes that have been made to the sources since the last time the ware
house was modified. This approach can involve smaller amounts of data,
which is very important if the warehouse needs to be modified in a short
period of time, and the warehouse is large (multiterabyte warehouses are
in common use). The disadvantage is that calculating changes to the
warehouse, a process called incremental update, is complex, compared
with algorithms that simply construct the warehouse from scratch.

Note that either of these approaches allow the warehouse to get out of date.
However, it is generally too expensive to reflect immediately, at the warehouse,
every change to the underlying databases.

E xam ple 21.3: Suppose for simplicity that there axe only two dealers in the
Aardvark system, and they respectively use the schemas

C ars(seria lN o , model, co lo r, autoTrans, n a v i , . . .)

and

A u to s (se r ia l, model, co lo r)
O p tio n s (se r ia l, op tion)

We wish to create a warehouse with the schema

21.2. MODES OF INFORMATION INTEGRATION 1045

Extractor

Source 1

Extractor

Source 2

Figure 21.3: A data warehouse stores integrated information in a separate
database

AutosWhse(serialNo, model, color, autoTrans, dealer)

That is, the global schema is like that of the first dealer, but we record only the
option of having an automatic transmission, and we include an attribute that
tells which dealer has the car.

The software that extracts data from the two dealers’ databases and popu
lates the global schema can be written as SQL queries. The query for the first
dealer is simple:

INSERT INTO AutosWhse(serialNo, model, color,
autoTrans, dealer)

SELECT serialNo, model, color, autoTrans, ’dealer1’
FROM Cars;

The extractor for the second dealer is more complex, since we have to decide
whether or not a given car has an automatic transmission. We leave this SQL
code as an exercise.

In this simple example, the combiner, shown in Fig. 21.3, for the data ex
tracted from the sources is not needed. Since the warehouse is the union of
the relations extracted from each source, the data may be loaded directly into
the warehouse. However, many warehouses perform operations on the relations
that they extract from each source. For instance relations extracted from two
sources might be joined, and the result put at the warehouse. Or we might
take the union of relations extracted from several sources and then aggregate

1046 CHAPTER 21. INFORMATION INTEGRATION

the data of this union. More generally, several relations may be extracted from
each source, and different relations combined in different ways. □

21.2.3 Mediators
A mediator supports a virtual view, or collection of views, that integrates several
sources in much the same way that the materialized relation (s) in a warehouse
integrate sources. However, since the mediator doesn’t store any data, the
mechanics of mediators and warehouses are rather different. Figure 21.4 shows
a mediator integrating two sources; as for warehouses, there would typically
be more than two sources. To begin, the user or application program issues a
query to the mediator. Since the mediator has no data of its own, it must get
the relevant data from its sources and use that data to form the answer to the
user’s query.

Thus, we see in Fig. 21.4 the mediator sending a query to each of its wrap
pers, which in turn send queries to their corresponding sources. The mediator
may send several queries to a wrapper, and may not query all wrappers. The
results come back and are combined at the mediator; we do not show an explicit
combiner component as we did in the warehouse diagram, Fig. 21.3, because in
the case of the mediator, the combining of results from the sources is one of the
tasks performed by the mediator.

Figure 21.4: A mediator and wrappers translate queries into the terms of the
sources and combine the answers

E xam ple 21 .4 : Let us consider a scenario similar to that of Example 21.3,
but use a mediator. That is, the mediator integrates the same two automobile
sources into a view that is a single relation with schema:

AutosMed(serialNo, model, color, autoTrans, dealer)
Suppose the user asks the mediator about red cars, with the query:

21.2. MODES OF INFORMATION INTEGRATION 1047

SELECT serialNo, model
FROM AutosMed
WHERE color = ’red’;

The mediator, in response to this user query, can forward the same query to each
of the two wrappers. The way that wrappers can be designed and implemented
to handle queries like this one is the subject of Section 21.3. In more complex
scenarios, the mediator would first have to break the query into pieces, each of
which is sent to a subset of the wrappers. However, in this case, the translation
work can be done by the wrappers alone.

The wrapper for Dealer 1 translates the query into the terms of that dealer’s
schema, which we recall is

Cars(serialNo, model, color, autoTrans, navi,...)
A suitable translation is:

SELECT serialNo, model
FROM Cars
WHERE color = ’red’;

An answer, which is a set of serialNo-model pairs, will be returned to the
mediator by the first wrapper.

At the same time, the wrapper for Dealer 2 translates the same query into
the schema of that dealer, which is:

Autos(serial, model, color)
Options(serial, option)

A suitable translated query for Dealer 2 is almost the same:

SELECT serial, model
FROM Autos
WHERE color = ’red’;

It differs from the query at Dealer 1 only in the name of the relation queried,
and in one attribute. The second wrapper returns to the mediator a set of
serial-m odel pairs, which the mediator interprets as serialNo-model pairs.
The mediator takes the union of these sets and returns the result to the user.
□

There are several options, not illustrated by Example 21.4, that a mediator
may use to answer queries. For instance, the mediator may issue one query to
one source, look at the result, and based on what is returned, decide on the
next query or queries to issue. This method would be appropriate, for instance,
if the user query asked whether there were any Aardvark “Gobi” model sport-
utility vehicles available in blue. The first query could ask Dealer 1, and only
if the result was an empty set of tuples would a query be sent to Dealer 2.

1048 CHAPTER 21. INFORMATION INTEGRATION

21.2.4 Exercises for Section 21.2
! E xercise 21.2.1: Computer company A keeps data about the PC models it

sells in the schema:

Computers(number, proc, speed, memory, hd)
Monitors(number, screen, maxResX, maxResY)

For instance, the tuple (123, Athlon64,3.1,512,120) in Computers means that
model 123 has an Athlon 64 processor running at 3.1 gigahertz, with 512M of
memory and a 120G hard disk. The tuple (456,19,1600,1050) in Monitors
means that model 456 has a 19-inch screen with a maximum resolution of
1600 x 1050.

Computer company B only sells complete systems, consisting of a computer
and monitor. Its schema is

Systems(id, processor, mem, disk, screenSize)

The attribute p rocesso r is the speed in gigahertz; the type of processor (e.g.,
Athlon 64) is not recorded. Neither is the maximum resolution of the monitor
recorded. Attributes id , mem, and d isk are analogous to number, memory, and
hd from company A, but the disk size is measured in megabytes instead of
gigabytes.

a) If company A wants to insert into its relations information about the
corresponding items from B, what SQL insert statements should it use?

b) If Company B wants to insert into Systems as much information about
the systems that can be built from computers and monitors made by A,
what SQL statements best allow this information to be obtained?

! Exercise 21.2 .2 : Suggest a global schema that would allow us to maintain as
much information as we could about the products sold by companies A and B
of Exercise 21.2.1.

Exercise 21.2 .3 : Write SQL queries to gather the information from the data
at companies A and B and put it in a warehouse with your global schema of
Exercise 21.2.2.

E xercise 21.2.4: Suppose your global schema from Exercise 21.2.2 is used
at a mediator. How would the mediator process the query that asks for the
maximum amount of hard-disk available with any computer with a 3 gigahertz
processor speed?

! E xercise 21.2.5: Suggest two other schemas that computer companies might
use to hold data like that of Exercise 21.2.1. How would you integrate your
schemas into your global schema from Exercise 21.2.2?

21.3. W RAPPERS IN MEDIATOR-BASED SYSTEM S 1049

Exercise 21.2.6: In Example 21.3 we talked about a relation Cars at Dealer 1
that conveniently had an attribute autoTrans with only the values ’ yes ’ and
’ no ’. Since these were the same values used for that attribute in the global
schema, the construction of relation AutosWhse was especially easy. Suppose
instead that the attribute Cars. autoTrans has values that are integers, with
0 meaning no automatic transmission, and i > 0 meaning that the car has
an i-speed automatic transmission. Show how the translation from Cars to
AutosWhse could be done by a SQL query.

E xercise 21.2.7: Write the insert-statements for the second dealer in Exam
ple 21.3. You may assume the values of autoTrans are ’y e s’ and ’no ’.

E xercise 21.2.8: How would the mediator of Example 21.4 translate the fol
lowing queries?

a) Find the serial numbers of cars with automatic transmission.

b) Find the serial numbers of cars without automatic transmission.

! c) Find the serial numbers of the blue cars from Dealer 1.

E xercise 21.2.9: Go to the Web pages of several on-line booksellers, and see
what information about this book you can find. How would you combine this
information into a global schema suitable for a warehouse or mediator?

21.3 Wrappers in M ediator-Based Systems
In a data warehouse system like Fig. 21.3, the source extractors consist of:

1. One or more predefined queries that are executed at the source to produce
data for the warehouse.

2. Suitable communication mechanisms, so the wrapper (extractor) can:

(a) Pass ad-hoc queries to the source,
(b) Receive responses from the source, and
(c) Pass information to the warehouse.

The predefined queries to the source could be SQL queries if the source is a SQL
database as in our examples of Section 21.2. Queries could also be operations in
whatever language was appropriate for a source that was not a database system;
e.g., the wrapper could fill out an on-line form at a Web page, issue a query to
an on-line bibliography service in that system’s own, specialized language, or
use myriad other notations to pose the queries.

However, mediator systems require more complex wrappers than do most
warehouse systems. The wrapper must be able to accept a variety of queries
from the mediator and translate any of them to the terms of the source. Of

1050 CHAPTER 21. INFORMATION INTEGRATION

course, the wrapper must then communicate the result to the mediator, just
as a wrapper in a warehouse system communicates with the warehouse. In the
balance of this section, we study the construction of flexible wrappers that are
suitable for use with a mediator.

21.3.1 Templates for Query Patterns
A systematic way to design a wrapper that connects a mediator to a source is to
classify the possible queries that the mediator can ask into templates, which are
queries with parameters that represent constants. The mediator can provide
the constants, and the wrapper executes the query with the given constants.
An example should illustrate the idea; it uses the notation T => S to express
the idea that the template T is turned by the wrapper into the source query S.

E xam ple 21.5: Suppose we want to build a wrapper for the source of Dealer 1,
which has the schema

Cars(serialNo, model, color, autoTrans, navi,...)

for use by a mediator with schema

AutosMed(serialNo, model, color, autoTrans, dealer)

Consider how the mediator could ask the wrapper for cars of a given color. If
we denote the code representing that color by the parameter $c, then we can
use the template shown in Fig. 21.5.

SELECT *
FROM AutosMed
WHERE color = ’$c’;

=>

SELECT serialNo, model, color, autoTrans, ’dealer1’
FROM Cars
WHERE color = ’$c’;

Figure 21.5: A wrapper template describing queries for cars of a given color

Similarly, the wrapper could have another template that specified only the
parameter $m representing a model, yet another template in which it was only
specified whether an automatic transmission was wanted, and so on. In this
case, there are eight choices, if queries are allowed to specify any of three at
tributes: model, co lo r, and autoTrans. In general, there would be 2n tem
plates if we have the option of specifying n attributes.2 Other templates would

2If the source is a database that can be queried in SQL, as in our example, you would
rightly expect that one template could handle any number of attributes equated to constants,

21.3. W RAPPERS IN MEDIATOR-BASED SYSTEM S 1051

be needed to deal with queries that asked for the total number of cars of cer
tain types, or whether there exists a car of a certain type. The number of
templates could grow unreasonably large, but some simplifications are possible
by adding more sophistication to the wrapper, as we shall discuss starting in
Section 21.3.3. □

21.3.2 Wrapper Generators
The templates defining a wrapper must be turned into code for the wrapper
itself. The software that creates the wrapper is called a wrapper generator; it is
similar in spirit to the parser generators (e.g., YACC) that produce components
of a compiler from high-level specifications. The process, suggested in Fig. 21.6,
begins when a specification, that is, a collection of templates, is given to the
wrapper generator.

Queries from
m ediator Results

Figure 21.6: A wrapper generator produces tables for a driver; the driver and
tables constitute the wrapper

The wrapper generator creates a table that holds the various query patterns
contained in the templates, and the source queries that are associated with
each. A driver is used in each wrapper; in general the driver can be the same
for each generated wrapper. The task of the driver is to:

1. Accept a query from the mediator. The communication mechanism may
be mediator-specific and is given to the driver as a “plug-in,” so the same

simply by making the WHERE clause a parameter. While that approach will work for SQL
sources and queries that only bind attributes to constants, we could not necessarily use the
same idea with an arbitrary source, such as a Web site that allowed only certain forms as
an interface. In the general case, we cannot assume that the way we translate one query
resembles at all the way similar queries are translated.

1052 CHAPTER 21. INFORMATION INTEGRATION

driver can be used in systems that communicate differently.

2. Search the table for a template that matches the query. If one is found,
then the parameter values from the query are used to instantiate a source
query. If there is no matching template, the wrapper responds negatively
to the mediator.

3. The source query is sent to the source, again using a “plug-in” communi
cation mechanism. The response is collected by the wrapper.

4. The response is processed by the wrapper, if necessary, and then returned
to the mediator. The next sections discuss how wrappers can support a
larger class of queries by processing results.

21.3.3 Filters
Suppose that a wrapper on a car dealer’s database has the template shown in
Fig. 21.5 for finding cars by color. However, the mediator is asked to find cars
of a particular model and color. Perhaps the wrapper has been designed with
a more complex template such as that of Fig. 21.7, which handles queries that
specify both model and color. Yet, as we discussed at the end of Example 21.5,
it is not always realistic to write a template for every possible form of query.

SELECT *
FROM AutosMed
WHERE model = ’$m’ AND color = ’$c’;

=>
SELECT serialNo, model, color, autoTrans, ’dealer1’
FROM Cars
WHERE model = ’$m’ AND color = ’$c’;

Figure 21.7: A wrapper template that gets cars of a given model and color

Another approach to supporting more queries is to have the wrapper filter
the results of queries that it poses to the source. As long as the wrapper has a
template that (after proper substitution for the parameters) returns a superset
of what the query wants, then it is possible to filter the returned tuples at the
wrapper and pass only the desired tuples to the mediator.

E xam ple 21.6: Suppose the only template we have is the one in Fig. 21.5
that finds cars given a color. However, the wrapper is asked by the mediator
to find blue Gobi model cars. A possible way to answer the query is to use the
template of Fig. 21.5 with $c = ’b lu e ’ to find ail the blue cars and store them
in a temporary relation

TempAutos(serialNo, model, color, autoTrans, dealer)

21.3. WRAPPERS IN MEDIATOR-BASED SYSTEM S 1053

Position of the Filter Component

We have, in our examples, supposed that the filtering operations take place
at the wrapper. It is also possible that the wrapper passes raw data to
the mediator, and the mediator filters the data. However, if most of the
data returned by the template does not match the mediator’s query, then
it is best to filter at the wrapper and avoid the cost of shipping unneeded
tuples.

The wrapper may then return to the mediator the desired set of automobiles
by executing the local query:

SELECT *
FROM TempAutos
WHERE model = ’Gobi’;

In practice, the tuples of TempAutos could be produced one-at-a-time and fil
tered one-at-a-time, in a pipelined fashion, rather than having the entire relation
TempAutos materialized at the wrapper and then filtered. □

21.3.4 Other Operations at the Wrapper
It is possible to transform data in other ways at the wrapper, as long as we are
sure that the source-query part of the template returns to the wrapper all the
data needed in the transformation. For instance, columns may be projected out
of the tuples before transmission to the mediator. It is even possible to take
aggregations or joins at the wrapper and transmit the result to the mediator.

E xam ple 21.7: Suppose the mediator wants to know about blue Gobis at
the various dealers, but only asks for the serial number, dealer, and whether
or not there is an automatic transmission, since the value of the model and
co lo r attributes are obvious from the query. The wrapper could proceed as
in Example 21.6, but at the last step, when the result is to be returned to the
mediator, the wrapper performs a projection in the SELECT clause as well as
the filtering for the Gobi model in the WHERE clause. The query

SELECT serialNo, autoTrans, dealer
FROM TempAutos
WHERE model = ’Gobi’;

does this additional filtering, although as in Example 21.6 relation TempAutos
would probably be pipelined into the projection operator, rather than materi
alized at the wrapper. □

1054 CHAPTER 21. INFORMATION INTEGRATION

E xam ple 21 .8 : For a more complex example, suppose the mediator is asked
to find dealers and models such that the dealer has two red cars, of the same
model, one with and one without an automatic transmission. Suppose also that
the only useful template for Dealer 1 is the one about colors from Fig. 21.5.
That is, the mediator asks the wrapper for the answer to the query of Fig. 21.8.
Note that we do not have to specify a dealer for either Al or A2, because this
wrapper can only access data belonging to Dealer 1. The wrappers for all the
other dealers will be asked the same query by the mediator.

SELECT Al.model Al.dealer
FROM AutosMed Al, AutosMed A2
WHERE Al.model = A2.model AND

Al.color = ’red’ AND
A2.color = ’red’ AND
Al.autoTrans = ’no’ AND
A2.autoTrans = ’yes’;

Figure 21.8: Query from mediator to wrapper

A cleverly designed wrapper could discover that it is possible to answer the
mediator’s query by first obtaining from the Dealer-1 source a relation with all
the red cars at that dealer:

RedAutos(serialNo, model, color, autoTrans, dealer)

To get this relation, the wrapper uses its template from Fig. 21.5, which handles
queries that specify a color only. In effect, the wrapper acts as if it were given
the query:

SELECT *
FROM AutosMed
WHERE color = ’red’;

The wrapper can then create the relation RedAutos from Dealer l ’s database
by using the template of Fig. 21.5 with $c = ’r e d ’. Next, the wrapper joins
RedAutos with itself, and performs the necessary selection, to get the relation
asked for by the query of Fig. 21.8. The work performed by the wrapper for
this step is shown in Fig. 21.9. □

21.3.5 Exercises for Section 21.3
Exercise 21.3 .1 : In Fig. 21.5 we saw a simple wrapper template that trans
lated queries from the mediator for cars of a given color into queries at the dealer
with relation Cars. Suppose that the color codes used by the mediator in its
schema were different from the color codes used at this dealer, and there was

21.3. WRAPPERS IN MEDIATOR-BASED SYSTEM S 1055

SELECT DISTINCT Al.model, Al.dealer
FROM RedAutos Al, RedAutos A2
WHERE Al.model = A2.model AND

Al.autoTrans = ’no’ AND
A2.autoTrans = ’yes’;

Figure 21.9: Query performed at the wrapper (or mediator) to complete the
answer to the query of Fig. 21.8

a relation G toL(globalC olor, localC olor) that translated between the two
sets of codes. Rewrite the template so the correct query would be generated.

E xercise 21.3.2: In Exercise 21.2.1 we spoke of two computer companies,
A and B, that used different schemas for information about their products.
Suppose we have a mediator with schema

PCMed(manf, speed, mem, disk, screen)

with the intuitive meaning that a tuple gives the manufacturer (A or B), pro
cessor speed, main-memory size, hard-disk size, and screen size for one of the
systems you could buy from that company. Write wrapper templates for the
following types of queries. Note that you need to write two templates for each
query, one for each of the manufacturers.

a) Given a speed, find the tuples with that speed.

b) Given a screen size, find the tuples with that size.

c) Given memory and disk sizes, find the matching tuples.

Exercise 21.3.3: Suppose you had the wrapper templates described in Ex
ercise 21.3.2 available in the wrappers at each of the two sources (computer
manufacturers). How could the mediator use these capabilities of the wrappers
to answer the following queries?

a) Find the manufacturer, memory size, and screen size of all systems with
a 3.1 gigahertz speed and a 120 gigabyte disk.

! b) Find the maximum amount of hard disk available on a system with a 2.8
gigahertz processor.

c) Find all the systems with 512M memory and a screen size (in inches) that
exceeds the disk size (in gigabytes).

1056 CHAPTER 21. INFORMATION INTEGRATION

21.4 Capability-Based Optimization
In Section 16.5 we introduced the idea of cost-based query optimization. A
typical DBMS estimates the cost of each query plan and picks what it believes
to be the best. When a mediator is given a query to answer, it often has little
knowledge of how long its sources will take to answer the queries it sends them.
Furthermore, many sources are not SQL databases, and often they will answer
only a small subset of the kinds of queries that the mediator might like to pose.
As a result, optimization of mediator queries cannot rely on cost measures alone
to select a query plan.

Optimization by a mediator usually follows the simpler strategy known as
capability-based optimization. The central issue is not what a query plan costs,
but whether the plan can be executed at all. Only among plans found to be
executable (“feasible”) do we try to estimate costs.

21.4.1 The Problem of Limited Source Capabilities
Today, many useful sources have only Web-based interfaces, even if they are,
behind the scenes, an ordinary database. Web sources usually permit query
ing only through a query form, which does not accept arbitrary SQL queries.
Rather, we are invited to enter values for certain attributes and can receive a
response that gives values for other attributes.

E xam ple 21 .9 : The Amazon.com interface allows us to query about books
in many different ways. We can specify an author and get all their books, or
we can specify a book title and receive information about that book. We can
specify keywords and get books that match the keywords. However, there is
also information we can receive in answers but cannot specify. For instance,
Amazon ranks books by sales, but we cannot ask “give me the top 10 sellers.”
Moreover, we cannot ask questions that are too general. For instance, the query:

SELECT * FROM Books;

“tell me everything you know about books,” cannot be asked or answered
through the Amazon Web interface, although it could be answered behind the
scenes if we were able to access the Amazon database directly. □

There are a number of other reasons why a source may limit the ways in
which queries can be asked. Among them are:

1. Many of the earliest data sources did not use a DBMS, surely not a
relational DBMS that supports SQL queries. These systems were designed
to be queried in certain very specific ways only.

2. For reasons of security, a source may limit the kinds of queries that it
will accept. Amazon’s unwillingness to answer the query “tell me about

21.4. CAPABILITY-BASED OPTIMIZATION 1057

all your books” is a rudimentary example; it protects against a rival ex
ploiting the Amazon database. As another instance, a medical database
may answer queries about averages, but won’t disclose the details of a
particular patient’s medical history.

3. Indexes on large databases may make certain kinds of queries feasible,
while others are too expensive to execute. For instance, if a books data
base were relational, and one of the attributes were author, then without
an index on that attribute, it would be infeasible to answer queries that
specified only an author.3

21.4.2 A Notation for Describing Source Capabilities
If data is relational, or may be thought of as relational, then we can describe the
legal forms of queries by adornments. These are sequences of codes that repre
sent the requirements for the attributes of the relation, in their standard order.
The codes we shall use for adornments reflect the most common capabilities of
sources. They are:

1. / (free) means that the attribute can be specified or not, as we choose.

2. b (bound) means that we must specify a value for the attribute, but any
value is allowed.

3. u (unspecified) means that we are not permitted to specify a value for the
attribute.

4. c[S] (choice from set S) means that a value must be specified, and that
value must be one of the values in the finite set S. This option corre
sponds, for instance, to values that are specified from a pulldown menu
in a Web interface.

5. o[S] (optional, from set S) means that we either do not specify a value,
or we specify one of the values in the finite set S.

In addition, we place a prime (e.g., / ') on a code to indicate that the attribute
is not part of the output of the query.

A capabilities specification for a source is a set of adornments. The intent is
that in order to query the source successfully, the query must match one of the
adornments in its capabilities specification. Note that, if an adornment has free
or optional components, then queries with different sets of attributes specified
may match that adornment.

3We should be aware, however, that information like Amazon’s about products is not
accessed as if it were a relational database. Rather, the information about books is stored
as text, with an inverted index, as we discussed in Section 14.1.8. Thus, queries about any
aspect of books — authors, titles, words in titles, and perhaps words in descriptions of the
book — are supported by this index.

1058 CHAPTER 21. INFORMATION INTEGRATION

E xam ple 21.10: Suppose we have two sources like those of the two dealers in
Example 21.4. Dealer 1 is a source of data in the form:

C ars(se ria lN o , model, c o lo r , au toT rans, navi)

Note that in the original, we suggested relation Cars could have additional
attributes representing options, but for simplicity in this example, let us limit
our thinking to automatic transmissions and navigation systems only. Here are
two possible ways that Dealer 1 might allow this data to be queried:

1. The user specifies a serial number. All the information about the car with
that serial number (i.e., the other four attributes) is produced as output.
The adornment for this query form is b'uuuu. That is, the first attribute,
seria lN o must be specified and is not part of the output. The other
attributes must not be specified and are part of the output.

2. The user specifies a model and color, and perhaps whether or not auto
matic transmission and navigation system are wanted. All five attributes
are printed for all matching cars. An appropriate adornment is

ubbo[yes, no]o[yes, no]

This adornment says we must not specify the serial number; we must
specify a model and color, but are allowed to give any possible value in
these fields. Also, we may, if we wish, specify whether we want automatic
transmission and/or a navigation system, but must do so by using only
the values “yes” and “no” in those fields.

□

21.4.3 Capability-Based Query-Plan Selection
Given a query at the mediator, a capability-based query optimizer first con
siders what queries it can ask at the sources to help answer the query. If
we imagine those queries asked and answered, then we have bindings for some
more attributes, and these bindings may make some more queries at the sources
possible. We repeat this process until either:

1. We have asked enough queries at the sources to resolve all the conditions
of the mediator query, and therefore we may answer that query. Such a
plan is called feasible.

2. We can construct no more valid forms of source queries, yet we still cannot
answer the mediator query, in which case the mediator must give up; it
has been given an impossible query.

21.4. CAPABILITY-BASED OPTIMIZATION 1059

W hat Do Adornments Guarantee?

It would be wonderful if a source that supported queries matching a given
adornment would return all possible answers to the query. However,
sources normally have only a subset of the possible answers to a query.
For instance, Amazon does not stock every book that has ever been writ
ten, and the two dealers of our running automobiles example each have
distinct sets of cars in their database. Thus, a more proper interpretation
of an adornment is: “I will answer a query in the form described by this
adornment, and every answer I give will be a true answer, but I do not
guarantee to provide all true answers.” An important consequence of this
state of affairs is that if we want all available tuples for a relation R, then
we must query every source that might contribute such tuples.

The simplest form of mediator query for which we need to apply the above
strategy is a join of relations, each of which is available, with certain adorn
ments, at one or more sources. If so, then the search strategy is to try to get
tuples for each relation in the join, by providing enough argument bindings that
some source allows a query about that relation to be asked and answered. A
simple example will illustrate the point.

E xam ple 21.11: Let us suppose we have sources like the relations of Dealer 2
in Example 21.4:

Autos(serial, model, color)
Options(serial, option)

Suppose that ubf is the sole adornment for Autos, while Options has two adorn
ments, bu and uc[autoTrans, navi], representing two different kinds of queries
that we can ask at that source. Let the query be “find the serial numbers and
colors of Gobi models with a navigation system.”

Here are three different query plans that the mediator must consider:

1. Specifying that the model is Gobi, query Autos and get the serial numbers
and colors of all Gobis. Then, using the bu adornment for Options, for
each such serial number, find the options for that car and filter to make
sure it has a navigation system.

2. Specifying the navigation-system option, query Options using the

uc[autoTrans, navi]

adornment and get all the serial numbers for cars with a navigation sys
tem. Then query Autos as in (1), to get all the serial numbers and colors
of Gobis, and intersect the two sets of serial numbers.

1060 CHAPTER 21. INFORMATION INTEGRATION

3. Query Options as in (2) to get the serial numbers for cars with a naviga
tion system. Then use these serial numbers to query Autos and see which
of these cars are Gobis.

Either of the first two plans are acceptable. However, the third plan is one
of several plans that will not work; the system does not have the capability to
execute this plan because the second part — the query to Autos — does not
have a matching adornment. □

21.4.4 Adding Cost-Based Optimization
The mediator’s query optimizer is not done when the capabilities of the sources
are examined. Having found the feasible plans, it must choose among them.
Making an intelligent, cost-based optimization requires that the mediator know
a great deal about the costs of the queries involved. Since the sources are usually
independent of the mediator, it is difficult to estimate the cost. For instance,
a source may take less time during periods when it is lightly loaded, but when
are those periods? Long-term observation by the mediator is necessary for the
mediator even to guess what the response time might be.

In Example 21.11, we might simply count the number of queries to sources
that must be issued. Plan (2) uses only two source queries, while plan (1) uses
one plus the number of Gobis found in the Autos relation. Thus, it appears
that plan (2) has lower cost. On the other hand, if the queries of Options, one
with each serial number, could be combined into one query, then plan (1) might
turn out to be the superior choice.

21.4.5 Exercises for Section 21.4
E xercise 21.4 .1 : Suppose each relation from Exercise 21.2.1:

Computers(number, proc, speed, memory, hd)
Monitors(number, screen, maxResX, maxResY)

is an information source. Using the notation from Section 21.4.2, write one or
more adornments that express the following capabilities:

a) We can query for computers having a given processor, which must be one
of “P-IV,” “G5,” or “Athlon,” a given speed, and (optionally) a given
amount of memory.

b) We can query for computers having any specified hard-disk size and/or
any given memory size.

c) We can query for monitors if we specify either the number of the monitor,
the screen size, or the maximum resolution in both dimensions.

21.5. OPTIMIZING MEDIATOR QUERIES 1061

d) We can query for monitors if we specify the screen size, which must be
either 19, 22, 24, or 30 inches. All attributes except the screen size are
returned.

! e) We can query for computers if we specify any two of the processor type,
processor speed, memory size, or disk size.

E xercise 21.4.2: Suppose we have the two sources of Exercise 21.4.1, but
understand the attribute number of both relations to refer to the number of a
complete system, some of whose attributes are found in one source and some in
the other. Suppose also that the adornments describing access to the Computers
relation are buuuu, ubbff, and uuubb, while the adornments for Monitors are
bfff and ubbb. Tell what plans are feasible for the following queries (exclude any
plans that are obviously more expensive than other plans on your list):

a) Find the systems with 512 megabytes of memory, an 80-gigabyte hard
disk, and a 22-inch monitor.

b) Find the systems with a Pentium-IV processor running at 3.0 gigahertz
with a 22-inch monitor and a maximum resolution of 1600-by-1050.

! c) Find all systems with a G5 processor running at 1.8 gigahertz, with 2
gigabytes of memory, a 300 gigabyte disk, and a 19-inch monitor.

21.5 Optimizing M ediator Queries
In this section, we shall give a greedy algorithm for answering queries at a
mediator. This algorithm, called chain, always finds a way to answer the query
by sending a sequence of requests to its sources, provided at least one solution
exists. The class of queries that can be handled is those that involve joins
of relations that come from the sources, followed by an optional selection and
optional projection onto output attributes. This class of queries is exactly what
can be expressed as Datalog rules (Section 5.3).

21.5.1 Simplified Adornment Notation
The Chain Algorithm concerns itself with Datalog rules and with whether prior
source requests have provided bindings for any of the variables in the body of
the rule. Since we care only about whether we have found all possible constants
for a variable, we can limit ourselves, in the query at the mediator (although
not at the sources), to the b (bound) and / (free) adornments. That is, a c[5]
adornment for an attribute of a source relation can be used as soon as we know
all possible values of interest for that attribute (i.e., the corresponding position
in the mediator query has a b adornment). Note that the source will not provide
matches for the values outside S, so there is no point in asking questions about
these values. The optional adornment o[5] can be treated as free, since there is

1062 CHAPTER 21. INFORMATION INTEGRATION

no need to have a binding for the corresponding attribute in the query at the
mediator (although we could). Likewise, adornment u can be treated as free,
since although we cannot then specify a value for the attribute at the source, we
can have, or not have, a binding for the corresponding variable at the mediator.

E xam ple 21.12: Let us use the same query and source relations as in Exam
ple 21.11, but with different capabilities at the sources. In what follows we shall
use superscripts on the predicate or relation names to show the adornment or
permitted set of adornments. In this example, the permitted adornments for
the two source relations are:

Autos6""(serial, model, color)
Options“ctautoTra“B■ navi)(serial, option)

That is, we can only access Options by providing a binding “autoTrans” or
“navi” for the o p tion attribute, and we can only access Autos by providing a
binding for the s e r i a l attribute.

The query “find the serial numbers and colors of Gobi models with a navi
gation system” is expressed in Datalog by:

Answer(s,c) «— Autos-^(s,"Gobi",c) AND Options^6(s,"navi")
Here, notice the adornments on the subgoals of the body. These, at the moment,
are commentaries on what arguments of each subgoal are bound to a set of
constants. Initially, only the middle argument of the Autos subgoal is bound
(to the set containing only the constant “Gobi”) and the second argument of
the Options subgoal is bound to the set containing only “navi.” We shall see
shortly that as we use the sources to find tuples that match one or another
subgoal, we get bindings for some of the variables in the Datalog rule, and thus
change some of the / ’s to Vs in the adornments. □

21.5.2 Obtaining Answers for Subgoals
We now need to formalize the comments made at the beginning of Section 21.5.1
about when a subgoal with some of its arguments bound can be answered by a
source query. Suppose we have a subgoal R XlX2'"Xn(ai,a 2 , ■ ■ ■ , an), where each
Xi is either b or / . R is a relation that can be queried at some source, and
which has some set of adornments.

Suppose j/i ?/2 ■ • 'Un is one of the adornments for R at its source. Each yi
can be any of b, f , u, c[S] or o[S] for any set S. Then it is possible to obtain a
relation for the subgoal provided, for each i = 1 ,2 ,. .. , n, provided:

• If j/j is b or of the form cfS1], then x* = b.

• If Xi = / , then yi is not output restricted (i.e., not primed).

Note that if y% is any of / , u, or o[S], then Xi can be either b or / . We say that
the adornment on the subgoal matches the adornment at the source.

21.5. OPTIMIZING MEDIATOR QUERIES 1063

E xam ple 21.13: Suppose the subgoal in question is R hbB (p ,q ,r ,s), and the
adornments for R at its source are ati — fc[S-i]uo[S2] and a 2 = c[5s]6/c[54].
Then bbff matches adornment a i , so we may use a j to get the relation for
subgoal R(p,q,r,s). That is, a x has no b’s and only one c, in the second
position. Since the adornment of the subgoal has b in the second position, we
know that there is a set of constants to which the variable q (the variable in the
second argument of the subgoal) has been bound. For each of those constants
that are a member of the set Si we can issue a query to the source for R,
using that constant as the binding for the second argument. We do not provide
bindings for any other argument, even though c*i allows us to provide a binding
for the first and/or fourth argument as well.

However, bbff does not match a 2. The reason is that a 2 has cfS-j] in the
fourth position, while bbff has / in that position. If we were to try to obtain R
using a 2, we would have to provide a binding for the fourth argument, which
means that variable s in R(p, q, r, s) would have to be bound to a set of con
stants. But we know that is not the case, or else the adornment on the subgoal
would have had b in the fourth position. □

21.5.3 The Chain Algorithm
The Chain Algorithm is a greedy approach to selecting an order in which we
obtain relations for each of the subgoals of a Datalog rule. It is not guaranteed
to provide the most efficient solution, but it will provide a solution whenever
one exists, and in practice, it is very likely to obtain the most efficient solution.
The algorithm maintains two kinds of information:

• An adornment is maintained for each subgoal. Initially, the adornment
for a subgoal has b if and only if the mediator query provides a constant
binding for the corresponding argument of that subgoal, as for instance,
the query in Example 21.12 provided bindings for the second arguments of
both the Autos and Options subgoals. In all other places, the adornment
has / ’s.

• A relation X that is (a projection of) the join of the relations for all
the subgoals that have been resolved. We resolve a subgoal when the
adornment for the subgoal matches one of the adornments at the source
for this subgoal, and we have extracted from the source all possible tuples
for that subgoal. Initially, since no subgoals have been resolved, X is
a relation over no attributes, containing just the empty tuple (i.e., the
tuple with zero components). Note that for empty X and any relation
R, X ix R = R; i.e., X is initially the identity relation for the natural-
join operation. As the algorithm progresses, X will have attributes that
are variables of the rule — those variables that correspond to b’s in the
adornments of the subgoals in which they appear.

The core of the Chain Algorithm is as follows. After initializing relation X
and the adornments of the subgoals as above, we repeatedly select a subgoal

1064 CHAPTER 21. INFORMATION INTEGRATION

that can be resolved. Let R a(ai,a,2 , . . . , an) be the subgoal to be resolved. We
do so by:

1. Wherever a has a b, we shall find that either the corresponding argument
of R is a constant rather than a variable, or it is one of the variables
in the schema of the relation X . Project X onto those of its variables
that appear in subgoal R. Each tuple in the projection, together with
constants in the subgoal R, if any, provide sufficient bindings to use one
of the adornments for the source relation R — whichever adornment a
matches.

2. Issue a query to the source for each tuple t in the projection of X . We
construct the query as follows, depending on the source adornment [3 that
a matches.

(a) If a component of is b, then the corresponding component of a is
too, and we can use the corresponding component of t (or a constant
in the subgoal) to provide the necessary binding for the source query.

(b) If a component of /3 is c[S], then again the corresponding component
of a will be b, and we can obtain a constant from the subgoal or
the tuple t. However, if that constant is not in S, then there is no
chance the source can produce any tuples that match t, so we do not
generate any source query for t.

(c) If a component of /3 is / , then produce a constant value for this
component in the source query if we can; otherwise do not provide
a value for this component in the source query. Note that we can
provide a constant exactly when the corresponding component of a
is b.

(d) If a component of /3 is u, provide no binding for this component,
even if the corresponding component of a is b.

(e) If a component of (3 is o[S], treat this component as if it were / in
the case that the corresponding component of a is / , and as c[S] if
the corresponding component of a is b.

For each tuple returned, extend the tuple so it has one component for
each argument of the subgoal (i.e., n components). Note that the source
will return every component of R that is not output restricted, so the
only components that are not present have b in the adornment a. Thus,
the returned tuples can be padded by using either the constant from the
subgoal, or the constant from the tuple in the projection of X . The union
of all the responses is the relation R for the subgoal R(ai, a2, . . . , an).

3. Every variable among a \,a 2, . . . ,an is now bound. For each subgoal that
has not yet been resolved, change its adornment so any position holding
one of these variables is now bound (b).

21.5. OPTIMIZING MEDIATOR QUERIES 1065

4. Replace X by X tx tts(R), where S is all the variables among

5. Project out of X all components that correspond to variables that do not
appear in the head or in any unresolved subgoal. These components can
never be useful in what follows.

The complete Chain Algorithm, then, consists of the initialization described
above, followed by as many subgoal-resolution steps as we can manage. If
we succeed in resolving every subgoal, then relation X will be the answer to
the query. If at some point, there are unresolved subgoals, yet none can be
resolved, then the algorithm fails. In that case, there can be no other sequence
of resolution steps that answers the query.

E xam ple 21.14: Consider the mediator query

Q: Answer(c) «- R6/(l,a) AND S^(a,b) AND T^(b,c)

There are three sources that provide answers to queries about R, S, and T,
respectively. The contents of these relations at the sources and the only adorn
ments supported by these sources are shown in Fig. 21.10.

