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Preface

This book covers the core of the material taught in the database sequence 
at Stanford. The introductory course, CS145, uses the first twelve chapters, 
and is designed for all students — those who want to use database systems 
as well as those who want to get involved in database implementation. The 
second course, CS245 on database implementation, covers most of the rest of 
the book. However, some material is covered in more detail in special topics 
courses. These include CS346 (implementation project), which concentrates on 
query optimization as in Chapters 15 and 16. Also, CS345A, on data mining 
and Web mining, covers the material in the last two chapters.

W hat’s N ew  in the Second Edition
After a brief introduction in Chapter 1, we cover relational modeling in Chapters 
2-4. Chapter 4 is devoted to high-level modeling. There, in addition to the 
E /R  model, we now cover UML (Unified Modeling Language). We also have 
moved to Chapter 4 a shorter version of the material on ODL, treating it as a 
design language for relational database schemas.

The material on functional and multivalued dependencies has been mod
ified and remains in Chapter 3. We have changed our viewpoint, so that a 
functional dependency is assumed to have a set of attributes on the right. We 
have also given explicitly certain algorithms, including the “chase,” that allow 
us to manipulate dependencies. We have augmented our discussion of third 
normal form to include the 3NF synthesis algorithm and to make clear what 
the tradeoff between 3NF and BCNF is.

Chapter 5 contains the coverage of relational algebra from the previous 
edition, and is joined by (part of) the treatment of Datalog from the old Chap
ter 10. The discussion of recursion in Datalog is either moved to the book’s 
Web site or combined with the treatment of recursive SQL in Chapter 10 of 
this edition.

Chapters 6-10 are devoted to aspects of SQL programming, and they repre
sent a reorganization and augmentation of the earlier book’s Chapters 6, 7, 8, 
and parts of 10. The material on views and indexes has been moved to its own 
chapter, number 8, and this material has been augmented with a discussion of
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important new topics, including materialized views, and automatic selection of 
indexes.

The new Chapter 9 is based on the old Chapter 8 (embedded SQL). It is 
introduced by a new section on 3-tier architecture. It also includes an expanded 
discussion of JDBC and new coverage of PHP.

Chapter 10 collects a number of advanced SQL topics. The discussion of 
authorization from the old Chapter 8 has been moved here, as has the discussion 
of recursive SQL from the old Chapter 10. Data cubes, from the old Chapter 20, 
are now covered here. The rest of the chapter is devoted to the nested-relation 
model (from the old Chapter 4) and object-relational features of SQL (from the 
old Chapter 9).

Then, Chapters 11 and 12 cover XML and systems based on XML. Ex
cept for material at the end of the old Chapter 4, which has been moved to 
Chapter 11, this material is all new. Chapter 11 covers modeling; it includes 
expanded coverage of DTD’s, along with new material on XML Schema. Chap
ter 12 is devoted to programming, and it includes sections on XPath, XQuery, 
and XSLT.

Chapter 13 begins the study of database implementation. It covers disk 
storage and the file structures that are built on disks. This chapter is a con
densation of material that, in the first edition, occupied Chapters 11 and 12.

Chapter 14 covers index structures, including B-trees, hashing, and struc
tures for multidimensional indexes. This material also condenses two chapters, 
13 and 14, from the first edition.

Chapters 15 and 16 cover query execution and query optimization, respec
tively. They are similar to the old chapters of the same numbers. Chapter 17 
covers logging, and Chapter 18 covers concurrency control; these chapters are 
also similar to the old chapters with the same numbers. Chapter 19 contains 
additional topics on concurrency: recovery, deadlocks, and long transactions. 
This material is a subset of the old Chapter 19.

Chapter 20 is on parallel and distributed databases. In addition to material 
on parallel query execution from the old Chapter 15 and material on distributed 
locking and commitment from the old Chapter 19, there are several new sec
tions on distributed query execution: the map-reduce framework for parallel 
computation, peer-to-peer databases and their implementation of distributed 
hash tables.

Chapter 21 covers information integration. In addition to material on this 
subject from the old Chapter 20, we have added a section on local-as-view medi
ators and a section on entity resolution (finding records from several databases 
that refer to the same entity, e.g., a person).

Chapter 22 is on data mining. Although there was some material on the 
subject in the old Chapter 20, almost all of this chapter is new. It covers asso
ciation rules and frequent itemset mining, including both the famous A-Priori 
Algorithm and certain efficiency improvements. Chapter 22 includes the key 
techniques of shingling, minhashing, and locality-sensitive hashing for finding 
similar items in massive databases, e.g., Web pages that quote substantially
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from other Web pages. The chapter concludes with a study of clustering, espe
cially for massive datasets.

Chapter 23, all new, addresses two important ways in which the Internet 
has impacted database technology. First is search engines, where we discuss 
algorithms for crawling the Web, the well-known PageRank algorithm for eval
uating the importance of Web pages, and its extensions. This chapter also 
covers data-stream-management systems. We discuss the stream data model 
and SQL language extensions, and conclude with several interesting algorithms 
for executing queries on streams.

Prerequisites
We have used the book at the “mezzanine” level, in a sequence of courses 
taken both by undergraduates and by beginning graduate students. The formal 
prerequisites for the course are Sophomore-level treatments of:

1. Data structures, algorithms, and discrete math, and

2. Software systems, software engineering, and programming languages.

Of this material, it is important that students have at least a rudimentary un
derstanding of such topics as: algebraic expressions and laws, logic, basic data 
structures, object-oriented programming concepts, and programming environ
ments. However, we believe that adequate background is acquired by the Junior 
year of a typical computer science program.

Exercises
The book contains extensive exercises, with some for almost every section. We 
indicate harder exercises or parts of exercises with an exclamation point. The 
hardest exercises have a double exclamation point.

Support on the World W ide Web
The book’s home page is

http://infolab.Stanford.edu/~ullman/dscb.html

You will find errata as we learn of them, and backup materials, including home- 
works, projects, and exams. We shall also make available there the sections from 
the first edition that have been removed from the second.

In addition, there is an accompanying set of on-line homeworks and pro
gramming labs using a technology developed by Gradiance Corp. See the sec
tion following the Preface for details about the GOAL system. GOAL service
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can be purchased at http://w w w .prenliall.com /goal. Instructors who want 
to use the system in their classes should contact their Prentice-Hall represen
tative or request instructor authorization through the above Web site.

There is a solutions manual for instructors available at

h t t p : //www.p re n h a ll. com/ullman 

This page also gives you access to GOAL and all book materials.
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Chapter 1

The Worlds of Database 
Systems

Databases today are essential to every business. Whenever you visit a major 
Web site — Google, Yahoo!, Amazon.com, or thousands of smaller sites that 
provide information — there is a database behind the scenes serving up the 
information you request. Corporations maintain all their important records in 
databases. Databases are likewise found at the core of many scientific investi
gations. They represent the data gathered by astronomers, by investigators of 
the human genome, and by biochemists exploring properties of proteins, among 
many other scientific activities.

The power of databases comes from a body of knowledge and technology 
that has developed over several decades and is embodied in specialized soft
ware called a database management system, or DBMS, or more colloquially a 
“database system.” A DBMS is a powerful tool for creating and managing large 
amounts of data efficiently and allowing it to persist over long periods of time, 
safely. These systems are among the most complex types of software available. 
In this book, we shall learn how to design databases, how to write programs 
in the various languages associated with a DBMS, and how to implement the 
DBMS itself.

1.1 The Evolution of Database System s
What is a database? In essence a database is nothing more than a collection of 
information that exists over a long period of time, often many years. In common 
parlance, the term database refers to a collection of data that is managed by a 
DBMS. The DBMS is expected to:

1. Allow users to create new databases and specify their schemas (logical 
structure of the data), using a specialized data-definition language.
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2. Give users the ability to query the data (a “query” is database lingo for 
a question about the data) and modify the data, using an appropriate 
language, often called a query language or data-manipulation language.

3. Support the storage of very large amounts of data — many terabytes or 
more — over a long period of time, allowing efficient access to the data 
for queries and database modifications.

4. Enable durability, the recovery of the database in the face of failures, 
errors of many kinds, or intentional misuse.

5. Control access to data from many users at once, without allowing unex
pected interactions among users (called isolation) and without actions on 
the data to be performed partially but not completely (called atomicity).

1.1.1 Early Database Management Systems
The first commercial database management systems appeared in the late 1960’s. 
These systems evolved from file systems, which provide some of item (3) above; 
file systems store data over a long period of time, and they allow the storage of 
large amounts of data. However, file systems do not generally guarantee that 
data cannot be lost if it is not backed up, and they don’t support efficient access 
to data items whose location in a particular file is not known.

Further, file systems do not directly support item (2), a query language for 
the data in files. Their support for (1) — a schema for the data — is limited to 
the creation of directory structures for files. Item (4) is not always supported 
by file systems; you can lose data that has not been backed up. Finally, file 
systems do not satisfy (5). While they allow concurrent access to files by several 
users or processes, a file system generally will not prevent situations such as 
two users modifying the same file at about the same time, so the changes made 
by one user fail to appear in the file.

The first important applications of DBMS’s were ones where data was com
posed of many small items, and many queries or modifications were made. 
Examples of these applications are:

1. Banking systems: maintaining accounts and making sure that system 
failures do not cause money to disappear.

2. Airline reservation systems: these, like banking systems, require assurance 
that data will not be lost, and they must accept very large volumes of 
small actions by customers.

3. Corporate record keeping: employment and tax records, inventories, sales 
records, and a great variety of other types of information, much of it 
critical.

The early DBMS’s required the programmer to visualize data much as it 
was stored. These database systems used several different data models for
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describing the structure of the information in a database, chief among them 
the “hierarchical” or tree-based model and the graph-based “network” model. 
The latter was standardized in the late 1960’s through a report of CODASYL 
(Committee on Data Systems and Languages).1

A problem with these early models and systems was that they did not sup
port high-level query languages. For example, the CODASYL query language 
had statements that allowed the user to jump from data element to data ele
ment, through a graph of pointers among these elements. There was consider
able effort needed to write such programs, even for very simple queries.

1.1.2 Relational Database Systems
Following a famous paper written by Ted Codd in 1970,2 database systems 
changed significantly. Codd proposed that database systems should present 
the user with a view of data organized as tables called relations. Behind the 
scenes, there might be a complex data structure that allowed rapid response 
to a variety of queries. But, unlike the programmers for earlier database sys
tems, the programmer of a relational system would not be concerned with the 
storage structure. Queries could be expressed in a very high-level language, 
which greatly increased the efficiency of database programmers. We shall cover 
the relational model of database systems throughout most of this book. SQL 
(“Structured Query Language”), the most important query language based on 
the relational model, is covered extensively.

By 1990, relational database systems were the norm. Yet the database field 
continues to evolve, and new issues and approaches to the management of data 
surface regularly. Object-oriented features have infilrated the relational model. 
Some of the largest databases are organized rather differently from those using 
relational methodology. In the balance of this section, we shall consider some 
of the modern trends in database systems.

1.1.3 Smaller and Smaller Systems
Originally, DBMS’s were large, expensive software systems running on large 
computers. The size was necessary, because to store a gigabyte of data required 
a large computer system. Today, hundreds of gigabytes fit on a single disk, 
and it is quite feasible to run a DBMS on a personal computer. Thus, database 
systems based on the relational model have become available for even very small 
machines, and they are beginning to appear as a common tool for computer 
applications, much as spreadsheets and word processors did before them.

Another important trend is the use of documents, often tagged using XML 
(extensible Modeling Language). Large collections of small documents can

1 C O D A S Y L  D ata  B ase Task Group A p ril 1971 Report, A CM , New York.
2C odd , E . F ., “A re la tional m odel for large shared  d a ta  banks,” C om m . A C M , 13:6, 

pp. 377-387, 1970.
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serve as a database, and the methods of querying and manipulating them are 
different from those used in relational systems.

1.1.4 Bigger and Bigger Systems
On the other hand, a gigabyte is not that much data any more. Corporate 
databases routinely store terabytes (1012 bytes). Yet there are many databases 
that store petabytes (101S bytes) of data and serve it all to users. Some impor
tant examples:

1. Google holds petabytes of data gleaned from its crawl of the Web. This 
data is not held in a traditional DBMS, but in specialized structures 
optimized for search-engine queries.

2. Satellites send down petabytes of information for storage in specialized 
systems.

3. A picture is actually worth way more than a thousand words. You can 
store 1000 words in five or six thousand bytes. Storing a picture typi
cally takes much more space. Repositories such as Flickr store millions 
of pictures and support search of those pictures. Even a database like 
Amazon’s has millions of pictures of products to serve.

4. And if still pictures consume space, movies consume much more. An hour 
of video requires at least a gigabyte. Sites such as YouTube hold hundreds 
of thousands, or millions, of movies and make them available easily.

5. Peer-to-peer file-sharing systems use large networks of conventional com
puters to store and distribute data of various kinds. Although each node 
in the network may only store a few hundred gigabytes, together the 
database they embody is enormous.

1.1.5 Information Integration
To a great extent, the old problem of building and maintaining databases has 
become one of information integration: joining the information contained in 
many related databases into a whole. For example, a large company has many 
divisions. Each division may have built its own database of products or em
ployee records independently of other divisions. Perhaps some of these divisions 
used to be independent companies, which naturally had their own way of doing 
things. These divisions may use different DBMS’s and different structures for 
information. They may use different terms to mean the same thing or the same 
term to mean different things. To make matters worse, the existence of legacy 
applications using each of these databases makes it almost impossible to scrap 
them, ever.

As a result, it has become necessary with increasing frequency to build struc
tures on top of existing databases, with the goal of integrating the information
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distributed among them. One popular approach is the creation of data ware
houses, where information from many legacy databases is copied periodically, 
with the appropriate translation, to a central database. Another approach is 
the implementation of a mediator, or “middleware,” whose function is to sup
port an integrated model of the data of the various databases, while translating 
between this model and the actual models used by each database.

1.2 Overview of a Database Management 
System

In Fig. 1.1 we see an outline of a complete DBMS. Single boxes represent system 
components, while double boxes represent in-memory data structures. The solid 
lines indicate control and data flow, while dashed lines indicate data flow only. 
Since the diagram is complicated, we shall consider the details in several stages. 
First, at the top, we suggest that there are two distinct sources of commands 
to the DBMS:

1. Conventional users and application programs that ask for data or modify 
data.

2. A database administrator: a person or persons responsible for the struc
ture or schema of the database.

1.2.1 Data-Definition Language Commands
The second kind of command is the simpler to process, and we show its trail 
beginning at the upper right side of Fig. 1.1. For example, the database admin
istrator, or DBA, for a university registrar’s database might decide that there 
should be a table or relation with columns for a student, a course the student 
has taken, and a grade for that student in that course. The DBA might also 
decide that the only allowable grades are A, B, C, D, and F. This structure 
and constraint information is all part of the schema of the database. It is 
shown in Fig. 1.1 as entered by the DBA, who needs special authority to ex
ecute schema-altering commands, since these can have profound effects on the 
database. These schema-altering data-definition language (DDL) commands 
are parsed by a DDL processor and passed to the execution engine, which then 
goes through the index/file/record manager to alter the metadata, that is, the 
schema information for the database.

1.2.2 Overview of Query Processing
The great majority of interactions with the DBMS follow the path on the left 
side of Fig. 1.1. A user or an application program initiates some action, using 
the data-manipulation language (DML). This command does not affect the 
schema of the database, but may affect the content of the database (if the
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D^t^bdsc
User/application administrator

Figure 1.1: Database management system components



OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 7

action is a modification command) or will extract data from the database (if the 
action is a query). DML statements are handled by two separate subsystems, 
as follows.

A nsw ering th e  Q uery

The query is parsed and optimized by a query compiler. The resulting query 
plan, or sequence of actions the DBMS will perform to answer the query, is 
passed to the execution engine. The execution engine issues a sequence of 
requests for small pieces of data, typically records or tuples of a relation, to a 
resource manager that knows about data files (holding relations), the format 
and size of records in those files, and index files, which help find elements of 
data files quickly.

The requests for data are passed to the buffer manager. The buffer man
ager’s task is to bring appropriate portions of the data from secondary storage 
(disk) where it is kept permanently, to the main-memory buffers. Normally, the 
page or “disk block” is the unit of transfer between buffers and disk.

The buffer manager communicates with a storage manager to get data from 
disk. The storage manager might involve operating-system commands, but 
more typically, the DBMS issues commands directly to the disk controller.

T ransaction P rocessin g

Queries and other DML actions are grouped into transactions, which are units 
that must be executed atomically and in isolation from one another. Any query 
or modification action can be a transaction by itself. In addition, the execu
tion of transactions must be durable, meaning that the effect of any completed 
transaction must be preserved even if the system fails in some way right after 
completion of the transaction. We divide the transaction processor into two 
major parts:

1. A concurrency-control manager, or scheduler, responsible for assuring 
atomicity and isolation of transactions, and

2. A logging and recovery manager, responsible for the durability of trans
actions.

1.2.3 Storage and Buffer Management
The data of a database normally resides in secondary storage; in today’s com
puter systems “secondary storage” generally means magnetic disk. However, to 
perform any useful operation on data, that data must be in main memory. It 
is the job of the storage manager to control the placement of data on disk and 
its movement between disk and main memory.

In a simple database system, the storage manager might be nothing more 
than the file system of the underlying operating system. However, for efficiency
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purposes, DBMS’s normally control storage on the disk directly, at least under 
some circumstances. The storage manager keeps track of the location of files 
on the disk and obtains the block or blocks containing a file on request from 
the buffer manager.

The buffer manager is responsible for partitioning the available main mem
ory into buffers, which are page-sized regions into which disk blocks can be 
transferred. Thus, all DBMS components that need information from the disk 
will interact with the buffers and the buffer manager, either directly or through 
the execution engine. The kinds of information that various components may 
need include:

1. Data: the contents of the database itself.

2. Metadata: the database schema that describes the structure of, and con
straints on, the database.

3. Log Records: information about recent changes to the database; these 
support durability of the database.

4. Statistics: information gathered and stored by the DBMS about data 
properties such as the sizes of, and values in, various relations or other 
components of the database.

5. Indexes: data structures that support efficient access to the data.

1.2.4 Transaction Processing
It is normal to group one or more database operations into a transaction, which 
is a unit of work that must be executed atomically and in apparent isolation 
from other transactions. In addition, a DBMS offers the guarantee of durability: 
that the work of a completed transaction will never be lost. The transaction 
manager therefore accepts transaction commands from an application, which 
tell the transaction manager when transactions begin and end, as well as infor
mation about the expectations of the application (some may not wish to require 
atomicity, for example). The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is 
logged separately on disk. The log manager follows one of several policies 
designed to assure that no matter when a system failure or “crash” occurs, 
a recovery manager will be able to examine the log of changes and restore 
the database to some consistent state. The log manager initially writes 
the log in buffers and negotiates with the buffer manager to make sure that 
buffers are written to disk (where data can survive a crash) at appropriate 
times.

2. Concurrency control: Transactions must appear to execute in isolation. 
But in most systems, there will in truth be many transactions executing
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The ACID Properties of Transactions

Properly implemented transactions are commonly said to meet the “ACID 
test,” where:

• “A” stands for “atomicity,” the all-or-nothing execution of trans
actions.

• “I” stands for “isolation,” the fact that each transaction must appear 
to be executed as if no other transaction is executing at the same 
time.

• “D” stands for “durability,” the condition that the effect on the 
database of a transaction must never be lost, once the transaction 
has completed.

The remaining letter, “C,” stands for “consistency.” That is, all databases 
have consistency constraints, or expectations about relationships among 
data elements (e.g., account balances may not be negative after a trans
action finishes). Transactions are expected to preserve the consistency of 
the database.

at once. Thus, the scheduler (concurrency-control manager) must assure 
that the individual actions of multiple transactions are executed in such 
an order that the net effect is the same as if the transactions had in 
fact executed in their entirety, one-at-a-time. A typical scheduler does 
its work by maintaining locks on certain pieces of the database. These 
locks prevent two transactions from accessing the same piece of data in 
ways that interact badly. Locks are generally stored in a main-memory 
lock table, as suggested by Fig. 1.1. The scheduler affects the execution of 
queries and other database operations by forbidding the execution engine 
from accessing locked parts of the database.

3. Deadlock resolution: As transactions compete for resources through the 
locks that the scheduler grants, they can get into a situation where none 
can proceed because each needs something another transaction has. The 
transaction manager has the responsibility to intervene and cancel (“roll
back” or “abort”) one or more transactions to let the others proceed.

1.2.5 The Query Processor
The portion of the DBMS that most affects the performance that the user sees 
is the query processor. In Fig. 1.1 the query processor is represented by two 
components:
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1. The query compiler, which translates the query into an internal form called 
a query plan. The latter is a sequence of operations to be performed on 
the data. Often the operations in a query plan are implementations of 
“relational algebra” operations, which are discussed in Section 2.4. The 
query compiler consists of three major units:

(a) A query parser, which builds a tree structure from the textual form 
of the query.

(b) A query preprocessor, which performs semantic checks on the query 
(e.g., making sure all relations mentioned by the query actually ex
ist), and performing some tree transformations to turn the parse tree 
into a tree of algebraic operators representing the initial query plan.

(c) A query optimizer, which transforms the initial query plan into the 
best available sequence of operations on the actual data.

The query compiler uses metadata and statistics about the data to decide 
which sequence of operations is likely to be the fastest. For example, the 
existence of an index, which is a specialized data structure that facilitates 
access to data, given values for one or more components of that data, can 
make one plan much faster than another.

2. The execution engine, which has the responsibility for executing each of 
the steps in the chosen query plan. The execution engine interacts with 
most of the other components of the DBMS, either directly or through 
the buffers. It must get the data from the database into buffers in order 
to manipulate that data. It needs to interact with the scheduler to avoid 
accessing data that is locked, and with the log manager to make sure that 
all database changes are properly logged.

1.3 Outline of Database-System Studies
We divide the study of databases into five parts. This section is an outline of 
what to expect in each of these units.

Part I: R elational D atabase M odeling

The relational model is essential for a study of database systems. After ex
amining the basic concepts, we delve into the theory of relational databases. 
That study includes functional dependencies, a formal way of stating that one 
kind of data is uniquely determined by another. It also includes normalization, 
the process whereby functional dependencies and other formal dependencies are 
used to improve the design of a relational database.

We also consider high-level design notations. These mechanisms include the 
Entity-Relationship (E/R) model, Unified Modeling Language (UML), and Ob
ject Definition Language (ODL). Their purpose is to allow informal exploration 
of design issues before we implement the design using a relational DBMS.
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Part II: R elation al D atabase P rogram m ing

We then take up the m atter of how relational databases are queried and modi
fied. After an introduction to abstract programming languages based on algebra 
and logic (Relational Algebra and Datalog, respectively), we turn our atten
tion to the standard language for relational databases: SQL. We study both 
the basics and important special topics, including constraint specifications and 
triggers (active database elements), indexes and other structures to enhance 
performance, forming SQL into transactions, and security and privacy of data 
in SQL.

We also discuss how SQL is used in complete systems. It is typical to 
combine SQL with a conventional or host language and to pass data between 
the database and the conventional program via SQL calls. We discuss a number 
of ways to make this connection, including embedded SQL, Persistent Stored 
Modules (PSM), Call-Level Interface (CLI), Java Database Interconnectivity 
(JDBC), and PHP.

Part III: S em istructured  D ata  M od elin g  and P rogram m ing

The pervasiveness of the Web has put a premium on the management of hierar
chically structured data, because the standards for the Web are based on nested, 
tagged elements (semistructured data). We introduce XML and its schema- 
defining notations: Document Type Definitions (DTD) and XML Schema. We 
also examine three query languages for XML: XPATH, XQuery, and Extensible 
Stylesheet Language Transform (XSLT).

Part IV: D atabase S ystem  Im p lem en tation

We begin with a study of storage management: how disk-based storage can be 
organized to allow efficient access to data. We explain the commonly used B- 
tree, a balanced tree of disk blocks and other specialized schemes for managing 
multidimensional data.

We then turn our attention to query processing. There are two parts to 
this study. First, we need to learn query execution: the algorithms used to 
implement the operations from which queries are built. Since data is typically 
on disk, the algorithms are somewhat different from what one would expect 
were they to study the same problems but assuming that data were in main 
memory. The second step is query compiling. Here, we study how to select an 
efficient query plan from among all the possible ways in which a given query 
can be executed.

Then, we study transaction processing. There are several threads to follow. 
One concerns logging: maintaining reliable records of what the DBMS is doing, 
in order to allow recovery in the event of a crash. Another thread is scheduling: 
controlling the order of events in transactions to assure the ACID properties. 
We also consider how to deal with deadlocks, and the modifications to our algo
rithms that are needed when a transaction is distributed over many independent
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sites.

Part V: M odern D atabase S ystem  Issues

In this part, we take up a number of the ways in which database-system tech
nology is relevant beyond the realm of conventional, relational DBMS’s. We 
consider how search engines work, and the specialized data structures that make 
their operation possible. We look at information integration, and methodolo
gies for making databases share their data seamlessly. Data mining is a study 
that includes a number of interesting and important algorithms for processing 
large amounts of data in complex ways. Data-stream systems deal with data 
that arrives at the system continuously, and whose queries are answered contin
uously and in a timely fashion. Peer-to-peer systems present many challenges 
for management of distributed data held by independent hosts.

1.4 References for Chapter 1
Today, on-line searchable bibliographies cover essentially all recent papers con
cerning database systems. Thus, in this book, we shall not try to be exhaustive 
in our citations, but rather shall mention only the papers of historical impor
tance and major secondary sources or useful surveys. A searchable index of 
database research papers was constructed by Michael Ley [5], and has recently 
been expanded to include references from many fields. Alf-Christian Achilles 
maintains a searchable directory of many indexes relevant to the database field 
[3],

While many prototype implementations of database systems contributed to 
the technology of the field, two of the most widely known are the System R 
project at IBM Almaden Research Center [4] and the INGRES project at Berke
ley [7]. Each was an early relational system and helped establish this type of 
system as the dominant database technology. Many of the research papers that 
shaped the database field are found in [6].

The 2003 “Lowell report” [1] is the most recent in a series of reports on 
database-system research and directions. It also has references to earlier reports 
of this type.

You can find more about the theory of database systems than is covered 
here from [2] and [8].

1. S. Abiteboul et al., “The Lowell database research self-assessment,” Comm. 
AC M 48:5 (2005), pp. 111-118. http://research.microsoft.com/~gray 
/lowell/LowellDatabaseResearchSelfAssessment.htm

2. S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison- 
Wesley, Reading, MA, 1995.

3. http://liinwww.ira.uka.de/bibliography/Database.
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4. M. M. Astrahan et al., “System R: a relational approach to database 
management,” ACM Trans, on Database Systems 1:2, pp. 97-137, 1976.

5. h ttp ://w w w .in fo rm a tik .u n i- tr ie r .d e /~ le y /d b /in d e x .h tm l. A mir
ror site is found at h ttp ://w w w .acm .org /sigm od/db lp /db /index .h tm l.

6. M. Stonebraker and J. M. Hellerstein (eds.), Readings in Database Sys
tems, Morgan-Kaufmann, San Francisco, 1998.

7. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and imple
mentation of INGRES,” ACM Trans, on Database Systems 1:3, pp. 189- 
222, 1976.

8. J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol
umes I  and II, Computer Science Press, New York, 1988, 1989.
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Chapter 2

The Relational M odel of 
Data

This chapter introduces the most important model of data: the two-dimensional 
table, or “relation.” We begin with an overview of data models in general. We 
give the basic terminology for relations and show how the model can be used to 
represent typical forms of data. We then introduce a portion of the language 
SQL — that part used to declare relations and their structure. The chapter 
closes with an introduction to relational algebra. We see how this notation 
serves as both a query language — the aspect of a data model that enables us 
to ask questions about the data — and as a constraint language — the aspect 
of a data model that lets us restrict the data in the database in various ways.

2.1 An Overview of Data M odels
The notion of a “data model” is one of the most fundamental in the study of 
database systems. In this brief summary of the concept, we define some basic 
terminology and mention the most important data models.

2.1.1 W hat is a Data Model?
A data model is a notation for describing data or information. The description 
generally consists of three parts:

1. Structure of the data. You may be familiar with tools in programming 
languages such as C or Java for describing the structure of the data used by 
a program: arrays and structures (“structs”) or objects, for example. The 
data structures used to implement data in the computer are sometimes 
referred to, in discussions of database systems, as a physical data model, 
although in fact they are far removed from the gates and electrons that 
truly serve as the physical implementation of the data. In the database

17
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world, data models are at a somewhat higher level than data structures, 
and are sometimes referred to as a conceptual model to emphasize the 
difference in level. We shall see examples shortly.

2. Operations on the data. In programming languages, operations on the 
data are generally anything that can be programmed. In database data 
models, there is usually a limited set of operations that can be performed. 
We are generally allowed to perform a limited set of queries (operations 
that retrieve information) and modifications (operations that change the 
database). This limitation is not a weakness, but a strength. By limiting 
operations, it is possible for programmers to describe database operations 
at a very high level, yet have the database management system implement 
the operations efficiently. In comparison, it is generally impossible to 
optimize programs in conventional languages like C, to the extent that an 
inefficient algorithm (e.g., bubblesort) is replaced by a more efficient one 
(e.g., quicksort).

3. Constraints on the data. Database data models usually have a way to 
describe limitations on what the data can be. These constraints can range 
from the simple (e.g., “a day of the week is an integer between 1 and 7” 
or “a movie has at most one title”) to some very complex limitations that 
we shall discuss in Sections 7.4 and 7.5.

2.1.2 Important Data Models
Today, the two data models of preeminent importance for database systems are:

1. The relational model, including object-relational extensions.

2. The semistructured-data model, including XML and related standards.

The first, which is present in all commercial database management systems, 
is the subject of this chapter. The semistructured model, of which XML is 
the primary manifestation, is an added feature of most relational DBMS’s, and 
appears in a number of other contexts as well. We turn to this data model 
starting in Chapter 11.

2.1.3 The Relational Model in Brief
The relational model is based on tables, of which Fig. 2.1 is an example. We 
shall discuss this model beginning in Section 2.2. This relation, or table, de
scribes movies: their title, the year in which they were made, their length in 
minutes, and the genre of the movie. We show three particular movies, but you 
should imagine that there are many more rows to this table — one row for each 
movie ever made, perhaps.

The structure portion of the relational model might appear to resemble an 
array of structs in C, where the column headers are the field names, and each
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title year length genre

Gone With the Wind 1939 231 drama
Stair Wars 1977 124 sciFi
Wayne’s World 1992 95 comedy

Figure 2.1: An example relation

of the rows represent the values of one struct in the array. However, it must be 
emphasized that this physical implementation is only one possible way the table 
could be implemented in physical data structures. In fact, it is not the normal 
way to represent relations, and a large portion of the study of database systems 
addresses the right ways to implement such tables. Much of the distinction 
comes from the scale of relations — they are not normally implemented as 
main-memory structures, and their proper physical implementation must take 
into account the need to access relations of very large size that are resident on 
disk.

The operations normally associated with the relational model form the “re
lational algebra,” which we discuss beginning in Section 2.4. These operations 
are table-oriented. As an example, we can ask for all those rows of a relation 
that have a certain value in a certain column. For example, we can ask of the 
table in Fig. 2.1 for all the rows where the genre is “comedy.”

The constraint portion of the relational data model will be touched upon 
briefly in Section 2.5 and covered in more detail in Chapter 7. However, as a 
brief sample of what kinds of constraints are generally used, we could decide 
that there is a fixed list of genres for movies, and that the last column of every 
row must have a value that is on this list. Or we might decide (incorrectly, 
it turns out) that there could never be two movies with the same title, and 
constrain the table so that no two rows could have the same string in the first 
component.

2.1.4 The Semistructured Model in Brief
Semistructured data resembles trees or graphs, rather than tables or arrays. 
The principal manifestation of this viewpoint today is XML, a way to represent 
data by hierarchically nested tagged elements. The tags, similar to those used 
in HTML, define the role played by different pieces of data, much as the column 
headers do in the relational model. For example, the same data as in Fig. 2.1 
might appear in an XML “document” as in Fig. 2.2.

The operations on semistructured data usually involve following paths in 
the implied tree from an element to one or more of its nested subelements, then 
to subelements nested within those, and so on. For example, starting at the 
outer <Movies> element (the entire document in Fig. 2.2), we might move to 
each of its nested <Movie> elements, each delimited by the tag <Movie> and 
matching </Movie> tag, and from each <Movie> element to its nested <Genre>
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<Movies>
<Movie title="Gone With the Wind">

<Year>1939</Year>
<Length>231</Length>
<Genre>drama</Genre>

</Movie>
<Movie title="Star Wars">

<Year>1977</Year>
<Length>124</Length>
<Genre>sciFi</Genre>

</Movie>
<Movie title="Wayne’s World">

<Year>1992</Year>
<Length>95</Length>
<Genre> comedy</Genre>

</Movie>
</Movies>

Figure 2.2: Movie data as XML

element, to see which movies belong to the “comedy” genre.
Constraints on the structure of data in this model often involve the data 

type of values associated with a tag. For instance, are the values associated 
with the <Length> tag integers or can they be arbitrary character strings? 
Other constraints determine which tags can appear nested within which other 
tags. For example, must each <Movie> element have a <Length> element nested 
within it? What other tags, besides those shown in Fig. 2.2 might be used within 
a <Movie> element? Can there be more than one genre for a movie? These and 
other matters will be taken up in Section 11.2.

2.1.5 Other Data Models
There are many other models that are, or have been, associated with DBMS’s. 
A modern trend is to add object-oriented features to the relational model. There 
are two effects of object-orientation on relations:

1. Values can have structure, rather than being elementary types such as 
integer or strings, as they were in Fig. 2.1.

2. Relations can have associated methods.

In a sense, these extensions, called the object-relational model, are analogous to 
the way structs in C were extended to objects in C ++. We shall introduce the 
object-relational model in Section 10.3.



2.2. BASICS OF THE RELATIONAL MODEL 2 1

There are even database models of the purely object-oriented kind. In these, 
the relation is no longer the principal data-structuring concept, but becomes 
only one option among many structures. We discuss an object-oriented database 
model in Section 4.9.

There are several other models that were used in some of the earlier DBMS’s, 
but that have now fallen out of use. The hierarchical model was, like semistruc
tured data, a tree-oriented model. Its drawback was that unlike more modern 
models, it really operated at the physical level, which made it impossible for 
programmers to write code at a conveniently high level. Another such model 
was the network model, which was a graph-oriented, physical-level model. In 
truth, both the hierarchical model and today’s semistructured models, allow 
full graph structures, and do not limit us strictly to trees. However, the gener
ality of graphs was built directly into the network model, rather than favoring 
trees as these other models do.

2.1.6 Comparison of Modeling Approaches
Even from our brief example, it appears that semistructured models have more 
flexibility than relations. This difference becomes even more apparent when 
we discuss, as we shall, how full graph structures are embedded into tree-like, 
semistructured models. Nevertheless, the relational model is still preferred in 
DBMS’s, and we should understand why. A brief argument follows.

Because databases are large, efficiency of access to data and efficiency of 
modifications to that data are of great importance. Also very important is ease 
of use — the productivity of programmers who use the data. Surprisingly, both 
goals can be achieved with a model, particularly the relational model, that:

1. Provides a simple, limited approach to structuring data, yet is reasonably 
versatile, so anything can be modeled.

2. Provides a limited, yet useful, collection of operations on data.

Together, these limitations turn into features. They allow us to implement 
languages, such as SQL, that enable the programmer to express their wishes at 
a very high level. A few lines of SQL can do the work of thousands of lines of 
C, or hundreds of lines of the code that had to be written to access data under 
earlier models such as network or hierarchical. Yet the short SQL programs, 
because they use a strongly limited sets of operations, can be optimized to run 
as fast, or faster than the code written in alternative languages.

2.2 Basics of the Relational M odel
The relational model gives us a single way to represent data: as a two-dimen
sional table called a relation. Figure 2.1, which we copy here as Fig. 2.3, is an 
example of a relation, which we shall call Movies. The rows each represent a
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movie, and the columns each represent a property of movies. In this section, 
we shall introduce the most important terminology regarding relations, and 
illustrate them with the Movies relation.

title year length genre
Gone With the Wind 1939 231 drama
Star Wars 1977 124 sciFi
Wayne’s World 1992 95 comedy

Figure 2.3: The relation Movies

2.2.1 Attributes
The columns of a relation are named by attributes-, in Fig. 2.3 the attributes are 
t i t l e ,  year, length , and genre. Attributes appear at the tops of the columns. 
Usually, an attribute describes the meaning of entries in the column below. For 
instance, the column with attribute leng th  holds the length, in minutes, of 
each movie.

2.2.2 Schemas
The name of a relation and the set of attributes for a relation is called the 
schema for that relation. We show the schema for the relation with the relation 
name followed by a parenthesized list of its attributes. Thus, the schema for 
relation Movies of Fig. 2.3 is

M o v ie s (title , y ea r, len g th , genre)

The attributes in a relation schema are a set, not a list. However, in order to 
talk about relations we often must specify a “standard” order for the attributes. 
Thus, whenever we introduce a relation schema with a list of attributes, as 
above, we shall take this ordering to be the standard order whenever we display 
the relation or any of its rows.

In the relational model, a database consists of one or more relations. The 
set of schemas for the relations of a database is called a relational database 
schema, or just a database schema.

2.2.3 Tuples
The rows of a relation, other than the header row containing the attribute 
names, are called tuples. A tuple has one component for each attribute of 
the relation. For instance, the first of the three tuples in Fig. 2.3 has the 
four components Gone With th e  Wind, 1939, 231, and drama for attributes 
t i t l e ,  year, length , and genre, respectively. When we wish to write a tuple
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Conventions for Relations and Attributes

We shall generally follow the convention that relation names begin with a 
capital letter, and attribute names begin with a lower-case letter. However, 
later in this book we shall talk of relations in the abstract, where the names 
of attributes do not matter. In that case, we shall use single capital letters 
for both relations and attributes, e.g., R (A ,B ,C )  for a generic relation 
with three attributes.

in isolation, not as part of a relation, we normally use commas to separate 
components, and we use parentheses to surround the tuple. For example,

(Gone With the Wind, 1939, 231, drama)

is the first tuple of Fig. 2.3. Notice that when a tuple appears in isolation, the 
attributes do not appear, so some indication of the relation to which the tuple 
belongs must be given. We shall always use the order in which the attributes 
were listed in the relation schema.

2.2.4 Domains
The relational model requires that each component of each tuple be atomic; 
that is, it must be of some elementary type such as integer or string. It is not 
permitted for a value to be a record structure, set, list, array, or any other type 
that reasonably can have its values broken into smaller components.

It is further assumed that associated with each attribute of a relation is a 
domain, that is, a particular elementary type. The components of any tuple of 
the relation must have, in each component, a value that belongs to the domain of 
the corresponding column. For example, tuples of the Movies relation of Fig. 2.3 
must have a first component that is a string, second and third components that 
are integers, and a fourth component whose value is a string.

It is possible to include the domain, or data type, for each attribute in 
a relation schema. We shall do so by appending a colon and a type after 
attributes. For example, we could represent the schema for the Movies relation 
as:

Movies(title:string, year:integer, length:integer, genre:string)

2.2.5 Equivalent Representations of a Relation
Relations are sets of tuples, not lists of tuples. Thus the order in which the 
tuples of a relation are presented is immaterial. For example, we can list the 
three tuples of Fig. 2.3 in any of their six possible orders, and the relation is 
“the same” as Fig. 2.3.
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Moreover, we can reorder the attributes of the relation as we choose, without 
changing the relation. However, when we reorder the relation schema, we must 
be careful to remember that the attributes are column headers. Thus, when we 
change the order of the attributes, we also change the order of their columns. 
When the columns move, the components of tuples change their order as well. 
The result is that each tuple has its components permuted in the same way as 
the attributes are permuted.

For example, Fig. 2.4 shows one of the many relations that could be obtained 
from Fig. 2.3 by permuting rows and columns. These two relations are consid
ered “the same.” More precisely, these two tables are different presentations of 
the same relation.

year genre title length
1977 sc iF i S ta r Wars 124
1992 comedy Wayne’s World 95
1939 drama Gone With th e  Wind 231

Figure 2.4: Another presentation of the relation Movies

2.2.6 Relation Instances

A relation about movies is not static; rather, relations change over time. We 
expect to insert tuples for new movies, as these appear. We also expect changes 
to existing tuples if we get revised or corrected information about a movie, and 
perhaps deletion of tuples for movies that are expelled from the database for 
some reason.

It is less common for the schema of a relation to change. However, there are 
situations where we might want to add or delete attributes. Schema changes, 
while possible in commercial database systems, can be very expensive, because 
each of perhaps millions of tuples needs to be rewritten to add or delete com
ponents. Also, if we add an attribute, it may be difficult or even impossible to 
generate appropriate values for the new component in the existing tuples.

We shall call a set of tuples for a given relation an instance of that relation. 
For example, the three tuples shown in Fig. 2.3 form an instance of relation 
Movies. Presumably, the relation Movies has changed over time and will con
tinue to change over time. For instance, in 1990, Movies did not contain the 
tuple for Wayne ’ s World. However, a conventional database system maintains 
only one version of any relation: the set of tuples that are in the relation “now.” 
This instance of the relation is called the current instance}

1 D atabases th a t  m a in ta in  h isto rica l versions o f d a ta  as it ex isted  in p as t tim es are called 
tem poral databases.
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2.2.7 Keys of Relations
There are many constraints on relations that the relational model allows us to 
place on database schemas. We shall defer much of the discussion of constraints 
until Chapter 7. However, one kind of constraint is so fundamental that we shall 
introduce it here: key constraints. A set of attributes forms a key for a relation 
if we do not allow two tuples in a relation instance to have the same values in 
all the attributes of the key.

E xam ple 2 .1 : We can declare that the relation Movies has a key consisting 
of the two attributes t i t l e  and year. That is, we don’t believe there could 
ever be two movies that had both the same title and the same year. Notice 
that t i t l e  by itself does not form a key, since sometimes “remakes” of a movie 
appear. For example, there are three movies named King Kong, each made in 
a different year. It should also be obvious that year by itself is not a key, since 
there are usually many movies made in the same year. □

We indicate the attribute or attributes that form a key for a relation by 
underlining the key attribute(s). For instance, the Movies relation could have 
its schema written as:

Movies(t i t l e , ye a r , len g th , genre)

Remember that the statement that a set of attributes forms a key for a 
relation is a statement about all possible instances of the relation, not a state
ment about a single instance. For example, looking only at the tiny relation of 
Fig. 2.3, we might imagine that genre by itself forms a key, since we do not see 
two tuples that agree on the value of their genre components. However, we can 
easily imagine that if the relation instance contained more movies, there would 
be many dramas, many comedies, and so on. Thus, there would be distinct 
tuples that agreed on the genre component. As a consequence, it would be 
incorrect to assert that genre is a key for the relation Movies.

While we might be sure that t i t l e  and year can serve as a key for Movies, 
many real-world databases use artificial keys, doubting that it is safe to make 
any assumption about the values of attributes outside their control. For ex
ample, companies generally assign employee ID’s to all employees, and these 
ID’s are carefully chosen to be unique numbers. One purpose of these ID’s is 
to make sure that in the company database each employee can be distinguished 
from all others, even if there are several employees with the same name. Thus, 
the employee-ID attribute can serve as a key for a relation about employees.

In US corporations, it is normal for every employee to have a Social-Security 
number. If the database has an attribute that is the Social-Security number, 
then this attribute can also serve as a key for employees. Note that there is 
nothing wrong with there being several choices of key, as there would be for 
employees having both employee ID’s and Social-Security numbers.

The idea of creating an attribute whose purpose is to serve as a key is quite 
widespread. In addition to employee ID’s, we find student ID’s to distinguish
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students in a university. We find drivers’ license numbers and automobile reg
istration numbers to distinguish drivers and automobiles, respectively. You 
undoubtedly can find more examples of attributes created for the primary pur
pose of serving as keys.

Movies(
t i t l e :s t r in g ,  
ye a r : in te g e r , 
le n g th : in te g e r , 
g e n re :s tr in g , 
studioName: s t r in g , 
producerC#: in teg e r

)
M ovieStar(

name:s t r in g ,  
ad d ress: s t r in g ,  
gender: ch a r, 
b i r th d a te :date

)
S ta rs In (

m ovieT itle: s t r in g , 
movieYear: in te g e r , 
starN am e:string

)
MovieExec(

nam e:string , 
ad d ress : s tr in g ,  
c e r t# : in te g e r , 
netW orth: in teg e r

)
S tu d io (

name:s t r in g ,  
ad d ress: s t r in g , 
presC#: in teg e r

)

Figure 2.5: Example database schema about movies

2.2.8 An Example Database Schema
We shall close this section with an example of a complete database schema. 
The topic is movies, and it builds on the relation Movies that has appeared so 
far in examples. The database schema is shown in Fig. 2.5. Here are the things 
we need to know to understand the intention of this schema.
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Movies

This relation is an extension of the example relation we have been discussing 
so far. Remember that its key is title and year together. We have added 
two new attributes; studioName tells us the studio that owns the movie, and 
producerC# is an integer that represents the producer of the movie in a way 
that we shall discuss when we talk about the relation MovieExec below.

MovieStar

This relation tells us something about stars. The key is name, the name of the 
movie star. It is not usual to assume names of persons are unique and therefore 
suitable as a key. However, movie stars are different; one would never take a 
name that some other movie star had used. Thus, we shall use the convenient 
fiction that movie-star names are unique. A more conventional approach would 
be to invent a serial number of some sort, like social-security numbers, so that 
we could assign each individual a unique number and use that attribute as the 
key. We take that approach for movie executives, as we shall see. Another 
interesting point about the MovieStar relation is that we see two new data 
types. The gender can be a single character, M or F. Also, birthdate is of type 
“date,” which might be a character string of a special form.

Starsln

This relation connects movies to the stars of that movie, and likewise connects a 
star to the movies in which they appeared. Notice that movies are represented 
by the key for Movies — the title and year — although we have chosen differ
ent attribute names to emphasize that attributes movieTitle and movieYear 
represent the movie. Likewise, stars are represented by the key for MovieStar, 
with the attribute called starName. Finally, notice that all three attributes 
are necessary to form a key. It is perfectly reasonable to suppose that relation 
Starsln could have two distinct tuples that agree in any two of the three at
tributes. For instance, a star might appear in two movies in one year, giving 
rise to two tuples that agreed in movieYear and starName, but disagreed in 
movieTitle.

MovieExec

This relation tells us about movie executives. It contains their name, address, 
and networth as data about the executive. However, for a key we have invented 
“certificate numbers” for all movie executives, including producers (as appear 
in the relation Movies) and studio presidents (as appear in the relation Studio, 
below). These are integers; a different one is assigned to each executive.
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acctNo type balance
12345 savings 12000
23456 checking 1000
34567 savings 25

The relation Accounts

firstName lastName idNo account
Robbie Banks 901-222 12345
Lena Hand 805-333 12345
Lena Hand 805-333 23456

The relation Customers 

Figure 2.6: Two relations of a banking database

Studio
This relation tells about movie studios. We rely on no two studios having the 
same name, and therefore use name as the key. The other attributes are the 
address of the studio and the certificate number for the president of the studio. 
We assume that the studio president is surely a movie executive and therefore 
appears in MovieExec.

2.2.9 Exercises for Section 2.2
E xercise 2 .2 .1 : In Fig. 2.6 are instances of two relations that might constitute 
part of a banking database. Indicate the following:

a) The attributes of each relation.

b) The tuples of each relation.

c) The components of one tuple from each relation.

d) The relation schema for each relation.

e) The database schema.

f) A suitable domain for each attribute.

g) Another equivalent way to present each relation.
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E xercise 2.2 .2: In Section 2.2.7 we suggested that there are many examples 
of attributes that are created for the purpose of serving as keys of relations. 
Give some additional examples.

E xercise 2 .2 .3 : How many different ways (considering orders of tuples and 
attributes) are there to represent a relation instance if that instance has:

a) Three attributes and three tuples, like the relation Accounts of Fig. 2.6?

b) Four attributes and five tuples?

c) n  attributes and m tuples?

2.3 Defining a Relation Schema in SQL
SQL (pronounced “sequel”) is the principal language used to describe and ma
nipulate relational databases. There is a current standard for SQL, called SQL- 
99. Most commercial database management systems implement something sim
ilar, but not identical to, the standard. There are two aspects to SQL:

1. The Data-Definition sublanguage for declaring database schemas and

2. The Data-Manipulation sublanguage for querying (asking questions a- 
bout) databases and for modifying the database.

The distinction between these two sublanguages is found in most languages; 
e.g., C or Java have portions that declare data and other portions that are 
executable code. These correspond to data-definition and data-manipulation, 
respectively.