Relation R

Data

Adornment bf

w X X y y z

1 2 2 4 4 6
1 3 3 5 5 7
1 4 5 8

c'[2,3 ,5]/ bu

Figure 21.10: Data for Example 21.14

Initially, the adornments on the subgoals are as shown in the query Q, and
the relation X that we construct initially contains only the empty tuple. Since
subgoals S and T have f f adornments, but the adornments at the corresponding
sources each have a component with b or c, neither of these subgoals can be
resolved. Fortunately, the first subgoal, i?(l,a), can be resolved, since the bf
adornment at the corresponding source is matched by the adornment of the
subgoal. Thus, we send the source for R(w,x) a query with w = 1, and the
response is the set of three tuples shown in the first column of Fig. 21.10.

We next project the subgoal’s relation onto its second component, since only
the second component of R (l,a) is a variable. That gives us the relation

1066 CHAPTER 21. INFORMATION INTEGRATION

a
~ 2 ~

3
4

This relation is joined with X , which currently has no attributes and only the
empty tuple. The result is that X becomes the relation above. Since a is now
bound, we change the adornment on the S subgoal from f f to bf.

At this point, the second subgoal, S bf(a,b), can be resolved. We obtain
bindings for the first component by projecting X onto a; the result is X itself.
That is, we can go to the source for S(x ,y) with bindings 2, 3, and 4 for x. We
do not need bindings for y, since the second component of the adornment for
the source is / . The c'[2,3,5] code for x says that we can give the source the
value 2, 3, or 5 for the first argument. Since there is a prime on the c, we know
that only the corresponding y value(s) will be returned, not the value of x that
we supplied in the request. We care about values 2, 3, and 4, but 4 is not a
possible value at the source for 5 , so we never ask about it.

When we ask about x = 2, we get one response: y — 4. We pad this response
with the value 2 we supplied to conclude that (2,4) is a tuple in the relation for
the 5 subgoal. Similarly, when we ask about x = 3, we get y — 5 as the only
response and we add (3,5) to the set of tuples constructed for the S subgoal.
There are no more requests to ask at the source for S, so we conclude that the
relation for the S subgoal is

a b
2 4
3 5

When we join this relation with the previous value of X , the result is just
the relation above. However, variable a now appears neither in the head nor in
any unresolved subgoal. Thus, we project it out, so X becomes

b
~ 4 ~

5

Since b is now bound, we change the adornment on the T subgoal, so it
becomes T bf(b,c). Now this last subgoal can be resolved, which we do by
sending requests to the source for T(y, z) with y — 4 and y = 5. The responses
we get back give us the following relation for the T subgoal:

b c
4 6
5 7
5 8

21.5. OPTIMIZING MEDIATOR QUERIES 1067

We join it with the relation for X above, and then project onto the c attribute to
get the relation for the head. That is, the answer to the query at the mediator
is {(6), (7), (8)}. □

21.5.4 Incorporating Union Views at the Mediator
In our description of the Chain Algorithm, we assumed that each predicate
in the Datalog query at the mediator was a “view” of data at one particular
source. However, it is common for there to be several sources that can contribute
tuples to the relation for the predicate. How we construct the relation for such
a predicate depends on how we expect the sources for the predicate to interact.

The easy case is where we expect the sources for a predicate to contain
replicated information. In that case, we can turn to any one of the sources to
get the relation for a predicate. This case thus looks exactly like the case where
there is a single source for a predicate, but there may be several adornments
that allows us to query that source.

The more complex case is when the sources each contribute some tuples to
the predicate that the other sources may not contribute. In that case, we should
consult all the sources for the predicate. However, there is still a policy choice
to be made. Either we can refuse to answer the query unless we can consult all
the sources, or we can make best efforts to return all the answers to the query
that we can obtain by combinations of sources.

C onsu lt All Sources

If we must consult all sources to consider a subgoal resolved, then we can only
resolve a subgoal when each source for its relation has an adornment matched
by the current adornment of the subgoal. This rule is a small modification of
the Chain Algorithm. However, not only does it make queries harder to answer,
it makes queries impossible to answer when any source is “down,” even if the
Chain Algorithm provides a feasible ordering in which to resolve the subgoals.
Thus, as the number of sources grows, this policy becomes progressively less
practical.

B est E fforts

Under this assumption, we only need one source with a matching adornment to
resolve a subgoal. However, we need to modify the chain algorithm to revisit
each subgoal when that subgoal has new bound arguments. We may find that
some source that could not be matched is now matched by the subgoal with its
new adornment.

E xam ple 21.15: Consider the mediator query

answer (a,c) <r- R^(a,b) AND S^Cb.c)

1068 CHAPTER 21. INFORMATION INTEGRATION

Suppose also that R has two sources, one described by adornment f f and the
other by fb. Likewise, S has two sources, described by i f and bf. We could start
by using either source with adornment ff, suppose we start with R ’s source. We
query this source and get some tuples for R.

Now, we have some bindings, but perhaps not all, for the variable b. We can
now use both sources for S to obtain tuples and the relation for 5 can be set
to their union. At this point, we can project the relation for S onto variable b
and get some 6-values. These can be used to query the second source for R, the
one with adornment fb. In this manner, we can get some additional il-tuples.
It is only at this point that we can join the relations for R and S, and project
onto a and c to get the best-effort answer to the query. □

21.5.5 Exercises for Section 21.5
E xercise 21.5 .1 : Apply the Chain Algorithm to the mediator query

Answer(a,e) «- E(a,b,c) AND S(c,d) AND T(b,d,e)
with the following adornments at the sources for R, S, and T. If there is more
than one adornment for a predicate, either may be used.

a) R f f f , S b*, T bf f , T W .

b) R f f b, S f b, T f bf , T bf f .

c) R W , S f b, S bf, Tf f f .

In each case:

v i. Indicate all possible orders in which the subgoals can be resolved.

ii. Does the Chain Algorithm produce an answer to the query?

Hi. Give the sequence of relational-algebra operations needed to compute the
intermediate relation X at each step and the result of the query.

! Exercise 21 .5 .2 : Suppose that for the mediator query of Exercise 21.5.1, each
predicate is a view defined by the union of two sources. For each predicate, one
of the sources has an all-/ adornment. The other sources have the following
adornments: R f bb, S bf , and T b̂ . Find a best-effort sequence of source requests
that will produce all the answers to the mediator query that can be obtained
from these sources.

Exercise 21 .5 .3 : Describe all the source adornments that are matched by a
subgoal with adornment R bf .

!! E xercise 21.5 .4 : Prove that if there is any sequence of subgoal resolutions
that will resolve all subgoals, then the Chain Algorithm will find one. Hint'.
Notice that if a subgoal can be resolved at a certain step, then if it is not
selected for resolution, it can still be resolved at the next step.

21.6. LOCAL-AS-VIEW MEDIATORS 1069

21.6 Local-as-View Mediators
The mediators discussed so far are called global-as-view (GAV) mediators. The
global data (i.e., the data available for querying at the mediator) is like a view;
it doesn’t exist physically, but pieces of it are constructed by the mediator, as
needed, by asking queries of the sources.

In this section, we introduce another approach to connecting sources with
a mediator. In a local-as-view (LAV) mediator, we define global predicates at
the mediator, but we do not define these predicates as views of the source data.
Rather, we define, for each source, one or more expressions involving the global
predicates that describe the tuples that the source is able to produce. Queries
are answered at the mediator by discovering all possible ways to construct the
query using the views provided by the sources.

21.6.1 Motivation for LAV Mediators
In many applications, GAV mediators are easy to construct. You decide on
the global predicates or relations that the mediator will support, and for each
source, you consider which predicates it can support, and how it can be queried.
That is, you determine the set of adornments for each predicate at each source.
For instance, in our Aardvark Automobiles example, if we decide we want Autos
and Options predicates at the mediator, we find a way to query each dealer’s
source for those concepts and let the Autos and Options predicates at the
mediator represent the union of what the sources provide. Whenever we need
one or both of those predicates to answer a mediator query, we make requests
of each of the sources to obtain their data.

However, there are situations where the relationship between what we want
to provide to users of the mediator and what the sources provide is more subtle.
We shall look at an example where the mediator is intended to provide a single
predicate Par(c,p), meaning that p is a parent of c. As with all mediators, this
predicate represents an abstract concept — in this case, the set of all child-
parent facts that could ever exist — and the sources will provide information
about whatever child-parent facts they know. Even put together, the sources
probably do not know about everyone in the world, let along everyone who ever
lived.

Life would be simple if each source held some child-parent information and
nothing else that was relevant to the mediator. Then, all we would have to
do is determine how to query each one for whatever facts they could provide.
However, suppose we have a database maintained by the Association of Grand
parents that doesn’t provide any child-parent facts at all, but provides child-
grandparent facts. We can never use this source to help answer a query about
someone’s parents or children, but we can use it to help answer a mediator
query that uses the Pax predicate several times to ask for the grandparents
of an individual, or their great-grandparents, or another complex relationship
among people.

1070 CHAPTER 21. INFORMATION INTEGRATION

GAV mediators do not allow us to use a grandparents source at all, if our
goal is to produce a Par relation. Producing both a parent and a grandparent
predicate at the mediator is possible, but it might be confusing to the user and
would require us to figure out how to extract grandparents from all sources,
including those that only allow queries for child-parent facts. However, LAV
mediators allow us to say that a certain source provides grandparent facts.
Moreover, the technology associated with LAV mediators lets us discover how
and when to use that source in a given query.

21.6.2 Terminology for LAV Mediation
LAV mediators are always defined using a form of logic that serves as the
language for defining views. In our presentation, we shall use Datalog. Both
the queries at the mediator and the queries (view definitions) that describe the
sources will be single Datalog rules. A query that is a single Datalog rule is
often called a conjunctive query, and we shall use the term here.

A LAV mediator has a set of global predicates, which are used as the subgoals
of mediator queries. There are other conjunctive queries that define views; i.e.,
their heads each have a unique view predicate that is the name of a view. Each
view definition has a body consisting of global predicates and is associated with
a particular source, from which that view can be constructed. We assume that
each view can be constructed with an all-free adornment. If capabilities are
limited, we can use the chain algorithm to decide whether solutions using the
views are feasible.

Suppose we are given a conjunctive query Q whose subgoals are predicates
defined at the mediator. We need to find all solutions — conjunctive queries
whose bodies are composed of view predicates, but that can be “expanded”
to produce a conjunctive query involving the global predicates. Moreover, this
conjunctive query must produce only tuples that are also produced by Q. We
say such expansions are contained in Q. An example may help with these tricky
concepts, after which we shall define “expansion” formally.

E xam ple 21.16: Suppose there is one global predicate Par(c,p) meaning that
p is a parent of c. There is one source that produces some of the possible parent
facts; its view is defined by the conjunctive query

Vi (c,p) «- Par(c,p)
There is another source that produces some grandparent facts; its view is defined
by the conjunctive query

V2Cc,g) <- Par(c,p) AND Par(p,g)
Our query at the mediator will ask for great-grandparent facts that can be

obtained from the sources. That is, the mediator query is

Q(w,z) Par(w,x) AND Par(x,y) AND Par(y,z)

21.6. LOCAL-AS-VIEW MEDIATORS 1071

How might we answer this query? The source view Vi contributes to the parent
predicate directly, so we can use it three times in the obvious solution

Q(w,z) «-Vi(w,x) AND Vi(x,y) AND Vi(y ,z)

There are, however, other solutions that may produce additional answers, and
thus must be part of the logical query plan for answering the query. In partic
ular, we can use the view V2 to get grandparent facts, some of which may not
be inferrable by using two parent facts from Vi. We can use Vi to make a step
of one generation, and then use V2 to make a step of two generations, as in the
solution

Q(w,z) «— Vi(w,x) AND V2(x ,z)

Or, we can use V2 first, followed by Vi, as

Q(w,z) V2(w,y) AND Vx(y ,z)

It turns out these are the only solutions we need; their union is all the great-
grandparent facts that we can produce from the sources Vi and V2. There is
still a great deal to explain. Why are these solutions guaranteed to produce
only answers to the query? How do we tell whether a solution is part of the
answer to a query? How do we find all the useful solutions to a query? We
shall answer each of these questions in the next sections. □

21.6.3 Expanding Solutions
Given a query Q, a solution S has a body whose subgoals are views, and each
view V is defined by a conjunctive query with that view as the head. We
can substitute the body of V’s conjunctive query for a subgoal in S that uses
predicate V, as long as we are careful not to confuse variable names from one
body with those of another. Once we substitute rule bodies for the views that
are in S, we have a body that consists of global predicates only. The expanded
solution can be compared with Q, to see if the results produced by the solution
S are guaranteed to be answers to the query Q, in a manner we shall discuss
later.

However, first we must be clear about the expansion algorithm. Suppose
that there is a solution S that has a subgoal V(a i,a 2 , . . . ,a„). Here the at s
can be any variables or constants, and it is possible that two or more of the a*’s
are actually the same variable. Let the definition of view V be of the form

V(bi, &2> • • • ! bn) •<— B

where B represents the entire body. We may assume that the V s are dis
tinct variables, since there is no need to have two identical components in a
view, nor is there a need for components that are constant. We can replace
V (a i,a2, . .. , a„) in solution S by a version of body B that has all the subgoals
of B, but with variables possibly altered. The rules for altering the variables of
B are:

1072 CHAPTER 21. INFORMATION INTEGRATION

1. First, identify the local variables o iB — those variables that appear in the
body, but not in the head. Note that, within a conjunctive query, a local
variable can be replaced by any other variable, as long as the replacing
variable does not appear elsewhere in the conjunctive query. The idea is
the same as substituting different names for local variables in a program.

2. If there are any local variables of B that appear in B or in S, replace each
one by a distinct new variable that appears nowhere in the rule for V or
in S.

3. In the body B, replace each bi by a*, for i = 1 ,2 , . . . , n.

E xam ple 2 1 .17 : Suppose we have the view definition

V (a ,b ,c ,d) < - E (a , b , x , y) AND F (x , y , c , d)

Suppose further that some solution S has in its body a subgoal V(x ,y , 1, x).
The local variables in the definition of V are x and y, since these do not

appear in the head. We need to change them both, because they appear in the
subgoal for which we are substituting. Suppose e and / are variable names that
appear nowhere in S. We can rewrite the body of the rule for V as

V (a ,b ,c ,d) <— E (a , b , e , f) AND F (e , f , c , d)

Next, we must substitute the arguments of the V subgoal for a, b, c, and
d. The correspondence is that a and d become x, b becomes y, and c be
comes the constant 1. We therefore substitute for V (x ,y , 1, x) the two subgoals
E { x ,y ,e , f) and F (e , f , l ,x) . □

The expansion process is essentially the substitution described above for
each subgoal of the solution S. There is one extra caution of which we must be
aware, however. Since we may be substituting for the local variables of several
view definitions, and may in fact need to create several versions of one view
definition (if S has several subgoals with the same view predicate), we must
make sure that in the substitution for each subgoal of S, we use unique local
variables — ones that do not appear in any other substitution or in S itself.
Only then can we be sure that when we do the expansion we do not use the
same name for two variables that should be distinct.

E xam ple 21 .18: Let us resume the discussion we began in Example 21.16,
where we had view definitions

Vi(c ,p) < - Par(c,p)
V2 (c ,g) «- Par(c ,p) AND Par(p,g)

One of the proposed solutions S is

Q(w,z) Vi(w,x) AND V2(x , z)

21.6. LOCAL-AS-VIEW MEDIATORS 1073

Let us expand this solution. The first subgoal, with predicate V\ is easy to
expand, because the rule for V\ has no local variables. We substitute w and x
for c and p respectively, so the body of the rule for V\ becomes Par(w, x). This
subgoal will be substituted in S for Vi(w,x).

We must also substitute for the V2 subgoal. Its rule has local variable p.
However, since p does not appear in S, nor has it been used as a local variable
in another substitution, we are free to leave p as it is. We therefore have only
to substitute x and z for the variables c and g , respectively. The two subgoals
in the rule for V2 become Par(x,p) and Par(p,z). When we substitute these
two subgoals for V2 (x, z) in S, we have constructed the complete expansion of
S:

Q(w,z) «— Par(w,x) AND Par(x,p) AND Par(p,z)

Notice that this expansion is practically identical to the query in Exam
ple 21.16. The only difference is that the query uses local variable y where the
expansion uses p. Since the names of local variables do not affect the result, it
appears that the solution S is the answer to the query. However, that is not
quite right. The query is looking for all great-grandparent facts, and all the
expansion says is that the solution S provides only facts that answer the query.
S might not produce all possible answers. For example, the source of V2 might
even be empty, in which case nothing is produced by solution S, even though
another solution might produce some answers. □

21.6.4 Containment of Conjunctive Queries
In order for a conjunctive query S to be a solution to the given mediator query
Q, the expansion of S, say E, must produce only answers that Q produces,
regardless of what relations are represented by the predicates in the bodies of
E and Q. If so, we say that E C Q.

There is an algorithm to tell whether E C Q; we shall see this test after
introducing the following important concept. A containment mapping from Q
to E is a function r from the variables of Q to the variables and constants of
E, such that:

1. If x is the «th argument of the head of Q, then t (x) is the ith argument
of the head of E.

2. Add to r the rule that r(c) = c for any constant c. If P (x i,ar2, • • ■ , x n)
is a subgoal of Q, then P (t (x 1), r(x2) , . . . , t (x„)) is a subgoal of E.

E xam ple 21.19: Consider the following two conjunctive queries:

Qi- H(x,y) <r- A(x,z) AND B(z ,y)
Q 2 : H(a,b) <- A(a,c) AND B(d,b) AND A(a,d)

1074 CHAPTER 21. INFORMATION INTEGRATION

We claim that Q2 QQ i- In proof, we offer the following containment mapping:
t (x) = a, r(y) = b, and r(z) = d. Notice that when we apply this substitution,
the head of Q\ becomes H(a, b), which is the head of Q2. The first subgoal of Q1
becomes A(a, d), which is the third subgoal of Q2 . Likewise, the second subgoal
of Q1 becomes the second subgoal of That proves there is a containment
mapping from Q1 to Q 2 , and therefore Q2 Q Qi- Notice that no subgoal of Q\
maps to the first subgoal of Q2, but the containment-mapping definition does
not require that there be one.

Surprisingly, there is also a containment mapping from Q2 to Q i, so the two
conjunctive queries are in fact equivalent. That is, not only is one contained in
the other, but on any relations A and B, they produce exactly the same set of
tuples for the relation H. The containment mapping from Qi to Q 1 is p(a) — x,
p(b) — y, and p(c) = p(d) — z. Under this mapping, the head of Q2 becomes
the head of Q1, the first and third subgoals of Q2 become the first subgoal of
Q i , and the second subgoal of Q2 becomes the second subgoal of Q \.

While it may appear strange that two such different looking conjunctive
queries are equivalent, the following is the intuition. Think of A and B as two
different colored edges on a graph. Then Q1 asks for the pairs of nodes x and
y such that there is an A-edge from x to some 2 and a B-edge from z to y.
Q2 asks for the same thing, using its second and third subgoals respectively,
although it calls x, y, and 2 by the names a, b, and d respectively. In addition,
Q2 seems to have the added condition expressed by the first subgoal that there
is an edge from node a to somewhere (node c). But we already know that there
is an edge from a to somewhere, namely d. That is, we are always free to use
the same node for c as we did for d, because there are no other constraints on
c. □

E xam ple 21.20: Here are two queries similar, but not identical, to those of
Example 21.19:

P i : H(x,y) < - A(x,z) AND A(z,y)
P2: H(a,b) A(a ,c) AND A(c,d) AND A(d,b)

Intuitively, if we think of A as representing edges in a graph, then Pi asks for
paths of length 2 and P2 asks for paths of length 3. We do not expect either to
be contained in the other, and indeed the containment-mapping test confirms
that fact.

Consider a possible containment mapping r from Pi to P2. Because of the
conditions on heads, we know r(x) = a and r(y) = b. To what does 2 map?
Since we already know t (x) = a, the first subgoal A (x ,z) can only map to
A{a , c) of P-2 - That means r(z) must be c. However, since r(y) = b, the subgoal
A(z, y) of Pi can only become A(d,b) in P2. That means t (z) must be d. But
2 can only map to one value; it cannot map to both c and d. We conclude that
no containment mapping from Pi to P2 exists.

A similar argument shows that there is no containment mapping from P2 to
P i . We leave it as an exercise. □

21.6. LOCAL-AS-VIEW MEDIATORS 1075

Complexity of the Containment-Mapping Test

It is NP-complete to decide whether there is a containment mapping from
one conjunctive query to another. However, in practice, it is usually quite
easy to decide whether a containment mapping exists. Conjunctive queries
in practice have few subgoals and few variables. Moreover, for the class of
conjunctive queries that have no more than two subgoals with the same
predicate — a very common condition — there is a linear-time test for the
existence of a containment mapping.

The importance of containment mappings is expressed by the following the
orem:

• If Q i and Qa are conjunctive queries, then Qa C Q\ if and only if there
is a containment mapping from Q\ to Q2.

Notice that the containment mapping goes in the opposite direction from the
containment; that is, the containment mapping is from the conjunctive query
that produces the larger set of answers to the one that produces the smaller,
contained set.

21.6.5 Why the Containment-Mapping Test Works
We need to argue two points. First, if there is a containment mapping, why must
there be a containment of conjunctive queries? Second, if there is containment,
why must there be a containment mapping? We shall not give formal proofs,
but will sketch the arguments.

First, suppose there is a containment mapping r from Q i to Qa. Recall from
Section 5.3.4 that when we apply Q2 to a database, we look for substitutions a
for all the variables of Q2 that make all its relational subgoals be tuples of the
corresponding relation of the database. The substitution for the head becomes
a tuple t that is returned by Q-i. If we compose r and then <r, we have a
mapping from the variables of Q i to tuples of the database that produces the
same tuple t for the head of Q \. Thus, on any given database, everything that
Q2 produces is also produced by Q i.

Conversely, suppose that Q2 C Q\. That is, on any database D, everything
that Q2 produces is also produced by Qi- Construct a particular database
D that has only the subgoals of <52- That is, pretend the variables of Q2

are distinct constants, and for each subgoal P(a\,a,2 , .. ■ ,an), put the tuple
(01, ci2, . . . , an) in the relation for P. There are no other tuples in the relations
of D.

When Q2 is applied to database D, surely the tuple whose components are
the arguments of the head of Q2 is produced. Since Q2 C Q1, it must be that

1076 CHAPTER 21. INFORMATION INTEGRATION

Q i applied to D also produces the head of Q2. Again, we use the definition
in Section 5.3.4 of how a conjunctive query is applied to a database. That
definition tells us that there is a substitution of constants of D for the variables
of Q i that turns each subgoal of Qi into a tuple in D and turns the head of
Q i into the tuple that is the head of <52- But remember that the constants of
D are the variables of Q2. Thus, this substitution is actually a containment
mapping.

21.6.6 Finding Solutions to a Mediator Query
We have one more issue to resolve. We are given a mediator query Q, and
we need to find all solutions S such that the expansion E of S is contained in
Q. But there could be an infinite number of S built from the views using any
number of subgoals and variables. The following theorem limits our search.

• If a query Q has n subgoals, then any answer produced by any solution
is also produced by a solution that has at most n subgoals.

This theorem, often called the LMSS Theorem,4 gives us a finite, although
exponential task to find a sufficient set of solutions. There has been considerable
work on making the test much more efficient in typical situations.

E xam ple 21.21: Recall the query

Q\: Q(w,z) 4 - Par(w,x) AND Par(x,y) AND Par(y ,z)

from Example 21.16. This query has three subgoals, so we don’t have to look
at solutions with more than three subgoals. One of the solutions we proposed
was

S i : Q(w,z) « -V i(w ,x) AND V2(x , z)

This solution has only two subgoals, and its expansion is contained in the query.
Thus, it needs to be included among the set of solutions that we evaluate to
answer the query.

However, consider the following solution:

S2: Q(w,z) < -Vi(w,x) AND V2(x ,z) AND V i (t ,u) AND V2 (u,v)

It has four subgoals, so we know by the LMSS Theorem that it does not need
to be considered. However, it is truly a solution, since its expansion

E2 : Q(w ,z) Par(w,x) AND Par(x,p) AND Par(p ,z) AND P ar (t ,u)
AND Par(u,q) AND Par(q,v)

4For th e au th o rs , A. Y. Levy, A. O . M endelzon, Y . Sagiv, an d D. S rivastava.

21.6. LOCAL-AS-VIEW MEDIATORS 1077

is contained in the query Q i. To see why, use the containment mapping that
maps w, x, and 2 to themselves and y to p.

However, E 2 is also contained in the expansion Ei of the smaller solution
Si. Recall from Example 21.18 that the expansion of Si is

E i ' . Q(w,z) «— Par(w,x) AND Par(x,p) AND Par(p,z)

We can see immediately that E2 C E \ , using the containment mapping that
sends each variable of E\ to the same variable in E2. Thus, every answer to Qi
produced by S2 is also produced by Si. Notice, incidentally, that S2 is really
Si with the two subgoals of Si repeated with different variables. □

In principle, to apply the LMSS Theorem, we must consider a number of
possible solutions that is exponential in the query size. We must consider not
only the choices of predicates for the subgoals, but which arguments of which
subgoals hold the same variable. Note that within a conjunctive query, the
names of the variables do not matter, but it matters which sets of arguments
have the same variable. Most query processing is worst-case exponential in
the query size anyway, as we learned in Chapter 16. Moreover, there are some
powerful techniques known for limiting the search for solutions by looking at
the structure of the conjunctive queries that define the views. We shall not go
into depth here, but one easy but powerful idea is the following.

• If the conjunctive query that defines a view V has in its body a predicate
P that does not appear in the body of the mediator query, then we need
not consider any solution that uses V.

21.6.7 Why the LMSS Theorem Holds
Suppose we have a query Q with n subgoals, and there is a solution S with
more than n subgoals. The expansion E of S must be contained in query Q,
which means that there is a containment mapping from Q to the expansion
E, as suggested in Fig. 21.11. If there are n subgoals (n = 2 in Fig. 21.11)
in Q, then the containment mapping turns Q’s subgoals into at most n of the
subgoals of the expansion E. Moreover, these subgoals of E come from at most
n of the subgoals of the solution S.

Suppose we removed from S all subgoals whose expansion was not the target
of one of Q 's subgoals under the containment mapping. We would have a new
conjunctive query S' with at most n subgoals. Now S' must also be a solution
to Q, because the same containment mapping that showed E C Q in Fig. 21.11
also shows that E' C Q , where E' is the expansion of S'.

We must show one more thing: that any answer provided by S is also
provided by S'. That is, S C. S'. But there is an obvious containment mapping
from S' to S: the identity mapping. Thus, there is no need for solution S
among the solutions to query Q.

1078 CHAPTER 21. INFORMATION INTEGRATION

Solution S

Expansion E N{...)

\
Query Q

Figure 21.11: Why a query with n subgoals cannot need a solution with more
than n subgoals

21.6.8 Exercises for Section 21.6
Exercise 21 .6 .1 : Find all the containments among the following four conjunc
tive queries:

Qi: P(x ,y) •(- Q(x,a) AND Q(a,b) AND Q(b,y)
Q 2 : P(x ,y) <- Q(x,a) AND Q(a,b) AND Q(b,c) AND Q(c,y)
Q 3 : P(x ,y) <- Q(x,a) AND Q(b,c) AND Q(d,y) AND Q(x,b) AND

Q(a,c) AND Q(c,y)
Q i : P(x ,y) Q(x,a) AND q (a , l) AND Q(l ,b) AND Q(b,y)

! Exercise 21 .6 .2 : For the mediator and views of Example 21.16, find all the
needed solutions to the great-great-grandparent query:

Q(x,y) <— Par(x ,a) AND Par(a ,b) AND Par(b ,c) AND Par(c ,y)

! E xercise 21.6 .3 : Show that there is no containment mapping from P2 to Pi
in Example 21.20.

! E xercise 21 .6 .4 : Show that if conjunctive query Q2 is constructed from con
junctive query Q i by removing one or more subgoals of Q i, then Q\ C Q2.

We shall now take up a problem that must be solved in many information-
integration scenarios. We have tacitly assumed that sources agree on the rep
resentation of entities or values, or at least that it is possible to perform a
translation of data as we go through a wrapper. Thus, we are not afraid of
two sources that report temperatures, one in Fahrenheit and one in Centigrade.
Neither are we afraid of sources that support a concept like “employee” but
have somewhat different sets of employees.

What happens, however, if two sources not only have different sets of em
ployees, but it is unclear whether records at the two sources represent the same

21.7 Entity Resolution

21.7. E N T IT Y RESOLUTION 1079

individual or not? Discrepancies can occur for many reasons, such as mis
spellings. In this section, we shall begin by discussing some of the reasons why
entity resolution — determining whether two records or tuples do or do not
represent the same person, organization, place, or other entity — is a hard
problem. We then look at the process of comparing records and merging those
that we believe represent the same entity. Under some fairly reasonable condi
tions, there is an algorithm for finding a unique way to group all sets of records
that represent a common entity and to perform this grouping efficiently.

21.7.1 Deciding W hether Records Represent a Common
Entity

Imagine we have a collection of records that represent members of an entity set.
These records may be tuples derived from several different sources, or even from
one source. We only need to know that the records each have the same fields
(although some records may have null in some fields). We hope to compare the
values in corresponding fields to decide whether or not two records represent
the same entity.

To be concrete, suppose that the entities are people, and the records have
three fields: name, address, and phone. Intuitively, we want to say that two
records represent the same individual if the two records have similar values
for each of the three fields. It is not sufficient to insist that the values of
corresponding fields be identical for a number of reasons. Among them:

1. Misspellings. Often, data is entered by a clerk who hears something over
the phone, or who copies a written form carelessly. Thus, “Smythe” may
appear as “Smith,” or “Jones” may appear as “Jomes” (“m” and “n” are
adjacent on the keyboard). Two phone numbers or street addresses may
differ in a digit, yet really represent the same phone or house.

2. Variant Names. A person may supply their middle initial or not. They
may use their complete first name or just their initial, or a nickname.
Thus, “Susan Williams” may appear as “Susan B. Williams,” “S. Will
iams,” or “Sue Williams” in different records.

3. Misunderstanding of Names. There are many different systems of names
used throughout the world. In the US, it is sometimes not understood
that Asian names generally begin with the family name. Thus, “Chen
Li” and “Li Chen” may or may not turn out to be the same person. The
first author of this book has been referred to as “Hector Garcia-Molina,”
“Hector Garcia,” and even “Hector G. Molina.”

4. Evolution of Values. Sometimes, two different records that represent the
same entity were created at different times. A person may have moved
in the interrim, so the address fields in the two records are completely
different. Or they may have started using a cell phone, so the phone

1080 CHAPTER 21. INFORMATION INTEGRATION

fields are completely different. Area codes are sometimes changed. For
example, every (650) number used to be a (415) number, so an old record
may have (415) 555-1212 and a newer record (650) 555-1212, and yet these
numbers refer to the same phone.

5. Abbreviations. Sometimes words in an address are spelled out; other times
an abbreviation may be used. Thus, “Sesame St.” and “Sesame Street”
may be the same street.

Thus, when deciding whether two records represent the same entity, we need
to look carefully at the kinds of discrepancies that occur and devise a scoring
system or other test that measures the similarity of records. Ultimately, we
must turn the score into a yes /no decision: do the records represent the same
entity or not? We shall mention below two useful approaches to measuring the
similarity of records.

E d it D istan ce

Values that are strings can be compared by counting the number of insertions
and/or deletions of characters it takes to turn one string into another. Thus,
Smythe and Smith are at distance 3 (delete the “y” and “e,” then insert the
“i”).

An alternative edit distance counts 1 for a mutation, that is, a replacement
of one letter by another. In this measure, Smythe and Smith are at distance 2
(mutate “y” to “i” and delete “e”). This edit distance makes mistyped charac
ters “cost” less, and therefore may be appropriate if typing errors are common
in the data.

Finally, we may devise a specialized distance that takes into account the
way the data was constructed. For instance, if we decide that changes of area
codes are a major source of errors, we might charge only 1 for changing the
entire area code from one to another. We might decide that the problem of
misinterpreted family names was severe and allow two components of a name
to be swapped at low cost, so Chen Li and Li Chen are at distance 1.

Once we have decided on the appropriate edit distance for each field, we
can define a similarity measure for records. For example, we could sum the edit
distances of each of the pairs of corresponding fields in the two records, or we
could compute the sum of the squares of those distances. Whatever formula we
use, we have then to say that records represent the same entity if their similarity
measure is below a given threshold.

N orm alization

Before applying an edit distance, we might wish to “normalize” records by
replacing certain substrings by others. The goal is that substrings representing
the same “thing” will become identical. For instance, it may make sense to use
a table of abbreviations and replace abbreviations by what they normally stand

21.7. E N TITY RESOLUTION 1081

for. Thus, St. would be replaced by Street in street addresses and by Saint
in town names. Also, we could use a table of nicknames and variant spellings,
so Sue would become Susan and Jeffery would become Geoffrey.

One could even use the Soundex encoding of names, so names that sound
the same are represented by the same string. This system, used by telephone in
formation services, for example, would represent Smith and Smythe identically.
Once we have normalized values in the records, we could base our similarity test
on identical values only (e.g., a majority of fields have identical values in the
two records), or we could further use an edit distance to measure the difference
between normalized values in the fields.

21.7.2 Merging Similar Records
In many applications, when we find two records that are similar enough to
merge, we would like to replace them by a single record that, in some sense,
contains the information of both. For instance, if we want to compile a “dossier”
on the entity represented, we might take the union of all the values in each
field. Or we might somehow combine the values in corresponding fields to make
a single value. If we try to combine values, there are many rules that we might
follow, with no obvious best approach. For example, we might assume that a
full name should replace a nickname or initials, and a middle initial should be
used in place of no middle initial. Thus, “Susan Williams” and “S. B. Williams”
would be combined into “Susan B. Williams.”

It is less clear how to deal with misspellings. For instance, how would we
combine the addresses “123 Oak St.” and “123 Yak St.”? Perhaps we could
look at the town or zip-code and determine that there was an Oak St. there
and no Yak St. But if both existed and had 123 in their range of addresses,
there is no right answer.

Another problem that arises if we use certain combinations of a similarity
test and a merging rule is that our decision to merge one pair of records may
preclude our merging another pair. An example may help illustrate the risk.

name address phone
(1) Susan Williams 123 Oak St. 818-555-1234
(2) Susan Williams 456 Maple St. 818-555-1234
(3) Susan Williams 456 Maple St. 213-555-5678

Figure 21.12: Three records to be merged

E xam ple 21.22: Suppose that we have the three name-address-phone records
in Fig. 21.12. and our similarity rule is: “must agree exactly in at least two out
of the three fields.” Suppose also that our merge rule is: “set the field in which
the records disagree to the empty string.”

1082 CHAPTER 21. INFORMATION INTEGRATION

Then records (1) and (2) are similar; so are records (2) and (3). Note that
records (1) and (3) are not similar to each other, which serves to remind us that
“similarity” is not normally a transitive relationship. If we decide to replace
(1) and (2) by their merger, we are left with the two tuples:

name address phone

(1-2) Susan Williams 818-555-1234
(3) Susan Williams 456 Maple St. 213-555-5678

These records disagree in two fields, so they cannot be merged. Had we merged
(1) and (3) first, we would again have a situation where the remaining record
cannot be merged with the result.

Another choice for similarity and merge rules is:

1. Merge by taking the union of the values in each field, and

2. Declare two records similar if at least two of the three fields have a
nonempty intersection.

Consider the three records in Fig. 21.12. Again, (1) is similar to (2) and (2) is
similar to (3), but (1) is not similar to (3). If we choose to merge (1) and (2)
first, we get:

name address phone

(1-2) Susan Williams {123 Oak St. 818-555-1234
456 Maple St.}

(3) Susan Williams 456 Maple St. 213-555-5678
Now, the remaining two tuples are similar, because 456 Maple S t . is a member
of both address sets and Susan W illiams is a member of both name sets. The
result is a single tuple:

name address phone

(1-2-3) Susan Williams {123 Oak St., {818-555-1234,
456 Maple St.} 213-555-5678}

□

21.7.3 Useful Properties of Similarity and Merge
Functions

Any choice of similarity and merge functions allows us to test pairs of records for
similarity and merge them if so. As we saw in the first part of Example 21.22,
the result we get when no more records can be merged may depend on which
pairs of mergeable records we consider first. Whether or not different ending
configurations can result depends on properties of similarity and merger.

There are several properties that we would expect any merge function to
satisfy. If A is the operation that produces the merge of two records, it is
reasonable to expect:

21.7. E N T IT Y RESOLUTION 1083

1. r A r = r (Idempotence). That is, the merge of a record with itself should
surely be that record.

2. rA s = sA r (Commutativity). If we merge two records, the order in which
we list them should not matter.

3. (rA s)A t = rA (sA t) (Associativity). The order in which we group records
for a merger should not matter.

These three properties say that the merge operation is a semilattice. Note that
both merger functions in Example 21.22 have these properties. The only tricky
point is that we must remember that r A s need not defined for all records r
and s. We do, however, assume that:

• If r and s are similar, then r A s is defined.

There are also some properties that we expect the similarity relationship to
have, and ways that we expect similarity and merging to interact. We shall use
r « s to say that records r and s are similar.

a) r ~ r (Idempotence for similarity). A record is always similar to itself.

b) r « s if and only if s « r (Commutativity of similarity). That is, in
deciding whether two records are similar, it does not matter in which
order we list them.

c) If r « s, then r « (s A t) (Representability). This rule requires that if r is
similar to some other record s (and thus could be merged with s), but s
is instead merged with some other record t, then r remains similar to the
merger of s and t and can be merged with that record.

Note that representability is the property most likely to fail. In particular,
it fails for the first merger rule in Example 21.22, where we merge by setting
disagreeing fields to the empty string. In particular, representability fails when
r is record (3) of Fig. 21.12, s is (2), and t is (1). On the other hand, the second
merger rule of Example 21.22 satisfies the representability rule. If r and s have
nonempty intersections in at least two fields, those shared values will still be
present if we replace s by s At.

The collection of properties above are called the ICAR properties. The let
ters stand for Idempotence, Commutativity, Associativity, and Representability,
respectively.

21.7.4 The R-Swoosh Algorithm for ICAR Records
When the similarity and merge functions satisfy the ICAR properties, there
is a simple algorithm that merges all possible records. The representability
property guarantees that if two records are similar, then as they are merged
with other records, the resulting records are also similar and will eventually

1084 CHAPTER 21. INFORMATION INTEGRATION

be merged. Thus, if we repeatedly replace any pair of similar records by their
merger, until no more pairs of similar records remain, then we reach a unique
set of records that is independent of the order in which we merge.

A useful way to think of the merger process is to imagine a graph whose
nodes are the records. There is an edge between nodes r and s if r « s. Since
similarity need not be transitive, it is possible that there are edges between r
and s and between s and t, yet there is no edge between r and t. For instance,
the records of Fig. 21.12 have the graph of Fig. 21.13.

Figure 21.13: Similarity graph from Fig. 21.12

However, representability tells us that if we merge s and t, then because r
is similar to s, it will be similar to s A t. Thus, we can merge all three of r, s,
and t. Likewise, if we merge r and s first, representability says that because
s « i, we also have (r A s) « t, so we can merge t with r As. Associativity tells
us that the resulting record will be the same, regardless of the order in which
we do the merge.

The idea described above extends to any set of ICAR nodes (records) that
are connected in any way. That is, regardless of the order in which we do the
merges, the result is that every connected component of the graph becomes a
single record. This record is the merger of all the records in that component.
Commutativity and associativity are enough to tell us that the order in which
we perform the mergers does not matter.

Although computing connected components of a graph is simple in principle,
when we have millions of records or more, it is not feasible to construct the
graph. To do so would require us to test similarity of every pair of records.
The “R-Swoosh” algorithm is an implementation of this idea that organizes
the comparisons so we avoid, in many cases, comparing all pairs of records.
Unfortunately, if no records at all are similar, then there is no algorithm that
can avoid comparing all pairs of records to determine this fact.

A lg o rith m 21.23: R-Swoosh.

IN P U T : A set of records I, a similarity function « , and a merge function A.
We assume that « and A satisfy the ICAR properties. If they do not, then the
algorithm will still merge some records, but the result may not be the maximum
or best possible merging.

O U T P U T : A se t o f m erg ed reco rd s O.

M E T H O D : Execute the steps of Fig. 21.14. The value of O a t the end is the
output. □

21.7. E N TITY RESOLUTION 1085

0 := emptyset;
WHILE I is not empty DO BEGIN

let r be any record in I;
find, if possible, some record s in 0 that is similar to r;
IF no record s exists THEN

move r from I to 0
ELSE BEGIN

delete r from I;
delete s from 0;
add the merger of r and s to I;

END;
END;

Figure 21.14: The R-Swoosh Algorithm

E xam ple 21.24: Suppose that I is the three records of Fig. 21.12, and that
we use the ICAR similarity and merge functions from Example 21.22, where we
take the union of possible values for a field to produce the corresponding field
in the merged record. Initially, O is empty. We pick one of the records from I,
say record (1) to be the record r in Fig. 21.14. Since O is empty, there is no
possible record s, so we move record (1) from I to O.

We next pick a new record r. Suppose we pick record (3). Since record (3)
is not similar to record (1), which is the only record in O, we again have no
value of s, so we move record (3) from I to O. The third choice of r must be
record (2). That record is similar to both of the records in O, so we must pick
one to be s; say we pick record (1). Then we merge records (1) and (2) to get
the record

name address phone
(1- 2) Susan Williams {123 Oak St., 818-555-1234

456 Maple St.}
We remove record (2) from I, remove record (1) from O, and insert the above
record into I. At this point, I consists of only the record (1-2) and O consists
of only the record (3).

The execution of the R-Swoosh Algorithm ends after we pick record (1-2)
as r — the only choice — and pick record (3) as s — again the only choice.
These records are merged, to produce

name address phone
(1-2-3) Susan Williams {123 Oak St., {818-555-1234,

456 Maple St.} 213-555-5678}

and deleted from I and O, respectively. The record (1-2-3) is put in I , at which
point it is the only record in I , and O is empty. At the last step, this record is
moved from I to O, and we are done. □

1086 CHAPTER 21. INFORMATION INTEGRATION

21.7.5 W hy R-Swoosh Works

Recall that for ICAR similarity and merge functions, the goal is to merge records
that form connected components. There is a loop invariant that holds for the
while-loop of Fig. 21.14:

• If a connected component C is not completely merged into one record,
then there is at least one record in I that is either in C or was formed by
the merger of some records from C.

To see why this invariant must hold, suppose that the selected record r in
some iteration of the loop is the last record in I from its connected component
C. If r is the only record that is the merger of one or more records from C,
then it may be moved to O without violating the loop invariant.

However, if there are other records that are the merger of one or more records
from C, they are in O. Let r be the merger of the set of records R C C. Note
that R could be only one record, or could be many records. However, since R is
not all of C , there must be an original record ri in R that is similar to another
original record r 2 that is in C — R. Suppose r2 is currently merged into a record
r' in O. By representability, perhaps applied several times, we can start with
the known rj « r2 and deduce that r « r ' . Thus, r' can be s in Fig. 21.14.
As a result, r will surely be merged with some record from O. The resulting
merged record will be placed in I and is the merger of some or all records from
C. Thus, the loop invariant continues to hold.

21.7.6 Other Approaches to Entity Resolution
There are many other algorithms known to discover and (optionally) merge
similar records. We shall outline some of them briefly here.

N on -IC A R D a ta sets

First, suppose the ICAR properties do not hold, but we want to find all possible
mergers of records, including cases where one record r i is merged with a record
r2, but later, n (not the merger n Ar2) is also merged with r3. If so, we need to
systematically compare all records, including those we constructed by merger,
with all other records, again including those constructed by merger.

To help control the proliferation of records, we can define a dominance
relation r < s that means record s contains all the information contained in
record r. If so, we can eliminate record r from further consideration. If the
merge function is a semilattice, then the only reasonable choice for < is a < b
if and only if a A b = b. This dominance function is always a partial order,
regardless of what semilattice is used. If the merge operation is not even a
semilattice, then the dominance function must be constructed in an ad-hoc
manner.

21.7. E N TITY RESOLUTION 1087

C lustering

In some entity-resolution applications, we do not want to merge at all, but will
instead group records into clusters such that members of a cluster are in some
sense similar to each other and members of different clusters are not similar.
For example, if we are looking for similar products sold on eBay, we might want
the result to be not a single record for each kind of product, but rather a list of
the records that represent a common product for sale. Clustering of large-scale
data involves a complex set of options. We shall discuss the matter further in
Section 22.5.

P a rtitio n in g

Since any algorithm for doing a complete merger of similar records may be forced
to examine each pair of records, it may be infeasible to get an exact answer to a
large entity-resolution problem. One solution is to group the records, perhaps
several times, into groups that are likely to contain similar records, and look
only within each group for pairs of similar records.

E xam ple 21.25: Suppose we have millions of name-address-phone records,
and our measure of similarity is that the total edit distance of the values in the
three fields must be at most 5. We could partition the records into groups such
that each group has the same name field. We could also partition the records
according to the value in their address field, and a third time according to their
phone numbers. Thus, each record appears in three groups and is compared
only with the members of those groups. This method will not notice a pair of
similar records that have edit distance 2 in their phone fields, 2 in their name
fields, and 1 in their address fields. However, in practice, it will catch almost
all similar pairs. □

The idea in Example 21.25 is actually a special case of an important idea:
“locality-sensitive hashing.” We discuss this topic in Section 22.4.

21.7.7 Exercises for Section 21.7
Exercise 21.7.1: A string s is a subsequence of a string t if s is formed from
t by deleting 0 or more positions of t. For example, if t = "abcab", then
substrings of t include "aba" (delete positions 3 and 5), "be" (delete positions
1, 4, and 5), and the empty string (delete all positions).

a) What are all the other subsequences of "abcab"?

b) What are the subsequences of "aabb"?

! c) If a string consists of n distinct characters, how many subsequences does
it have?

1088 CHAPTER 21. INFORMATION INTEGRATION

Exercise 21.7 .2 : A longest common subsequence of two strings s and t is any
string r that is a subsequence of both s and t and is as long as any other string
that is a substring of both. For example, the longest common subsequences of
"aba" and "bab" are "ab" and "ba". Give a the longest common subsequence
for each pair of the following strings: "she", "hers", "they", and " th e ir s " ?

Exercise 21 .7 .3 : A shortest common supersequence of two strings s and t is
any string r of which both s and t are subsequences, such that no string shorter
than r has both s and t as subsequences. For example, the some of the shortest
common supersequences of "abc" and "cb" are "abcb" and "acbc".

a) What are the shortest common supersequences of each pair of strings in
Exercise 21.7.2?

! b) What are all the other shortest common supersequences of "abc" and
"cb"?

!! c) If two strings have no characters in common, and are of lengths m and
n, respectively, how many shortest common supersequences do the two
strings have?

!! Exercise 21.7 .4 : Suppose we merge records (whose fields are strings) by tak
ing, for each field, the lexicographically first longest common subsequence of
the strings in the corresponding fields.

a) Does this definition of merge satisfy the idempotent, commutative, and
associative laws?

b) Repeat (a) if instead corresponding fields are merged by taking the lexi
cographically first shortest common supersequence.

! Exercise 21 .7 .5 : Suppose we define the similarity and merge functions by:

i. Records are similar if in all fields, or in all but one field, either both
records have the same value or one has NULL.

ii. Merge records by letting each field have the common value if both records
agree in that field or have value NULL if the records disagree in that field.
Note that NULL disagrees with any nonnull value.

Show that these similarity and merge functions have the ICAR properties.

! E xercise 21.7 .6 : In Section 21.7.6 we suggested that if A is a semilattice, then
the dominance relationship defined by a < b if and only if a A b = b is a partial
order. That is, a < b and b < c imply a < c (transitivity) and a < b and b < a
if and only if a — b (antisymmetry). Prove that < is a partial order, using the
reflexivity, commutativity, and associativity properties of a semilattice.

21.8. SUMMARY OF CHAPTER 21 1089

21.8 Summary of Chapter 21
♦ Integration of Information: When many databases or other information

sources contain related information, we have the opportunity to combine
these sources into one. However, heterogeneities in the schemas often ex
ist; these incompatibilities include differing types, codes or conventions
for values, interpretations of concepts, and different sets of concepts rep
resented in different schemas.

♦ Approaches to Information Integration: Early approaches involved “fed
eration,” where each database would query the others in the terms un
derstood by the second. A more recent approach is warehousing, where
data is translated to a global schema and copied to the warehouse. An
alternative is mediation, where a virtual warehouse is created to allow
queries to a global schema; the queries are then translated to the terms
of the data sources.

♦ Extractors and Wrappers: Warehousing and mediation require compo
nents at each source, called extractors and wrappers, respectively. A
major function of either is to translate queries and results between the
global schema and the local schema at the source.

♦ Wrapper Generators: One approach to designing wrappers is to use tem
plates, which describe how a query of a specific form is translated from the
global schema to the local schema. These templates are tabulated and in
terpreted by a driver that tries to match queries to templates. The driver
may also have the ability to combine templates in various ways, and/or
perform additional work such as filtering, to answer more complex queries.

♦ Capability-Based Optimization: The sources for a mediator often are able
or willing to answer only limited forms of queries. Thus, the mediator
must select a query plan based on the capabilities of its sources, before it
can even think about optimizing the cost of query plans as conventional
DBMS’s do.

♦ Adornments: These provide a convenient notation in which to describe
the capabilities of sources. Each adornment tells, for each attribute of
a relation, whether, in queries matching that adornment, this attribute
requires or permits a contant value, and whether constants must be chosen
from a menu.

♦ Conjunctive Queries: A single Datalog rule, used as a query, is a con
venient representation for queries involving joins, possibly followed by
selection and/or projection.

♦ The Chain Algorithm: This algorithm is a greedy approach to answering
mediator queries that are in the form of a conjunctive query. Repeatedly
look for a subgoal that matches one of the adornments at a source, and

1090 CHAPTER 21. INFORMATION INTEGRATION

obtain the relation for that subgoal from the source. Doing so may provide
a set of constant bindings for some variables of the query, so repeat the
process, looking for additional subgoals that can be resolved.

♦ Local-as-View Mediators: These mediators have a set of global, virtual
predicates or relations at the mediator, and each source is described by
views, which axe conjunctive queries whose subgoals use the global predi
cates. A query at the mediator is also a conjunctive query using the global
predicates.

♦ Answering Queries Using Views: A local-as-view mediator searches for
solutions to a query, which are conjunctive queries whose subgoals use the
views as predicates. Each such subgoal of a proposed solution is expanded
using the conjunctive query that defines the view, and it is checked that
the expansion is contained in the query. If so, the proposed solution does
indeed provide (some of the) answers to the query.

♦ Containment of Conjunctive Queries: We test for containment of conjunc
tive queries by looking for a containment mapping from the containing
query to the contained query. A containment mapping is a substitution
for variables that turns the head of the first into the head of the second
and turns each subgoal of the first into some subgoal of the second.

♦ Limiting the Search for Solutions: The LMSS Theorem says that when
seaching for solutions to a query at a local-as-view mediator, it is sufficient
to consider solutions that have no more subgoals than the query does.

♦ Entity Resolution: The problem is to take records with a common schema,
find pairs or groups of records that are likely to represent the same entity
(e.g., a person) and merge these records into a single record that represents
the information of the entire group.

♦ ICAR Similarity and Merge Functions: Certain choices of similarity and
merge functions satisfy the properties of idempotence, commutativity, as
sociativity, and representability. The latter is the key to efficient algo
rithms for merging, since it guarantees that if two records are similar,
their successors will also be similar even as they are merged into records
that represent progressively larger sets of original records.

♦ The R-Swoosh Algorithm: If similarity and merge functions have the
ICAR properties, then the complete merger of similar records will group
all records that are in a connected component of the graph formed from
the similarity relation on the original records. The R-Swoosh algorithm
is an efficient way to make all necessary mergers without determining
similarity for every pair of records.

21.9. REFERENCES FOR CHAPTER 21 1091

21.9 References for Chapter 21
Federated systems are surveyed in [11]. The concept of the mediator comes from
[12]. Implementation of mediators and wrappers, especially the wrapper-gen-
erator approach, is covered in [4], Capability-based optimization for mediators
was explored in [10, 13]; the latter describes the Chain Algorithm.

Local-as-view mediators come from [7]. The LMSS Theorem is from [6], and
the idea of containment mappings to decide containment of conjunctive queries
is from [2], [8] extends the idea to sources with limited capabilities. [5] is a
survey of logical information-integration techniques.

Entity resolution was first studied informally by [9] and formally by [3].
The theory presented here, the R-Swoosh Algorithm, and related algorithms
are from [1].

1. O. Benjelloun, H. Garcia-Molina, J. Jonas, Q. Su, S. E. Whang, and J.
Widom, “Swoosh: a generic approach to entity resolution.” Available as
h t t p : //d b p u b s . S tan fo rd . edu:8090/pub/2005-5.

2. A. K. Chandra and P. M. Merlin, “Optimal implementation of conjunc
tive queries in relational databases,” Proc. Ninth Annual Symposium on
Theory of Computing, pp. 77-90, 1977.

3. I. P. Fellegi and A. B. Sunter, “A theory for record linkage,” J. American
Statistical Assn. 64, pp. 1183-1210, 1969.

4. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-
giv, V. Vassalos, J. D. Ullman, and J. Widom, “The TSIMMIS approach
to mediation: data models and languages,” J. Intelligent Information
Systems 8:2 (1997), pp. 117-132.

5. A. Y. Levy, “Logic-based techniques in data integration,” Logic-Based,
Artificial Intelligence (J. Minker, ed.), pp. 575-595, Kluwer, Norwell, MA,
2000.

6 . A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava, “Answer
ing queries using views,” Proc. 25th Annual Symposium on Principles of
Database Systems, pp. 95-104, 1995.

7. A. Y. Levy, A. Rajaraman, and J. J. Ordille, “Querying heterogeneous
information sources using source descriptions,” Intl. Conf. on Very Large
Databases, pp. 251-262, 1996.

8 . A. Y. Levy, A. Rajaraman, and J. D. Ullman, “Answering queries using
limited external query processors,” Proc. Fifteenth Annual Symposium on
Principles of Database Systems, pp. 227-237, 1996.

9. H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James, “Auto
matic linkage of vital records,” Science 130, pp. 954-959, 1959.

1092 CHAPTER 21. INFORMATION INTEGRATION

10. Y. Papakonstantinou, A. Gupta, and L. Haas, “Capabilities-base query
rewriting in mediator systems,” Conference on Parallel and Distributed
Information Systems (1996). Available as
http://dbpubs.Stanford.edu/pub/1995-2.

11. A. P. Sheth and J. A. Larson, “Federated databases for managing dis
tributed, heterogeneous, and autonomous databases,” Computing Surveys
22:3 (1990), pp. 183-236.

12. G. Wiederhold, “Mediators in the architecture of future information sys
tems,” IEEE Computer C -25:l (1992), pp. 38-49.

13. R. Yemeni, C. Li, H. Garcia-Molina, and J. D. Ullman, “Optimizing
large joins in mediation systems,” Proc. Seventh Intl. Conf. on Database
Theory, pp. 348-364, 1999.

Chapter 22

Data Mining

“Data mining” is the process of examining data and finding simple rules or
models that summarize the data. The rules can range from very general, such
as “50% of the people who buy hot dogs also buy mustard,” to the very specific:
“these three individual’s pattern of credit-card expenditures indicate that they
are running a terrorist cell.” Our discussion of data mining will concentrate on
mining information from very large databases.

We begin by looking at “market-basket” data, records of the things people
buy together, such as at a supermarket. This study leads to a number of
efficient algorithms for finding “frequent itemsets” in large databases, including
the “A-Priori” Algorithm and its extensions.

We next turn to finding “similar” items in a large collection. Example appli
cations include finding documents on the Web that share a significant amount
of common text or finding books that have been bought by many of the same
Amazon customers. Two key techniques for this problem are “minhashing” and
“locality-sensitive hashing.”

We conclude the chapter with a discussion of the problem of large-scale
clustering in high dimensions. An example application is clustering Web pages
by the words they use. In that case, each word might be a dimension, and a
document is placed in this space by counting the number of occurrences of each
word.

22.1 Frequent-Itemset Mining

There is a family of problems that arise from attempts by marketers to use
large databases of customer purchases to extract information about buying
patterns. The fundamental problem is called “frequent itemsets” — what sets
of items are often bought together? This information is sometimes further
refined into “association rules” — implications that people who buy one set of
items are likely to buy another particular item. The same technology has many

1093

1094 CHAPTER 22. DATA MINING

other uses, from discovering combinations of genes related to certain diseases
to finding plagiarism among documents on the Web.

22.1.1 The Market-Basket Model
In several important applications, the data involves a set of items, perhaps all
the items that a supermarket sells, and a set of baskets-, each basket is a subset
of the set of items, typically a small subset. The baskets each represent a set
of items that someone has bought together. Here are two typical examples of
where market-basket data appears.

Superm arket C heckout

A supermarket chain may sell 10,000 different items. Daily, millions of cus
tomers wheel their shopping carts (“market baskets”) to the checkout, and the
cash register records the set of items they purchased. Each such set is one
basket, in the sense used by the market-basket model. Some customers may
have identified themselves, using a discount card that many supermarket chains
provide, or by their credit card. However, the identity of the customer often is
not necessary to get useful information from the data.

Stores analyze the data to learn what typical customers buy together. For
example, if a large number of baskets contain both hot dogs and mustard, the
supermarket manager can use this information in several ways.

1. Apparently, many people walk from where the hot dogs are to where the
mustard is. We can put them close together, and put between them other
foods that might also be bought with hot dogs and mustard, e.g., ketchup
or potato chips. Doing so can generate additional “impulse” sales.

2. The store can run a sale on hot dogs and at the same time raise the price
of mustard (without advertising that fact, of course). People will come
to the store for the cheap hot dogs, and many will need mustard too. It
is not worth the trouble to go to another store for cheaper mustard, so
they buy that too. The store makes back on mustard what it loses on hot
dogs, and also gets more customers into the store.

While the relationship between hot dogs and mustard may be obvious to
those who think about the matter, even if they have no data to analyze, there
are many pairs of items that are connected but may be less obvious. The most
famous example is diapers and beer.1

There are some conditions on when a fact about co-occurrence of sets of
items can be useful. Any useful pair (or larger set) of items must be bought
by many customers. It is not even necessary that there be any connection
between purchases of the items, as long as we know lots of customers buy them

1One theory: if you buy diapers, you probably have a baby at home. If so, you are not
going out to a bar tonight, so you are more likely to buy beer at a supermarket.

22.1. FREQ UENT-ITEMSET MINING 1095

all. Conversely, strongly linked, but rarely purchased items (e.g., caviar and
champagne) are not very interesting to the supermarket, because it doesn’t pay
to advertise things that few customers are interested in buying anyway.

O n-Line Purchases

Amazon.com offers several million different items for sale, and has several tens of
millions of customers. While brick-and-mortar stores such as the supermarket
discussed above can only make money on combinations of items that large
numbers of people buy, Amazon and other on-line sellers have the opportunity
to tailor their offers to every customer. Thus, an interesting question is to
find pairs of items that many customers have bought together. Then, if one
customer has bought one of these items but not the other, it might be good
for Amazon to advertise the second item when this customer next logs in. We
can treat the purchase data as a market-basket problem, where each “basket”
is the set of items that one particular customer ever has bought.

But there is another way Amazon can use the same data. This approach,
often called “collaborative filtering,” has us look for customers that are similar
in their purchase habits. For example, we could look for pairs, or even larger
sets, of customers that have bought many of the same items. Then, if a customer
logs in, Amazon might pitch an item that a similar customer bought, but this
customer has not.

Finding similar customers also can be couched as a market-basket problem.
Here, however, the “items” are the customers and the “baskets” are the items
for sale by Amazon. That is, for each item / sold by Amazon there is a “basket”
consisting of all the customers who bought I.

It is worth noting that the meaning of “many baskets” differs in the on-line
and brick-and-mortar situations. In the brick-and-mortar case, we may need
thousands of baskets containing a set of items before we can exploit that infor
mation profitably. For on-line stores, we need many fewer baskets containing a
set of items, before we can use the information in the limited context we intend
(pitching one item to one customer).

On the other hand, the brick-and-mortar store doesn’t need too many ex
amples of good sets of items to use; they can’t run sales on millions of items. In
contrast, the on-line store needs millions of good pairs to work with — at least
one for each customer. As a result, the most effective techniques for analyzing
on-line purchases may not be those of this section, which exploit the assumption
that many occurrences of a pair of items are needed. Rather, we shall resume
our discussion of finding correlated, but infrequent, pairs in Section 22.3.

22.1.2 Basic Definitions
Suppose we are given a set of items I and a set of baskets B. Each basket b
in B is a subset of I. To talk about frequent sets of items, we need a support
threshold s, which an integer. We say a set of items J C I is frequent if there

1096 CHAPTER 22. DATA MINING

are at least s baskets that contain all the items in J (perhaps along with other
items). Optionally, we can express the support s as a percentage of |B |, the
number of baskets in B.

E xam ple 22.1: Suppose our set of items I consists of the six movies

{B I, B S , BU, H Pl, HP2, HP3}

standing for the Bourne Identity, Bourne Supremacy, Bourne Ultimatum, and
Harry Potter I, II, and III. The table of Fig. 22.1 shows eight viewers (baskets
of items) and the movies they have seen. An x indicates they saw the movie.

B I B S BU H P l HP2 HPS
Vl X X
V2

v3 X
V4 X X
V5 X X
V6 X
v7 X
v8 X X

x
x

X
X
X
X

X
X

X
X

Figure 22.1: Market-basket data about viewers and movies

Suppose that s = 3. That is, in order for a set of items to be considered a
frequent itemset, it must be a subset of at least three baskets. Technically, the
empty set is a subset of all baskets, so it is frequent but uninteresting. In this
example, all singleton sets except {HPS} appear in at least three baskets. For
example, {B I} is contained in V\, V3, V4 , V5, Vq, and Vg.

Now, consider which doubleton sets (pairs of items) are frequent. Since HP3
is not frequent by itself, it cannot be part of a frequent pair. However, each of
the 10 pairs involving the other five movies might be frequent. For example,
{B I, B S } is frequent because it appears in at least three baskets; in fact it
appears in four: Vi, V4 , V5, and Vs.

Also:

• {B I, H P l} is frequent appearing in V3, V4 , V5, and Vg.

• {BS, HP 1} is frequent, appearing in V4, V5, V7, and Vs.

• {H Pl, HP2} is frequent, appearing in V2, V4, V7, and Vg.

No other pair is frequent.
There is one frequent triple: {B I,B S ,H P 1}. This set is a subset of the

baskets V4 , V5, and Vs. There are no frequent itemsets of size greater than
three. □

22.1. FREQ UENT-ITEMSET MINING 1097

22.1.3 Association Rules
A natural query about market-basket data asks for implications among pur
chases that people make. That is, we want to find pairs of items such that
people buying the first are likely to buy the second as well. More generally,
people buying a particular set of items are also likely to buy yet another par
ticular item. This idea is formalized by “association rules.”

An association rule is a statement of the form { i i , i2, . . . , i n} => j , where
the i ’s and j are items. In isolation, such a statement asserts nothing. However,
three properties that we might want in useful rules of this form are:

1. High Support: the support of this association rule is the support of the
itemset {*i,j2, . . . , i n,j}-

2. High Confidence: the probability of finding item j in a basket that has
all of {*i, *2, . . ■ , in} is above a certain threshold, e.g., 50%, e.g., “at least
50% of the people who buy diapers buy beer.”

3. Interest: the probability of finding item j in a basket that has all of
{*i, *2 , . . . , in} is significantly higher or lower than the probability of find
ing j in a random basket. In statistical terms, j correlates with

{ ^ 1 1 •• • i in}

either positively or negatively. The alleged relationship between diapers
and beer is really a claim that the association rule {diapers} => beer has
high interest in the positive direction.

Note that even if an association rule has high confidence or interest, it will
tend not to be useful unless it also has high support. The reason is that if
the support is low, then the number of instances of the rule is not large, which
limits the benefit of a strategy that exploits the rule. Also, it is important not
to confuse an association rule, even with high values for support, confidence,
and interest, with a causal rule. For instance, the “beer and diapers” example
mentioned in Section 22.1.1 suggests that the association rule {beer} => diapers
has high confidence, but that does not mean beer “causes” diapers. Rather,
the theory suggested there is that both are caused by a “hidden variable” —
the baby at home.

E xam ple 22.2 : Using the data from Fig. 22.1, consider the association rule

{B I, B S} => BU

Its support is 2, since there are two baskets, V\ and V5 that contain all three
“Bourne” movies. The confidence of the rule is 1/2, since there are four baskets
that contain both B I and B S , and two of these also contain BU. The rule is
slightly interesting in the positive direction. That is, BU appears in 3/8 of all
baskets, but appears in 1 /2 of those baskets that contain the left side of the
association rule. □

1098 CHAPTER 22. DATA MINING

As long as high support is a significant requirement for a useful association
rule, the search for high-confidence or high-interest association rules is really the
search for high-support itemsets. Once we have these itemsets, we can consider
each member of an itemset as the item on the right of the association rule. We
may, as part of the process of finding frequent itemsets, already have computed
the counts of baskets for the subsets of this frequent itemset, since they also
must be frequent. If so, we can compute easily the confidence and interest of
each potential association rule. We shall thus, in what follows, leave aside the
problem of finding association rules and concentrate on efficient methods for
finding frequent itemsets.

22.1.4 The Computation Model for Frequent Itemsets
Since we are studying database systems, our first thought might be that the
market-basket data is stored in a relation such as:

Baskets(basket, item)

consisting of pairs that are a basket ID and the ID of one of the items in
that basket. In principle, we could find frequent itemsets by a SQL query.
For instance, the query in Fig. 22.2 finds all frequent pairs. It joins Baskets
with itself, grouping the resulting tuples by the two items found in that tuple,
and throwing away groups where the number of baskets is below the support
threshold s. Note that the condition I. item < J . item in the WHERE-clause is
there to prevent the same pair from being considered in both orders, or for a
“pair” consisting of the same item twice from being considered at all.

SELECT I.item, J.item, C0UNT(I.basket)
FROM Baskets I, Baskets J
WHERE I.basket = J.basket AND

I.item < J.item
GROUP BY I.item, J.item
HAVING COUNT(I.basket) >= s;

Figure 22.2: Naive way to find all high-support pairs of items

However, if the size of the Baskets relation is very large, the join of the
relation with itself will be too large to construct, or at least too time-consuming
to construct. No m atter how efficiently we compute the join, the result relation
contains one tuple for each pair of items in a basket. For instance, if there
are 1,000,000 baskets, and each basket contains 20 items, then there will be
190,000,000 tuples in the join [since (22°) = 190]. We shall see in Section 22.2
that it is often possible to do much better by preprocessing the Baskets relation.

But in fact, it is not common to store market-basket data as a relation. It
is far more efficient to put the data in a file or files consisting of the baskets,

22.1. FREQUENT-ITEMSET MINING 1099

in some order. A basket is represented by a list of its items, and there is some
punctuation between baskets.

Example 22.3: The data of Fig. 22.1 could be represented by a file that
begins:

{BI,BS,BU}{HP1,HP2)HP3>{BI,HP1>{BI,BS,HP1,HP2}{...

Here, we are using brackets to surround baskets and commas to separate items
within a basket. □

When market-basket data is represented this way, the cost of an algorithm
is relatively simple to estimate. Since we are interested only in cases where the
data is too large to fit in main memory, we can count disk-I/O’s as our measure
of complexity.

However, the matter is even simpler than disk-I/O’s. All the successful
algorithms for finding frequent itemsets read the data file several times, in the
order given. They thus make several passes over the data, and the information
preserved from one pass to the next is small enough to fit in main memory.
Thus, we do not even have to count disk-I/O’s; it is sufficient to count the
number of passes through the data.

22.1.5 Exercises for Section 22.1
Exercise 22.1.1: Suppose we are given the eight “market baskets” of Fig.
22.3.

B 1 = {milk, coke, beer}
b 2 = {milk, pepsi, juice}
Bz = {milk, beer}
b 4 = {coke, juice}
b 5 = {milk, pepsi, beer}
b 6 = {milk, beer, juice, pepsi}
b 7 = {coke, beer, juice}
BS = {beer, pepsi}

Figure 22.3: Example market-basket data

a) As a percentage of the baskets, what is the support of the set {beer, juice}?

b) What is the support of the itemset {coke, pepsi}?

c) What is the confidence of milk given beer (i.e., of the association rule
{beer} => milk)?

d) What is the confidence of juice given milk?

1100 CHAPTER 22. DATA MINING

e) W hat is the confidence of coke, given beer and juice?

f) If the support threshold is 37.5% (i.e., 3 out of the eight baskets are
needed), which pairs of items are frequent?

g) If the support threshold is 50%, which pairs of items are frequent?

! h) W hat is the most interesting association rule with a singleton set on the
left?

22.2 A lgorithm s for Finding Frequent Item sets

We now look at how many passes are needed to find frequent itemsets of a
certain size. We first argue why, in practice, finding frequent pairs is often the
bottleneck. Then, we present the A-Priori Algorithm, a key step in minimizing
the amount of main memory needed for a multipass algorithm. Several im
provements on A-Priori make better use of main memory on the first pass, in
order to make it more feasible to complete the algorithm without exceeding the
capacity of main memory on later passes.

22.2.1 The Distribution of Frequent Item sets

If we pick a support threshold s = 1, then all itemsets that appear in any basket
are “frequent,” so just producing the answer could be infeasible. However, in
applications such as managing sales at a store, a small support threshold is not
useful. Recall that we need many customers buying a set of items before we can
exploit that itemset. Moreover, any data mining of market-basket data must
produce a small number of answers, say tens or hundreds. If we get no answers,
we cannot act, but if we get millions of answers, we cannot read them all, let
alone act on them all.

The consequence of this reasoning is that the support threshold must be
set high enough to make few itemsets frequent. Typically, a threshold around
1% of the baskets is used. Since the probability of an itemset being frequent
goes down rapidly with size, most frequent itemsets will be small. However,
an itemset of size one is generally not useful; we need at least two items in
a frequent itemset in order to apply the marketing techniques mentioned in
Section 22.1.1, for example.

Our conclusion is that in practical uses of algorithms to find frequent item
sets, we need to use a support threshold so tha t there will be a small number
of frequent pairs, and very few frequent itemsets that are larger. Thus, our
algorithms will focus on how to find frequent pairs in a few passes through the
data. If larger frequent itemsets are wanted, the computing resources used to
find the frequent pairs are usually sufficient to find the small number of frequent
triples, quadruples, and so on.

22.2. ALGORITHMS FOR FINDING FREQUENT ITEM SETS 1101

What if Items Aren’t Numbered Conveniently

We assume that items have integer ID’s starting at 0. However, in practice,
items could be represented by long ID’s or by their full names. If so, we
need to keep in main memory a hash table that maps each true item-ID
to a unique integer in the range 0 to k — 1. This table consumes main
memory proportional to the number of items k. No algorithm for finding
frequent pairs or larger itemsets works if the number of items is not small
compared with the available main memory. Thus, we neglect the possible
need for a main-memory table whose size is proportional to the number of
items.

22.2.2 The Naive Algorithm for Finding Frequent
Itemsets

Let us suppose that there is some fixed number of bytes of main memory M ,
perhaps a gigabyte, or 16 gigabytes, or whatever our machine has. Let there be
k different items in our market-basket dataset, and assume they are numbered
0 ,1,. . . , k — 1. Finally, as suggested in Section 22.2.1, we shall focus on the
counting of pairs, assuming that is the bottleneck for memory use.

If there is enough room in main memory to count all the pairs of items as
we make a single pass over the baskets, then we can solve the frequent-pairs
problem in a single pass. In that pass, we read one block of the data file at a
time. We shall neglect the amount of main memory needed to hold this block
(or even several blocks if baskets span two or more blocks), since we may assume
that the space needed to represent a basket is tiny compared with M . For each
basket found on this block, we execute a double loop through its items and for
each pair of items in the basket, we add one to the count for that pair.

The essential problem we face, then, is how do we store the counts of the
pairs of items in M bytes of memory. There are two reasonable ways to do
so, and which is better depends on whether it is common or unlikely that a
given pair of items occurs in at least one basket. In what follows, we shall make
the simplifying assumption that all integers, whether used for a count or to
represent an item, require four bytes. Here are the two contending approaches
to maintaining counts.

Triangular M atrix

If most of the possible pairs of items are expected to appear at least once in
the dataset, then the most efficient use of main memory is a triangular array.
That is, let a be a one-dimensional integer array occupying all available main
memory. We count the pair (i,j) , where 0 < i < j < k in <z[n], where:

1102 CHAPTER 22. DATA MINING

n = (i+ j)2/ 4 + i — 1/4 if i + j is odd
n = (i + j)2/ 4 + i if i + j is even

As long as M > 2k2, there is enough room to store array a, with four bytes per
count. Notice that this method takes only half the space that would be used
by a square array, of which we used only the upper or lower triangle to count
the pairs (i, j) where i < j .

T able o f C ounts

If the probability of a pair of items ever occurring is small, then we can do
with space less than 0 (k 2). We instead construct a hash table of triples (i , j ,c),
where i < j and { i ,j} is one of the itemsets that actually occurs in one or more
of the baskets. Here, c is the count for that pair. We hash the pair (i , j) to find
the bucket in which the count for that itemset is kept.

A triple (i , j , c) requires 12 bytes, so we can maintain counts for M /12 pairs.2
Put another way, if p pairs ever occur in the data, we need main memory at
least M > 12p.

Notice that there are approximately k2/ 2 possible pairs if there are k dif
ferent items. If the number of pairs p = k 2 / 2, then the table of counts requires
three times as much main memory as the triangular matrix. However, if only
1/3 of all possible pairs occur, then the two methods have the same memory
requirements, and if the probability that a given pair occurs is less than 1/3,
then the table of counts is preferable.

A d d ition a l C om m en ts A b o u t th e N a ive A lgorith m

In summary, we can use the naive, one-pass algorithm to find all frequent pairs
if the number of bytes of main memory M exceeds either 2fc2 or 12p, where k is
the number of different items and p is the number of pairs of items that occur
in at least one basket of the dataset.

The same approach can be used to count triples, provided that there is
enough memory to count either all possible triples or all triples that actually
occur in the data. Likewise, we can count quadruples or itemsets of any size,
although the likelihood that we have enough memory goes down as the size goes
up. We leave the formulas for how much memory is needed as an exercise.

22.2.3 The A-Priori Algorithm
The A-Priori Algorithm is a method for finding frequent itemsets of size n,
for any n, in n passes. It normally uses much less main memory than the
naive algorithm, and it is certain to use less memory if the support threshold
is sufficiently high that some singleton sets are not frequent. The important

2Whatever kind of hash table we use, there will be some additional overhead, which we
shall neglect. For example, if we use open addressing, then it is generally necessary to leave
a small fraction of the buckets unfilled, to limit the average search for a triple.

22.2. ALGORITHMS FOR FINDING FREQUENT ITEM SETS 1103

insight that makes the algorithm work is monotonicity of the property of being
frequent. That is:

• If an itemset S is frequent, so is each of its subsets.

The truth of the above statement is easy to see. If 5 is a subset of at least s
baskets, where s is the support threshold, and T C 5, then T is also a subset
of the same baskets that contain S, and perhaps T is a subset of other baskets
as well. The use of monotonicity is actually in its contrapositive form:

• If S is not a frequent itemset, then no superset of 5 is frequent.

On the first pass, the a-priori algorithm counts only the singleton sets of
items. If some of those sets are not frequent by themselves, then their items
cannot be part of any frequent pair. Thus, the nonfrequent items can be ignored
on a second pass through the data, and only the pairs consisting of two frequent
items need be counted. For example, if only half the items are frequent, then
we need to count only 1/4 of the number of pairs, so we can use 1/4 as much
main memory. Or put another way, with a fixed amount of main memory, we
can deal with a dataset that has twice as many items.

We can continue to construct the frequent triples on another pass, the fre
quent quadruples on the fourth pass, and so on, as high as we like and that
frequent itemsets exist. The generalization is that for the nth pass we begin
with a candidate set of itemsets C„, and we produce a subset Fn of Cn consist
ing of the frequent itemsets of size n. That is, C\ is the set of all singletons,
and Fi is those singletons that are frequent. C2 is the set of pairs of items, both
of which are in F i, and F2 is those pairs that are frequent. The candidate set
for the third pass, C3, is those triples { i,j , k} such that each doubleton subset,
{ i ,j} , {*,£}, and { j,k } , is in F2. The following gives the algorithm formally.

A lg o rith m 22.4: A-Priori Algorithm.

IN P U T : A file D consisting of baskets of items, a support threshold s, and a
size limit q for the size of frequent itemsets.

O U T P U T : The sets o f itemsets F i,F 2, . . . ,F q, where Fi is the set o f all itemsets
o f size i that appear in at least s baskets o f D.

M E T H O D : Execute the algorithm of Fig. 22.4 and output each set Fn of fre
quent items, for n = 1, 2 , . . . , q. □

E xam ple 22 .5 : Let us execute the A-Priori Algorithm on the data of Fig. 22.1
with support s = 4. Initially, C\ is the set of all six movies. In the first pass,
we count the singleton sets, and we find that B I, B S , HP 1, and HP2 occur at
least four times; the other two movies do not. Thus, Fi — {B I, B S, HP 1, HP2},
and C2 is the set of six pairs that can be formed by choosing two of these four
movies.