In this section we shall begin a discussion of the data-definition portion 
of SQL. There is more on the subject in Chapter 7, especially the m atter of 
constraints on data. The data-manipulation portion is covered extensively in 
Chapter 6 .

2.3.1 Relations in SQL
SQL makes a distinction between three kinds of relations:

1. Stored relations, which are called tables. These are the kind of relation 
we deal with ordinarily — a relation that exists in the database and that 
can be modified by changing its tuples, as well as queried.

2. Views, which are relations defined by a computation. These relations are 
not stored, but are constructed, in whole or in part, when needed. They 
are the subject of Section 8.1.
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3. Temporary tables, which are constructed by the SQL language processor 
when it performs its job of executing queries and data modifications. 
These relations are then thrown away and not stored.

In this section, we shall learn how to declare tables. We do not treat the dec
laration and definition of views here, and temporary tables are never declared. 
The SQL CREATE TABLE statement declares the schema for a stored relation. It 
gives a name for the table, its attributes, and their data types. It also allows 
us to declare a key, or even several keys, for a relation. There are many other 
features to the CREATE TABLE statement, including many forms of constraints 
that can be declared, and the declaration of indexes (data structures that speed 
up many operations on the table) but we shall leave those for the appropriate 
time.

2.3.2 Data Types
To begin, let us introduce the primitive data types that are supported by SQL 
systems. All attributes must have a data type.

1. Character strings of fixed or varying length. The type CHAR(n) denotes 
a fixed-length string of up to n characters. VARCHAR(n) also denotes a 
string of up to n characters. The difference is implementation-dependent; 
typically CHAR implies that short strings are padded to make n characters, 
while VARCHAR implies that an endmarker or string-length is used. SQL 
permits reasonable coercions between values of character-string types. 
Normally, a string is padded by trailing blanks if it becomes the value 
of a component that is a fixed-length string of greater length. For ex
ample, the string ’foo’ ,2 if it became the value of a component for an 
attribute of type CHAR(5), would assume the value ’foo ’ (with two 
blanks following the second o).

2. Bit strings of fixed or varying length. These strings are analogous to fixed 
and varying-length character strings, but their values are strings of bits 
rather than characters. The type BIT (n) denotes bit strings of length n, 
while BIT VARYING (n) denotes bit strings of length up to n.

3. The type BOOLEAN denotes an attribute whose value is logical. The possi
ble values of such an attribute are TRUE, FALSE, and — although it would 
surprise George Boole —  UNKNOWN.

4. The type INT or INTEGER (these names are synonyms) denotes typical 
integer values. The type SHORTINT also denotes integers, but the number 
of bits permitted may be less, depending on the implementation (as with 
the types int and short int in C).

2N otice th a t  in SQ L, strings are su rrounded  by single-quotes, n o t double-quotes as in m any 
o th er program m ing  languages.
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Dates and Times in SQL

Different SQL implementations may provide many different representa
tions for dates and times, but the following is the SQL standard repre
sentation. A date value is the keyword DATE followed by a quoted string 
of a special form. For example, DATE ’1948-05-14’ follows the required 
form. The first four characters are digits representing the year. Then come 
a hyphen and two digits representing the month. Finally there is another 
hyphen and two digits representing the day. Note that single-digit months 
and days are padded with a leading 0 .

A time value is the keyword TIME and a quoted string. This string has 
two digits for the hour, on the military (24-hour) clock. Then come a colon, 
two digits for the minute, another colon, and two digits for the second. If 
fractions of a second are desired, we may continue with a decimal point and 
as many significant digits as we like. For instance, TIME ’ 15:00:02.5 ’ 
represents the time at which all students will have left a class that ends 
at 3 PM: two and a half seconds past three o’clock.

5. Floating-point numbers can be represented in a variety of ways. We may 
use the type FLOAT or REAL (these are synonyms) for typical floating
point numbers. A higher precision can be obtained with the type DOUBLE 
PRECISION; again the distinction between these types is as in C. SQL also 
has types that are real numbers with a fixed decimal point. For exam
ple, DECIMAL(n,d) allows values that consist of n decimal digits, with the 
decimal point assumed to be d positions from the right. Thus, 0123.45 
is a possible value of type DECIMAL(6,2). NUMERIC is almost a synonym 
for DECIMAL, although there are possible implementation-dependent dif
ferences.

6. Dates and times can be represented by the data types DATE and TIME, 
respectively (see the box on “Dates and Times in SQL”). These values 
are essentially character strings of a special form. We may, in fact, coerce 
dates and times to string types, and we may do the reverse if the string 
“makes sense” as a date or time.

2.3.3 Simple Table Declarations
The simplest form of declaration of a relation schema consists of the key
words CREATE TABLE followed by the name of the relation and a parenthesized, 
comma-separated list of the attribute names and their types.

E xam ple 2 .2 : The relation Movies with the schema given in Fig. 2.5 can be 
declared as in Fig. 2.7. The title is declared as a string of (up to) 100 characters.
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CREATE TABLE Movies (
t i t l e  CHAR(IOO),
year INT,
leng th  INT,
genre CHAR(10),
studioName CHAR(30),
producerC# INT

);

Figure 2.7: SQL declaration of the table Movies

The year and length attributes are each integers, and the genre is a string of 
(up to) 10 characters. The decision to allow up to 100 characters for a title 
is arbitrary, but we don’t want to limit the lengths of titles too strongly, or 
long titles would be truncated to fit. We have assumed that 10 characters are 
enough to represent a genre of movie; again, that is an arbitrary choice, one 
we could regret if we had a genre with a long name. Likewise, we have chosen 
30 characters as sufficient for the studio name. The certificate number for the 
producer of the movie is another integer. □

Exam ple 2.3: Figure 2.8 is a SQL declaration of the relation MovieStar from 
Fig. 2.5. It illustrates some new options for data types. The name of this table 
is MovieStar, and it has four attributes. The first two attributes, name and 
address, have each been declared to be character strings. However, with the 
name, we have made the decision to use a fixed-length string of 30 characters, 
padding a name out with blanks at the end if necessary and truncating a name 
to 30 characters if it is longer. In contrast, we have declared addresses to be 
variable-length character strings of up to 255 characters.3 It is not clear that 
these two choices are the best possible, but we use them to illustrate the two 
major kinds of string data types.

CREATE TABLE MovieStar ( 
name CHAR(30),
address VARCHAR(255), 
gender CHAR(l), 
b ir th d a te  DATE

);

Figure 2.8: Declaring the relation schema for the MovieStar relation

3T h e  num ber 255 is no t th e  resu lt of som e weird notion  of w hat typical addresses look like. 
A single byte can store  integers betw een 0 and 255, so it is possible to  represent a  varying- 
length  character strin g  of up  to  255 bytes by a  single byte for the  count o f characters p lus the  
bytes to  store the  strin g  itself. Com m ercial system s generally su p p o rt longer varying-length 
strings, however.
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The gender attribute has values that are a single letter, M or F. Thus, we 
can safely use a single character as the type of this attribute. Finally, the 
b ir th d a te  attribute naturally deserves the data type DATE. □

2.3.4 Modifying Relation Schemas
We now know how to declare a table. But what if we need to change the schema 
of the table after it has been in use for a long time and has many tuples in its 
current instance? We can remove the entire table, including all of its current 
tuples, or we could change the schema by adding or deleting attributes.

We can delete a relation R  by the SQL statement:

DROP TABLE R;

Relation R  is no longer part of the database schema, and we can no longer 
access any of its tuples.

More frequently than we would drop a relation that is part of a long-lived 
database, we may need to modify the schema of an existing relation. These 
modifications are done by a statement that begins with the keywords ALTER 
TABLE and the name of the relation. We then have several options, the most 
important of which are

1. ADD followed by an attribute name and its data type.

2. DROP followed by an attribute name.

E xam ple 2 .4 : Thus, for instance, we could modify the MovieStar relation by 
adding an attribute phone with:

ALTER TABLE MovieStar ADD phone CHAR(16);

As a result, the MovieStar schema now has five attributes: the four mentioned 
in Fig. 2.8 and the attribute phone, which is a fixed-length string of 16 bytes. 
In the actual relation, tuples would all have components for phone, but we 
know of no phone numbers to put there. Thus, the value of each of these 
components is set to the special null value, NULL. In Section 2.3.5, we shall see 
how it is possible to choose another “default” value to be used instead of NULL 
for unknown values.

As another example, the ALTER TABLE statement:

ALTER TABLE MovieStar DROP b ir th d a te ;

deletes the b ir th d a te  attribute. As a result, the schema for MovieStar no 
longer has that attribute, and all tuples of the current MovieStar instance 
have the component for b ir th d a te  deleted. □
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2.3.5 Default Values
When we create or modify tuples, we sometimes do not have values for all 
components. For instance, we mentioned in Example 2.4 that when we add a 
column to a relation schema, the existing tuples do not have a known value, and 
it was suggested that NULL could be used in place of a “real” value. However, 
there are times when we would prefer to use another choice of default value, the 
value that appears in a column if no other value is known.

In general, any place we declare an attribute and its data type, we may add 
the keyword DEFAULT and an appropriate value. That value is either NULL or 
a constant. Certain other values that are provided by the system, such as the 
current time, may also be options.

Example 2.5: Let us consider Example 2.3. We might wish to use the char
acter ? as the default for an unknown gender, and we might also wish to use 
the earliest possible date, DATE ’0000-00-00’ for an unknown birthdate. We 
could replace the declarations of gender and birthdate in Fig. 2.8 by:

gender CHAR(l) DEFAULT ’?’,
birthdate DATE DEFAULT DATE ’0000-00-00’

As another example, we could have declared the default value for new at
tribute phone to be ’u n l i s te d ’ when we added this attribute in Example 2.4. 
In that case,

ALTER TABLE MovieStar ADD phone CHAR(16) DEFAULT ’unlisted’; 

would be the appropriate ALTER TABLE statement. □

2.3.6 Declaring Keys
There are two ways to declare an attribute or set of attributes to be a key in 
the CREATE TABLE statement that defines a stored relation.

1. We may declare one attribute to be a key when that attribute is listed in 
the relation schema.

2. We may add to the list of items declared in the schema (which so far 
have only been attributes) an additional declaration that says a particular 
attribute or set of attributes forms the key.

If the key consists of more than one attribute, we have to use method (2). If 
the key is a single attribute, either method may be used.

There are two declarations that may be used to indicate keyness:

a) PRIMARY KEY, or
b) UNIQUE.
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The effect of declaring a set of attributes 5  to be a key for relation R  either 
using PRIMARY KEY or UNIQUE is the following:

• Two tuples in R  cannot agree on all of the attributes in set 5, unless one 
of them is NULL. Any attem pt to insert or update a tuple that violates 
this rule causes the DBMS to reject the action that caused the violation.

In addition, if PRIMARY KEY is used, then attributes in S  are not allowed to 
have NULL as a value for their components. Again, any attem pt to violate this 
rule is rejected by the system. NULL is permitted if the set S  is declared UNIQUE, 
however. A DBMS may make other distinctions between the two terms, if it 
wishes.

E xam ple 2 .6 : Let us reconsider the schema for relation MovieStar. Since no 
star would use the name of another star, we shall assume that name by itself 
forms a key for this relation. Thus, we can add this fact to the line declaring 
name. Figure 2.9 is a revision of Fig. 2.8 that reflects this change. We could 
also substitute UNIQUE for PRIMARY KEY in this declaration. If we did so, then 
two or more tuples could have NULL as the value of name, but there could be no 
other duplicate values for this attribute.

CREATE TABLE MovieStar (
name CHAR(30) PRIMARY KEY, 
address VARCHAR(255), 
gender CHAR(l), 
b i r th d a te  DATE

);

Figure 2.9: Making name the key

Alternatively, we can use a separate definition of the key. The resulting 
schema declaration would look like Fig. 2.10. Again, UNIQUE could replace 
PRIMARY KEY. □

CREATE TABLE MovieStar ( 
name CHAR(30), 
address VARCHAR(255), 
gender CHAR(l), 
b i r th d a te  DATE,
PRIMARY KEY (name)

) ;

Figure 2.10: A separate declaration of the key
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E xam ple 2 .7 : In Example 2.6, the form of either Fig. 2.9 or Fig. 2.10 is 
acceptable, because the key is a single attribute. However, in a situation where 
the key has more than one attribute, we must use the style of Fig. 2.10. For 
instance, the relation Movie, whose key is the pair of attributes t i t l e  and year, 
must be declared as in Fig. 2.11. However, as usual, UNIQUE is an option to 
replace PRIMARY KEY. □

CREATE TABLE Movies (
t i t l e  CHAR(100),
year INT,
len g th  INT,
genre CHAR(IO),
studioName CHAR(30), 
producerC# INT,
PRIMARY KEY ( t i t l e ,  year)

Figure 2.11: Making t i t l e  and year be the key of Movies

2.3.7 Exercises for Section 2.3
E xercise 2 .3 .1 : In this exercise we introduce one of our running examples of 
a relational database schema. The database schema consists of four relations, 
whose schemas are:

Product(m aker, model, type)
PC(model, speed, ram, hd, p rice )
Laptop(model, speed, ram, hd, screen , p ric e )
P rin ter(m o d e l, co lo r, ty p e , p rice )

The Product relation gives the manufacturer, model number and type (PC, 
laptop, or printer) of various products. We assume for convenience that model 
numbers are unique over all manufacturers and product types; that assumption 
is not realistic, and a real database would include a code for the manufacturer 
as part of the model number. The PC relation gives for each model number 
that is a PC the speed (of the processor, in gigahertz), the amount of RAM (in 
megabytes), the size of the hard disk (in gigabytes), and the price. The Laptop 
relation is similar, except that the screen size (in inches) is also included. The 
P r in te r  relation records for each printer model whether the printer produces 
color output (true, if so), the process type (laser or ink-jet, typically), and the 
price.

Write the following declarations:

a) A suitable schema for relation Product.



2.3. DEFINING A  RELATION SCHEMA IN  SQL 37

b) A suitable schema for relation PC.

c) A suitable schema for relation Laptop.

d) A suitable schema for relation P r in te r .

e) An alteration to your P r in te r  schema from (d) to delete the attribute 
co lo r.

f) An alteration to your Laptop schema from (c) to add the attribute od 
(optical-disk type, e.g., cd or dvd). Let the default value for this attribute 
be ’none’ if the laptop does not have an optical disk.

E xercise 2 .3 .2 : This exercise introduces another running example, concerning 
World War II capital ships. It involves the following relations:

C la s s e s (c la s s ,  ty p e , coun try , numGuns, b o re , d isp lacem ent) 
Ships(name, c la s s ,  launched)
B attles(nam e, d ate)
Outcom es(ship, b a t t l e ,  r e s u l t )

Ships are built in “classes” from the same design, and the class is usually named 
for the first ship of that class. The relation C lasses records the name of the 
class, the type ( ’b b ’ for battleship or ’b e ’ for battlecruiser), the country that 
built the ship, the number of main guns, the bore (diameter of the gun barrel, 
in inches) of the main guns, and the displacement (weight, in tons). Relation 
Ships records the name of the ship, the name of its class, and the year in which 
the ship was launched. Relation B a tt le s  gives the name and date of battles 
involving these ships, and relation Outcomes gives the result (sunk, damaged, 
or ok) for each ship in each battle.

Write the following declarations:

a) A suitable schema for relation C lasses.

b) A suitable schema for relation Ships.

c) A suitable schema for relation B a ttle s .

d) A suitable schema for relation Outcomes.

e) An alteration to your C lasses relation from (a) to delete the attribute 
bore.

f) An alteration to your Ships relation from (b) to include the attribute 
yard  giving the shipyard where the ship was built.
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2.4 An Algebraic Query Language
In this section, we introduce the data-manipulation aspect of the relational 
model. Recall that a data model is not just structure; it needs a way to query 
the data and to modify the data. To begin our study of operations on relations, 
we shall learn about a special algebra, called relational algebra, that consists of 
some simple but powerful ways to construct new relations from given relations. 
When the given relations are stored data, then the constructed relations can be 
answers to queries about this data.

Relational algebra is not used today as a query language in commercial 
DBMS’s, although some of the early prototypes did use this algebra directly. 
Rather, the “real” query language, SQL, incorporates relational algebra at its 
center, and many SQL programs are really “syntactically sugared” expressions 
of relational algebra. Further, when a DBMS processes queries, the first thing 
that happens to a SQL query is that it gets translated into relational algebra 
or a very similar internal representation. Thus, there are several good reasons 
to start out learning this algebra.

2.4.1 Why Do We Need a Special Query Language?
Before introducing the operations of relational algebra, one should ask why, or 
whether, we need a new kind of programming languages for databases. Won’t 
conventional languages like C or Java suffice to ask and answer any computable 
question about relations? After all, we can represent a tuple of a relation by a 
struct (in C) or an object (in Java), and we can represent relations by arrays 
of these elements.

The surprising answer is that relational algebra is useful because it is less 
powerful than C or Java. That is, there are computations one can perform in 
any conventional language that one cannot perform in relational algebra. An 
example is: determine whether the number of tuples in a relation is even or 
odd. By limiting what we can say or do in our query language, we get two huge 
rewards — ease of programming and the ability of the compiler to produce 
highly optimized code — that we discussed in Section 2.1.6.

2.4.2 What is an Algebra?
An algebra, in general, consists of operators and atomic operands. For in
stance, in the algebra of arithmetic, the atomic operands are variables like x 
and constants like 15. The operators are the usual arithmetic ones: addition, 
subtraction, multiplication, and division. Any algebra allows us to build ex
pressions by applying operators to atomic operands and/or other expressions 
of the algebra. Usually, parentheses are needed to group operators and their 
operands. For instance, in arithmetic we have expressions such as (x + y )* z  or 
((x + 7)/(2/ - 3 ) )  + x.
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Relational algebra is another example of an algebra. Its atomic operands 
are:

1. Variables that stand for relations.

2 . Constants, which are finite relations.

We shall next see the operators of relational algebra.

2.4.3 Overview of Relational Algebra
The operations of the traditional relational algebra fall into four broad classes:

a) The usual set operations — union, intersection, and difference — applied 
to relations.

b) Operations that remove parts of a relation: “selection” eliminates some 
rows (tuples), and “projection” eliminates some columns.

c) Operations that combine the tuples of two relations, including “Cartesian 
product,” which pairs the tuples of two relations in all possible ways, and 
various kinds of “join” operations, which selectively pair tuples from two 
relations.

d) An operation called “renaming” that does not affect the tuples of a re
lation, but changes the relation schema, i.e., the names of the attributes 
and/or the name of the relation itself.

We generally shall refer to expressions of relational algebra as queries.

2.4.4 Set Operations on Relations
The three most common operations on sets are union, intersection, and differ
ence. We assume the reader is familiar with these operations, which are defined 
as follows on arbitrary sets R  and 5:

• R U  S, the union of R  and S, is the set of elements that are in R  or 5  or 
both. An element appears only once in the union even if it is present in 
both R  and S.

• R  n  S, the intersection of R  and 5, is the set of elements that are in both 
R  and S.

• R -  S, the difference of R  and S,  is the set of elements that are in R  but 
not in S. Note that R  — S  is different from S  — R; the latter is the set of 
elements that are in S  but not in R.

When we apply these operations to relations, we need to put some conditions 
on R  and S:



40 CHAPTER 2. THE RELATIONAL MODEL OF DATA

1. R  and S  must have schemas with identical sets of attributes, and the 
types (domains) for each attribute must be the same in R  and S.

2. Before we compute the set-theoretic union, intersection, or difference of 
sets of tuples, the columns of R  and S  must be ordered so that the order 
of attributes is the same for both relations.

Sometimes we would like to take the union, intersection, or difference of 
relations that have the same number of attributes, with corresponding domains, 
but that use different names for their attributes. If so, we may use the renaming 
operator to be discussed in Section 2.4.11 to change the schema of one or both 
relations and give them the same set of attributes.

name address gender birthdate
Carrie Fisher 123 Maple St., Hollywood F 9/9/99
Mark Hamill 456 Oak Rd., Brentwood M 8/8/88

Relation R

name address gender birthdate
Carrie Fisher 123 Maple St., Hollywood F 9/9/99
Harrison Ford 789 Palm Dr., Beverly Hills M 7/7/77

Relation S

Figure 2.12: Two relations

Exam ple 2.8: Suppose we have the two relations R  and S, whose schemas 
are both that of relation MovieStar Section 2.2.8. Current instances of R  and 
S  are shown in Fig. 2.12. Then the union R  U S  is

name address gender birthdate
Carrie Fisher 123 Maple St., Hollywood F 9/9/99
Mark Hamill 456 Oak Rd., Brentwood M 8/8/88
Harrison Ford 789 Palm Dr., Beverly Hills M 7/7/77

Note that the two tuples for Carrie Fisher from the two relations appear only 
once in the result.

The intersection R  fl 5 is

name_________ | address___________________| gender \ birthdate
Carrie Fisher | 123 Maple St., Hollywood | F | 9/9/99

Now, only the Carrie Fisher tuple appears, because only it is in both relations. 
The difference R  — S  is
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name______ | address______________ | gender | birthdate

Mark Hamill | 456 Oak Rd., Brentwood | M | 8/8/88

That is, the Fisher and Hamill tuples appear in R  and thus are candidates for 
R  — S. However, the Fisher tuple also appears in S  and so is not in R  — S. □

2.4.5 Projection
The projection operator is used to produce from a relation R  a new relation 
that has only some of R ’s columns. The value of expression , a 2 ,. . .  ,A n (R) is 
a relation that has only the columns for attributes A i ,A 2 , . . .  , An of R. The 
schema for the resulting value is the set of attributes {A i ,A 2, . . .  , An}, which 
we conventionally show in the order listed.

title year length genre studioName producerC#

Star Weirs 1977 124 sciFi Fox 12345
Galaxy Quest 1999 104 comedy DreamWorks 67890
Wayne’s World 1992 95 comedy Paramount 99999

Figure 2.13: The relation Movies

Example 2.9: Consider the relation Movies with the relation schema de
scribed in Section 2.2.8. An instance of this relation is shown in Fig. 2.13. We 
can project this relation onto the first three attributes with the expression:

'K title ,y e a r ,len g th (Movies)
The resulting relation is

title year length

Star Wars 1977 124
Galaxy Quest 1999 104
Wayne’s World 1992 95

As another example, we can project onto the attribute genre with the ex
pression ngenre(Movies). The result is the single-column relation

genre

sciFi
comedy

Notice that there are only two tuples in the resulting relation, since the last two 
tuples of Fig. 2.13 have the same value in their component for attribute genre, 
and in the relational algebra of sets, duplicate tuples are always eliminated. □
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A Note About Data Quality :-)

While we have endeavored to make example data as accurate as possible, 
we have used bogus values for addresses and other personal information 
about movie stars, in order to protect the privacy of members of the acting 
profession, many of whom are shy individuals who shun publicity.

2.4.6 Selection
The selection operator, applied to a relation R, produces a new relation with a 
subset of R ’s tuples. The tuples in the resulting relation are those that satisfy 
some condition C that involves the attributes of R. We denote this operation 
ac{R)- The schema for the resulting relation is the same as R ’s schema, and 
we conventionally show the attributes in the same order as we use for R.

C is a conditional expression of the type with which we are familiar from 
conventional programming languages; for example, conditional expressions fol
low the keyword i f  in programming languages such as C or Java. The only 
difference is that the operands in condition C are either constants or attributes 
of R. We apply C to each tuple t of R  by substituting, for each attribute A 
appearing in condition C, the component of t for attribute A. If after substi
tuting for each attribute of C the condition C is true, then t  is one of the tuples 
that appear in the result of ac(R); otherwise t  is not in the result.

E xam ple 2.10: Let the relation Movies be as in Fig. 2.13. Then the value of 
expression aiength>ioo (Movies) is

title year length genre studioName producerC#
Star Weirs 1977 124 sciFi Fox 12345
Galaxy Quest 1999 104 comedy DreamWorks 67890

The first tuple satisfies the condition length > 100 because when we substitute 
for length the value 124 found in the component of the first tuple for attribute 
length, the condition becomes 124 > 100. The latter condition is true, so we 
accept the first tuple. The same argument explains why the second tuple of 
Fig. 2.13 is in the result.

The third tuple has a leng th  component 95. Thus, when we substitute for 
length we get the condition 95 > 100, which is false. Hence the last tuple of 
Fig. 2.13 is not in the result. □

E xam ple 2.11: Suppose we want the set of tuples in the relation Movies that 
represent Fox movies at least 100 minutes long. We can get these tuples with 
a more complicated condition, involving the AND of two sub conditions. The 
expression is

& leng th> 100 AND s tu d io  Name—* Fox’ (Movies)



The tuple

title_______| year \ length \ genre \ studioName | producerC#
Star Wars | 1977 | 124 | sciFi | Fox | 12345

is the only one in the resulting relation. □

2.4.7 Cartesian Product
The Cartesian product (or cross-product, or just product) of two sets R  and 
S  is the set of pairs that can be formed by choosing the first element of the 
pair to be any element of R  and the second any element of S. This product 
is denoted R x  S. When R and S  are relations, the product is essentially the 
same. However, since the members of R  and S  are tuples, usually consisting 
of more than one component, the result of pairing a tuple from R  with a tuple 
from S  is a longer tuple, with one component for each of the components of the 
constituent tuples. By convention, the components from R  (the left operand) 
precede the components from S  in the attribute order for the result.

The relation schema for the resulting relation is the union of the schemas 
for R  and S. However, if R  and S  should happen to have some attributes in 
common, then we need to invent new names for at least one of each pair of 
identical attributes. To disambiguate an attribute A  that is in the schemas of 
both R  and 5, we use R.A  for the attribute from R  and S.A  for the attribute 
from S.

Exam ple 2.12: For conciseness, let us use an abstract example that illustrates 
the product operation. Let relations R  and S  have the schemas and tuples 
shown in Fig. 2.14(a) and (b). Then the product R  x S  consists of the six 
tuples shown in Fig. 2.14(c). Note how we have paired each of the two tuples of 
R  with each of the three tuples of S. Since B  is an attribute of both schemas, 
we have used R.B  and S.B  in the schema for R x S. The other attributes are 
unambiguous, and their names appear in the resulting schema unchanged. □

2.4.8 Natural Joins
More often than we want to take the product of two relations, we find a need to 
join them by pairing only those tuples that match in some way. The simplest 
sort of match is the natural join of two relations R  and 5, denoted R  x  S, in 
which we pair only those tuples from R  and S  that agree in whatever attributes 
are common to the schemas of R  and S. More precisely, let A \ , A 2 , . . .  , An be 
all the attributes that are in both the schema of R  and the schema of S. Then 
a tuple r from R  and a tuple s from S  are successfully paired if and only if r 
and s agree on each of the attributes A i, A 2 , ■ ■ ■ , An.

If the tuples r  and s are successfully paired in the join R tx S,  then the 
result of the pairing is a tuple, called the joined tuple, with one component for 
each of the attributes in the union of the schemas of R  and S. The joined tuple
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A B  
1  2 

3 4

(a) Relation R

B C D
2 5 6
4 7 8
9 10 11

(b) Relation S

A R.B S.B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

(c) Result R x  S

Figure 2.14: Two relations and their Cartesian product

agrees with tuple r in each attribute in the schema of R,  and it agrees with 
s in each attribute in the schema of S. Since r and s are successfully paired, 
the joined tuple is able to agree with both these tuples on the attributes they 
have in common. The construction of the joined tuple is suggested by Fig. 2.15. 
However, the order of the attributes need not be that convenient; the attributes 
of R  and 5  can appear in any order.

Exam ple 2.13: The natural join of the relations R  and 5  from Fig. 2.14(a) 
and (b) is

A B c D
1 2 5 6
3 4 7 8

The only attribute common to R  and S  is B. Thus, to pair successfully, tuples 
need only to agree in their B  components. If so, the resulting tuple has com
ponents for attributes A  (from R), B  (from either R  or S), C (from S), and D 
(from S).
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R________ S

Figure 2.15: Joining tuples

In this example, the first tuple of R  successfully pairs with only the first 
tuple of 5; they share the value 2 on their common attribute B. This pairing 
yields the first tuple of the result: (1,2,5,6). The second tuple of R  pairs 
successfully only with the second tuple of S, and the pairing yields (3 ,4 ,7 ,8). 
Note that the third tuple of S  does not pair with any tuple of R  and thus has 
no effect on the result of R  tx S. A  tuple that fails to pair with any tuple of 
the other relation in a join is said to be a dangling tuple. □

E xam ple 2.14: The previous example does not illustrate all the possibilities 
inherent in the natural join operator. For example, no tuple paired successfully 
with more than one tuple, and there was only one attribute in common to the 
two relation schemas. In Fig. 2.16 we see two other relations, U and V, that 
share two attributes between their schemas: B  and C. We also show an instance 
in which one tuple joins with several tuples.

For tuples to pair successfully, they must agree in both the B  and C com
ponents. Thus, the first tuple of U joins with the first two tuples of V,  while 
the second and third tuples of U join with the third tuple of V. The result of 
these four pairings is shown in Fig. 2.16(c). □

2.4.9 Theta-Joins
The natural join forces us to pair tuples using one specific condition. While this 
way, equating shared attributes, is the most common basis on which relations 
are joined, it is sometimes desirable to pair tuples from two relations on some 
other basis. For that purpose, we have a related notation called the theta- 
join. Historically, the “theta” refers to an arbitrary condition, which we shall 
represent by C  rather than 9.

The notation for a theta-join of relations R  and S  based on condition C is 
R  ix c  S. The result of this operation is constructed as follows:

1. Take the product of R  and S.

2. Select from the product only those tuples that satisfy the condition C.
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A B C
1 2 3
6 7 8
9 7 8

(a) Relation U

B c D
2 3 4
2 3 5
7 8 10

(b) Relation V

A B C D
1 2 3 4
1 2 3 5
6 7 8 10
9 7 8 10

(c) Result U xi V

Figure 2.16: Natural join of relations

As with the product operation, the schema for the result is the union of the 
schemas of R  and S, with “R ” or “S.” prefixed to attributes if necessary to 
indicate from which schema the attribute came.

Exam ple 2.15: Consider the operation U ^  a < d  V, where U and V  are the 
relations from Fig. 2.16(a) and (b). We must consider all nine pairs of tuples, 
one from each relation, and see whether the A  component from the [/-tuple 
is less than the D component of the F-tuple. The first tuple of U, with an A 
component of 1, successfully pairs with each of the tuples from V. However, the 
second and third tuples from U, with A components of 6 and 9, respectively, 
pair successfully with only the last tuple of V . Thus, the result has only five 
tuples, constructed from the five successful pairings. This relation is shown in 
Fig. 2.17. □

Notice that the schema for the result in Fig. 2.17 consists of all six attributes, 
with U and V  prefixed to their respective occurrences of attributes B  and C to 
distinguish them. Thus, the theta-join contrasts with natural join, since in the 
latter common attributes are merged into one copy. Of course it makes sense to
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A U.B U.C V.B V.C D
1 2 3 2 3 4
1 2 3 2 3 5
1 2 3 7 8 10
6 7 8 7 8 10
9 7 8 7 8 10

Figure 2.17: Result of U ixi a < d  V

do so in the case of the natural join, since tuples don’t pair unless they agree in 
their common attributes. In the case of a theta-join, there is no guarantee that 
compared attributes will agree in the result, since they may not be compared 
with =.

E xam ple 2.16: Here is a theta-join on the same relations U and V  that has 
a more complex condition:

u  IX  A < D  AND U . B ^ V . B  V

That is, we require for successful pairing not only that the A  component of the 
[/-tuple be less than the D component of the V-tuple, but that the two tuples 
disagree on their respective B  components. The tuple

A  | U.B | U.C | V.B | V.C 1 D 
1 | 2 |~~3 ["7 |~8 | 10

is the only one to satisfy both conditions, so this relation is the result of the 
theta-join above. □

2.4.10 Combining Operations to Form Queries
If all we could do was to write single operations on one or two relations as 
queries, then relational algebra would not be nearly as useful as it is. However, 
relational algebra, like all algebras, allows us to form expressions of arbitrary 
complexity by applying operations to the result of other operations.

One can construct expressions of relational algebra by applying operators 
to subexpressions, using parentheses when necessary to indicate grouping of 
operands. It is also possible to represent expressions as expression trees; the 
latter often are easier for us to read, although they are less convenient as a 
machine-readable notation.

E xam ple 2.17: Suppose we want to know, from our running Movies relation, 
“What are the titles and years of movies made by Fox that are at least 100 
minutes long?” One way to compute the answer to this query is:

1. Select those Movies tuples that have length > 100.
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2. Select those Movies tuples that have studioName =  ’Fox’.

3. Compute the intersection of (1) and (2).

4. Project the relation from (3) onto attributes t i t l e  and year.

K . ,title, year

n

C  length >= 100

Movies Movies

Figure 2.18: Expression tree for a relational algebra expression

In Fig. 2.18 we see the above steps represented as an expression tree. Ex
pression trees are evaluated bottom-up by applying the operator at an interior 
node to the arguments, which are the results of its children. By proceeding 
bottom-up, we know that the arguments will be available when we need them. 
The two selection nodes correspond to steps (1) and (2). The intersection node 
corresponds to step (3), and the projection node is step (4).

Alternatively, we could represent the same expression in a conventional, 
linear notation, with parentheses. The formula

ovies) n GstudioName= * Fox ’ (Movies))71"title ^y ea r

represents the same expression.
Incidentally, there is often more than one relational algebra expression that 

represents the same computation. For instance, the above query could also be 
written by replacing the intersection by logical AND within a single selection 
operation. That is,

7Tt i t le ,y e a r ( ^ le n g th >  100 AND s tu d io N a m e = >F o x i (Movies)^

is an equivalent form of the query. □
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Equivalent Expressions and Query Optimization

All database systems have a query-answering system, and many of them 
are based on a language that is similar in expressive power to relational 
algebra. Thus, the query asked by a user may have many equivalent ex
pressions (expressions that produce the same answer whenever they are 
given the same relations as operands), and some of these may be much 
more quickly evaluated. An important job of the query “optimizer” dis
cussed briefly in Section 1.2.5 is to replace one expression of relational 
algebra by an equivalent expression that is more efficiently evaluated.

2.4.11 Naming and Renaming

In order to control the names of the attributes used for relations that are con
structed by applying relational-algebra operations, it is often convenient to 
use an operator that explicitly renames relations. We shall use the operator 
Ps(Ai,A2,-.. ,a„)(R) to rename a relation R. The resulting relation has exactly 
the same tuples as R, but the name of the relation is S.  Moreover, the at
tributes of the result relation S  are named Ai, A 2 , . .. ,A n , in order from the 
left. If we only want to change the name of the relation to S  and leave the 
attributes as they are in R, we can just say ps(R)-

E xam ple 2 .1 8 : In Example 2.12 we took the product of two relations R  and 
S  from Fig. 2.14(a) and (b) and used the convention that when an attribute 
appears in both operands, it is renamed by prefixing the relation name to it. 
Suppose, however, that we do not wish to call the two versions of B  by names 
R .B  and S.B; rather we want to continue to use the name B  for the attribute 
that comes from R,  and we want to use X  as the name of the attribute B  
coming from S. We can rename the attributes of S  so the first is called X .  The 
result of the expression p s ( x , c ,D ) ( S )  is a relation named S  that looks just like 
the relation 5  from Fig. 2.14, but its first column has attribute X  instead of B.

A B X C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

Figure 2.19: R  x pS(x,c,D){S)
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When we take the product of R  with this new relation, there is no conflict 
of names among the attributes, so no further renaming is done. That is, the 
result of the expression R  x P s ( x , c , D ) ( S )  is the relation R x S  from Fig. 2.14(c), 
except that the five columns are labeled A, B, X ,  C, and D, from the left. This 
relation is shown in Fig. 2.19.

As an alternative, we could take the product without renaming, as we did 
in Example 2 .12, and then rename the result. The expression

yields the same relation as in Fig. 2.19, with the same set of attributes. But 
this relation has a name, RS,  while the result relation in Fig. 2.19 has no name.
□

2.4.12 Relationships Among Operations
Some of the operations that we have described in Section 2.4 can be expressed 
in terms of other relational-algebra operations. For example, intersection can 
be expressed in terms of set difference:

That is, if R  and S  are any two relations with the same schema, the intersection 
of R  and S  can be computed by first subtracting 5  from R  to form a relation 
T consisting of all those tuples in R  but not S. We then subtract T  from R, 
leaving only those tuples of R  that are also in S.

The two forms of join are also expressible in terms of other operations. 
Theta-join can be expressed by product and selection:

The natural join of R  and S  can be expressed by starting with the product 
R x S .  We then apply the selection operator with a condition C of the form

R.Ax = S.Ai AND R.A2 = S.A2 AND • • • AND R.An = S.An

where A i , A 2, . . .  , An are all the attributes appearing in the schemas of both R  
and S. Finally, we must project out one copy of each of the equated attributes. 
Let L  be the list of attributes in the schema of R  followed by those attributes 
in the schema of S  that are not also in the schema of R. Then

E xam ple 2.19: The natural join of the relations U and V  from Fig. 2.16 can 
be written in terms of product, selection, and projection as:

P r s ( a , b , x , c , d ) ( R  x S)

R r \ S  = R - ( R - S )

R  ix c  S  =  ac(R  x S)

7TA ,U .B ,U .C ,D \ c r u .B = V .B  AND U .G = V .c { U  X  V
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That is, we take the product U x V.  Then we select for equality between each 
pair of attributes with the same name — B  and C  in this example. Finally, 
we project onto all the attributes except one of the B ’s and one of the C ’s; we 
have chosen to eliminate the attributes of V  whose names also appear in the 
schema of U.

For another example, the theta-join of Example 2.16 can be written 

a A < D  AND U .B j: V .B { U  X V)

That is, we take the product of the relations U and V  and then apply the 
condition that appeared in the theta-join. □

The rewriting rules mentioned in this section are the only “redundancies” 
among the operations that we have introduced. The six remaining operations — 
union, difference, selection, projection, product, and renaming — form an in
dependent set, none of which can be written in terms of the other five.

2.4.13 A Linear Notation for Algebraic Expressions
In Section 2.4.10 we used an expression tree to represent a complex expression 
of relational algebra. An alternative is to invent names for the temporary 
relations that correspond to the interior nodes of the tree and write a sequence 
of assignments that create a value for each. The order of the assignments is 
flexible, as long as the children of a node N  have had their values created before 
we attempt to create the value for N  itself.

The notation we shall use for assignment statements is:

1. A relation name and parenthesized list of attributes for that relation. The 
name Answer will be used conventionally for the result of the final step;
i.e., the name of the relation at the root of the expression tree.

2. The assignment symbol :=.

3. Any algebraic expression on the right. We can choose to use only one 
operator per assignment, in which case each interior node of the tree gets 
its own assignment statement. However, it is also permissible to combine 
several algebraic operations in one right side, if it is convenient to do so.

E xam ple 2.20: Consider the tree of Fig. 2.18. One possible sequence of as
signments to evaluate this expression is:

R(t,y,l,i,s,p) := criength>ioo (Movies)
S (t ,y, 1, i , s ,p) := <JgtudioName=’¥ojL’ (Movies) 
T(t,y,l,i,s,p) := R n S 
Answer (title, year) := 71"̂ (T)
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The first step computes the relation of the interior node labeled u i e n g th >  100 in 
Fig. 2.18, and the second step computes the node labeled (T3tu d io N a m e = ’Fox’- 
Notice that we get renaming “for free,” since we can use any attributes and 
relation name we wish for the left side of an assignment. The last two steps 
compute the intersection and the projection in the obvious way.

It is also permissible to combine some of the steps. For instance, we could 
combine the last two steps and write:

R(t,y,l,i,s,p) := aiength>ioo (Movies)
S (t, y , 1, i , S , p) (J s tu d io N  a m e —’ Fox’ (Movies)
Answer (title, year) := ir^yCR fl S)

We could even substitute for R  and S  in the last line and write the entire 
expression in one line. □

2.4.14 Exercises for Section 2.4
Exercise 2 .4 .1: This exercise builds upon the products schema of Exercise 
2.3.1. Recall that the database schema consists of four relations, whose schemas 
are:

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Some sample data for the relation Product is shown in Fig. 2.20. Sample 
data for the other three relations is shown in Fig. 2.21. Manufacturers and 
model numbers have been “sanitized,” but the data is typical of products on 
sale at the beginning of 2007.

Write expressions of relational algebra to answer the following queries. You 
may use the linear notation of Section 2.4.13 if you wish. For the data of Figs. 
2.20 and 2.21, show the result of your query. However, your answer should work 
for arbitrary data, not just the data of these figures.

a) What PC models have a speed of at least 3.00?

b) Which manufacturers make laptops with a hard disk of at least 100GB?

c) Find the model number and price of all products (of any type) made by 
manufacturer B.

d) Find the model numbers of all color laser printers.

e) Find those manufacturers that sell Laptops, but not PC’s.

! f) Find those hard-disk sizes that occur in two or more PC’s.
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maker model type

A 1001 pc
A 1002 pc
A 1003 pc
A 2004 laptop
A 2005 laptop
A 2006 laptop
B 1004 pc
B 1005 pc
B 1006 pc
B 2007 laptop
C 1007 pc
D 1008 pc
D 1009 pc
D 1010 pc
D 3004 printer
D 3005 printer
E 1011 pc
E 1012 pc
E 1013 pc
E 2001 laptop
E 2002 laptop
E 2003 laptop
E 3001 printer
E 3002 printer
E 3003 printer
F 2008 laptop
F 2009 laptop
G 2010 laptop
H 3006 printer
H 3007 printer

Figure 2.20: Sample data for Product
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model speed ram hd price
1001 2 .6 6 1024 250 2114
1002 2 .1 0 512 250 995
1003 1.42 512 80 478
1004 2.80 1024 250 649
1005 3.20 512 250 630
1006 3.20 1024 320 1049
1007 2 .2 0 1024 200 510
1008 2 .2 0 2048 250 770
1009 2 .0 0 1024 250 650
1010 2.80 2048 300 770
1011 1.86 2048 160 959
1012 2.80 1024 160 649
1013 3.06 512 80 529

(a) Sample data for relation PC

model speed ram hd screen price
2001 2 .0 0 2048 240 20 .1 3673
2002 1.73 1024 80 17.0 949
2003 1.80 512 60 15.4 549
2004 2 .0 0 512 60 13.3 1150
2005 2.16 1024 120 17.0 2500
2006 2 .0 0 2048 80 15.4 1700
2007 1.83 1024 120 13.3 1429
2008 1.60 1024 100 15.4 900
2009 1.60 512 80 14.1 680
2010 2 .0 0 2048 160 15.4 2300

(b) Sample data for relation Laptop

model color type price
3001 tru e in k -j e t 99
3002 fa ls e la s e r 239
3003 tru e la s e r 899
3004 tru e in k - je t 120
3005 fa lse la se r 120
3006 tru e in k - je t 100
3007 tru e la s e r 200

(c) Sample data for relation P rin te r

Figure 2.21: Sample data for relations of Exercise 2.4.1
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! g) Find those pairs of PC models that have both the same speed and RAM. 
A pair should be listed only once; e.g., list (i, j)  but not (j, i).

!! h) Find those manufacturers of at least two different computers (PC’s or 
laptops) with speeds of at least 2.80.

!! i) Find the manufacturer(s) of the computer (PC or laptop) with the highest 
available speed.

!! j) Find the manufacturers of PC’s with at least three different speeds.

!! k) Find the manufacturers who sell exactly three different models of PC.

Exercise 2 .4 .2 : Draw expression trees for each of your expressions of Exer
cise 2.4.1.

E xercise 2 .4 .3 : This exercise builds upon Exercise 2.3.2 concerning World 
War II capital ships. Recall it involves the following relations:

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

Figures 2.22 and 2.23 give some sample data for these four relations.4 Note 
that, unlike the data for Exercise 2.4.1, there are some “dangling tuples” in this 
data, e.g., ships mentioned in Outcomes that are not mentioned in Ships.

Write expressions of relational algebra to answer the following queries. You 
may use the linear notation of Section 2.4.13 if you wish. For the data of Figs. 
2.22 and 2.23, show the result of your query. However, your answer should work 
for arbitrary data, not just the data of these figures.

a) Give the class names and countries of the classes that carried guns of at 
least 16-inch bore.

b) Find the ships launched prior to 1921.

c) Find the ships sunk in the battle of the Denmark Strait.

d) The treaty of Washington in 1921 prohibited capital ships heavier than 
35,000 tons. List the ships that violated the treaty of Washington.

e) List the name, displacement, and number of guns of the ships engaged in 
the battle of Guadalcanal.

f) List all the capital ships mentioned in the database. (Remember that all 
these ships may not appear in the Ships relation.)

4Source: J . N. W estw ood, F ighting Ships o f  W orld W ar II, Follett P ub lish ing , Chicago, 
1975 an d  R . C. S tern , US B attlesh ips in  A ction , S q u ad ron /S ignal P ub lica tions, C a rro llton , 
T X , 1980.
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class type country numGuns bore displacement

Bismarck bb Germany 8 15 42000
Iowa bb USA 9 16 46000
Kongo be Japan 8 14 32000
North Carolina bb USA 9 16 37000
Renown be Gt. Britain 6 15 32000
Revenge bb Gt. Britain 8 15 29000
Tennessee bb USA 12 14 32000
Yamato bb Japan 9 18 65000

(a) Sample data for relation Classes

name date

Denmark Strait 5/24-27/41
Guadalcanal 11/15/42
North Cape 12/26/43
Surigao Strait 10/25/44

(b) Sample data for relation Battles
ship battle result

Arizona Pearl Harbor sunk
Bismarck Denmark Strait sunk
California Surigao Strait ok
Duke of York North Cape ok
Fuso Surigao Strait sunk
Hood Denmark Strait sunk
King George V Denmark Strait ok
Kirishima Guadalcanal sunk
Prince of Wales Denmark Strait damaged
Rodney Denmark Strait ok
Scharnhorst North Cape sunk
South Dakota Guadalcanal damaged
Tennessee Surigao Strait ok
Washington Guadalcanal ok
West Virginia Surigao Strait ok
Yamashiro Surigao Strait sunk

(c) Sample data for relation Outcomes

Figure 2.22: Data for Exercise 2.4.3
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name class launched
California Tennessee 1921
Haruna Kongo 1915
Hiei Kongo 1914
Iowa Iowa 1943
Kirishima Kongo 1915
Kongo Kongo 1913
Missouri Iowa 1944
Musashi Yamato 1942
New Jersey Iowa 1943
North Carolina North Carolina 1941
Ramillies Revenge 1917
Renown Renown 1916
Repulse Renown 1916
Resolution Revenge 1916
Revenge Revenge 1916
Royal Oak Revenge 1916
Royal Sovereign Revenge 1916
Tennessee Tennessee 1920
Washington North Carolina 1941
Wisconsin Iowa 1944
Yamato Yamato 1941

Figure 2.23: Sample data for relation Ships

! g) Find the classes that had only one ship as a member of that class.

! h) Find those countries that had both battleships and battlecruisers.

! i) Find those ships that “lived to fight another day”; they were damaged in 
one battle, but later fought in another.

Exercise 2 .4 .4 : Draw expression trees for each of your expressions of Exer
cise 2.4.3.

Exercise 2 .4 .5 : What is the difference between the natural join R  ix S  and 
the theta-join R \ x c  S  where the condition C is that R.A = S.A  for each 
attribute A  appearing in the schemas of both R  and S'!

Exercise 2 .4 .6 : An operator on relations is said to be monotone if whenever 
we add a tuple to one of its arguments, the result contains all the tuples that 
it contained before adding the tuple, plus perhaps more tuples. Which of the 
operators described in this section are monotone? For each, either explain why 
it is monotone or give an example showing it is not.
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Exercise 2.4.7: Suppose relations R  and S  have n  tuples and m  tuples, re
spectively. Give the minimum and maximum numbers of tuples that the results 
of the following expressions can have.

a) R  U S.

b) R t x S .

c) ac(R)  x S, for some condition C.

d) 7tl (R) — S, for some list of attributes L.

Exercise 2 .4 .8: The semijoin of relations R  and S, written R IX S, is the set 
of tuples t in R  such that there is at least one tuple in S  that agrees with t in 
all attributes that R  and S  have in common. Give three different expressions 
of relational algebra that are equivalent to R  X  S.