1104 CHAPTER 22. DATA MINING

1) LET Ci = all items that appear in file F ;
2) FOR n := 1 TO q DO BEGIN
3) Fn := those sets in Cn that occur at least

s times in D;
4) IF n = q BREAK;
5) LET Cn+i = all itemsets S of size n + 1 such that

every subset of S of size n is in Fn ;
END

Figure 22.4: The A-Priori Algorithm

On the second pass, we count only these six pairs, and we find that F2 =
{ {B I, B S } , {H Pl, HP2}, {B I, H Pl}, {BS, H P l}}; the other two pairs are not
frequent. Assuming q > 2, we try to find frequent triples. Cz consists of only
the triple {B I, B S , H P l}, because that is the only set of three movies, all pairs
of which are in F2. However, these three movies appear together only in three
rows: V4 , V5 , and V». Thus, F3 is empty, and there are no more frequent
itemsets, no m atter how large q is. The algorithm returns Fi U F2. □

22.2.4 Implementation of the A-Priori Algorithm

Figure 22.4 is just an outline of the algorithm. We must consider carefully how
the steps are implemented. The heart of the algorithm is line (3), which we
shall implement, each time through, by a single pass through the input data.
The let-statements of lines (1) and (5) are just definitions of what Cn is, rather
than assignments to be executed. That is, as we run through the baskets in
line (3), the definition of Cn tells us which sets of size n need to be counted in
main memory, and which need not be counted.

The algorithm should be used only if there is enough main memory to satisfy
the requirements to count all the candidate sets on each pass. If there is not
enough memory, then either a more space-efficient algorithm must be used, or
several passes must be used for a single value of n. Otherwise, the system will
“thrash,” with pages being moved in and out of main memory during a pass,
thus greatly increasing the running time.

We can use either method discussed in Section 22.2.2 to organize the main-
memory counts during a pass. It may not be obvious that the triangular-matrix
method can be used with a-priori on the second pass, since the frequent items
are not likely to have numbers 0 , 1, . . . up to as many frequent items as there
are. However, after finding the frequent items on pass 1, we can construct a
small main-memory table, no larger than the set of items itself, that translates
the original items numbers into consecutive numbers for just the frequent items.

22.2. ALGORITHMS FOR FINDING FREQUENT ITEM SETS 1105

22.2.5 Making Better Use of Main Memory
We expect that the memory bottleneck comes on the second pass of Algo
rithm 22.4, that is, at the execution of line (3) of Fig. 22.4 with n — 2. That is,
we assume counting candidate pairs takes more space than counting candidate
triples, quadruples, and so on. Thus, let us concentrate on how we could reduce
the number of candidate pairs for the second pass. To begin, the typical use of
main memory on the first two passes of the A-Priori Algorithm is suggested by
Fig. 22.5.

Item Counts Frequent Items
_ _-- ---1

Counts of
Candidate

Pairs

Pass 1 Pass 2

Figure 22.5: Main-memory use by the A-Priori Algorithm

On the first pass (n = 1), all we need is space to count all the items, which
is typically very small compared with the amount of memory needed to count
pairs. On the second pass (n = 2), the counts are replaced by a list of the
frequent items, which is expected to take even less space than the counts took
on the first pass. All the available memory is devoted, as needed, to counts of
the candidate pairs.

Could we do anything with the unused memory on the first pass, in order to
reduce the number of candidate pairs on the second pass? If so, data sets with
larger numbers of frequent pairs could be handled on a machine with a fixed
amount of main memory. The P C Y Algorithm3 exploits the unused memory by
filling it entirely with an unusual sort of hash table. The “buckets” of this table
do not hold pairs or other elements. Rather, each bucket is a single integer
count, and thus occupies only four bytes. We could even use two-byte buckets
if the support threshold were less than 216, since once a count gets above the
threshold, we do not need to see how large it gets.

During the first pass, as we examine each basket, we not only add one to
the count for each item in the basket, but we also hash each pair of items to
its bucket in the hash table and add one to the count in that bucket. What we

3For th e au th o rs , J . S. P a rk , M .-S. C hen, an d P. S. Yu.

1106 CHAPTER 22. DATA MINING

hope for is that some buckets will wind up with a count less than s, the support
threshold. If so, we know that no pair {*, j } that hashes to that bucket can be
frequent, even if both i and j are frequent as singletons.

Pass 1 Pass 2

Figure 22.6: Main-memory use by the PCY Algorithm

Between the first and second passes, we replace the buckets by a bitmap with
one bit per bucket. The bit is 1 if the corresponding bucket is a frequent bucket;
that is, its count is at least the support threshold s; otherwise the bit is 0. A
bucket, occupying 32 bits (4 bytes) is replaced by a single bit, so the bitmap
occupies roughly 1/32 of main memory on the second pass. There is thus almost
as much space available for counts on the second pass of the PCY Algorithm as
there is for the A-Priori Algorithm. Figure 22.6 illustrates memory use during
the first two passes of PCY.

On the second pass, { i , j} is a candidate pair if and only if the following
conditions are satisfied:

1. Both i and j are frequent items.

2. { i , j} hashes to a bucket that the bitmap tells us is a frequent bucket.

Then, on the second pass, we can count only this set of candidate pairs, rather
than all the pairs that meet the first condition, as in the A-Priori Algorithm.

22.2.6 W hen to Use the PC Y Algorithm
In the PCY Algorithm, the set of candidate pairs is sufficiently irregular that
we cannot use the triangular-matrix method for organizing counts; we must use
a table of counts. Thus, it does not make sense to use PCY unless the number
of candidate pairs is reduced to at most 1 /3 of all possible pairs. Passes of the
PCY Algorithm after the second can proceed just as in the A-Priori Algorithm,
if they are needed.

22.2. ALGORITHMS FOR FINDING FREQUENT ITEM SETS 1107

Further, in order for PCY to be an improvement over A-Priori, a good
fraction of the buckets on the first pass must not be frequent. For if most
buckets are frequent, condition (3) above does not eliminate many pairs. Any
bucket to which even one frequent pair hashes will itself be frequent. However,
buckets to which no frequent pair hashes could still be frequent if the sum of
the counts of the pairs that do hash there exceeds the threshold s. To a first
approximation, if the average count of a bucket is less then s, we can expect at
least half the buckets not to be frequent, which suggests some benefit from the
PCY approach. However, if the average bucket has a count above s, then most
buckets will be frequent.

Suppose the total number of occurrences of pairs of items among all the
baskets in the dataset is P. Since most of the main memory M can be devoted
to buckets, the number of buckets will be approximately M /4. The average
count of a bucket will then be A P /M . In order that there be many buckets that
are not frequent, we need 4P /M < s, or M > 4P /s. The exercises allow you to
explore some more concrete examples.

22.2.7 The M ultistage Algorithm
Instead of counting pairs on the second pass, as we do in A-Priori or PCY,
we could use the same bucketing technique (with a different hash function) on
the second pass. To make the average counts even smaller on the second pass,
we do not even have to consider a pair on the second pass unless it would be
counted on the second pass of PCY; that is, the pair consists of two frequent
items and also hashed to a frequent bucket on the first pass.

Pass 1 Pass 2 Pass 3

Figure 22.7: Main-memory use in the three-pass version of the multistage algo
rithm

This idea leads to the three-pass version of the Multistage Algorithm for
finding frequent pairs. The algorithm is sketched in Fig. 22.7. Pass 1 is just

1108 CHAPTER 22. DATA MINING

like Pass 2 of PCY, and between Passes 1 and 2 we collapse the buckets to bits
and select the frequent items, also as in PCY.

However, on Pass 2, we again use all available memory to hash pairs into as
many buckets as will fit. Because there is a bitmap to store in main memory
on the second pass, and this bitmap compresses a 4-byte (32-bit) integer into
one bit, there will be approximately 31/32 as many buckets on the second pass
as on the first. On the second pass, we use a different hash function from that
used on Pass 2. We hash a pair {*, j } to a bucket and add one to the count
there if and only if:

1. Both i and j are frequent items.

2. { i , j} hashed to a frequent bucket on the first pass. This decision is made
by consulting the bitmap.

That is, we hash only those pairs we would count on the second pass of the
PCY Algorithm.

Between the second and third passes, we condense the buckets of the second
pass into another bitmap, which must be stored in main memory along with the
first bitmap and the set of frequent items. On the third pass, we finally count
the candidate pairs. In order to be a candidate, the pair { i ,j} must satisfy all
of:

1. Both i and j are frequent items.

2. { i ,j} hashed to a frequent bucket on the first pass. This decision is made
by consulting the first bitmap.

3. { i ,j} hashed to a frequent bucket on the second pass. This decision is
made by consulting the second bitmap.

As with PCY, subsequent passes can construct frequent triples or larger item
sets, if desired, using the same method as A-Priori.

The third condition often eliminates many pairs that the first two conditions
let through. One reason is that on the second pass, not every pair is hashed,
so the counts of buckets tend to be smaller than on the first pass, resulting in
many more infrequent buckets. Moreover, since the hash functions on the first
two passes are different, infrequent pairs that happened to hash to a frequent
bucket on the first pass have a good chance of hashing to an infrequent bucket
on the second pass.

The Multistage Algorithm is not limited to three passes for computation
of frequent pairs. We can have a large number of bucket-filling passes, each
using a different hash function. As long as the first pass eliminates some of the
pairs because they belong to a nonfrequent bucket, then subsequent passes will
eliminate a rapidly growing fraction of the pairs, until it is very unlikely that
any candidate pair will turn out not to be frequent. However, there is a point
of diminishing returns, since each bitmap requires about 1/32 of the memory.

22.2. ALGORITHMS FOR FINDING FREQUENT ITEM SETS 1109

If we use too many passes, not only will the algorithm take more time, but we
can find ourselves with available main memory that is too small to count all
the frequent pairs.

22.2.8 Exercises for Section 22.2
Exercise 22.2 .1 : Simulate the A-Priori Algorithm on the data of Fig. 22.3,
with s — 3.

! Exercise 22.2.2: Suppose we want to count all itemsets of size n using one
pass through the data.

a) What is the generalization of the triangular-matrix method for n > 2?
Give the formula for locating the array element that counts a given set of
n elements {*i, *2> — ,*«}■

b) How much main memory does the generalized triangular-matrix method
take if there are k items?

c) What is the generalization of the table-of-counts method for n > 2?

d) How much main memory does the generalized table-of-counts method take
if there are p itemsets of size n that appear in the data?

E xercise 22.2.3: Imagine that there are 1100 items, of which 100 are “big”
and 1000 are “little.” A basket is formed by adding each big item with proba
bility 1/10, and each little item with probability 1/100. Assume the number of
baskets is large enough that each itemset appears in a fraction of the baskets
that equals its probability of being in any given basket. For example, every
pair consisting of a big item and a little item appears in 1/1000 of the baskets.
Let s be the support threshold, but expressed as a fraction of the total number
of baskets rather than as an absolute number. Give, as a function of s ranging
from 0 to 1, the number of frequent items on Pass 1 of the A-Priori Algorithm.
Also, give the number of candidate pairs on the second pass.

! E xercise 22.2.4: Consider running the PCY Algorithm on the data of Ex
ercise 22.2.3, with 100,000 buckets on the first pass. Assume that the hash
function used distributes the pairs to buckets in a conveniently random fash
ion. Specifically, the 499,500 little-little pairs are divided as evenly as possible
(approximately 5 to a bucket). One of the 100,000 big-little pairs is in each
bucket, and the 4950 big-big pairs each go into a different bucket.

a) As a function of s, the ratio of the support threshold to the total number
of baskets (as in Exercise 22.2.3), how many frequent buckets are there
on the first pass?

b) As a function of s, how many pairs must be counted on the second pass?

1110 CHAPTER 22. DATA MINING

E xercise 22.2.5: Using the assumptions of Exercise 22.2.4, suppose we run a
three-pass Multistage Algorithm on the dataset. Assuming that on the second
pass there are again 100,000 buckets, and the hash function distributes pairs
randomly among the buckets, answer the following questions, all in terms of s
the ratio of the support threshold to the number of baskets.

a) Approximately how many frequent buckets will there be on the second
pass?

b) Approximately how many pairs are counted on the third pass?

E xercise 22.2.6: Suppose baskets are in a file that is distributed over many
processors. Show how you would use the map-reduce framework of Section 20.2
to:

a) Find the counts of all items.

! b) Find the counts of all pairs of items.

22.3 Finding Similar Items
We now turn to the version of the frequent-itemsets problem that supports
marketing activities for on-line merchants and a number of other interesting
applications such as finding similar documents on the Web. We may start with
the market-basket model of data, but now we search for pairs of items that
appear together a large fraction of the times that either appears, even if neither
item appears in very many baskets. Such items are said to be similar. The key
technique is to create a short “signature” for each item, such that the difference
between signatures tells us the difference between the items themselves.

22.3.1 The Jaccard Measure of Similarity
Our starting point is to define exactly what we mean by “similar” items. Since
we are interested in finding items that tend to appear together in the same
baskets, the natural viewpoint is that each item is a set: the set of baskets in
which it appears. Thus, we need a definition for how similar two sets are.

The Jaccard similarity (or just similarity, if this similarity measure is un
derstood) of sets S and T is |S fl T |/ |S U T\, that is, the ratio of the sizes of
their intersection and union. Thus, disjoint sets have a similarity of 0, and the
similarity of a set with itself is 1. As another example, the similarity of sets
{1,2,3} and {1,3,4,5} is 2/5, since there are two elements in the intersection
and five elements in the union.

22.3.2 Applications of Jaccard Similarity
A number of important data-mining problems can be expressed as finding sets
with high Jaccard similarity. We shall discuss two of them in detail here.

22.3. FINDING SIMILAR ITEMS 1111

C ollaborative F ilterin g

Suppose we are given data about customers’ on-line purchases. One way to
tell what items to pitch to a customer is to find pairs of customers that bought
similar sets of items. When a customer logs in, they can be pitched an item that
a similar customer bought, but that they did not buy. To compaxe customers,
represent a customer by the set of items they bought, and compute the Jaccard
similarity for each pair of customers.

There is a dual view of the same data. We might want to know which
pairs of items are similar, based on their having been bought by similar sets
of customers. We can frame this problem in the same terms as finding similar
customers. Now, the items are represented by the set of customers that bought
them, and we need to find pairs of items that have similar sets of customers.

Notice, incidentally, that the same data can be viewed as market-basket
data in two different ways. The products can be the “items” and the customers
the “baskets,” or vice-versa. You should not be surprised. Any many-many
relationship can be seen as market-basket data in two ways. In Section 22.1
we viewed the data in only one way, because when the “baskets” are really
shopping carts at a store’s checkout stand, there is no real interest in finding
similar shopping carts or carts that contain many items in common.

Sim ilar D ocu m en ts

There are many reasons we would like to find pairs of textually similar docu
ments. If we are crawling the Web, documents that are very similar might be
mirrors of one another, perhaps differing only in links to other documents at
the local site. A search engine would not want to offer both sites in response to
a search query. Other similar pairs might represent an instance of plagiarism.
Note that one document d\ might contain an excerpt from another document
d2, yet di and d2 are identical in only 10% of each; that could still be an instance
of plagiarism.

Telling whether documents are character-for-character identical is easy; just
compare characters until you find a mismatch or reach the ends of the docu
ments. Finding whether a sentence or short piece of text appears character-
for-character in a document is not much harder. Then you have to consider all
places in the document where the sentence of fragment might start, but most
of those places will have a mismatch very quickly. What is harder is to find
documents that are similar, but are not exact copies in long stretches. For
instance, a draft document and its edited version might have small changes in
almost every sentence.

A technique that is almost invulnerable to large numbers of small changes is
to represent a document by its set of k-grams, that is, by the set of substrings
of length k. k-Shingle is another word for fc-gram. For example, the set of
3-grams that we find in the first sentence of Section 22.3.2 (“A number of- • • ”)
contains "A n", " nu", "num", and so on. If we pick k large enough so that
the probability of a randomly chosen fc-gram appearing in a document is small,

1112 CHAPTER 22. DATA MINING

Compressed Shingles

In order that a document be characterized by its set of fc-shingles, we have
to pick k sufficiently large that it is rare for a given shingle to appear in
a document, fc = 5 is about the smallest we can choose, and it is not
unusual to have k around 10. However, then there are so many possible
shingles, and the shingles are so long, that certain algorithms take more
time than necessary. Therefore, it is common to hash the shingles to
integers of 32 bits or less. These hash-values are still numerous enough
that they differentiate between documents, but they can be compared and
processed quickly.

then a high Jaccard similarity of the sets of fc-grams representing a pair of
documents is a strong indication that the documents themselves are similar.

22.3.3 Minhashing
Computing the Jaccard similarity of two large sets is time consuming. Moreover,
even if we can compute similarities efficiently, a large dataset has fax too many
pairs of sets for us to compute the similarity of every pair. Thus, there are two
“tricks” we need to learn to extract only the similar pairs from a large dataset.
Both are a form of “hashing,” although the techniques are completely different
uses of hashing.

1. Minhashing is a technique that lets us form a short signature for each
set. We can compute the Jaccard similarity of the sets by measuring
the similarity of the signatures. As we shall see, the “similarity” for
signatures is simple to compute, but it is not the Jaccard similarity. We
take up minhashing in this section.

2. Locality-Sensitive Hashing is a technique that lets us focus on pairs of
signatures whose underlying sets are likely to be similar, without exam
ining all pairs of signatures. We take up locality-sensitive hashing in
Section 22.4.

To introduce minhashing, suppose that the elements of each set are chosen
from a “universal” set of n elements eo ,e i,. . . ,en_ i. Pick a random permuta
tion of the n elements. Then the minhash value of a set S is the first element,
in the permuted order, that is a member of S.

E xam ple 2 2 .6 : Suppose the universal set of elements is {1,2,3,4 ,5} and the
permuted order we choose is (3,5,4,2,1). Then the hash value of any set that
contains 3, such as {2,3,5} is 3. A set that contains 5 but not 3, such as {1,2,5},
hashes to 5. For another example, {1,2} hashes to 2, because 2 appears before
1 in the permuted order. □

22.3. FINDING SIMILAR ITEMS 1113

Suppose we have a collection of sets. For example, we might be given a
collection of documents and think of each document as represented by its set of
10-grams. We compute signatures for the sets by picking a list of m permuta
tions of all the possible elements (e.g., all possible character strings of length 10,
if the elements are 10-grams). Typically, m would be about 100. The signature
of a set S is the list of the minhash values of S, for each of the m permutations,
in order.

E xam ple 22.7: Suppose the universal set of elements is again {1,2,3,4,5},
and choose m — 3, that is, signatures of three minhash values. Let the per
mutations be 7Ti = (1,2,3,4,5), ir? = (5,4,3,2,1), and ir3 — (3,5,1,4,2). The
signature of S = {2,3,4} is (2,4,3). To see why, first notice that in the order
7Ti, 2 appears before 3 and 4, so 2 is the first minhash value. In 7r2, 4 appears
before 2 and 3, so 4 is the second minhash value. In -jt3, 3 appears before 2 and
4, so 3 is the third minhash value. □

22.3.4 Minhashing and Jaccard Distance
There is a surprising relationship between the minhash values and the Jaccard
similarity:

• If we choose a permutation at random, the probability that it will produce
the same minhash values for two sets is the same as the Jaccard similarity
of those sets.

Thus, if we have the signatures of two sets S and T, we can estimate the Jaccard
similarity of S and T by the fraction of corresponding minhash values for the
two sets that agree.

E xam ple 22.8: Let the permutations be as in Example 22.7, and consider
another set, T — {1,2,3}. The signature for T is (1,3,3). If we compare
this signature with (2,4,3), the signature of the set S = {2,3,4}, we see that
the signatures agree in only the last of the three components. We therefore
estimate the Jaccard similarity of S and T to be 1/3. Notice that the true
Jaccard similarity of S and T is 1/2. □

In order that the signatures are very likely to estimate the similarity closely,
we need to pick considerably more than three permutations. We suggest that
100 permutations may be enough for the “law of large numbers” to hold. How
ever, the exact number of signatures needed depends on how closely we need
to estimate the similarity.

22.3.5 Why Minhashing Works
To see why the Jaccard similarity is the probability that two sets have the same
minhash value according to a randomly chosen permutation of elements, let S

1114 CHAPTER 22. DATA MINING

and T be two sets. Imagine going down the list of elements in the permuted
order, until you find an element e that appears in at least one of S and T.
There are two cases:

1. If e appears in both S and T, then both sets have the same minhash value,
namely e.

2. But if e appears in one of S and T but not the other, then one set gets
minhash value e and the other definitely gets some other minhash value.

We do not meet e until the first time we find, in the permuted order, an
element that is in S U T. The probability of Case 1 occuring is the fraction
of members of S U T that are in S fl T. That fraction is exactly the Jaccard
similarity of 5 and T. But Case 1 is also exactly when S and T have the same
minhash value, which proves the relationship.

22.3.6 Implementing Minhashing
While we have spoken of choosing a random permutation of all possible ele
ments, it is not feasible to do so. It would take far too long, and we might have
to deal with elements that appeared in none of our sets. Rather, we simulate
the choice of a random permutation by instead picking a random hash function
h from elements to some large sequence of integers 0 ,1 ,. . . , B — 1 (i.e., bucket
numbers). We pretend that the permutation that h represents places element
e in the position h(e). Of course, several elements might thus wind up in the
same position, but as long as B is large, we can break ties as we like, and
the simulated permutations will be sufficiently random that the relationship
between signatures and similarity still holds.

Suppose our dataset is presented one set at a time. To compute the minhash
value for a set S — {ai, a2, . . . , ara} using a hash function h, we can execute:

V := oo;
FOR i := 1 TO n DO

IF h{a,i) < V THEN V := /i(af);

As a result, V will be set to the hash value of the element of S that has the
smallest hash value. This hash value may not identify a unique element, because
several elements in the universe of possible elements may hash to this value,
but as long as h hashes to a large number of possible values, the chances of a
coincidence is small, and we may continue to assume that a common minhash
value suggests two sets have an element in common.

If we want to compute not just one minhash value but the minhash values
for set S according to m hash functions h\, h2, ■ ■ ■ , hm, then we can compute
m minhash values in parallel, as we process each member of S. The code is
suggested in Fig. 22.8.

22.3. FINDING SIMILAR ITEMS 1115

FOR j := 1 TO m DO
Vj : = oo ;

FOR i := 1 TO n DO
FOR j := 1 TO m DO

IF hj(ai) < Vj THEN Vj := hj(ai);

Figure 22.8: Computing m minhash values at once

It is somewhat harder to compute signatures if the data is presented basket-
by-basket as in Section 22.1. That is, suppose we want to compute the sig
natures of “items,” but our data is in a file consisting of baskets. Similarity
of items is the Jaccard similarity of the sets of baskets in which these items
appear.

Suppose there are k items, and we want to construct their minhash signa
tures using m different hash functions h i,h 2, . . . ,h m. Then we need to maintain
km values, each of which will wind up being the minhash value for one of the
items according to one of the hash functions. Let Vy be the value for item i
and hash function h j . Initially, set all Vy’s to infinity. When we read a basket
b, we compute hj(b) for all j = 1 ,2 ,... , m. However, we adjust values only for
those items i that are in b. The algorithm is sketched in Fig. 22.9. At the end,
Vij holds the j th minhash value for item i.

FOR i := 1 TO k DO
FOR j := 1 TO m DO

V ̂ : = 0 0 ;
FOR EACH basket b DO BEGIN

FOR j := 1 TO m DO
compute hj(b);

FOR EACH item i in b DO
FOR j := 1 TO m DO

IF hj (b) < Vij THEN Vij := hj(b);
END

Figure 22.9: Computing minhash values for all items and hash functions

22.3.7 Exercises for Section 22.3
E xercise 22.3 .1 : Compute the Jaccard similarity of each pair of the following
sets: {1,2,3,4,5}, {1,6,7}, {2,4,6,8}.

Exercise 22.3 .2 : What are all the 4-grams of the following string:

"abc def ghi"

1116 CHAPTER 22. DATA MINING

Do not count the quotation marks as part of the string, but remember that
blanks do count.

Exercise 22.3 .3 : Suppose that the universal set is { 1 ,2 ,... , 10}, and signa
tures for sets are constructed using the following list of permutations:

1. (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10)

2. (10 ,8 ,6 ,4 ,2 ,9 ,7 ,5 ,3 ,1)

3. (4 ,7 ,2 ,9 ,1 ,5 ,3 ,10,6 ,8)

Construct minhash signatures for the following sets:

a) {3,6,9}.

b) {2,4,6,8}

c) {2,3,4}

How does the estimate of the Jaccard similarity for each pair, derived from the
signatures, compare with the true Jaccard similarity?

Exercise 22.3 .4 : Suppose that instead of using particular permutations to
construct signatures for the three sets of Exercise 22.3.3, we use hash functions
to construct the signatures. The three hash functions we use are:

f(x) — x mod 10
g(x) = (2x + 1) mod 10
h(x) = (3a: -I- 2) mod 10

Compute the signatures for the three sets, and compare the resulting estimate
of the Jaccard similarity of each pair with the true Jaccard similarity.

! Exercise 22.3.5: Suppose data is in a file that is distributed over many pro
cessors. Show how you would use the map-reduce framework of Section 20.2 to
compute a minhash value, using a single hash function, assuming:

a) The file must be partitioned by rows.

b) The file must be partitioned by columns.

22.4 Locality-Sensitive Hashing
Now, we take up the problem that was not really solved by taking minhash
signatures. It is true that these signatures may make it much faster to estimate
the similarity of any pair of sets, but there may still be far too many pairs of sets
to find all pairs that meet a given similarity threshold. The technique called
“locality-sensitive hashing,” or LSH, may appear to be magic; it allows us, in

22.4. LOCALITY-SENSITIVE HASHING 1117

a sense, to hash sets or other elements to buckets so that “similar” elements
are assigned to the same bucket. There are tradeoffs, of course. There is a
(typically small) probability that we shall miss a pair of similar elements, and
the lower we want that probability to be, the more work we must do. After
some examples, we shall take up the general theory.

22.4.1 Entity Resolution as an Example of LSH
Recall our discussion of entity resolution in Section 21.7. There, we had a large
collection of records, and we needed to find similar pairs. The notion of “sim
ilarity” was not Jaccard similarity, and in fact we left open what “similarity”
meant. Whatever definition we use for similarity of records, there may be far too
many pairs to measure them all. For example, if there are a million records —
not a very large number — then there are about 500 billion pairs of records.
An algorithm like R-Swoosh may allow merging with fewer than that number
of comparisons, provided there are many large sets of similar records, but if no
records are similar to other records, then there is no way we can discover that
fact without doing all possible comparisons.

It would be wonderful to have a way to “hash” records so that similar
records fell into the same bucket, and nonsimilar pairs never did, or rarely did.
Then, we could restrict our examination of pairs to those that were in the same
bucket. If, say, there were 1000 buckets, and records distributed evenly, then
we would only have to compare 1/1000 of the pairs. We cannot do exactly what
is described above, but we can come surprisingly close.

E xam ple 22.9: Suppose for concreteness that records are as in the running
example of Section 21.7: name-address-phone triples, where each of the three
fields is a character string. Suppose also that we define records to be similar if
the sum of the edit distances of their three corresponding pairs of fields is no
greater than 5. Let us use a hash function h that hashes the name field of a
record to one of a million buckets. How h works is unimportant, except that it
must be a good hash function — one that distributes names roughly uniformly
among the buckets.

But we do not stop here. We also hash the records to another set of a million
buckets, this time using the address, and a suitable hash function on addresses.
If h operates on any strings, we can even use h. Then, we hash records a third
time to a million buckets, using the phone number.

Finally, we examine each bucket in each of the three hash tables, a total of
3,000,000 buckets. For each bucket, we compare each pair of records in each
bucket, and we report any pair that has total edit distance 5 or less. Suppose
there are n records. Assuming even distribution of records in each hash table,
there are n/106 records in each bucket. The number of pairs of records in each
bucket is approximately n2/ (2 x 1012). Since there are 3 x 106 buckets, the
total number of comparisons is about 1.5n2/106. And since there are about
ra2/ 2 pairs of records, we have managed to look at only fraction 3 x 10-6 of the
records, a big improvement.

1118 CHAPTER 22. DATA MINING

In fact, since the number of buckets was chosen arbitrarily, it seems we
can reduce the number of comparisons to whatever degree we wish. There are
limitations, of course. If we choose too large a number of buckets, we run out
of main-memory space, and regardless of how many buckets we use, we cannot
avoid the pairs of records that are really similar.

Have we given up anything? Yes, we have; we shall miss some similar
pairs of records that meet the similarity threshold, because they differ by a few
characters in each of the three fields, yet no more than five characters in total.
What fraction of the truly similar pairs we lose depends on the distribution of
discrepancies among the fields of records that truly represent the same entity.
However, if the threshold for total edit distance is 5, we do not expect to miss
too many truly similar pairs. □

But what if the threshold on edit distance in Example 22.9 were not 5,
but 20? There might be many pairs of similar records that had no one field
identical. To deal with this problem, we need to:

1. Increase the number of hash functions and hash tables.

2. Base each hash function on a small part of a field.

E xam ple 22.10: We could break the name into first, middle, and last names,
and hash each to buckets. We could break the address into house number, street
name, city name, state, and zip code. The phone number could be broken into
area code, exchange, and the last four digits. Since phones are numbers, we
could even choose any subset of the ten digits in a phone number, and hash on
those. Unfortunately, since we are now hashing short subfields, we are limited
in the number of buckets that we can use. If we pick too many buckets, most
will be empty.

After hashing records many times, we again look in each bucket of each of
the hash tables, and we compare each pair of records that fall into the same
bucket at least once. However, the total running time is much higher than for
our first example, for two reasons. First, the number of record occurrences
among all the buckets is proportional to the number of hash functions we use.
Second, hash functions based on small pieces of data cannot divide the records
into as many buckets as in Example 22.9. □

22.4.2 Locality-Sensitive Hashing of Signatures
The use of locality-sensitive hashing in Example 22.10 is relatively straightfor
ward. For a more subtle application of the general idea, let us return to the
problem introduced in Section 22.3, where we saw the advantage of replacing
sets by their signatures. When we need to find similar pairs of sets that are
represented by signatures, there is a way to build hash functions for a locality-
sensitive hashing, for any desired similarity threshold. Think of the signatures
of the various sets as a matrix, with a column for each set’s signature and a row

22.4. LOCALITY-SENSITIVE HASHING 1119

for each hash function. Divide the matrix into b bands of r rows each, where
br is the length of a signature. The arrangement is suggested by Fig. 22.10.

Buckets

t
rows

I b bands

Figure 22.10: Dividing signatures into bands and hashing based on the values
in a band

For each band we choose a hash function that maps the portion of a signature
in that band to some large number of buckets, B. That is, the hash function
applies to sequences of r integers and produces one integer in the range 0 to
B — 1. In Fig. 22.10, B = 4. If two signatures agree in all rows of any one band,
then they surely will wind up in the same bucket. There is a small chance that
they will be in the same bucket even if they do not agree, but by using a very
large number of buckets B, we can make sure there are very few “false positives.”
Every bucket of each hash function has its members compared for similarity, so
a pair of signatures that agree in even one band will be compared. Signatures
that do not agree in any band probably will not be compared, although as
we mentioned, there is a small probability they will hash to the same bucket
anyway, and would therefore be compared.

Let us compute the probability that a pair of minhash signatures will be
compared, as a function of the Jaccard similarity s of their underlying sets, the

1120 CHAPTER 22. DATA MINING

number of bands b, and the number of rows r in a band. For simplicity, we shall
assume that the number of buckets is so large that there are no coincidences;
signatures hash to the same bucket if and only if they have the same values in
the entire band on which the hash function is based.

First, the probability that the signatures agree on one row is s, as we saw in
Section 22.3.5. The probability that they agree on all r rows of a given band is
sr. The probability that they do not agree on all rows of a band is 1 — sr, and
the probability that for none of the b bands do they agree in all rows of that
band is (1 — sr)b. Finally, the probability that the signatures will agree in all
rows of at least one band is 1 — (1 — sr)b. This function is the probability that
the signatures will be compared for similiarity.

E xam ple 22.11: Suppose r = 5 and b — 20; that is, we have signatures of 100
integers, divided into 20 bands of five rows each. The formula for the probability
that two signatures of similarity s will be compared becomes 1 — (1 — s5)20.
Suppose s — 0.8; i.e., the underlying sets have Jaccard similarity 80%. s5 =
0.328. That is, the chance that the two signatures agree in a given band is small,
only about 1/3. However, we have 20 chances to “win,” and (1 — 0.328)20 is tiny,
only about 0.00035. Thus, the chance that we do find this pair of signatures
together in at least one bucket is 1 — 0.00035, or 0.99965.

On the other hand, suppose s = 0.4. Then 1 — (l — (0.4)5)20 = (1 — .Ol)20,
or approximately 20%. If s is much smaller than 0.4, the probability that the
signatures will be compared drops below 20% very rapidly. We conclude that
the choice b = 20 and r = 5 is a good one if we are looking for pairs with a very
high similarity, say 80% or more, although it would not be a good choice if the
similarity threshold were as small as 40%. □

Similarity s

Figure 22.11: The probability that a pair of signatures will appear together in
at least one bucket

The function 1 — (1 — sr)b always looks like Fig. 22.11, but the point of rapid

22.4. LOCALITY-SENSITIW l H A S ttS G 1121

transition from a very small value to a value close to 1 varies, depending on b
and r. Roughly, the breakpoint is at similarity s = (1 /b)1/ r.

22.4.3 Combining Minhashing and Locality-Sensitive
Hashing

The two ideas, minhashing and LSH. must be combined properly to solve the
sort of problems we discussed in Section 22.3.2. Suppose, for example, that we
have a large repository of documents, which we have already represented by
their sets of shingles of some length. We want to find those documents whose
shingle sets have a Jaccard similarity erf at least s.

1. Start by computing a minhash signature for each document; how many
hash functions to use depends on the desired accuracy, but several hundred
should be enough for most purposes.

2. Perform a locality-sensitive hashing to get candidate pairs of signatures
that hash to the same bucket for at least one band. How many bands
and how many rows per band depend on the similarity threshold s, as
discussed in Section 22.4.2.

3. For each candidate pair, compote the estimate of their Jaccard similarity
by counting the number of components in which their signatures agree.

4. Optionally, for each pair whose signatures are sufficiently similar, compute
their true Jaccard similarity hr examining the sets themselves.

Of course, this method introduces false positives — candidate pairs that get
eliminated in step (2), (3), or (4). However, the second and third steps also
allow some false negatives — pairs with a sufficiently high Jaccard similarity
that are not candidates or are ehminated from the candidate pool.

a) At step (2), a pair could have TCfy similar signatures, yet there happens
to be no band in which the signatures agree in all rows of the band.

b) In step (3), a pair could have Jaccard similarity at least s, but their
signatures do not agree in fraction * o f the components.

One way to reduce the number of false negatives is to lower the similarity
threshold at the initial stages. At step (2), choose a smaller number of rows r or
a larger number of bands b than would be indicated by the target similarity s. At
step (3) choose a smaller fraction than s of corresponding signature components
that allows a pair to move on to step (4). Unfortunately, these changes each
increase the number of false positives, so t o o must consider carefully how small
you can afford to make your thresholds.

Another possible way to avoid false negatives is to skip step (3) and go
directly to step (4) for each candidate pair. That is, we compute the true

1122 CHAPTER 22. DATA MINING

Jaccard similarity of every candidate pair. The disadvantage of doing so is
that the minhash signatures were devised to make it easier to compare the
underlying sets. For example, if the objects being compared are actually large
documents, comparing complete sets of Ai-shingles is far more time consuming
than matching several hundred components of signatures.

In some applications, false negatives are not a problem, so we can tune our
LSH to allow a significant fraction of false negatives, in order to reduce false
positives and thus to speed up the entire process. For instance, if an on-line
retailer is looking for pairs of similar customers, in order to select an item to
pitch to each customer, it is not necessary to find every single pair of similar
customers. It is sufficient to find a few very similar customers for each customer.

22.4.4 Exercises for Section 22.4
E xercise 22 .4 .1 : This exercise is based on the entity-resolution problem of
Example 22.9. For concreteness, suppose that the only pairs records that could
possibly be total edit distance 5 or less from each other consist of a true copy of
a record and another corrupted version of the record. In the corrupted version,
each of the three fields is changed independently. 50% of the time, a field has
no change. 20% of the time, there is a change resulting in edit distance 1 for
that field. There is a 20% chance of edit distance 2 and 10% chance of edit
distance 10. Suppose there are one million pairs of this kind in the dataset.

a) How many of the million pairs are within total edit distance 5 of each
other?

b) If we hash each field to a large number of buckets, as suggested by Ex
ample 22.9, how many of these one million pairs will hash to the same
bucket for at least one of the three hashings?

c) How many false negatives will there be; that is, how many of the one
million pairs are within total edit distance 5, but will not hash to the
same bucket for any of the three hashings?

E xercise 22.4.2 : The function p = 1 — (1 — sr)b gives the probability p that
two minhash signatures that come from sets with Jaccard similarity s will hash
to the same bucket at least once, if we use an LSH scheme with b bands of r
rows each. For a given similarity threshold s, we want to choose b and r so that
p = 1/2 at s. we suggested that approximately s = (1 /b)1/ r is where p = 1/2,
but that is only an approximation. Suppose signatures have length 24. We can
pick any integers b and r whose product is 24. That is, the choices for r are 1,
2, 3, 4, 6, 8, 12, or 24, and b must then be 24/r.

a) If s — 1/2, determine the value of p for each choice of b and r. Which
would you choose, if 1/2 were the similarity threshold?

! b) For each choice of b and r, determine the value of s that makes p = 1/2.

22.5. CLUSTERING OF LARGE-SCALE DATA 1123

22.5 Clustering of Large-Scale Data
Clustering is the problem of taking a dataset consisting of “points” and grouping
the points into some number of clusters. Points within a cluster must be “near”
to each other in some sense, while points in different clusters are “far” from each
other. We begin with a study of distance measures, since only if we have a notion
of distance can we talk about whether points are near or far. An important kind
of distance is “Euclidean,” a distance based on the location of points within a
space. Curiously, not all distances are Euclidean, and an important problem in
clustering is dealing with sets of points that do not “live” anywhere in a space,
yet have a notion of distance.

We next consider the two major approaches to clustering. One, called “ag-
glomerative,” is to start with points each in their own cluster, and repeatedly
merge “nearby” clusters. The second, “point assignment,” initializes the clus
ters in some way and then assigns each point to its “best” cluster.

22.5.1 Applications of Clustering
Many discussions of clustering begin with a small example, in which a small
number of points are given in a two-dimensional space, such as Fig, 22.12. Al
gorithms to cluster such data are relatively simple, and we shall mention the
techniques only in passing. The problem becomes hard when the dataset is
large. It becomes even harder when the number of dimensions of the data is
large, or when the data doesn’t even belong to a space that has “dimensions.”
Let us begin by examining some examples of interesting uses of clustering al
gorithms on large-scale data.

• #
• •

: :
• •

• • •

Figure 22.12: Data that can be clustered easily

C ollaborative F ilter in g

In Section 22.3.2 we discussed the problem of finding similar products or similar
customers by looking at the set of items each customer bought. The output of
analysis using minhashing and locality-sensitive hashing could be a set of pairs
of similar products (those bought by many of the same customers. Alternatively,

1124 CHAPTER 22. DATA MINING

we could look for pairs of similar customers (those buying many of the same
products). It may be possible to get a better picture of relationships if we
cluster products (points) into groups of similar products. These might represent
a natural class of products, e.g., classical-music CD’s. Likewise, we might find
it useful to cluster customers with similar tastes; e.g., one cluster might be
“people who like classical music.” For clustering to make sense, we must view
the distance between points representing customers or items as “low” if the
similarity is high. For example, we shall see in Section 22.5.2 how one minus
the Jaccard similarity can serve as a suitable notion of “distance.”

C lustering D ocu m en ts by Topic

We could use the technique described above for products and customers to
cluster documents based on their Jaccard similarity. However, another applica
tion of document clustering is to group documents into clusters based on their
“topics” (e.g., topics such as “sports” or “medicine”), even if documents on
the same topic are not very similar character-by-character. A simple approach
is to imagine a very high-dimensional space, where there is one dimension for
each word that might appear in the document. Place the document at point
(x i ,x 2 , ■ ■ ■), where X{ = 1 if the ith word appears in the document and x; = 0
if not. Distance can be taken to be the ordinary Euclidean distance, although
as we shall see, this distance measure is not as useful as it might appear at first.

C lustering D N A Sequences

DNA is a sequence of base-pairs, represented by the letters C, G, A, and T.
Because these strands sometimes change by substitution of one letter for another
or by insertion or deletion of letters, there is a natural edit-distance between
DNA sequences. Clustering sequences based on their edit distance allows us to
group similar sequences.

E n tity R eso lu tion

In Section 21.7.4, we discussed an algorithm for merging records that, in effect,
created clusters of records, where each cluster was one connected component of
the graph formed by connecting records that met the similarity condition.

SkyC at

In this project, approximately two billion “sky objects” such as stars and galax
ies were plotted in a 7-dimensional space, where each dimension represented the
radiation of the object in one of seven different bands of the electromagnetic
spectrum. By clustering these objects into groups of similar radiation patterns,
the project was able to identify approximately 20 different kinds of objects.

22.5. CLUSTERING OF LARGE-SCALE DATA 1125

Euclidean Spaces

Without going into the theory, for our purposes we may think of a Eu
clidean space as one with some number of dimensions n. The points in
the space are all n-tuples of real numbers (x \ , x 2, ■ ■ ■ , x n). The common
Euclidean distance is but one of many plausible distance measures in a
Euclidean space.

22.5.2 Distance Measures
A distance measure on a set of points is a function d{x, y) that satisfies:

1. d(x,y) > 0 for all points x and y.

2. d(x,y) = 0 if and only if x = y.

3. d(x,y) = d(y,x) (symmetry).

4. d(x,y) < d(x,z) + d(z, y) for any points x, y, and 2 (triangle inequality).

That is, the distance from a point to itself is 0, and the distance between any
two different points is positive. The distance between points does not depend
on which way you travel (symmetry), and it never reduces the distance if you
force yourself to go through a particular third point (the triangle inequality).

The most common distance measure is the Euclidean distance between
points in an n-dimensional Euclidean space. In such a space, points can be
represented by n coordinates x = (x-i, ■ , x n) and y — (y i, 2/2, • ■ • , yn).
The distance d(x,y) is y/J2i=i(x i ~ Vi)2’ is, the square root of the sum
of the squares of the differences in each dimension. However, there are many
other ways to define distance; we shall examine some below.

D istan ces B ased on N orm s

In a Euclidean space, the conventional distance mentioned above is only one
possible choice. More generally, we can define the distance

n

d(x,y) = (^ 2 \ x i - V i \ r) 1 / r
i= 1

for any r. This distance is said to be derived from the L r-norm. The conven
tional Euclidean distance is the case r = 2, and is often called the L2-norm.

Another common choice is the Li-norm, that is, the sum of the distances
along the coordinates of the space. This distance is often called the Manhattan
distance, because it is the distance one has to travel along a rectangular grid of
streets found in many cities such as Manhattan.

1126 CHAPTER 22. DATA MINING

Yet another interesting choice is the Loo-norm, which is the maximum of
the distances in any one coordinate. That is, as r approaches infinity, the value
°f Yli=1 1x i ~ Vi\r)1 r̂ approaches the maximum over all i of |Xi —yi\.

E xam ple 2 2 .12 : Let x = (1,2,3) and y = (2,4,1). Then the L a distance
d{x,y) is v / |l - 2|2 + |2 — 4|2 + |3 - 1|2 = ^ (1 + 4 + 4) = 3. Note that this
distance is the conventional Euclidean distance. The M anhattan distance be
tween x and y is |1 — 2| + |2 — 4| + |3 — 1| = 5. The Loo-norm gives distance
between x and y of m ax(|l — 2|, |2 — 4|, |3 — 1|) = 2. □

Jaccard D istan ce

The Jaccard distance between points that are sets is one minus the Jaccard
similarity of those sets. That is, if x and y are sets, then

d(x,y) = 1 - (\x C\ y \/\x U y\)

For example, if the two points represent sets {1,2,3} and {2,3,4,5}, then the
Jaccard similarity is 2/5, so the Jaccard distance is 3/5.

One might naturally ask whether the Jaccard distance satisfies the axioms
of a distance measure. It is easy to see that d(x, x) = 0, because

1 - (|ar D x \/\x U x|) = 1 — (1/1) '' 0

It is also easy to see that the Jaccard distance cannot be negative, since the
intersection of sets cannot be bigger than their union. Symmetry of the Jac
card distance is likewise straightforward, since both union and intersection are
commutative.

The hard part is showing the triangle inequality. Coming to our rescue is
the theorem from Section 22.3.4 that says the Jaccard similarity of two sets
is the probability that a random permutation will result in the same minhash
value for those sets. Thus, the Jaccard distance is the probability that the
sets will not have the same minhash value. Suppose x and y have different
minhash values according to a permutation tt . Then at least one of the pairs
{x ,z} and {z ,y } must have different minhash values; possibly both do. Thus,
the probability that x and y have different minhash values is no greater than
the sum of the probability that x and z have different minhash values plus the
probability that 2 and y have different minhash values. These probabilities are
the Jaccard distances mentioned in the triangle inequality. That is, we have
shown that the Jaccard distance from x to y is no greater than the sum of the
Jaccard distances from x to z and from z to y.

C osine D istan ce

Suppose our points are in a Euclidean space. We can think of these points as
vectors from the origin of the space. The cosine distance between two points is
the angle between the vectors.

22.5. CLUSTERING OF LARGE-SCALE DATA 1127

The Curse of Dimensionality

Our intuition is pretty good when clustering points in one or two dimen
sions. However, when the points are in a high-dimensional space, our
intuition goes awry in several ways. For example, suppose our points are
in an n-dimensional hypercube of side 1. If n = 2 (i.e., a square), there
are many points near the center, and many near the edges. However, for
large n, the volume of a hypercube of side just slightly less than 1 is tiny
compared with the hypercube of side 1. That means almost every point
in the hypercube is very near the surface. There is no “center” and no
points to form clusters other than on the surface.

E xam ple 22.13: Suppose documents are characterized by the presence or
absence of five words, so points (documents) are vectors of five 0’s or l ’s. Let
(0,0,1,1,1) and (1,0,0,1,1) be the two points. The cosine of the angle between
them is computed by taking the dot product of the vectors, and dividing by
the product of the lengths of the vectors. In this case, the dot product is
0 x l + 0 x 0 + l x 0 + l x l + l x l = 0 + 0+0 + l + l = 2 . Both vectors have length
\/3. Thus, the cosine of the angle between the vectors is 2 /(\/3 x y/S) = 2/3.
The angle is about 48 degrees. □

Cosine distance satisfies the axioms of a distance measure, as long as points
are treated as directions, so two vectors, one of which is a multiple of the other
are treated as the same. Angles can only be positive, and if the angle is 0
then the vectors must be in the same direction. Symmetry holds because the
angle between x and y is the same as the angle between y and x. The triangle
inequality holds because the angle between two vectors is never greater than
the sum of the angles between those vectors and a third vector.

E d it D istance

Various forms of edit distance satisfy the axioms of a distance measure. Let us
focus on the edit distance that allows only insertions and deletions. If strings
x and y are at distance 0 (i.e., no edits are needed) then they surely must be
the same. Symmetry follows because insertions and deletions can be reversed.
The triangle inequality follows because one way to turn x into y is to first turn
x into 2 and then turn 2 into y. Thus, the sum of the edit distances from x to
z and from z to y is the number of edits needed for one possible way to turn x
into y. This number of edits cannot be less than the edit distance from x to y ,
which is the minimum over all possible ways to get from x to y.

1128 CHAPTER 22. DATA MINING

22.5.3 Agglomerative Clustering
We shall now begin our study of algorithms for computing clusters. The first
approach is, at the highest level, straightforward. Start with every point in
its own cluster. Until some stopping condition is met, repeatedly find the
“closest” pair of clusters to merge, and merge them. This methodology is called
agglomerative or hierarchical clustering. The term “hierarchical” comes from
the fact that we not only produce clusters, but a cluster itself has a hierarchical
substructure that reflects the sequence of mergers that formed the cluster. The
devil, as always, is in the details, so we need to answer two questions:

1. How do we measure the “closeness” of clusters?

2. How do we decide when to stop merging?

D efin ing “C losen ess”

There are many ways we could define the closeness of two clusters C and D.
Here are two popular ones:

a) Find the minimum distance between any pair of points, one from C and
one from D.

b) Average the distance between any pair of points, one from C and one
from D.

These measures of closeness work for any distance measure. If the points are in
a Euclidean space, then we have additional options. Since real numbers can be
averaged, any set of points in a Euclidean space has a centroid, the point that
is the average, in each coordinate, of the points in the set. For example, the
centroid of the set {(1,2,3), (4,5,6), (2,2,2)} is (2.33, 3, 3.67) to two decimal
places. For Euclidean spaces, another good choice of closeness measure is:

c) The distance between the centroids of clusters C and D.

S top p in g th e M erger

One common stopping criterion is to pick a number of clusters k, and keep
merging until you are down to k clusters. This approach is good if you have an
intuition about how many clusters there should be. For instance, if you have
a set of documents that cover three different topics, you could merge until you
have three clusters, and hope that these clusters correspond closely to the three
topics.

Other stopping criteria involve a notion of cohesion, the degree to which
the merged cluster consists of points that are all close. Using a cohesion-based
stopping policy, we decline to merge two clusters whose combination fails to
meet the cohesion condition that we have chosen. At each merger round, we
may merge two clusters that are not closest of all pairs of clusters, but are closer

22.5. CLUSTERING OF LARGE-SCALE DATA 1129

than any other pair that meet the cohesion condition. We even could define
“closeness” to be the cohesion score, thus combining the merger selection with
the stopping criterion. Here are some ways that we could define a cohesion
score for a cluster:

i. Let the cohesion of a cluster be the average distance of each point to the
centroid. Note that this definition only makes sense in a Euclidean space.

ii. Let the cohesion be the diameter, the largest distance between any pair
of points in the cluster.

in . Let the cohesion be the average distance between pairs of points in the
cluster.

(1,5)

(3,4)

#d,2) # (6,2)
A F

• (5,1)
D

Figure 22.13: Data for Example 22.14

E xam ple 22.14: Consider the six points in Fig. 22.13. Assume the normal
Euclidean distance as our distance measure. We shall choose as the distance
between clusters the minimum distance between any pair of points, one from
each cluster. Initially, each point is in a cluster by itself, so the distances
between clusters are just the distances between the points. These distances, to
two decimal places, are given in Fig. 22.14

A B C D E
F 4.00 5.83 3.61 1.41 2.00
E 5.39 5.10 3.00 3.16
D 4.12 5.66 3.61
C 2.83 2.24
B 3.00

Figure 22.14: Distances between points in Fig. 22.13

1130 CHAPTER 22. DATA MINING

The closest two points are D and F, so these get merged into one cluster.
We must compute the distance between the cluster D F and each of the other
points. By the “closeness” rule we chose, this distance is the minimum of the
distances from a node to D or F. The table of distances becomes:

A B C D F
E 5.39 5.10 3.00 2.00
D F 4.00 5.66 3.61
C 2.83 2.24
B 3.00

The shortest distance above is between E and DF, so we merge these two
clusters into a single cluster D E F . The distance to this cluster from each of
the other points is the minimum of the distance to any of D, E, and F. This
table of distances is:

A B C
D E F 4.00 5.10 3.00
C 2.83 2.24
B 3.00

Next, we merge the two closest clusters, which are B and C. The new table of
distances is:

A BC
D E F 4.00 3.00
BC 2.83

The last possible merge is A with BC. The result is two clusters, AB C and
D EF.

However, we may wish to stop the merging earlier. As an example stop
ping criterion, let us reject any merger that results in a cluster with an average
distance between points over 2.5. Then we can merge D, E, and F; the cohe
sion (average of the three distances between pairs of these points) is 2.19 (see
Fig. 22.14 to check).

At the point where the clusters are A, BC, and D E F, we cannot merge
A with BC , even though these are the closest clusters. The reason is that the
average distance among the points in A B C is 2.69, which is too high. We might
consider merging D E F with BC, which is the second-closest pair of clusters at
that time, but the cohesion for the cluster B C D E F is 3.56, also too high. The
third option would be to merge A with D E F, but the cohesion of A D E F is
3.35, again too high. □

22.5.4 A>Means Algorithms
The second broad approach to clustering is called point-assignment. A popular
version, which is typical of the approach is called k-means. This approach is
really a family of algorithms, just as agglomerative clustering is. The outline
of a fc-means algorithm is:

22.5. CLUSTERING OF LARGE-SCALE DATA 1131

1. Start by choosing k initial clusters in some way. These clusters might be
single points, or small sets of points.

2. For each unassigned point, place it in the “nearest” cluster.

3. Optionally, after all points are assigned to clusters, fix the centroid of each
cluster (assuming the points are in a Euclidean space, since non-Euclidean
spaces do not have a notion of “centroid”). Then reassign all points to
these k clusters. Occasionally, some of the earliest points to be assigned
will thus wind up in another cluster.

One way to initialize a ft-means clustering is to pick the first point at random.
Then pick a second point as far from the first point as possible. Pick a third
point whose minimum distance to either of the other two points is as great as
possible. Proceed in this manner, until k points are selected, each with the
maximum possible minimum distance to the previously selected points. These
points become the initial k clusters.

E xam ple 22.15: Suppose our points are those in Fig. 22.13, k = 3, and we
choose A as the seed of the first cluster. The point furthest from A is E. so
E becomes the seed of the second cluster. For the third point, the minimum
distances to A or £ are as follows.

B: 3.00, C: 2.83, D : 3.16, F: 2.00

The winner is D, with the largest minimum distance of 3.16. Thus, D becomes
the third seed. □

Having picked the seeds for the k clusters, we visit each of the remaining
points and assign it to a cluster. A simple way is to assign each point to the
closest seed. However, if we are in a Euclidean space, we may wish to maintain
the centroid for each cluster, and as we assign each point, put it in the cluster
with the nearest centroid.

E xam ple 22.16: Let us continue with Example 22.15. We have initialized
each of the three clusters A, D, and E, so their centroids are the points them
selves. Suppose we assign B to a cluster. The nearest centroid is A, at distance
3.00. Thus, the first cluster becomes AB, and its centroid is (1,3.5). Suppose
we assign C next. Clearly C is closer to the centroid of A B than it is to either
D or E, so C is assigned to A B , which becomes A B C with centroid (1.67,3.67).
Last, we assign F; it is closer to D than to E or to the centroid of ABC . Thus,
the three clusters are A BC , DF, and E, with centroids (1.67,3.67), (5.5,1.5),
and (6,4), respectively. We could reassign all points to the nearest of these
three centroids, but the resulting clusters would not change. □

1132 CHAPTER 22. DATA MINING

22.5.5 /c-Means for Large-Scale Data
We shall now examine an extension of fc-means that is designed to deal with
sets of points that are so large they cannot fit in main memory. The goal is not
to assign every point to a cluster, but to determine where the centroids of the
clusters are. If we really wanted to know the cluster of every point, we would
have to make another pass through the data, assigning each point to its nearest
centroid and writing out the cluster number with the point.

This algorithm, called the BFR Algorithm,4 assumes an n-dimensional Eu
clidean space. It may therefore represent clusters, as they are forming, by their
centroids. The BFR Algorithm also assumes that the cohesion of a cluster can
be measured by the variance of the points within a cluster; the variance of a
cluster is the average square of the distance of a point in the cluster from the
centroid of the cluster. However, for convenience, it does not record the centroid
and variance, but rather the following 2n + 1 summary statistics:

1. N , the number of points in the cluster.

2. For each dimension i, the sum of the ith coordinates of the points in the
cluster, denoted SUM*.

3. For each dimension i, the sum of the squares of the ith coordinates of the
points in the cluster, denoted SUMSQ^.

The reason to use these parameters is that they are easy to compute when
we merge clusters. Just add the corresponding values from the two clusters.
However, we can compute the centroid and variance from these values. The
rules are:

• The ith coordinate of the centroid is SUMi/N .

• The variance in the ith dimension is SUMSQi/iV — (SUMj/iV)2.

Also remember that ct*, the standard deviation in the ith dimension is the
square root of the variance in that dimension.

The BFR Algorithm reads the data one main-memory-full at a time, leaving
space in memory for the summary statistics for the clusters and some other data
that we shall discuss shortly. It can initialize by picking k points from the first
memory-load, using the approach of Example 22.15. It could also do any sort of
clustering on the first memory load to obtain k clusters from that data. During
the running of the algorithm, points are divided into three classes:

1. The discard set: points that have been assigned to a cluster. These points
do not appear in main memory. They are represented only by the sum
mary statistics for their cluster.

4F or th e au th o rs , P . S. B radley, U. M. Fayyad, an d C . R eina .

22.5. CLUSTERING OF LARGE-SCALE DATA 1133

2. The compressed set: There can be many groups of points that are suffi
ciently close to each other that we believe they belong in the same cluster,
but they are not close to any cluster’s current centroid, so we do not know
to which cluster they belong. Each such group is represented by its sum
mary statistics, just like the clusters are, and the points themselves do
not appear in main memory.

3. The retained set: These points are not close to any other points; they are
“outliers.” They will eventually be assigned to the nearest cluster, but
for the moment we retain each such point in main memory.

These sets change as we process successive memory-loads of the data. Fig
ure 22.15 suggests the state of the data after some number of memory-loads
have been processed by the BFR Algorithm.

A cluster. Its po in ts are
in the d iscard set

Figure 22.15: A cluster, several compressed sets and several points of the re
tained set

22.5.6 Processing a Memory Load of Points
We shall now describe how one memory load of points is processed. We assume
that main memory current contains the summary statistics for the k clusters
and also for zero or more groups of points that are in the compressed set. Main
memory also holds the current set of points in the retained set. We do the
following steps:

1134 CHAPTER 22. DATA MINING

1. For all points (x i , x 2,■■■ ,x n) that are “sufficiently close” (a term we
shall define shortly) to the centroid of a cluster, add the point to this
cluster. The point itself goes into the discard set. We add 1 to AT in the
summary statistics for that cluster. We also add Xi to SUM, and add x 2
to SUMSQj for that cluster.

2. If this memory load is the last, then merge each group from the compressed
set and each point of the retained set into its nearest cluster. Remember
that it is easy to merge clusters and groups using their summary statistics.
Just add the counts N , and add corresponding components of the SUM
and SUMSQ vectors. The algorithm ends at this point.

3. Otherwise (the memory load is not the last), use any main-memory clus
tering algorithm to cluster the remaining points from this memory load,
along with all points in the current retained set. Set a threshold on the
cohesiveness of a cluster, so we do not merge points unless they are rea
sonably close.

4. Those points that remain in clusters of size 1 (i.e., they are not near any
other point) become the new retained set. Clusters of more than one point
become groups in the compressed set and are replaced by their summary
statistics.

5. Consider merging groups in the compressed set. Use some cohesiveness
threshold to decide whether groups are close enough; we shall discuss how
to make this decision shortly. If they can be merged, then it is easy to
combine their summary statistics, as in (2) above.

D ecid in g W h eth er a P o in t is C lose E nough to a C luster

Intuitively, each cluster has a size in each dimension that indicates how far
out in that dimension typical points extend. Since we have only the summary
statistics to work with, the appropriate statistic is the standard deviation in
that dimension. Recall from Section 22.5.5 that we can compute the standard
deviations from the summary statistics, and in particular, the standard devia
tion is the square root of the variance. However, clusters may be “cigar-shaped,
so the standard deviations could vary widely. We want to include a point if its
distance from the cluster centroid is not too many standard deviations in any
dimension.

Thus, the first thing to do with a point p = (x i , x 2, . . . , x n) that we are
considering for inclusion in a cluster is to normalize p relative to the centroid
and the standard deviations of the cluster. That is, we transform the point into
P1 = (v i, 2/2, • • ■ ,y n), where «/.; = (xi — cij/a f, here c* is the coordinate of the
centroid in the ith dimension and <Ji is the standard deviation of the cluster in
that dimension. The normalized distance of p from the centroid is the absolute
distance of p' from the origin, that is, y/Y l'iLi Vi2- This distance is sometimes

22.5. CLUSTERING OF LARGE-SCALE DATA 1135

called the Mahalanobis distance, although it is actually a simplifed version of
the concept.

E xam ple 22.17: Suppose p is the point (5,10,15), and we are considering
whether to include p in a cluster with centroid (10,20,5). Also, let the standard
deviation of the cluster in the three dimensions be 1, 2, and 10, respectively.
Then the Mahalanobis distance of p is

y/ ((5 - 10)/1)2 + ((10 - 20)/2)2 + ((15 - 5)/10)2 = V25 + 25+ 1 = 7.14

□

Having computed the Mahalanobis distance of point p, we can apply a
threshold to decide whether or not to include p in the cluster. For instance,
suppose we use 3 as the threshold; that is, we shall include the point if and only
if its Mahalanobis distance from the centroid is not greater than 3. If values axe
normally distributed, then very few of these values will be more than 3 standard
deviations from the mean (approximately one in a million will be that far from
the mean). Thus, we would only reject one in a million points that belong in
the cluster. There is a good chance that, at the end, the rejected points would
wind up in the cluster anyway, since there may be no closer cluster.

D eciding W h e th e r to M erge G roups o f th e C om pressed Set

We discussed methods of computing the cohesion of a prospective cluster in
Section 22.5.3. However, for the BFR algorithm, these ideas must be modified
so we can make a decision using only the summary statistics for the two groups.
Here are some options:

1. Choose an upper bound on the sum of the variances of the combined group
in each dimension. Recall that we compute the summary statistics for the
combined group by adding corresponding components, and compute the
variance in each dimension using the formula in Section 22.5.5. This
approach has the effect of limiting the region of space in which the points
of a group exist. Groups in which the distances between typical pairs of
points is too large will exceed the upper bound on variance, no matter
how many points are in the group and how dense the points are within
the region of space the group occupies.

2. Put an upper limit on the diameter in any dimension. Since we do not
know the locations of the points exactly, we cannot compute the exact
diameter. However, we could estimate the diameter in the ith dimension
as the distance between the centroids of the two groups in dimension i
plus the standard deviation of each group in dimension i. This approach
also limits the size of the region of space occupied by a group.

1136 CHAPTER 22. DATA MINING

3. Use one of the first two approaches, but divide the figure of merit (sum
of variances or maximum diameter) by a quantity such as N or y/N that
grows with the number of points in the group. That way, groups can
occupy more space, as long as they remain dense within that space.

22.5.7 Exercises for Section 22.5
E xercise 2 2 .5 .1 : For each pair of the points in Fig. 22.13:

a) Compute the M anhattan distance (Li-norm).

b) Compute the Loo-norm.

E xercise 2 2 .5 .2 : Show that for any r > 1, the distance based on the L r norm
satisfies the axioms of a distance measure. What happens if r < 1?

E xercise 2 2 .5 .3 : In Example 22.14 we performed a hierarchical clustering of
the points in Fig. 22.13, using minimum distance between points as the measure
of closeness of clusters. Repeat the example using each of the following ways of
measuring the distance between clusters.

a) The distance between the centroids of the clusters.

b) The maximum distance between points, one from each cluster.

c) The average distance between points, one from each cluster.

E xercise 22 .5 .4 : We could also modify Example 22.14 by using a different
distance measure. Suppose we use the Loo-norm as the distance measure. Note
that this distance is the maximum of the distances along any axis, but when
comparing distances you can break ties according to the next largest dimension.
Show the sequence of mergers of the points in Fig. 22.13 that result from the
use of this distance measure.

E xercise 2 2 .5 .5 : Suppose we want to select three nodes in Fig. 22.13 to start
three clusters, and we want them to be as far from each other as possible, as in
Example 22.15. What points are selected if we start with (a) point B (b) point
Cl

E xercise 2 2 .5 .6 : The BFR Algorithm represents clusters by summary statis
tics, as described in Section 22.5.5. Suppose the current members of a cluster
are {(1,2), (3,4), (2,1), (0,5)}. W hat are the summary statistics for this clus
ter?

E xercise 2 2 .5 .7 : For the cluster described in Example 22.17, compute the
Mahalanobis distance of the points: (a) (8,21,0) (b) (10,25,25).

22.6. SUMMARY OF CHAPTER 22 1137

22.6 Summary of Chapter 22

♦ Data Mining: This term refers to the discovery of simple summaries of
data.

♦ The Market-Basket Model of Data: A common way to represent a many-
many relation is as a collection of baskets, each of which contains a set
of items. Often, this data is presented not as a relation but as a file of
baskets. Algorithms typically make passes through this file, and the cost
of an algorithm is the number of passes it makes.

♦ Frequent Itemsets: An important summary of some market-basket data
is the collection of frequent itemsets: sets of items that occur in at least
some fixed number of baskets. The minimum number of baskets that
make an itemset frequent is called the support threshold.

♦ Association Rules: These are statements of the form that say if a certain
set of items appears in a basket, then there is at least some minimum
probability that another particular item is also in that basket. The prob
ability is called the confidence of the rule.

♦ The A-Priori Algorithm: This algorithm finds frequent itemsets by ex
ploiting the fact that if a set of items occurs at least s times, then so does
each of its subsets. For each size of itemset, we start with the candidate
itemsets, which are all those whose every immediate subset (the set minus
one element) is known to be frequent. We then count the occurrences of
the candidates in a single pass, to determine which are truly frequent.

♦ The P C Y Algorithm: This algorithm makes better use of main memory
than A-priori does, while counting the singleton items. PCY additionally
hashes all pairs to buckets and counts the total number of baskets that
contain a pair hashing to each bucket. To be a candiate on the second
pass, a pair has to consist of items that not only are frequent as singletons,
but also hash to a bucket whose count exceeded the support threshold.

♦ The Multistage Algorithm: This algorithm improves on PCY by using
several passes in which pairs are hashed to buckets using different hash
functions. On the final pass, a pair can only be a candidate if it consists
of frequent items and also hashed each time to a bucket that had a count
at least equal to the support threshold.

♦ Similar Sets and Jaccard Similarity: Another important use of market-
basket data is to find similar baskets, that is, pairs of baskets with many
elements in common. A useful measure is Jaccard similarity, which is the
ratio of the sizes of the intersection and union of the two sets.

♦ Shingling Documents: We can find similar documents if we convert each
document into its set of fc-shingles — all substrings of k consecutive char
acters in the document. In this manner, the problem of finding similar
documents can be solved by any technique for finding similar sets.

♦ Minhash Signatures: We can represent sets by short signatures that en
able us to estimate the Jaccard similarity of any two represented sets.
The technique known as minhashing chooses a sequence of random per
mutations, implemented by hash functions. Each permutation maps a set
to the first, in the permuted order, of the members of that set, and the
signature of the set is the list of elements that results by applying each
permutation in this way.

♦ Minhash Signatures and Jaccard Similarity: The reason minhash signa
tures serve to represent sets is that the Jaccard similarity of sets is also
the probability that two sets will agree on their minhash values. Thus,
we can estimate the Jaccard similarity of sets by counting the number of
components on which their minhash signatures agree.

♦ Locality-Sensitive Hashing: To avoid having to compare all pairs of sig
natures, locality-sensitive hashing divides the signatures into bands, and
compares two signatures only if they agree exactly in at least one band.
By tuning the number of bands and the number of components per band,
we can focus attention on only the pairs that are likely to meet a given
similarity threshold.

♦ Clustering: The problem is to find groups (clusters) of similar items
(points) in a space with a distance measure. One approach, called agglom
erative, is to build bigger and bigger clusters by merging nearby clusters.
A second approach is to estimate the clusters initially and assign points
to the nearest cluster.

♦ Distance Measures: A distance on a set of points is a function that assigns
a nonnegative number to any pair of points. The function is 0 only if the
points are the same, and the function is commutative. It must also satisfy
the triangle inequality.

♦ Commonly Used Distance Measures: If points occupy a Euclidean space,
essentially a space with some number of dimensions and a coordinate
system, we can use the ordinary Euclidean distance, or modifications such
as the M anhattan distance (sum of the distances along the coordinates).
In non-Euclidean spaces, we can use distance measures such as the Jaccard
distance between sets (one minus Jaccard similiarity) or the edit distance
between strings.

♦ BFR Algorithm: This algorithm is a variant of fc-means, where points are
assigned to k clusters. Since the BFR Algorithm is intended for data sets
that are two large to fit in main memory, it compresses most points into

1138 CHAPTER 22. DATA MINING

22.7. REFERENCES FOR CHAPTER 22 1139

sets that are represented only by their count and, for each dimension, the
sum of their coordinates and the sum of the squares of their coordinates,
each

22.7 References for Chapter 22
Two useful books on data mining are [7] and [10].

The A-Priori Algorithm comes from [1] and [2], The PCY Algorithm is from
[9] and the multistage algorithm is from [6].

The use of shingling and minhashing to discover similar documents is from
[4] and the theory of minhashing is in [5]. Locality-sensitive hashing is from [8].

Clustering of non-main-memory data sets was first considered in [11]. The
BFR Algorithm is from [3].

1. R. Agrawal, T. Imielinski, and A. Swami, “Mining associations between
sets of items in massive databases,” Proc. ACM SIGMOD Intl. Conf. on
Management of Data, pp. 207-216, 1993.

2. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,”
Intl. Conf. on Very Large Databases, pp. 487-499, 1994.

3. P. S. Bradley, U. M. Fayyad, and C. Reina, “Scaling clustering algorithms
to large databases,” Proc. Knowledge Discovery and Data Mining, pp. 9-
15, 1998.

4. A. Z. Broder, “On the resemblance and containment of documents,” Proc.
Compression and Complexity of Sequences, pp. 21-29, Positano Italy,
1997.

5. A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” J. Computer and System Sciences 60:3
(2000), pp. 630-659.

6. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ull
man, “Computing iceberg queries efficiently,” Intl. Conf. on Very Large
Databases, pp. 299-310, 1998.

7. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Ad
vances in Knowledge Discovery and Data Mining, MIT Press, 1996.

8. P. Indyk and R. Motwani, “Approximate nearest neighbors: toward re
moving the curse of dimensionality,” ACM Symp. on Theory of Comput
ing, pp. 604-613, 1998.

9. J. S. Park, M.-S. Chen, and P. S. Yu, “An effective hash-based algorithm
for mining association rules,” Proc. ACM SIGMOD Intl. Conf. on Man
agement of Data, pp. 175-186, 1995.

1140 CHAPTER 22. DATA MINING

10. P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
Addison-Wesley, Boston MA, 2006.

11. T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” Proc. ACM SIGMOD Intl.
Conf. on Management of Data, pp. 103-114,1996.

Chapter 23

Database Systems and the
Internet

The age of the World-Wide Web has had a profound effect on database tech
nology. Conventional relational databases sit behind, and power, many of the
most important Web applications, as we discussed in Section 9.1. But Web
applications have also forced databases to assume new forms. Often, massive
databases are not found inside a relational DBMS, but in complex, ad-hoc file
structures. One of the most important examples of this phenomenon is the
way search engines manage their data. Thus, in this chapter we shall examine
algorithms for crawling the Web and for answering search-engine queries.

Other sources of data are dynamic in nature. Rather than existing in a
database, the data is a stream of information that must either be processed
and stored as it arrives, or thrown away. One example is the click streams
(sequence of URL requests) received at major Web sites. Non-Web-related
streams of data also exist, such as the “call-detail records” generated by all the
telephone calls traveling through a network, and data generated by satellites
and networks of sensors. Thus, the second part of this chapter addresses the
stream data model and the technology needed to manage massive data in the
form of streams.

23.1 The Architecture of a Search Engine

The search engine has become one of the most important tools of the 21st
century. The repositories managed by the major search engines are among the
largest databases on the planet, and surely no other database is accessed so
frequently and by so many users. In this section, we shall examine the key
components of a search engine, which are suggested schematically in Fig. 23.1.

1141

1142 CHAPTER 23. DATABASE SYSTEM S AND THE INTERNET

Figure 23.1: The components of a search engine

23.1.1 Components of a Search Engine

There are two main functions that a search engine must perform.

1. The Web must be crawled. That is, copies of many of the pages on the
Web must be brought to the search engine and processed.

2. Queries must be answered, based on the material gathered from the Web.
Usually, the query is in the form of a word or words that the desired Web
pages should contain, and the answer to a query is a ranked list of the
pages that contain all those words, or at least some of them.

Thus, in Fig. 23.1, we see the crawler interacting with the Web and with
the page repository, a database of pages that the crawler has found. We shall
discuss crawling in more detail in Section 23.1.2.

The pages in the page repository are indexed. Typically, these indexes are
inverted indexes, of the type discussed in Section 14.1.8. That is, for each word,
there is a list of the pages that contain that word. Additional information in
the index for the word may include its location(s) within the page or its role,
e.g., whether the word is in the header.

We also see in Fig. 23.1 a user issuing a query that consists of one or more
words. A query engine takes those words and interacts with the indexes, to
determine which pages satisfy the query. These pages are then ordered by a
ranker, and presented to the user, typically 10 at a time, in ranked order. We
shall have more to say about the query process in Section 23.1.3.

23.1. THE ARCHITECTURE OF A SEARCH ENGINE 1143

23.1.2 Web Crawlers
A crawler can be a single machine that is started with a set S, containing the
URL’s of one or more Web pages to crawl. There is a repository R of pages,
with the URL’s that have already been crawled; initially R is empty.

A lgorithm 23.1: A Simple Web Crawler.

IN PUT: An initial set of URL’s S.

O U TPU T: A repository R of Web pages.

M ETHOD: Repeatedly, the crawler does the following steps.

1. If S is empty, end.

2. Select a page p from the set S to “crawl” and delete p from S.

3. Obtain a copy of p , using its URL. If p is already in repository R, return
to step (1) to select another page.

4. If p is not already in R:

(a) Add p to R.
(b) Examine p for links to other pages. Insert into S the URL of each

page q that p links to, but that is not already in R or S.

5. Go to step (1).

□

Algorithm 23.1 raises several questions.

a) How do we terminate the search if we do not want to search the entire
Web?

b) How do we check efficiently whether a page is already in repository R ?

c) How do we select a page p from S to search next?

d) How do we speed up the search, e.g., by exploiting parallelism?

T erm ina ting Search

Even if we wanted to search the “entire Web,” we must limit the search some
how. The reason is that some pages are generated dynamically, so when the
crawler asks a site for a URL, the site itself constructs the page. Worse, that
page may have URL’s that also refer to dynamically constructed pages, and
this process could go on forever.

As a consequence, it is generally necessary to cut off the search at some
point. For example, we could put a limit on the number of pages to crawl, and

1144 CHAPTER 23. DATABASE SYSTEM S AND THE INTERNET

stop when that limit is reached. The limit could be either on each site or on
the total number of pages. Alternatively, we could limit the depth of the crawl.
That is, say that the pages initially in set S have depth 1. If the page p selected
for crawling at step (2) of Algorithm 23.1 has depth i, then any page q that we
add to S at step (4b) is given depth i + 1. However, if p has depth equal to the
limit, then we do not examine links out of p at all. Rather we simply add p to
R, if it is not already there.

M anaging th e R ep ository

There are two points where we must avoid duplication of effort. First, when we
add a new URL for a page q to the set S, we should check that it is not already
there or among the URL’s of pages in R. There may be billions of URL’s in
R and/or S, so this job requires an efficient index structure, such as those in
Chapter 14.

Second, when we decide to add a new page p to R at step (4a) of Algo
rithm 23.1, we should be sure the page is not already there. How could it be,
since we make sure to search each URL only once? Unfortunately, the same
page can have several different URL’s, so our crawler may indeed encounter the
same page via different routes. Moreover, the Web contains mirror sites, where
large collection of pages are duplicated, or nearly duplicated (e.g., each may
have different internal links within the site, and each may refer to the other
mirror sites). Comparing a page p with all the pages in R can be much too
time-consuming. However, we can make this comparison efficient as follows:

1. If we only want to detect exact duplicates, hash each Web page to a
signature of, say, 64 bits. The signatures themselves are stored in a hash
table T ; i.e., they are further hashed into a smaller number of buckets, say
one million buckets. If we are considering inserting p into R, compute the
64-bit signature h(p), and see whether h(p) is already in the hash table T.
If so, do not store p; otherwise, store p in R. Note that we could get some
false positives; it could be that h(p) is in T, yet some page other than p
produced the same signature. However, by making signatures sufficiently
long, we can reduce the probability of a false positive essentially to zero.

2. If we want to detect near duplicates of p, then we can store minhash signa
tures (see Section 22.3) in place of the simple hash-signatures mentioned
in (1). Further, we need to use locality-sensitive hashing (see Section 22.4)
in place of the simple hash table T of option (1).

Selectin g th e N ex t Page

We could use a completely random choice of next page. A better strategy is to
manage 5 as a queue, and thus do a breadth-first search of the Web from the
starting point or points with which we initialized S. Since we presumably start
the search from places in the Web that have “important” pages, we thus are

23.1. THE ARCHITECTURE OF A SEARCH ENGINE 1145

assured of visiting preferentially those portions of the Web that the authors of
these “important” pages thought were also important.

An alternative is to try to estimate the importance of pages in the set S,
and to favor those pages we estimate to be most important. We shall take up
in Section 23.2 the idea of PageRank as a measure of the importance that the
Web attributes to certain pages. It is impossible to compute PageRank exactly
while the crawl is in progress. However, a simple approximation is to count the
number of known in-links for each page in set S. That is, each time we examine
a link to a page q at step (4b) of Algorithm 23.1, we add one to the count of
in-links for q. Then, when selecting the next page p to crawl at step (2), we
always pick one of the pages with the highest number of in-links.

S p eed in g U p th e Crawl

We do not need to limit ourselves to one crawling machine, and we do not
need to limit ourselves to one process per machine. Each process that acts on
the set of available URL’s (what we called S in Algorithm 23.1) must lock the
set, so we do not find two processes obtaining the same URL to crawl, or two
processes writing the same URL into the set at the same time. If there are
so many processes that the lock on S becomes a bottleneck, there are several
options.