Exercise 2.4.9: The antisemijoin R  X  S  is the set of tuples t in R  that do 
not agree with any tuple of S  in the attributes common to R  and 5. Give an 
expression of relational algebra equivalent to R  t x  S.

Exercise 2.4.10: Let R  be a relation with schema

(A i ,A 2, . . .  ,A n,B i,B2 , ■.. ,B m)

and let 5  be a relation with schema (i? i,# 2,• • ■ , Bm); that is, the attributes 
of S  are a subset of the attributes of R. The quotient of R  and S, denoted 
R-i- S, is the set of tuples t over attributes A i , A2, . . .  ,A n (i.e., the attributes 
of R  that are not attributes of S ) such that for every tuple s in S, the tuple 
ts, consisting of the components of t for A i ,A 2, . . .  ,A n and the components 
of s for B lyB 2, . . .  , B rn, is a member of R. Give an expression of relational 
algebra, using the operators we have defined previously in this section, that is 
equivalent to R-r- S.

2.5 Constraints on Relations
We now take up the third important aspect of a data model: the ability to 
restrict the data that may be stored in a database. So far, we have seen only one 
kind of constraint, the requirement that an attribute or attributes form a key 
(Section 2.3.6). These and many other kinds of constraints can be expressed in 
relational algebra. In this section, we show how to express both key constraints 
and “referential-integrity” constraints; the latter require that a value appearing 
in one column of one relation also appear in some other column of the same 
or a different relation. In Chapter 7, we see how SQL database systems can 
enforce the same sorts of constraints as we can express in relational algebra.
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2.5.1 Relational Algebra as a Constraint Language
There are two ways in which we can use expressions of relational algebra to 
express constraints.

1. If R  is an expression of relational algebra, then R  =  0 is a constraint 
that says “The value of R  must be empty,” or equivalently “There are no 
tuples in the result of R.”

2. If R  and S  are expressions of relational algebra, then R C  S  is a constraint 
that says “Every tuple in the result of R  must also be in the result of 5 .” 
Of course the result of S  may contain additional tuples not produced by 
R.

These ways of expressing constraints are actually equivalent in what they 
can express, but sometimes one or the other is clearer or more succinct. That 
is, the constraint R  C S  could just as well have been written R  — 5 =  0. To 
see why, notice that if every tuple in R  is also in S, then surely R  — S  is empty. 
Conversely, if R  — S  contains no tuples, then every tuple in R  must be in S  (or 
else it would be in R  — S ) .

On the other hand, a constraint of the first form, R  =  0, could just as 
well have been written R  C 0. Technically, 0 is not an expression of relational 
algebra, but since there are expressions that evaluate to 0, such as R  — R, there 
is no harm in using 0 as a relational-algebra expression.

In the following sections, we shall see how to express significant constraints 
in one of these two styles. As we shall see in Chapter 7, it is the first style — 
equal-to-the-emptyset — that is most commonly used in SQL programming. 
However, as shown above, we are free to think in terms of set-containment if 
we wish and later convert our constraint to the equal-to-the-emptyset style.

2.5.2 Referential Integrity Constraints
A common kind of constraint, called a referential integrity constraint, asserts 
that a value appearing in one context also appears in another, related context. 
For example, in our movies database, should we see a Starsln tuple that has 
person p in the starName component, we would expect that p  appears as the 
name of some star in the MovieStar relation. If not, then we would question 
whether the listed “star” really was a star.

In general, if we have any value v as the component in attribute A of some 
tuple in one relation R, then because of our design intentions we may expect 
that v will appear in a particular component (say for attribute B) of some tuple 
of another relation S. We can express this integrity constraint in relational 
algebra as tta(R) Q b {S), or equivalently, tta(R) — ^ b (S) =  0.

E xam ple 2.21: Consider the two relations from our running movie database:

Movies(title, year, length, genre, studioName, producerC#) 
MovieExec(name, address, cert#, netWorth)
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We might reasonably assume that the producer of every movie would have to 
appear in the MovieExec relation. If not, there is something wrong, and we 
would at least want a system implementing a relational database to inform us 
that we had a movie with a producer of which the database had no knowledge.

To be more precise, the producerC# component of each Movies tuple must 
also appear in the cert# component of some MovieExec tuple. Since executives 
are uniquely identified by their certificate numbers, we would thus be assured 
that the movie’s producer is found among the movie executives. We can express 
this constraint by the set-containment

7tproducerC#(.Movies) C ̂ cert#(MovieExec)

The value of the expression on the left is the set of all certificate numbers ap
pearing in producerC# components of Movies tuples. Likewise, the expression 
on the right’s value is the set of all certificates in the cert# component of 
MovieExec tuples. Our constraint says that every certificate in the former set 
must also be in the latter set. □

Exam ple 2.22: We can similarly express a referential integrity constraint 
where the “value” involved is represented by more than one attribute. For 
instance, we may want to assert that any movie mentioned in the relation

Starsln(movieTitle, movieYear, starName)

also appears in the relation

Movies(title, year, length, genre, studioName, producerC#)

Movies are represented in both relations by title-year pairs, because we agreed 
that one of these attributes alone was not sufficient to identify a movie. The 
constraint

^ m o v ie T i t le , m o v ieyear(StarsIn) C 7Ttitle, year(Movies)

expresses this referential integrity constraint by comparing the title-year pairs 
produced by projecting both relations onto the appropriate lists of components.
□

2.5.3 Key Constraints
The same constraint notation allows us to express far more than referential 
integrity. Here, we shall see how we can express algebraically the constraint 
that a certain attribute or set of attributes is a key for a relation.

E xam ple 2.23: Recall that name is the key for relation

MovieStar(name, address, gender, birthdate)
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That is, no two tuples agree on the name component. We shall express alge
braically one of several implications of this constraint: that if two tuples agree 
on name, then they must also agree on address. Note that in fact these “two” 
tuples, which agree on the key name, must be the same tuple and therefore 
certainly agree in all attributes.

The idea is that if we construct all pairs of MovieStar tuples (£1,(2), we 
must not find a pair that agree in the name component and disagree in the 
address component. To construct the pairs we use a Cartesian product, and 
to search for pairs that violate the condition we use a selection. We then assert 
the constraint by equating the result to 0 .

To begin, since we are taking the product of a relation with itself, we need 
to rename at least one copy, in order to have names for the attributes of the 
product. For succinctness, let us use two new names, MSI and MS2, to refer 
to the MovieStar relation. Then the requirement can be expressed by the 
algebraic constraint:

& M S l.n a m e = M S £ .n a m e AND M S l.a d d r e s s ^ M S S .a d d r e s s i^ SI X MS2) =  0 

In the above, MSI in the product MSI x MS2 is shorthand for the renaming:

P M S  l(n a m e ,a d d r e ss ,g e n d e r ,b ir th d a te ) (MovieStar) 

and MS2 is a similar renaming of MovieStar. □

2.5.4 Additional Constraint Examples
There are many other kinds of constraints that we can express in relational 
algebra and that are useful for restricting database contents. A large family 
of constraints involve the permitted values in a context. For example, the fact 
that each attribute has a type constrains the values of that attribute. Often 
the constraint is quite straightforward, such as “integers only” or “character 
strings of length up to 30.” Other times we want the values that may appear in 
an attribute to be restricted to a small enumerated set of values. Other times, 
there are complex limitations on the values that may appear. We shall give two 
examples, one of a simple domain constraint for an attribute, and the second a 
more complicated restriction.

E xam ple 2.24: Suppose we wish to specify that the only legal values for the 
gender attribute of MovieStar are ’ F ’ and ’ M ’. We can express this constraint 
algebraically by:

& g e n d e r ^ ’ F’ AND g e n d e r ^ ’M” (MovieStar) =  0

That is, the set of tuples in MovieStar whose gender component is equal to 
neither ’ F ’ nor ’ M ’ is empty. □
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Exam ple 2.25: Suppose we wish to require that one must have a net worth 
of at least $10,000,000 to be the president of a movie studio. We can express 
this constraint algebraically as follows. First, we need to theta-join the two 
relations

MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

using the condition that presC# from Studio and ce rt#  from MovieExec are 
equal. That join combines pairs of tuples consisting of a studio and an executive, 
such that the executive is the president of the studio. If we select from this 
relation those tuples where the net worth is less than ten million, we have a set 
that, according to our constraint, must be empty. Thus, we may express the 
constraint as:

^ nc.t VV’ur’/./jCl0000000 (Studio XI p r e s C # = c e r t #  MovieExec) 0

An alternative way to express the same constraint is to compare the set 
of certificates that represent studio presidents with the set of certificates that 
represent executives with a net worth of at least $10,000,000; the former must 
be a subset of the latter. The containment

'K p r e s C #  (Studio) C 7 7 ( ^ n c t  W o r th >  J  0 0 0 0 0 0 0  (MoVieEx6c)̂

expresses the above idea. □

2.5.5 Exercises for Section 2.5
Exercise 2 .5 .1: Express the following constraints about the relations of Ex
ercise 2.3.1, reproduced here:

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

You may write your constraints either as containments or by equating an ex
pression to the empty set. For the data of Exercise 2.4.1, indicate any violations 
to your constraints.

a) A PC with a processor speed less than 2.00 must not sell for more than 
$500.

b) A laptop with a screen size less than 15.4 inches must have at least a 100 
gigabyte hard disk or sell for less than $1000.

! c) No manufacturer of PC’s may also make laptops.



2.6. SUMMARY OF CHAPTER 2 63

I! d) A manufacturer of a PC must also make a laptop with at least as great a 
processor speed.

! e) If a laptop has a larger main memory than a PC, then the laptop must 
also have a higher price than the PC.

Exercise 2 .5 .2 : Express the following constraints in relational algebra. The 
constraints are based on the relations of Exercise 2.3.2:

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

You may write your constraints either as containments or by equating an ex
pression to the empty set. For the data of Exercise 2.4.3, indicate any violations 
to your constraints.

a) No class of ships may have guns with larger than 16-inch bore.

b) If a class of ships has more than 9 guns, then their bore must be no larger 
than 14 inches.

! c) No class may have more than 2 ships.

! d) No country may have both battleships and battlecruisers.

!! e) No ship with more than 9 guns may be in a battle with a ship having 
fewer than 9 guns that was sunk.

! E xercise 2 .5 .3 : Suppose R  and S  are two relations. Let C be the referen
tial integrity constraint that says: whenever R  has a tuple with some values 
v i , V2 , • ■. , vn in particular attributes A \ , , . . .  , An, there must be a tuple of S  
that has the same values v i ,v 2 , . . .  , vn in particular attributes B i , S 2, ■ ■ ■ , Bn. 
Show how to express constraint C in relational algebra.

! E xercise 2 .5 .4 : Another algebraic way to express a constraint is Ei =  E 2 , 
where both Ei  and E 2  are relational-algebra expressions. Can this form of 
constraint express more than the two forms we discussed in this section?

2.6 Summary of Chapter 2
♦  Data Models: A data model is a notation for describing the structure of 

the data in a database, along with the constraints on that data. The data 
model also normally provides a notation for describing operations on that 
data: queries and data modifications.



♦  Relational Model: Relations axe tables representing information. Columns 
are headed by attributes; each attribute has an associated domain, or 
data type. Rows are called tuples, and a tuple has one component for 
each attribute of the relation.

♦  Schemas: A relation name, together with the attributes of that relation 
and their types, form the relation schema. A collection of relation schemas 
forms a database schema. Particular data for a relation or collection of 
relations is called an instance of that relation schema or database schema.

♦  Keys: An important type of constraint on relations is the assertion that 
an attribute or set of attributes forms a key for the relation. No two 
tuples of a relation can agree on all attributes of the key, although they 
can agree on some of the key attributes.

♦  Semistructured Data Model: In this model, data is organized in a tree or 
graph structure. XML is an important example of a semistructured data 
model.

♦  SQL: The language SQL is the principal query language for relational 
database systems. The current standard is called SQL-99. Commercial 
systems generally vary from this standard but adhere to much of it.

♦  Data Definition: SQL has statements to declare elements of a database 
schema. The CREATE TABLE statement allows us to declare the schema 
for stored relations (called tables), specifying the attributes, their types, 
default values, and keys.

♦  Altering Schemas: We can change parts of the database schema with an 
ALTER statement. These changes include adding and removing attributes 
from relation schemas and changing the default value associated with an 
attribute. We may also use a DROP statement to completely eliminate 
relations or other schema elements.

♦  Relational Algebra: This algebra underlies most query languages for the 
relational model. Its principal operators are union, intersection, differ
ence, selection, projection, Cartesian product, natural join, theta-join, 
and renaming.

♦  Selection and Projection: The selection operator produces a result con
sisting of all tuples of the argument relation that satisfy the selection 
condition. Projection removes undesired columns from the argument re
lation to produce the result.

♦  Joins: We join two relations by comparing tuples, one from each relation. 
In a natural join, we splice together those pairs of tuples that agree on all 
attributes common to the two relations. In a theta-join, pairs of tuples 
are concatenated if they meet a selection condition associated with the 
theta-join.
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♦  Constraints in Relational Algebra: Many common kinds of constraints can 
be expressed as the containment of one relational algebra expression in 
another, or as the equality of a relational algebra expression to the empty 
set.

2.7 References for Chapter 2
The classic paper by Codd on the relational model is [1]. This paper introduces 
relational algebra, as well. The use of relational algebra to describe constraints 
is from [2], References for SQL are given in the bibliographic notes for Chap
ter 6 .

The semistructured data model is from [3]. XML is a standard developed 
by the World-Wide-Web Consortium. The home page for information about 
XML is [4],

1. E. F. Codd, “A relational model for large shared data banks,” Comm. 
ACM  13:6, pp. 377-387, 1970.

2. J.-M. Nicolas, “Logic for improving integrity checking in relational data
bases,” Acta Informatica 18:3, pp. 227-253, 1982.

3. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object ex
change across heterogeneous information sources,” IEEE Intl. Conf. on 
Data Engineering, pp. 251-260, March 1995.

4. World-Wide-Web Consortium, http://www.w3.org/XML/





Chapter 3

Design Theory for 
Relational Databases

There are many ways we could go about designing a relational database schema 
for an application. In Chapter 4 we shall see several high-level notations for 
describing the structure of data and the ways in which these high-level designs 
can be converted into relations. We can also examine the requirements for a 
database and define relations directly, without going through a high-level inter
mediate stage. Whatever approach we use, it is common for an initial relational 
schema to have room for improvement, especially by eliminating redundancy. 
Often, the problems with a schema involve trying to combine too much into 
one relation.

Fortunately, there is a well developed theory for relational databases: “de
pendencies,” their implications for what makes a good relational database 
schema, and what we can do about a schema if it has flaws. In this chapter, 
we first identify the problems that are caused in some relation schemas by the 
presence of certain dependencies; these problems are referred to as “anomalies.”

Our discussion starts with “functional dependencies,” a generalization of the 
idea of a key for a relation. We then use the notion of functional dependencies 
to define normal forms for relation schemas. The impact of this theory, called 
“normalization,” is that we decompose relations into two or more relations when 
that will remove anomalies. Next, we introduce “multivalued dependencies,” 
which intuitively represent a condition where one or more attributes of a relation 
are independent from one or more other attributes. These dependencies also 
lead to normal forms and decomposition of relations to eliminate redundancy.

3.1 Functional Dependencies
There is a design theory for relations that lets us examine a design carefully 
and make improvements based on a few simple principles. The theory begins by
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having us state the constraints that apply to the relation. The most common 
constraint is the “functional dependency,” a statement of a type that generalizes 
the idea of a key for a relation, which we introduced in Section 2.5.3. Later in 
this chapter, we shall see how this theory gives us simple tools to improve our 
designs by the process of “decomposition” of relations: the replacement of one 
relation by several, whose sets of attributes together include all the attributes 
of the original.

3.1.1 Definition of Functional Dependency
A functional dependency (FD) on a relation R  is a statement of the form “If two 
tuples of R  agree on all of the attributes A-i,A2. . . .  ,A„ (i.e., the tuples have 
the same values in their respective components for each of these attributes), 
then they must also agree on all of another list of attributes B±, B 2 , ■ ■ ■ , B m. 
We write this FD formally as Ai A 2 ■ ■ ■ An B 1 B 2  ■ ■ ■ B m and say that

“A i ,A 2 , . . .  , An functionally determine Bi, B 2 , . ■ ■ , B m”

Figure 3.1 suggests what this FD tells us about any two tuples t  and u in the 
relation R.  However, the 4̂’s and B's can be anywhere; it is not necessary for 
the A’s and B ’s to appear consecutively or for the A’s to precede the B ’s.

If t and Then they 
u agree m ust agree 
here, here

Figure 3.1: The effect of a functional dependency on two tuples.

If we can be sure every instance of a relation R  will be one in which a given 
FD is true, then we say that R satisfies the FD. It is important to remember 
that when we say that R  satisfies an FD / ,  we are asserting a constraint on R, 
not just saying something about one particular instance of R.

It is common for the right side of an FD to be a single attribute. In fact, 
we shall see that the one functional dependency A 1 A 2  ■ ■ ■ An —> B 1 B 2  ■ • ■ B m is 
equivalent to the set of FD’s:

A i A2 ■ • ■ A n — > B i
A\ A 2  • • - An —> B 2

A 1 A 2 ■ ■ ■ A n —¥ B m
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title year length genre studioN am e starN am e

Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone With the Wind 1939 231 drama MGM Vivien Leigh
Wayne’s World 1992 95 comedy Paramount Dana Carvey
Wayne’s World 1992 95 comedy Paramount Mike Meyers

Figure 3.2: An instance of the relation Moviesl(title, year, length, 
genre, studioName, starName)

E xam ple 3 .1 : Let us consider the relation

Moviesl(title, year, length, genre, studioName, starName)

an instance of which is shown in Fig. 3.2. While related to our running Movies 
relation, it has additional attributes, which is why we call it “Moviesl” in
stead of “Movies.” Notice that this relation tries to “do too much.” It holds 
information that in our running database schema was attributed to three dif
ferent relations: Movies, S tudio, and S ta rs ln . As we shall see, the schema for 
Moviesl is not a good design. But to see what is wrong with the design, we 
must first determine the functional dependencies that hold for the relation. We 
claim that the following FD holds:

title year —> length genre studioName

Informally, this FD says that if two tuples have the same value in their 
title components, and they also have the same value in their year compo
nents, then these two tuples must also have the same values in their length 
components, the same values in their genre components, and the same values 
in their studioName components. This assertion makes sense, since we believe 
that it is not possible for there to be two movies released in the same year 
with the same title (although there could be movies of the same title released 
in different years). This point was discussed in Example 2.1. Thus, we expect 
that given a title and year, there is a unique movie. Therefore, there is a unique 
length for the movie, a unique genre, and a unique studio.

On the other hand, we observe that the statement

title year —> starName

is false; it is not a functional dependency. Given a movie, it is entirely possible 
that there is more than one star for the movie listed in our database. Notice 
that even had we been lazy and only listed one star for Star Wars and one star 
for Wayne’s World (just as we only listed one of the many stars for Gone With 
the Wind), this FD would not suddenly become true for the relation Moviesl.
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The reason is that the FD says something about all possible instances of the 
relation, not about one of its instances. The fact that we could have an instance 
with multiple stars for a movie rules out the possibility that title and year 
functionally determine starName. □

3.1.2 Keys of Relations
We say a set of one or more attributes {A i ,A 2 , . . .  , An} is a key for a relation 
R  if:

1. Those attributes functionally determine all other attributes of the rela
tion. That is, it is impossible for two distinct tuples of R  to agree on all 
of A i , A 2 , . . .  , A n.

2. No proper subset of { A i ,A 2 , . . .  , An} functionally determines all other 
attributes of R; i.e., a key must be minimal.

When a key consists of a single attribute A, we often say that A  (rather than 
{,4}) is a key.

Example 3.2: Attributes {title, year, starName} form a key for the relation 
Moviesl of Fig. 3.2. First, we must show that they functionally determine all 
the other attributes. That is, suppose two tuples agree on these three attributes: 
title, year, and starName. Because they agree on title and year, they must 
agree on the other attributes — length, genre, and studioName — as we 
discussed in Example 3.1. Thus, two different tuples cannot agree on all of 
title, year, and starName; they would in fact be the same tuple.

Now, we must argue that no proper subset of {title, year, starName} 
functionally determines all other attributes. To see why, begin by observing 
that title and year do not determine starName, because many movies have 
more than one star. Thus, {title, year} is not a key.

{year, starName} is not a key because we could have a star in two movies 
in the same year; therefore

year starName —» title
is not an FD. Also, we claim that {title, starName} is not a key, because two 
movies with the same title, made in different years, occasionally have a star in 
common.1 □

Sometimes a relation has more than one key. If so, it is common to desig
nate one of the keys as the primary key. In commercial database systems, the 
choice of primary key can influence some implementation issues such as how 
the relation is stored on disk. However, the theory of FD’s gives no special role 
to “primary keys.”

1 Since we asserted  in an earlier book th a t  th e re  were no known exam ples o f th is  phe
nom enon, several people have show n us we were w rong. I t ’s an  in teresting  challenge to  
discover s ta rs  th a t  appeared  in two versions of th e  sam e movie.
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W hat Is “Functional” About Functional 
Dependencies?

A 1 A 2  ■ ■ ■ An —» B  is called a “functional” dependency because in principle 
there is a function that takes a list of values, one for each of attributes 
A i ,A 2 , . . .  , A n and produces a unique value (or no value at all) for B. 
For instance, in the Moviesl relation, we can imagine a function that 
takes a string like "Star Wars" and an integer like 1977 and produces the 
unique value of length, namely 124, that appears in the relation Moviesl. 
However, this function is not the usual sort of function that we meet in 
mathematics, because there is no way to compute it from first principles. 
That is, we cannot perform some operations on strings like "Star Wars" 
and integers like 1977 and come up with the correct length. Rather, the 
function is only computed by lookup in the relation. We look for a tuple 
with the given title and year values and see what value that tuple has 
for length.

3.1.3 Superkeys
A set of attributes that contains a key is called a superkey, short for “superset 
of a key.” Thus, every key is a superkey. However, some superkeys are not 
(minimal) keys. Note that every superkey satisfies the first condition of a key: it 
functionally determines all other attributes of the relation. However, a superkey 
need not satisfy the second condition: minimality.

E xam ple 3 .3 : In the relation of Example 3.2, there are many superkeys. Not 
only is the key

{title, year, starName} 

a superkey, but any superset of this set of attributes, such as 

{title, year, starName, length, studioName} 

is a superkey. □

3.1.4 Exercises for Section 3.1
E xercise 3 .1 .1 : Consider a relation about people in the United States, includ
ing their name, Social Security number, street address, city, state, ZIP code, 
area code, and phone number (7 digits). What FD’s would you expect to hold? 
What are the keys for the relation? To answer this question, you need to know 
something about the way these numbers are assigned. For instance, can an area
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Other Key Terminology

In some books and articles one finds different terminology regarding keys. 
One can find the term “key” used the way we have used the term “su
perkey,” that is, a set of attributes that functionally determine all the 
attributes, with no requirement of minimality. These sources typically use 
the term “candidate key” for a key that is minimal — that is, a “key” in 
the sense we use the term.

code straddle two states? Can a ZIP code straddle two area codes? Can two 
people have the same Social Security number? Can they have the same address 
or phone number?

E xercise 3 .1 .2 : Consider a relation representing the present position of mole
cules in a closed container. The attributes are an ID for the molecule, the x, y, 
and z coordinates of the molecule, and its velocity in the x, y, and z  dimensions. 
What FD’s would you expect to hold? What are the keys?

E xercise 3 .1 .3 : Suppose R  is a relation with attributes A 1,A 2, . . .  , A n. As a 
function of n, tell how many superkeys R  has, if:

a) The only key is Ai.

b) The only keys are Ai and Ai-

c) The only keys are { y l i ,^ }  and {Ag,Ai}.

d) The only keys are { ^ 1, ^ 2} and

3.2 Rules About Functional Dependencies
In this section, we shall learn how to reason about FD’s. That is, suppose we 
are told of a set of FD’s that a relation satisfies. Often, we can deduce that the 
relation must satisfy certain other FD’s. This ability to discover additional FD’s 
is essential when we discuss the design of good relation schemas in Section 3.3.

3.2.1 Reasoning About Functional Dependencies
Let us begin with a motivating example that will show us how we can infer a 
functional dependency from other given FD’s.

E xam ple 3 .4 : If we are told that a relation R(A, B, C) satisfies the FD’s 
A —> B  and B  —> C, then we can deduce that R  also satisfies the FD A —> C. 
How does that reasoning go? To prove that A  C, we must consider two 
tuples of R  that agree on A  and prove they also agree on C.
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Let the tuples agreeing on attribute A  be (a, 61, C i )  and (0 , 62, 02). Since R  
satisfies A B ,  and these tuples agree on A, they must also agree on B. That 
is, 61 =  62, and the tuples are really (a,b,Ci) and (0 , 6, 02), where 6 is both 61 
and 62. Similarly, since R  satisfies B  C, and the tuples agree on B, they 
agree on C. Thus, c\ =  C2; i.e., the tuples do agree on C. We have proved 
that any two tuples of R  that agree on A  also agree on C, and that is the FD 
A ^ C .  □

FD’s often can be presented in several different ways, without changing the 
set of legal instances of the relation. We say:

• Two sets of FD’s 5  and T  are equivalent if the set of relation instances 
satisfying S  is exactly the same as the set of relation instances satisfying 
T.

• More generally, a set of FD’s S  follows from a set of FD’s T  if every 
relation instance that satisfies all the FD’s in T  also satisfies all the FD’s 
in S.

Note then that two sets of FD’s S  and T  are equivalent if and only if S  follows 
from T,  and T  follows from S.

In this section we shall see several useful rules about FD’s. In general, these 
rules let us replace one set of FD’s by an equivalent set, or to add to a set of 
FD’s others that follow from the original set. An example is the transitive rule 
that lets us follow chains of FD’s, as in Example 3.4. We shall also give an 
algorithm for answering the general question of whether one FD follows from 
one or more other FD’s.

3.2.2 The Splitting/Combining Rule
Recall that in Section 3.1.1 we commented that the FD:

A i A2 ■ • • A n —> Bi B 2 ■ ■ ■ B m

was equivalent to the set of FD’s:

A1A2 ■ ■ ■ An —»• B\, A1A2 • ■ ■ An -* B2, .. .  , A1A2 ■ ■ ■ An —> Bm

That is, we may split attributes on the right side so that only one attribute 
appears on the right of each FD. Likewise, we can replace a collection of FD’s 
having a common left side by a single FD with the same left side and all the 
right sides combined into one set of attributes. In either event, the new set of 
FD’s is equivalent to the old. The equivalence noted above can be used in two 
ways.

• We can replace an FD A \A 2 -- -A n —> B \B 2 ■ ■ ■ B m by a set of FD’s 
A iA 2 ■ ■ ■ An —s> Bi for i =  1,2, . . .  ,m.  This transformation we call the 
splitting rule.
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• We can replace a set of FD’s A 1 A 2  ■ ■ ■ An Bi for i =  1,2, . . .  , m  by the 
single FD A± A 2  ■ ■ ■ A n —> B 1 B 2  ■ ■ ■ B m. We call this transformation the 
combining rule.

E xam ple 3.5 : In Example 3.1 the set of FD’s:

title year —► length 
title year —> genre 
title year —¥ studioName

is equivalent to the single FD:

title year —► length genre studioName
that we asserted there. □

The reason the splitting and combining rules axe true should be obvious. 
Suppose we have two tuples that agree in A i ,A 2 , . . .  ,A n. As a single FD, 
we would assert “then the tuples must agree in all of B i ,B 2, . . .  ,B m.” As 
individual FD’s, we assert “then the tuples agree in B\,  and they agree in B 2, 
and, . . . ,  and they agree in B m.” These two conclusions say exactly the same 
thing.

One might imagine that splitting could be applied to the left sides of FD’s 
as well as to right sides. However, there is no splitting rule for left sides, as the 
following example shows.

E xam ple 3.6 : Consider one of the FD’s such as:

title year —t length
for the relation Moviesl in Example 3.1. If we try to split the left side into

title —> length 
year length

then we get two false FD’s. That is, t i t l e  does not functionally determine 
length , since there can be several movies with the same title (e.g., King Kong) 
but of different lengths. Similarly, year does not functionally determine length, 
because there are certainly movies of different lengths made in any one year.
□

3.2.3 Trivial Functional Dependencies
A constraint of any kind on a relation is said to be trivial if it holds for every 
instance of the relation, regardless of what other constraints are assumed. When 
the constraints are FD’s, it is easy to tell whether an FD is trivial. They are 
the FD’s Ai A 2  ■ ■ ■ An — ByB2 ■ ■ ■ B m such that

{B 1,B 2 ,. . .  ,B m} C {A i ,A 2, . . .  ,A n}

That is, a trivial FD has a right side that is a subset of its left side. For example,
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title year —¥ title

is a trivial FD, as is

title —¥ title

Every trivial FD holds in every relation, since it says that “two tuples that 
agree in all of Ai, A 2 , . . .  ,A n agree in a subset of them.” Thus, we may assume 
any trivial FD, without having to justify it on the basis of what FD’s are 
asserted for the relation.

There is an intermediate situation in which some, but not all, of the at
tributes on the right side of an FD are also on the left. This FD is not trivial, 
but it can be simplifed by removing from the right side of an FD those attributes 
that appear on the left. That is:

• The FD A 1 A 2  ■ ■ ■ A„ B iB 2 ■ ■ ■ B m is equivalent to

A 1 A 2  ■ ■ ■ A n —> C 1 C 2  ■ ■ ■ C k

where the C ’s are all those B ’s that are not also .4’s.

We call this rule, illustrated in Fig. 3.3, the trivial-dependency rule.

If  t and Then they 
u agree m ust agree 
on the A’s on the 5  s

So surely 
they agree 
on the C s

Figure 3.3: The trivial-dependency rule

3.2.4 Computing the Closure of Attributes
Before proceeding to other rules, we shall give a general principle from which 
all true rules follow. Suppose { A i ,A 2 , . . .  , A n} is a set of attributes and S
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is a set of FD’s. The closure of { A i ,A 2 , . . .  , A n} under the FD’s in S  is the 
set of attributes B  such that every relation that satisfies all the FD’s in set 
S  also satisfies A 1A 2 ---A„ —► B.  That is, A iA 2 ■ ■ ■ An -» B  follows from 
the FD’s of S. We denote the closure of a set of attributes A\ A 2  ■ ■ • A n by 
{ A i ,A 2 , . . .  ,A n}+. Note that A i ,A 2, . . .  ,A n are always in { A \ ,A 2 , . . .  ,A n}+ 
because the FD Ai A 2  • ■ • An ► Ai is trivial when i is one of 1,2, . . .  , n.

Figure 3.4: Computing the closure of a set of attributes

Figure 3.4 illustrates the closure process. Starting with the given set of 
attributes, we repeatedly expand the set by adding the right sides of FD’s as 
soon as we have included their left sides. Eventually, we cannot expand the set 
any further, and the resulting set is the closure. More precisely:

A lgorithm  3.7: Closure of a Set of Attributes.

INPUT: A set of attributes { A i ,A 2 , . . .  , An} and a set of FD’s S.

OUTPUT: The closure { A i ,A 2 , . . .  ,A n}+.

1. If necessary, split the FD’s of 5, so each FD in S  has a single attribute 
on the right.

2. Let X  be a set of attributes that eventually will become the closure. 
Initialize X  to be { ^ 1, ^ 2, . . .  , A n}.

3. Repeatedly search for some FD

Bi B 2  ■ ■ ■ B m C

such that all of £?i, B 2, . . .  , Bm are in the set of attributes X ,  but C is not. 
Add C to the set X  and repeat the search. Since X  can only grow, and 
the number of attributes of any relation schema must be finite, eventually 
nothing more can be added to X ,  and this step ends.
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4. The set X ,  after no more attributes can be added to it, is the correct 
value of {A i ,A 2, . . .  , A„}+.

□

E xam ple 3 .8 : Let us consider a relation with attributes A, B, C, D, E, and 
F. Suppose that this relation has the FD’s A B  —>• C, B C  -» AD, D  —» E, and 
C F —> B. What is the closure of {A, B}, that is, { A ,B } +?

First, split B C  —> AD  into B C  —> A  and B C  —> D. Then, start with 
X  — {A, B}.  First, notice that both attributes on the left side of FD A B  —» C 
are in X ,  so we may add the attribute C, which is on the right side of that FD. 
Thus, after one iteration of Step 3, X  becomes {A ,B ,C } .

Next, we see that the left sides of BC  ->• A  and B C  —» D are now contained 
in X ,  so we may add to X  the attributes A  and D. A  is already there, but 
D  is not, so X  next becomes {A ,B ,C ,D } .  At this point, we may use the FD 
D -> E  to add E  to X ,  which is now {A, B, C, D, E}. No more changes to X  
are possible. In particular, the FD CF  —> B  can not be used, because its left 
side never becomes contained in X .  Thus, { A ,B } + — {A ,B ,C ,D ,E }. □

By computing the closure of any set of -attributes, we can test whether 
any given FD A i A 2 ■ ■ • An -¥ B  follows from a set of FD’s S. First compute 
{j4i, A 2, . . .  , A n}+ using the set of FD’s S. If B  is in {A i ,A 2, . . .  , A n}+, then 
A \A 2 ■■■An -> B  does follow from S, and if B  is not in {A i ,A 2, . . .  , A n}+, then 
this FD does not follow from S. More generally, A \A 2 -- ■ An —*• B \B 2 ■ ■ ■ B m 
follows from set of FD’s S  if and only if all of B\, B 2, . . .  , B m are in

{ A i ,A 2, . . .  , A n}+

E xam ple 3 .9 : Consider the relation and FD’s of Example 3.8. Suppose we 
wish to test whether A B  -* D follows from these FD’s. We compute {A, B}+ , 
which is {A ,B ,C ,D ,E } ,  as we saw in that example. Since D  is a member of 
the closure, we conclude that A B  —>• D does follow.

On the other hand, consider the FD D —¥ A. To test whether this FD follows 
from the given FD’s, first compute {D }+. To do so, we start with X  = {D}. 
We can use the FD D —► E  to add E  to the set X .  However, then we are stuck. 
We cannot find any other FD whose left side is contained in X  — {D ,E }, so 
{D}+ =  {D, E}.  Since A  is not a member of {D, E},  we conclude that D A  
does not follow. □

3.2.5 W hy the Closure Algorithm Works
In this section, we shall show why Algorithm 3.7 correctly decides whether or 
not an FD A\ A 2 ■ ■ • An -> B  follows from a given set of FD’s S. There are two 
parts to the proof:

1. We must prove that Algorithm 3.7 does not claim too much. That is, we 
must show that if A\ A2 ■ • ■ A„ —> B  is asserted by the closure test (i.e.,
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B  is in {A i ,A 2, • • ■ > A n}+), then A i A 2 ■ ■ ■ A n -» B  holds in any relation 
that satisfies all the FD’s in S.

2. We must prove that Algorithm 3.7 does not fail to discover a FD that 
truly follows from the set of FD’s S.

W hy th e C losure A lgorithm  C laim s on ly  True F D ’s

We can prove by induction on the number of times that we apply the growing 
operation of Step 3 that for every attribute D in X , the FD A \A 2 ■ ■ ■ A„ —> D 
holds. That is, every relation R  satisfying all of the FD’s in S  also satisfies 
A 1 A 2  ■ ■ ■ An —> D.

BASIS: The basis case is when there are zero steps. Then D must be one of 
A 1,A 2, . . .  , A n. and surely AiA% ■ ■ ■ An -¥ D holds in any relation, because it 
is a trivial FD.

INDUCTION: For the induction, suppose D was added when we used the FD 
Bi B2 ■ ■ ■ B m —>■ D of S. We know by the inductive hypothesis that R  satisfies 
A 1A2 ---A„ —> B \B 2 - ■ -Bm. Now, suppose two tuples of R  agree on all of 
A l t A2, . . .  , A n. Then since R  satisfies A iA 2 ■■■ An -¥ B \B 2 ■ • • B m, the two 
tuples must agree on all of B i , B 2, . . .  , B m. Since R  satisfies B \B 2 • ■ ■ Bm —>■ D, 
we also know these two tuples agree on D. Thus, R  satisfies A iA 2 ■ ■ ■ An —l D.

W hy the Closure A lgorith m 'd iscovers A ll True F D ’s

Suppose A \A 2 • • • A„ B  were an FD that Algorithm 3.7 says does not follow 
from set S. That is, the closure of {Ai, A2, . . .  ,A„} using set of FD’s S  does 
not include B. We must show that FD A i A 2 ■ ■ ■ A n —> B  really doesn’t follow 
from S. That is, we must show that there is at least one relation instance that 
satisfies all the FD’s in S, and yet does not satisfy A \A 2 ■ ■ ■ A n B.

This instance I  is actually quite simple to construct; it is shown in Fig. 3.5. 
I  has only two tuples: t and s. The two tuples agree in all the attributes 
of {A i ,A 2,. .. , An}+, and they disagree in all the other attributes. We must 
show first that I  satisfies all the FD’s of S, and then that it does not satisfy 
A \A 2 ■ ■ ■ A n —> B.

{A i ,A 2, . . .  , An}+ Other Attributes
~J: 1 1 1  ••• 1 1 0 0  0 0 0

s: 1 1 1 • ■ • 1 1 1 1 1 • • • 1 1

Figure 3.5: An instance I  satisfying S  but not A \A 2 ■ ■ ■ A n B

Suppose there were some FD C\C2 ■ ■ ■ Ck —> D in set S  (after splitting 
right sides) that instance I  does not satisfy. Since I  has only two tuples, t 
and s, those must be the two tuples that violate C\C2 ■ ■ -Ck -* D. That is, t 
and s agree in all the attributes of {Ci, C2, . . .  , Ck}, yet disagree on D. If we
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examine Fig. 3.5 we see that all of C\ , C2, .. ■ ,Ck must be among the attributes 
of {A i ,A 2, . . .  ,A n}+, because those are the only attributes on which t and s 
agree. Likewise, D  must be among the other attributes, because only on those 
attributes do t and s disagree.

But then we did not compute the closure correctly. CiC2 ---Ck ->■ D  should 
have been applied when X  was { A i ,A 2, . . .  ,A n} to add D  to X .  We conclude 
that C\C2 ■■ -Ck —► D cannot exist; i.e., instance I  satisfies S.

Second, we must show that I  does not satisfy A \A 2 ■ ■ ■ A n —> B. However, 
this part is easy. Surely, A \ ,A 2, . . . , A n are among the attributes on which t and 
s agree. Also, we know that B  is not in {A \ , A2, . . .  , An}+, so B  is one of the 
attributes on which t and s disagree. Thus, I  does not satisfy A \A 2 •■■An -¥ B. 
We conclude that Algorithm 3.7 asserts neither too few nor too many FD’s; it 
asserts exactly those FD’s that do follow from S.

3.2.6 The Transitive Rule
The transitive rule lets us cascade two FD’s, and generalizes the observation of 
Example 3.4.

• If A\A% • ■ • A n B i B 2 ■ ■ ■ B m and B \B 2 ■ ■ ■ B m -»• C\C2 ---Ck hold in 
relation R, then Ai A 2 ■ ■ ■ A„ —>■ C\ C2 • ■ ■ Ck also holds in R.

If some of the C ’s are among the A’s, we may eliminate them from the right 
side by the trivial-dependencies rulev

To see why the transitive rule holds, apply the test of Section 3.2.4. To 
test whether A iA 2 ■ ■ ■ A n —> C\C2 ■ ■ ■ Cu holds, we need to compute the closure 
{Ai, A 2, . . .  , A n}+ with respect to the two given FD’s.

The FD A i A 2 ■ ■ ■ An —> B \B 2 ■ ■ ■ Bm tells us that all of B i ,B 2, . . .  , B m are 
in {A i ,A 2, . . .  , A n}+. Then, we can use the FD B i B 2 ■ ■ ■ B m —¥ C\C2 ■ ■ ■ Ck 
to add C i,C 2, . . .  ,Ck to {A i ,A 2, . . .  , An}+. Since all the C ’s are in

{ A i ,A 2, . . .  ,A n}+

we conclude that A \A 2 ■ ■ • A n -»■ C\ C2 ■ ■ ■ Ck holds for any relation that satisfies 
both A i A2 ■ • • An —¥ B \B 2 • • • B m and B \B 2 ■ ■ ■ Bm CiC2 • • ■ Ck-

E xam ple 3.10: Here is another version of the Movies relation that includes 
both the studio of the movie and some information about that studio.

title year length genre studioName studioAddr
Star Wars 1977 124 sciFi Fox Hollywood
Eight Below 2005 120 drama Disney Buena Vista
Wayne’s World 1992 95 comedy Paramount Hollywood
Two of the FD’s that we might reasonably claim to hold are:

title year -» studioName 
studioName —> studioAddr
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Closures and Keys

Notice that {Ai,A<2 , . . .  ,A„}+ is the set of all attributes of a relation if 
and only if A \ ,A 2 , . . .  ,A„ is a superkey for the relation. For only then 
does A i ,A 2 , . . .  , An functionally determine all the other attributes. We 
can test if A i ,A 2, . . .  , An is a key for a relation by checking first that 
{A i ,A 2 , . . .  , An}+ is all attributes, and then checking that, for no set X  
formed by removing one attribute from {A i ,A 2 , . . .  , An}, is X + the set 
of all attributes.

The first is justified because there can be only one movie with a given title 
and year, and there is only one studio that owns a given movie. The second is 
justified because studios have unique addresses.

The transitive rule allows us to combine the two FD’s above to get a new 
FD:

title year —> studioAddr
This FD says that a title and year (i.e., a movie) determines an address — the 
address of the studio owning the movie. □

3.2.7 Closing Sets of Functional Dependencies
Sometimes we have a choice of which FD’s we use to represent the full set of 
FD’s for a relation. If we are given a set of FD’s S  (such as the FD’s that hold 
in a given relation), then any set of FD’s equivalent to S  is said to be a basis 
for S. To avoid some of the explosion of possible bases, we shall limit ourselves 
to considering only bases whose FD’s have singleton right sides. If we have any 
basis, we can apply the splitting rule to make the right sides be singletons. A 
minimal basis for a relation is a basis B  that satisfies three conditions:

1. All the FD’s in B  have singleton right sides.

2. If any FD is removed from B, the result is no longer a basis.

3. If for any FD in B  we remove one or more attributes from the left side of 
F, the result is no longer a basis.

Notice that no trivial FD can be in a minimal basis, because it could be removed 
by rule (2).

Exam ple 3 .1 1 : Consider a relation R{A, B, C) such that each attribute func
tionally determines the other two attributes. The full set of derived FD’s thus 
includes six FD’s with one attribute on the left and one on the right; A  -»■ B, 
A -¥ C, B  A, B  -¥ C, C A, and C B. It also includes the three
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A Complete Set of Inference Rules

If we want to know whether one FD follows from some given FD’s, the 
closure computation of Section 3.2.4 will always serve. However, it is 
interesting to know that there is a set of rules, called Armstrong’s axioms, 
from which it is possible to derive any FD that follows from a given set. 
These axioms are:

1. Reflexivity. If {B 1,B 2, . . .  , B m} C {A i ,A 2, . .. , An}, then 
Ai A2 ■ ■ ■ An —> B i B 2 ■ ■ ■ B m. These are what we have called triv
ial FD’s.

2. Augmentation. If A \A 2 • • • A n -4 B%B2 ■ • ■ B m, then

A iA 2 ■ ■ ■ AnC iC 2 ■ ■ ■ Ck —> B iB 2 ■ ■ ■ B mC iC 2 ■ ■ ■ Ck

for any set of attributes C\, C2, . . .  ,Ck- Since some of the C ’s may 
also be j4’s or B ’s or both, we should eliminate from the left side 
duplicate attributes and do the same for the right side.

3. Transitivity. If

A\ A2 * * * An B \B 2 ■ ■ ■ B m and B \B 2 • ■ ■ B m C\C2 • • - Ck 

then A i A 2 ■ ■ ■ A n —¥ C±C2 ■ ■ ■ Ck-

nontrivial FD’s with two attributes on the left: A B  —> C, AC —¥ B, and 
BC  —¥ A. There are also FD’s with more than one attribute on the right, such 
as A BC,  and trivial FD’s such as A  -> A.

Relation R  and its FD’s have several minimal bases. One is

{A  -> B, B  A, B  C, C ->• B}

Another is {̂ 4 -¥ B, B  C, C —» A}. There are several other minimal bases 
for R, and we leave their discovery as an exercise. □

3.2.8 Projecting Functional Dependencies
When we study design of relation schemas, we shall also have need to answer 
the following question about FD’s. Suppose we have a relation R  with set of 
FD’s S, and we project R  by computing Ri — itl(R), for some list of attributes 
R.  What FD’s hold in i?i?

The answer is obtained in principle by computing the projection of functional 
dependencies S, which is all FD’s that:
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a) Follow from S, and

b) Involve only attributes of R \ .

Since there may be a large number of such FD’s, and many of them may be 
redundant (i.e., they follow from other such FD’s), we are free to simplify that 
set of FD’s if we wish. However, in general, the calculation of the FD’s for 
Ri is exponential in the number of attributes of R\. The simple algorithm is 
summarized below.

A lgorithm  3 .1 2 : Projecting a Set of Functional Dependencies.

INPUT: A relation R  and a second relation Ri computed by the projection 
Ri = nL(R). Also, a set of FD’s 5  that hold in R.

OUTPUT: The set of FD’s that hold in Ri.

M ETHOD:

1. Let T  be the eventual output set of FD’s. Initially, T  is empty.

2. For each set of attributes X  that is a subset of the attributes of Ri, 
compute X +. This computation is performed with respect to the set of 
FD’s S, and may involve attributes that are in the schema of R  but not 
R\. Add to T  all nontrivial FD’s X  A such that A is both in X + and 
an attribute of R\.

3. Now, T is a basis for the FD’s that hold in Ri,  but may not be a minimal 
basis. We may construct a minimal basis by modifying T  as follows:

(a) If there is an FD F  in T that follows from the other FD’s in T, 
remove F  from T.

(b) Let Y  —» B  be an FD in T, with at least two attributes in Y, and let 
Z  be Y  with one of its attributes removed. If Z  -> B  follows from 
the FD’s in T (including Y  —> B), then replace Y  -» B  by Z  B.

(c) Repeat the above steps in all possible ways until no more changes to 
T can be made.

□

E xam ple 3 .13: Suppose R(A, B, C, D) has FD’s A  —► B, B  C, and C D. 
Suppose also that we wish to project out the attribute B, leaving a relation 
Ri(A,C,D).  In principle, to find the FD’s for R \ , we need to take the closure 
of all eight subsets of {A, C, D}, using the full set of FD’s, including those 
involving B. However, there are some obvious simplifications we can make.

• Closing the empty set and the set of all attributes cannot yield a nontrivial 
FD.
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• If we already know that the closure of some set X  is all attributes, then 
we cannot discover any new FD’s by closing supersets of X .

Thus, we may start with the closures of the singleton sets, and then move 
on to the doubleton sets if necessary. For each closure of a set X ,  we add the 
FD X  E  for each attribute E  that is in X + and in the schema of Ri,  but 
not in X .

First, {^4}+ =  {A ,B ,C ,D } .  Thus, A  —> C and A  —» D hold in R\.  Note 
that A —> B  is true in R, but makes no sense in R,\ because B  is not an attribute 
of Ri.

Next, we consider {C'}+ =  {C,D},  from which we get the additional FD 
C  -» D  for Ri.  Since {D}+ =  {£>}, we can add no more FD’s, and are done 
with the singletons.

Since {A}+ includes all attributes of R i , there is no point in considering any 
superset of {A}. The reason is that whatever FD we could discover, for instance 
AC  -» D, follows from an FD with only A  on the left side: A —> D  in this case. 
Thus, the only doubleton whose closure we need to take is {C, D }+ — {C ,D }. 
This observation allows us to add nothing. We are done with the closures, and 
the FD’s we have discovered are A  C, A D, and C D.

If we wish, we can observe that A —> D follows from the other two by 
transitivity. Therefore a simpler, equivalent set of FD’s for R\ is A —> C  and 
C —> D. This set is, in fact, a minimal basis for the FD’s of R \ . □

3.2.9 Exercises for Section 3.2
E xercise 3 .2 .1 : Consider a relation with schema R (A ,B ,C ,D ) and FD’s 
A B  —̂ C , C  —̂ D , and D — A.

a) What are all the nontrivial FD’s that follow from the given FD’s? You 
should restrict yourself to FD’s with single attributes on the right side.

b) What are all the keys of R?

c) What are all the superkeys for R  that are not keys?