We can assign processes to entire hosts or sites to be crawled, rather than
to individual URL’s. If so, a process does not have to access the set of URL’s
S so often, since it knows no other process will be accessing the same site while
it does.

There is a disadvantage to this approach. A crawler gathering pages at a site
can issue page requests at a very rapid rate. This behavior is essentially a denial-
of-service attack, where the site can do no useful work while it strives to answer
all the crawler’s requests. Thus, a responsible crawler does not issue frequent
requests to a single site; it might limit itself to one every several seconds. If
a crawling process is visiting a single site, then it must slow down its rate of
requests to the point that it is often idle. That in itself is not a problem, since
we can run many crawling processes at a single machine. However, operating-
system software has limits on how many processes can be alive at any time.

An alternative way to avoid bottlenecks is to partition the set 5, say by
hashing URL’s into several buckets. Each process is assigned to select new
URL’s to crawl from a particular one of the buckets. When a process follows
a link to find a new URL, it hashes that URL to determine which bucket it
belongs in. That bucket is the only one that needs to be examined to see if the
new URL is already there, and if it is not, that is the bucket into which the
new URL is placed.

The same bottleneck issues that arise for the set S of active URL’s also
come up in managing the page repository R and its set of URL’s. The same
two techniques — assigning processes to sites or partitioning the set of URL’s
by hashing — serve to avoid bottlenecks in the accessing of R as well.

1146 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERN ET

23.1.3 Query Processing in Search Engines
Search engine queries are not like SQL queries. Rather they are typically a set
of words, for which the search engine must find and rank all pages containing all,
or perhaps a subset of, those words. In some cases, the query can be a boolean
combination of words, e.g., all pages that contain the word “data” or the word
“base.” Possibly, the query may require that two words appear consecutively,
or appear near each other, say within 5 words.

Answering queries such as these requires the use of inverted indexes. Recall
from our discussion of Fig. 23.1 that once the crawl is complete, the indexer
constructs an inverted index for all the words on the Web. Note that there
will be hundreds of millions of words, since any sequence of letters and digits
surrounded by punctuation or whitespace is an indexable word. Thus, “words”
on the Web include not only the words in any of the world’s natural languages,
but all misspellings of these words, error codes for all sorts of systems, acronyms,
names, and jargon of many kinds.

The first step of query processing is to use the inverted index to determine
those pages that contain the words in the query. To offer the user acceptable
response time, this step must involve few, if any, disk accesses. Search engines
today give responses in fractions of a second, an amount of time so small that
it amounts to only a few disk-access times.

On the other hand, the vectors that represent occurrences of a single word
have components for each of the pages indexed by the search engine, perhaps
tens of billions of pages. Very rare words might be represented by listing their
occurrences, but for common, or even reasonably rare words, it is more efficient
to represent by a bit vector the pages in which they occur. The AND of bit vec
tors gives the pages containing both words, and the OR of bit vectors gives the
pages containing one or both. To speed up the selection of pages, it is essential
to keep as many vectors as possible in main memory, since we cannot afford
disk accesses. Teams of machines may partition the job, say each managing the
portion of bit vectors corresponding to a subset of the Web pages.

23.1.4 Ranking Pages
Once the set of pages that match the query is determined, these pages are
ranked, and only the highest-ranked pages are shown to the user. The exact way
that pages are ranked is a secret formula, as closely guarded by search engines
as the formula for Coca Cola. One important component is the “PageRank,” a
measure of how important the Web itself believes the page to be. This measure
is based on links to the page in question, but is significantly more complex than
that. We discuss PageRank in detail in Section 23.2.

Some of the other measures of how likely a page is to be a relevant response
to the query are fairly easy to reason out. The following is a list of typical
components of a relevance measure for pages.

1. The presence of all the query words. While search engines will return

23.2. PAGERANK FOR IDENTIFYING IM PORTANT PAGES 1147

pages with only a proper subset of the query words, these pages are gen
erally ranked lower than pages having all the words.

2. The presence of query words in important positions in the page. For ex
ample, we would expect that a query word appearing in a title of the page
would indicate more strongly that the page was relevant to that word than
its mere occurrence in the middle of a paragraph. Likewise, appearance of
the word in a header cell of a table would be a more favorable indication
than its appearance in a data cell of the same table.

3. Presence of several query words near each other would be a more favorable
indication than if the words appeared in the page, but widely separated.
For example, if the query consists of the words “sally” and “jones,” we are
probably looking for pages that mention a certain person. Many pages
have lists of names in them. If “sally” and “jones” appear adjacent, or
perhaps separated by a middle initial, then there is a better chance the
page is about the person we want than if “sally” appeared, but nowhere
near “jones.” In that case, there are probably two different people, one
with first name Sally, and the other with last name Jones.

4. Presence of the query words in or near the anchor text in links leading
to the page in question. This insight was one of the two key ideas that
made the Google search engine the standard for the field (the other is
PageRank, to be discussed next). A page may lie about itself, by using
words designed to make it appear to be a good answer to a query, but it
is hard to make other people confirm your lie in their own pages.

23.2 PageRank for Identifying Important Pages
One of the key technological advances in search is the PageRank1 algorithm for
identifying the “importance” of Web pages. In this section, we shall explain
how the algorithm works, and show how to compute PageRank for very large
collections of Web pages.

23.2.1 The Intuition Behind PageRank
The insight that makes Google and other search engines able to return the
“important” pages on a topic is that the Web itself points out the important
pages. When you create a page, you tend to link that page to others that you
think are important or valuable, rather than pages you think are useless. Of
course others may differ in their opinions, but on balance, the more ways one
can get to a page by following links, the more likely the page is to be important.

We can formalize this intuition by imagining a random walker on the Web.
At each step, the random walker is at one particular page p and randomly

'A f te r L arry Page, w ho first p roposed th e a lgorithm .

1148 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERN ET

picks one of the pages that p links to. At the next step, the walker is at the
chosen successor of p. The structure of the Web links determines the long-
run probability that the walker is at each individual page. This probability is
termed the PageRank of the page.

Intuitively, pages that a lot of other pages point to are more likely to be
the location of the walker than pages with few in-links. But all in-links are not
equal. It is better for a page to have a few links from pages that themselves are
likely places for the walker to be than to have many links from pages that the
walker visits infrequently or not at all. Thus, it is not sufficient to count the
in-links to compute the PageRank. Rather, we must solve a recursive equation
that formalizes the idea:

• A Web page is important if many important pages link to it.

23.2.2 Recursive Formulation of PageRank — First Try
To describe how the random walker moves, we can use the transition matrix of
the Web. Number the pages 1 ,2 ,. .. ,n . The matrix M , the transition matrix
of the Web has element m y in row i and column j , where:

1. rriij = 1 /r if page j has a link to page i, and there are a total of r > 1
pages that j links to.

2. m y = 0 otherwise.

If every page has at least one link out, then the transition matrix will be (left)
stochastic — elements are nonnegative, and its columns each sum to exactly 1.
If there are pages with no links out, then the column for that page will be all
0’s, and the transition matrix is said to be substochastic (all columns sum to at
most 1).

E xam p le 2 3 .2 : As we all know, the Web has been growing exponentially, so
if you extrapolate back to 1839, you find that the Web consisted of only three
pages. Figure 23.2 shows what the Web looked like in 1839.

We have numbered the pages 1, 2, and 3, so the transition matrix for this
graph is:

For example, node 3, the page for Microsoft, links only to node 2, the page for
Amazon. Thus, in column 3, only row 2 is nonzero, and its value is 1 divided
by the number of out-links of node 3, which is 1. As another example, node 1,
Yahoo!, links to itself and to Amazon (node 2). Thus, in column 1, row 3 is 0,
and rows 1 and 2 are each 1 divided by the number of out-links from node 1,
i.e., 1/2. □

■ 1/2
M = 1/2

0

1/2 0

0 1
1 /2 0

23.2. PAGERANK FOR IDENTIFYING IMPORTANT PAGES 1149

PageRank Combats Spam

Before Google and PageRank, search engines had a great deal of trouble
recognizing important pages on the Web. It was common for unscrupulous
Web sites (“spammers”) to put bogus content on their pages, often in
ways that could not be seen by users, but that search engines would see
in the text of the page (e.g., by making the writing have the same color
as the background). If Google had simply counted in-links to measure
the importance of pages, then the spammers could have created massive
numbers of other bogus pages that linked to the page they wanted the
search engines to think was important. However, simply creating a page
doesn’t give it much PageRank, since truly important pages are unlikely
to link to it. Thus, PageRank defeated the spammers of the day.

Interestingly, the war between spammers and search engines contin
ues. The spammers eventually learned how to increase the PageRank of
bogus pages, which led to techniques for combating new forms of spam,
often called “link spam.” We shall address link spam in Section 23.3.3.

Suppose y, a, and m represent the fractions of the time the random walker
spends at the three pages of Fig. 23.2. Then multiplying the column-vector of
these three values by M will not change their values. The reason is that, after
a large number of moves, the walker’s distribution of possible locations is the
same at each step, regardless where the walker started. That is, the unknowns
y, a, and m must satisfy:

y ■ 1/2 1/2
a — 1/2 0
m 0 1/2

0 ' ’ y
1 a
0 m

Although there are three equations in three unknowns, you cannot solve these
equations for more than the ratios of y, a, and m. That is, if [y. a, m] is a
solution to the equations, then [cy, ca, cm] is also a solution, for any constant
c. However, since y, a, and m form a probability distribution, we also know
y + a + m = 1.

While we could solve the resulting equations without too much trouble,
solving large numbers of simultaneous linear equations takes time 0 (n 3), where
n is the number of variables or equations. If n is in the billions, as it would be
for the Web of today, it is utterly infeasible to solve for the distribution of the
walker’s location by Gaussian elimination or another direct solution method.
However, we can get a good approximation by the method of relaxation, where
we start with some estimate of the solution and repeatedly multiply the estimate
by the matrix M . As long as the columns of M each add up to 1, then the sum
of the values of the variables will not change, and eventually they converge to

1150 CHAPTER 23. DATABASE SYSTEM S AND THE INTERNET

Figure 23.2: The Web in 1839

the distribution of the walker’s location. In practice, 50 to 100 iterations of this
process suffice to get very close to the exact solution.

E xam ple 23.3: Suppose we start with [y,a,m] = [1/3,1/3,1/3]. Multiply
this vector by M to get

2/6 ' ' 1/2 1/2 0 ‘ ' 1/3 1
3/6 = 1/2 0 1 1/3
1/6 0 1/2 0 1/3

At the next iteration, we multiply the new estimate [2/6,3/6,1/6] by M , as:

5/12 ' ' 1/2 1/2 0 ‘ ' 2/6 '
4/12 = 1/2 0 1 3/6
3/12 0 1/2 0 1/6

If we repeat this process, we get the following sequence of vectors:

9/24 ' ' 20/48 ' ' 2/5 '
11/24 > 17/48 5 * * * 5 2/5
4/24 11/48

. VS .

That is, asymptotically, the walker is equally likely to be at Yahoo! or Amazon,
and only half as likely to be at Microsoft as either one of the other pages. □

23.2.3 Spider Traps and Dead Ends
The graph of Fig. 23.2 is atypical of the Web, not only because of its size, but
for two structural reasons:

23.2. PAGERANK FOR IDENTIFYING IMPORTANT PAGES 1151

1. Some Web pages (called dead ends) have no out-links. If the random
walker arrives at such a page, there is no place to go next, and the walk
ends.

2. There are sets of Web pages (called spider traps) with the property that
if you enter that set of pages, you can never leave, because there are no
links from any page in the set to any page outside the set.

Any dead end is, by itself, a spider trap. However, one also finds on the Web
spider traps all of whose pages have out-links. For example, any page that links
only to itself is a spider trap.

If a spider trap can be reached from outside, then the random walker may
wind up there eventually, and never leave. Put another way, applying relaxation
to the matrix of the Web with spider traps can result in a limiting distribution
where all probabilities outside a spider trap are 0.

Figure 23.3: The Web, if Microsoft becomes a spider trap

E xam ple 23.4: Suppose Microsoft decides to link only to itself, rather than
Amazon, resulting in the Web of Fig. 23.3. Then the set of pages consisting of
Microsoft alone is a spider trap, and that trap can be reached from either of
the other pages. The matrix M for this Web graph is

' 1/2 1 /2 0
M = 1/2 0 0

0 1 /2 1

Here is the sequence of approximate distributions that is obtained if we start, as
we did in Example 23.3, with [y, a, m] — [1/3,1/3,1/3] and repeatedly multiply
by the matrix M for Fig. 23.3:

r 1/3 ' 2/6 ' ' 3/12 ' 5/24 ' 8/48 ' ' 0 '
1/3 > 1/6 5 2/12 5 3/24 5/48) * * * ? 0
1/3 3/6 7/12 16/24 35/48 1

1152 CHAPTER 23. DATABASE SYSTEM S AND THE INTERN ET

That is, with probability 1, the walker will eventually wind up at the Microsoft
page and stay there. □

If we interpret these PageRank probabilities as “importance” of pages, then
the Microsoft page has gathered all importance to itself simply by choosing
not to link outside. That situation intuitively violates the principle that other
pages, not you yourself, should determine your importance on the Web. The
other problem we mentioned — dead ends — also cause the PageRank not to
reflect importance of pages, as we shall see in the next example.

Figure 23.4: Microsoft becomes a dead end

E xam ple 23.5: Suppose that instead of linking to itself, Microsoft links no
where, as suggested in Fig. 23.4. The matrix M for this Web graph is

M =
1 /2 1 /2 0
1 /2 0 0

0 1 /2 0

Notice that this matrix is not stochastic, because its columns do not all add up
to 1. If we try to apply the method of relaxation to this matrix, with initial
vector [1/3,1/3,1/3], we get the sequence:

r 1/3] '.2 /6 ‘ ‘ 3/12 ‘ ' 5/24 ‘ ' 8/48 ' ' 0 ‘
1/3 J 1/6 2/12 > 3/24 5 5/48 , . . . , 0
1/3 . 1/6 . 1/12 2/24 3/48 0

That is, the walker will eventually arrive at Microsoft, and at the next step has
nowhere to go. Eventually, the walker disappears. □

23.2. PAGERANK FOR IDENTIFYING IM PORTANT PAGES 1153

23.2.4 PageRank Accounting for Spider Traps and Dead
Ends

The solution to both spider traps and dead ends is to limit the time the random
walker is allowed to wander at random. We pick a constant (3 < 1, typically
in the range 0.8 to 0.9, and at each step, we let the walker follow a random
out-link, if there is one, with probability /3. With probability 1 — f3 (called the
taxation rate) , we remove that walker and deposit a new walker at a randomly
chosen Web page. This modification solves both problems.

• If the walker gets stuck in a spider trap, it doesn’t matter, because after
a few time steps, that walker will disappear and be replaced by a new
walker.

• If the walker reaches a dead end and disappears, a new walker will take
over shortly.

E xam ple 23.6: Let us use f i = 0.8 and reformulate the calculation of Page-
Rank for the Web of Fig. 23.3. If p n e w and p m are the new and old distributions
of the location of the walker after one iteration, the relationship between these
two can be expressed as:

■ 1/2 1/2 0 ' ' 1/3 '
P n ew — 0.8 1/2 0 0 P old 0*2 1/3

0 1/2 1 1/3

That is, with probability 0.8, we multiply p 0u by the matrix of the Web to get
the new location of the walker, and with probability 0.2 we start with a new
walker at a random place. If we start with p 0M = [1/3,1/3,1/3] and repeatedly
compute p new and then replace p 0id by Pnew, we get the following sequence of
approximations to the asymptotic distribution of the walker:

' .333 ‘ ' .333 ' ' .280 ‘ ' .259 ' 7/33 '
.333 5 .200 > .200 1 .179 , . . . , 5/33
.333 .467 .520 .563 21/33

Notice that Microsoft, because it is a spider trap, gets a large share of the im
portance. However, the effect of the spider trap has been mitigated considerably
by the policy of redistributing the walker with probability 0.2. □

The same idea fixes dead ends as well as spider traps. The resulting matrix
that describes transitions is substochastic, since a column will sum to 0 if there
are no out-links. Thus, there will be a small probability that the walker is
“nowhere” at any given time. That is, the sums of the probabilities of the
walker being at each of the pages will be less than one. However, the relative
sizes of the probabilities will still be a good measure of the importance of the
page.

1154 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERNET

Teleportation of Walkers

Another view of the random-walking process is that there are no “new”
walkers, but rather the walker teleports to a random page with probability
1—/?. For this view to make sense, we have to assume that if the walker is at
a dead end, then the probability of teleport is 100%. Equivalently, we can
scale up the probabilities to sum to one at each step of the iteration. Doing
so does not affect the ratios of the probabilities, and therefore the relative
PageRank of pages remains the same. For instance, in Example 23.7, the
final pageRank vector would be [35/81,25/81,21/81],

E xam ple 23.7: Let us reconsider Example 23.5, using f3 = 0.8. The formula
for iteration is now:

‘ 1/2 1/2 0 ' r 1/3
P n e w — 0.8 1/2 0 0 P old + 0.2 1/3

0 1/2 0 1/3

Starting with p 0u = [1/3,1/3,1/3], we get the following sequence of approxi
mations to the asymptotic distribution of the walker:

' .333 ‘ ' .333 ' ' .280 ‘ ' .259 ' ' 35/165 ‘
.333 J .200 J .200 > .179 , . . . , 25/165
.333 .200 .147 .147 21/165

Notice that these probabilities do not sum to one, and there is slightly more than
50% probability that the walker is “lost” at any given time. However, the ratio
of the importances of Yahoo!, and Amazon are the same as in Example 23.6.
That makes sense, because in neither Fig. 23.3 nor Fig. 23.4 are there links
from the Microsoft page to influence the importance of Yahoo! or Amazon. □

23.2.5 Exercises for Section 23.2
E xercise 23 .2 .1 : Compute the PageRank of the four nodes in Fig. 23.5, as
suming no “taxation.”

E xercise 23 .2 .2 : Compute the PageRank of the four nodes in Fig. 23.5, as
suming a taxation rate of: (a) 10% (b) 20%.

E xercise 23.2 .3 : Repeat Exercise 23.2.2 for the Web graph of

i. Fig. 23.6.

ii. Fig. 23.7.

23.2. PAGERANK FOR IDENTIFYING IM PORTANT PAGES 1155

Figure 23.5: A Web graph with no dead-ends or spider traps

Figure 23.7: A Web graph with a spider trap

1156 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERNET

! Exercise 23.2 .4 : Suppose that we want to use the map-reduce framework
of Section 20.2 to compute one iteration of the PageRank computation. That
is, we are given data that represents the transition matrix of the Web and
the current estimate of the PageRank for each page, and we want to compute
the next estimate by multiplying the old estimate by the matrix of the Web.
Suppose it is possible to break the data into chunks that correspond to sets of
pages — that is, the PageRank estimates for those pages and the columns of the
matrix for the same pages. Design map and reduce functions that implement
the iteration, so that the computation can be partitioned onto any number of
processors.

23.3 Topic-Specific PageRank
The calculation of PageRank is unbiased as to the content of pages. However,
there are several reasons why we might want to bias the calculation to favor
certain pages. For example, suppose we axe interested in answering queries only
about sports. We would want to give a higher PageRank to a page that discusses
some sport than we would to another page that had similar links from the Web,
but did not discuss sports. Or, we might want to detect and eliminate “spam”
pages — those that were placed on the Web only to increase the PageRank of
some other pages, or which were the beneficiaries of such planned attempts to
increase PageRank illegitimately.

In this section, we shall show how to modify the PageRank computation to
favor pages of a certain type. We then show how the technique yields solutions
to the two problems mentioned above.

23.3.1 Teleport Sets
In Section 23.2.4, we “taxed” each page 1 — fi of its estimated PageRank and
distributed the tax equally among all pages. Equivalently, we allowed random
walkers on the graph of the Web to choose, with probability 1 — fi, to teleport
to a randomly chosen page. We axe forced to have some taxation scheme in
any calculation of PageRank, because of the presence of dead-ends and spider
traps on the Web. However, we are not obliged to distribute the tax (or random
walkers) equally. We could, instead, distribute the tax or walkers only among
a selected set of nodes, called the teleport set. Doing so has the effect not only
of increasing the PageRank of nodes in the teleport set, but of increasing the
PageRank of the nodes they link to, and with diminishing effect, the nodes
reachable from the teleport set by paths of lengths two, three, and so on.

E xam ple 23.8: Let us reconsider the original Web graph of Fig. 23.2, which
we reproduce here as Fig. 23.8. Assume we are interested only in retail sales, so
we chose a teleport set that consists of Amazon alone. We shall use fi — 0.8, i.e.,
a taxation rate of 20%. If y, a, and m are variables representing the PageRanks

23.3. TOPIC-SPECIFIC PAGERANK 1157

Figure 23.8: Web graph for Example 23.8

of Yahoo!, Amazon, and Microsoft, respectively, then the equations we need to
solve are:

y " ■ 1/2 1/2 0 ‘ y ' 0
a = 0.8 1/2 0 1 a + 0.2 1
m 0 1/2 0 m 0

The vector [0,1,0] added at the end represents the fact that all the tax is
distributed equally among the members of the teleport set. In this case, there
is only one member of the teleport set, so the vector has 1 for that member
(Amazon) and 0’s elsewhere. We can solve the equations by relaxation, as we
have done before. However, the example is small enough to apply Gaussian
elimination and get the exact solution; it is y = 10/31, a — 15/31, and m =
6/31. The expected thing has happened; the PageRank of Amazon is elevated,
because it is a member of the teleport set. □

The general rule for setting up the equations in a topic-specific PageRank
problem is as follows. Suppose there are k pages in the teleport set. Let t be a
column-vector that has l / k in the positions corresponding to members of the
teleport set and 0 elsewhere. Let 1 — fi be the taxation rate, and let M be the
transition matrix of the Web. Then we must solve by relaxation the following
iterative rule:

P new — + (1 /)̂^

Example 23.8 was an illustration of this process, although we set both p„ew
and p 0u to [y,a,m\ and solved for the fixedpoint of the equations, rather than
iterating to converge to the solution.

1158 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERN ET

23.3.2 Calculating A Topic-Specific PageRank
Suppose we had a set of pages that we were certain were about a particular
topic, say sports. We make these pages the teleport set, which has the effect of
increasing their PageRank. However, it also increases the PageRank of pages
linked to by pages in the teleport set, the pages linked to by those pages, and
so on. We hope that many of these pages are also about sports, even if they
are not in the teleport set. For example, the page mlb.com, the home page
for major-league baseball, would probably be in the teleport set for the sports
topic. That page links to many other pages on the same site — pages that sell
baseball-related products, offer baseball statistics, and so on. It also links to
news stories about baseball. All these pages are, in some sense, about sports.

Suppose we issue a search query “batter.” If the PageRank that the search
engine uses to rank the importance of pages were the general PageRank (i.e.,
the version where all pages are in the teleport set), then we would expect to
find pages about baseball batters, but also cupcake recipes. If we used the
PageRank that is specific to sports, i.e., one where only sports pages are in
the teleport set, then we would expect to find, among the top-ranked pages,
nothing about cupcakes, but only pages about baseball or cricket.

It is not hard to reason that the home page for a major-league sport will be
a good page to use in the teleport set for sports. However, we might want to be
sure we got a good sample of pages that were about sports into our teleport set,
including pages we might not think of, even if we were an expert on the subject.
For example, starting at major-league baseball might not get us to pages for the
Springfield Little League, even though parents in Springfield would want that
page in response to a search involving the words “baseball” and “Springfield.”
To get a larger and wider selection of pages on sports to serve as our teleport
set, some approaches are:

1. Start with a curated selection of pages. For example, the Open Directory
(www.dmoz.org) has human-selected pages on sixteen topics, including
sports, as well as many subtopics.

2. Learn the keywords that appear, with unusually high frequency, in a small
set of pages on a topic. For instance if the topic were sports, we would
expect words like “ball,” “player,” and “goal” to be among the selected
keywords. Then, examine the entire Web, or a larger subset thereof, to
identify other pages that also have unusually high concentrations of some
of these keywords.

The next problem we have to solve, in order to use a topic-specific Page-
Rank effectively, is determining which topic the user is interested in. Several
possibilities exist.

a) The easiest way is to ask the user to select a topic.

b) If we have keywords associated with different topics, as described in (2)
above, we can try to discover the likely topic on the user’s mind. We can

23.3. TOPIC-SPECIFIC PAGERANK 1159

examine pages that we think are important to the user, and find, in these
pages, the frequency of keywords that are associated with each of the
topics. Topics whose keywords occur frequently in the pages of interest
are assumed to be the preference(s) of the user. To find these “pages of
interest,” we might:

i. Look at the pages the user has bookmarked.
ii. Look at the pages the user has recently searched.

23.3.3 Link Spam
Another application of topic-specific PageRank is in combating “link spam.”
Because it is known that many search engines use PageRank as part of the
formula to rank pages by importance, it has become financially advantageous to
invest in mechanisms to increase the PageRank of your pages. This observation
spawned an industry: spam farming. Unscrupulous individuals create networks
of millions of Web pages, whose sole purpose is to accumulate and concentrate
PageRank on a few pages.

Links from
outside

Figure 23.9: A spam farm concentrates PageRank in page T

A simple structure that accumulates PageRank in a target page T is shown
in Fig. 23.9. Suppose that, in a PageRank calculation with taxation 1 — fi,
the pages shown in the bottom row of Fig. 23.9 get, from the outside, a total
PageRank of r, and let the total PageRank of these pages be x. Also, let the
PageRank of page T be t. Then, in the limit, t = fix, because T gets all the
PageRank of the other pages, except for the tax. Also, x = r + fit, because the
other pages collectively get r from the outside and a total of fit from T. If we
solve these equations for t, we get t = fir /(l — fi2). For instance, if fi — .85, then
we have amplified the external PageRank by factor 0 .85/(l — (0.85)2) = 3.06.
Moreover, we have concentrated this PageRank in a single page, T.

Of course, if r — 0 then T still gets no PageRank at all. In fact, it is cut off
from the rest of the Web and would be invisible to search engines. However, it is
not hard for spam farmers to get a reasonable value for r. As one example, they
create links to the spam farm from publicly accessible blogs, with messages like
“I agree with you. See xl23456.mySpamFarm.com.” Moreover, if the number

1160 CHAPTER 23. DATABASE SYSTEM S AND THE INTERN ET

of pages in the bottom row is large, and the “tax” is distributed among all
pages, then r will include the share of the tax that is given to these pages.
That is why spam farmers use many pages in their structure, rather than just
one or two.

23.3.4 Topic-Specific PageRank and Link Spam
A search engine needs to detect pages that are on the Web for the purpose of
creating link spam. A useful tool is to compute the TrustRank of pages. Al
though the original definition is somewhat different, we may take the TrustRank
to be the topic-specific PageRank computed with a teleport set consisting of
only “trusted” pages. Two possible methods for selecting the set of trusted
pages are:

1. Examine pages by hand and do an evaluation of their role on the Web.
It is hard to automate this process, because spam farmers often copy
the text of perfectly legitimate pages and populate their spam farm with
pages containing that text plus the necessary links.

2. Start with a teleport set that is likely to contain relatively little spam.
For example, it is generally believed that the set of university home pages
form a good choice for a widely distributed set of trusted pages. In fact,
it is likely that modern search engines routinely compute PageRank using
a teleport set similar to this one.

Either of these approaches tends to assign lower PageRank to spam pages,
because it is rare that a trusted page would link to a spam page. Since
TrustRank, like normal PageRank, is computed with a positive taxation factor
1 — /3, the trust imparted by a trusted page attenuates, the further we get from
that trusted page. The TrustRank of pages may substitute for PageRank, when
the search engine chooses pages in response to a query. So doing reduces the
likelihood that spam pages will be offered to the queryer.

Another approach to detecting link-spam pages is to compute the spam mass
of pages as follows:

a) Compute the ordinary PageRank, that is, using all pages as the teleport
set.

b) Compute the TrustRank of all pages, using some reasonable set of trusted
pages.

c) Compute the difference between the PageRank and TrustRank for each
page. This difference is the negative TrustRank.

d) The spam mass of a page is the ratio of its negative TrustRank to its
ordinary PageRank, that is, the fraction of its PageRank that appears to
come from spam farms.

23.4. DATA STREAM S 1161

While TrustRank alone can bias the PageRank to minimize the effect of link
spam, computing the spam mass also allows us to see where the link spam is
coming from. Sites that have many pages with high spam mass may be owned
by spam farmers, and a search engine can eliminate from its database all pages
from such sites.

23.3.5 Exercises for Section 23.3
E xercise 23.3.1: Compute the topic-specific PageRank for Fig. 23.5, assum
ing

a) Only A is in the teleport set.

b) The teleport set is {A ,B }.

Assume a taxation rate of 20%.

E xercise 23.3 .2 : Repeat Exercise 23.3.1 for the graph of Fig. 23.6.

Exercise 23.3 .3 : Repeat Exercise 23.3.1 for the graph of Fig. 23.7.

!! Exercise 23.3.4: Suppose we fix the taxation rate and compute the topic-
specific PageRank for a graph G, using only node a as the teleport set. We
then do the same using only another node b as the teleport set. Prove that
the average of these PageRanks is the same as what we get if we repeated the
calculation with {a, 6} as the teleport set.

!! E xercise 23.3 .5 : What is the generalization of Exercise 23.3.4 to a situation
where there are two disjoint teleport sets Si and S2, perhaps with different
numbers of elements? That is, suppose we compute the PageRanks with just
Si and then just S2 as the teleport sets. How could we use these results to
compute the PageRank with Si U 52 as the teleport set?

23.4 Data Streams
We now turn to an extension of the ideas contained in the traditional DBMS to
deal with data streams. As the Internet has made communication among ma
chines routine, a class of applications has developed that stress the traditional
model of a database system. Recall that a typical database system is primarily
a repository of data. Input of data is done as part of the query language or a
special data-load utility, and is assumed to occur at a rate controlled by the
DBMS.

However, in some applications, the inputs arrive at a rate the DBMS cannot
control. For example, Yahoo! may wish to record every “click,” that is, every
page request made by any user anywhere. The sequence of URL’s representing
these requests arrive at a very high rate that is determined only by the desires
of Yahoo!’s customers.

1162 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERNET

23.4.1 Data-Stream-Management Systems
If we are to allow queries on such streams of data, we need some new mecha
nisms. While we may be able to store the data on high-rate streams, we cannot
do so in a way that allows instantaneous queries using a language like SQL.
Further, it is not even clear what some queries mean; for instance, how can we
take the join of two streams, when we never can see the completed streams?
The rough structure of a data-stream-management system (DSMS) is shown in
Fig. 23.10.

Ad-hoc
Queries Results

Results of
Standing
Queries

The system accepts data streams as input, and also accepts queries. These
queries may be of two kinds:

1. Conventional ad-hoc queries.

2. Standing queries that are stored by the system and run on the input
stream(s) at all times.

E xam ple 23.9: Whether ad-hoc or standing, queries in a DSMS need to be
expressed so they can be answered using limited portions of the streams. As
an example, suppose we are receiving streams of radiation levels from sensors
around the world. While the DSMS cannot store and query streams from
arbitrarily far back in time, it can store a sliding window of each input stream. It
might be able to keep on disk, in the “working storage” referred to in Fig. 23.10,
all readings from all sensors for the past 24 hours. Data from further back
in time could be dropped, could be summarized (e.g., replaced by the daily
average), or copied in its entirety to the permanent store (archive).

23.4. DATA STREAM S 1163

An ad-hoc query might ask for the average radiation level over the past hour
for all locations in North Korea. We can answer this query, because we have all
data from all streams over the past 24 hours in our working store. A standing
query might ask for a notification if any reading on any stream exceeds a certain
limit. As each data element of each stream enters the system, it is compared
with the threshold, and an output is made if the entering value exceeds the
threshold. This sort of query can be answered from the streams themselves,
although we would need to examine the working store if, say, we asked to be
alerted if the average over the past 5 minutes for any one stream exceeded the
threshold. □

23.4.2 Stream Applications

Before addressing the mechanics of data-stream-management systems, let us
look at some of the applications where the data is in the form of a stream or
streams.

1. Click Streams. As we mentioned, a common source of streams is the clicks
by users of a large Web site. A Web site might wish to analyze the clicks
it receives for a number of reasons; an increase in clicks on a link may
indicate that link is broken, or that it has become of much more interest
recently. A search engine may want to analyze clicks on the links to ads
that it shows, to determine which ads are most attractive.

2. Packet Streams. We may wish to analyze the sources and destinations of
IP packets that pass through a switch. An unusual increase in packets for
a destination may warn of a denial-of-service attack. Examination of the
recent history of destinations may allow us to predict congestion in the
network and to reroute packets accordingly.

3. Sensor Data. We also mentioned a hypothetical example of a network
of radiation sensors. There are many kinds of sensors whose outputs
need to be read and considered collectively, e.g., tsunami warning sensors
that record ocean levels at subsecond frequencies or the signals that come
from seismometers around the world, recording the shaking of the earth.
Cities that have networks of security cameras can have the video from
these cameras read and analyzed for threats.

4. Satellite Data. Satellites send back to earth incredible streams of data,
often petabytes per day. Because scientists are reluctant to throw any
of this data away, it is often stored in raw form in archival memory sys
tems. These are half-jokingly referred to as “write-only memory.” Useful
products are extracted from the streams as they arrive and stored in
more accessible storage places or distributed to scientists who have made
standing requests for certain kinds of data.

1164 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERN ET

5. Financial Data. Trades of stocks, commodities, and other financial instru
ments are reported as a stream of tuples, each representing one financial
transaction. These streams are analyzed by software that looks for events
or patterns that trigger actions by traders. The most successful traders
have access to the largest amount of data and process it most quickly,
because opportunities involving stock trades often last for only fractions
of a second.

23.4.3 A Data-Stream Data Model
We shall now offer a data model useful for discussing algorithms on data
streams. First, we shall assume the following about the streams themselves:

• Each stream consists of a sequence of tuples. The tuples have a fixed
relation schema (list of attributes), just as the tuples of relations do.
However, unlike relations, the sequence of tuples in a stream may be
unbounded.

• Each tuple has an associated arrival time, at which time it becomes avail
able to the data-stream-management system for processing. The DSMS
has the option of placing it in the working storage or in the permanent
storage, or of dropping the tuple from memory altogether. The tuple may
also be processed in simple ways before storing it.

For any stream, we can define a sliding window (or just “window”), which is
a set consisting of the most recent tuples to arrive. A window can be time-based
with a constant r , in which case it consists of the tuples whose arrival time is
between the current time t and t — r. Or, a window can be tuple-based, in which
case it consists of the most recent n tuples to arrive, for some fixed n.

We shall describe windows on a stream 5 by the notation S [PF], where W
is the window description, either:

1. Rows n, meaning the most recent n tuples of the stream, or

2. Range r , meaning all tuples that arrived within the previous amount of
time r.

E xam ple 23.10: Let Sensors(sensID , temp, tim e) be a stream, each of
whose tuples represent a temperature reading of temp at a certain tim e by the
sensor named sensID. It might be more common for each sensor to produce its
own stream, but all readings could also be merged into one stream if the data
were accumulated outside the data-stream-management system. The expression

Sensors [Rows 1000]

describes a window on the Sensors stream consisting of the most recent 1000
tuples. The expression

23.4. DATA STREAM S 1165

Sensors [Range 10 Seconds]

describes a window on the same stream consisting of all tuples that arrived in
the past 10 seconds. □

23.4.4 Converting Streams Into Relations
Windows allow us to convert streams into relations. That is, the window ex
pressions as in Example 23.10 describe a relation at any time. The contents
of the relation typically changes rapidly. For example, consider the expression
Sensors [Rows 1000] . Each time a new tuple of Sensors arrives, it is inserted
into the described relation, and the oldest of the tuples is deleted. For the ex
pression Sensors [Range 10 Seconds], we must insert tuples of the stream
when they arrive and delete tuples 10 seconds after they arrive.

Window expressions can be used like relations in an extended SQL for
streams. The following example suggests what such an extended SQL looks
like.

E xam ple 23.11: Suppose we would like to know, for each sensor, the highest
recorded temperature to arrive at the DSMS in the past hour. We form the
appropriate time-based window and query it as if it were an ordinary relation.
The query looks like:

SELECT sensID, MAX(temp)
FROM Sensors [Range 1 Hour]
GROUP BY sensID;

This query can be issued as an ad-hoc query, in which case it is executed
once, based on the window that exists at the instant the query is issued. Of
course the DSMS must have made available to the query processor a window
on Sensors of at least one hour’s length.2 The same query could be a standing
query, in which case the current result relation should be maintained as if it
were a materialized view that changes from time to time. In Section 23.4.5
we shall consider an alternative way to represent the result of this query as a
standing query. □

Window relations can be combined with other window relations, or with
“ordinary” relations — those that do not come from streams. An example will
suggest what is possible.

E xam ple 23.12: Suppose that our DSMS has the stream Sensors as an input
stream and also maintains in its working storage an ordinary relation

Calibrate(sensID, mult, add)
2S tric tly speak ing , th e DSM S only needs to have re ta in ed enough in fo rm ation to answ er

th e query. For exam ple, it could still answ er th e query a t any tim e if it th rew away every
tu p le for w hich th e re was a la te r read ing from th e sam e sensor w ith a h igher tem p era tu re .

1166 CHAPTER 23. DATABASE SYSTEM S AND THE INTERNET

which gives a multiplicative factor and additive term that are used to correct
the reading from each sensor. The query

SELECT MAX(mult*temp + add)
FROM Sensors [Range 1 Hour], Calibrate
WHERE Sensors.sensID = Calibrate.sensID;

finds the highest, properly calibrated temperature reported by any sensor in
the past hour. Here, we have joined a window relation from Sensors with the
ordinary relation C a lib ra te . □

We can also compute joins of window-relations. The following query illus
trates a self-join by means of a subquery, but all the SQL tools for expressing
joins are available.

E xam ple 23.13: Suppose we wanted to give, for each sensor, its maximum
temperature over the past hour (as in Example 23.11), but we also wanted the
resulting tuples to give the most recent time at which that maximum temper
ature was recorded. Figure 23.11 is one way to write the query using window
relations.

SELECT s.sensID, s.temp, s.time
FROM Sensors [Range 1 Hour] s
WHERE NOT EXISTS (

SELECT * FROM Sensors [Range 1 Hour]
WHERE sensID = s.sensID AND (

temp > s.temp OR
(temp = s.temp AND time > s.time)

)
) ;

Figure 23.11: Including time with the maximum temperature readings of sensors

That is, the subquery checks if there is not another tuple in the window-
relation Sensors [Range 1 Hour] that refers to the same sensor as the tuple
s, and has either a higher temperature or has the same temperature but a more
recent time. If no such tuple exists, then the tuple s is part of the result. □

23.4.5 Converting Relations Into Streams
When we issue queries such as that of Example 23.11 as standing queries, the
resulting relations change frequently. Maintaining these relations as material
ized views may result in a lot of effort making insertions and deletions that no
one ever looks at. An alternative is to convert the relation that is the result of
the query back into streams, which may be processed like any other streams.