E xercise 3 .2 .2 : Repeat Exercise 3.2.1 for the following schemas and sets of 
FD’s:

i) S(A, B, C, D) with FD’s A  -> B, B  ->■ C, and B  -» D.

ii) T(A, B, C, D) with FD’s A B  -*■ C, B C  ->■ D, CD  ->■ A, and AD  ->■ B. 

in) U(A, B, C, D) with FD’s A  -> B, B  ->■ C, C -»• D, and D A.

E xercise 3 .2 .3 : Show that the following rules hold, by using the closure test 
of Section 3.2.4.

a) Augmenting left sides. If A 1 A 2  ■ ■ ■ A n —¥ B  is an FD, and C  is another 
attribute, then A 1 A 2  ■ ■ ■ A nC B  follows.
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b) Full augmentation. If A iA 2 ■ ■ ■ An -» B  is an FD, and C is another at
tribute, then A 1 A 2  ■ ■ ■ AnC —>■ BC  follows. Note: from this rule, the 
“augmentation” rule mentioned in the box of Section 3.2.7 on “A Com
plete Set of Inference Rules” can easily be proved.

c) Pseudotransitivity. Suppose FD’s A 1 A 2  ■ ■ ■ A„ —» B 1 B 2  • ■ ■ B m and

C i C f - C k - t D

hold, and the B ’s are each among the C ’s. Then

A\ Ai • ■ ■ AnE\ E 2  • • ■ Ej —¥ D

holds, where the E ’s are all those of the C ’s that are not found among 
the B ’s.

d) Addition. If FD’s A 1 A 2  ■ ■ ■ An —¥ B 1 B 2 ■ ■ • B m and

C1C 2 • • • Ck —̂ D 1 D 2  • ■ ■ Dj

hold, then FD A 1 A 2  * • • A nC\C2  ' ■ * Ck —̂ B 1 B 2  ■ * * B7nI)j D 2  • * • Dj also 
holds. In the above, we should remove one copy of any attribute that 
appears among both the A’s and C’s or among both the B ’s and D ’s.

! Exercise 3.2.4: Show that each of the following are not valid rules about FD’s 
by giving example relations that satisfy the given FD’s (following the “if”) but 
not the FD that allegedly follows (after the “then”).

a) If A —> B  then B  —> A.

b) If AB -¥ C and A  C, then B -> C .

c) If AB  C, then A —> C or B —► C.

! Exercise 3.2.5: Show that if a relation has no attribute that is functionally 
determined by all the other attributes, then the relation has no nontrivial FD’s 
at all.

! Exercise 3.2.6: Let X  and Y  be sets of attributes. Show that if X C Y,  then 
X + C Y+, where the closures are taken with respect to the same set of FD’s.

! Exercise 3.2.7: Prove that (X+)+ =  X +.

! Exercise 3.2.8: We say a set of attributes X  is closed (with respect to a given 
set of FD’s) if X + = X .  Consider a relation with schema R{A, B, C, D) and an 
unknown set of FD’s. If we are told which sets of attributes are closed, we can 
discover the FD’s. What are the FD’s if:

a) All sets of the four attributes are closed.
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b) The only closed sets are 0 and {A, B ,C ,D }.

c) The closed sets are 0, {A,B}, and {A, B ,C , D}.

! E xercise 3 .2 .9 : Find all the minimal bases for the FD’s and relation of Ex
ample 3.11.

! E xercise 3 .2 .10: Suppose we have relation R (A ,B ,C ,D ,E ) ,  with some set 
of FD’s, and we wish to project those FD’s onto relation S(A, B, C). Give the 
FD’s that hold in S  if the FD’s for R  are:

a) A B  —̂ D E , C  —̂ E , D  —̂ (7, and E  —̂ A.

b) A  —¥ D : BD  — E, AC  —¥ E,  and D E  —̂ B.

c) A B  —¥ D , AC  —¥ E, B C  —¥ D , D  —̂ A , and E  — B.

d) A  ->■ B, B  C, C D, D -> E, and E A.

In each case, it is sufficient to give a minimal basis for the full set of FD’s of S.

!! Exercise 3 .2 .11: Show that if an FD F  follows from some given FD’s, then 
we can prove F  from the given FD’s using Armstrong’s axioms (defined in the 
box “A Complete Set of Inference Rules” in Section 3.2.7). Hint: Examine 
Algorithm 3.7 and show how each step of that algorithm can be mimicked by 
inferring some FD’s by Armstrong’s axioms.

3.3 Design of Relational Database Schemas
Careless selection of a relational database schema can lead to redundancy and 
related anomalies. For instance, consider the relation in Fig. 3.2, which we 
reproduce here as Fig. 3.6. Notice that the length and genre for Star Wars 
and Wayne’s World are each repeated, once for each star of the movie. The 
repetition of this information is redundant. It also introduces the potential for 
several kinds of errors, as we shall see.

In this section, we shall tackle the problem of design of good relation schemas 
in the following stages:

1. We first explore in more detail the problems that arise when our schema 
is poorly designed.

2. Then, we introduce the idea of “decomposition,” breaking a relation 
schema (set of attributes) into two smaller schemas.

3. Next, we introduce “Boyce-Codd normal form,” or “BCNF,” a condition 
on a relation schema that eliminates these problems.

4. These points are tied together when we explain how to assure the BCNF 
condition by decomposing relation schemas.
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title year length genre studioName starNam e

Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Hark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone With the Wind 1939 231 drama MGM Vivien Leigh
Wayne’s World 1992 95 comedy Paramount Dana Carvey
Wayne’s World 1992 95 comedy Paramount Mike Meyers

Figure 3.6: The relation Moviesl exhibiting anomalies

3.3.1 Anomalies
Problems such as redundancy that occur when we try to cram too much into a 
single relation axe called anomalies. The principal kinds of anomalies that we 
encounter are:

1. Redundancy. Information may be repeated unnecessarily in several tuples. 
Examples are the length and genre for movies in Fig. 3.6.

2. Update Anomalies. We may change information in one tuple but leave 
the same information unchanged in another. For example, if we found 
that Star Wars is really 125 minutes long, we might carelessly change the 
length in the first tuple of Fig. 3.6 but not in the second or third tuples. 
You might argue that one should never be so careless, but it is possible 
to redesign relation Moviesl so that the risk of such mistakes does not 
exist.

3. Deletion Anomalies. If a set of values becomes empty, we may lose other 
information as a side effect. For example, should we delete Vivien Leigh 
from the set of stars of Gone With the Wind, then we have no more stars 
for that movie in the database. The last tuple for Gone With the Wind 
in the relation Moviesl would disappear, and with it information that it 
is 231 minutes long and a drama.

3.3.2 Decomposing Relations
The accepted way to eliminate these anomalies is to decompose relations. De
composition of R  involves splitting the attributes of R  to make the schemas of 
two new relations. After describing the decomposition process, we shall show 
how to pick a decomposition that eliminates anomalies.

Given a relation R(A \ , A 2 , . ■ ■ ,A n), we may decompose R  into two relations 
S (B i ,B 2 , . . .  , Bm) and T(Ci, C2, . . .  , Ck) such that:

1. {Ai ,A2,  . . .  , An} =  {Bi ,  B2 , ■ ■ ■ , Bm}  U {Ci, C2 , ■ • • , Ck}-
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Example 3.14: Let us decompose the Moviesl relation of Fig. 3.6. Our choice, 
whose merit will be seen in Section 3.3.3, is to use:

1. A relation called Movies2, whose schema is all the attributes except for 
starName.

2. A relation called Movies3, whose schema consists of the attributes title, 
year, and starName.

The projection of Moviesl onto these two new schemas is shown in Fig, 3.7.
□
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title year length genre studioName
Star Wars 1977 124 sciFi Fox
Gone With the Wind 1939 231 drama MGM
Wayne’s World 1992 95 comedy Paramount

(b) The relation Movies2.

title year starName
Star Wars 1977 Carrie Fisher
Star Weirs 1977 Mark Hamill
Star Wars 1977 Harrison Ford
Gone With the Wind 1939 Vivien Leigh
Wayne’s World 1992 Dana Carvey
Wayne’s World 1992 Mike Meyers

(b) The relation Movies3.

Figure 3.7: Projections of relation Moviesl

Notice how this decomposition eliminates the anomalies we mentioned in 
Section 3.3.1. The redundancy has been eliminated; for example, the length 
of each film appears only once, in relation Movies2. The risk of an update 
anomaly is gone. For instance, since we only have to change the length of Star 
Wars in one tuple of Movies2, we cannot wind up with two different lengths 
for that movie.

Finally, the risk of a deletion anomaly is gone. If we delete all the stars 
for Gone With the Wind, say, that deletion makes the movie disappear from 
Movies3. But all the other information about the movie can still be found in 
Movies2.
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It might appear that Movies3 still has redundancy, since the title and year 
of a movie can appear several times. However, these two attributes form a key 
for movies, and there is no more succinct way to represent a movie. Moreover, 
Movies3 does not offer an opportunity for an update anomaly. For instance, one 
might suppose that if we changed to 2008 the year in the Carrie Fisher tuple, 
but not the other two tuples for Star Wars, then there would be an update 
anomaly. However, there is nothing in our assumed FD’s that prevents there 
being a different movie named Star Wars in 2008, and Carrie Fisher may star 
in that one as well. Thus, we do not want to prevent changing the year in one 
Star Wars tuple, nor is such a change necessarily incorrect.

3.3.3 Boyce-Codd Normal Form
The goal of decomposition is to replace a relation by several that do not exhibit 
anomalies. There is, it turns out, a simple condition under which the anomalies 
discussed above can be guaranteed not to exist. This condition is called Boyce- 
Codd normal form, or BCNF.

• A relation R  is in BCNF if and only if: whenever there is a nontrivial FD 
A iA 2  ■ • • An -* B iB 2 ■ ■ ■ B m for R, it is the case that {Ai, A2, . . .  , An} is 
a superkey for R.

That is, the left side of every nontrivial FD must be a superkey. Recall that 
a superkey need not be minimal. Thus, an equivalent statement of the BCNF 
condition is that the left side of every nontrivial FD must contain a key.

Exam ple 3.15 : Relation Moviesl, as in Fig. 3.6, is not in BCNF. To see why, 
we first need to determine what sets of attributes are keys. We argued in Ex
ample 3.2 why {title, year, starName} is a key. Thus, any set of attributes 
containing these three is a superkey. The same arguments we followed in Ex
ample 3.2 can be used to explain why no set of attributes that does not include 
all three of title, year, and starName could be a superkey. Thus, we assert 
that {title, year, starName} is the only key for Moviesl.

However, consider the FD

title year —> length genre studioName

which holds in Moviesl according to our discussion in Example 3.2.
Unfortunately, the left side of the above FD is not a superkey. In particular, 

we know that title and year do not functionally determine the sixth attribute, 
starName. Thus, the existence of this FD violates the BCNF condition and tells 
us Moviesl is not in BCNF. □

Exam ple 3.16: On the other hand, Movies2 of Fig. 3.7 is in BCNF. Since

title year —¥ length genre studioName
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holds in this relation, and we have argued that neither t i t l e  nor year by itself 
functionally determines any of the other attributes, the only key for Movies2 
is { t i t l e ,  year}. Moreover, the only nontrivial FD’s must have at least t i t l e  
and year on the left side, and therefore their left sides must be superkeys. Thus, 
Movles2 is in BCNF. □

E xam ple 3 .17: We claim that any two-attribute relation is in BCNF. We 
need to examine the possible nontrivial FD’s with a single attribute on the 
right. There are not too many cases to consider, so let us consider them in 
turn. In what follows, suppose that the attributes are A  and B.

1. There are no nontrivial FD’s. Then surely the BCNF condition must hold, 
because only a nontrivial FD can violate this condition. Incidentally, note 
that {A, B }  is the only key in this case.

2. A —¥ B  holds, but B  -4 - A  does not hold. In this case, A  is the only key, 
and each nontrivial FD contains A  on the left (in fact the left can only 
be A). Thus there is no violation of the BCNF condition.

3. B  ->• A  holds, but A  ->• B  does not hold. This case is symmetric to 
case (2).

4. Both A  —» B  and B  -> A  hold. Then both A  and B  are keys. Surely 
any FD has at least one of these on the left, so there can be no BCNF 
violation.

It is worth noticing from case (4) above that there may be more than one 
key for a relation. Further, the BCNF condition only requires that some key be 
contained in the left side of any nontrivial FD, not that all keys are contained in 
the left side. Also observe that a relation with two attributes, each functionally 
determining the other, is not completely implausible. For example, a company 
may assign its employees unique employee ID’s and also record their Social 
Security numbers. A relation with attributes empID and ssNo would have each 
attribute functionally determining the other. Put another way, each attribute 
is a key, since we don’t expect to find two tuples that agree on either attribute.
□

3.3.4 Decomposition into BCNF
By repeatedly choosing suitable decompositions, we can break any relation 
schema into a collection of subsets of its attributes with the following important 
properties:

1. These subsets are the schemas of relations in BCNF.

2. The data in the original relation is represented faithfully by the data in the 
relations that are the result of the decomposition, in a sense to be made 
precise in Section 3.4.1. Roughly, we need to be able to reconstruct the 
original relation instance exactly from the decomposed relation instances.
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Example 3.17 suggests that perhaps all we have to do is break a relation schema 
into two-attribute subsets, and the result is surely in BCNF. However, such 
an arbitrary decomposition will not satisfy condition (2), as we shall see in 
Section 3.4.1. In fact, we must be more careful and use the violating FD’s to 
guide our decomposition.

The decomposition strategy we shall follow is to look for a nontrivial FD 
A 1 A 2  ■■■ A n -¥ B 1 B 2  ■ ■ ■ Bm that violates BCNF; i.e., { A i,A 2, . . .  , An} is not a 
superkey. We shall add to the right side as many attributes as are functionally 
determined by {A i,A 2 , . . .  ,A n}. This step is not mandatory, but it often 
reduces the total amount of work done, and we shall include it in our algorithm. 
Figure 3.8 illustrates how the attributes are broken into two overlapping relation 
schemas. One is all the attributes involved in the violating FD, and the other 
is the left side of the FD plus all the attributes not involved in the FD, i.e., all 
the attributes except those B ’s that are not /Ts.

Figure 3.8: Relation schema decomposition based on a BCNF violation

Exam ple 3.18: Consider our running example, the Moviesl relation of Fig. 
3.6. We saw in Example 3.15 that

title year —> length genre studioName

is a BCNF violation. In this case, the right side already includes all the at
tributes functionally determined by title and year, so we shall use this BCNF 
violation to decompose Moviesl into:

1. The schema {title, year, length, genre, studioName} consisting of all 
the attributes on either side of the FD.

2. The schema {title, year, starName} consisting of the left side of the FD 
plus all attributes of Moviesl that do not appear in either side of the FD 
(only starName, in this case).

Notice that these schemas are the ones selected for relations Movies2 and 
Movies3 in Example 3.14. We observed in Example 3.16 that Movies2 is in 
BCNF. Movies3 is also in BCNF; it has no nontrivial FD’s. □
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In Example 3.18, one judicious application of the decomposition rule is 
enough to produce a collection of relations that are in BCNF. In general, that 
is not the case, as the next example shows.

E xam ple 3 .19 : Consider a relation with schema

{title, year, studioName, president, presAddr}
That is, each tuple of this relation tells about a movie, its studio, the president 
of the studio, and the address of the president of the studio. Three FD’s that 
we would assume in this relation are

title year —» studioName 
studioName —» president 
president —¥ presAddr

By closing sets of these five attributes, we discover that {title, year} is the 
only key for this relation. Thus the last two FD’s above violate BCNF. Suppose 
we choose to decompose starting with

studioName -> president

First, we add to the right side of this functional dependency any other attributes 
in the closure of studioName. That closure includes presAddr, so our final 
choice of FD for the decomposition is:

studioName —> president presAddr

The decomposition based on this FD yields the following two relation schemas.

{title, year, studioName}
{studioName, president, presAddr}

If we use Algorithm 3.12 to project FD’s, we determine that the FD’s for 
the first relation has a basis:

title year —¥ studioName

while the second has:

studioName —¥ president 
president —¥ presAddr

The sole key for the first relation is { t i t l e ,  year}, and it is therefore in BCNF. 
However, the second has {studioName} for its only key but also has the FD:

president —¥ presAddr

which is a BCNF violation. Thus, we must decompose again, this time using 
the above FD. The resulting three relation schemas, all in BCNF, are:
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{title, year, studioName}
{studioName, president}
{president, presAddr}

□

In general, we must keep applying the decomposition rule as many times as 
needed, until all our relations are in BCNF. We can be sure of ultimate success, 
because every time we apply the decomposition rule to a relation R, the two 
resulting schemas each have fewer attributes than that of R. As we saw in 
Example 3.17, when we get down to two attributes, the relation is sure to be 
in BCNF; often relations with larger sets of attributes are also in BCNF. The 
strategy is summarized below.

A lgorithm  3.20: BCNF Decomposition Algorithm.

INPUT: A relation Ro with a set of functional dependencies So-

OUTPUT: A decomposition of Ro into a collection of relations, all of which are 
in BCNF.

METHOD: The following steps can be applied recursively to any relation R  and 
set of FD’s S .  Initially, apply them with R  =  Ro and S  = Sq.

1. Check whether R  is in BCNF. If so, nothing more needs to be done. 
Return {J?} as the answer.

2. If there are BCNF violations, let one be X  Y . Use Algorithm 3.7 to 
compute X +. Choose Ri = X + as one relation schema and let R? have 
attributes X  and those attributes of R  that are not in X +.

3. Use Algorithm 3.12 to compute the sets of FD’s for R\ and R%-, let these 
be Si and S2, respectively.

4. Recursively decompose Ri and R 2  using this algorithm. Return the union 
of the results of these decompositions.

□

3.3.5 Exercises for Section 3.3
Exercise 3.3.1: For each of the following relation schemas and sets of FD’s:

a) R(A, B, C, D) with FD’s AB  —► C, C -> D, and D A.

b) R (A ,B ,C ,D )  with FD’s B  —> C and B  D.

c) R{A, B, C, D) with FD’s AB -+ C ,B C  ->■ D, CD ->■ A, and AD B.

d) R(A, B, C, D) with FD’s A B, B  C, C ->• D, and D A.



3.4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 93

e) R(A, B , C, D, E ) with FD’s A B  —̂ C , D E  —¥ C , and B  —¥ D.

f) R(A, B, C, D, E ) with FD’s A B  —¥ C , C —̂ D, D  —¥ B , and D  —¥ E. 

do the following:

i) Indicate all the BCNF violations. Do not forget to consider FD’s that are 
not in the given set, but follow from them. However, it is not necessary 
to give violations that have more than one attribute on the right side.

ii) Decompose the relations, as necessary, into collections of relations that 
are in BCNF.

E xercise 3 .3 .2 : We mentioned in Section 3.3.4 that we would exercise our 
option to expand the right side of an FD that is a BCNF violation if possible. 
Consider a relation R  whose schema is the set of attributes {.4, B, C, D] with 
FD’s A -¥ B  and A -¥ C. Either is a BCNF violation, because the only key 
for R  is {A, D}. Suppose we begin by decomposing R  according to A -¥ B. Do 
we ultimately get the same result as if we first expand the BCNF violation to 
A -¥ B C ? Why or why not?

! E xercise 3 .3 .3 : Let R  be as in Exercise 3.3.2, but let the FD’s be A -¥ B  and 
B  —¥ C. Again compare decomposing using A —¥ B  first against decomposing 
by A  -¥ B C  first.

! E xercise 3 .3 .4 : Suppose we have a relation schema R(A, B , C ) with FD A —¥
B. Suppose also that we decide to decompose this schema into S (A ,B )  and 
T (B , C). Give an example of an instance of relation R  whose projection onto 
S  and T and subsequent rejoining as in Section 3.4.1 does not yield the same 
relation instance. That is, tta,b (R) x  ^ b ,c (R) /  R-

3.4 Decomposition: The Good, Bad, and Ugly
So far, we observed that before we decompose a relation schema into BCNF, 
it can exhibit anomalies; after we decompose, the resulting relations do not 
exhibit anomalies. T hat’s the “good.” But decomposition can also have some 
bad, if not downright ugly, consequences. In this section, we shall consider 
three distinct properties we would like a decomposition to have.

1. Elimination of Anomalies by decomposition as in Section 3.3.

2. Recoverability of Information. Can we recover the original relation from 
the tuples in its decomposition?

3. Preservation of Dependencies. If we check the projected FD’s in the rela
tions of the decomposition, can we can be sure that when we reconstruct 
the original relation from the decomposition by joining, the result will 
satisfy the original FD’s?
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It turns out that the BCNF decomposition of Algorithm 3.20 gives us (1) and 
(2), but does not necessarily give us all three. In Section 3.5 we shall see another 
way to pick a decomposition that gives us (2) and (3) but does not necessarily 
give us (1). In fact, there is no way to get all three at once.

3.4.1 Recovering Information from a Decomposition
Since we learned that every two-attribute relation is in BCNF, why did we 
have to go through the trouble of Algorithm 3.20? Why not just take any 
relation R  and decompose it into relations, each of whose schemas is a pair of 
R ’s attributes? The answer is that the data in the decomposed relations, even 
if their tuples were each the projection of a relation instance of R, might not 
allow us to join the relations of the decomposition and get the instance of R  
back. If we do get R  back, then we say the decomposition has a lossless join.

However, if we decompose using Algorithm 3.20, where all decompositions 
are motivated by a BCNF-violating FD, then the projections of the original 
tuples can be joined again to produce all and only the original tuples. We shall 
consider why here. Then, in Section 3.4.2 we shall give an algorithm called the 
“chase,” for testing whether the projection of a relation onto any decomposition 
allows us to recover the relation by rejoining.

To simplify the situation, consider a relation R{A, B, C) and an FD B  —► C 
that is a BCNF violation. The decomposition based on the FD B  -» C separates 
the attributes into relations R\{A, B) and R 2 (B ,C).

Let t be a tuple of R. We may write t = (a, b, c), where a, b, and c are the 
components of t for attributes A, B, and C, respectively. Tuple t projects as 
(a, b) in R 1 (A ,B) — ka,b{R) and as (6, c) in R 2 (B ,C ) =  kb,c(R)- When we 
compute the natural join Ri ix R2, these two projected tuples join, because 
they agree on the common B  component (they both have b there). They give 
us t = (a. b, c). the tuple we started with, in the join. That is, regardless of 
what tuple t we started with, we can always join its projections to get t back.

However, getting back those tuples we started with is not enough to assure 
that the original relation R  is truly represented by the decomposition. Consider 
what happens if there are two tuples of R, say t =  (a,b,c) and v =  (d,b,e). 
When we project t onto R,\ (A. B) we get u =  (a, b), and when we project v onto 
R 2 (B,C) we get w = (b,e). These tuples also match in the natural join, and 
the resulting tuple is x — (a,b,e). Is it possible that a: is a bogus tuple? That 
is, could (a, b, e) not be a tuple of R ?

Since we assume the FD B -¥ C for relation R, the answer is “no.” Recall 
that this FD says any two tuples of R  that agree in their B  components must 
also agree in their C components. Since t and v agree in their B  components, 
they also agree on their C components. That means c — e; i.e., the two values 
we supposed were different are really the same. Thus, tuple (a, b, e) of R  is 
really (a, b, c); that is, x = t.

Since t is in R. it must be that x  is in R. Put another way, as long as FD 
B  —»■ C holds, the joining of two projected tuples cannot produce a bogus tuple.
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Rather, every tuple produced by the natural join is guaranteed to be a tuple of 
R.

This argument works in general. We assumed A, B , and C were each 
single attributes, but the same argument would apply if they were any sets 
of attributes X , Y  and Z. That is, if Y  —> Z  holds in R, whose attributes are 
X  U Y  U Z, then R  =  nxuy(R )  cx k y u z ( R ) -

We may conclude:

• If we decompose a relation according to Algorithm 3.20, then the original 
relation can be recovered exactly by the natural join.

To see why, we argued above that at any one step of the recursive decomposition, 
a relation is equal to the join of its projections onto the two components. If 
those components are decomposed further, they can also be recovered by the 
natural join from their decomposed relations. Thus, an easy induction on the 
number of binary decomposition steps says that the original relation is always 
the natural join of whatever relations it is decomposed into. We can also prove 
that the natural join is associative and commutative, so the order in which we 
perform the natural join of the decomposition components does not matter.

The FD Y  -» Z, or its symmetric FD Y  X ,  is essential. Without one of 
these FD’s, we might not be able to recover the original relation. Here is an 
example.

E xam ple 3 .21: Suppose we have the relation R(A, B , C) as above, but neither 
of the FD’s B  A  nor B  —> C  holds. Then R  might consist of the two tuples

A B C
1 2 3
4 2 5

The projections of R  onto the relations with schemas {A. B }  and {B, C] 
are R i = ttab(R) =

A B  
1 2 
4 2

and R -2 — ttbc(R ) —

B C
2 3
2 5

respectively. Since all four tuples share the same 5-value, 2 , each tuple of one 
relation joins with both tuples of the other relation. When we try to reconstruct 
R  by the natural join of the projected relations, we get R 3  — R i cxi R 2  —



96 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Is Join the Only Way to Recover?

We have assumed that the only possible way we could reconstruct a rela
tion from its projections is to use the natural join. However, might there 
be some other algorithm to reconstruct the original relation that would 
work even in cases where the natural join fails? There is in fact no such 
other way. In Example 3.21, the relations R  and R 3 are different instances, 
yet have exactly the same projections onto {̂ 4, B} and {B, C}, namely the 
instances we called Ri and R 2 , respectively. Thus, given Ri and R 2 , no 
algorithm whatsoever can tell whether the original instance was R  or R 3 .

Moreover, this example is not unusual. Given any decomposition of 
a relation with attributes I U F U Z  into relations with schemas X  U Y  
and Y  U Z, where neither Y  —► X  nor Y  —> Z  holds, we can construct 
an example similar to Example 3.21 where the original instance cannot be 
determined from its projections.

A B C
1 2 3
1 2 5
4 2 3
4 2 5

That is, we get “too much” ; we get two bogus tuples, (1,2,5) and (4,2,3), that 
were not in the original relation R. □

3.4.2 The Chase Test for Lossless Join
In Section 3.4.1 we argued why a particular decomposition, that of R (A ,B ,C )  
into {A ,B }  and {B ,C }, with a particular FD, B  —► C, had a lossless join. 
Now, consider a more general situation. We have decomposed relation R  into 
relations with sets of attributes S \ ,S 2 ,--- ,S k■ We have a given set of FD’s 
F  that hold in R. Is it true that if we project R  onto the relations of the 
decomposition, then we can recover R  by taking the natural join of all these 
relations? That is, is it true that 7TSj (R) ix 7rs2 (R) tx • • • m -KSk (R) = R? Three 
important things to remember are:

• The natural join is associative and commutative. It does not matter in 
what order we join the projections; we shall get the same relation as a 
result. In particular, the result is the set of tuples t such that for all 
i — 1 , 2 t projected onto the set of attributes St is a tuple in 
7rs;(-R).
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• Any tuple t in R  is surely in ns1(R) 1x1 71 s 2 (R) tx •• • cx nsk (R) ■ The 
reason is that the projection of t onto Si is surely in 7rs; (R) for each i, 
and therefore by our first point above, t is in the result of the join.

• As a consequence, 7̂  (R) m  7t,s 2 (R) tx • • • ix i r s k (R) —  R  when the FD’s 
in F  hold for R  if and only if every tuple in the join is also in R. That is, 
the membership test is all we need to verify that the decomposition has 
a lossless join.

The chase test for a lossless join is just an organized way to see whether a 
tuple t in 7T.SJ(R) tx its2 {R) xj • • • tx nsk(R) can be proved, using the FD’s in 
F, also to be a tuple in R. If t is in the join, then there must be tuples in R, 
say h , t 2 , ■ ■ ■ ,tk, such that t  is the join of the projections of each ti onto the 
set of attributes Si, for * =  1 ,2 ,... , k. We therefore know that ti agrees with t 
on the attributes of Si, but ti has unknown values in its components not in 5,.

We draw a picture of what we know, called a tableau. Assuming R  has 
attributes A ,B , . . .  we use a ,b ,...  for the components of t. For ti, we use the 
same letter as t in the components that are in Si, but we subscript the letter 
with i if the component is not in i. In that way, ti will agree with t  for the 
attributes of S», but have a unique value — one that can appear nowhere else 
in the tableau — for other attributes.

E xam ple 3 .22: Suppose we have relation R (A ,B ,C ,D ), which we have de
composed into relations with sets of attributes Si — {A ,D }, S 2  =  {A ,C }, and 
S3 — {B ,C ,D }. Then the tableau for this decomposition is shown in Fig. 3.9.

A B C D
a bi Cl d
a 62 c d2
a 3 b c d

Figure 3.9: Tableau for the decomposition of R  into {A ,D }, {A ,C }, and 
{B ,C ,D }

The first row corresponds to set of attributes A  and D. Notice that the 
components for attributes A  and D are the unsubscripted letters a  and d.  
However, for the other attributes, b and c, we add the subscript 1 to indicate that 
they are arbitrary values. This choice makes sense, since the tuple ( a , b i , C i , d )  
represents a tuple of R  that contributes to t  =  (a,  b, c, d)  by being projected onto 
{A, D} and then joined with other tuples. Since the B- and C-components of 
this tuple are projected out, we know nothing yet about what values the tuple 
had for those attributes.

Similarly, the second row has the unsubscripted letters in attributes A  and
C, while the subscript 2 is used for the other attributes. The last row has the 
unsubscripted letters in components for {B, C, D} and subscript 3 on a. Since
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each row uses its own number as a subscript, the only symbols that can appear 
more than once are the unsubscripted letters. □

Remember that our goal is to use the given set of FD’s F  to prove that t is 
really in R. In order to do so, we “chase” the tableau by applying the FD’s in 
F  to equate symbols in the tableau whenever we can. If we discover that one of 
the rows is actually the same as t (that is, the row becomes all unsubscripted 
symbols), then we have proved that any tuple t in the join of the projections 
was actually a tuple of R.

To avoid confusion, when equating two symbols, if one of them is unsub
scripted, make the other be the same. However, if we equate two symbols, both 
with their own subscript, then you can change either to be the other. However, 
remember that when equating symbols, you must change all occurrences of one 
to be the other, not just some of the occurences.

E xam ple 3 .2 3 : Let us continue with the decomposition of Example 3.22, and 
suppose the given FD’s are A  —>■ B, B  —► C, and CD —¥ A. Start with the 
tableau of Fig. 3.9. Since the first two rows agree in their A-components, the FD 
A —¥ B  tells us they must also agree in their 5-components. That is, b\ =  b2. 
We can replace either one with the other, since they are both subscripted. Let 
us replace b2  by &i. Then the resulting tableau is:

A B C D
a bi Cl d
a bi c d2

a-3 b c d

Now, we see that the first two rows have equal B-values, and so we may use 
the FD B  —¥ C to deduce that their C-components, ci and c, are the same. 
Since c is unsubscripted, we replace Ci by c, leaving:

A B C D
a bi c d
a bi c d2

a3 b c d

Next, we observe that the first and third rows agree in both columns C and
D. Thus, we may apply the FD CD —¥ A  to deduce that these rows also have 
the same A-value; that is, a — a3. We replace a3 by a, giving us:

A B C D
a bi c d
a b 1 c d2

a b c d
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At this point, we see that the last row has become equal to t, that is, 
(a,b ,c,d ). We have proved that if R  satisfies the FD’s A  ->■ B, B  ->• C, and 
CD A, then whenever we project onto {A. D}, {A, C \, and {B ,C ,D }  and 
rejoin, what we get must have been in R. In particular, what we get is the same 
as the tuple of R  that we projected onto {B ,C ,D }. □

3.4.3 W hy the Chase Works
There are two issues to address:

1. When the chase results in a row that matches the tuple t  (i.e., the tableau 
is shown to have a row with all unsubscripted variables), why must the 
join be lossless?

2. When, after applying FD’s whenever we can, we still find no row of all 
unsubscripted variables, why must the join not be lossless?

Question (1) is easy to answer. The chase process itself is a proof that one 
of the projected tuples from R  must in fact be the tuple t that is produced by 
the join. We also know that every tuple in R  is sure to come back if we project 
and join. Thus, the chase has proved that the result of projection and join is 
exactly R.

For the second question, suppose that we eventually derive a tableau without 
an unsubscripted row, and that this tableau does not allow us to apply any of 
the FD’s to equate any symbols. Then think of the tableau as an instance of the 
relation R. It obviously satisfies the given FD’s, because none can be applied 
to equate symbols. We know that the ith row has unsubscripted symbols in the 
attributes of Si, the *th relation of the decomposition. Thus, when we project 
this relation onto the S i’s and take the natural join, we get the tuple with all 
unsubscripted variables. This tuple is not in R, so we conclude that the join is 
not lossless.

E xam ple 3.24: Consider the relation R (A ,B ,C ,D )  with the FD B  — AD  
and the proposed decomposition {A, B}, {B, C}, and {C, D}. Here is the initial 
tableau:

A B C D
a b Cl di
0 ,2 b c
0.3 fa c d

When we apply the lone FD, we deduce that a = and d\ = (fa. Thus, the 
final tableau is:

A B C D
a b Cl di
a b c di
03 &3 c d
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No more changes can be made because of the given FD’s, and there is no 
row that is fully unsubscripted. Thus, this decomposition does not have a 
lossless join. We can verify that fact by treating the above tableau as a relation 
with three tuples. When we project onto {A ,B }, we get {(a, 6)}, (03, 63)}. 
The projection onto {B ,C } is {(6, ci), (6, c), (63, 0)}, and the projection onto 
{C, D} is (cr,di), (c, di), (c, d)}. If we join the first two projections, we get 
{(a, 6, ci), (a, 6, c), (03, 63, 0)}. Joining this relation with the third projection 
gives {(0 , 6, ci,d i), (a,b,c,di), (a,b,c,d), (a3 ,b3 ,c ,d i), (o3, 63, c, d)}. Notice 
that this join has two more tuples than R, and in particular it has the tuple 
(a, 6, c, d), as it must. □

3.4.4 Dependency Preservation
We mentioned that it is not possible, in some cases, to decompose a relation into 
BCNF relations that have both the lossless-join and dependency-preservation 
properties. Below is an example where we need to make a tradeoff between 
preserving dependencies and BNCF.

Exam ple 3.25: Suppose we have a relation Bookings with attributes:

1. t i t l e ,  the name of a movie.

2 . th e a te r , the name of a theater where the movie is being shown.

3. c ity , the city where the theater is located.

The intent behind a tuple (m ,t,c ) is that the movie with title m  is currently 
being shown at theater t in city c.

We might reasonably assert the following FD’s:

th e a te r  —> c i ty  
t i t l e  c i ty  -» th e a te r

The first says that a theater is located in one city. The second is not obvious 
but is based on the common practice of not booking a movie into two theaters 
in the same city. We shall assert this FD if only for the sake of the example.

Let us first find the keys. No single attribute is a key. For example, t i t l e  
is not a key because a movie can play in several theaters at once and in several 
cities at once.2 Also, th e a te r  is not a key, because although th e a te r  function
ally determines c ity , there are multiscreen theaters that show many movies 
at once. Thus, th e a te r  does not determine t i t l e .  Finally, c i ty  is not a key 
because cities usually have more than one theater and more than one movie 
playing.

2In th is  exam ple we assum e th a t  th e re  are no t two “cu rren t” movies w ith  th e  sam e title , 
even though  we have previously recognized th a t  th e re  could be two m ovies w ith  th e  sam e 
tit le  m ade in different years.
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On the other hand, two of the three sets of two attributes are keys. Clearly 
{ t i t l e ,  c ity }  is a key because of the given FD that says these attributes 
functionally determine th e a te r .

It is also true that { th ea te r, t i t l e }  is a key, because its closure includes 
c i ty  due to the given FD th e a te r  —¥ c i ty . The remaining pair of attributes, 
c i ty  and th e a te r ,  do not functionally determine t i t l e ,  because of multiscreen 
theaters, and are therefore not a key. We conclude that the only two keys are

{ t i t l e ,  c ity }
{ th ea te r, t i t l e }

Now we immediately see a BCNF violation. We were given functional de
pendency th e a te r  —¥ c ity , but its left side, th e a te r ,  is not a superkey. We 
are therefore tempted to decompose, using this BCNF-violating FD, into the 
two relation schemas:

{ th ea te r, c ity }
{ th ea te r, t i t l e }

There is a problem with this decomposition, concerning the FD

t i t l e  c i ty —̂ th ea te r

There could be current relations for the decomposed schemas that satisfy the 
FD th e a te r  —> c i ty  (which can be checked in the relation { th ea te r, c ity}) 
but that, when joined, yield a relation not satisfying t i t l e  c i ty —̂ thea ter. 
For instance, the two relations

theater city

Guild
Park

Menlo
Menlo

Park
Park

and

theater title

Guild Antz
Park Antz

are permissible according to the FD’s that apply to each of the above relations, 
but when we join them we get two tuples

theater city title

Guild Menlo Park Antz
Park Menlo Park Antz

that violate the FD t i t l e  c i ty  —¥ th e a te r . □
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3.4.5 Exercises for Section 3.4
Exercise 3.4.1: Let R(A, B, C, D, E) be decomposed into relations with the 
following three sets of attributes: {A, B, C}, {B, C, D}, and {A, C, E). For each 
of the following sets of FD’s, use the chase test to tell whether the decomposition 
of R  is lossless. For those that are not lossless, give an example of an instance 
of R  that returns more than R  when projected onto the decomposed relations 
and rejoined.

a) B —̂ E  and CE  —¥ A.

b) AC  -» E  and BC  D.

c) A >■ D , D —̂ E , and B  —̂ D.

d) A  —>■ D , CD —> E , and E  —̂ D.

Exercise 3.4.2: For each of the sets of FD’s in Exercise 3.4.1, are dependencies 
preserved by the decomposition?

3.5 Third Normal Form
The solution to the problem illustrated by Example 3.25 is to relax our BCNF 
requirement slightly, in order to allow the occasional relation schema that can
not be decomposed into BCNF relations without our losing the ability to check 
the FD’s. This relaxed condition is called “third normal form.” In this section 
we shall give the requirements for third normal form, and then show how to 
do a decomposition in a manner quite different from Algorithm 3.20, in order 
to obtain relations in third normal form that have both the lossless-join and 
dependency-preservation properties.

3.5.1 Definition of Third Normal Form
A relation R is in third normal form (3NF) if:

• Whenever Ai A2 ■ ■ ■ A„ —>■ B iB 2 ■ ■ ■ Bm is a nontrivial FD, either

{A i ,A 2, . . .  ,A„}

is a superkey, or those of B%, B 2 , . . .  , B m that are not among the A’s, are 
each a member of some key (not necessarily the same key).

An attribute that is a member of some key is often said to be prime. Thus, the 
3NF condition can be stated as “for each nontrivial FD, either the left side is a 
superkey, or the right side consists of prime attributes only.”

Note that the difference between this 3NF condition and the BCNF condi
tion is the clause “is a member of some key (i.e., prime).” This clause “excuses” 
an FD like th e a te r  —> c i ty  in Example 3.25, because the right side, c ity , is 
prime.
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Other Normal Forms

If there is a “third normal form,” what happened to the first two “nor
mal forms”? They indeed were defined, but today there is little use for 
them. First normal form  is simply the condition that every component 
of every tuple is an atomic value. Second normal form  is a less restrictive 
verison of 3NF. There is also a “fourth normal form” that we shall meet 
in Section 3.6.

3.5.2 The Synthesis Algorithm for 3NF Schemas
We can now explain and justify how we decompose a relation R  into a set of 
relations such that:

a) The relations of the decomposition are all in 3NF.

b) The decomposition has a lossless join.

c) The decomposition has the dependency-preservation property.

A lgorithm  3.26: Synthesis of Third-Normal-Form Relations With a Lossless 
Join and Dependency Preservation.

INPUT: A relation R  and a set F  of functional dependencies that hold for R.

OUTPUT: A decomposition of R  into a collection of relations, each of which is 
in 3NF. The decomposition has the lossless-join and dependency-preservation 
properties.

M E T H O D :  Perform the following steps:

1. Find a minimal basis for F, say G.

2. For each functional dependency X  —> A  in G, use X A  as the schema of 
one of the relations in the decomposition.

3. If none of the relation schemas from Step 2 is a superkey for R, add 
another relation whose schema is a key for R.

□

E xam ple 3.27: Consider the relation R (A ,B ,C ,D ,E )  with FD’s A B  —>■ C, 
C  -»■ B, and A  ->■ D. To start, notice that the given FD’s are their own 
minimal basis. To check, we need to do a bit of work. First, we need to verify 
that we cannot eliminate any of the given dependencies. That is, we show, 
using Algorithm 3.7, that no two of the FD’s imply the third. For example, 
we must take the closure of {A, B}, the left side of the first FD, using only the
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second and third FD’s, C  —» B  and A  —> D. This closure includes D but not
C, so we conclude that the first FD AB —>• C is not implied by the second and 
third FD’s. We get a similar conclusion if we try to drop the second or third 
FD.

We must also verify that we cannot eliminate any attributes from a left 
side. In this simple case, the only possibility is that we could eliminate A  or 
B  from the first FD. For example, if we eliminate A, we would be left with 
B  —► C. We must show that B  C is not implied by the three original FD’s, 
A B  C, C B, and A  —> D. With these FD’s, the closure of {5} is just B, 
so B  —> C does not follow. A similar conclusion is drawn if we try to drop B  
from A B  -> C. Thus, we have our minimal basis.

We start the 3NF synthesis by taking the attributes of each FD as a relation 
schema. That is, we get relations S i(A ,B ,C ), S 2 {B, C). and Sz{A,D). It is 
never necessary to use a relation whose schema is a proper subset of another 
relation’s schema, so we can drop

We must also consider whether we need to add a relation whose schema is 
a key. In this example, R  has two keys: {A ,B ,E }  and {A ,C ,E }, as you can 
verify. Neither of these keys is a subset of the schemas chosen so far. Thus, we 
must add one of them, say Sn(A ,B ,E ). The final decomposition of R  is thus 
S i(A ,B ,C ), Ss (A,D), and S4 (A ,B ,E ). □

3.5.3 Why the 3NF Synthesis Algorithm Works
We need to show three things: that the lossless-join and dependency-preser
vation properties hold, and that all the relations of the decomposition are in 
3NF.

1. Lossless Join. Start with a relation of the decomposition whose set of 
attributes K  is a superkey. Consider the sequence of FD’s that are used 
in Algorithm 3.7 to expand K  to become K +. Since i f  is a superkey, 
we know K + is all the attributes. The same sequence of FD applications 
on the tableau cause the subscripted symbols in the row corresponding 
to K  to be equated to unsubscripted symbols in the same order as the 
attributes were added to the closure. Thus, the chase test concludes that 
the decomposition is lossless.

2. Dependency Preservation. Each FD of the minimal basis has all its at
tributes in some relation of the decomposition. Thus, each dependency 
can be checked in the decomposed relations.

3. Third Normal Form. If we have to add a relation whose schema is a key, 
then this relation is surely in 3NF. The reason is that all attributes of this 
relation are prime, and thus no violation of 3NF could be present in this 
relation. For the relations whose schemas are derived from the FD’s of a 
minimal basis, the proof that they are in 3NF is beyond the scope of this 
book. The argument involves showing that a 3NF violation implies that 
the basis is not minimal.
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3.5.4 Exercises for Section 3.5
E xercise 3 .5 .1 : For each of the relation schemas and sets of FD’s of Exer
cise 3.3.1:

i) Indicate all the 3NF violations.

ii) Decompose the relations, as necessary, into collections of relations that 
are in 3NF.

Exercise 3 .5 .2 : Consider the relation Courses(C ,T ,H ,R ,S ,G ), whose at
tributes may be thought of informally as course, teacher, hour, room, student, 
and grade. Let the set of FD’s for Courses be C —>■ T, H R  —> C, H T  -»• R, 
H S  -¥ R, and C S  ->• G. Intuitively, the first says that a course has a unique 
teacher, and the second says that only one course can meet in a given room at 
a given hour. The third says that a teacher can be in only one room at a given 
hour, and the fourth says the same about students. The last says that students 
get only one grade in a course.

a) What are all the keys for Courses?

b) Verify that the given FD’s are their own minimal basis.

c) Use the 3NF synthesis algorithm to find a lossless-join, dependency-pres- 
erving decomposition of R  into 3NF relations. Are any of the relations 
not in BCNF?

Exercise 3 .5 .3 : Consider a relation Stocks(B , O, I, S, Q, D), whose attributes 
may be thought of informally as broker, office (of the broker), investor, stock, 
quantity (of the stock owned by the investor), and dividend (of the stock). Let 
the set of FD’s for Stocks be S  —> D, I  B, IS  ^  Q, and B  —> O. Repeat 
Exercise 3.5.2 for the relation Stocks.

E xercise 3 .5 .4 : Verify, using the chase, that the decomposition of Exam
ple 3.27 has a lossless join.

!! Exercise 3 .5 .5 : Suppose we modified Algorithm 3.20 (BNCF decomposition) 
so that instead of decomposing a relation R  whenever R  was not in BCNF, we 
only decomposed R  if it was not in 3NF. Provide a counterexample to show that 
this modified algorithm would not necessarily produce a 3NF decomposition 
with dependency preservation.

3.6 M ultivalued Dependencies
A “multivalued dependency” is an assertion that two attributes or sets of a t
tributes are independent of one another. This condition is, as we shall see, 
a generalization of the notion of a functional dependency, in the sense that
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every FD implies the corresponding multivalued dependency. However, there 
are some situations involving independence of attribute sets that cannot be 
explained as FD’s. In this section we shall explore the cause of multivalued 
dependencies and see how they can be used in database schema design.

3.6.1 Attribute Independence and Its Consequent 
Redundancy

There are occasional situations where we design a relation schema and find it is 
in BCNF, yet the relation has a kind of redundancy that is not related to FD’s. 
The most common source of redundancy in BCNF schemas is an attempt to 
put two or more set-valued properties of the key into a single relation.

Exam ple 3.28: In this example, we shall suppose that stars may have several 
addresses, which we break into street and city components. The set of addresses 
is one of the set-valued properties this relation will store. The second set-valued 
property of stars that we shall put into this relation is the set of titles and years 
of movies in which the star appeared. Then Fig. 3.10 is a typical instance of 
this relation.

name street city title year
C. Fisher 123 Maple St. Hollywood Star Wars 1977
C. Fisher 5 Locust Ln. Malibu Star Wars 1977
C. Fisher 123 Maple St. Hollywood Empire Strikes Back 1980
C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980
C. Fisher 123 Maple St. Hollywood Return of the Jedi 1983
C. Fisher 5 Locust Ln. Malibu Return of the Jedi 1983

Figure 3.10: Sets of addresses independent from movies

We focus in Fig. 3.10 on Carrie Fisher’s two hypothetical addresses and her 
three best-known movies. There is no reason to associate an address with one 
movie and not another. Thus, the only way to express the fact that addresses 
and movies are independent properties of stars is to have each address appear 
with each movie. But when we repeat address and movie facts in all combi
nations, there is obvious redundancy. For instance, Fig. 3.10 repeats each of 
Carrie Fisher’s addresses three times (once for each of her movies) and each 
movie twice (once for each address).

Yet there is no BCNF violation in the relation suggested by Fig. 3.10. There 
are, in fact, no nontrivial FD’s at all. For example, attribute c ity  is not 
functionally determined by the other four attributes. There might be a star 
with two homes that had the same street address in different cities. Then there 
would be two tuples that agreed in all attributes but c ity  and disagreed in 
c ity . Thus,
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name street title year —> city
is not an FD for our relation. We leave it to the reader to check that none of 
the five attributes is functionally determined by the other four. Since there are 
no nontrivial FD’s, it follows that all five attributes form the only key and that 
there are no BCNF violations. □

3.6.2 Definition of Multivalued Dependencies
A multivalued dependency (abbreviated MVD) is a statement about some rela
tion R  that when you fix the values for one set of attributes, then the values in 
certain other attributes are independent of the values of all the other attributes 
in the relation. More precisely, we say the MVD

A 1 A 2  ■ ■ ■ An —>4 B 1 B 2  ■ ■ ■ B m

holds for a relation R  if when we restrict ourselves to the tuples of R  that have 
particular values for each of the attributes among the ,4’s, then the set of values 
we find among the B ’s is independent of the set of values we find among the 
attributes of R  that are not among the ,4’s or B ’s. Still more precisely, we say 
this MVD holds if

For each pair of tuples t and u of relation R  that agree on all the 
j4’s, we can find in R  some tuple v that agrees:

1. With both t and u on the A’s,
2. With t on the B ’s, and
3. With u on all attributes of R  that axe not among the A's or 

B ’s.

Note that we can use this rule with t and u interchanged, to infer the existence 
of a fourth tuple w that agrees with u on the B ’s and with t on the other 
attributes. As a consequence, for any fixed values of the A’s, the associated 
values of the B ’s and the other attributes appear in all possible combinations 
in different tuples. Figure 3.11 suggests how v relates to t and u when an MVD 
holds. However, the 4̂’s and B ’s to not have to appear consecutively.

In general, we may assume that the .4’s and B ’s (left side and right side) of 
an MVD are disjoint. However, as with FD’s, it is permissible to add some of 
the A's to the right side if we wish.

E xam ple 3.29: In Example 3.28 we encountered an MVD that in our notation 
is expressed:

name —H  street city
That is, for each star’s name, the set of addresses appears in conjunction with 
each of the star’s movies. For an example of how the formal definition of this 
MVD applies, consider the first and fourth tuples from Fig. 3.10:
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Figure 3.11: A multivalued dependency guarantees that v exists

name street city title year
C. Fisher 123 Maple St. Hollywood Star Wars 1977
C. Fisher 5 Locust Ln. Malibu Empire Strikes Back 1980

If we let the first tuple be t and the second be u, then the MVD asserts 
that we must also find in R  the tuple that has name C. F isher, a street and 
city that agree with the first tuple, and other attributes ( t i t l e  and year) that 
agree with the second tuple. There is indeed such a tuple; it is the third tuple 
of Fig. 3.10.

Similarly, we could let t be the second tuple above and u be the first. Then 
the MVD tells us that there is a tuple of R  that agrees with the second in 
attributes name, s t r e e t ,  and c ity  and with the first in name, t i t l e ,  and year. 
This tuple also exists; it is the second tuple of Fig. 3.10. □

3.6.3 Reasoning About Multivalued Dependencies
There are a number of rules about MVD’s that are similar to the rules we 
learned for FD’s in Section 3.2. For example, MVD’s obey

• Trivial MVD’s. The MVD

Ai A 2 • • • An — B\ B 2  • • • Bm 

holds in any relation if {Bi, B 2 , . . .  , B m} C {Ai, A 2 , . . .  , A n}.

• The transitive rule, which says that if Ai A 2 ■ ■ ■ A n —H B iB 2 ■ • ■ B m and 
B 1 B 2 - ■■ B m —>-> C1C2 • • • Ck hold for some relation, then so does

A 1 A 2  ■ ■ ■ A n —h  C1 C2  • • • Ck

Any C ’s that are also 4̂’s must be deleted from the right side.
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On the other hand, MVD’s do not obey the splitting part of the splitting/com
bining rule, as the following example shows.

E xam ple 3 .30 : Consider again Fig. 3.10, where we observed the MVD:

name —H s t r e e t  c i ty  

If the splitting rule applied to MVD’s, we would expect

name —H s t r e e t

also to be true. This MVD says that each star’s street addresses are indepen
dent of the other attributes, including c ity . However, that statement is false. 
Consider, for instance, the first two tuples of Fig. 3.10. The hypothetical MVD 
would allow us to infer that the tuples with the streets interchanged:

name street city title year
C. Fisher 5 Locust Ln. Hollywood Star Wars 1977
C. Fisher 123 Maple St. Malibu Star Wars 1977

were in the relation. But these are not true tuples, because, for instance, the 
home on 5 Locust Ln. is in Malibu, not Hollywood. □

However, there are several new rules dealing with MVD’s that we can learn.

• FD Promotion. Every FD is an MVD. That is, if

A 1 A 2  • • • A n —»• B 1 B 2  ■ ■ ■ B m 

then A\ A 2  • ■ ■ An —>-> B \ B 2 • ■ ■ B m.

To see why, suppose R  is some relation for which the FD

A 1 A 2  ■ • ■ A n —¥ B 1 B 2  ■ • • B m

holds, and suppose t and u are tuples of R  that agree on the A’s. To show 
that the MVD A 1 A 2 ■ ■ ■ An —H- B 1 B 2  ■ ■ ■ B m holds, we have to show that R  
also contains a tuple v that agrees with t and u on the A’s, with t on the B ’s, 
and with u on all other attributes. But v can be u. Surely u agrees with t and 
u on the .4’s, because we started by assuming that these two tuples agree on 
the j4’s. The FD A 1 A 2 ■ ■■ A n —> B iB ^ - -  B m assures us that u agrees with t 
on the S ’s. And of course u agrees with itself on the other attributes. Thus, 
whenever an FD holds, the corresponding MVD holds.

• Complementation Rule. If A 1 A 2  ■ • ■ A n —B- B 1 B 2  ■ ■ ■ Bm is an MVD for 
relation R, then R  also satisfies A 1 A 2  ■ ■ ■ A„ -++ C1 C2  ■ ■ ■ Ck, where the 
C ’s are all attributes of R  not among the A.’s and B ’s.
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That is, swapping the B ’s between two tuples that agree in the v4’s has the 
same effect as swapping the C s.

E xam ple 3.31: Again consider the relation of Fig. 3.10, for which we asserted 
the MVD:

name —»-> s t r e e t  c ity  

The complementation rule says that

name — t i t l e  year

must also hold in this relation, because t i t l e  and year are the attributes not 
mentioned in the first MVD. The second MVD intuitively means that each star 
has a set of movies starred in, which are independent of the star’s addresses.
□

An MVD whose right side is a subset of the left side is trivial — it holds 
in every relation. However, an interesting consequence of the complementation 
rule is that there are some other MVD’s that are trivial, but that look distinctly 
nontrivial.

• More Trivial MVD’s. If all the attributes of relation R  are

{ Ai , A2 , . . .  , A n, Bi , B2, - - .  , Bm}

then A 1 A 2 ■ ■ ■ An -h- B 1 B 2  ■ ■ ■ Bm holds in R.

To see why these additional trivial MVD’s hold, notice that if we take two 
tuples that agree in A i , A 2 , . . .  , An and swap their components in attributes 
B i,B 2 ,- .-  ,B m, we get the same two tuples back, although in the opposite 
order.

3.6.4 Fourth Normal Form
The redundancy that we found in Section 3.6.1 to be caused by MVD’s can be 
eliminated if we use these dependencies for decomposition. In this section we 
shall introduce a new normal form, called “fourth normal form.” In this normal 
form, all nontrivial MVD’s are eliminated, as are all FD’s that violate BCNF. 
As a result, the decomposed relations have neither the redundancy from FD’s 
that we discussed in Section 3.3.1 nor the redundancy from MVD’s that we 
discussed in Section 3.6.1.

The “fourth normal form” condition is essentially the BCNF condition, but 
applied to MVD’s instead of FD’s. Formally:

• A relation R  is in fourth normal form (4NF) if whenever

Ai A2 ■ ■ ■ An —H- B\B2 ■ ■ ■ Bm
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is a nontrivial MVD, { A i,A 2 , . . .  , A n} is a superkey.

That is, if a relation is in 4NF, then every nontrivial MVD is really an FD with 
a superkey on the left. Note that the notions of keys and super keys depend on 
FD’s only; adding MVD’s does not change the definition of “key.”

E xam ple 3 .32 : The relation of Fig. 3.10 violates the 4NF condition. For 
example,

name — street city

is a nontrivial MVD, yet name by itself is not a superkey. In fact, the only key 
for this relation is all the attributes. □

Fourth normal form is truly a generalization of BCNF. Recall from Sec
tion 3.6.3 that every FD is also an MVD. Thus, every BCNF violation is also 
a 4NF violation. Put another way, every relation that is in 4NF is therefore in 
BCNF.

However, there are some relations that are in BCNF but not 4NF. Fig
ure 3.10 is a good example. The only key for this relation is all five attributes, 
and there are no nontrivial FD’s. Thus it is surely in BCNF. However, as we 
observed in Example 3.32, it is not in 4NF.

3.6.5 Decomposition into Fourth Normal Form
The 4NF decomposition algorithm is quite analogous to the BCNF decomposi
tion algorithm.

A lgorithm  3.33: Decomposition into Fourth Normal Form.

INPUT: A relation Ro with a set of functional and multivalued dependencies
S0.

OUTPUT: A decomposition of Ro into relations all of which are in 4NF. The 
decomposition has the lossless-join property.

M E T H O D :  Do the following steps, with R  — Ro and S  =  So'-

1. Find a 4NF violation in R, say A 1 A 2 ---A n B \B 2  ■ ■ ■ B m. where

{Ai ,  A2 , .. ■ , A n}

is not a superkey. Note this MVD could be a true MVD in S, or it could 
be derived from the corresponding FD .41 -̂2 ■ • • An —>■ B iB 2  • • • B m in S, 
since every FD is an MVD. If there is none, return; R  by itself is a suitable 
decomposition.

2. If there is such a 4NF violation, break the schema for the relation R  that 
has the 4NF violation into two schemas:
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(a) R i, whose schema is A’s and the B's.
(b) R 2 , whose schema is the 4̂’s and all attributes of R  that are not 

among the A’s or B ’s.

3. Find the FD’s and MVD’s that hold in R i and R 2  (Section 3.7 explains 
how to do this task in general, but often this “projection” of dependencies 
is straightforward). Recursively decompose jRi and R 2  with respect to 
their projected dependencies.

□
E xam ple 3.34: Let us continue Example 3.32. We observed that

name — s t r ee t  c i ty

was a 4NF violation. The decomposition rule above tells us to replace the 
five-attribute schema by one schema that has only the three attributes in the 
above MVD and another schema that consists of the left side, name, plus the 
attributes that do not appear in the MVD. These attributes are t i t l e  and 
year, so the following two schemas

{name, s t r e e t ,  c ity}
{name, t i t l e ,  year}

are the result of the decomposition. In each schema there are no nontrivial 
multivalued (or functional) dependencies, so they are in 4NF. Note that in the 
relation with schema {name, s t r e e t ,  c ity} , the MVD:

name s t r e e t  c ity
is trivial since it involves all attributes. Likewise, in the relation with schema 
{name, t i t l e ,  year}, the MVD:

name —H t i t l e  year
is trivial. Should one or both schemas of the decomposition not be in 4NF, we 
would have had to decompose the non-4NF schema(s). □

As for the BCNF decomposition, each decomposition step leaves us with 
schemas that have strictly fewer attributes than we started with, so eventually 
we get to schemas that need not be decomposed further; that is, they are 
in 4NF. Moreover, the argument justifying the decomposition that we gave 
in Section 3.4.1 carries over to MVD’s as well. When we decompose a relation 
because of an MVD A iA 2  ■ ■ ■ A„ -H- B iB 2 ■ ■ ■ B m, this dependency is enough to 
justify the claim that we can reconstruct the original relation from the relations 
of the decomposition.

We shall, in Section 3.7, give an algorithm by which we can verify that the 
MVD used to justify a 4NF decomposition also proves that the decomposition 
has a lossless join. Also in that section, we shall show how it is possible, although 
time-consuming, to perform the projection of MVD’s onto the decomposed 
relations. This projection is required if we are to decide whether or not further 
decomposition is necessary.
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3.6.6 Relationships Among Normal Forms
As we have mentioned, 4NF implies BCNF, which in turn implies 3NF. Thus, 
the sets of relation schemas (including dependencies) satisfying the three normal 
forms are related as in Fig. 3.12. That is, if a relation with certain dependen
cies is in 4NF, it is also in BCNF and 3NF. Also, if a relation with certain 
dependencies is in BCNF, then it is in 3NF.

R ela tions in 3N F

R ela tions in  B C N F

R ela tions in  4N F

Figure 3.12: 4NF implies BCNF implies 3NF

Another way to compare the normal forms is by the guarantees they make 
about the set of relations that result from a decomposition into that normal 
form. These observations are summarized in the table of Fig. 3.13. That is, 
BCNF (and therefore 4NF) eliminates the redundancy and other anomalies 
that are caused by FD’s, while only 4NF eliminates the additional redundancy 
that is caused by the presence of MVD’s that are not FD’s. Often, 3NF is 
enough to eliminate this redundancy, but there are examples where it is not. 
BCNF does not guarantee preservation of FD’s, and none of the normal forms 
guarantee preservation of MVD’s, although in typical cases the dependencies 
are preserved.

Property 3NF BCNF 4NF
Eliminates redundancy 

due to FD’s
No Yes Yes

Eliminates redundancy 
due to MVD’s

No No Yes

Preserves FD’s Yes No No
Preserves MVD’s No No No

Figure 3.13: Properties of normal forms and their decompositions

3.6.7 Exercises for Section 3.6
E xercise 3 .6 .1 : Suppose we have a relation R(A, B, C) with an MVD A  —H-
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B. If we know that the tuples (a ,6i,c i), (a, &2, c-2), and (0 , 63, 03) are in the 
current instance of R, what other tuples do we know must also be in R I

Exercise 3 .6 .2: Suppose we have a relation in which we want to record for 
each person their name, Social Security number, and birthdate. Also, for each 
child of the person, the name, Social Security number, and birthdate of the 
child, and for each automobile the person owns, its serial number and make. 
To be more precise, this relation has all tuples

(n, s, b, cn, cs, cb, as, am)

such that

1. n is the name of the person with Social Security number s.

2 . b is n ’s birthdate.

3. cn is the name of one of n ’s children.

4. cs is cn’s Social Security number.

5. cb is cn’s birthdate.

6 . as is the serial number of one of n ’s automobiles.

7. am is the make of the automobile with serial number as.

For this relation:

a) Tell the functional and multivalued dependencies we would expect to hold.

b) Suggest a decomposition of the relation into 4NF.

Exercise 3.6.3: For each of the following relation schemas and dependencies

a) R{A, B, C, D) with MVD’s A -H- B  and A  -»■ C.

b) R(A, B, C, D) with MVD’s A  -H- B  and B  -*-» CD.

c) R(A, B, C, D ) with MVD AB  -H- C and FD B  -> D.

d) R (A ,B ,C ,D ,E )  with MVD’s A  -H- B  and A B  C and FD’s A -> D 
and AB  -» E.

do the following:

i) Find all the 4NF violations.

ii) Decompose the relations into a collection of relation schemas in 4NF.

Exercise 3.6.4: Give informal arguments why we would not expect any of the 
five attributes in Example 3.28 to be functionally determined by the other four.
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3.7 An Algorithm for Discovering M V D ’s
Reasoning about MVD’s, or combinations of MVD’s and FD’s, is rather more 
difficult than reasoning about FD’s alone. For FD’s, we have Algorithm 3.7 to 
decide whether or not an FD follows from some given FD’s. In this section, 
we shall first show that the closure algorithm is really the same as the chase 
algorithm we studied in Section 3.4.2. The ideas behind the chase can be 
extended to incorporate MVD’s as well as FD’s. Once we have that tool in 
place, we can solve all the problems we need to solve about MVD’s and FD’s, 
such as finding whether an MVD follows from given dependencies or projecting 
MVD’s and FD’s onto the relations of a decomposition.

3.7.1 The Closure and the Chase
In Section 3.2.4 we saw how to take a set of attributes X  and compute its 
closure X + of all attributes that functionally depend on X .  In that manner, we 
can test whether an FD X  -¥ Y  follows from a given set of FD’s F, by closing 
X  with respect to F  and seeing whether Y  C X +. We could see the closure as 
a variant of the chase, in which the starting tableau and the goal condition are 
different from what we used in Section 3.4.2.

Suppose we start with a tableau that consists of two rows. These rows agree 
in the attributes of X  and disagree in all other attributes. If we apply the FD’s 
in F  to chase this tableau, we shall equate the symbols in exactly those columns 
that are in X + — X . Thus, a chase-based test for whether X  —► Y  follows from 
F  can be summarized as:

1. Start with a tableau having two rows that agree only on X .

2. Chase the tableau using the FD’s of F.

3. If the final tableau agrees in all columns of Y , then X  Y  holds; other
wise it does not.

E xam ple 3.35: Let us repeat Example 3.8, where we had a relation

R (A ,B ,C ,D ,E ,F )

with FD’s A B  —>• C, B C  —► AD, D —»• E, and C F  —► B. We want to test 
whether A B  — D holds. Start with the tableau:

A B C D E F
a b Cl di ei f i
a b C2 d,2 e2 h

We can apply A B  C  to infer c\ =  C2; say both become c±. The resulting 
tableau is:
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A B C D E F
a b Cl d\ ei h
a b Cl di C2 h

Next, apply B C  —> AD  to infer that d\ = d2, and apply D —>■ E  to infer 
ei =  e2. At this point, the tableau is:

A B C D E F
a b Cl di ei h
a b Cl di ei h

and we can go no further. Since the two tuples now agree in the D column, we 
know that A B  -» D does follow from the given FD’s. □

3.7.2 Extending the Chase to M VD’s
The method of inferring an FD using the chase can be applied to infer MVD’s 
as well. When we try to infer an FD, we are asking whether we can conclude 
that two possibly unequal values must indeed be the same. When we apply an 
FD X  —> Y , we search for pairs of rows in the tableau that agree on all the 
columns of X ,  and we force the symbols in each column of Y  to be equal.

However, MVD’s do not tell us to conclude symbols are equal. Rather, 
X  —H- Y  tells us that if we find two rows of the tableau that agree in X ,  then 
we can form two new tuples by swapping all their components in the attributes 
of Y ; the resulting two tuples must also be in the relation, and therefore in 
the tableau. Likewise, if we want to infer some MVD X  —H- Y  from given 
FD’s and MVD’s, we start with a tableau consisting of two tuples that agree 
in X  and disagree in all attributes not in the set X .  We apply the given 
FD’s to equate symbols, and we apply the given MVD’s to swap the values in 
certain attributes between two existing rows of the tableau in order to add new 
rows to the tableau. If we ever discover that one of the original tuples, with 
its components for Y  replaced by those of the other original tuple, is in the 
tableau, then we have inferred the MVD.

There is a point of caution to be observed in this more complex chase pro
cess. Since symbols may get equated and replaced by other symbols, we may 
not recognize that we have created one of the desired tuples, because some of 
the original symbols may be replaced by others. The simplest way to avoid a 
problem is to define the target tuple initially, and never change its symbols. 
That is, let the target row be one with an unsubscripted letter in each compo
nent. Let the two initial rows of the tableau for the test of X  —>-* Y  have the 
unsubscripted letters in X .  Let the first row also have unsubscripted letters in 
Y , and let the second row have the unsubscripted letters in all attributes not 
in X  or Y. Fill in the other positions of the two rows with new symbols that 
each occur only once. When we equate subscripted and unsubscripted symbols, 
always replace a subscripted one by the unsubscripted one, as we did in Sec
tion 3.4.2. Then, when applying the chase, we have only to ask whether the 
all-unsubscripted-letters row ever appears in the tableau.



3.7. A N  ALGORITHM FOR DISCOVERING M VD ’S 117

E xam ple 3.36: Suppose we have a relation R (A ,B ,C ,D ) with given depen
dencies A B  and B  —>4 C. We wish to prove that A —h> C holds in R. Start 
with the two-row tableau that represents A  —H- C :

A B C D
a h c di
a b C2 d

Notice that our target row is (a,b ,c,d ). Both rows of the tableau have the 
unsubscripted letter in the column for A. The first row has the unsubscripted 
letter in C, and the second row has unsubscripted letters in the remaining 
columns.

We first apply the FD A —¥ B  to infer that b = b\. We must therefore 
replace the subscripted &i by the unsubscripted b. The tableau becomes:

A B C D
a b c di
a b C2 d

Next, we apply the MVD B  —>4 C, since the two rows now agree in the B  
column. We swap the C columns to get two more rows which we add to the 
tableau, which becomes:

A B C D
a b c d \
a b C2 d
a b C2 d i
a b C d

We have now a row with all unsubscripted symbols, which proves that A —h- C 
holds in relation R. Notice how the tableau manipulations really give a proof 
that A  —»-> C holds. This proof is: “Given two tuples of R  that agree in A, 
they must also agree in B  because A -¥ B. Since they agree in B, we can swap 
their C components by B C, and the resulting tuples will be in R. Thus, if 
two tuples of R  agree in A, the tuples that result when we swap their C ’s are 
also in R; i.e., A —>-> C.” □

E xam ple 3 .37 : There is a surprising rule for FD’s and MVD’s that says when
ever there is an MVD X  —»-» Y , and any FD whose right side is a (not necessarily 
proper) subset of Y , say Z, then X  —> Z. We shall use the chase process to 
prove a simple example of this rule. Let us be given relation R(A, B, C, D) with 
MVD A  —>4 B C  and FD D -¥ C. We claim that A C.

Since we are trying to prove an FD, we don’t  have to worry about a target 
tuple of unsubscripted letters. We can start with any two tuples that agree in 
A  and disagree in every other column, such as:
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A B C D
a bi C l di
a 62 C2 d,2

Our goal is to prove that cj =  C2-
The only thing we can do to start is to apply the MVD A —H BC, since 

the two rows agree on A, but no other columns. When we swap the B  and C 
columns of these two rows, we get two new rows to add:

A B C D
a bi C l di
a 62 C2 di
a 62 C2 di
a bi C l d2

Now, we have pairs of rows that agree in D, so we can apply the FD D —> C . 
For instance, the first and third rows have the same D-value d\ , so we can apply 
the FD and conclude ci = C2. That is our goal, so we have proved A —> C . The 
new tableau is:

A B C D
a bi Cl di
a 62 Cl di
a 62 Cl di
a bi Cl d2

It happens that no further changes are possible, using the given dependencies. 
However, that doesn’t matter, since we already proved what we need. □

3.7.3 Why the Chase Works for MVD’s
The arguments are essentially the same as we have given before. Each step of the 
chase, whether it equates symbols or generates new rows, is a true observation 
about tuples of the given relation R  that is justified by the FD or MVD that 
we apply in that step. Thus, a positive conclusion of the chase is always a proof 
that the concluded FD or MVD holds in R.

When the chase ends in failure — the goal row (for an MVD) or the desired 
equality of symbols (for an FD) is not produced — then the final tableau is a 
counterexample. It satisfies the given dependencies, or else we would not be 
finished making changes. However, it does not satisfy the dependency we were 
trying to prove.

There is one other issue that did not come up when we performed the chase 
using only FD’s. Since the chase with MVD’s adds rows to the tableau, how 
do we know we ever terminate the chase? Could we keep adding rows forever, 
never reaching our goal, but not sure that after a few more steps we would 
achieve that goal? Fortunately, that cannot happen. The reason is that we
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never create any new symbols. We start out with at most two symbols in each 
of k columns, and all rows we create will have one of these two symbols in its 
component for that column. Thus, we cannot ever have more than 2k rows in 
our tableau, if k is the number of columns. The chase with MVD’s can take 
exponential time, but it cannot run forever.

3.7.4 Projecting M VD’s
Recall that our reason for wanting to infer MVD’s was to perform a cascade of 
decompositions leading to 4NF relations. To do that task, we need to be able 
to project the given dependencies onto the schemas of the two relations that 
we get in the first step of the decomposition. Only then can we know whether 
they are in 4NF or need to be decomposed further.

In the worst case, we have to test every possible FD and MVD for each of 
the decomposed relations. The chase test is applied on the full set of attributes 
of the original relation. However, the goal for an MVD is to produce a row 
of the tableau that has unsubscripted letters in all the attributes of one of 
the relations of the decomposition; that row may have any letters in the other 
attributes. The goal for an FD is the same: equality of the symbols in a given 
column.

E xam ple 3.38: Suppose we have a relation R(A, B, C, D, E ) that we decom
pose, and let one of the relations of the decomposition be 5(A, B, C). Suppose 
that the MVD A —H CD  holds in R. Does this MVD imply any dependency 
in S? We claim that A —>4 C  holds in S, as does A —>4 B  (by the comple
mentation rule). Let us verify that A — C holds in S. We start with the 
tableau:

A B C D E
a bi c di ei
a b Cl d e

Use the MVD of R, A  —»-> CD  to swap the C and D components of these two 
rows to get two new rows:

A B C D E
a bi c di ei
a b C2 d e
a bi C2 d Cl
a b C di e

Notice that the last row has unsubscripted symbols in all the attributes of S, 
that is, A, B, and C. That is enough to conclude that A  —B- C  holds in S. □

Often, our search for FD’s and MVD’s in the projected relations does not 
have to be completely exhaustive. Here are some simplifications.
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1. It is surely not necessary to check the trivial FD’s and MVD’s.

2. For FD’s, we can restrict ourselves to looking for FD’s with a singleton 
right side, because of the combining rule for FD’s.

3. An FD or MVD whose left side does not contain the left side of any given 
dependency surely cannot hold, since there is no way for its chase test 
to get started. That is, the two rows with which you start the test are 
unchanged by the given dependencies.

3.7.5 Exercises for Section 3.7
E xercise 3 .7 .1 : Use the chase test to tell whether each of the following depen
dencies hold in a relation R(A, B, C, D, E) with the dependencies A  —H- BC, 
B  -> D, and C -»• E.

a) A  -> D.

b) A D.

c) A ^ E .

d) A  -H- E.

! E xercise 3 .7 .2 : If we project the relation R  of Exercise 3.7.1 onto S(A, C, E), 
what nontrivial FD’s and MVD’s hold in S?

! E xercise 3 .7 .3 : Show the following rules for MVD’s. In each case, you can 
set up the proof as a chase test, but you must think a little more generally than 
in the examples, since the set of attributes are arbitrary sets X , Y , Z , and the 
other unnamed attributes of the relation in which these dependencies hold.

a) The Union Rule. If X , Y , and Z  are sets of attributes, X  —>-» Y , and 
X  Z, then X  -h- (Y  U Z).

b) The Intersection Rule. If X , Y , and Z  are sets of attributes, X  -y* Y , 
and X  — Z, then X  —y-y (Y  n Z ).

c) The Difference Rule. If X , Y , and Z  are sets of attributes, X  —h  Y , and 
X -»• Z, then X  - » ( Y -  Z).

d) Removing attributes shared by left and right side. If X  —H Y  holds, then 
X - »  {Y -  X )  holds.

! Exercise 3 .7 .4 : Give counterexample relations to show why the following rules 
for MVD’s do not hold. Hint: apply the chase test and see what happens.

a) If A  — BC, then A  —yy B.

b) If A —H- B, then A —► B.

c) If AB  —»-> C, then A  -h- C.
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.8 Summary of Chapter 3
♦  Functional Dependencies: A functional dependency is a statement that 

two tuples of a relation that agree on some particular set of attributes 
must also agree on some other particular set of attributes.

♦  Keys of a Relation: A superkey for a relation is a set of attributes that 
functionally determines all the attributes of the relation. A key is a su
perkey, no proper subset of which is also a superkey.

♦  Reasoning About Functional Dependencies: There are many rules that let 
us infer that one FD X  —» A  holds in any relation instance that satisfies 
some other given set of FD’s. To verify that X  -» A  holds, compute the 
closure of X ,  using the given FD’s to expand X  until it includes A.

♦  Minimal Basis for a set of FD’s: For any set of FD’s, there is at least 
one minimal basis, which is a set of FD’s equivalent to the original (each 
set implies the other set), with singleton right sides, no FD that can be 
eliminated while preserving equivalence, and no attribute in a left side 
that can be eliminated while preserving equivalence.

♦  Boyce-Codd Normal Form: A relation is in BCNF if the only nontrivial 
FD’s say that some superkey functionally determines one or more of the 
other attributes. A major benefit of BCNF is that it eliminates redun
dancy caused by the existence of FD’s.

♦  Lossless-Join Decomposition: A useful property of a decomposition is that 
the original relation can be recovered exactly by taking the natural join of 
the relations in the decomposition. Any decomposition gives us back at 
least the tuples with which we start, but a carelessly chosen decomposition 
can give tuples in the join that were not in the original relation.

♦  Dependency-Preserving Decomposition: Another desirable property of a 
decomposition is that we can check all the functional dependencies that 
hold in the original relation by checking FD’s in the decomposed relations.

♦  Third Normal Form: Sometimes decomposition into BCNF can lose the 
dependency-preservation property. A relaxed form of BCNF, called 3NF, 
allows an FD X  -»■ A  even if X  is not a superkey, provided A is a member 
of some key. 3NF does not guarantee to eliminate all redundancy due to 
FD’s, but often does so.

♦  The Chase: We can test whether a decomposition has the lossless-join 
property by setting up a tableau — a set of rows that represent tuples of 
the original relation. We chase a tableau by applying the given functional 
dependencies to infer that certain pairs of symbols must be the same. The 
decomposition is lossless with respect to a given set of FD’s if and only if 
the chase leads to a row identical to the tuple whose membership in the 
join of the projected relations we assumed.
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♦  Synthesis Algorithm, for 3NF: If we take a minimal basis for a given set 
of FD’s, turn each of these FD’s into a relation, and add a key for the 
relation, if necessary, the result is a decomposition into 3NF that has the 
lossless-join and dependency-preservation properties.

♦  Multivalued Dependencies: A multivalued dependency is a statement that 
two sets of attributes in a relation have sets of values that appear in all 
possible combinations.

♦  Fourth Normal Form: MVD’s can also cause redundancy in a relation. 
4NF is like BCNF, but also forbids nontrivial MVD’s whose left side is 
not a superkey. It is possible to decompose a relation into 4NF without 
losing information.

♦  Reasoning About M VD’s: We can infer MVD’s and FD’s from a given set 
of MVD’s and FD’s by a chase process. We start with a two-row tableau 
that represent the dependency we are trying to prove. FD’s are applied by 
equating symbols, and MVD’s are applied by adding rows to the tableau 
that have the appropriate components interchanged.

3.9 References for Chapter 3
Third normal form was described in [6]. This paper introduces the idea of 
functional dependencies, as well as the basic relational concept. Boyce-Codd 
normal form is in a later paper [7].

Multivalued dependencies and fourth normal form were defined by Fagin in 
[9]. However, the idea of multivalued dependencies also appears independently 
in [8] and [11].

Armstrong was the first to study rules for inferring FD’s [2], The rules for 
FD’s that we have covered here (including what we call “Armstrong’s axioms”) 
and rules for inferring MVD’s as well, come from [3].

The technique for testing an FD by computing the closure for a set of at
tributes is from [4], as is the fact that a minimal basis provides a 3NF de
composition. The fact that this decomposition provides the lossless-join and 
dependency-preservation propoerties is from [5].

The tableau test for the lossless-join property and the chase are from [1], 
More information and the history of the idea is found in [10].
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Chapter 4

High-Level Database 
Models

Let us consider the process whereby a new database, such as our movie database, 
is created. Figure 4.1 suggests the process. We begin with a design phase, in 
which we address and answer questions about what information will be stored, 
how information elements will be related to one another, what constraints such 
as keys or referential integrity may be assumed, and so on. This phase may last 
for a long time, while options are evaluated and opinions axe reconciled. We 
show this phase in Fig. 4.1 as the conversion of ideas to a high-level design.

Relational
Ideas ---------- ► H igh-L evel ---------- ^  Database

Desi§n Schem a

Figure 4.1: The database modeling and implementation process

Since the great majority of commercial database systems use the relational 
model, we might suppose that the design phase should use this model too. 
However, in practice it is often easier to start with a higher-level model and 
then convert the design to the relational model. The primary reason for doing so 
is that the relational model has only one concept — the relation — rather than 
several complementary concepts that more closely model real-world situations. 
Simplicity of concepts in the relational model is a great strength of the model, 
especially when it comes to efficient implementation of database operations. 
Yet that strength becomes a weakness when we do a preliminary design, which 
is why it often is helpful to begin by using a high-level design model.

There are several options for the notation in which the design is expressed. 
The first, and oldest, method is the “entity-relationship diagram,” and here is 
where we shall start in Section 4.1. A more recent trend is the use of UML 
(“Unified Modeling Language”), a notation that was originally designed for

Relational

DBM S
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describing object-oriented software projects, but which has been adapted to de
scribe database schemas as well. We shall see this model in Section 4.7. Finally, 
in Section 4.9, we shall consider ODL (“Object Description Language”), which 
was created to describe databases as collections of classes and their objects.

The next phase shown in Fig. 4.1 is the conversion of our high-level design 
to a relational design. This phase occurs only when we are confident of the 
high-level design. Whichever of the high-level models we use, there is a fairly 
mechanical way of converting the high-level design into a relational database 
schema, which then runs on a conventional DBMS. Sections 4.5 and 4.6 discuss 
conversion of E /R  diagrams to relational database schemas. Section 4.8 does 
the same for UML, and Section 4.10 serves for ODL.

4.1 The Entity/Relationship Model
In the entity-relationship model (or E /R  model), the structure of data is rep
resented graphically, as an “entity-relationship diagram,” using three principal 
element types:

1. Entity sets,

2 . Attributes, and

3. Relationships.

We shall cover each in turn.

4.1.1 Entity Sets
An entity is an abstract object of some sort, and a collection of similar entities 
forms an entity set. An entity in some ways resembles an “object” in the sense of 
object-oriented programming. Likewise, an entity set bears some resemblance 
to a class of objects. However, the E /R  model is a static concept, involving the 
structure of data and not the operations on data. Thus, one would not expect 
to find methods associated with an entity set as one would with a class.

E xam ple 4 .1 : Let us consider the design of our running movie-database ex
ample. Each movie is an entity, and the set of all movies constitutes an entity 
set. Likewise, the stars are entities, and the set of stars is an entity set. A 
studio is another kind of entity, and the set of studios is a third entity set that 
will appear in our examples. □

4.1.2 Attributes
Entity sets have associated attributes, which are properties of the entities in 
that set. For instance, the entity set Movies might be given attributes such 
as title and length. It should not surprise you if the attributes for the entity
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E /R  Model Variations

In some versions of the E /R  model, the type of an attribute can be either:

1. A primitive type, as in the version presented here.

2. A “struct,” as in C, or tuple with a fixed number of primitive com
ponents.

3. A set of values of one type: either primitive or a “struct” type.

For example, the type of an attribute in such a model could be a set of 
pairs, each pair consisting of an integer and a string.

set Movies resemble the attributes of the relation Movies in our example. It 
is common for entity sets to be implemented as relations, although not every 
relation in our final relational design will come from an entity set.

In our version of the E /R  model, we shall assume that attributes are of 
primitive types, such as strings, integers, or reals. There are other variations of 
this model in which attributes can have some limited structure; see the box on 
“E /R  Model Variations.”

4.1.3 Relationships
Relationships are connections among two or more entity sets. For instance, 
if Movies and Stars are two entity sets, we could have a relationship Stars-in 
that connects movies and stars. The intent is that a movie entity m  is related 
to a star entity s by the relationship Stars-in if s appears in movie m. While 
binary relationships, those between two entity sets, are by far the most common 
type of relationship, the E /R  model allows relationships to involve any number 
of entity sets. We shall defer discussion of these multiway relationships until 
Section 4.1.7.

4.1.4 Entity-Relationship Diagrams
An E /R  diagram is a graph representing entity sets, attributes, and relation
ships. Elements of each of these kinds are represented by nodes of the graph, 
and we use a special shape of node to indicate the kind, as follows:

• Entity sets are represented by rectangles.

• Attributes are represented by ovals.

• Relationships are represented by diamonds.
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Edges connect an entity set to its attributes and also connect a relationship to 
its entity sets.

Exam ple 4.2 : In Fig. 4.2 is an E /R  diagram that represents a simple database 
about movies. The entity sets are Movies, Stars, and Studios.

Figure 4.2: An entity-relationship diagram for the movie database

The Movies entity set has four of our usual attributes: title, year, length, 
and genre. The other two entity sets Stars and Studios happen to have the 
same two attributes: name and address, each with an obvious meaning. We 
also see two relationships in the diagram:

1. Stars-in is a relationship connecting each movie to the stars of that movie. 
This relationship consequently also connects stars to the movies in which 
they appeared.

2. Owns connects each movie to the studio that owns the movie. The arrow 
pointing to entity set Studios in Fig. 4.2 indicates that each movie is 
owned by at most one studio. We shall discuss uniqueness constraints 
such as this one in Section 4.1.6.

□

4.1.5 Instances of an E /R  Diagram
E /R  diagrams are a notation for describing schemas of databases. We may 
imagine that a database described by an E /R  diagram contains particular data, 
an “instance” of the database. Since the database is not implemented in the 
E /R  model, only designed, the instance never exists in the sense that a relation’s
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instances exist in a DBMS. However, it is often useful to visualize the database 
being designed as if it existed.

For each entity set, the database instance will have a particular finite set 
of entities. Each of these entities has particular values for each attribute. A 
relationship R that connects n entity sets E i ,E2,...  ,E„  may be imagined to 
have an “instance” that consists of a finite set of tuples (e i,e2, . . .  ,en), where 
each ei is chosen from the entities that are in the current instance of entity set 
Ei . We regard each of these tuples as “connected” by relationship R.

This set of tuples is called the relationship set for R. It is often helpful to 
visualize a relationship set as a table or relation. However, the “tuples” of a 
relationship set are not really tuples of a relation, since their components are 
entities rather than primitive types such as strings or integers. The columns of 
the table are headed by the names of the entity sets involved in the relationship, 
and each list of connected entities occupies one row of the table. As we shall 
see, however, when we convert relationships to relations, the resulting relation 
is not the same as the relationship set.

E xam ple 4 .3 : An instance of the Stars-in relationship could be visualized as 
a table with pairs such as:

Movies Stars
Basic Instinct Sharon Stone
Total Recall Arnold Schwarzenegger
Total Recall Sharon Stone

The members of the relationship set are the rows of the table. For instance, 
(Basic Instinct, Sharon Stone) is a tuple in the relationship set for the current 
instance of relationship Stars-in. □

4.1.6 M ultiplicity of Binary E /R  Relationships
In general, a binary relationship can connect any member of one of its entity 
sets to any number of members of the other entity set. However, it is common 
for there to be a restriction on the “multiplicity” of a relationship. Suppose R  
is a relationship connecting entity sets E  and F. Then:

• If each member of E  can be connected by R  to at most one member of F, 
then we say that R  is many-one from E  to F. Note that in a many-one 
relationship from E  to F, each entity in F  can be connected to many 
members of E. Similarly, if instead a member of F  can be connected by 
R  to at most one member of E, then we say R  is many-one from F  to E  
(or equivalently, one-many from E  to F).

• If R  is both many-one from E  to F  and many-one from F  to E, then we 
say that R  is one-one. In a one-one relationship an entity of either entity 
set can be connected to at most one entity of the other set.
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• If R  is neither many-one from E  to F  or from F  to E, then we say R  is 
many-many.

As we mentioned in Example 4.2, arrows can be used to indicate the multi
plicity of a relationship in an E /R  diagram. If a relationship is many-one from 
entity set E  to entity set F, then we place an arrow entering F. The arrow 
indicates that each entity in set E  is related to at most one entity in set F. 
Unless there is also an arrow on the edge to E, an entity in F  may be related 
to many entities in E.

E xam ple 4 .4 : A one-one relationship between entity sets E  and F  is repre
sented by arrows pointing to both E  and F. For instance, Fig. 4.3 shows two 
entity sets, Studios and Presidents, and the relationship Runs between them 
(attributes are omitted). We assume that a president can run only one studio 
and a studio has only one president, so this relationship is one-one, as indicated 
by the two arrows, one entering each entity set.

Remember that the arrow means “at most one”; it does not guarantee ex
istence of an entity of the set pointed to. Thus, in Fig. 4.3, we would expect 
that a “president” is surely associated with some studio; how could they be a 
“president” otherwise? However, a studio might not have a president at some 
particular time, so the arrow from Runs to Presidents truly means “at most one” 
and not “exactly one.” We shall discuss the distinction further in Section 4.3.3.
□

4.1.7 Multiway Relationships
The E /R  model makes it convenient to define relationships involving more than 
two entity sets. In practice, ternary (three-way) or higher-degree relationships 
are rare, but they occasionally are necessary to reflect the true state of affairs. 
A multiway relationship in an E /R  diagram is represented by lines from the 
relationship diamond to each of the involved entity sets.

E xam ple 4 .5 : In Fig. 4.4 is a relationship Contracts that involves a studio, 
a star, and a movie. This relationship represents that a studio has contracted 
with a particular star to act in a particular movie. In general, the value of 
an E /R  relationship can be thought of as a relationship set of tuples whose 
components are the entities participating in the relationship, as we discussed in 
Section 4.1.5. Thus, relationship Contracts can be described by triples of the 
form (studio, star, movie).

Studios Presidents

Figure 4.3: A one-one relationship
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Figure 4.4: A three-way relationship

In multiway relationships, an arrow pointing to an entity set E  means that if 
we select one entity from each of the other entity sets in the relationship, those 
entities are related to at most one entity in E. (Note that this rule generalizes 
the notation used for many-one, binary relationships.) Informally, we may think 
of a functional dependency with E  on the right and all the other entity sets of 
the relationship on the left.

In Fig. 4.4 we have an arrow pointing to entity set Studios, indicating that 
for a particular star and movie, there is only one studio with which the star has 
contracted for that movie. However, there are no arrows pointing to entity sets 
Stars or Movies. A studio may contract with several stars for a movie, and a 
star may contract with one studio for more than one movie. □

4.1.8 Roles in Relationships
It is possible that one entity set appears two or more times in a single relation
ship. If so, we draw as many lines from the relationship to the entity set as the 
entity set appears in the relationship. Each line to the entity set represents a 
different role that the entity set plays in the relationship. We therefore label the 
edges between the entity set and relationship by names, which we call “roles.”

E xam ple 4 .6 : In Fig. 4.5 is a relationship Sequel-of between the entity set 
Movies and itself. Each relationship is between two movies, one of which is 
the sequel of the other. To differentiate the two movies in a relationship, one 
line is labeled by the role Original and one by the role Sequel, indicating the
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Limits on Arrow Notation in Multiway Relationships

There are not enough choices of arrow or no-arrow on the lines attached to 
a relationship with three or more participants. Thus, we cannot describe 
every possible situation with arrows. For instance, in Fig. 4.4, the studio 
is really a function of the movie alone, not the star and movie jointly, 
since only one studio produces a movie. However, our notation does not 
distinguish this situation from the case of a three-way relationship where 
the entity set pointed to by the arrow is truly a function of both other 
entity sets. To handle all possible situations, we would have to give a set 
of functional dependencies involving the entity sets of the relationship.

Original

Figure 4.5: A relationship with roles

original movie and its sequel, respectively. We assume that a movie may have 
many sequels, but for each sequel there is only one original movie. Thus, the 
relationship is many-one from Sequel movies to Original movies, as indicated 
by the arrow in the E /R  diagram of Fig. 4.5. □

E xam ple 4.7 : As a final example that includes both a multiway relationship 
and an entity set with multiple roles, in Fig. 4.6 is a more complex version of 
the Contracts relationship introduced earlier in Example 4.5. Now, relationship 
Contracts involves two studios, a star, and a movie. The intent is that one 
studio, having a certain star under contract (in general, not for a particular 
movie), may further contract with a second studio to allow that star to act in 
a particular movie. Thus, the relationship is described by 4-tuples of the form 
(studiol, studio2 , star, movie), meaning that studio2 contracts with studiol for 
the use of studiol’s star by studio2 for the movie.

We see in Fig. 4.6 arrows pointing to Studios in both of its roles, as “owner” 
of the star and as producer of the movie. However, there are not arrows pointing 
to Stars or Movies. The rationale is as follows. Given a star, a movie, and a 
studio producing the movie, there can be only one studio that “owns” the 
star. (We assume a star is under contract to exactly one studio.) Similarly, 
only one studio produces a given movie, so given a star, a movie, and the 
star’s studio, we can determine a unique producing studio. Note that in both



4.1. THE ENTITY/RELATIONSH IP MODEL 133

Figure 4.6: A four-way relationship

cases we actually needed only one of the other entities to determine the unique 
entity—for example, we need only know the movie to determine the unique 
producing studio—but this fact does not change the multiplicity specification 
for the multiway relationship.

There are no arrows pointing to Stars or Movies. Given a star, the star’s 
studio, and a producing studio, there could be several different contracts allow
ing the star to act in several movies. Thus, the other three components in a 
relationship 4-tuple do not necessarily determine a unique movie. Similarly, a 
producing studio might contract with some other studio to use more than one 
of their stars in one movie. Thus, a star is not determined by the three other 
components of the relationship. □

Figure 4.7: A relationship with an attribute
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4.1.9 Attributes on Relationships
Sometimes it is convenient, or even essential, to associate attributes with a 
relationship, rather than with any one of the entity sets that the relationship 
connects. For example, consider the relationship of Fig. 4.4, which represents 
contracts between a star and studio for a movie.1 We might wish to record the 
salary associated with this contract. However, we cannot associate it with the 
star; a star might get different salaries for different movies. Similarly, it does 
not make sense to associate the salary with a studio (they may pay different 
salaries to different stars) or with a movie (different stars in a movie may receive 
different salaries).

However, we can associate a unique salary with the (star, movie, studio) 
triple in the relationship set for the Contracts relationship. In Fig. 4.7 we see 
Fig. 4.4 fleshed out with attributes. The relationship has attribute salary, while 
the entity sets have the same attributes that we showed for them in Fig. 4.2.

In general, we may place one or more attributes on any relationship. The 
values of these attributes are functionally determined by the entire tuple in the 
relationship set for that relation. In some cases, the attributes can be deter
mined by a subset of the entity sets involved in the relation, but presumably 
not by any single entity set (or it would make more sense to place the attribute 
on that entity set). For instance, in Fig. 4.7, the salary is really determined by 
the movie and star entities, since the studio entity is itself determined by the 
movie entity.

It is never necessary to place attributes on relationships. We can instead 
invent a new entity set, whose entities have the attributes ascribed to the rela
tionship. If we then include this entity set in the relationship, we can omit the 
attributes on the relationship itself. However, attributes on a relationship are 
a useful convention, which we shall continue to use where appropriate.

Exam ple 4 .8 : Let us revise the E /R  diagram of Fig. 4.7, which has the 
salary attribute on the Contracts relationship. Instead, we create an entity 
set Salaries, with attribute salary. Salaries becomes the fourth entity set of 
relationship Contracts. The whole diagram is shown in Fig. 4.8.

Notice that there is an arrow into the Salaries entity set in Fig. 4.8. That 
arrow is appropriate, since we know that the salary is determined by all the other 
entity sets involved in the relationship. In general, when we do a conversion 
from attributes on a relationship to an additional entity set, we place an arrow 
into that entity set. □

4.1.10 Converting Multiway Relationships to Binary
There are some data models, such as UML (Section 4.7) and ODL (Section 4.9), 
that limit relationships to be binary. Thus, while the E /R  model does not

1H ere, we have reverted  to  th e  earlier notion  o f three-w ay con trac ts in E xam ple 4.5, no t 
th e  four-w ay relationsh ip  of E xam ple 4.7.
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Figure 4.8: Moving the attribute to an entity set

require binary relationships, it is useful to observe that any relationship con
necting more than two entity sets can be converted to a collection of binary, 
many-one relationships. To do so, introduce a new entity set whose entities we 
may think of as tuples of the relationship set for the multiway relationship. We 
call this entity set a connecting entity set. We then introduce many-one rela
tionships from the connecting entity set to each of the entity sets that provide 
components of tuples in the original, multiway relationship. If an entity set 
plays more than one role, then it is the target of one relationship for each role.

E xam ple 4 .9 : The four-way Contracts relationship in Fig. 4.6 can be replaced 
by an entity set that we may also call Contracts. As seen in Fig. 4.9, it partici
pates in four relationships. If the relationship set for the relationship Contracts 
has a 4-tuple (studiol, studio2, star, movie) then the entity set Contracts has 
an entity e. This entity is linked by relationship Star-of to the entity star in 
entity set Stars. It is linked by relationship Movie-of to the entity movie in 
Movies. It is linked to entities studiol and studioB of Studios by relationships 
Studio-of-star and Producing-studio, respectively.

Note that we have assumed there are no attributes of entity set Contracts, 
although the other entity sets in Fig. 4.9 have unseen attributes. However, it is 
possible to add attributes, such as the date of signing, to entity set Contracts.
□

4.1.11 Subclasses in the E /R  Model
Often, an entity set contains certain entities that have special properties not 
associated with all members of the set. If so, we find it useful to define certain
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Figure 4.9: Replacing a multiway relationship by an entity set and binary 
relationships

special-case entity sets, or subclasses, each with its own special attributes and/or 
relationships. We connect an entity set to its subclasses using a relationship 
called isa (i.e., “an A  is a B ” expresses an “isa” relationship from entity set A 
to entity set B).

An isa relationship is a special kind of relationship, and to emphasize that 
it is unlike other relationships, we use a special notation: a triangle. One side 
of the triangle is attached to the subclass, and the opposite point is connected 
to the superclass. Every isa relationship is one-one, although we shall not draw 
the two arrows that are associated with other one-one relationships.