23.4. DATA STREAM S 1167

For example, we can issue an ad-hoc query to construct the query result at a
particular time when we are interested in its value.

If R is a relation, define Istream (i?) to be the stream consisting of each
tuple that is inserted into R. This tuple appears in the stream at the time
the insertion occurs. Similarly, define Dstreajn(i?) to be the stream of tuples
deleted from R; each tuple appears in this stream at the moment it is deleted.
An update to a tuple can be represented by an insertion and deletion at the
same time.

E xam ple 23.14: Let R be the relation constructed by the query of Exam
ple 23.13, that is, the relation that has, for each sensor, the maximum temper
ature it recorded in any tuple that arrived in the past hour, and the time at
which that temperature was most recently recorded. Then Istream (i?) has a
tuple for every event in which a new tuple is added to R. Note that there are
two events that add tuples to R:

1. A Sensors tuple arrives with a temperature that is at least as high as
any tuple currently in R with the same sensor ID. This tuple is inserted
into R and becomes an element of Istream(_R) at that time.

2. The current maximum temperature for a sensor i was recorded an hour
ago, and there has been at least one tuple for sensor i in the Sensors
stream in the past hour. In that case, the new tuple for R and for
Istream(-R) is the Sensors tuple for sensor i that arrived in the past
hour, but no other tuple for i that also arrived in the past hour has:

(a) A higher temperature, or
(b) The same temperature and a more recent time.

The same two events may generate tuples for the stream Dstreeun(J?) as
well. In (1) above, if there was any other tuple in R for the same sensor, then
that tuple is deleted from R and becomes an element of Dstream(i?). In (2),
the hour-old tuple of R for sensor i is deleted from R and becomes an element
of D stream (il). □

If we compute the Istream and Dstream for a relation like that constructed
by the query of Fig. 23.11, then we do not have to maintain that relation as
a materialized view. Rather, we can query its Istream and Dstream to answer
queries about the relation when we wish.

E xam ple 23.15: Suppose we form the Istream I and the Dstream D for the
relation R of Fig. 23.11. When we wish, we can issue an ad-hoc query to
these streams. For instance, suppose we want to find the maximum tempera
ture recorded by sensor 100 that arrived over the past hour. That will be the
temperature in the tuple in I for sensor 100 that:

1. Has a time in the past hour.

1168 CHAPTER 23. DATABASE SYSTEM S AND THE INTERN ET

2. Was not deleted from R (i.e., is not in D restricted to the past hour).

This query can be written as shown in Fig. 23.12. The keyword Now represents
the current time.

Note that we must check that a tuple of I both arrived in the past hour and
that it has a timestamp within the past hour. To see why these conditions are
not the same, consider the case of a tuple of I that arrived in the past hour,
because it became the maximum temperature t for sensor 100 thirty minutes
ago. However, that temperature itself has an associated tim e that is eighty
minutes ago. The reason is that a temperature higher than t was recorded by
sensor 100 ninety minutes ago. It wasn’t until 30 minutes ago that t became
the highest temperature for sensor 100 in the sixty minutes preceding. □

(SELECT * FROM I [Range 1 Hour]
WHERE sensID = 100 AND

time >= [Now - 1 Hour])
EXCEPT

(SELECT * FROM D [Range 1 Hour]
WHERE sensID = 100);

Figure 23.12: Querying an Istream and a Dstream

23.4.6 Exercises for Section 23.4
Exercise 23.4 .1 : Using the Sensors stream from Example 23.11, write the
following queries:

a) Find the oldest tuple (lowest time) among the last 1000 tuples to arrive.

b) Find those sensors for which at least two readings have arrived in the past
minute.

! c) Find those sensors for which more readings arrived in the past minute
than arrived between one and two minutes ago.

Exercise 23 .4 .2 : Following the example of sensor data from this section, sup
pose that the following temperature-time readings are generated by sensor 100,
and each arrives at the DSMS at the time generated: (80,0), (70,50), (60,70),
(65,100). Times are in minutes. If R is the query of Fig. 23.11, W hat are
the tuples of Istream (.R) and Dstream(/?), and at what time is each of these
tuples generated?

E xercise 23.4 .3 : Suppose our stream consists of baskets of items, as in the
market-basket model of Section 22.1.1. Since we assume elements of streams
are tuples, the contents of a basket must be represented by several consecutive
tuples with the schema B askets (b ask e t, item). Write the following queries:

23.5. DATA MINING OF STREAM S 1169

a) Find those items that have appeared in at least 1% of the baskets that
arrived over the past hour.3

b) Find those pairs of items that have appeared in at least twice as many
baskets in the previous half hour as in the half hour before that.

c) Find the most frequent pair(s) of items over the past hour.

23.5 D ata Mining of Streams
When processing streams, there are a number of problems that become quite
hard, even though the analogous problems for relations are easy. In this section,
we shall concentrate on representing the contents of windows more succinctly
than by listing the current set of tuples in the window. Surely, we are not then
able to answer all possible queries about the window, but if we know what kinds
of queries we are expected to support, we might be able to compress the window
and answer those queries. Another possibility is that we cannot compress the
window and answer our selected queries exactly, but we can guarantee to be
able to answer them within a fixed error bound.

We shall consider two fundamental problems of this type. First, we con
sider binary streams (streams of 0’s and l ’s), and ask whether we can answer
queries about the number of l ’s in any time range contained within the window.
Obviously, if we keep the exact sequence of bits and their timestamps, we can
manage to answer those questions exactly. However, it is possible to compress
the data significantly and still answer this family of queries within a fixed error
bound. Second, we address the problem of counting the number of different
values within a sliding window. Here is another family of problems that cannot
be answered exactly without keeping the data in the window exactly. However,
we shall see that a good approximation is possible using much less space than
the size of the window.

23.5.1 Motivation

Suppose we wish to have a stream with a window of a billion integers. Such a
window could fit in a large main memory of four gigabytes, and it would have
no trouble fitting on disk. Surely, if we are only interested in recent data from
the stream, a billion tuples should suffice. But what if there are a million such
streams?

For example, we might be trying to integrate the data from a million sensors
placed around a city. Or we might be given a stream of market baskets, and try
to compute the frequency, over any time range, of all sets of items contained in

3Technically, som e b u t no t all of a basket could arrive w ith in th e p as t hour. Ignore th is
“edge effect,” an d assum e th a t e ith er all o r none of a b ask e t’s tup les ap p ea r in any given
window.

1170 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERN ET

those baskets. In that case, we need a window for each set, with bits indicating
whether or not that set was contained in each of the baskets.

In situations such as these, the amount of space needed to store all the
windows exceeds what is available using disk storage. Moreover, for efficient
response, we might want to keep all windows in main memory. Then, a few
windows of length a billion, or a few thousand windows of length a million
exceed what even a large main memory can hold. We are thus led to consider
compressing the data in windows. Unfortunately, even some very simple queries
cannot be answered if we compress the window, as the next example suggests.

E xam ple 23.16: Suppose we have a sliding window that stores stream ele
ments that are integers, and we have a standing query that asks for an alert
any time the sum of the integers in the window exceeds a certain threshold t.
We thus only need to maintain the sum of the integers in the window in order
to answer this query. When a new integer comes in, we can add it to the sum.

However, at certain times, integers leave the window and must be subtracted
from the sum. If the window is tuple-based, then we must subtract the last
integer from the sum each time a new integer arrives. If the window is time-
based, then when the time of an integer in the window expires, it must be
subtracted from the sum.

Unfortunately, if we don’t know exactly what integers are in the window, or
we don’t know their order of arrival (for tuple-based windows) or their time of
arrival (for time-based windows), then we cannot maintain the sum properly. To
see why we cannot compress, observe the following. If there is any compression
at all, then two different window-contents, W\ and W2, must have the same
compressed value. Since W\ ^ W2, there is some time t at which the integers
for time t are different in W\ and W2. Consider what happens when t is the
oldest time in the window, and another integer arrives. We must have to do
different subtractions from the sum, to maintain the sums for W\ and W2. But
since the compressed representation does not tell us which of Wi and W2 is the
true contents of the window, we cannot maintain the proper sum in both cases.
□

Example 23.16 tells us that we cannot compress the sum of a sliding window
if we are to get exact answers for the sum at all times. However, suppose we
are willing to accept an approximate sum. Then there are many options, and
we shall look at a very simple one here. We can group the stream elements into
groups of 100; say the first hundred elements of the stream ever to arrive, then
the next hundred, and so on. Each group is represented by the sum of elements
in that group. Thus, we have a compression factor of 100; i.e., the window is
represented by 1 /100th of the number of integers that are theoretically “in” in
window.

Suppose for simplicity that we have a tuple-based window, and the number
of tuples in the window is a multiple of 100. When the number of stream
elements that have arrived is also a multiple of 100, then we can get the sum of
the elements in the window exactly, just by summing the sums of the groups.

23.5. DATA MINING OF STREAM S 1171

Suppose another integer arrives. That integer starts another group, so we keep
it as the sum of that group. Now, we can only estimate the sum of all the
integers in the window. The reason is that the last group has only 99 of its 100
members in the window, and we don’t know the value of the integer, from the
last group, that is no longer in the window.

The best estimate of the deleted integer is 1% of the sum of the last group.
That is, we estimate the sum of all the integers in the window by taking 0.99
times the recorded sum of the last group, plus the recorded sums of all the other
groups.

Forty-nine arrivals later, there are fifty integers in the group formed from
the most recent arrivals, and the sum of the window includes exactly half of
the last group. Our best estimate of the sum of the fifty integers of the last
group that remain in the window is half the group’s sum. After another fifty
arrivals, the most recent group is complete, and the last group has left the
window entirely. We therefore can drop the recorded sum of the last group and
prepare to start another group with the next arrival.

Intuitively, this method gives a “good” approximation to the sum. If integers
are nonnegative, and there is not too much variance in the values of the integers,
then assuming that the missing integers are average for their group is a close
estimate. Unfortunately, if the variance is high, or integers can be both positive
and negative, there is no worst-case bound on how bad the estimate of the sum
can be. Consider what happens if integers can range from minus infinity to plus
infinity, and the last group consists of fifty large negative numbers followed by
fifty large positive numbers, such that the sum for the group is 0. Then the
estimate of the contribution of the last group, when only half of it is in the
window is zero, but in fact the true sum is very large — perhaps much larger
than the sum of all the integers that followed them in the stream.

One can modify this compression approach in various ways. For example,
we can increase the size of the groups to reduce the amount of space taken by
the representation. Doing so increases the error in the estimate, however. In
the next section, we shall see how to get a bounded error rate, while getting
significant compression, for the binary version of this problem, where stream
elements are either 0 or 1. The same method extends to streams of positive inte
gers with an upper bound, if we treat each position in the binary representation
of the integers as a bit stream (see Exercise 23.5.3).

23.5.2 Counting Bits
In this section, we shall examine the following problem. Assume that the length
of the sliding window is N , and the stream consists of bits, 0 or 1. We assume
that the stream began at some time in the past, and we associate a time with
each arriving bit that is its position in the stream; i.e., the first to arrive is at
time 1, the next at time 2, and so on.

Our queries, which may be asked at any time, are of the form “how many
l ’s are there in the most recent k bits?” where k is any integer between 1 and

1172 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERN ET

N . Obviously, if we stored the window with no compression, we could answer
any such query exactly, although we would have to sum the last k bits to do
so. Since k could be very large, the time needed to answer queries could itself
be large. Suppose, however, that along with the bits themselves we stored the
sums of certain groups of consecutive bits — groups of size 2, 4, 8,__ We
could then decrease the time needed to answer the queries exactly to 0(log N).
However, if we also stored sums of these groups, then even more space would
be needed than what we use to store the window elements themselves.

An attractive alternative is to keep an amount of information about the
window that is logarithmic in N , and yet be able to answer any query of the
type described above, with a fractional error that is as low as we like. Formally,
for any e > 0, we can produce an estimate that is in the range of 1 — e to 1 + e
times the true result. We shall give the method for e = 1/2, and we leave the
generalization to any e > 0 as an exercise with hints (see Exercise 23.5.4).

B uckets

To describe the algorithm for approximate counting of l ’s, we need to define
a bucket of size m; it is a section of the window that contains exactly m l ’s.
The window will be partitioned completely into such buckets, except possibly
for some 0’s that are not part of any bucket. Thus, we can represent any such
bucket by (m ,t), where m is the size of the bucket, and t is the time of the
most recent 1 belonging to that bucket. There axe a number of rules that we
shall follow in determining the buckets that represent the current window:

1. The size of every bucket is a power of 2.

2. As we look back in time, the sizes of the buckets never decrease.

3. For m = 1 ,2 ,4 ,8 ,. .. up to some largest-size bucket, there are one or two
buckets of each size, never zero and never more than two.

4. Each bucket begins somewhere within the current window, although the
last (largest) bucket maybe partially outside the window.

Figure 23.13 suggests what a window partitioned into buckets might look like.

R ep resen tin g B uckets

We shall see that under these assumptions, a bucket can be represented by
0(\ogN) bits. Further, there axe at most (9(log N) buckets that must be rep
resented. Thus, a window of length N can be represented in space 0(log2 TV),
rather than O(N) bits. To see why only 0(log2 N) bits axe needed, observe the
following:

• A bucket (m ,t) can be represented in O(log N) bits. First, m, the size of
a bucket, can never get above N . Moreover, m is always a power of 2, so

23.5. DATA MINING OF STREAMS 1173

One of length 16,
partially beyond
the window

One of
length 2

Two of
length 8

Two of
length 1

10010101 loooioimoioioioioionc 101010101011

N

Figure 23.13: Bucketizing a sliding window

we don’t have to represent m itself; rather we can represent log2 m. That
requires O (log logiV) bits. However, we also need to represent t, the time
of the most recent 1 in the bucket. In principle, t can be an arbitrarily
large integer, but it is sufficient to represent t modulo N , since we know
t has to be in the window of length N . Thus, 0(log N) bits suffice to
represent both m and t. So that we can know the time of newly arriving
l ’s, we maintain the current time, but also represent it modulo N , so
O(logiV) bits suffice for this count.

• There can be only O(logiV) buckets. The sum of the sizes of the buckets
is at most N , and there can be at most two of any size. If there are
more than 2 + 2 log2 N buckets, then the largest one is of size at least
2 x 2log2 N , which is 2N. There must be a smaller bucket of half that
size, so the supposed largest bucket is certainly completely outside the
window.

A nsw ering Q ueries A pproxim ately , U sing B uckets

Notice that we can answer a query to count the l ’s in the most recent k bits
approximately, as follows. Find the least recent bucket B whose most recent
bit arrived within the last k time units. All later buckets are entirely within
the range of k time units. We know exactly how many l ’s are in each of these
buckets; it is their size. The bucket B is partially in the query’s range, and
partially outside it. We cannot tell how much is in and how much is out, so we
choose half its size as the best guess.

E xam ple 23.17: Suppose k = N and the window is represented by the buckets
of Fig. 23.13. We see two buckets of size 1 and one of size 2, which implies four
l ’s. Then, there are two buckets of size 4, giving another eight l ’s, and two
buckets of size 4, implying another sixteen l ’s. Finally, the last bucket, of
size 16, is partially in the window, so we add another 8 to the estimate. The
approximate answer is thus 2 x l + l x 2 + 2 x 4 + 2 x 8 + 8 = 36. □

1174 CHAPTER 23. DATABASE SYSTEM S AND THE INTERNET

M ain tain ing B uckets

There Eire two reasons the buckets change as new bits arrive. The first is easy
to handle: if a new bit arrives, and the last bucket now has a most recent bit
that is more than N lower than the time of the arriving bit, then we can drop
that bucket from the representation. Such a bucket can never be part of the
answer to any query.

Now, suppose a new bit arrives. If the bit is a 0, there are no changes,
except possibly the deletion of the last bucket as mentioned above. Suppose
the new bit is a 1. We create a new bucket of size 1 representing just that bit.
However, we may now have three buckets of size 1, which violates the rule that
there can be only one or two buckets of each size. Thus, we enter a recursive
combining-buckets phase.

Suppose we have three consecutive buckets of size m, say (m, t2),
and (m, t-j), where ti < t 2 < t$. We combine the two least recent of the buckets,
(m, t\) and (m, t2), into one bucket of size 2m. The time of the most recent bit
for the combined bucket is that of the most recent bit for the more recent of
the two combined buckets. That is, (m, <i) and (m, t2) are replaced by a bucket
(2 m ,t2).

This combination may cause there to be three consecutive buckets of size
2m, if there were two of that size previously. Thus, we apply the combination
algorithm recursively, with the size now 2m. It can take no more than 0(log N)
time to do all the necessary combinations.

E xam ple 23.18: Suppose we have the list of bucket sizes implied by Fig. 23.13,
that is, 16,8,8,4,4,2,1,1. If a 1 arrives, we have three buckets of size 1, so we
combine the two earlier l ’s, to get the list 16,8,8,4,4,2,2,1. As this combina
tion gives us only two buckets of size 2, no recursive combining is needed. If
another 1 arrives, no combining at all is needed, and we get sequence of bucket
sizes 16,8 ,8 ,4 ,4 ,2 ,2 ,1 ,1 . When the next 1 arrives, we must combine l ’s, leav
ing 16,8,8,4 ,4 ,2 ,2 ,2 ,1 . Now we have three 2’s, so we recursively combine the
least recent of them, leaving 16,8,8,4,4,4,2,1. Now there are three 4’s, and
the least recent of them are combined to give 16,8,8,8,4,2,1. Again, we must
combine the least recent of the three 8’s, giving us the final list of bucket sizes
16,16,8,4,2,1. □

A B ound on th e E rro r

Suppose that in answer to a query the last bucket whose represented l ’s are in
the range of the query has size m. Since we estimate m /2 for its contribution to
the count, we cannot be off by more than m /2. The correct answer is at least
the sum of all the smaller buckets, and there is at least one bucket of each size
m /2, m /4, m /8 ,. . . ,1. This sum is m — 1. Thus, the fractional error is at most
(m /2)/(m — 1), or approximately 50%. In fact, if we look more carefully, 50%
is an exact upper bound. The reason is that when we underestimate (i.e., all m
l ’s from the last bucket are in the query range), the error is no more than 1/3.

23.5. DATA MINING OF STREAM S 1175

When we overestimate, we can really only overestimate by (m/2) — 1, not m /2,
since we know that at least one 1 contributes to the query. Since (m/2) — 1 is
less than half m — 1, the error is truly upper bounded by 50%.

23.5.3 Counting the Number of D istinct Elements
We now turn to another important problem: counting the distinct elements in
a (window on) a stream. The problem has a number of applications, such as
the following:

1. The popularity of a Web site is often measured by unique visitors per
month or similar statistics. Think of the logins at a site like Yahoo! as a
stream. Using a window of size one month, we want to know how many
different logins there are.

2. Suppose a crawler is examining sites. We can think of the words encoun
tered on the pages as forming a stream. If a site is legitimate, the number
of distinct words will fall in a range that is neither too high (few repeti
tions of words) nor too low (excessive repetition of words). Falling outside
that range suggests that the site could be artificial, e.g., a spam site.

To get an exact answer to the question, we must store the entire window
and apply the 8 operator to it, in order to find the distinct elements. However,
we don’t want to see the distinct elements; we just want to know how many
there are. Even getting this count requires that we maintain the window in
its entirety, but we can get an approximation to the count by several different
methods. The following technique actually computes the number of distinct
elements in the entire stream, rather than in a finite window. However, we can,
if we like, restart the process periodically, e.g., once a month to count unique
visitors or each time we visit a new site (to count distinct words).

The necessary tools are a number N that is certain to be at least as large as
the number of distinct values in the stream, and a hash function h that maps
values to log2 N bits. We maintain a number R that is initially 0. As each
stream value v arrives, do the following:

1. Compute h(v).

2. Let r be the number of trailing 0’s in h(v).

3. If r > R, set R to be r.

Then, the estimate of the number of distinct values seen so far is 2R. To see
why this estimate makes sense, note the following.

a) The probability that h(v) ends in at least i 0’s is 2“ *.

b) If there are m distinct elements in the stream so far, the probability that
R > i is (1 - 2~i)m.

1176 CHAPTER 23. DATABASE SYSTEM S AND THE INTERNET

c) If i is much less than log2 m, then this probability is close to 1, and if i is
much greater than log2 m, then this probability is close to 0.

d) Thus, R will frequently be near log2 rn, and 2R, our estimate, will fre
quently be near m.

While the above reasoning is comforting, it is actually inaccurate, to say
the least. The reason is that the expected value of 2R is infinite, or at least it
is as large as possible given that N is finite. The intuitive reason is that, for
large R, when R increases by 1, the probability of R being that large halves,
but the value of R doubles, so each possible value of R contributes the same to
the expected value.

It is therefore necessary to get around the fact that there will occasionally
be a value of R that is so large it biases the estimate of m upwards. While we
shall not go into the exact justification, we can avoid this bias by:

1. Take many estimates of R, using different hash functions.

2. Group these estimates into small groups and take the median of each
group. Doing so eliminates the effect of occasional large U’s.

3. Take the average of the medians of the groups.

23.5.4 Exercises for Section 23.5
E xercise 23.5.1: Starting with the window of Fig. 23.13, suppose that the
next ten bits to arrive are all l ’s. What will be the sequence of buckets at that
time?

E xercise 23.5.2: What buckets are used in Fig. 23.13 to answer queries of the
form “how many l ’s in the most recent k bits?” if k is (a) 10 (b) 15 (c) 20?
What are the estimates for each of these queries? How close are the estimates?

! E xercise 23.5.3: Suppose that we have a stream of integers in the range 0 to
1023. How can you adapt the method of Section 23.5.2 to estimate the sum of
the integers in a window of size N , keeping the error to 50%? Hint: treat each
of the ten bits that represent an integer as a separate stream.

! E xercise 23.5.4: We can modify the algorithm of Section 23.5.2 to use buckets
whose sizes are powers of 2, but there are between p and p + 1 buckets of each
size, for a chosen integer p > 1. As before, sizes do not decrease as we go further
back in time.

a) Give the recursive rule for combining buckets when there are too many
buckets of a given size.

b) Show that the fractional error of this scheme is at most 1/2p.

23.6. SUMMARY OF CHAPTER 23 1177

E xercise 23.5.5: Suppose that we wish to estimate the number of distinct
values in a stream of integers. The integers are in the range 0 to 1023. We’ll
use the following hash functions, each of which hashes to a 9-bit integer:

a) hi(v) — v modulo 512.

b) h,2 (v) = v + 159 modulo 512.

c) hs(v) = v + 341 modulo 512.

Compute the estimate of the number of distinct values in the following stream,
using each of these hash functions:

24,45,102,24,78,222,45,24,670,78,999,576,222,24

Exercise 23.5 .6 : In Example 23.11 we observed that if all we wanted was the
maximum of N temperature readings in a sliding window of time-temperature
tuples, then when a reading of t arrives, we can delete immediately any earlier
reading that is smaller than t.

! a) Does this rule always compress the data in the window?

!! b) Suppose temperatures are real numbers chosen uniformly and at random
from some fixed range of values. On average, how many tuples will be
retained, as a function of N ?

23.6 Summary of Chapter 23
♦ Search Engines: A search engine requires a crawler to gather information

about pages and a query engine to answer search queries.

♦ Crawlers: A crawler consists of one or more processes that visit Web
pages and follow links found in those pages. The crawler must maintain
a repository of pages already visited, so it does not revisit the same page
too frequently. Shingling and minhashing can be used to detect duplicate
pages with different URL’s.

♦ Limiting the Crawl: Crawlers normally limit the depth to which they will
search, declining to follow links from pages that are too far from their root
page or pages. They also can prioritize the search to visit preferentially
pages that are estimated to be popular.

♦ Preparing Crawled Pages to Be Searched: The search engine creates an
inverted index on the words of the crawled pages. The index may also in
clude information about the role of the word (e.g., is it part of a header?),
and the index for each word may be represented by a bit-vector indicating
on which pages the word appears.

♦ Answering Search Queries: A search query normally consists of a set of
words. The query engine uses the inverted index to find the Web pages
containing all these words. The pages are then ranked, using a formula
that is determined by each search engine, but typically favors pages with
close occurrences of the words, use of the words in important places (e.g.,
headers), and favors important pages using a measure such as PageRank.

♦ The Transition Matrix of the Web: This matrix is an important analytic
tool for estimating the importance of Web pages. There is a row and
column for each page, and the column for page j has 1 / r in the *th row
if page i is one of r pages with links from page j , and 0 otherwise.

♦ PageRank: The PageRank of Web pages is the principal eigenvector of
the transition matrix of the Web. If there are n pages, we can compute
the PageRank vector by starting with a vector of length n, and repeatedly
multiplying the current vector by the transition matrix of the Web.

♦ Taxation of PageRank: Because of Web artifacts such as dead ends (pages
without out-links) and spider traps (sections of the Web that cannot be
exited), it is normal to introduce a small tax, say 15%, and redistribute
that fraction of a page’s PageRank equally among all pages, after each
matrix-vector multiplication.

♦ Teleport Sets: Instead of redistributing the tax equally among all pages
during an iteration of the PageRank computation, we can distribute the
tax only among a subset of the pages, called the teleport set. Then, the
computation of PageRank simulates a walker on the graph of the Web
who normally follows a randomly chosen out-link from their current page,
but with a small probability instead jumps to a random member of the
teleport set.

♦ Topic-Specific PageRank: One application of the teleport-set idea is to
pick a teleport set consisting of a set of pages known to be about a certain
topic. Then, the PageRank will measure not only the importance of the
page in general, but to what extent it is relevant to the selected topic.

♦ Link Spam: Spam farmers create large collections of Web pages whose
sole purpose is to increase the PageRank of certain target pages, and thus
make them more likely to be displayed by a search engine. One way to
combat such spam farms is to compute PageRank using a teleport set
consisting of known, trusted pages — those that are unlikely to be spam.

♦ Data Streams: A data stream is a sequence of tuples arriving at a fixed
place, typically at a rate so fast as to make processing and storage in its
entirety difficult. Examples include streams of data from satellites and
click streams of requests at a Web site.

1178 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERN ET

23.7. REFERENCES FOR CHAPTER 23 1179

♦ Data-Stream-Management Systems-. A DSMS accepts data in the form of
streams. It maintains working storage and permanent (archival) storage.
Working storage is limited, although it may involve disks. The DSMS
accepts both ad-hoc and standing queries about the streams.

♦ Sliding Windows: To query a stream, it helps to be able to talk about
portions of the stream as a relation. A sliding window is the most recent
portion of the stream. A window can be time-based, in which case it
consists of all tuples arriving over some fixed time interval, or tuple-based,
in which case it is a fixed number of the most recently arrived tuples.

♦ Compressing Windows: If the DSMS must maintain large windows on
many streams, it can run out of main memory, or even disk space. De
pending on the family of queries that will be asked about the window, it
may be possible to compress the window so it uses significantly less space.
However, in many cases, we can compress a window only if we are willing
to accept approximate answers to queries.

♦ Counting Bits: A fundamental problem that allows a space/accuracy
trade-off is that of counting the number of l ’s in a window of a bit
stream. We partition the window into buckets representing exponentially
increasing numbers of l ’s. The last bucket may be partially outside the
window, leading to inaccuracy in the count of l ’s, but the error is limited
to a fixed fraction of the count and can be any e > 0.

♦ Counting Distinct Elements: Another important stream problem is count
ing the number of distinct elements in the stream without keeping a table
of all the distinct elements ever seen. An unbiased estimate of this number
can be made by picking a hash function, hashing elements to bit strings,
and estimating the number of distinct elements to be 2 raised to the power
that is the largest number of consecutive 0’s ever seen at the end of the
hash function of any stream element.

23.7 References for Chapter 23
References [3] and [8] summarize issues in crawling, based on the Stanford
WebBase system. An analysis of the degree to which crawlers reach the entire
Web was given in [15].

PageRank and the Google search engine are described in [6] and [16]. An
alternative formulation of Web structure, often referred to as “hubs and au
thorities,” is in [14].

Topic-specific PageRank, as described here, is from [12]. TrustRank and
combating link spam are discussed in [11].

Two on-line histories of search engines are [17] and [18].
The study of data streams as a data model can be said to begin with the

“chronicle data model” of [13]. References [7] and [2] describe the architecture

1180 CHAPTER 23. DATABASE SYSTEM S AND THE IN TERN ET

of early data-stream management systems. Reference [5] surveys data-stream
systems.

The algorithm described here for approximate counting of l ’s in a sliding
window is from [9],

The problem of estimating the number of distinct elements in a stream
originated with [10] and [4], The method described here is from [1], which also
generalizes the technique to estimate higher moments of the data, e.g., the sum
of the squares of the number of occurrences of each element.

1. N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx
imating frequency moments,” Twenty-Eighth ACM Symp. on Theory of
Computing (1996), pp. 20-29.

2. A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
semantic foundations and query execution,”
http://dbpubs.Stanford.edu/pub/2003-67
Dept, of Computer Science, Stanford Univ., Stanford CA, 2003.

3. A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan,
“Searching the Web,” ACM Trans, on Internet Technologies 1:1 (2001),
pp. 2-43.

4. M. M. Astrahan, M. Schkolnick, and K.-Y. Whang, “Approximating the
number of unique values of an attribute without sorting,” Information
Systems 12:1 (1987), pp. 11-15.

5. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and
issues in data stream systems,” Twenty-First ACM Symp. on Principles
of Database Systems (2002), pp. 261-272.

6. S. Brin and L. Page, “Anatomy of a large-scale hypertextual Web search
engine,” Proc. Seventh Intl. World-Wide Web Conference, 1998.

7. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams — a new
class of data management applications,” Proc. Intl. Conf. on Very Large
Database Systems (2002), pp. 215-226.

8. J. Cho, H. Garcia-Molina, T. Haveliwala, W. Lam, A. Paepcke, S. Ragha
van, and G. Wesley, “Stanford WebBase components and applications,”
ACM Trans, on Internet Technologies 6:2 (2006), pp. 153-186.

9. M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream
statistics over sliding windows,” SIAM J. Computing 31 (2002), pp. 1794-
1813.

10. P. Flagolet and G. N. Martin, “Probabilistic counting for database appli
cations,” J. Computer and System Sciences 31:2 (1985), pp. 182-209.

23.7. REFERENCES FOR CHAPTER 23 1181

11. Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating Web spam
with TrustRank,” Proc. Intl. Conf. on Very Large Database Systems (2004),
pp. 576-587.

12. T. Haveliwala, “Topic-sensitive PageRank,” Proc. Eleventh Intl. World-
Wide Web Conference (2002).

13. H. V. Jagadish, I. S. Mumick, and A Silberschatz, “View maintenance
issues for the chronicle data model,” Fourteenth ACM Symp. on Principles
of Database Systems (1995), pp. 113-124.

14. J. Kleinberg, “Authoritative sources in a hyperlinked environment," J.
ACM 46:5 (1999), pp. 604-632.

15. S. Lawrence and C. L. Giles, “Searching the World-Wide Web,” Science
280(5360) :98, 1998.

16. L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: bringing order to the Web,” unpublished manuscript, Dept, of
CS, Stanford Univ., Stanford CA, 1998.

17. L. Underwood, “A brief history of search engines,”
www. w ebreference. com/ au th o rin g / search .h is to ry

18. A. Wall, “Search engine history,” www.searchenginehistory.com.

Index

A

Abiteboul, S. 12, 515
Abort 852

See also Rollback
Abstract query plan

See Logical query plan
Achilles, A.-C. 12
ACID properties 9

See also Atomicity, Consistency,
Durability, Isolation

ACR schedule 957-958
See also Cascading rollback

Action 332-333, 335, 889
Acyclic hypergraph 1003-1007
ADA 378
ADD 33, 326
Addition rule 84
Address

See Database address, Forward
ing address, Logical address,
Memory address, Physical
address, Structured address,
Virtual memory

Adornment 1057, 1059, 1061-1062
After-trigger 334
Agent

See SQL agent
Agglomerative clustering 1123,1128-

1130
Aggregation 172,177-178,181, 213-

215, 283-285, 287-288,540,
714, 726, 733-734, 777-779,
802, 990

See also Average, Count, Data
cube, GROUP BY, Maximum,

Minimum, Sum
Agrawal, R. 1139
Agrawal, S. 367
Aho, A. V. 122
Algebra 38

See also Relational algebra
Algebraic law 768

See also Associative law, Com
mutative law, Idempotence,
Representability

Alias
See AS

ALL 271,282-283
Alon, N. 1180
ALTER TABLE 33, 326
Ancestor 522
And 254-255
Anomaly 67

See also Deletion anomaly, Re
dundancy, Update anomaly

ANSI 243
Antisemijoin 58
ANY 271
Application server 370-372
app ly -tem plates 547
A-Priori Algorithm 1102-1104
Arasu, A. 1180
Archive 844, 875-879
Arithmetic atom 223
Armstrong, W. W. 122
Armstrong’s axioms 81

See also Augmentation rule, Re-
flexivity rule, Transitive rule

Array 188, 196, 418
AS 247
Assertion 328-331

1183

1184 INDEX

Assignment statement 393-394
Association 172-175, 179
Association class 172, 175
Association rule 1093, 1097-1098
Associative array 418
Associative law 212, 768-769, 790-

791, 1083
Astrahan, M. M. 13, 309, 841, 1180
Atom 223, 760
Atomicity 2, 9, 298-299, 847, 1008-

1009
Attribute 22-23, 126-127, 134, 144,

172,184-185,194 198,260,
343, 445, 490-492,499-502,
506-507, 518, 521

See also Input attribute, Out
put attribute

Attribute-based check 320-321,323,
331

Augmentation rule 81, 83-84
Authorization 425-436
Authorization ID 425
Autoadmin 367-368
Automatic swizzling 598-599
Average 214, 284
Avoid cascading rollback

See Cascading rollback
Axford, S. J. 1091
Axis 517, 521-522

B

Babcock, B. 1180
Babu, S. 1180
Baeza-Yates, R. 698
Bag 188-189,196,205-212,228-230,

770
Balakrishnan, H. 1034
Balanced tree 634
Bancilhon, F. 202, 241
Band 1119
Barghouti, N. S. 983
Basis 80
Batini, Carlo 202
Batini, Carol 202

Battleships database 37, 55-57, 528-
529

Bayer, R. 698
BCNF 88-92, 111, 113
Beekmann, N. 698
Beeri, C. 122-123
Before-trigger 334
BEGIN 394
Benjelloun, O. 1091
Bentley, J. L. 698 699
Berenson, H. 309
Bernstein, P. A. 123, 309, 881, 951,

1034
BFR Algorithm 1132-1136
Binary large object

See BLOB
Binary number 691
Binary operation 711, 830-834,991-

992
Binary relationship 129-130, 134-

135, 172
Binding parameters 411
Biskup, J. 123
Bit

See Commit bit, Counting bits,
Parity bit

Bit string 30, 250
Bitmap 1106
Bitmap index 688-695
Blasgen, M. W. 757, 881
BLOB 608-609
Block

See Disk block
Block address

See Database address
Block header 592, 595, 614
Block-based nested-loop join 719-

722
Body 224
Boolean 30, 188, 533

See also Condition
Bottom-up enumeration 810-811
Bound adornment

See Adornment

INDEX 1185

Boyce-Codd normal form
See BCNF

Bradley, P. S. 1132, 1139
Bradstock, D. 423
Branch-and-bound 811-812
Branching 540-541, 551

See also ELSE, ELSEIF, IF
Brin, S. 1180-1181
Broder, A. Z. 1139
Bruce, J. 423
B-tree 633-647, 661, 927-928, 963
Bucket 626-627,630,666, 668,1172-

1174
See also Frequent bucket, Indi

rect bucket
Buffer 573, 705, 712, 723-724, 746-

751, 848-849, 855
Buffer manager 7, 746-751,818, 852,

883
Build relation 815
Buneman, P. 515
Burkhard, W. A. 698
Bushy tree 816

C

C 378
Cache 558
Call statement 393, 402
Call-level interface 369, 379, 404-

405
See also CLI

Candidate key 72
Candidate set 1103, 1121
Capabilities specification 1057-1058
Capability-based plan selection 1056

1060
Carney, D. 1180
Cartesian product

See Product
Cascade 314 315
Cascade policy 433-436
Cascading rollback 955-957
Case sensitivity 248, 530
Catalog 373-375
Cattell, R. G. G. 202, 618

CDATA 499
Celko, J. 309
Centralized locking 1015
Ceri, S. 202, 340, 700, 983
Cetintemel, U. 1180
Chain algorithm 1061-1068
Chamberlin, D. D. 309, 554, 841
Chandra, A. K. 1091
Chang, P. Y. 841
Chang, Y.-M. 423
Character set 375
Character string

See String
Charikar, M. 1139
Chase 96-100, 115-119
Chaudhuri, S. 367, 757
CHECK

See Assertion, Attribute-based
check, Tuple-based check

Check-in-check-out 976
Checkpoint 857-861, 866-868, 872-

873
Checksum 576-577
Chen, M.-S. 1105,1139
Chen, P. M. 618
Chen, P. P. 202
Cherniack, M. 1180
Child 521
Cho, J. 1180
Choice 505-506
Chord circle 1022-1031
Chou, H.-T. 757
Class 172, 179, 184, 188, 193-194,

451
CLI 369, 405-412
Click stream 1163
Client 375-376, 593
Clock algorithm 748-749
CLOSE 385, 707
Closed set of attributes 84
Closing tag 488
Closure, of attributes 75-79
Closure, of FD sets 80-81, 115
Cluster 374
Clustered file 625-626

1186 INDEX

Clustering 715, 739-741,1087,1123-
1136

Cobol 378
Cochrane, R. J. 340
CODASYL 3
Codd, E. F. 3, 65, 123, 241
Code

See Error-correcting code
Cohesion 1128-1129
Collaborative filtering 1095, 1111,

1123-1124
Collation 375
Collection type 189

See also Array, Bag, Dictionary,
List, Set

Column store 609-610
Combining rule 73-74
Comer, D. 698
Commit 300, 852

See also Group commit, Two-
phase commit

Commit bit 934
Communication heterogeneity 1040
Commutative law 212, 768-769,790-

791, 1083
Comparison 461-463, 523-524,537-

538
See also Lexicographic order

Compatibility matrix 907
Compensating transaction 979-981
Complementation rule 109-110
Complete subclasses 176, 180
Complex type 503-506
Composition 172, 178, 181
Compressed bitmap 691-693
Compressed set 1133
Compression

See Data compression
Concurrency

See Locking, Scheduler, Serial
izability, Timestamp, Trans
action, Validation

Concurrency control 7-8, 883, 978
See also Optimistic concurrency

control

Condition 332-334, 523-525
See also Boolean, Selection, Theta-

join, WHERE
Confidence 1097
Conflict 890-892
Conflict-serializability 890-895
Conjunctive query 1070
Connecting entity set 135, 145
Connection 376-377, 405, 412-413,