Exam ple 4.10: Among the special kinds of movies we might store in our 
example database are cartoons and murder mysteries. For each of these special 
movie types, we could define a subclass of the entity set Movies. For instance, let 
us postulate two subclasses: Cartoons and Murder-Mysteries. A cartoon has, in 
addition to the attributes and relationships of Movies, an additional relationship 
called Voices that gives us a set of stars who speak, but do not appear in the 
movie. Movies that are not cartoons do not have such stars. Murder-mysteries 
have an additional attribute weapon. The connections among the three entity 
sets Movies, Cartoons, and Murder-Mysteries is shown in Fig. 4.10. □

While, in principle, a collection of entity sets connected by isa relationships 
could have any structure, we shall limit isa-structures to trees, in which there
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Figure 4.10: Isa relationships in an E /R  diagram

is one root entity set (e.g., Movies in Fig. 4.10) that is the most general, with 
progressively more specialized entity sets extending below the root in a tree.

Suppose we have a tree of entity sets, connected by isa relationships. A 
single entity consists of components from one or more of these entity sets, as 
long as those components are in a subtree including the root. That is, if an 
entity e has a component c in entity set E, and the parent of E  in the tree is 
F, then entity e also has a component d in F. Further, c and d must be paired 
in the relationship set for the isa relationship from E  to F. The entity e has 
whatever attributes any of its components has, and it participates in whatever 
relationships any of its components participate in.

E xam ple 4.11: The typical movie, being neither a cartoon nor a murder- 
mystery, will have a component only in the root entity set Movies in Fig. 4.10. 
These entities have only the four attributes of Movies (and the two relationships
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The E /R  View of Subclasses

There is a significant resemblance between “isa” in the E /R  model and 
subclasses in object-oriented languages. In a sense, “isa” relates a subclass 
to its superclass. However, there is also a fundamental difference between 
the conventional E /R  view and the object-oriented approach: entities are 
allowed to have representatives in a tree of entity sets, while objects are 
assumed to exist in exactly one class or subclass.

The difference becomes apparent when we consider how the movie 
Roger Rabbit was handled in Example 4.11. In an object-oriented ap
proach, we would need for this movie a fourth entity set, “cartoon-murder- 
mystery,” which inherited all the attributes and relationships of Movies, 
Cartoons, and Murder-Mysteries. However, in the E /R  model, the effect 
of this fourth subclass is obtained by putting components of the movie 
Roger Rabbit in both the Cartoons and Murder-Mysteries entity sets.

of Movies — Stars-in and Owns — that are not shown in Fig. 4.10).
A cartoon that is not a murder-mystery will have two components, one in 

Movies and one in Cartoons. Its entity will therefore have not only the four 
attributes of Movies, but the relationship Voices. Likewise, a murder-mystery 
will have two components for its entity, one in Movies and one in Murder- 
Mysteries and thus will have five attributes, including weapon.

Finally, a movie like Roger Rabbit, which is both a cartoon and a murder- 
mystery, will have components in all three of the entity sets Movies, Cartoons, 
and Murder-Mysteries. The three components are connected into one entity by 
the isa relationships. Together, these components give the Roger Rabbit entity 
all four attributes of Movies plus the attribute weapon of entity set Murder- 
Mysteries and the relationship Voices of entity set Cartoons. □

4.1.12 Exercises for Section 4.1
Exercise 4 .1 .1: Design a database for a bank, including information about 
customers and their accounts. Information about a customer includes their 
name, address, phone, and Social Security number. Accounts have numbers, 
types (e.g., savings, checking) and balances. Also record the customer(s) who 
own an account. Draw the E /R  diagram for this database. Be sure to include 
arrows where appropriate, to indicate the multiplicity of a relationship.

Exercise 4 .1 .2: Modify your solution to Exercise 4.1.1 as follows:

a) Change your diagram so an account can have only one customer.

b) Further change your diagram so a customer can have only one account.
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! c) Change your original diagram of Exercise 4.1.1 so that a customer can 
have a set of addresses (which are street-city-state triples) and a set of 
phones. Remember that we do not allow attributes to have nonprimitive 
types, such as sets, in the E /R  model.

! d) Further modify your diagram so that customers can have a set of ad
dresses, and at each address there is a set of phones.

Exercise 4 .1 .3 : Give an E /R  diagram for a database recording information 
about teams, players, and their fans, including:

1. For each team, its name, its players, its team captain (one of its players), 
and the colors of its uniform.

2. For each player, his/her name.

3. For each fan, his/her name, favorite teams, favorite players, and favorite 
color.

Remember that a set of colors is not a suitable attribute type for teams. How 
can you get around this restriction?

Exercise 4 .1 .4 : Suppose we wish to add to the schema of Exercise 4.1.3 a 
relationship Led-by among two players and a team. The intention is that this 
relationship set consists of triples (playerl, player2, team) such that player 1 
played on the team at a time when some other player 2 was the team captain.

a) Draw the modification to the E /R  diagram.

b) Replace your ternary relationship with a new entity set and binary rela
tionships.

! c) Are your new binary relationships the same as any of the previously ex
isting relationships? Note that we assume the two players are different,
i.e., the team captain is not self-led.

Exercise 4 .1 .5 : Modify Exercise 4.1.3 to record for each player the history of 
teams on which they have played, including the start date and ending date (if 
they were traded) for each such team.

! E xercise 4 .1 .6 : Design a genealogy database with one entity set: People. The 
information to record about persons includes their name (an attribute), their 
mother, father, and children.

! E xercise 4 .1 .7 : Modify your “people” database design of Exercise 4.1.6 to 
include the following special types of people:

1. Females.
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2. Males.

3. People who are parents.

You may wish to distinguish certain other kinds of people as well, so relation
ships connect appropriate subclasses of people.

Exercise 4 .1 .8 : An alternative way to represent the information of Exer
cise 4.1.6 is to have a ternary relationship Family with the intent that in the 
relationship set for Family, triple (person, mother, father) is a person, their 
mother, and their father; all three are in the People entity set, of course.

a) Draw this diagram, placing arrows on edges where appropriate.

b) Replace the ternary relationship Family by an entity set and binary rela
tionships. Again place arrows to indicate the multiplicity of relationships.

Exercise 4 .1 .9 : Design a database suitable for a university registrar. This 
database should include information about students, departments, professors, 
courses, which students are enrolled in which courses, which professors are 
teaching which courses, student grades, TA’s for a course (TA’s are students), 
which courses a department offers, and any other information you deem appro
priate. Note that this question is more free-form than the questions above, and 
you need to make some decisions about multiplicities of relationships, appro
priate types, and even what information needs to be represented.

! Exercise 4 .1 .10: Informally, we can say that two E /R  diagrams “have the 
same information” if, given a real-world situation, the instances of these two di
agrams that reflect this situation can be computed from one another. Consider 
the E /R  diagram of Fig. 4.6. This four-way relationship can be decomposed 
into a three-way relationship and a binary relationship by taking advantage 
of the fact that for each movie, there is a unique studio that produces that 
movie. Give an E /R  diagram without a four-way relationship that has the 
same information as Fig. 4.6.

4.2 Design Principles
We have yet to learn many of the details of the E /R  model, but we have enough 
to begin study of the crucial issue of what constitutes a good design and what 
should be avoided. In this section, we offer some useful design principles.

4.2.1 Faithfulness
First and foremost, the design should be faithful to the specifications of the 
application. That is, entity sets and their attributes should reflect reality. You 
can’t attach an attribute number-of-cylinders to Stars, although that attribute
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would make sense for an entity set Automobiles. Whatever relationships are 
asserted should make sense given what we know about the part of the real 
world being modeled.

E xam ple 4 .12: If we define a relationship Stars-in between Stars and Movies, 
it should be a many-many relationship. The reason is that an observation of the 
real world tells us that stars can appear in more than one movie, and movies 
can have more than one star. It is incorrect to declare the relationship Stars-in 
to be many-one in either direction or to be one-one. □

E xam ple 4 .13 : On the other hand, sometimes it is less obvious what the 
real world requires us to do in our E /R  design. Consider, for instance, entity 
sets Courses and Instructors, with a relationship Teaches between them. Is 
Teaches many-one from Courses to Instructors? The answer lies in the policy 
and intentions of the organization creating the database. It is possible that 
the school has a policy that there can be only one instructor for any course. 
Even if several instructors may “team-teach” a course, the school may require 
that exactly one of them be listed in the database as the instructor responsible 
for the course. In either of these cases, we would make Teaches a many-one 
relationship from Courses to Instructors.

Alternatively, the school may use teams of instructors regularly and wish 
its database to allow several instructors to be associated with a course. Or, 
the intent of the Teaches relationship may not be to reflect the current teacher 
of a course, but rather those who have ever taught the course, or those who 
are capable of teaching the course; we cannot tell simply from the name of the 
relationship. In either of these cases, it would be proper to make Teaches be 
many-many. □

4.2.2 Avoiding Redundancy
We should be careful to say everything once only. The problems we discussed 
in Section 3.3 regarding redundancy and anomalies are typical of problems that 
can arise in E /R  designs. However, in the E /R  model, there are several new 
mechanisms whereby redundancy and other anomalies can arise.

For instance, we have used a relationship Owns between movies and studios. 
We might also choose to have an attribute studioName of entity set Movies. 
While there is nothing illegal about doing so, it is dangerous for several reasons.

1. Doing so leads to repetition of a fact, with the result that extra space 
is required to represent the data, once we convert the E /R  design to a 
relational (or other type of) concrete implementation.

2. There is an update-anomaly potential, since we might change the rela
tionship but not the attribute, or vice-versa.

We shall say more about avoiding anomalies in Sections 4.2.4 and 4.2.5.
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4.2.3 Simplicity Counts
Avoid introducing more elements into your design than is absolutely necessary.

Exam ple 4.14: Suppose that instead of a relationship between Movies and 
Studios we postulated the existence of “movie-holdings,” the ownership of a 
single movie. We might then create another entity set Holdings. A one-one 
relationship Represents could be established between each movie and the unique 
holding that represents the movie. A many-one relationship from Holdings to 
Studios completes the picture shown in Fig. 4.11.

Figure 4.11: A poor design with an unnecessary entity set

Technically, the structure of Fig. 4.11 truly represents the real world, since 
it is possible to go from a movie to its unique owning studio via Holdings. 
However, Holdings serves no useful purpose, and we axe better off without it. 
It makes programs that use the movie-studio relationship more complicated, 
wastes space, and encourages errors. □

4.2.4 Choosing the Right Relationships
Entity sets can be connected in various ways by relationships. However, adding 
to our design every possible relationship is not often a good idea. Doing so 
can lead to redundancy, update anomalies, and deletion anomalies, where the 
connected pairs or sets of entities for one relationship can be deduced from 
one or more other relationships. We shall illustrate the problem and what 
to do about it with two examples. In the first example, several relationships 
could represent the same information; in the second, one relationship could be 
deduced from several others.

Exam ple 4.15: Let us review Fig. 4.7, where we connected movies, stars, 
and studios with a three-way relationship Contracts. We omitted from that 
figure the two binary relationships Stars-in and Owns from Fig. 4.2. Do we 
also need these relationships, between Movies and Stars, and between Movies 
and Studios, respectively? The answer is: “we don’t know; it depends on our 
assumptions regarding the three relationships in question.”

It might be possible to deduce the relationship Stars-in from Contracts. If 
a star can appear in a movie only if there is a contract involving that star, that 
movie, and the owning studio for the movie, then there truly is no need for 
relationship Stars-in. We could figure out all the star-movie pairs by looking 
at the star-movie-studio triples in the relationship set for Contracts and taking 
only the star and movie components, i.e., projecting Contracts onto Stars-in.
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However, if a star can work on a movie without there being a contract — or 
what is more likely, without there being a contract that we know about in our 
database — then there could be star-movie pairs in Stars-in that axe not part 
of star-movie-studio triples in Contracts. In that case, we need to retain the 
Stars-in relationship.

A similar observation applies to relationship Owns. If for every movie, there 
is at least one contract involving that movie, its owning studio, and some star for 
that movie, then we can dispense with Owns. However, if there is the possibility 
that a studio owns a movie, yet has no stars under contract for that movie, or 
no such contract is known to our database, then we must retain Owns.

In summary, we cannot tell you whether a given relationship will be redun
dant. You must find out from those who wish the database implemented what 
to expect. Only then can you make a rational decision about whether or not to 
include relationships such as Stars-in or Owns. □

E xam ple 4 .16 : Now, consider Fig. 4.2 again. In this diagram, there is no 
relationship between stars and studios. Yet we can use the two relationships 
Stars-in and Owns to build a connection by the process of composing those 
two relationships. That is, a star is connected to some movies by Stars-in, and 
those movies are connected to studios by Owns. Thus, we could say that a star 
is connected to the studios that own movies in which the star has appeared.

Would it make sense to have a relationship Works-for, as suggested in 
Fig. 4.12, between Stars and Studios too? Again, we cannot tell without know
ing more. First, what would the meaning of this relationship be? If it is to 
mean “the star appeared in at least one movie of this studio,” then probably 
there is no good reason to include it in the diagram. We could deduce this 
information from Stars-in and Owns instead.

Figure 4.12: Adding a relationship between Stars and Studios

However, perhaps we have other information about stars working for stu
dios that is not implied by the connection through a movie. In that case, a
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relationship connecting stars directly to studios might be useful and would not 
be redundant. Alternatively, we might use a relationship between stars and 
studios to mean something entirely different. For example, it might represent 
the fact that the star is under contract to the studio, in a manner unrelated 
to any movie. As we suggested in Example 4.7, it is possible for a star to be 
under contract to one studio and yet work on a movie owned by another stu
dio. In this case, the information found in the new Works-for relation would 
be independent of the Stars-in and Owns relationships, and would surely be 
nonredundant. □

4.2.5 Picking the Right Kind of Element
Sometimes we have options regarding the type of design element used to repre
sent a real-world concept. Many of these choices are between using attributes 
and using entity set/relationship combinations. In general, an attribute is sim
pler to implement than either an entity set or a relationship. However, making 
everything an attribute will usually get us into trouble.

Exam ple 4.17: Let us consider a specific problem. In Fig. 4.2, were we wise 
to make studios an entity set? Should we instead have made the name and 
address of the studio be attributes of movies and eliminated the Studio entity 
set? One problem with doing so is that we repeat the address of the studio for 
each movie. We can also have an update anomaly if we change the address for 
one movie but not another with the same studio, and we can have a deletion 
anomaly if we delete the last movie owned by a given studio.

On the other hand, if we did not record addresses of studios, then there 
is no harm in making the studio name an attribute of movies. We have no 
anomalies in this case. Saying the name of a studio for each movie is not true 
redundancy, since we must represent the owner of each movie somehow, and 
saying the name of the studio is a reasonable way to do so. □

We can abstract what we have observed in Example 4.17 to give the con
ditions under which we prefer to use an attribute instead of an entity set. 
Suppose E  is an entity set. Here are conditions that E  must obey in order for 
us to replace E  by an attribute or attributes of several other entity sets.

1. All relationships in which E  is involved must have arrows entering E. 
That is, E  must be the “one” in many-one relationships, or its general
ization for the case of multiway relationships.

2. If E  has more than one attribute, then no attribute depends on the other 
attributes, the way address depends on name for Studios. That is, the 
only key for E  is all its attributes.

3. No relationship involves E  more than once.

If these conditions are met, then we can replace entity set E  as follows:
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a) If there is a many-one relationship R  from some entity set F  to E, then re
move R  and make the attributes of E  be attributes of F, suitably renamed 
if they conflict with attribute names for F. In effect, each F-entity takes, 
as attributes, the name of the unique, related identity.2 For instance, 
Movies entities could take their studio name as an attribute, should we 
dispense with studio addresses.

b) If there is a multiway relationship R  with an arrow to E, make the at
tributes of E  be attributes of R  and delete the arc from R  to E. An 
example of this transformation is replacing Fig. 4.8, where there is an 
entity set Salaries with a number as its lone attribute, by its original 
diagram in Fig. 4.7.

E xam ple 4 .18 : Let us consider a point where there is a tradeoff between using 
a multiway relationship and using a connecting entity set with several binary 
relationships. We saw a four-way relationship Contracts among a star, a movie, 
and two studios in Fig. 4.6. In Fig. 4.9, we mechanically converted it to an 
entity set Contracts. Does it matter which we choose?

As the problem was stated, either is appropriate. However, should we change 
the problem just slightly, then we are almost forced to choose a connecting entity 
set. Let us suppose that contracts involve one star, one movie, but any set of 
studios. This situation is more complex than the one in Fig. 4.6, where we 
had two studios playing two roles. In this case, we can have any number of 
studios involved, perhaps one to do production, one for special effects, one for 
distribution, and so on. Thus, we cannot assign roles for studios.

It appears that a relationship set for the relationship Contracts must contain 
triples of the form (star, movie, set-of-studios), and the relationship Contracts 
itself involves not only the usual Stars and Movies entity sets, but a new entity 
set whose entities are sets of studios. While this approach is possible, it seems 
unnatural to think of sets of studios as basic entities, and we do not recommend 
it.

A better approach is to think of contracts as an entity set. As in Fig. 4.9, 
a contract entity connects a star, a movie and a set of studios, but now there 
must be no limit on the number of studios. Thus, the relationship between 
contracts and studios is many-many, rather than many-one as it would be if 
contracts were a true “connecting” entity set. Figure 4.13 sketches the E /R  
diagram. Note that a contract is related to a single star and to a single movie, 
but to any number of studios. □

4.2.6 Exercises for Section 4.2
E xercise 4 .2 .1 : In Fig. 4.14 is an E /R  diagram for a bank database involv
ing customers and accounts. Since customers may have several accounts, and

2 In a  s itu a tio n  w here an  F -e n tity  is n o t re la ted  to  any i?-entity , th e  new  a ttr ib u te s  of F  
would be  given special “null” values to  ind ica te  th e  absence o f a  re la ted  .E-entity. A sim ilar 
a rrangem en t w ould be used  for th e  new  a ttr ib u te s  of i t  in case (b).
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\ S t a r - o f  y K  M ovie—o f  y

Stars Contracts M ovies

S tudios-oi

Studios

Figure 4.13: Contracts connecting a star, a movie, and a set of studios

accounts may be held jointly by several customers, we associate with each cus
tomer an “account set,” and accounts are members of one or more account sets. 
Assuming the meaning of the various relationships and attributes are as ex
pected given their names, criticize the design. What design rules are violated? 
Why? What modifications would you suggest?

Figure 4.14: A poor design for a bank database

Exercise 4.2 .2: Under what circumstances (regarding the unseen attributes 
of Studios and Presidents) would you recommend combining the two entity sets 
and relationship in Fig. 4.3 into a single entity set and attributes?

Exercise 4 .2 .3 : Suppose we delete the attribute address from Studios in 
Fig. 4.7. Show how we could then replace an entity set by an attribute. Where
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would that attribute appear?

E xercise 4 .2 .4 : Give choices of attributes for the following entity sets in 
Fig. 4.13 that will allow the entity set to be replaced by an attribute:

a) Stars.

b) Movies.

! c) Studios.

!! Exercise 4 .2 .5 : In this and following exercises we shall consider two design 
options in the E /R  model for describing births. At a birth, there is one baby 
(twins would be represented by two births), one mother, any number of nurses, 
and any number of doctors. Suppose, therefore, that we have entity sets Babies, 
Mothers, Nurses, and Doctors. Suppose we also use a relationship Births, which 
connects these four entity sets, as suggested in Fig. 4.15. Note that a tuple of 
the relationship set for Births has the form (baby, mother, nurse, doctor). If 
there is more than one nurse and/or doctor attending a birth, then there will 
be several tuples with the same baby and mother, one for each combination of 
nurse and doctor.

Figure 4.15: Representing births by a multiway relationship

There are certain assumptions that we might wish to incorporate into our 
design. For each, tell how to add arrows or other elements to the E /R  diagram 
in order to express the assumption.

a) For every baby, there is a unique mother.

b) For every combination of a baby, nurse, and doctor, there is a unique 
mother.

c) For every combination of a baby and a mother there is a unique doctor.

! E xercise 4 .2 .6 : Another approach to the problem of Exercise 4.2.5 is to con
nect the four entity sets Babies, Mothers, Nurses, and Doctors by an entity set
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Figure 4.16: Representing births by an entity set

Births, with four relationships, one between Births and each of the other entity 
sets, as suggested in Fig. 4.16. Use arrows (indicating that certain of these 
relationships are many-one) to represent the following conditions:

a) Every baby is the result of a unique birth, and every birth is of a unique 
baby.

b) In addition to (a), every baby has a unique mother.

c) In addition to (a) and (b), for every birth there is a unique doctor.

In each case, what design flaws do you see?

!! Exercise 4 .2 .7 : Suppose we change our viewpoint to allow a birth to involve 
more than one baby born to one mother. How would you represent the fact 
that every baby still has a unique mother using the approaches of Exercises 
4.2.5 and 4.2.6?

4.3 Constraints in the E /R  Model
The E /R  model has several ways to express the common kinds of constraints 
on the data that will populate the database being designed. Like the relational 
model, there is a way to express the idea that an attribute or attributes are a key 
for an entity set. We have already seen how an arrow connecting a relationship 
to an entity set serves as a “functional dependency.” There is also a way to 
express a referential-integrity constraint, where an entity in one set is required 
to have an entity in another set to which it is related.

4.3.1 Keys in the E /R  Model
A key for an entity set E  is a set K  of one or more attributes such that, given 
any two distinct entities ei and e2 in E, e\ and e2 cannot have identical values 
for each of the attributes in the key K . If K  consists of more than one attribute, 
then it is possible for e\ and e2 to agree in some of these attributes, but never 
in all attributes. Some important points to remember are:
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• Every entity set must have a key, although in some cases — isa-hierarchies 
and “weak” entity sets (see Section 4.4), the key actually belongs to an
other entity set.

• There can be more than one possible key for an entity set. However, it 
is customary to pick one key as the “primary key,” and to act as if that 
were the only key.

• When an entity set is involved in an isa-hierarchy, we require that the root 
entity set have all the attributes needed for a key, and that the key for 
each entity is found from its component in the root entity set, regardless 
of how many entity sets in the hierarchy have components for the entity.

In our running movies example, we have used title and year as the key for 
Movies, counting on the observation that it is unlikely that two movies with 
the same title would be released in one year. We also decided that it was safe 
to use name as a key for MovieStar, believing that no real star would ever want 
to use the name of another star.

4.3.2 Representing Keys in the E /R  Model

In our E/R-diagram notation, we underline the attributes belonging to a key for 
an entity set. For example, Fig. 4.17 reproduces our E /R  diagram for movies, 
stars, and studios from Fig. 4.2, but with key attributes underlined. Attribute 
name is the key for Stars. Likewise, Studios has a key consisting of only its own 
attribute name.

Figure 4.17: E /R  diagram; keys are indicated by underlines
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The attributes title and year together form the key for Movies. Note that 
when several attributes are underlined, as in Fig. 4.17, then they are each 
members of the key. There is no notation for representing the situation where 
there are several keys for an entity set; we underline only the primary key. You 
should also be aware that in some unusual situations, the attributes forming 
the key for an entity set do not all belong to the entity set itself. We shall defer 
this matter, called “weak entity sets,” until Section 4.4.

4.3.3 Referential Integrity
Recall our discussion of referential-integrity constraints in Section 2.5.2. These 
constraints say that a value appearing in one context must also appear in 
another. For example, let us consider the many-one relationship Owns from 
Movies to Studios in Fig. 4.2. The many-one requirement simply says that no 
movie can be owned by more than one studio. It does not say that a movie 
must surely be owned by a studio, or that the owning studio must be present 
in the Studios entity set, as stored in our database. An appropriate referential 
integrity constraint on relationship Owns is that for each movie, the owning 
studio (the entity “referenced” by the relationship for this movie) must exist in 
our database.

The arrow notation in E /R  diagrams is able to indicate whether a rela
tionship is expected to support referential integrity in one or more directions. 
Suppose R  is a relationship from entity set E  to entity set F. A rounded arrow
head pointing to F  indicates not only that the relationship is many-one from E  
to F, but that the entity of set F  related to a given entity of set E  is required 
to exist. The same idea applies when R  is a relationship among more than two 
entity sets.

Exam ple 4.19: Figure 4.18 shows some appropriate referential integrity con
straints among the entity sets Movies, Studios, and Presidents. These entity sets 
and relationships were first introduced in Figs. 4.2 and 4.3. We see a rounded 
arrow entering Studios from relationship Owns. That arrow expresses the refer
ential integrity constraint that every movie must be owned by one studio, and 
this studio is present in the Studios entity set.

M ovies

Figure 4.18: E /R  diagram showing referential integrity constraints

Similarly, we see a rounded arrow entering Studios from Runs. That arrow 
expresses the referential integrity constraint that every president runs a studio 
that exists in the Studios entity set.

Note that the arrow to Presidents from Runs remains a pointed arrow. That 
choice reflects a reasonable assumption about the relationship between studios
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and their presidents. If a studio ceases to exist, its president can no longer be 
called a president, so we would expect the president of the studio to be deleted 
from the entity set Presidents. Hence there is a rounded arrow to Studios. On 
the other hand, if a president were fired or resigned, the studio would continue 
to exist. Thus, we place an ordinary, pointed arrow to Presidents, indicating 
that each studio has at most one president, but might have no president at 
some time. □

4.3.4 Degree Constraints
In the E /R  model, we can attach a bounding number to the edges that connect 
a relationship to an entity set, indicating limits on the number of entities that 
can be connected to any one entity of the related entity set. For example, we 
could choose to place a constraint on the degree of a relationship, such as that 
a movie entity cannot be connected by relationship Stars-in to more than 10 
star entities.

Figure 4.19: Representing a constraint on the number of stars per movie

Figure 4.19 shows how we can represent this constraint. As another example, 
we can think of the arrow as a synonym for the constraint “< 1,” and we can 
think of the rounded arrow of Fig. 4.18 as standing for the constraint “=  1.”

4.3.5 Exercises for Section 4.3
E xercise 4 .3 .1 : For your E /R  diagrams of:

a) Exercise 4.1.1.

b) Exercise 4.1.3.

c) Exercise 4.1.6.

(i) Select and specify keys, and (ii) Indicate appropriate referential integrity 
constraints.

E xercise 4 .3 .2 : We may think of relationships in the E /R  model as having 
keys, just as entity sets do. Let R  be a relationship among the entity sets 
E i, E 2 , . . .  ,E n . Then a key for R  is a set K  of attributes chosen from the 
attributes of E i,E 2, . . .  , E n such that if (e i,e2). . .  ,en) and ( / i , / 2, - - - ,fn )  
are two different tuples in the relationship set for R, then it is not possible that 
these tuples agree in all the attributes of K . Now, suppose n =  2; that is, R  
is a binary relationship. Also, for each i, let Ki be a set of attributes that is a 
key for entity set Ei. In terms of Ei and E2, give a smallest possible key for R  
under the assumption that:
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a) R  is many-many.

b) R  is many-one from Ei to E2.

c) R  is many-one from E 2 to E \.

d) R  is one-one.

!! Exercise 4.3.3: Consider again the problem of Exercise 4.3.2, but with n 
allowed to be any number, not just 2. Using only the information about which 
arcs from R  to the E l’s have arrows, show how to find a smallest possible key 
K  for R  in terms of the K i s.

4.4 Weak Entity Sets
It is possible for an entity set’s key to be composed of attributes, some or all 
of which belong to another entity set. Such an entity set is called a weak entity 
set.

4.4.1 Causes of Weak Entity Sets
There are two principal reasons we need weak entity sets. First, sometimes 
entity sets fall into a hierarchy based on classifications unrelated to the “isa 
hierarchy” of Section 4.1.11. If entities of set E  are subunits of entities in set 
F, then it is possible that the names of .E-entities axe not unique until we take 
into account the name of the F-entity to which the E  entity is subordinate. 
Several examples will illustrate the problem.

Exam ple 4.20: A movie studio might have several film crews. The crews 
might be designated by a given studio as crew 1, crew 2, and so on. However, 
other studios might use the same designations for crews, so the attribute number 
is not a key for crews. Rather, to name a crew uniquely, we need to give 
both the name of the studio to which it belongs and the number of the crew. 
The situation is suggested by Fig. 4.20. The double-rectangle indicates a weak 
entity set, and the double-diamond indicates a many-one relationship that helps 
provide the key for the weak entity set. The notation will be explained further 
in Section 4.4.3. The key for weak entity set Crews is its own number attribute 
and the name attribute of the unique studio to which the crew is related by the 
many-one Unit-of relationship. □

Exam ple 4.21: A species is designated by its genus and species names. For 
example, humans are of the species Homo sapiens-, Homo is the genus name 
and sapiens the species name. In general, a genus consists of several species, 
each of which has a name beginning with the genus name and continuing with 
the species name. Unfortunately, species names, by themselves, are not unique.
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Figure 4.20: A weak entity set for crews, and its connections

Two or more genera may have species with the same species name. Thus, to 
designate a species uniquely we need both the species name and the name of the 
genus to which the species is related by the Belongs-to relationship, as suggested 
in Fig. 4.21. Species is a weak entity set whose key comes partially from its 
genus. □

Figure 4.21: Another weak entity set, for species

The second common source of weak entity sets is the connecting entity 
sets that we introduced in Section 4.1.10 as a way to eliminate a multiway 
relationship.3 These entity sets often have no attributes of their own. Their 
key is formed from the attributes that are the key attributes for the entity sets 
they connect.

E xam ple 4 .22: In Fig. 4.22 we see a connecting entity set Contracts that 
replaces the ternary relationship Contracts of Example 4.5. Contracts has an 
attribute salary, but this attribute does not contribute to the key. Rather, the 
key for a contract consists of the name of the studio and the star involved, plus 
the title and year of the movie involved. □

4.4.2 Requirements for Weak Entity Sets
We cannot obtain key attributes for a weak entity set indiscriminately. Rather, 
if E  is a weak entity set then its key consists of:

1. Zero or more of its own attributes, and

3R em em ber th a t  th e re  is no p a r tic u la r  requ irem en t in th e  E /R  m odel th a t  m ultiw ay re
lationsh ips be e lim inated , a lthough  th is  requ irem ent ex ists in som e o th e r d a tab ase  design 
m odels.
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Figure 4.22: Connecting entity sets are weak

2. Key attributes from entity sets that are reached by certain many-one 
relationships from E  to other entity sets. These many-one relationships 
are called supporting relationships for E, and the entity sets reached from 
E  are supporting entity sets.

In order for R, a many-one relationship from E  to some entity set F, to be a 
supporting relationship for E, the following conditions must be obeyed:

a) R  must be a binary, many-one relationship4 from E  to F.

b) R  must have referential integrity from E  to F. That is, for every id
entity, there must be exactly one existing identity related to it by R. Put 
another way, a rounded arrow from R t o F  must be justified.

c) The attributes that F  supplies for the key of E  must be key attributes of 
F.

d) However, if F  is itself weak, then some or all of the key attributes of F  
supplied to E  will be key attributes of one or more entity sets G to which 
F  is connected by a supporting relationship. Recursively, if G is weak, 
some key attributes of G will be supplied from elsewhere, and so on.

4R em em ber th a t  a  one-one relationship is a  special case of a  m any-one relationship. W hen 
we say a  relationship  m ust be m any-one, we always include one-one relationships as well.
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e) If there are several different supporting relationships from E  to the same 
entity set F,  then each relationship is used to supply a copy of the key 
attributes of F  to help form the key of E. Note that an entity e from 
E  may be related to different entities in F  through different supporting 
relationships from E. Thus, the keys of several different entities from F  
may appear in the key values identifying a particular entity e from E.

The intuitive reason why these conditions are needed is as follows. Consider 
an entity in a weak entity set, say a crew in Example 4.20. Each crew is unique, 
abstractly. In principle we can tell one crew from another, even if they have 
the same number but belong to different studios. It is only the data about 
crews that makes it hard to distinguish crews, because the number alone is not 
sufficient. The only way we can associate additional information with a crew 
is if there is some deterministic process leading to additional values that make 
the designation of a crew unique. But the only unique values associated with 
an abstract crew entity are:

1. Values of attributes of the Crews entity set, and

2. Values obtained by following a relationship from a crew entity to a unique 
entity of some other entity set, where that other entity has a unique 
associated value of some kind. That is, the relationship followed must be 
many-one to the other entity set F , and the associated value must be part 
of a key for F.

4.4.3 Weak Entity Set Notation
We shall adopt the following conventions to indicate that an entity set is weak 
and to declare its key attributes.

1. If an entity set is weak, it will be shown as a rectangle with a double 
border. Examples of this convention are Crews in Fig. 4.20 and Contracts 
in Fig. 4.22.

2. Its supporting many-one relationships will be shown as diamonds with a 
double border. Examples of this convention are Unit-of in Fig. 4.20 and 
all three relationships in Fig. 4.22.

3. If an entity set supplies any attributes for its own key, then those at
tributes will be underlined. An example is in Fig. 4.20, where the number 
of a crew participates in its own key, although it is not the complete key 
for Crews.

We can summarize these conventions with the following rule:

• Whenever we use an entity set E  with a double border, it is weak. The key 
for E  is whatever attributes of E  are underlined plus the key attributes of 
those entity sets to which E  is connected by many-one relationships with 
a double border.
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We should remember that the double-diamond is used only for supporting 
relationships. It is possible for there to be many-one relationships from a weak 
entity set that are not supporting relationships, and therefore do not get a 
double diamond.

Exam ple 4.23: In Fig. 4.22, the relationship Studio-of need not be a support
ing relationship for Contracts. The reason is that each movie has a unique own
ing studio, determined by the (not shown) many-one relationship from Movies 
to Studios. Thus, if we are told the name of a star and a movie, there is at most 
one contract with any studio for the work of that star in that movie. In terms 
of our notation, it would be appropriate to use an ordinary single diamond, 
rather than the double diamond, for Studio-of in Fig. 4.22. □

4.4.4 Exercises for Section 4.4

Exercise 4 .4 .1 : One way to represent students and the grades they get in 
courses is to use entity sets corresponding to students, to courses, and to “en
rollments.” Enrollment entities form a “connecting” entity set between students 
and courses and can be used to represent not only the fact that a student is 
taking a certain course, but the grade of the student in the course. Draw an 
E /R  diagram for this situation, indicating weak entity sets and the keys for the 
entity sets. Is the grade part of the key for enrollments?

Exercise 4 .4 .2 : Modify your solution to Exercise 4.4.1 so that we can record 
grades of the student for each of several assignments within a course. Again, 
indicate weak entity sets and keys.

Exercise 4 .4 .3 : For your E /R  diagrams of Exercise 4.2.6(a)-(c), indicate weak 
entity sets, supporting relationships, and keys.

Exercise 4.4 .4: Draw E /R  diagrams for the following situations involving 
weak entity sets. In each case indicate keys for entity sets.

a) Entity sets Courses and Departments. A course is given by a unique 
department, but its only attribute is its number. Different departments 
can offer courses with the same number. Each department has a unique 
name.

! b) Entity sets Leagues, Teams, and Players. League names are unique. No 
league has two teams with the same name. No team has two players with 
the same number. However, there can be players with the same number 
on different teams, and there can be teams with the same name in different 
leagues.
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4.5 From E /R  Diagrams to Relational Designs

To a first approximation, converting an E /E  design to a relational database 
schema is straightforward:

• Turn each entity set into a relation with the same set of attributes, and

• Replace a relationship by a relation whose attributes are the keys for the 
connected entity sets.

While these two rules cover much of the ground, there are also several special 
situations that we need to deal with, including:

1. Weak entity sets cannot be translated straightforwardly to relations.

2. “Isa” relationships and subclasses require careful treatment.

3. Sometimes, we do well to combine two relations, especially the relation for 
an entity set E  and the relation that comes from a many-one relationship 
from E  to some other entity set.

4.5.1 Prom Entity Sets to Relations

Let us first consider entity sets that are not weak. We shall take up the mod
ifications needed to accommodate weak entity sets in Section 4.5.4. For each 
non-weak entity set, we shall create a relation of the same name and with the 
same set of attributes. This relation will not have any indication of the rela
tionships in which the entity set participates; we’ll handle relationships with 
separate relations, as discussed in Section 4.5.2.

E xam ple 4 .24: Consider the three entity sets Movies, Stars and Studios from 
Fig. 4.17, which we reproduce here as Fig. 4.23. The attributes for the Movies 
entity set are title, year, length, and genre. As a result, this relation Movies 
looks just like the relation Movies of Fig. 2.1 with which we began Section 2.2.

Next, consider the entity set Stars from Fig. 4.23. There are two attributes, 
name and address. Thus, we would expect the corresponding Stars relation to 
have schema Stars (name, address) and for

name address
Carrie Fisher 
Mark Hamill 
Harrison Ford

123 Maple St 
456 Oak Rd., 
789 Palm Dr.

., Hollywood 
Brentwood 
, Beverly Hills

to be a typical instance. □
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Figure 4.23: E /R  diagram for the movie database

4.5.2 From E /R  Relationships to Relations
Relationships in the E /R  model are also represented by relations. The relation 
for a given relationship R  has the following attributes:

1. For each entity set involved in relationship R, we take its key attribute 
or attributes as part of the schema of the relation for R.

2. If the relationship has attributes, then these are also attributes of relation 
R.

If one entity set is involved several times in a relationship, in different roles, 
then its key attributes each appear as many times as there are roles. We must 
rename the attributes to avoid name duplication. More generally, should the 
same attribute name appear twice or more among the attributes of R  itself and 
the keys of the entity sets involved in relationship R, then we need to rename 
to avoid duplication.

Exam ple 4.25: Consider the relationship Owns of Fig. 4.23. This relationship 
connects entity sets Movies and Studios. Thus, for the schema of relation Owns 
we use the key for Movies, which is title and year, and the key of Studios, which 
is name. That is, the schema for relation Owns is:

Owns(title, y ea r, studioName)

A sample instance of this relation is:
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title year studioName
S ta r Wars 1977 Fox
Gone With th e  Wind 1939 MGM
Wayne’s World 1992 Paramount

We have chosen the attribute studioName for clarity; it corresponds to the 
attribute name of Studios. □

title year starName
S ta r Wars 1977 C arrie  F ish er
S ta r Wars 1977 Mark Hamill
S ta r  Wars 1977 H arrison Ford
Gone With th e  Wind 1939 Vivien Leigh
Wayne’s World 1992 Dana Carvey
Wayne’s World 1992 Mike Meyers

Figure 4.24: A relation for relationship Stars-In

E xam ple 4 .26 : Similarly, the relationship Stars-in of Fig. 4.23 can be trans
formed into a relation with the attributes t i t l e  and year (the key for Movies) 
and attribute starName. which is the key for entity set Stars. Figure 4.24 shows 
a sample relation S ta rs - in . □

Figure 4.25: The relationship Contracts

E xam ple 4 .27 : Multiway relationships are also easy to convert to relations. 
Consider the four-way relationship Contracts of Fig. 4.6, reproduced here as 
Fig. 4.25, involving a star, a movie, and two studios — the first holding the 
star’s contract and the second contracting for that star’s services in that movie. 
We represent this relationship by a relation C ontracts whose schema consists 
of the attributes from the keys of the following four entity sets:
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1. The key starName for the star.

2. The key consisting of attributes t i t l e  and year for the movie.

3. The key studioOf S ta r indicating the name of the first studio; recall we 
assume the studio name is a key for the entity set Studios.

4. The key producingStudio indicating the name of the studio that will 
produce the movie using that star.

That is, the relation schema is:

Contracts(starN am e, t i t l e ,  year, s tu d io O fS ta r, producingStudio)

Notice that we have been inventive in choosing attribute names for our relation 
schema, avoiding “name” for any attribute, since it would be unobvious whether 
that referred to a star’s name or studio’s name, and in the latter case, which 
studio role. Also, were there attributes attached to entity set Contracts, such 
as salary, these attributes would be added to the schema of relation Contracts.
□

4.5.3 Combining Relations
Sometimes, the relations that we get from converting entity sets and relation
ships to relations are not the best possible choice of relations for the given data. 
One common situation occurs when there is an entity set E  with a many-one 
relationship R  from E  to F. The relations from E  and R  will each have the 
key for E  in their relation schema. In addition, the relation for E  will have 
in its schema the attributes of E  that are not in the key, and the relation for 
R  will have the key attributes of F  and any attributes of R  itself. Because R  
is many-one, all these attributes are functionally determined by the key for E, 
and we can combine them into one relation with a schema consisting of:

1. All attributes of E.

2. The key attributes of F.

3. Any attributes belonging to relationship R.

For an entity e of E  that is not related to any entity of F, the attributes of 
types (2) and (3) will have null values in the tuple for e.

Exam ple 4.28: In our running movie example, Owns is a many-one relation
ship from Movies to Studios, which we converted to a relation in Example 4.25. 
The relation obtained from entity set Movies was discussed in Example 4.24. 
We can combine these relations by taking all their attributes and forming one 
relation schema. If we do, the relation looks like that in Fig. 4.26. □
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title year length genre studioName
Star Wars 1977 124 sciFi Fox
Gone With the Wind 1939 239 drama MGM
Wayne’s World 1992 95 comedy Paramount

Figure 4.26: Combining relation Movies with relation Owns

Whether or not we choose to combine relations in this manner is a matter 
of judgement. However, there are some advantages to having all the attributes 
that are dependent on the key of entity set E  together in one relation, even 
if there are a number of many-one relationships from E  to other entity sets. 
For example, it is often more efficient to answer queries involving attributes 
of one relation than to answer queries involving attributes of several relations. 
In fact, some design systems based on the E /R  model combine these relations 
automatically.

On the other hand, one might wonder if it made sense to combine the 
relation for E  with the relation of a relationship R  that involved E  but was not 
many-one from E- to some other entity set. Doing so is risky, because it often 
leads to redundancy, as the next example shows.

E xam ple 4 .29 : To get a sense of what can go wrong, suppose we combined the 
relation of Fig. 4.26 with the relation that we get for the many-many relationship 
Stars-in; recall this relation was suggested by Fig. 4.24. Then the combined 
relation would look like Fig. 3.2, which we reproduce here as Fig. 4.27. As we 
discussed in Section 3.3.1, this relation has anomalies that we need to remove 
by the process of normalization. □

title year length genre studioName starN am e

Star Wars 1977 124 SciFi Fox Carrie Fisher
Star Wars 1977 124 SciFi Fox Mark Hamill
Star Wars 1977 124 SciFi Fox Harrison Ford
Gone With the Wind 1939 231 drama MGM Vivien Leigh
Wayne’s World 1992 95 comedy Paramount Dana Carvey
Wayne’s World 1992 95 comedy Paramount Mike Meyers

Figure 4.27: The relation Movies with star information

4.5.4 Handling Weak Entity Sets
When a weak entity set appears in an E /R  diagram, we need to do three things 
differently.
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1. The relation for the weak entity set W  itself must include not only the 
attributes of W  but also the key attributes of the supporting entity sets. 
The supporting entity sets are easily recognized because they are reached 
by supporting (double-diamond) relationships from W.

2. The relation for any relationship in which the weak entity set W  appears 
must use as a key for W  all of its key attributes, including those of other 
entity sets that contribute to W ’s key.

3. However, a supporting relationship R, from the weak entity set W  to a 
supporting entity set, need not be converted to a relation at all. The 
justification is that, as discussed in Section 4.5.3, the attributes of many- 
one relationship R's relation will either be attributes of the relation for 
W , or (in the case of attributes on R) can be added to the schema for 
W 's relation.

Of course, when introducing additional attributes to build the key of a weak 
entity set, we must be careful not to use the same name twice. If necessary, we 
rename some or all of these attributes.

Exam ple 4 .30: Let us consider the weak entity set Crews from Fig. 4.20, 
which we reproduce here as Fig. 4.28. From this diagram we get three relations, 
whose schemas are:

Studios(name, addr)
Crews(number, studioName, crewChief)
Unit-of(number, studioName, name)

The first relation, Studios, is constructed in a straightforward manner from 
the entity set of the same name. The second, Crews, comes from the weak entity 
set Crews. The attributes of this relation are the key attributes of Crews and the 
one nonkey attribute of Crews, which is crewChief. We have chosen studioName 
as the attribute in relation Crews that corresponds to the attribute name in the 
entity set Studios.

Figure 4.28: The crews example of a weak entity set

The third relation, U nit-of, comes from the relationship of the same name. 
As always, we represent an E /R  relationship in the relational model by a relation 
whose schema has the key attributes of the related entity sets. In this case,
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U nit-o f has attributes number and studioName, the key for weak entity set 
Crews, and attribute name, the key for entity set Studios. However, notice that 
since Unit-of is a many-one relationship, the studio studioName is surely the 
same as the studio name.

For instance, suppose Disney crew # 3  is one of the crews of the Disney 
studio. Then the relationship set for E /R  relationship Unit-of includes the pair

(Disney-crew-#3, Disney)

This pair gives rise to the tuple

(3, Disney, Disney)

for the relation Unit-of.
Notice that, as must be the case, the components of this tuple for attributes 

studioName and name are identical. As a consequence, we can “merge” the 
attributes studioName and name of U n it-o f, giving us the simpler schema:

U nit-of(num ber, name)

However, now we can dispense with the relation U n it-o f altogether, since its 
attributes are now a subset of the attributes of relation Crews. □

The phenomenon observed in Example 4.30 — that a supporting relationship 
needs no relation — is universal for weak entity sets. The following is a modified 
rule for converting to relations entity sets that are weak.

• If W  is a weak entity set, construct for W  a relation whose schema consists 
of:

1. All attributes of W.
2. All attributes of supporting relationships for W.
3. For each supporting relationship for W , say a many-one relationship 

from W  to entity set E, all the key attributes of E.

Rename attributes, if necessary, to avoid name conflicts.

• Do not construct a relation for any supporting relationship for W.

4.5.5 Exercises for Section 4.5
Exercise 4 .5 .1 : Convert the E /R  diagram of Fig. 4.29 to a relational database 
schema.

! Exercise 4 .5 .2 : There is another E /R  diagram that could describe the weak 
entity set Bookings in Fig. 4.29. Notice that a booking can be identified uniquely 
by the flight number, day of the flight, the row, and the seat; the customer is 
not then necessary to help identify the booking.
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Relations W ith Subset Schemas

You might imagine from Example 4.30 that whenever one relation R  has a 
set of attributes that is a subset of the attributes of another relation S, we 
can eliminate R. That is not exactly true. R  might hold information that 
doesn’t appear in S  because the additional attributes of S  do not allow us 
to extend a tuple from R  to S.

For instance, the Internal Revenue Service tries to maintain a relation 
People (name, ss#) of potential taxpayers and their social-security num
bers, even if the person had no income and did not file a tax return. They 
might also maintain a relation Taxpayers (name, ss#, amount) indicat
ing the amount of tax paid by each person who filed a return in the current 
year. The schema of People is a subset of the schema of Taxpayers, yet 
there may be value in remembering the social-security number of those 
who are mentioned in People but not in Taxpayers.

In fact, even identical sets of attributes may have different semantics, 
so it is not possible to merge their tuples. An example would be two 
relations S ta rs  (name, addr) and S tudios (name, addr). Although the 
schemas look alike, we cannot turn star tuples into studio tuples, or vice- 
versa.

On the other hand, when the two relations come from the weak-entity- 
set construction, then there can be no such additional value to the relation 
with the smaller set of attributes. The reason is that the tuples of the 
relation that comes from the supporting relationship correspond one-for- 
one with the tuples of the relation that comes from the weak entity set. 
Thus, we routinely eliminate the former relation.

a) Revise the diagram of Fig. 4.29 to reflect this new viewpoint.

b) Convert your diagram from (a) into relations. Do you get the same 
database schema as in Exercise 4.5.1?

Exercise 4 .5 .3 : The E /R  diagram of Fig. 4.30 represents ships. Ships are said 
to be sisters if they were designed from the same plans. Convert this diagram 
to a relational database schema.

Exercise 4.5 .4: Convert the following E /R  diagrams to relational database 
schemas.

a) Figure 4.22.

b) Your answer to Exercise 4.4.1.

c) Your answer to Exercise 4.4.4(a).

d) Your answer to Exercise 4.4.4(b).
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Figure 4.29: An E /R  diagram about airlines

Figure 4.30: An E /R  diagram about sister ships

4.6 Converting Subclass Structures to Relations
When we have an isa-hierarchy of entity sets, we are presented with several
choices of strategy for conversion to relations. Recall we assume that:

• There is a root entity set for the hierarchy,

• This entity set has a key that serves to identify every entity represented 
by the hierarchy, and

• A given entity may have components that belong to the entity sets of any 
subtree of the hierarchy, as long as that subtree includes the root.