419, 427-428
Consistency 9, 898, 906
Consistent state 847
Constant 38-39
Constraint 18-19, 58-62, 148, 151,

311-331
See also CHECK, Dependency, Do

main constraint, Key, Trig
ger

Constraint modification 325-327
Containment 59
Containment mapping 1073-1074
Containment, of conjunctive queries

1070, 1073-1077
Containment, of value sets 797-798
Convey, C. 1180
Copyright 1021
Correctness principle 847-848
Corrolated subquery 273-274
Cosine distance 1126
Cost-based plan selection 803-812,

1060
Count 214, 284-285, 287
Counting bits 1171-1174
Counting distinct elements 1174-1176
Crash

See Media failure
Crawler

See Web crawler
CREATE 328-329, 333, 341, 351, 451,

462
CREATE TABLE 30-36, 313, 391, 454
CROSS JOIN 275-276
Cross product

See Product
Current instance 24

INDEX 1187

Curse of dimensionality 1127
Cursor 383-387, 396, 415, 419-420
Cylinder 562, 568-570

D

Dangling tuple 219-220, 315, 1001
Darwen, H. 309
Data compression 610-611
Data cube 425, 466-467, 473-477
Data disk 579
Data file 620
Data mining 1093-1136, 1169-1176
Data model 17-18

See also Model
Data region 683
Data replication

See Replication
Data source

See Source
Data stream 1161-1176
Data type 1041

See also UDT
Data warehouse 5, 465

See also Warehouse
Database 1
Database address 594, 601
Database administrator 5
Database management system

See DBMS
Database schema 373-375

See also Relational database schema
Database server 370, 372
Database state

See State
Data-definition language 1, 5, 29

See also ODL, Schema
Datalog 205, 222-238, 439, 1061-

1062
See also Conjunctive query

Data-manipulation language 2, 29
Datar, M. 1180
Data-stream management system 1161—

1163
Date 31, 251-252
Date, C. J. 309

Davidson, S. 515
Dayal, U. 123, 340
DBMS 1-10
DDL

See Data-definition language
Dead end 1150-1153
Deadlock 9, 903, 966-974, 1018
Dean, J. 1034
Decision-support query 464
Declaration 393

See also CREATE TABLE
DECLARE 381, 397
Decomposition 86-87
Default value 34
Deferrable constraint 316 317
Deferred checking 315-317
Deletion 292-294,426, 614, 631, 642-

645, 647, 650-651, 694
Deletion anomaly 86
Delobel, C. 123, 202
Dense index 621-622, 624, 637
Dependency

See Constraint, Functional de
pendency, Multivalued de
pendency

Dependency preservation 93, 100-
101, 113

DERIVED 455-456
Descendant 522
Description record 405
Design 140-145, 169

See also Model, Normalization
DeWitt, D. J. 757-758
Diaz, O. 340
Dicing 469 472
Dictionary 188, 196
Difference 39-40, 50, 207-208, 231,

265-266,268, 282-283,716-
717, 722, 727, 731, 734, 737,
771, 801, 990

Digital library 1021
Dimension

See Curse of dimensionality, Eu
clidean space

Dimension table 467-469

1188 INDEX

Dirty data 302 304, 935-937, 954
955

Discard set 1132
DISCONNECT 377
Disjoint subclasses 176, 180
Disk 562-589

See also Floppy disk, Shared
disk

Disk access 564-566
Disk assembly 562
Disk block 7, 352-353, 560, 592-

594, 634, 649, 706, 847
See also Database address, Over

flow block, Pinned block
Disk controller 564, 570
Disk crash

See Media failure
Disk head 563

See also Head assembly
Disk I/O 568-569, 645-646, 1098

1099
Disk scheduling 571-573
Disk striping

See RAID, Striping
Distance measure 1125-1127

See also Cosine distance, Edit
distance, Jaccard distance

DISTINCT
See Duplicate elimination

Distinct elements
See Counting distinct elements

Distributed commit
See Two-phase commit

Distributed database 997-1019
See also Peer-to-peer network

Distributed hashing 1021-1031
Distributed locking 1014-1019
Distributed transaction 998-999
Distributive law 212-213
DML

See Data-manipulation language
Document 488, 499, 502-503, 518-

519, 1111, 1124
Document retrieval 628 631

Document type definition
See DTD

DOM 515
Domain 23, 375
Domain constraint 61
Domain relational calculus

See Relational calculus
Dominance relation 1086
Double buffering 573
Drill-down 471
Driver 412
DROP 33, 326, 330, 345
DROP TABLE 33
DSMS

See Data-stream management
system

DTD 489, 495-502
Duplicate elimination 213-214,281-

284,538-539,712-713,722,
725, 731-733, 737, 777, 789-
790, 802, 990

See also DISTINCT
Durability 2, 7, 9
DVD

See Optical disk
Dynamic hash table 651-652
Dynamic hashing

See Extensible hashing, Linear
hashing

Dynamic programming 811-812,819-
824

Dynamic SQL 388-389

E

Ear 1004
Edit distance 1080, 1127
Element 488,490,496-497, 503-504,

518, 846, 849
See also Node

Elevator algorithm 571-573
Ellis, J. 423
ELSE 394
ELSEIF 394
Embedded SQL 378-389
Empty element 496

INDEX 1189

Empty set 59
Empty string 533
Encryption 611
END-394, 396
Entity 126
Entity resolution 1078-1087, 1117—

1118
Entity set 126-127, 144, 157, 172

See also Connecting entity set,
Supporting entity set, Weak
entity set

Entity/relationship model
See E /R model

Enumeration 184-185,188, 508-509
See also Bottom-up enumera

tion, Top-down enumera
tion

Environment 372-374, 405
Equal-height histogram 804
Equal-width histogram 804
Equijoin 790
Equivalence, of FD’s 73
E /R diagram 127-128
E /R model 125-171
Error-correcting code 589

See also Hamming code
Escape character 252
Eswaran, K. P. 757, 951
Euclidean space 1125
Even parity 576
Event 332-334
Event-condition-action rule

See Trigger
EXCEPT

See Difference
Exception 400-402
Exclusive lock 905-907
EXEC SQL 380
Execute (a SQL statement) 389, 407-

408, 413, 419-421, 426
Execution engine 7
EXISTS 270
Expanding solutions 1071-1073
Expression 38, 51
Expression tree 47-48, 236-237

Extended projection 213, 217-219
Extensible hashing 652-655
Extensible markup language

See XML
Extensible modeling language

See XML
Extensible stylesheet language

See XSLT
Extractor

See Wrapper

F

Fact table 466-467
Fagin, R. 123, 480, 699
Failure

See Intermittent failure, Mean
time to failure, Media fail
ure, Write failure

Faithfulness 140-141
Faloutsos, C. 698-700
Fang,M. 1139
Fayyad, U. M. 1132, 1139
FD

See Functional dependency
FD promotion rule 109
Feasible plan 1058
Federated databases 1041-1042
Fellegi, I. P. 1091
Fetch statement 384, 408-410
Field 509, 590

See also Repeating field, Tagged
field

FIFO
See First-in-first-out

File
See Clustered file, Data file, Grid

file, Index file, Sequential
file

File system 2
Filter 811, 827, 1052-1053
Finger table 1024
Finkel, R. A. 699
Finkelstein, S. J. 480
First normal form 103
First-come-first-served 920

1190 INDEX

First-in-first-out 748
Fisher, M. 423
Flagolet, P. 1180
Floating-point number 31, 188

See also Real number
FLWR expression 530-534
For-all 539-540
For-clause 530-533
Foreign key 312-317, 510-512
For-loop 398-400, 549
Fortran 378
Forwarding address 596, 613
4NF 110-113
Free adornment

See Adornment
Frequent bucket 1106, 1108
Frequent itemset 1093-1109
Friedman, J. H. 698
Frieze, A. M. 1139
FROM 244-246, 259, 274-275
Full outerjoin

See Outerjoin
Full reducer 1003, 1005-1007
Function 391-392, 402
Functional dependency 67-83
Functional language 530

G

Gaede, V. 699
Gallaire, H. 241
Gap 562-563
Garcia-Molina, H. 65, 515, 618,983,

1034,1091-1092,1139,1180
GAV

See Global-as-view mediator
Generator 460-461
Generic interface 245, 378
Geographic information system 661

662
GetNext 707
Ghemawat, S. 1034
Gibson, G. A. 618
Giles, C. L. 1181
Gionis, A. 1180
Glaser, T. 698

Global lock 1017-1019
Global-as-view mediator 1069
Goodman, N. 881, 951, 1034
Google 1147
Gotlieb, L. R. 758
Graefe, G. 758, 841
Graham, M. H. 1034
Grammar 761-762
Grant diagram 431-432
Grant statement 375
Granting privileges 430-431
Graph

See Hypergraph, Precedence graph,
Similarity graph, Waits-for
graph

Gray, J. N. 309, 618, 881, 951, 983
Greedy algorithm 824-825
Grid computing 1020
Grid file 665-671, 673
Griffiths, P. P. 480

See also Selinger, P. G.
GROUP BY 285-289
Group commit 959-960
Group mode 918, 925
Grouping 213, 215-217, 461, 714,

722, 726, 731, 733-734, 737,
777-779, 802, 990

See also GROUP BY
Guassian elimination 1150
Gulutzan, P. 309
Gunther, O. 699
Gupta, A. 241, 367, 1092
Guttman, A. 699
Gyongi, Z. 1180

H

Haas, L. 1092
Haderle, D. J. 881, 983
Hadoop 1034
Hadzilacos, V. 881, 951
Haerder, T. 881
Hall, P. A. V. 841
Hamming code 584, 589
Hamming distance 589
Handle 405-407

INDEX 1191

Harinarayan, V. 241, 367
Hash function 650, 989

See also Partitioned hash func
tion

Hash join 734-735
See also Hybrid hash join

Hash key 732
Hash table 648-659, 665, 732-738,

754-755
See also Dynamic hashing, Locality-

sensitive hashing, Minhash
ing, PCY Algorithm

Haveliwala, T. 1180
HAVING 288-289
Head 224
Head assembly 562
Head crash

See Media failure
Header

See Block header, Record header
Held, G. 13
Hellerstein, J. M. 13
Heterogeneity 1040-1041
Hierarchical clustering

See Agglomerative clustering
Hierarchical model 3, 21
Hill climbing 812
Hinterberger, H. 699
HiPAC 340
Histogram 804-807
Holt, R. C. 983
Host language 245, 369, 378
Howard, J. H. 123
Hsu, M. 881
HTML 488, 493, 545, 630
Hull, R 12
Hybrid hash join 735-737
Hypergraph 1003

See also Acyclic hypergraph

I

ICAR records 1083-1086
ID 500-502

See also Object-ID, Tuple iden
tifier

Idempotence 1083
IDREF 500-502
IF 394
Imielinski, T. 1139
Impedance mismatch 380
IMPLIED 499
Importance, of pages 1144-1147

See also PageRank
IN 270-272
Incomplete transaction 856, 864
Increment lock 911-913
Index 7-8, 350-358, 619-695, 739-

745, 829
See also Bitmap index, B-tree,

Clustering index, Dense in
dex, Inverted index, Mul
tidimensional index, Mul
tilevel index, Primary in
dex, Secondary index, Sparse
index

Index file 620
Index scan 704, 740-742
Indirection 626-627
Indyk, P. 1139, 1180
Information integration 4-5,486,1037-

1087
See also Federated databases,

Mediator, Warehouse
Information retrieval 632

See also Document retrieval
Information source

See Source
INGRES 12
Inheritance

See Isa relationship, Subclass
INPUT 848
Input attribute 774
Insensitive cursor 388
Insert 461
Insertion 291-293,426, 612,631, 640

642,649-650,653-655,657-
659,667-669,679, 684-686,
694-695, 925-926

Instance 24, 68, 73, 128-129
Instead-of-trigger 334, 347-349

1192 INDEX

Integer 30, 188
Intention lock 923-925
Interest 1097
Interior node 485
Interior region 683
Intermittent failure 575-576
Interpretation of text 417-418, 535-

536
Intersection 39-40, 50, 207-208, 212-

213, 231, 265, 268, 282-
283, 716, 722, 727,731, 734,
737, 769, 771, 801, 990

Inverse relationship 186
Inverted index 629-631, 996
Isa relationship 136, 172

See also Subclass
Isolation 2, 9
Isolation level 304

See also Read committed, Read
uncommitted, Repeatable
read

Item 518
Iteration

See Loop
Iterator 707-709, 719, 818-819

See also Pipelining

J

Jaccard distance 1126
Jaccard similarity 1110-1114
Jagadish, H. V. 1181
James, A. P. 1091
JDBC 369, 412-416
Join 39, 43, 50, 210-212, 235-236,

259-260,536-537,829-830,
1000-1007

See also Antisemijoin, CROSS JOIN,
Equijoin, Lossless join, Nat
ural join, Nested-loop join,
Outerjoin, Semijoin, Theta-
join, Zig-zag join

Join ordering 814-825
Join selectivity 825
Join tree 815-819
Jonas, J. 1091

K

Kaashoek, M. 1034
Kaiser, G. E. 983
Kanellakis, P. C. 951
Karger, D. 1034
Katz, R. H. 618, 758
kd-tree 677-681
Kedem, Z. 951
Kennedy, J. M. 1091
Key 25, 34-36, 60-61, 70, 72, 148-

150, 154, 160, 173, 191-
192,311,353, 509-510,620,
634

See also Foreign key, Hash key,
Primary key, Search key,
Sort key, UNIQUE

Kim, W. 202
Kitsuregawa, M. 758
Kleinberg, J. 1181
fc-means algorithm 1130-1131

See also BFR Algorithm
Knowledge discovery in databases

See Data mining
Knuth, D. E. 618, 699
Ko, H.-P. 951
Korth, H. F. 951
Kossman, D. 758
Kreps, P. 13
Kriegel, H.-P. 698
Kumar, V. 882, 1140
Kung, H.-T. 951

L

Label 485
Lam, W. 1180
Lampson, B. 618, 1034
Larson, J. A. 1092
Latency 565

See also Rotational latency, Schedul
ing latency

LAV
See Local-as-view mediator

Lawrence, S. 1181

INDEX 1193

LCS
See Longest common subsequence

Leaf 484, 634
Least-recently used 748
Lee, S. 1180
Left outerjoin 221, 277
Left-deep join tree 816-819
Legacy database 486, 1038
Legality, of schedules 898, 906
Lerdorf, R. 423
Let-clause 530-531
Levy, A. Y. 1076, 1091
Lewis, P. M. II 984
Lexicographic order 250
Ley, M. 12
Li, C. 1092
Lightstone, S. S. 367
LIKE 250-251
Lindsay, B. G. 882, 983
Linear hashing 655-659
Linear recursion 440
Link spam 1159-1160
List 188-189, 196
Litwin, W. 699
Liu, M. 241
Livny, M. 1140
LMSS Theorem 1076-1078
Local variable 1072
Local-as-view mediator 1069-1078
Locality-sensitive hashing 1112,1116—

1122
Lock

See Global lock, Upgrading locks
Lock granularity 921-926
Lock table 918-921
Locking 897-932, 941, 946-948,957-

959
See also Distributed locking, Ex

clusive lock, Increment lock,
Intention lock, Shared lock,
Strict locking, Update lock

Log file 851
Log manager 851
Log record 851-852

Logging 7-8, 851-873,876, 878-879,
953-954, 959

See also Logical logging, Redo
logging, Undo logging, Undo/
redo logging

Logic
See Datalog, Relational calcu

lus, Three-valued logic
Logical address 594-595
Logical logging 960-965
Logical query plan 702, 781-791,808

See also Plan selection
Lohman, G. 367
Lomet, D. 367, 618
Long-duration transaction 975-981
Longest common subsequence 1088
Lookup 639,666-667,670,679,1024

1026
Loop 396-400, 549
Lorie, R. A. 841, 951
Lossless join 94-99
Lowell Report 12
Lozano, T. 699
LRU

See Least-recently used

M

MacIntyre, P. 423
Mahalanobis distance 1135
Main memory 558, 561, 705, 747,

845, 1105
Majority locking 1019
Many-many relationship 130-131,186
Many-one relationship 129-131,145,

160, 187
Map 994-995
Map table 594
Map-reduce framework 993-996
Market basket 993, 1094-1096
Martin, G. N. 1180
Materialization 830-831
Materialized view 359-365
Matias, Y. 1180
Mattos, N. 340, 480
Maximum 214, 284

1194 INDEX

m axlnclusive 508
McCarthy, D. R. 340
McCreight, E. M. 698
McHugh, J. 515
McJones, P. R. 881
Mean time to failure 579
Media failure 563, 575, 578-579,844,

875
Mediator 1042,1046-1047,1049-1050

See also Global-as-view media
tor, Local-as-view media
tor

Megatron 747 (imaginary disk) 564
Melkanoff, M. A. 123
Melton, J. 309, 423
Memory address 594
Memory hierarchy 557-561
Mendelzon, A. O. 1076, 1091
Merge sort

See Two-phase multiway merge
sort

Merging records
See Entity resolution

Merlin, P. M. 1091
M etadata 8

See also Schema
Method 184, 445, 449, 452-453

See also Generator, Mutator
Middleware 5
Minhashing 1112-1115, 1121-1122
Minimal basis 80
Minimum 214, 284
m in lnc lusive 508
Minker, J. 241
Mirror disk 571, 579-580
Mitzenmacher, M. 1139
Model

See Data stream, E /R model,
Hierarchical model, Nested
relation, Network model, Ob
ject-oriented model, Object-
relational model, ODL, Phys
ical data model, Relational
model, Semistructured data,
UML, XML

Modification 18, 33, 386-387
See also Constraint modifica

tion, Deletion, Insertion, Up
datable view, Update

Module 378
See also PSM

Modulo-2 sum
See Parity bit

Mohan, C. 882, 983
MOLAP 467
Monotone operator 57
Monotonicity 441-443, 1103
Moore’s law 561
Morris, R. 1034
Moto-oka, T. 758
Motwani, R. 1139, 1180-1181
Movie database 26-27
Multidimensional index 661-686

See also Grid file, kd-tree, Multi
ple-key index, Partitioned
hash function, Quad tree,
R-tree

Multidimensional OLAP
See MOLAP

Multilevel index 623
See also B-tree

Multipass algorithm 752-755
Multiple-key index 675-677
Multiset

See Bag
Multistage Algorithm 1107-1109
Multivalued dependency 67,105-120
Multi version timetamp 939-941
Multiway merge-sort

See Two-phase, multiway merge-
sort

Multiway relationship 130-131,134-
135, 145

Mumick, I. S. 367, 480, 1181
Mumps 378
M utator 460-461
Mutual recursion 440
MVD

See Multivalued dependency

INDEX 1195

Nadeau, T. 367
Namespace 493, 533, 544
NaN 533
Narasaya, V. R. 367
Natural join 43-45, 96, 212, 276-

277, 717, 722,728-731,734-
737, 742-745,768, 771-772,
775-777, 790-791, 797-801,
990-991

See also Lossless join
Navathe, S. B. 202
Nearest-neighbor query 662, 664, 671,

677
Negation 254-255
Nested relation 446-448
Nested-loop join 718-722
Network model 3, 21
Newcombe, H. B. 1091
Nicolas, J.-M. 65
Nievergelt, J. 698-699
Node 484, 518-519

See also Element
Nonquiescent archive 875-878

See also Archive
Nonquiescent checkpoint 858-861

See also Checkpoint
Nontrivial FD

See Trivial FD
Nontrivial MVD

See Trivial MVD
Nonvolatile storage

See Volatile storage
Norm

See Distance measure, Euclidean
space

Normalization 67, 85-92
Not-null constraint 319-320
Null value 33-35,168, 252-254, 287-

288, 475, 605
See also Not-null constraint, Set-

null policy
Numeric array 418

N

Object 126, 167-168, 449
Object description language

See ODL
Object-ID 449, 455-456

See also Tuple identifier
Object-oriented model 21, 449-450

See also Object-relational model,
ODL

Object-relational model 20, 445-463
ODBC

See CLI
Odd parity 576 577
ODL 126, 183-198
Offset table 595, 612-613
OID

See Object-ID
OLAP 425, 464-477, 610
Olken, F. 758
OLTP 465
O’Neil, E. 309
O’Neil, P. 309, 699
One-one relationship 129 131, 172,

187
One-pass algorithm 709-717, 829
On-line analytic processing

See OLAP
On-line transaction processing

See OLTP
OPEN 384, 707
Opening tag 488
Operand 38
Operator 38

See also Monotone operator
Optical disk 559
Optimistic concurrency control 933

See also Timestamp, Validation
Optimization

See Plan selection, Query opti
mization

Or 254-255
ORDER BY 255-256, 461

See also Ordering, Sorting
Ordering 461-463, 541-543

O

1196 INDEX

See also Join ordering, Sorting
Ordille, J. J. 1091
Outerjoin 214, 219-222, 277-278
OUTPUT 849
Output attribute 774
Overflow block 613
Overlapping subclasses 176, 180
Ozsoyoglu, M. Z. 1034
Ozsu, M. T. 984

P

Packet stream 1163
Paepcke, A. 1180
Page

See Disk block
Page, L. 1147, 1180-1181
PageRank 1147-1160
Palermo, F. P. 841
Papadimitriou, C. H. 951
Papakonstantinou, Y. 65, 515,1091-

1092
Parallel computing 986-992, 1145

See also Map-reduce framework
Parameter 391, 410-412, 416
Parent 522
Parity bit 576, 582
Parity block 580
Park, J. S. 1105, 1139
Parse tree 760, 781-782
Parsed character data

See PCDATA
Parser 760-764
Parsing 701
Partial subclasses 176
Partial-match query 662, 670, 676-

677, 680, 689
Partitioned hash function 671-673
Partitioning 1087
Pascal 378
Path expression 519-526
Paton, N. W. 340
Pattern matching

See LIKE
Patterson, D. A. 618
PCDATA 496

PCY Algorithm 1105-1107
PEAR 419
Pedersen, J. 1180
Peer-to-peer network 4, 1020-1021
Pelagatti, G. 983
Pelzer, P. 309
Percentiles

See Equal-height histogram
Persistent stored modules

See PSM
Peterson, W. W. 699
Phantom 925-926
PHP 369, 416-421
Physical address 594
Physical data model 17
Physical query plan 702-703, 750-

751, 810-812, 826-838
Piatetsky-Shapiro, G. 1139
Pinned block 600-601
Pipelining 830-834
Pippenger, N. 699
Pirahesh, H. 340, 480, 882, 983
PL/1 378
Plagiarism 1111
Plan selection

See Bottom-up enumeration, Cap
ability-based plan selection,
Cost-based plan selection,
Dynamic programming, Greedy
algorithm, Join ordering, Phys
ical query plan, Selinger-
style enumeration, Top-down
enumeration

PL/SQL 423
Point assignment 1123, 1130
Pointer swizzling

See Swizzling
Precedence graph 892-895
Predicate 223
Prefetching 573

See also Double-buffering
Prepare (a SQL statement) 389,407,

413, 421
Prepared statement 413-414
Preprocessor 764-767

INDEX 1197

Preservation of dependencies
See Dependency preservation

Preservation, of value sets 797-798
Price, T. G. 841
Primary index 620

See also Dense index, Sparse
index

Primary key 34-36, 70, 311, 637
Primary-copy locking 1017
Prime attribute 102
Privilege 425-436
Probe relation 815
Procedure 391-392, 402
Product 39, 43, 50, 210, 235, 259-

260, 717, 722,731, 737, 768,
771-772, 775-777, 791

Product database 36, 52-54, 526-
527

Projection 39, 41, 50, 206, 208-209,
232, 246-248, 711-712, 722,
774-776, 794

See also Extended projection,
Lossless join, Pushing pro
jections

Projection, of FD’s 81-83
Projection, of MVD’s 119-120
Prolog 241
Proper ancestor 522
Proper descendant 522
Pseudotransitivity rule 84
PSM 391 402

See also PL/SQL, SQL PL, Trans
act-SQL

Pushing projections 789
Pushing selections 789, 808
Putzolo, F. 618, 951

Q
Quad tree 681-683
Quantifier

See ALL, ANY, EXISTS, For-all,
There-exists

Quass. D. 241, 515, 699, 1091
Query 18, 225, 343, 413-414

See also Decision-support query,
Lookup, Nearest-neighbor
query, OLAP, Partial-match
query, Physical query plan,
Range query, Search query,
Standing query, Where-am-
I query

Query compiler 7,10, 701-703,759-
838

Query execution 701-755
Query language

See CLI, Datalog, Data-manipulation
language, JDBC, PHP, PSM,
Relational algebra, SQL, XPath,
XQuery, XSLT

Query optimization 10, 18, 49, 702
See also Plan selection

Query plan
See Logical query plan, Physi

cal query plan, Plan selec
tion

Query processing 5, 7, 9-10, 1000-
1007

See also Execution engine, Query
compiler

Query rewriting 363-364, 701-702
See also Algebraic law

Query-language heterogeneity 1040

R

Raghavan, S. 1180
RAID 578-588, 844
Rajaraman, A. 367, 1091
Ramakrishnan, R. 241, 1140
Random walker 1147, 1154
Range query 639-640,662-664,670-

671, 677, 680-681, 690
Raw-data cube

See Data cube, Fact table
READ 849
Read committed 304-305
Read lock

See Shared lock
Read uncommitted 304
Read-only transaction 300-302

1198 INDEX

Real number
See Floating-point number

Record 590-592, 1079
See also ICAR records, Log record,

Sliding records, Spanned record,
Tagged field, Variable-format
record, Variable-length record

Record address
See Database address

Record fragment 608
Record header 590, 604
Record structure

See Structure
Recoverable schedule 956, 958
Recovery 7, 855-857, 864-868,870-

872,878-879,953-965,1011-
1013

Recovery manager 855
Recovery of information 93

See also Lossless join
Recursion 238, 437-443, 546
Redo logging 853, 863-868
Reduce 995-996

See also Map-reduce framework
Redundancy 86, 106, 113, 141
Redundant arrays of independent disks

See RAID
Redundant disk 579-580
Reference 446, 449, 454-455, 457-

458
REFERENCES 426

See also Foreign key
Referential integrity 59-60,150-151,

154, 172, 313-315
See also Foreign key

Reflexivity rule 81
Reina, C. 1132, 1139
Relation 18, 205, 342, 1165-1168

See also Build relation, Dimen
sion table, Fact table, Probe
relation, Table, View

Relation instance
See Instance

Relation schema 22, 24, 29-36

Relational algebra 19, 38-52,59, 205-
221,230-238,249, 782-783

Relational atom 223
Relational calculus 241
Relational database schema 22
Relational database system 3
Relational model 3, 17-19, 21-26,

157-169,179-183,193-198,
493-494

See also Functional dependency,
Multivalued dependency,
Nested relation, Normaliza
tion, Object-relational model

Relational OLAP
See ROLAP

Relationship 127,134,137,142-144,
158-160, 185-188, 198

See also Binary relationship, Isa
relationship, Many-many re
lationship, Many-one rela
tionship, Multiway relation
ship, One-one relationship,
Supporting relationship

Relationship set 129
Relative path expression 521
Relaxation 1150
Renaming 39, 49-50
Repeatable read 304-306
Repeating field 603, 605-607
Repeat-loop 399
Replication 999, 1016-1019
Representability 1083
REQUIRED 499
Resilience 843
RESTRICT 433-436
Retained set 1133
Return statement 393
Return-clause 530, 533-534
Reuter, A. 881, 951
Revoking privileges 433-436
Right outerjoin 221, 277
Right-deep join tree 816-819
Rivest, R. L. 699
Robinson, J. T. 699, 951
ROLAP 467

INDEX 1199

Role 131-133, 175
Rollback 300-301, 955-959

See also Abort, Cascading roll
back

Roll-up 471, 476
Root 485, 489, 495, 519
Rosenkrantz, D. J. 984
Rotational latency 565

See also Latency
Rothnie, J. B. Jr. 699, 951
Roussopoulos, N. 700
Row 22

See also Tuple
Row-level trigger 332, 334
R-swoosh algorithm 1083-1086
R-tree 683-686
Rule 224-225

See also Safe rule
Run-length encoding 691-693

S

Safe rule 226
Saga 978-981
Sagiv, Y. 1076, 1091
Salem, K. 618, 983
Salton, G. 699
Satisfaction, of an FD 68, 72-73
SAX 515
Scan

See Index scan, Table scan
Schedule 884-889

See also ACR schedule, Legal
ity, of schedules, Recover
able schedule, Serial sched
ule, Serializable schedule,
Strict schedule

Scheduler 883, 900-903, 915-921
Scheduling latency 568
Schema 483-484, 590

See also Database schema, Global
schema, Relation schema,
Relational database schema,
Star schema

Schema heterogeneity 1040-1041
Schkolnick, M. 1180

Schneider, R. 698
Schwarz, P. 882, 983
Search engine 1141-1160
Search key 619-620, 637
Search query 620
Second normal form 103
Secondary index 620, 624-628

See also Inverted index
Secondary storage 558-559

See also Disk
Second-chance algorithm

See Clock algorithm
Sector 562-563
Seeger, B. 698
Seek time 564
Seidman, G. 1180
SELECT 244-246, 426

See also Single-row select
Selection 39, 42, 50, 209, 232 234,

248-250,711-712,722, 740-
742, 770,772-774,777, 783,
790, 794-797,827-829,835,
989

See also Filter, Pushing selec
tions, Two-argument selec
tion

Selection, of indexes 352-358
Selectivity

See Join selectivity
Selector 509
Self 522
Selinger, P. G. 841

See also Griffiths, P. P.
Selinger-style enumeration 811-812
Sellis, T. K. 700
Semantic analysis

See Preprocessor
Semijoin 58, 1001, 1005-1007
Semilattice 1083, 1088
Semistructured data 18-20, 483-487

See also XML
Sensor 1163
Sequence 505-506, 518, 535
Sequential file 621, 661
Serial schedule 885-886, 958

1200 INDEX

Serializability 296-298,387-388,884,
953-965

See also Conflict-serializability
Serializable schedule 886-887, 901-

903, 958
Server 375, 593

See also Application server, Data
base server, Web server

Session 377
Set 188-189,195-196, 209, 294,301,

304, 377, 445, 770
Set difference

See Difference
Set-null policy 314-315
Sevcik, K. 699
Shapiro, L. D. 758
Shared disk 988
Shared lock 905-907, 920
Shared memory 986-987
Shared variable 381-383
Shared-nothing machine 988-989
Shaw, D. E. 1034
Sheth, A. P. 1092
Shingle 1111-1112
Shivakumar, N. 1139
Shortest common subsequence 1088
Sibling 522
Signature 1113

See also Locality-sensitive hash
ing, Minhashing

Silberschatz, A. 951, 1181
Similarity graph 1084
Similarity, of records 1079-1087
Similarity, of sets 1110-1115
Simon, A. R. 309
Simple type 503, 507-509
Simplicity 142
Single-row select 383, 395-396
Single-value constraint

See Functional dependency, Many-
one relationship

Skeen, D. 1034
Skelley, A. 367
Slicing 469-472
Sliding window 1164, 1169-1171

SMART 367
Smith, J. M. 841
Smyth, P. 1139
Snodgrass, R. T. 700
Solution 1070, 1076-1077
Sort key 726
Sorted file

See Sequential file
Sorted index 743-745
Sorting 214, 219, 704, 723-731, 738,

752-754, 829, 835
See also ORDER BY, Ordering, Two-

phase multiway merge sort
Source capabilities 1056-1057
Spam 1148

See also Link spam
Spam farm 1159
Spam mass 1160
Spanned record 608-609
Sparse index 622-623, 637
Spider trap 1150-1153
Spindle 562
Splitting rule 73-74, 109
SQL 3, 29-36, 243-444,451-463,475-

477, 530
SQL agent 378
SQL PL 423
SQL state 381, 385
Srikant, R. 1139
Srivastava, D. 1076, 1091
Stable storage 577-578
Standing query 1162
Star schema 467-469
State 845, 979

See also Consistent state
Statement 405, 413-415
Statement-level trigger 332
Static hash table 651
Statistics 8, 705-706, 807

See also Histogram
Stearns, R. E. 984
Steinbach, M. 1140
Stemming 632
Stoica, I. 1034

INDEX 1201

Stonebraker, M. 13, 618, 758, 1034,
1180

Stop word 632
Storage manager 7-8
Stored procedure 375

See also PSM
Strict locking 957-958
Strict schedule 958
String 30, 188, 417

See also Bit string
Stripe 665
Striping 570
Strong, H. R. 699
Structure 185, 189, 194-195, 445
Structured address 595-596
Sturgis, H. 618, 1034
Stylesheet 544
Su, Q. 1091
Subclass 135-138,165-170,172,176,

180-181
See also Isa relationship

Subgoal 224, 1062
Subquery 268-275, 395, 783-788

See also Correlated subquery
Subrahmanian, V. S. 700
Subsequence 1087
Suciu, D. 515
Sum 214, 284, 1170
Sunter, A. B. 1091
Superkey 71, 88, 102
Support 1095 1096, 1100
Supporting entity set 154
Supporting relationship 154-155
Swarni, A. 1139
Swizzling 596-600
Syntactic category 760, 762
Syntax analysis

See Parser
Synthesis algorithm for 3NF 103-

104
System failure 845
SYSTEM GENERATED 455-456
System R 12, 308, 841
Szegedy, M. 1180

Table 18, 29, 342
See also Relation

Table scan 703-704, 706-708
Tableau 97
Tag 488, 493
Tagged field 607
Tan, P.-N. 1140
Tanaka, H. 758
Tatbul, N. 1180
Tatroe, K. 423
Taxation rate 1153, 1156

See also Teleportation
Teleport set 1156-1157
Teleportation 1154
Template 544-548, 1050
Temporal database 24
Temporary table 30
Teorey, T. 367
Tertiary storage 559
Thalheim, B. 202
There-exists 539-540
Theta-join 45-47, 769, 777, 790-791
Thomas, R. H. 1034
Thomas write rule 936
Thomasian, A. 951
3NF 102-104, 113
Three-tier architecture 369-372
Three-valued logic 253-255
Thuraisingham, B. 951
Time 31, 251-252
Timeout 967
Timestamp 252, 590, 933-941, 946-

948, 970-974
See also Multiversion timetamp

Tombstone 596, 614, 694
Top-down enumeration 810-811
Topic-specific PageRank 1156-1160
TPMMS

See Two-phase multiway merge
sort

Track 562
Traiger, I. L. 951
Transaction 7, 296-306,845-851, 887-

T

1202 INDEX

889
See also Consistency, Incomplete

transaction, Long-duration
transaction

Transaction manager 883
Transaction processing

See Concurrency, Deadlock, Lock
ing, Logging, Scheduling

Transact-SQL 423
Transfer time 565
Transition matrix of the Web 993,

1148-1149
Transitive rule 73, 79-81, 108
Translation table 597
Tree

See Balanced tree, B-tree, Bushy
tree, Expression tree, Join
tree, kd-tree, Left-deep join
tree, Parse tree, Quad tree,
Right-deep join tree, R-tree

Tree protocol 927-932
Triangle inequality 1125
Triangular matrix 1101-1102
Trigger 332-337, 426
Trivial FD 74-75, 88
Trivial MVD 108
TrustRank 1160
Truth value 253-255
Tuning 357-358, 364-365
Tuple 22-23,449,458-459,706,1164

See also Dangling tuple
Tuple identifier 445-446

See also Object-ID
Tuple relational calculus

See Relational calculus
Tuple variable 261-262
Tuple-based check 321-323, 331
Tuple-based nested-loop join 719
Two-argument selection 783-785
Two-pass algorithm 723-738
Two-phase commit 1009-1013
Two-phase locking 900-902, 906
Two-phase multiway merge sort 723-

725
Type

See Collection type, Complex
type, Data type, Simple type,
User-defined type

Type constructor 188, 449

U

UDT 451-463
Ullman, J. D. 13, 122-123, 241, 367,

480, 1091-1092,1139
UML 125, 171-183
Unary operation 711, 830, 991
UNDER 426
Underwood, L. 1181
Undo logging 851-862
Undo/redo logging 853, 869-873
Unicode transformation format

See UTF
Unified modeling language

See UML
Union 39-40, 206-207,212-213, 231,

265-266,268,282-283,715-
716, 722, 726-727, 731, 734,
737, 768, 771, 775, 801, 990,
1067-1068

UNIQUE 34-35, 312
UNKNOWN 253-255
Updatable view 345-348
Update 294, 413-414, 426, 615, 695
Update anomaly 86
Update lock 909-910
Upgrading locks 908-909, 921
USAGE 426
User-defined type

See UDT
UTF 489
Uthurusamy, R. 1139

V

Valduriez, P. 984
Valentin, G. 367
Valid XML 489

See also DTD
Validation 942-948
Value count 706, 793

INDEX 1203

v alu e-o f 545-546
Variable 38-39, 223, 232, 417, 534-

535
See also Local variable, Tuple

variable
Variable-format record 607
Variable-length record 603-608
Variable-length string 30
Vassalos, V. 1091
Vianu, V. 12
View 29, 341-349, 765-767, 1070

See also Materialized view
View maintenance 360-362
Virtual memory 560-561, 593, 747
Virtual view

See View
Vitter, J. S. 618
Volatile storage 560, 845

W

Wade, B. W. 480
Wait-die 971-974
Waits-for graph 967-969
Walker

See Random walker
Wall, A. 1181
Warehouse 1042-1046, 1049
Warning lock 922-926
Warning protocol 922-926
Weak entity set 152-156, 161-163,

181-183
Web crawler 1142-1145
Web server 370
Weiner, J. L. 515
Well-formed XML 489-490
Wesley, G. 1180
Whang, K.-Y. 1180
Whang, S. E. 1091
WHERE 244-246, 461
Where-am-I query 662-663, 684
Where-clause 530, 533
While-loop 399
Widom, J. 65, 340, 367, 515, 1091,

1180
Wiederhold, G. 618, 1092

Window
See Sliding window

Winograd, T. 1181
WITH 437
Wong, E. 13, 841
Wood, D. 758
Workflow 976

See also Long-duration trans
action

World-Wide-Web Consortium 65, 515,
554

Wound-wait 971-974
Wrapper 1049-1054
Wrapper generator 1051-1052
WRITE 849
Write failure 575
Write lock

See Exclusive lock
Write-ahead logging rule

See Redo logging
W3Schools 515, 554

X

XML 3-4, 19-20, 488-551, 630
XML Schema 502-512, 523, 533
XPath 510, 517-526, 530, 545
XQuery 517, 528, 530-543
XSLT 517, 544 551

Y

Yemeni, R. 1092
Youssefi, K. 841
Yu, C. T. 1034
Yu, P. S. 1105, 1139

Z

Zaniolo, C. 123, 700
Zdonik, S. 1180
Zhang, T. 1140
Zicari, R. 700
Zig-zag join 743-745
Zilio, S. 367
Zipfian distribution 795
Zuliani, M. 367