The principal conversion strategies are:

1. Follow the E /R  viewpoint. For each entity set E  in the hierarchy, create a 
relation that includes the key attributes from the root and any attributes 
belonging to E.
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2. Treat entities as objects belonging to a single class. For each possible 
subtree that includes the root, create one relation, whose schema includes 
all the attributes of all the entity sets in the subtree.

3. Use null values. Create one relation with all the attributes of all the entity 
sets in the hierarchy. Each entity is represented by one tuple, and that 
tuple has a null value for whatever attributes the entity does not have.

We shall consider each approach in turn.

4.6.1 E/R -Style Conversion

Our first approach is to create a relation for each entity set, as usual. If the 
entity set E  is not the root of the hierarchy, then the relation for E  will include 
the key attributes at the root, to identify the entity represented by each tuple, 
plus all the attributes of E. In addition, if E  is involved in a relationship, then 
we use these key attributes to identify entities of E  in the relation corresponding 
to that relationship.

Note, however, that although we spoke of “isa” as a relationship, it is unlike 
other relationships, in that it connects components of a single entity, not distinct 
entities. Thus, we do not create a relation for “isa.”

Figure 4.31: The movie hierarchy

E xam ple 4.31: Consider the hierarchy of Fig. 4.10, which we reproduce here 
as Fig. 4.31. The relations needed to represent the entity sets in this hierarchy 
are:

1. Movies ( t i t l e ,  year, len g th , genre). This relation was discussed in 
Example 4.24, and every movie is represented by a tuple here.
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2. MurderMysteries(title, year, weapon). The first two attributes are 
the key for all movies, and the last is the lone attribute for the corre
sponding entity set. Those movies that are murder mysteries have a tuple 
here as well as in Movies.

3. Cartoons (title, year). This relation is the set of cartoons. It has 
no attributes other than the key for movies, since the extra information 
about cartoons is contained in the relationship Voices. Movies that are 
cartoons have a tuple here as well as in Movies.

Note that the fourth kind of movie — those that are both cartoons and murder 
mysteries — have tuples in all three relations.

In addition, we shall need the relation Voices (title, year, starName) 
that corresponds to the relationship Voices between Stars and Cartoons. The 
last attribute is the key for Stars and the first two form the key for Cartoons.

For instance, the movie Roger Rabbit would have tuples in all four relations. 
Its basic information would be in Movies, the murder weapon would appear 
in MurderMysteries, and the stars that provided voices for the movie would 
appear in Voices.

Notice that the relation Cartoons has a schema that is a subset of the 
schema for the relation Voices. In many situations, we would be content to 
eliminate a relation such as Cartoons, since it appears not to contain any 
information beyond what is in Voices. However, there may be silent cartoons 
in our database. Those cartoons would have no voices, and we would therefore 
lose information should we eliminate relation Cartoons. □

4.6.2 An Object-Oriented Approach
An alternative strategy for converting isa-hierarchies to relations is to enumerate 
all the possible subtrees of the hierarchy. For each, create one relation that 
represents entities having components in exactly those subtrees. The schema 
for this relation has all the attributes of any entity set in the subtree. We refer 
to this approach as “object-oriented,” since it is motivated by the assumption 
that entities are “objects” that belong to one and only one class.

E xam ple 4 .32: Consider the hierarchy of Fig. 4.31. There are four possible 
subtrees including the root:

1. Movies alone.

2. Movies and Cartoons only.

3. Movies and Murder-Mysteries only.

4. All three entity sets.

We must construct relations for all four “classes.” Since only Murder-Mysteries 
contributes an attribute that is unique to its entities, there is actually some 
repetition, and these four relations are:
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Movies(title, year, length, genre)
MoviesC(title, year, length, genre)
MoviesMM(title, year, length, genre, weapon)
MoviesCMM(title, year, length, genre, weapon)

If Cartoons had attributes unique to that entity set, then all four relations would 
have different sets of attributes. As that is not the case here, we could com
bine Movies with MoviesC (i.e., create one relation for non-murder-mysteries) 
and combine MoviesMM with MoviesCMM (i.e., create one relation for all mur
der mysteries), although doing so loses some information — which movies are 
cartoons.

We also need to consider how to handle the relationship Voices from Car
toons to Stars. If Voices were many-one from Cartoons, then we could add a 
voice attribute to MoviesC and MoviesCMM, which would represent the Voices 
relationship and would have the side-effect of making all four relations different. 
However, Voices is many-many, so we need to create a separate relation for this 
relationship. As always, its schema has the key attributes from the entity sets 
connected; in this case

Voices(title, y e a r, starName)

would be an appropriate schema.
One might consider whether it was necessary to create two such relations, 

one connecting cartoons that are not murder mysteries to their voices, and the 
other for cartoons that are murder mysteries. However, there does not appear 
to be any benefit to doing so in this case. □

4.6.3 Using Null Values to Combine Relations
There is one more approach to representing information about a hierarchy of 
entity sets. If we are allowed to use NULL (the null value as in SQL) as a 
value in tuples, we can handle a hierarchy of entity sets with a single relation. 
This relation has all the attributes belonging to any entity set of the hierarchy. 
An entity is then represented by a single tuple. This tuple has NULL in each 
attribute that is not defined for that entity.

E xam ple 4.33: If we applied this approach to the diagram of Fig. 4.31, we 
would create a single relation whose schema is:

Movie(title, year, length, genre, weapon)

Those movies that are not murder mysteries would have NULL in the weapon 
component of their tuple. It would also be necessary to have a relation Voices 
to connect those movies that are cartoons to the stars performing the voices, 
as in Example 4.32. □
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4.6.4 Comparison of Approaches
Each of the three approaches, which we shall refer to as “straight-E/R,” “object- 
oriented,” and “nulls,” respectively, have advantages and disadvantages. Here 
is a list of the principal issues.

1. It can be expensive to answer queries involving several relations, so we 
would prefer to find all the attributes we needed to answer a query in one 
relation. The nulls approach uses only one relation for all the attributes, 
so it has an advantage in this regard. The other two approaches have 
advantages for different kinds of queries. For instance:

(a) A query like “what films of 2008 were longer than 150 minutes?” can 
be answered directly from the relation Movies in the straight-E/R 
approach of Example 4.31. However, in the object-oriented approach 
of Example 4.32, we need to examine Movies, MoviesC, MoviesMM, 
and MoviesCMM, since a long movie may be in any of these four 
relations.

(b) On the other hand, a query like “what weapons were used in cartoons 
of over 150 minutes in length?” gives us trouble in the straight- 
E /R  approach. We must access Movies to find those movies of over 
150 minutes. We must access Cartoons to verify that a movie is a 
cartoon, and we must access MurderMysteries to find the murder 
weapon. In the object-oriented approach, we have only to access the 
relation MoviesCMM, where all the information we need will be found.

2. We would like not to use too many relations. Here again, the nulls method 
shines, since it requires only one relation. However, there is a difference 
between the other two methods, since in the straight-E/R approach, we 
use only one relation per entity set in the hierarchy. In the object-oriented 
approach, if we have a root and n  children (n +  1 entity sets in all), then 
there are 2" different classes of entities, and we need that many relations.

3. We would like to minimize space and avoid repeating information. Since 
the object-oriented method uses only one tuple per entity, and that tuple 
has components for only those attributes that make sense for the entity, 
this approach offers the minimum possible space usage. The nulls ap
proach also has only one tuple per entity, but these tuples are “long” ; i.e., 
they have components for all attributes, whether or not they are appro
priate for a given entity. If there are many entity sets in the hierarchy, and 
there are many attributes among those entity sets, then a large fraction 
of the space could be wasted in the nulls approach. The straight-E/R 
method has several tuples for each entity, but only the key attributes are 
repeated. Thus, this method could use either more or less space than the 
nulls method.
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Figure 4.32: E /R  diagram for Exercise 4.6.1

Figure 4.33: E /R  diagram for Exercise 4.6.2
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4.6.5 Exercises for Section 4.6
Exercise 4 .6 .1 : Convert the E /R  diagram of Fig. 4.32 to a relational database 
schema, using each of the following approaches:

a) The straight-E/R method.

b) The object-oriented method.

c) The nulls method.

! E xercise 4 .6 .2 : Convert the E /R  diagram of Fig. 4.33 to a relational database 
schema, using:

a) The straight-E/R method.

b) The object-oriented method.

c) The nulls method.

E xercise 4 .6 .3 : Convert your E /R  design from Exercise 4.1.7 to a relational 
database schema, using:

a) The straight-E/R method.

b) The object-oriented method.

c) The nulls method.

! E xercise 4 .6 .4 : Suppose that we have an isa-hierarchy involving e entity sets. 
Each entity set has a attributes, and k of those at the root form the key for all 
these entity sets. Give formulas for (i ) the minimum and maximum number of 
relations used, and (ii) the minimum and maximum number of components that 
the tuple(s) for a single entity have all together, when the method of conversion 
to relations is:

a) The straight-E/R method.

b) The object-oriented method.

c) The nulls method.

4.7 Unified M odeling Language
UML ( Unified Modeling Language) was developed originally as a graphical no
tation for describing software designs in an object-oriented style. It has been 
extended, with some modifications, to be a popular notation for describing 
database designs, and it is this portion of UML that we shall study here. UML 
offers much the same capabilities as the E /R  model, with the exception of mul
tiway relationships. UML also offers the ability to treat entity sets as true 
classes, with methods as well as data. Figure 4.34 summarizes the common 
concepts, with different terminology, used by E /R  and UML.
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UML E /R  Model
Class Entity set
Association Binary relationship
Association Class Attributes on a relationship
Subclass Isa hierarchy
Aggregation Many-one relationship
Composition Many-one relationship

with referential integrity

Figure 4.34: Comparison between UML and E /R  terminology

4.7.1 UML Classes
A class in UML is similar to an entity set in the E /R  model. The notation for a 
class is rather different, however. Figure 4.35 shows the class that corresponds 
to the E /R  entity set Movies from our running example of this chapter.

Movies

title PK 
year PK 
length 
genre

<place for methods>

Figure 4.35: The Movies class in UML

The box for a class is divided into three parts. At the top is the name of 
the class. The middle has the attributes, which are like instance variables of a 
class. In our Movies class, we use the attributes title, year, length, and genre.

The bottom portion is for methods. Neither the E /R  model nor the re
lational model provides methods. However, they are an important concept, 
and one that actually appears in modern relational systems, called “object- 
relational” DBMS’s (see Section 10.3).

Exam ple 4.34: We might have added an instance method lengthlnHoursQ. 
The UML specification doesn’t tell anything more about a method than the 
types of any arguments and the type of its return-value. Perhaps this method 
returns length/60.0, but we cannot know from the design. □

In this section, we shall not use methods in our design. Thus, in the fu
ture, UML class boxes will have only two sections, for the class name and the 
attributes.
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4.7.2 Keys for UML classes
As for entity sets, we can declare one key for a UML class. To do so, we follow 
each attribute in the key by the letters PK, standing for “primary key.” There 
is no convenient way to stipulate that several attributes or sets of attributes 
are each keys.

E xam ple 4 .35 : In Fig. 4.35, we have made our standard assumption that title 
and year together form the key for Movies. Notice that PK appears on the lines 
for these attributes and not for the others. □

4.7.3 Associations
A binary relationship between classes is called an association. There is no 
analog of multiway relationships in UML. Rather, a multiway relationship has 
to be broken into binary relationships, which as we suggested in Section 4.1.10, 
can always be done. The interpretation of an association is exactly what we 
described for relationships in Section 4.1.5 on relationship sets. The association 
is a set of pairs of objects, one from each of the classes it connects.

Figure 4.36: Movies, stars, and studios in UML

We draw a UML association between two classes simply by drawing a line 
between them, and giving the line a name. Usually, we’ll place the name below 
the line. For example, Fig. 4.36 is the UML analog of the E /R  diagram of 
Fig. 4.17. There are two associations, Stars-in and Owns; the first connects 
Movies with Stars and the second connects Movies with Studios.

Every association has constraints on the number of objects from each of its 
classes that can be connected to an object of the other class. We indicate these 
constraints by a label of the form m..n  at each end. The meaning of this label 
is that each object at the other end is connected to at least m  and at most n 
objects at this end. In addition:
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• A * in place of n, as in m..*, stands for “infinity.” That is, there is no 
upper limit.

• A * alone, in place of m..n, stands for the range 0..*, that is, no constraint 
at all on the number of objects.

• If there is no label at all at an end of an association edge, then the label 
is taken to be 1..1, i.e., “exactly one.”

Exam ple 4.36: In Fig. 4.36 we see 0..* at the Movies end of both associations. 
That says that a star appears in zero or more movies, and a studio owns zero 
or more movies; i.e., there is no constraint for either. There is also a 0..* at 
the Stars end of association Stars-in, telling us that a movie has any number 
of stars. However, the label on the Studios end of association Owns is 0..1, 
which means either 0 or 1 studio. That is, a given movie can either be owned 
by one studio, or not be owned by any studio in the database. Notice that this 
constraint is exactly what is said by the pointed arrow entering Studios in the 
E /R  diagram of Fig. 4.17. □

Figure 4.37: Expressing referential integrity in UML

Exam ple 4.37: The UML diagram of Fig. 4.37 is intended to mirror the E /R  
diagram of Fig. 4.18. Here, we see assumptions somewhat different from those in 
Example 4.36, about the numbers of movies and studios that can be associated. 
The label 1..* at the Movies end of Owns says that each studio must own at 
least one movie (or else it isn’t really a studio). There is still no upper limit on 
how many movies a studio can own.

At the Studios end of Owns, we see the label 1..1. That label says that a 
movie must be owned by one studio and only one studio. It is not possible for 
a movie not to be owned by any studio, as was possible in Fig. 4.36. The label 
1..1 says exactly what the rounded arrow in E /R  diagrams says.

We also see the association Runs between studios and presidents. At the 
Studios end we see label 1..1. That is, a president must be the president of one 
and only one studio. That label reflects the same constraint as the rounded 
arrow from Presidents to Studios in Fig. 4.18. At the other end of association 
Runs is the label 0..1. That label says that a studio can have at most one 
president, but it could not have a president at some time. This constraint is 
exactly the constraint of a pointed arrow. □
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4.7.4 Self-Associations
An association can have both ends at the same class; such an association is 
called a self-association. To distinguish the two roles played by one class in a 
self-association, we give the association two names, one for each end.

0..1 TheOriginal

0..* TheSequel 

Figure 4.38: A self-association representing sequels of movies

E xam ple 4 .38: Figure 4.38 represents the relationship “sequel-of” on movies. 
We see one association with each end at the class Movies. The end with role 
TheOriginal points to the original movie, and it has label 0..1. That is, for a 
movie to be a sequel, there has to be exactly one movie that was the original. 
However, some movies are not sequels of any movie. The other role, TheSequel 
has label 0..*. The reasoning is that an original can have any number of sequels. 
Note we take the point of view that there is an original movie for any sequence 
of sequels, and a sequel is a sequel of the original, not of the previous movie in 
the sequence. For instance, Rocky //th rough Rocky V are sequels of Rocky. We 
do not assume Rocky IV  is a sequel of Rocky III, and so on. □

4.7.5 Association Classes
We can attach attributes to an association in much the way we did in the E /R  
model, in Section 4.1.9.5 In UML, we create a new class, called an association 
class, and attach it to the middle of the association. The association class 
has its own name, but its attributes may be thought of as attributes of the 
association to which it attaches.

E xam ple 4 .39 : Suppose we want to add to the association Stars-in between 
Movies and Stars some information about the compensation the star received 
for the movie. This information is not associated with the movie (different 
stars get different salaries) nor with the star (stars can get different salaries for 
different movies). Thus, we must attach this information with the association 
itself. That is, every movie-star pair has its own salary information.

Figure 4.39 shows the association Stars-in with an association class called 
Compensation. This class has two attributes, salary and residuals. Notice

Movies

title PK 
year PK 
length 
genre

“However, th e  exam ple th e re  in F ig . 4.7 will n o t carry  over directly , because th e  re la tionsh ip  
th e re  is 3-way.
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Figure 4.39: Compensation is an association class for the association Stars-in

that there is no primary key marked for Compensation. When we convert a 
diagram such as Fig. 4.39 to relations, the attributes of Compensation will 
attach to tuples created for movie-star pairs, as was described for relationships 
in Section 4.5.2. □

4.7.6 Subclasses in UML
Any UML class can have a hierarchy of subclasses below it. The primary 
key comes from the root of the hierarchy, just as with E /R  hierarchies. UML 
permits a class C to have four different kinds of subclasses below it, depending 
on our choices of answer to two questions:

1. Complete versus Partial. Is every object in the class C a member of some 
subclass? If so, the subclasses are complete; otherwise they are partial or 
incomplete.

2. Disjoint versus Overlapping. Are the subclasses disjoint (an object cannot 
be in two of the subclasses)? If an object can be in two or more of the 
subclasses, then the subclasses are said to be overlapping.

Note that these decisions are taken at each level of a hierarchy, and the decisions 
may be made independently at each point.

There are several interesting relationships between the classification of UML 
subclasses given above, the standard notion of subclasses in object-oriented 
systems, and the E /R  notion of subclasses.

• In a typical object-oriented system, subclasses are disjoint. That is, no 
object can be in two classes. Of course they inherit properties from their 
parent class, so in a sense, an object also “belongs” in the parent class. 
However, the object may not also be in a sibling class.

• The E /R  model automatically allows overlapping subclasses.

• Both the E /R  model and object-oriented systems allow either complete 
or partial subclasses. That is, there is no requirement that a member of 
the superclass be in any subclass.
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Subclasses are represented by rectangles, like any class. We assume a sub
class inherits the properties (attributes and associations) from its superclass. 
However, any additional attributes belonging to the subclass are shown in the 
box for that subclass, and the subclass may have its own, additional, associ
ations to other classes. To represent the class/subclass relationship in UML 
diagrams, we use a triangular, open arrow pointing to the superclass. The 
subclasses are usually connected by a horizontal line, feeding into the arrow.

Figure 4.40: Cartoons and murder mysteries as disjoint subclasses of movies

E xam ple 4 .40 : Figure 4.40 shows a UML variant of the subclass example 
from Section 4.1.11. However, unlike the E /R  subclasses, which are of necessity 
overlapping, we have chosen here to make the subclasses disjoint. They are 
partial, of course, since many movies are neither cartoons nor murder mysteries.

Because the subclasses were chosen disjoint, there must be a third subclass 
for movies like Roger Rabbit that are both cartoons and murder mysteries. 
Notice that both the classes MurderMysteries and Cartoon-MurderMysteries 
have additional attribute weapon, while the two subclasses MurderMysteries 
and Cartoon-MurderMysteries have associations with the unseen class Voices.
□

4.7.7 Aggregations and Compositions
There are two special notations for many-one associations whose implications 
are rather subtle. In one sense, they reflect the object-oriented style of pro
gramming, where it is common for one class to have references to other classes 
among its attributes. In another sense, these special notations are really stipu
lations about how the diagram should be converted to relations; we discuss this 
aspect of the m atter in Section 4.8.3.

An aggregation is a line between two classes that ends in an open diamond 
at one end. The implication of the diamond is that the label at that end must
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be 0..1, i.e., the aggregation is a many-one association from the class at the 
opposite end to the class at the diamond end. Although the aggregation is an 
association, we do not need to name it, since in practice that name will never 
be used in a relational implementation.

A composition is similar to an association, but the label at the diamond 
end must be 1..1. That is, every object at the opposite end from the diamond 
must be connected to exactly one object at the diamond end. Compositions 
are distinguished by making the diamond be solid black.

Exam ple 4.41: In Fig. 4.41 we see examples of both an aggregation and a 
composition. It both modifies and elaborates on the situation of Fig. 4.37. We 
see an association from Movies to Studios. The label 1..* at the Movies end 
says that a studio has to own at least one movie. We do not need a label at 
the diamond end, since the open diamond implies a 0..1 label. That is, a movie 
may or may not be associated with a studio, but cannot be associated with 
more than one studio. There is also the implication that Movies objects will 
contain a reference to their owning Studios object; that reference may be null 
if the movie is not owned by a studio.

Figure 4.41: An aggregation from Movies to Studios and a composition from 
Presidents to Studios

At the right, we see the class MovieExecs with a subclass Presidents. There 
is a composition from Presidents to Studios, meaning that every president is the 
president of exactly one studio. A label 1..1 at the Studios end is implied by the 
solid diamond. The implication of the composition is that Presidents objects 
will contain a reference to a Studios object, and that this reference cannot be 
null. □
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4.7.8 Exercises for Section 4.7
E xercise 4 .7 .1 : Draw a UML diagram for the problem of Exercise 4.1.1.

E xercise 4 .7 .2 : Modify your diagram from Exercise 4.7.1 in accordance with 
the requirements of Exercise 4.1.2.

Exercise 4 .7 .3 : Repeat Exercise 4.1.3 using UML.

E xercise 4 .7 .4 : Repeat Exercise 4.1.6 using UML.

E xercise 4 .7 .5 : Repeat Exercise 4.1.7 using UML. Are your subclasses dis
joint or overlapping? Are they complete or partial?

E xercise 4 .7 .6 : Repeat Exercise 4.1.9 using UML.

E xercise 4 .7 .7 : Convert the E /R  diagram of Fig. 4.30 to a UML diagram.

! E xercise 4 .7 .8 : How would you represent the 3-way relationship of Contracts 
among movies, stars, and studios (see Fig. 4.4) in UML?

! E xercise 4 .7 .9 : Repeat Exercise 4.2.5 using UML.

E xercise 4.7 .10: Usually, when we constrain associations with a label of the 
form m..n, we find that m  and n are each either 0, 1, or *. Give some examples 
of associations where it would make sense for at least one of m  and n  to be 
something different.

4.8 From UML Diagrams to Relations
Many of the ideas needed to turn E /R  diagrams into relations work for UML 
diagrams as well. We shall therefore briefly review the important techniques, 
dwelling only on points where the two modeling methods diverge.

4.8.1 UML-to-Relations Basics
Here is an outline of the points that should be familiar from our discussion in 
Section 4.5:

• Classes to Relations. For each class, create a relation whose name is the 
name of the class, and whose attributes are the attributes of the class.

• Associations to Relations. For each association, create a relation with 
the name of that association. The attributes of the relation are the key 
attributes of the two connected classes. If there is a coincidence of at
tributes between the two classes, rename them appropriately. If there is 
an association class attached to the association, include the attributes of 
the association class among the attributes of the relation.
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Exam ple 4.42: Consider the UML diagram of Fig. 4.36. For the three classes 
we create relations:

Movies(title, year, length genre)
Stars(name, address)
Studios(name, address)

For the two associations, we create relations

Stars-in(movieTitle, movieYear, starName)
Owns(movieTitle, movieYear, studioName)

Note that we have taken some liberties with the names of attributes, for clarity 
of intention, even though we were not required to do so.

For another example, consider the UML diagram of Fig. 4.39, which shows 
an association class. The relations for the classes Movies and Stars would be 
the same as above. However, for the association, we would have a relation

Stars-in(movieTitle, movieYear, starName, salary, residuals)
That is, we add to the key attributes of the associated classes, the two attributes 
of the association class Compensation. Note that there is no relation created 
for Compensation itself. □

4.8.2 From UML Subclasses to Relations
The three options we enumerated in Section 4.6 apply to UML subclass hierar
chies as well. Recall these options are “E /R  style” (relations for each subclass 
have only the key attributes and attributes of that subclass), “object-oriented” 
(each entity is represented in the relation for only one subclass), and “use nulls” 
(one relation for all subclasses). However, if we have information about whether 
subclasses are disjoint or overlapping, and complete or partial, then we may find 
one or another method more appropriate. Here are some considerations:

1. If a hierarchy is disjoint at every level, then an object-oriented represen
tation is suggested. We do not have to consider each possible tree of 
subclasses when forming relations, since we know that each object can 
belong to only one class and its ancestors in the hierarchy. Thus, there 
is no possibility of an exponentially exploding number of relations being 
created.

2. If the hierarchy is both complete and disjoint at every level, then the task 
is even simpler. If we use the object-oriented approach, then we have only 
to construct relations for the classes at the leaves of the hierarchy.

3. If the hierarchy is large and overlapping at some or all levels, then the 
E /R  approach is indicated. We are likely to need so many relations that 
the relational database schema becomes unwieldy.
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4.8.3 From Aggregations and Compositions to Relations
Aggregations and compositions are really types of many-one associations. Thus, 
one approach to their representation in a relational database schema is to con
vert them as we do for any association in Section 4.8.1. Since these elements 
are not necessarily named in the UML diagram, we need to invent a name for 
the corresponding relation.

However, there is a hidden assumption that this implementation of aggrega
tions and compositions is undesirable. Recall from Section 4.5.3 that when we 
have an entity set E  and a many-one relationship R  from E  to another entity 
set F, we have the option — some would say the obligation — to combine the 
relation for E  with the relation for R. That is, the one relation constructed 
from E  and R  has all the attributes of E  plus the key attributes of F.

We suggest that aggregations and compositions be treated routinely in this 
manner. Construct no relation for the aggregation or composition. Rather, add 
to the relation for the class at the nondiamond end the key attribute(s) of the 
class at the diamond end. In the case of an aggregation (but not a composition), 
it is possible that these attributes can be null.

E xam ple 4 .43: Consider the UML diagram of Fig. 4.41. Since there is a small 
hierarchy, we need to decide how MovieExecs and Presidents will be translated. 
Let us adopt the E /R  approach, so the Presidents relation has only the cert# 
attribute from MovieExecs.

The aggregation from Movies to Studios is represented by putting the key 
name for Studios among the attributes for the relation Movies. The composition 
from Presidents to Studios is represented by adding the key for Studios to the 
relation P res id en ts  as well. No relations are constructed for the aggregation 
or the composition. The following are all the relations we construct from this 
UML diagram.

MovieExecs(cert#, name, address, netWorth)
Presidents(cert#, studioName)
Movies(title, year, length, genre, studioName)
Studios(name, address)

As before, we take some liberties with names of attributes to make our intentions 
clear. □

4.8.4 The UML Analog of Weak Entity Sets
We have not mentioned a UML notation that corresponds to the double-border 
notation for weak entity sets in the E /R  model. There is a sense in which 
none is needed. The reason is that UML, unlike E/R , draws on the tradition 
of object-oriented systems, which takes the point of view that each object has 
its own object-identity. That is, we can distinguish two objects, even if they 
have the same values for each of their attributes and other properties. That 
object-identity is typically viewed as a reference or pointer to the object.
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In UML, we can take the point of view that the objects belonging to a 
class likewise have object-identity. Thus, even if the stated attributes for a 
class do not serve to identify a unique object of the class, we can create a new 
attribute that serves as a key for the corresponding relation and represents the 
object-identity of the object.

However, it is also possible, in UML, to use a composition as we used sup
porting relationships for weak entity sets in the E /R  model. This composition 
goes from the “weak” class (the class whose attributes do not provide its key) 
to the “supporting” class. If there are several “supporting” classes, then sev
eral compositions can be used. We shall use a special notation for a supporting 
composition: a small box attached to the weak class with “PK” in it will serve 
as the anchor for the supporting composition. The implication is that the key 
attribute(s) for the supporting class at the other end of the composition is part 
of the key of the weak class, along with any of the attributes of the weak class 
that are marked “PK.” As with weak entity sets, there can be several support
ing compositions and classes, and those supporting classes could themselves be 
weak, in which case the rule just described is applied recursively.

Crews 0..* 1..1
▲ Studios

number PK PK name PK
crewChief address

Figure 4.42: Weak class Crews supported by a composition and the class Studios

Exam ple 4.44: Figure 4.42 shows the analog of the weak entity set Crews of 
Example 4.20. There is a composition from Crews to Studios anchored by a 
box labeled “PK” to indicate that this composition provides part of the key for 
Crews. □

We convert weak structures such as Fig. 4.42 to relations exactly as we 
did in Section 4.5.4. There is a relation for class Studios as usual. There is 
no relation for the composition, again as usual. The relation for class Crews 
includes not only its own attribute number, but the key for the class at the end 
of the composition, which is Studios.

E xam ple 4.45 : The relations for Example 4.44 are thus:

Studios(name, address)
Crews(number, crewChief, studioName)

As before, we renamed the attribute name of Studios in the Crews relation, for 
clarity. □
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Customers
Bookings

Flights

SSNo PK 1..1 0 ..* 0..* 1..1 number PK
name
addr
phone

♦ PK row
seat

PK
aircraft

Figure 4.43: A UML diagram analogous to the E /R  diagram of Fig. 4.29

4.8.5 Exercises for Section 4.8
E xercise 4 .8 .1 : Convert the UML diagram of Fig. 4.43 to relations.

E xercise 4 .8 .2 : Convert the following UML diagrams to relations:

a) Figure 4.37.

b) Figure 4.40.

c) Your solution to Exercise 4.7.1.

d) Your solution to Exercise 4.7.3.

e) Your solution to Exercise 4.7.4.

f) Your solution to Exercise 4.7.6.

E xercise 4 .8 .3 : How many relations do we create, using the object-oriented 
approach, if we have a three-level hierarchy with three subclasses of each class 
at the first and second levels, and that hierarchy is:

a) Disjoint and complete at each level.

b) Disjoint but not complete at each level.

c) Neither disjoint nor complete.

ODL (Object Definition Language) is a text-based language for specifying the 
structure of databases in object-oriented terms. Like UML, the class is the 
central concept in ODL. Classes in ODL have a name, attributes, and methods, 
just as UML classes do. Relationships, which are analogous to UML’s associa
tions, are not an independent concept in ODL, but are embedded within classes 
as an additional family of properties.

4.9 Object Definition Language
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4.9.1 Class Declarations
A declaration of a class in ODL, in its simplest form, is:

c la ss  <name> {
<list of properties>

};

That is, the keyword c la ss  is followed by the name of the class and a bracketed 
list of properties. A property can be an attribute, a relationship, or a method.

4.9.2 Attributes in ODL
The simplest kind of property is the attribute. In ODL, attributes need not be of 
simple types, such as integers and strings. ODL has a type system, described in 
Section 4.9.6, that allows us to form structured types and collection types (e.g., 
sets). For example, an attribute address might have a structured type with 
fields for the street, city, and zip code. An attribute phones might have a set of 
strings as its type, and even more complex types are possible. An attribute is 
represented in the declaration for its class by the keyword a t t r ib u te ,  the type 
of the attribute, and the name of the attribute.

1) c la ss  Movie {
2) a t t r ib u te  s t r in g  t i t l e ;
3) a t t r ib u te  in teg e r year;
4) a t t r ib u te  in teg e r leng th ;
5) a t t r ib u te  enum Genres

{drama, comedy, s c iF i ,  teen} genre;
>;

Figure 4.44: An ODL declaration of the class Movie

Exam ple 4.46: In Fig. 4.44 is an ODL declaration of the class of movies. It 
is not a complete declaration; we shall add more to it later. Line (1) declares 
Movie to be a class. Following line (1) are the declarations of four attributes 
that all Movie objects will have.

Lines (2), (3), and (4) declare three attributes, t i t l e ,  year, and length. 
The first of these is of character-string type, and the other two are integers. 
Line (5) declares attribute genre to be of enumerated type. The name of the 
enumeration (list of symbolic constants) is Genres, and the four values the 
attribute genre is allowed to take are drama, comedy, sc iF i, and teen. An 
enumeration must have a name, which can be used to refer to the same type 
anywhere. □
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W hy Name Enumerations and Structures?

The enumeration-name Genres in Fig. 4.44 appears to play no role. How
ever, by giving this set of symbolic constants a name, we can refer to it 
elsewhere, including in the declaration of other classes. In some other class, 
the scoped name Movie:: Genres can be used to refer to the definition of 
the enumerated type of this name within the class Movie.

E xam ple 4 .47: In Example 4.46, all the attributes have primitive types. Here 
is an example with a complex type. We can define the class S ta r  by

1) c la s s  S ta r  {
2) a t t r ib u te  s t r in g  name;
3) a t t r ib u te  S tru c t Addr

{ s tr in g  s t r e e t ,  s t r in g  c ity }  address;
>;

Line (2) specifies an attribute name (of the star) that is a string. Line (3) 
specifies another attribute address. This attribute has a type that is a record 
structure. The name of this structure is Addr, and the type consists of two 
fields: s t r e e t  and c ity . Both fields are strings. In general, one can define 
record structure types in ODL by the keyword S tru c t and curly braces around 
the list of field names and their types. Like enumerations, structure types must 
have a name, which can be used elsewhere to refer to the same structure type.
□

4.9.3 Relationships in ODL
An ODL relationship is declared inside a class declaration, by the keyword 
re la tio n s h ip , a type, and the name of the relationship. The type of a re
lationship describes what a single object of the class is connected to by the 
relationship. Typically, this type is either another class (if the relationship is 
many-one) or a collection type (if the relationship is one-many or many-many). 
We shall show complex types by example, until the full type system is described 
in Section 4.9.6.

E xam ple 4 .48: Suppose we want to add to the declaration of the Movie class 
from Example 4.46 a property that is a set of stars. More precisely, we want 
each Movie object to connect the set of S ta r objects that are its stars. The 
best way to represent this connection between the Movie and S ta r  classes is 
with a relationship. We may represent this relationship by a line:

relationship Set<Star> stars;
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in the declaration of class Movie. It says that in each object of class Movie there 
is a set of references to Star objects. The set of references is called stars. □

4.9.4 Inverse Relationships
Just as we might like to access the stars of a given movie, we might like to 
know the movies in which a given star acted. To get this information into S ta r 
objects, we can add the line

relationship Set<Movie> starredln;
to the declaration of class S ta r  in Example 4.47. However, this line and a 
similar declaration for Movie omits a very important aspect of the relationship 
between movies and stars. We expect that if a star S  is in the s ta r s  set for 
movie M , then movie M  is in the s ta r r e d ln  set for star 5. We indicate this 
connection between the relationships s ta r s  and s ta r r e d ln  by placing in each of 
their declarations the keyword inverse  and the name of the other relationship. 
If the other relationship is in some other class, as it usually is, then we refer 
to that relationship by its scoped name — the name of its class, followed by a 
double colon ( : : )  and the name of the relationship.

Example 4.49: To define the relationship starredln of class Star to be the 
inverse of the relationship stars in class Movie, we revise the declarations of 
these classes, as shown in Fig. 4.45 (which also contains a definition of class 
Studio to be discussed later). Line (6) shows the declaration of relationship 
stairs of movies, and says that its inverse is Star: : starredln. Since relation
ship starredln is defined in another class, its scoped name must be used.

Similarly, relationship starredln is declared in line (11). Its inverse is 
declared by that line to be stars of class Movie, as it must be, because inverses 
always are linked in pairs. □

As a general rule, if a relationship R  for class C associates with object x  of 
class C with objects j/i, y<i, ■ ■ ■ ,yn of class D, then the inverse relationship of R  
associates with each of the t/j’s the object x  (perhaps along with other objects).

4.9.5 M ultiplicity of Relationships
Like the binary relationships of the E /R  model, a pair of inverse relationships 
in ODL can be classified as either many-many, many-one in either direction, or 
one-one. The type declarations for the pair of relationships tells us which.

1. If we have a many-many relationship between classes C and D, then in 
class C the type of the relationship is Set<Z)>, and in class D the type is 
Set<C>.6

6 A ctually , th e  S e t could be replaced by an o th er “collection ty p e ,” such as list o r bag, 
as discussed in Section 4.9.6. We shall assum e all collections are se ts in  o u r exposition  of 
relationsh ips, however.
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1) class Movie {
2) attribute string title;
3) attribute integer year;
4) attribute integer length;
5) attribute enum Genres

{drama, comedy, sciFi, teen} genre;
6) relationship Set<Star> stars

inverse Star::starredln;
7) relationship Studio ownedBy

inverse Studio::owns;
>;

8) class Star {
9) attribute string name;
10) attribute Struct Addr

{string street, string city} address;
11) relationship Set<Movie> starredln

inverse Movie:: stairs;
};

12) class Studio {
13) attribute string name;
14) attribute Star::Addr address;
15) relationship Set<Movie> owns

inverse Movie::ownedBy;
};

Figure 4.45: Some ODL classes and their relationships

2. If the relationship is many-one from C to D, then the type of the rela
tionship in C  is just D, while the type of the relationship in D is Set<C>.

3. If the relationship is many-one from D to C, then the roles of C and D 
are reversed in (2) above.

4. If the relationship is one-one, then the type of the relationship in C  is just 
D, and in D it is just C.

Note that, as in the E /R  model, we allow a many-one or one-one relationship 
to include the case where for some objects the “one” is actually “none.” For 
instance, a many-one relationship from C  to D  might have a “null” value of 
the relationship in some of the C  objects. Of course, since a D  object could 
be associated with any set of C objects, it is also permissible for that set to be 
empty for some D  objects.
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Exam ple 4.50: In Fig. 4.45 we have the declaration of three classes, Movie, 
S tar, and Studio. The first two of these have already been introduced in 
Examples 4.46 and 4.47. We also discussed the relationship pair s ta r s  and 
s ta rre d ln . Since each of their types uses Set, we see that this pair represents 
a many-many relationship between S ta r and Movie.

Studio objects have attributes name and address; these appear in lines (13) 
and (14). We have used the same type for addresses of studios as we defined in 
class S ta r for addresses of stars.

In line (7) we see a relationship ownedBy from movies to studios, and the 
inverse of this relationship is owns on line (15). Since the type of ownedBy is 
Studio, while the type of owns is Set<Movie>, we see that this pair of inverse 
relationships is many-one from Movie to Studio. □

4.9.6 Types in ODL
ODL offers the database designer a type system similar to that found in C or 
other conventional programming languages. A type system is built from a basis 
of types that are defined by themselves and certain recursive rules whereby 
complex types are built from simpler types. In ODL, the basis consists of:

1. Primitive types: integer, float, character, character string, boolean, and 
enumerations. The latter are lists of symbolic names, such as drama in 
line (5) of Fig. 4.45.

2. Class names, such as Movie, or S tar, which represent types that are 
actually structures, with components for each of the attributes and rela
tionships of that class.

These types are combined into structured types using the following type 
constructors:

1. Set. If T  is any type, then Set<T> denotes the type whose values are finite 
sets of elements of type T. Examples using the set type-constructor occur 
in lines (6), (11), and (15) of Fig. 4.45.

2. Bag. If T is any type, then Bag<T> denotes the type whose values are 
finite bags or multisets of elements of type T.

3. List. If T  is any type, then List<T> denotes the type whose values are 
finite lists of zero or more elements of type T.

4. Array. If T  is a type and i is an integer, then Array<T, i> denotes the 
type whose elements are arrays of i elements of type T. For example, 
Array<char,10> denotes character strings of length 10.

5. Dictionary. If T  and S  are types, then Dictionary<T,S> denotes a type 
whose values are finite sets of pairs. Each pair consists of a value of the 
key type T  and a value of the range type S. The dictionary may not 
contain two pairs with the same key value.
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Sets, Bags, and Lists

To understand the distinction between sets, bags, and lists, remember that 
a set has unordered elements, and only one occurrence of each element. A 
bag allows more than one occurrence of an element, but the elements and 
their occurrences are unordered. A list allows more than one occurrence of 
an element, but the occurrences are ordered. Thus, {1,2,1} and {2,1,1} 
are the same bag, but (1,2,1) and (2,1,1) are not the same list.

6. Structures. If Ti, T2, . . .  , Tn are types, and Fi, F2 , . . .  , Fn are names of 
fields, then

Struct N {Ti Fi, T2 F2,..., Tn Fn>

denotes the type named N  whose elements are structures with n fields. 
The *th field is named Ft and has type T*. For example, line (10) of 
Fig. 4.45 showed a structure type named Addr, with two fields. Both 
fields are of type string and have names street and city, respectively.

The first five types — set, bag, list, array, and dictionary — are called 
collection types. There are different rules about which types may be associated 
with attributes and which with relationships.

• The type of a relationship is either a class type or a single use of a collec
tion type constructor applied to a class type.

• The type of an attribute is built starting with a primitive type or types.7 
We may then apply the structure and collection type constructors as we 
wish, as many times as we wish.

E xam ple 4 .51: Some of the possible types of attributes are:

1. integer.

2. Struct N {string fieldl, integer field2}.

3. List<real>.

4. Array<Struct N {string fieldl, integer field2>, 10>.
7 C lass ty p es m ay also be used, w hich m akes th e  a t tr ib u te  behave like a  “one-w ay” rela

tionsh ip . W e shall no t consider such a ttr ib u te s  here.
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Example (1) is a primitive type, (2) is a structure of primitive types, (3) a 
collection of a primitive type, and (4) a collection of structures built from 
primitive types.

Now, suppose the class names Movie and Star are available primitive types. 
Then we may construct relationship types such as Movie or Bag<Star>. How
ever, the following are illegal as relationship types:

1. Struct N {Movie fieldl, Star field2}. Relationship types cannot 
involve structures.

2. Set<integer> . Relationship types cannot involve primitive types.

3. Set<A rray<Star, 1 0 » . Relationship types cannot involve two applica
tions of collection types.

□

4.9.7 Subclasses in ODL
We can declare one class C to be a subclass of another class D. To do so, 
follow the name C in its declaration with the keyword extends and the name 
D. Then, class C inherits all the properties of D, and may have additional 
properties of its own.

E xam ple 4.52: Recall Example 4.10, where we declared cartoons to be a 
subclass of movies, with the additional property of a relationship from a cartoon 
to a set of stars that are its “voices.” We can create a subclass Cartoon for 
Movie with the ODL declaration:

class Cartoon extends Movie { 
relationship Set<Star> voices;

};

Also in that example, we defined a class of murder mysteries with additional 
attribute weapon.

class MurderMystery extends Movie { 
attribute string weapon;

};

is a suitable declaration of this subclass. □

Sometimes, as in the case of a movie like “Roger Rabbit,” we need a class 
that is a subclass of two or more other classes at the same time. In ODL, we 
may follow the keyword extends by several classes, separated by colons.8 Thus, 
we may declare a fourth class by:

te c h n ic a l ly ,  the  second and  subsequent nam es m ust be “in terfaces,” ra th e r  th a n  classes. 
Roughly, an  in terface  in ODL is a  class definition w ithou t an  associated  set of objects.
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class CartoonMurderMystery
extends MurderMystery : Cartoon;

Note that when there is multiple inheritance, there is the potential for a 
class to inherit two properties with the same name. The way such conflicts are 
resolved is implementation-dependent.

4.9.8 Declaring Keys in ODL
The declaration of a key or keys for a class is optional. The reason is that 
ODL, being object-oriented, assumes that all objects have an object-identity, 
as discussed in connection with UML in Section 4.8.4.

In ODL we may declare one or more attributes to be a key for a class by using 
the keyword key or keys (it doesn’t matter which) followed by the attribute 
or attributes forming keys. If there is more than one attribute in a key, the 
list of attributes must be surrounded by parentheses. The key declaration itself 
appears inside parentheses, following the name of the class itself in the first line 
of its declaration.

E xam ple 4 .53: To declare that the set of two attributes t i t l e  and year form 
a key for class Movie, we could begin its declaration:

class Movie (key (title, year)) {

We could have used keys in place of key, even though only one key is declared.
□

It is possible that several sets of attributes are keys. If so, then following 
the word key(s) we may place several keys separated by commas. A key that 
consists of more than one attribute must have parentheses around the list of its 
attributes, so we can disambiguate a key of several attributes from several keys 
of one attribute each.

The ODL standard also allows properties other than attributes to appear 
in keys. There is no fundamental problem with a method or relationship being 
declared a key or part of a key, since keys are advisory statements that the 
DBMS can take advantage of or not, as it wishes. For instance, one could 
declare a method to be a key, meaning that on distinct objects of the class the 
method is guaranteed to return distinct values.

When we allow many-one relationships to appear in key declarations, we 
can get an effect similar to that of weak entity sets in the E /R  model. We can 
declare that the object Oi referred to by an object O2  on the “many” side of the 
relationship, perhaps together with other properties of O2  that are included in 
the key, is unique for different objects Oi- However, we should remember that 
there is no requirement that classes have keys; we are never obliged to handle, 
in some special way, classes that lack attributes of their own to form a key, as 
we did for weak entity sets.
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Exam ple 4.54: Let us review the example of a weak entity set Crews in 
Fig. 4.20. Recall that we hypothesized that crews were identified by their 
number, and the studio for which they worked, although two studios might 
have crews with the same number. We might declare the class Crew as in 
Fig. 4.46. Note that we should modify the declaration of S tudio to include the 
relationship crewsOf that is an inverse to the relationship unitO f in Crew; we 
omit this change.

class Crew (key (number, unitOf)) { 
attribute integer number; 
attribute string crewChief; 
relationship Studio unitOf 

inverse Studio::crewsOf;
>;

Figure 4.46: A ODL declaration for crews

What this key declaration asserts is that there cannot be two crews that 
both have the same value for the number attribute and are related to the same 
studio by unitO f. Notice how this assertion resembles the implication of the 
E /R  diagram in Fig. 4.20, which is that the number of a crew and the name of 
the related studio (i.e., the key for studios) uniquely determine a crew entity.
□

4.9.9 Exercises for Section 4.9
Exercise 4 .9 .1 : In Exercise 4.1.1 was the informal description of a bank data
base. Render this design in ODL, including keys as appropriate.

Exercise 4 .9 .2 : Modify your design of Exercise 4.9.1 in the ways enumerated 
in Exercise 4.1.2. Describe the changes; do not write a complete, new schema.

Exercise 4 .9 .3 : Render the teams-players-fans database of Exercise 4.1.3 in 
ODL, including keys, as appropriate. Why does the complication about sets 
of team colors, which was mentioned in the original exercise, not present a 
problem in ODL?

! Exercise 4 .9 .4: Suppose we wish to keep a genealogy. We shall have one class, 
Person. The information we wish to record about persons includes their name 
(an attribute) and the following relationships: mother, father, and children. 
Give an ODL design for the Person class. Be sure to indicate the inverses of 
the relationships that, like mother, fa th e r , and ch ild ren , are also relationships 
from Person to itself. Is the inverse of the mother relationship the ch ild ren  
relationship? Why or why not? Describe each of the relationships and their 
inverses as sets of pairs.
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! E xercise 4 .9 .5 : Let us add to the design of Exercise 4.9.4 the attribute 
education. The value of this attribute is intended to be a collection of the 
degrees obtained by each person, including the name of the degree (e.g., B.S.), 
the school, and the date. This collection of structs could be a set, bag, list, 
or array. Describe the consequences of each of these four choices. What infor
mation could be gained or lost by making each choice? Is the information lost 
likely to be important in practice?

E xercise 4 .9 .6 : In Exercise 4.4.4 we saw two examples of situations where 
weak entity sets were essential. Render these databases in ODL, including 
declarations for suitable keys.

E xercise 4 .9 .7 : Give an ODL design for the registrar’s database described in 
Exercise 4.1.9.

!! E xercise 4 .9 .8 : Under what circumstances is a relationship its own inverse? 
Hint: Think about the relationship as a set of pairs, as discussed in Sec
tion 4.9.4.

4.10 From ODL Designs to Relational Designs
ODL was actually intended as the data-definition part of a language standard 
for object-oriented DBMS’s, analogous to the SQL CREATE TABLE statement. 
Indeed, there have been some attempts to implement such a system. However, 
it is also possible to see ODL as a text-based, high-level design notation, from 
which we eventually derive a relational database schema. Thus, in this section 
we shall consider how to convert ODL designs into relational designs.

Much of the process is similar to that we discussed for E /R  diagrams in 
Section 4.5 and for UML in Section 4.8. Classes become relations, and relation
ships become relations that connect the key attributes of the classes involved 
in the relationship. Yet some new problems arise for ODL, including:

1. Entity sets must have keys, but there is no such guarantee for ODL classes.

2. While attributes in E/R , UML, and the relational model are of primitive 
type, there is no such constraint for ODL attributes.

4.10.1 From ODL Classes to Relations
As a starting point, let us assume that our goal is to have one relation for each 
class and for that relation to have one attribute for each property. We shall see 
many ways in which this approach must be modified, but for the moment, let 
us consider the simplest possible case, where we can indeed convert classes to 
relations and properties to attributes. The restrictions we assume are:

1. All properties of the class are attributes (not relationships or methods).
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2. The types of the attributes are primitive (not structures or sets).

In this case, the ODL class looks almost like an entity set or a UML class. Al
though there might be no key for the ODL class, ODL assumes object-identity. 
We can create an artificial attribute to represent the object-identity and serve 
as a key for the relation; this issue was introduced for UML in Section 4.8.4.

Exam ple 4.55: Figure 4.47 is an ODL description of movie executives. No 
key is listed, and we do not assume that name uniquely determines a movie 
executive (unlike stars, who will make sure their chosen name is unique).

class MovieExec {
attribute string name; 
attribute string address; 
attribute integer netWorth;

>;

Figure 4.47: The class MovieExec

We create a relation with the same name as the class. The relation has four 
attributes, one for each attribute of the class, and one for the object-identity:

MovieExecs(cert#, name, address, netWorth)
We use cert# as the key attribute, representing the object-identity. □

4.10.2 Complex Attributes in Classes
Even when a class’ properties are all attributes we may have some difficulty 
converting the class to a relation. The reason is that attributes in ODL can 
have complex types such as structures, sets, bags, or lists. On the other hand, 
a fundamental principle of the relational model is that a relation’s attributes 
have a primitive type, such as numbers and strings. Thus, we must find some 
way to represent complex attribute types as relations.

Record structures whose fields are themselves primitive are the easiest to 
handle. We simply expand the structure definition, making one attribute of the 
relation for each field of the structure.

class Star (key name) { 
attribute string name; 
attribute Struct Addr

{string street, string city} address;
};

Figure 4.48: Class with a structured attribute
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E xam ple 4 .56 : In Fig. 4.48 is a declaration for class S ta r, with only attributes 
as properties. The attribute name is of primitive type, but attribute address 
is a structure with two fields, s t r e e t  and c ity . We represent this class by the 
relation:

Star(name, street, city)

The key is name, and the attributes street and city represent the structure 
address. □

4.10.3 Representing Set-Valued Attributes
However, record structures are not the most complex kind of attribute that can 
appear in ODL class definitions. Values can also be built using type constructors 
Set, Bag, List, Array, and Dictionary from Section 4.9.6. Each presents its 
own problems when migrating to the relational model. We shall only discuss 
the Set constructor, which is the most common, in detail.

One approach to representing a set of values for an attribute A  is to make 
one tuple for each value. That tuple includes the appropriate values for all 
the other attributes besides A. This approach works, although it is likely to 
produce unnormalized relations, as we shall see in the next example.

class Star (key name) { 
attribute string name; 
attribute Set<

Struct Addr {string street, string city}
> address; 

attribute Date birthdate;
};

Figure 4.49: Stars with a set of addresses and a birthdate

E xam ple 4 .57: Figure 4.49 shows a new definition of the class S ta r, in which 
we have allowed stars to have a set of addresses and also added a nonkey, 
primitive attribute b ir th d a te . The b ir th d a te  attribute can be an attribute 
of the Stair relation, whose schema now becomes:

Star(name, street, city, birthdate)

Unfortunately, this relation exhibits the sort of anomalies we saw in Sec
tion 3.3.1. If Carrie Fisher has two addresses, say a home and a beach house, 
then she is represented by two tuples in the relation S tar. If Harrison Ford has 
an empty set of addresses, then he does not appear at all in S tar. A typical 
set of tuples for S ta r is shown in Fig. 4.50.
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name street city birthdate
Carrie Fisher 123 Maple St. Hollywood 9/9/99
Carrie Fisher 5 Locust Ln. Malibu 9/9/99
Mark Hamill 456 Oak Rd. Brentwood 8/8/88

Figure 4.50: Adding birthdates

Although name is a key for the class S tar, our need to have several tuples 
for one star to represent all their addresses means that name is not a key for 
the relation S tar. In fact, the key for that relation is {name, s t r e e t ,  c ity}. 
Thus, the functional dependency

name —» b ir th d a te  

is a BCNF violation and the multivalued dependency

name —H- s t r e e t  c ity  

is a 4NF violation as well. □

There are several options regarding how to handle set-valued attributes that 
appear in a class declaration along with other attributes, set-valued or not. One 
approach is to separate out each set-valued attribute as if it were a many-many 
relationship between the objects of the class and the values that appear in the 
sets.

An alternative approach is to place all attributes, set-valued or not, in the 
schema for the relation, then use the normalization techniques of Sections 3.3 
and 3.6 to eliminate the resulting BCNF and 4NF violations. Notice that any 
set-valued attribute in conjunction with any single-valued attribute leads to a 
BNCF violation, as in Example 4.57. Two set-valued attributes in the same 
class declaration will lead to a 4NF violation, even if there are no single-valued 
attributes.

4.10.4 Representing Other Type Constructors
Besides record structures and sets, an ODL class definition could use Bag, L is t, 
Array, or D ictionary to construct values. To represent a bag (multiset), in 
which a single object can be a member of the bag n times, we cannot simply 
introduce into a relation n identical tuples.9 Instead, we could add to the 
relation schema another attribute count representing the number of times that

9To be precise, we cannot in troduce identical tup les in to  relations o f th e  ab strac t relational 
m odel described in Section 2.2. However, SQL-based relational D BM S’s do allow duplicate 
tuples; i.e., re lations are bags ra th er th an  sets in SQL. See Sections 5.1 and 6.4. If queries 
are likely to  ask for tup le  counts, we advise using a  scheme such as th a t  described here, even 
if your DBM S allows duplicate tuples.
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each element is a member of the bag. For instance, suppose that address 
in Fig. 4.49 were a bag instead of a set. We could say that 123 Maple St., 
Hollywood is Carrie Fisher’s address twice and 5 Locust Ln., Malibu is her 
address 3 times (whatever that may mean) by

name street city count
Carrie Fisher 123 Maple St. Hollywood 2
Carrie Fisher 5 Locust Ln. Malibu 3

A list of addresses could be represented by a new attribute p o s itio n , in
dicating the position in the list. For instance, we could show Carrie Fisher’s 
addresses as a list, with Hollywood first, by:

name street city position
Carrie Fisher 123 Maple St. Hollywood 1
Carrie Fisher 5 Locust Ln. Malibu 2

A fixed-length array of addresses could be represented by attributes for 
each position in the array. For instance, if address were to be an array of two 
street-city structures, we could represent S ta r  objects as:

name__________| streetl_________| cityl______ | streets_______ | city2
C arrie  F ish e r | 123 Maple S t. | Hollywood | 5 Locust Ln. | Malibu

Finally, a dictionary could be represented as a set, but with attributes for 
both the key-value and range-value components of the pairs that are members of 
the dictionary. For instance, suppose that instead of star’s addresses, we really 
wanted to keep, for each star, a dictionary giving the mortgage holder for each 
of their homes. Then the dictionary would have address as the key value and 
bank name as the range value. A hypothetical rendering of the Carrie-Fisher 
object with a dictionary attribute is:

name street city mortgag e-holder
Carrie
Carrie

Fisher
Fisher

123 Maple St. 
5 Locust Ln.

Hollywood
Malibu

Bank of Burbank 
Torrance Trust

Of course attribute types in ODL may involve more than one type construc
tor. If a type is any collection type besides dictionary applied to a structure 
(e.g., a set of structs), then we may apply the techniques from Sections 4.10.3 
or 4.10.4 as if the struct were an atomic value, and then replace the single at
tribute representing the atomic value by several attributes, one for each field of 
the struct. This strategy was used in the examples above, where the address 
is a struct. The case of a dictionary applied to structs is similar and left as an 
exercise.

There are many reasons to limit the complexity of attribute types to an 
optional struct followed by an optional collection type. We mentioned in Sec
tion 4.1.1 that some versions of the E /R  model allow exactly this much gener
ality in the types of attributes, although we restricted ourselves to attributes of
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primitive type in the E /R  model. We recommend that, if you are going to use 
an ODL design for the purpose of eventual translation to a relational database 
schema, you similarly limit yourself. We take up in the exercises some options 
for dealing with more complex types as attributes.

4.10.5 Representing ODL Relationships
Usually, an ODL class definition will contain relationships to other ODL classes. 
As in the E /R  model, we can create for each relationship a new relation that 
connects the keys of the two related classes. However, in ODL, relationships 
come in inverse pairs, and we must create only one relation for each pair.

When a relationship is many-one, we have an option to combine it with the 
relation that is constructed for the class on the “many” side. Doing so has the 
effect of combining two relations that have a common key, as we discussed in 
Section 4.5.3. It therefore does not cause a BCNF violation and is a legitimate 
and commonly followed option.

4.10.6 Exercises for Section 4.10
E xercise 4.10.1: Convert your ODL designs from the following exercises to 
relational database schemas.

a) Exercise 4.9.1.

b) Exercise 4.9.2 (include all four of the modifications specified by that ex
ercise).

c) Exercise 4.9.3.

d) Exercise 4.9.4.

e) Exercise 4.9.5.

! Exercise 4.10.2: Consider an attribute of type Dictionary with key and 
range types both structs of primitive types. Show how to convert a class with 
an attribute of this type to a relation.

Exercise 4.10.3: We mentioned that when attributes are of a type more com
plex than a collection of structs, it becomes tricky to convert them to relations; 
in particular, it becomes necessary to create some intermediate concepts and re
lations for them. The following sequence of questions will examine increasingly 
more complex types and how to represent them as relations.

a) A card can be represented as a struct with fields rank (2,3, . . .  , 10, Jack, 
Queen, King, and Ace) and suit (Clubs, Diamonds, Hearts, and Spades). 
Give a suitable definition of a structured type Card. This definition should 
be independent of any class declarations but available to them all.
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b) A hand is a set of cards. The number of cards may vary. Give a declaration 
of a class Hand whose objects are hands. That is, this class declaration 
has an attribute theHand, whose type is a hand.

! c) Convert your class declaration Hand from (b) to a relation schema.

d) A poker hand is a set of five cards. Repeat (b) and (c) for poker hands.

! e) A deal is a set of pairs, each pair consisting of the name of a player and a 
hand for that player. Declare a class Deal, whose objects are deals. That 
is, this class declaration has an attribute theD eal, whose type is a deal.

f) Repeat (e), but restrict hands of a deal to be hands of exactly five cards.

g) Repeat (e), using a dictionary for a deal. You may assume the names of 
players in a deal are unique.

!! h) Convert your class declaration from (e) to a relational database schema.

! i) Suppose we defined deals to be sets of sets of cards, with no player as
sociated with each hand (set of cards). It is proposed that we represent 
such deals by a relation schema Deals (deallD , c a rd ), meaning that the 
card was a member of one of the hands in the deal with the given ID. 
What, if anything, is wrong with this representation? How would you fix 
the problem?

E xercise 4.10.4: Suppose we have a class C defined by

c la ss  C (key a) {
a t t r ib u te  s t r in g  a; 
a t t r ib u te  T b;

};

where T is some type. Give the relation schema for the relation derived from 
C  and indicate its key attributes if T  is:

a) S et< S truct S { s tr in g  f , s t r in g  g}>

! b) Bag<Struct S { s tr in g  f , s t r in g  g}>

! c) L is t< S tru c t S { s tr in g  f , s t r in g  }>

! d) D ictionary< S truc t K { s tr in g  f , s t r in g  g}, S tru c t R { s tr in g  i ,  
s t r in g  j}>
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4.11 Summary of Chapter 4
♦  The Entity-Relationship Model: In the E /R  model we describe entity 

sets, relationships among entity sets, and attributes of entity sets and 
relationships. Members of entity sets are called entities.

♦  Entity-Relationship Diagrams: We use rectangles, diamonds, and ovals to 
draw entity sets, relationships, and attributes, respectively.

♦  Multiplicity of Relationships: Binary relationships can be one-one, many- 
one, or many-many. In a one-one relationship, an entity of either set 
can be associated with at most one entity of the other set. In a many-one 
relationship, each entity of the “many” side is associated with at most one 
entity of the other side. Many-many relationships place no restriction.

♦  Good Design: Designing databases effectively requires that we represent 
the real world faithfully, that we select appropriate elements (e.g., rela
tionships, attributes), and that we avoid redundancy — saying the same 
thing twice or saying something in an indirect or overly complex manner.

♦  Subclasses: The E /R  model uses a special relationship isa to represent 
the fact that one entity set is a special case of another. Entity sets may be 
connected in a hierarchy with each child node a special case of its parent. 
Entities may have components belonging to any subtree of the hierarchy, 
as long as the subtree includes the root.

♦  Weak Entity Sets: These require attributes of some supporting entity 
set(s) to identify their own entities. A special notation involving diamonds 
and rectangles with double borders is used to distinguish weak entity sets.

♦  Converting Entity Sets to Relations: The relation for an entity set has one 
attribute for each attribute of the entity set. An exception is a weak entity 
set E, whose relation must also have attributes for the key attributes of 
its supporting entity sets.

♦  Converting Relationships to Relations: The relation for an E /R  relation
ship has attributes corresponding to the key attributes of each entity 
set that participates in the relationship. However, if a relationship is a 
supporting relationship for some weak entity set, it is not necessary to 
produce a relation for that relationship.

♦  Converting Isa Hierarchies to Relations: One approach is to create a 
relation for each entity set with the key attributes of the hierarchy’s root 
plus the attributes of the entity set itself. A second approach is to create 
a relation for each possible subset of the entity sets in the hierarchy, and 
create for each entity one tuple; that tuple is in the relation for exactly 
the set of entity sets to which the entity belongs. A third approach is to 
create only one relation and to use null values for those attributes that 
do not apply to the entity represented by a given tuple.



♦  Unified Modeling Language: In UML, we describe classes and associa
tions between classes. Classes are analogous to E /R  entity sets, and 
associations are like binary E /R  relationships. Special kinds of many- 
one associations, called aggregations and compositions, are used and have 
implications as to how they are translated to relations.

♦  UML Subclass Hierarchies: UML permits classes to have subclasses, with 
inheritance from the superclass. The subclasses of a class can be complete 
or partial, and they can be disjoint or overlapping.

♦  Converting UML Diagrams to Relations: The methods are similar to 
those used for the E /R  model. Classes become relations and associations 
become relations connecting the keys of the associated classes. Aggrega
tions and compositions are combined with the relation constructed from 
the class at the “many” end.

4- Object Definition Language: This language is a notation for formally de
scribing the schemas of databases in an object-oriented style. One defines 
classes, which may have three kinds of properties: attributes, methods, 
and relationships.

♦  ODL Relationships: A relationship in ODL must be binary. It is repre
sented, in the two classes it connects, by names that are declared to be 
inverses of one another. Relationships can be many-many, many-one, or 
one-one, depending on whether the types of the pair are declared to be a 
single object or a set of objects.

♦  The ODL Type System: ODL allows types to be constructed, beginning 
with class names and atomic types such as integer, by applying any of the 
following type constructors: structure formation, set-of, bag-of, list-of, 
array-of, and dictionary-of.

♦  Keys in ODL: Keys are optional in ODL. We can declare one or more keys, 
but because objects have an object-ID that is not one of its properties, a 
system implementing ODL can tell the difference between objects, even 
if they have identical values for all properties.

♦  Converting ODL Classes to Relations: The method is the same as for 
E /R  or UML, except if the class has attributes of complex type. If that 
happens the resulting relation may be unnormalized and will have to 
be decomposed. It may also be necessary to create a new attribute to 
represent the object-identity of objects and serve as a key.

♦  Converting ODL Relationships to Relations: The method is the same as 
for E /R  relationships, except that we must first pair ODL relationships 
and their inverses, and create only one relation for the pair.

4.11. SUMMARY OF CHAPTER 4 201
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Chapter 5

Algebraic and Logical 
Query Languages

We now switch our attention from modeling to programming for relational 
databases. We start in this discussion with two abstract programming lan
guages, one algebraic and the other logic-based. The algebraic programming 
language, relational algebra, was introduced in Section 2.4, to let us see what 
operations in the relational model look like. However, there is more to the al
gebra. In this chapter, we extend the set-based algebra of Section 2.4 to bags, 
which better reflect the way the relational model is implemented in practice. 
We also extend the algebra so it can handle several more operations than were 
described previously; for example, we need to do aggregations (e.g., averages) 
of columns of a relation.

We close the chapter with another form of query language, based on logic. 
This language, called “Datalog,” allows us to express queries by describing the 
desired results, rather than by giving an algorithm to compute the results, as 
relational algebra requires.

5.1 Relational Operations on Bags
In this section, we shall consider relations that are bags (multisets) rather than 
sets. That is, we shall allow the same tuple to appear more than once in a 
relation. When relations are bags, there are changes that need to be made to 
the definition of some relational operations, as we shall see. First, let us look 
at a simple example of a relation that is a bag but not a set.

E xam ple 5 .1 : The relation in Fig. 5.1 is a bag of tuples. In it, the tuple
(1.2) appears three times and the tuple (3,4) appears once. If Fig. 5.1 were 
a set-valued relation, we would have to eliminate two occurrences of the tuple
(1.2). In a bag-valued relation, we do allow multiple occurrences of the same 
tuple, but like sets, the order of tuples does not matter. □

205
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B

Figure 5.1: A bag

5.1.1 Why Bags?
As we mentioned, commercial DBMS’s implement relations that are bags, rather 
than sets. An important motivation for relations as bags is that some relational 
operations are considerably more efficient if we use the bag model. For example:

1. To take the union of two relations as bags, we simply copy one relation 
and add to the copy all the tuples of the other relation. There is no 
need to eliminate duplicate copies of a tuple that happens to be in both 
relations.

2. When we project relation as sets, we need to compare each projected tuple 
with all the other projected tuples, to make sure that each projection 
appears only once. However, if we can accept a bag as the result, then 
we simply project each tuple and add it to the result; no comparison with 
other projected tuples is necessary.

A B C
1 2 5
3 4 6
1 2 7
1 2 8

Figure 5.2: Bag for Example 5.2

E xam ple 5.2 : The bag of Fig. 5.1 could be the result of projecting the relation 
shown in Fig. 5.2 onto attributes A  and B, provided we allow the result to be 
a bag and do not eliminate the duplicate occurrences of (1,2). Had we used 
the ordinary projection operator of relational algebra, and therefore eliminated 
duplicates, the result would be only:

B

4
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Note that the bag result, although larger, can be computed more quickly, since 
there is no need to compare each tuple (1,2) or (3,4) with previously generated 
tuples. □

Another motivation for relations as bags is that there are some situations 
where the expected answer can only be obtained if we use bags, at least tem
porarily. Here is an example.

E xam ple 5.3: Suppose we want to take the average of the ^-components of 
a set-valued relation such as Fig. 5.2. We could not use the set model to think 
of the relation projected onto attribute A. As a set, the average value of A  is
2, because there are only two values of A  — 1 and 3 — in Fig. 5.2, and their 
average is 2. However, if we treat the ^4-column in Fig. 5.2 as a bag {1,3,1,1}, 
we get the correct average of A, which is 1.5, among the four tuples of Fig. 5.2.
□

5.1.2 Union, Intersection, and Difference of Bags
These three operations have new definitions for bags. Suppose that R  and S  
are bags, and that tuple t appears n times in R  and m  times in S. Note that 
either n or m  (or both) can be 0. Then:

• In the bag union R U  S, tuple t appears n + m  times.

• In the bag intersection R  fl 5, tuple t appears min(n, m) times.

• In the bag difference R  — S, tuple t appears max(0, n — m) times. That 
is, if tuple t appears in R  more times than it appears in S, then t appears 
in R  — S  the number of times it appears in R, minus the number of times 
it appears in S. However, if t appears at least as many times in 5  as 
it appears in R, then t does not appear at all in R  — S. Intuitively, 
occurrences of t in S  each “cancel” one occurrence in R.

E xam ple 5 .4 : Let R  be the relation of Fig. 5.1, that is, a bag in which tuple
(1,2) appears three times and (3,4) appears once. Let S  be the bag

BIT
4
4
6

Then the bag union R  U S  is the bag in which (1,2) appears four times (three 
times for its occurrences in R  and once for its occurrence in 5); (3,4) appears 
three times, and (5,6) appears once.

The bag intersection R  fl S  is the bag
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A B
1 2
3 4

with one occurrence each of (1,2) and (3,4). That is, (1,2) appears three times 
in R  and once in 5, and min(3,1) =  1, so (1,2) appears once in R  fl S. Similarly, 
(3,4) appears m in(l,2) =  1 time in R  fl S. Tuple (5,6), which appears once in
S  but zero times in R  appears min(0,1) =  0 times in R  fl S. In this case, the 
result happens to be a set, but any set is also a bag.

The bag difference R  — S  is the bag

B

To see why, notice that (1,2) appears three times in R  and once in S, so in 
R  — S  it appears max(0,3 — 1) =  2 times. Tuple (3,4) appears once in R  and 
twice in S, so in R  — S  it appears max(0,1 — 2) =  0 times. No other tuple 
appears in R, so there can be no other tuples in R  — S.

As another example, the bag difference S  — R  is the bag

B

Tuple (3,4) appears once because that is the number of times it appears in S  
minus the number of times it appears in R. Tuple (5,6) appears once in S  — R  
for the same reason. □

5.1.3 Projection of Bags

We have already illustrated the projection of bags. As we saw in Example 5.2, 
each tuple is processed independently during the projection. If R  is the bag of 
Fig. 5.2 and we compute the bag-projection tta,b (R), then we get the bag of 
Fig. 5.1.

If the elimination of one or more attributes during the projection causes 
the same tuple to be created from several tuples, these duplicate tuples are not 
eliminated from the result of a bag-projection. Thus, the three tuples (1,2,5), 
(1,2,7), and (1,2,8) of the relation R  from Fig. 5.2 each gave rise to the same 
tuple (1,2) after projection onto attributes A  and B. In the bag result, there are 
three occurrences of tuple (1,2), while in the set-projection, this tuple appears 
only once.
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Bag Operations on Sets

Imagine we have two sets R  and S. Every set may be thought of as a 
bag; the bag just happens to have at most one occurrence of any tuple. 
Suppose we intersect R  fl 5, but we think of R  and S  as bags and use the 
bag intersection rule. Then we get the same result as we would get if we 
thought of R  and S  as sets. That is, thinking of R  and S  as bags, a tuple 
t is in R  fl S  the minimum of the number of times it is in R  and S. Since 
R  and S  are sets, t can be in each only 0 or 1 times. Whether we use the 
bag or set intersection rules, we find that t can appear at most once in 
R  fl S, and it appears once exactly when it is in both R  and S. Similarly, 
if we use the bag difference rule to compute R  — S  or S  — R  we get exactly 
the same result as if we used the set rule.

However, union behaves differently, depending on whether we think 
of R  and S  as sets or bags. If we use the bag rule to compute R, U S, 
then the result may not be a set, even if R  and S  are sets. In particular, 
if tuple t  appears in both R  and S, then t appears twice in R  U 5  if we 
use the bag rule for union. But if we use the set rule then t appears only 
once in R  U S.

5.1.4 Selection on Bags
To apply a selection to a bag, we apply the selection condition to each tuple 
independently. As always with bags, we do not eliminate duplicate tuples in 
the result.

E xam ple 5.5: If R  is the bag

B
~ T "

4
2
2

then the result of the bag-selection crc>6 (R) is

A B C
3 4 6
1 2 7
1 2 7

That is, all but the first tuple meets the selection condition. The last two tuples, 
which are duplicates in R, are each included in the result. □
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Algebraic Laws for Bags

An algebraic law is an equivalence between two expressions of relational 
algebra whose arguments are variables standing for relations. The equiv
alence asserts that no matter what relations we substitute for these vari
ables, the two expressions define the same relation. An example of a well- 
known law is the commutative law for union: R  U S  = S  U R. This law 
happens to hold whether we regard relation-variables R  and S  as standing 
for sets or bags. However, there are a number of other laws that hold when 
relational algebra is applied to sets but that do not hold when relations are 
interpreted as bags. A simple example of such a law is the distributive law 
of set difference over union, (R  U S) — T  = (R  — T) U (S — T). This law 
holds for sets but not for bags. To see why it fails for bags, suppose R, S, 
and T  each have one copy of tuple t. Then the expression on the left has 
one t, while the expression on the right has none. As sets, neither would 
have t. Some exploration of algebraic laws for bags appears in Exercises 
5.1.4 and 5.1.5.

5.1.5 Product of Bags
The rule for the Cartesian product of bags is the expected one. Each tuple of 
one relation is paired with each tuple of the other, regardless of whether it is a 
duplicate or not. As a result, if a tuple r  appears in a relation R  m  times, and 
tuple s appears n times in relation S, then in the product R x  S, the tuple rs 
will appear m n  times.

E xam ple 5 .6 : Let R  and S  be the bags shown in Fig. 5.3. Then the product 
R  x S  consists of six tuples, as shown in Fig. 5.3(c). Note that the usual 
convention regarding attribute names that we developed for set-relations applies 
equally well to bags. Thus, the attribute B , which belongs to both relations R  
and S, appears twice in the product, each time prefixed by one of the relation 
names. □

5.1.6 Joins of Bags
Joining bags presents no surprises. We compare each tuple of one relation with 
each tuple of the other, decide whether or not this pair of tuples joins success
fully, and if so we put the resulting tuple in the answer. When constructing the 
answer, we do not eliminate duplicate tuples.

E xam ple 5 .7 : The natural join R  txi S  of the relations R  and S  seen in Fig. 5.3
is
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B

(a) The relation R

B

(b) The relation S

A R.B S.B C
1 2 2 3
1 2 2 3
1 2 4 5
1 2 4 5
1 2 4 5
1 2 4 5

(c) The product R x  S

Figure 5.3: Computing the product of bags

A B C
1 2 3
1 2 3

That is, tuple (1,2) of R  joins with (2,3) of S. Since there are two copies of 
(1, 2) in R  and one copy of (2,3) in 5 , there are two pairs of tuples that join to 
give the tuple (1,2,3). No other tuples from R  and S  join successfully.

As another example on the same relations R  and S, the theta-join

R  x i  r .b < s . b  S

produces the bag

A R.B S.B c
1 2 4 5
1 2 4 5
1 2 4 5
1 2 4 5
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The computation of the join is as follows. Tuple (1,2) from R  and (4,5) from S  
meet the join condition. Since each appears twice in its relation, the number of 
times the joined tuple appears in the result is 2 x 2 or 4. The other possible join 
of tuples — (1,2) from R  with (2,3) from S  — fails to meet the join condition, 
so this combination does not appear in the result. □

5.1.7 Exercises for Section 5.1
Exercise 5 .1 .1 : Let PC be the relation of Fig. 2.21(a), and suppose we compute 
the projection nspeed(PC). What is the value of this expression as a set? As a 
bag? What is the average value of tuples in this projection, when treated as a 
set? As a bag?

Exercise 5 .1 .2 : Repeat Exercise 5.1.1 for the projection 7Tfcd(PC).

E xercise 5 .1 .3 : This exercise refers to the “battleship” relations of Exer
cise 2.4.3.

a) The expression iri,ore (C lasses) yields a single-column relation with the 
bores of the various classes. For the data of Exercise 2.4.3, what is this 
relation as a set? As a bag?

! b) Write an expression of relational algebra to give the bores of the ships 
(not the classes). Your expression must make sense for bags; that is, the 
number of times a value b appears must be the number of ships that have 
bore b.

! E xercise 5 .1 .4 : Certain algebraic laws for relations as sets also hold for re
lations as bags. Explain why each of the laws below hold for bags as well as 
sets.

a) The associative law for union: (R U S) U T  = R  U (S U T).

b) The associative law for intersection: (R ft S) fl T  — RC\ (S C\ T).

c) The associative law for natural join: (R tx S) ix T  =  R  tx (S tx T).

d) The commutative law for union: (R U S) = (S U R).

e) The commutative law for intersection: (R fl S) = (S  fl R).

f) The commutative law for natural join: (R ix S) =  (S ex R).

g) x l (R U S) = ttl(R) U tti,(S). Here, L  is an arbitrary list of attributes.

h) The distributive law of union over intersection:

R  u (S  n T) =  {R u  S) n (R  u T)
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i) <jc and d (R) — <Jc(R) H (Td (R)• Here, C and D are arbitrary conditions 
about the tuples of R.

!! Exercise 5 .1 .5 : The following algebraic laws hold for sets but not for bags. 
Explain why they hold for sets and give counterexamples to show that they do 
not hold for bags.

a) (R n 5) - T = R n {S -  T).

b) The distributive law of intersection over union:

R n (5 u T) = (R n S) u (R n T)

c) a c or d(R)  =  &c(R) U a D(R ). Here, C and D are arbitrary conditions 
about the tuples of R.

5.2 Extended Operators of Relational Algebra
Section 2.4 presented the classical relational algebra, and Section 5.1 introduced 
the modifications necessary to treat relations as bags of tuples rather than sets. 
The ideas of these two sections serve as a foundation for most of modern query 
languages. However, languages such as SQL have several other operations that 
have proved quite important in applications. Thus, a full treatment of relational 
operations must include a number of other operators, which we introduce in this 
section. The additions:

1. The duplicate-elimination operator 6 turns a bag into a set by eliminating 
all but one copy of each tuple.

2. Aggregation operators, such as sums or averages, are not operations of 
relational algebra, but are used by the grouping operator (described next). 
Aggregation operators apply to attributes (columns) of a relation; e.g., the 
sum of a column produces the one number that is the sum of all the values 
in that column.

3. Grouping of tuples according to their value in one or more attributes has 
the effect of partitioning the tuples of a relation into “groups.” Aggre
gation can then be applied to columns within each group, giving us the 
ability to express a number of queries that are impossible to express in 
the classical relational algebra. The grouping operator 7  is an operator 
that combines the effect of grouping and aggregation.

4. Extended projection gives additional power to the operator n. In addition 
to projecting out some columns, in its generalized form ir can perform 
computations involving the columns of its argument relation to produce 
new columns.
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5. The sorting operator t turns a relation into a list of tuples, sorted accord
ing to one or more attributes. This operator should be used judiciously, 
because some relational-algebra operators do not make sense on lists. We 
can, however, apply selections or projections to lists and expect the order 
of elements on the list to be preserved in the output.

6 . The outerjoin operator is a variant of the join that avoids losing dangling 
tuples. In the result of the outerjoin, dangling tuples are “padded” with 
the null value, so the dangling tuples can be represented in the output.

5.2.1 Duplicate Elimination
Sometimes, we need an operator that converts a bag to a set. For that purpose, 
we use 6(R) to return the set consisting of one copy of every tuple that appears 
one or more times in relation R.

E xam ple 5 .8 : If R  is the relation

from Fig. 5.1, then 6(R) is

B

B

Note that the tuple (1,2), which appeared three times in R, appears only once 
in 6(R). □

5.2.2 Aggregation Operators
There are several operators that apply to sets or bags of numbers or strings. 
These operators are used to summarize or “aggregate” the values in one column 
of a relation, and thus are referred to as aggregation operators. The standard 
operators of this type are:

1. SUM produces the sum of a column with numerical values.
2. AVG produces the average of a column with numerical values.

3. MIN and MAX, applied to a column with numerical values, produces the 
smallest or largest value, respectively. When applied to a column with 
character-string values, they produce the lexicographically (alphabeti
cally) first or last value, respectively.
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4. COUNT produces the number of (not necessarily distinct) values in a col
umn. Equivalently, COUNT applied to any attribute of a relation produces 
the number of tuples of that relation, including duplicates.

E xam ple 5 .9 : Consider the relation

A B 
"1 2

3 4 
1 2 
1 2

Some examples of aggregations on the attributes of this relation are:

1. SUM(B) =  2 +  4 +  2 +  2 =  10.

2. AVG(A) =  (1 +  3 +  1 +  l) /4  =  1.5.

3. MIN (A) =  1.

4. MAX(B) =  4. .

5. COUNT (A) =  4.

□

5.2.3 Grouping
Often we do not want simply the average or some other aggregation of an 
entire column. Rather, we need to consider the tuples of a relation in groups, 
corresponding to the value of one or more other columns, and we aggregate only 
within each group. As an example, suppose we wanted to compute the total 
number of minutes of movies produced by each studio, i.e., a relation such as:

studioName sumOfLengths
Disney 12345
MGM 54321

Starting with the relation

M o v ie s ( tit le , y ea r, len g th , genre, studioName, producerC#)

from our example database schema of Section 2.2.8, we must group the tuples 
according to their value for attribute studioName. We must then sum the 
len g th  column within each group. That is, we imagine that the tuples of 
Movies are grouped as suggested in Fig. 5.4, and we apply the aggregation 
SUM (leng th ) to each group independently.
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studioN am e

Disney
Disney
Disney
MGM
MGM

OO
O

Figure 5.4: A relation with imaginary division into groups

5.2.4 The Grouping Operator
We shall now introduce an operator that allows us to group a relation and/or 
aggregate some columns. If there is grouping, then the aggregation is within 
groups.

The subscript used with the 7  operator is a list L  of elements, each of which 
is either:

a) An attribute of the relation R  to which the 7  is applied; this attribute is 
one of the attributes by which R  will be grouped. This element is said to 
be a grouping attribute.

b) An aggregation operator applied to an attribute of the relation. To pro
vide a name for the attribute corresponding to this aggregation in the 
result, an arrow and new name are appended to the aggregation. The 
underlying attribute is said to be an aggregated attribute.

The relation returned by the expression 7l {R) is constructed as follows:

1. Partition the tuples of R  into groups. Each group consists of all tuples 
having one particular assignment of values to the grouping attributes in 
the list L. If there are no grouping attributes, the entire relation R  is one 
group.

2. For each group, produce one tuple consisting of:

i. The grouping attributes’ values for that group and
ii. The aggregations, over all tuples of that group, for the aggregated 

attributes on list L.

E xam ple 5.10: Suppose we have the relation 

S t a r s l n ( t i t l e ,  y ea r, starName)
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S is a Special Case of 7

Technically, the 5 operator is redundant. If R(Ai ,A 2, . . .  , An) is a relation, 
then S(R) is equivalent to 7a , ,a „(R)- That is, to eliminate duplicates, 
we group on all the attributes of the relation and do no aggregation. Then 
each group corresponds to a tuple that is found one or more times in 
R. Since the result of 7  contains exactly one tuple from each group, the 
effect of this “grouping” is to eliminate duplicates. However, because 6 is 
such a common and important operator, we shall continue to consider it 
separately when we study algebraic laws and algorithms for implementing 
the operators.

One can also see 7  as an extension of the projection operator on sets. 
That is, 'YAi,A-i,... ,An (R) is also the same as ’Ka x,Ai ,... ,a „ (R), if i? is a set. 
However, if R  is a bag, then 7  eliminates duplicates while 7r does not.

and we wish to find, for each star who has appeared in at least three movies, 
the earliest year in which they appeared. The first step is to group, using 
starName as a grouping attribute. We clearly must compute for each group 
the MIN (year) aggregate. However, in order to decide which groups satisfy the 
condition that the star appears in at least three movies, we must also compute 
the COUNT (title) aggregate for each group.

We begin with the grouping expression

Y s ta r N a m e, MI 1i(year)—> m in Y ea r, c o xn n (titie )—> ctT itie (Starsln)

The first two columns of the result of this expression are needed for the query re
sult. The third column is an auxiliary attribute, which we have named c tT itle ;  
it is needed to determine whether a star has appeared in at least three movies. 
That is, we continue the algebraic expression for the query by selecting for 
c tT i t le  >= 3 and then projecting onto the first two columns. An expression 
tree for the query is shown in Fig. 5.5. □

5.2.5 Extending the Projection Operator
Let us reconsider the projection operator 7t l (R )  introduced in Section 2.4.5. 
In the classical relational algebra, L  is a list of (some of the) attributes of R. 
We extend the projection operator to allow it to compute with components 
of tuples as well as choose components. In extended projection, also denoted 
7tl(R), projection lists can have the following kinds of elements:

1. A single attribute of R.
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^starName, M IN (y e a r)  m inYear , COUNT (title  ) ctTitle

Starsln

Figure 5.5: Algebraic expression tree for the query of Example 5.10

2. An expression x  —» y, where x  and y are names for attributes. The 
element x  —► y in the list L  asks that we take the attribute x  of R  and 
rename it y ; i.e., the name of this attribute in the schema of the result 
relation is y.

3. An expression E  —► 2 , where E  is an expression involving attributes of 
R, constants, arithmetic operators, and string operators, and 2 is a new 
name for the attribute that results from the calculation implied by E.  For 
example, a + b —> x  as a list element represents the sum of the attributes a 
and b, renamed x. Element cl Id —>• e means concatenate the presumably 
string-valued attributes c and d and call the result e.

The result of the projection is computed by considering each tuple of R  in 
turn. We evaluate the list L  by substituting the tuple’s components for the 
corresponding attributes mentioned in L  and applying any operators indicated 
by L  to these values. The result is a relation whose schema is the names of the 
attributes on list L, with whatever renaming the list specifies. Each tuple of 
R  yields one tuple of the result. Duplicate tuples in R  surely yield duplicate 
tuples in the result, but the result can have duplicates even if R  does not.

E xam ple 5 .11 : Let R  be the relation

A B C
0 1 2
0 1 2
3 4 5

Then the result of t t a ,b + c ^ x ( R )  is

A X
0 3
0 3
3 9
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The result’s schema has two attributes. One is A, the first attribute of R, not 
renamed. The second is the sum of the second and third attributes of R, with 
the name X .

For another example, t:b - a^ x ,c - b -+y {R) is

X Y
1 1
1 1
1 1

Notice that the calculation required by this projection list happens to turn 
different tuples (0,1,2) and (3,4,5) into the same tuple (1,1). Thus, the latter 
tuple appears three times in the result. □

5.2.6 The Sorting Operator
There are several contexts in which we want to sort the tuples of a relation by 
one or more of its attributes. Often, when querying data, one wants the result 
relation to be sorted. For instance, in a query about all the movies in which 
Sean Connery appeared, we might wish to have the list sorted by title, so we 
could more easily find whether a certain movie was on the list. We shall also 
see when we study query optimization how execution of queries by the DBMS 
is often made more efficient if we sort the relations first.

The expression t l{R ) ,  where R  is a relation and L  a list of some of R ’s 
attributes, is the relation R, but with the tuples of R  sorted in the order indi
cated by L. If L  is the list A j , A2, . . .  , A n, then the tuples of R  are sorted first 
by their value of attribute Ai. Ties are broken according to the value of A-y, 
tuples that agree on both Ai and A? are ordered according to their value of A 3 , 
and so on. Ties that remain after attribute A n is considered may be ordered 
arbitrarily.

E xam ple 5.12 : If R  is a relation with schema R(A, B, C), then tc,b (R) orders 
the tuples of R  by their value of C, and tuples with the same C-value are ordered 
by their B  value. Tuples that agree on both B  and C may be ordered arbitrarily.
□

If we apply another operator such as join to the sorted result of a r , the 
sorted order usually becomes meaningless, and the elements on the list should 
be treated as a bag, not a list. However, bag projections can be made to preserve 
the order. Also, a selection on a list drops out the tuples that do not satisfy 
the condition of the selection, but the remaining tuples can be made to appear 
in their original sorted order.

5.2.7 Outerjoins
A property of the join operator is that it is possible for certain tuples to be 
“dangling”; that is, they fail to match any tuple of the other relation in the
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common attributes. Dangling tuples do not have any trace in the result of the 
join, so the join may not represent the data of the original relations completely. 
In cases where this behavior is undesirable, a variation on the join, called “out- 
erjoin,” has been proposed and appears in various commercial systems.

We shall consider the “natural” case first, where the join is on equated 
values of all attributes in common to the two relations. The outerjoin R  cxi S  
is formed by starting with R  tx 5, and adding any dangling tuples from R  or
S. The added tuples must be padded with a special null symbol, _L, in all the 
attributes that they do not possess but that appear in the join result. Note 
that I. is written NULL in SQL (recall Section 2.3.4).

A B C
1 2 3
4 5 6
7 8 9

(a) Relation U

B C D
2 3 10
2 3 11
6 7 12

(b) Relation V

A B C D
1 2 3 10
1 2 3 11
4 5 6 ±
7 8 9 ±
_L 6 7 12

(c) Result U & V

Figure 5.6: Outerjoin of relations

Exam ple 5.13: In Fig. 5.6(a) and (b) we see two relations U and V . Tuple 
(1,2,3) of U joins with both (2,3,10) and (2,3,11) of V,  so these three tuples 
are not dangling. However, the other three tuples — (4,5,6) and (7,8,9) of 
U and (6,7,12) of V  — are dangling. That is, for none of these three tuples 
is there a tuple of the other relation that agrees with it on both the B  and C 
components. Thus, in U cSi V, seen in Fig. 5.6(c), the three dangling tuples



5.2. EXTENDED OPERATORS OF RELATIONAL ALGEBRA 221

are padded with _L in the attributes that they do not have: attribute D for the 
tuples of U and attribute A  for the tuple of V . □

There are many variants of the basic (natural) outerjoin idea. The left 
outerjoin R  S  is like the outerjoin, but only dangling tuples of the left 
argument R  are padded with J. and added to the result. The right outerjoin 
R  tSi r  S  is like the outerjoin, but only the dangling tuples of the right argument 
S  are padded with _L and added to the result.

E xam ple 5 .14 : If U and V  are as in Fig. 5.6, then U tx l  V  is:

A B C D
1 2 3 10
1 2 3 11
4 5 6 _L
7 8 9 ±

and U [Si/{ V  is:

A B C D
1 2 3 10
1 2 3 11
_L 6 7 12

□

In addition, all three natural outerjoin operators have theta-join analogs, 
where first a theta-join is taken and then those tuples that failed to join with 
any tuple of the other relation, when the condition of the theta-join was applied, 
are padded with _L and added to the result. We use i x i c  to denote a theta- 
outerjoin with condition C. This operator can also be modified with L  or R  to 
indicate left- or right-outerjoin.

E xam ple 5.15: Let U and V  be the relations of Fig. 5.6, and consider

U & a >v.c V

Tuples (4,5,6) and (7,8,9) of U each satisfy the condition with both of the 
tuples (2,3,10) and (2,3,11) of V.  Thus, none of these four tuples are dangling 
in this theta-join. However, the two other tuples — (1,2,3) of U and (6,7,12) 
of V  — are dangling. They thus appear, padded, in the result shown in Fig. 5.7.
□
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A U.B U.C V.B V.C D
4 5 6 2 3 10
4 5 6 2 3 11
7 8 9 2 3 10
7 8 9 2 3 11
1 2 3 _L _L _L
_L _L _L 6 7 12

Figure 5.7: Result of a theta-outerjoin

5.2.8 Exercises for Section 5.2

Exercise 5.2 .1: Here are two relations:

R(A,B):  {(0,1), (2,3), (0,1), (2,4), (3,4)}

S(B,C):  {(0,1), (2,4), (2,5), (3,4), (0,2), (3,4)}

Compute the following: a) 7ta+b.a^bK-R); b) t tb + i .c - i^ ) ;  c ) t b ,a{R); 
d) t b , c ( S ) \  e) S(R); f) 6 { S ) ;  g) 7a, sum(b)CR); h) 7b,atg(C)(5); ! i) 7a(-R); 
U) 7a,mi(C)(R xi S); k) .RcSi^S; \ ) R & r S ;  m) R  tS S;  n) R  cSi r . b < s . b  S.

! Exercise 5 .2 .2: A unary operator /  is said to be idempotent if for all relations 
R, f ( f { R ) )  — f{R)- That is, applying /  more than once is the same as applying 
it once. Which of the following operators are idempotent? Either explain why 
or give a counterexample.

a) 6; b) irL; c ) ac ; d) j L; e) r.

! Exercise 5 .2 .3: One thing that can be done with an extended projection, 
but not with the original version of projection that we defined in Section 2.4.5, 
is to duplicate columns. For example, if R (A ,B )  is a relation, then tta,a (R) 
produces the tuple (a, a) for every tuple (a, b) in R. Can this operation be done 
using only the classical operations of relation algebra from Section 2.4? Explain 
your reasoning.

5.3 A Logic for Relations
As an alternative to abstract query languages based on algebra, one can use a 
form of logic to express queries. The logical query language Datalog (“database 
logic”) consists of if-then rules. Each of these rules expresses the idea that from 
certain combinations of tuples in certain relations, we may infer that some other 
tuple must be in some other relation, or in the answer to a query.
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5.3.1 Predicates and Atoms
Relations are represented in Datalog by predicates. Each predicate takes a fixed 
number of arguments, and a predicate followed by its arguments is called an 
atom.. The syntax of atoms is just like that of function calls in conventional 
programming languages; for example P (x1, 0:2, ■ ■ ■ , x n) is an atom consisting of 
the predicate P  with arguments X\,X 2 ,. ■ ■ , x n.

In essence, a predicate is the name of a function that returns a boolean 
value. If R  is a relation with n attributes in some fixed order, then we shall 
also use R  as the name of a predicate corresponding to this relation. The atom 
R(ai,a,2 , ■ ■ ■ ,an) has value TRUE if (<21,(22, . . .  ,an) is a tuple of R; the atom 
has value FALSE otherwise.

Notice that a relation defined by a predicate can be assumed to be a set. 
In Section 5.3.6, we shall discuss how it is possible to extend Datalog to bags. 
However, outside that section, you should assume in connection with Datalog 
that relations are sets.

E xam ple 5.16 : Let R  be the relation

A B
1 2
3 4

Then iZ(l,2) is true and so is R(3,4). However, for any other combination of 
values x  and y , R(x, y) is false. □

A predicate can take variables as well as constants as arguments. If an 
atom has variables for one or more of its arguments, then it is a boolean-valued 
function that takes values for these variables and returns TRUE or FALSE.
E xam ple 5.17: If R  is the predicate from Example 5.16, then R(x ,y)  is the 
function that tells, for any x  and y, whether the tuple (x,y) is in relation R. 
For the particular instance of R  mentioned in Example 5.16, R{x,y)  returns 
TRUE when either

1. x  =  1 and y = 2, or

2. x — 3 and y — 4

and returns FALSE otherwise. As another example, the atom R (l ,z )  returns 
TRUE if z  = 2 and returns FALSE otherwise. □

5.3.2 Arithmetic Atoms
There is another kind of atom that is important in Datalog: an arithmetic 
atom. This kind of atom is a comparison between two arithmetic expressions, 
for example x < y or x  + 1 > y + 4 x z. For contrast, we shall call the atoms 
introduced in Section 5.3.1 relational atoms; both kinds are “atoms.”
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Note that arithmetic and relational atoms each take as arguments the values 
of any variables that appear in the atom, and they return a boolean value. 
In effect, arithmetic comparisons like < or > are like the names of relations 
that contain all the true pairs. Thus, we can visualize the relation “< ” as 
containing all the tuples, such as (1,2) or (—1.5,65.4), whose first component is 
less than their second component. Remember, however, that database relations 
are always finite, and usually change from time to time. In contrast, arithmetic- 
comparison relations such as < are both infinite and unchanging.

5.3.3 Datalog Rules and Queries
Operations similar to those of relational algebra are described in Datalog by 
rules, which consist of

1. A relational atom called the head, followed by

2. The symbol «—, which we often read “if,” followed by

3. A body consisting of one or more atoms, called subgoals, which may be 
either relational or arithmetic. Subgoals are connected by AND, and any 
subgoal may optionally be preceded by the logical operator NOT.

E xam ple 5.18: The Datalog rule

LongMovie(t.y) <— M o v ie s ( t ,y ,l ,g ,s ,p )  AND 1 > 100

defines the set of “long” movies, those at least 100 minutes long. It refers to 
our standard relation Movies with schema

M o v ie s (title , y ea r, len g th , genre, studioName, producerC#)

The head of the rule is the atom LongMovie(t, y). The body of the rule consists 
of two subgoals:

1. The first subgoal has predicate Movies and six arguments, corresponding 
to the six attributes of the Movies relation. Each of these arguments has a 
different variable: t for the t i t l e  component, y for the year component, 
I for the leng th  component, and so on. We can see this subgoal as saying: 
“Let (t ,y , l ,g ,s ,p ) be a tuple in the current instance of relation Movies.” 
More precisely, Movies(t,y,l,g,s,p) is true whenever the six variables 
have values that are the six components of some one Movies tuple.

2. The second subgoal, I > 100, is true whenever the length component of a 
Movies tuple is at least 100.

The rule as a whole can be thought of as saying: LongMovie(t,y) is true 
whenever we can find a tuple in Movies with:

a) t and y as the first two components (for t i t l e  and year),
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Anonymous Variables

Frequently, Datalog rules have some variables that appear only once. The 
names used for these variables are irrelevant. Only when a variable appears 
more than once do we care about its name, so we can see it is the same 
variable in its second and subsequent appearances. Thus, we shall allow 
the common convention that an underscore, _, as an argument of an atom, 
stands for a variable that appears only there. Multiple occurrences of _ 
stand for different variables, never the same variable. For instance, the 
rule of Example 5.18 could be written

LongMovie(t,y) 4- Movies(t,y,l,AND 1 > 100

The three variables g, s, and p  that appear only once have each been 
replaced by underscores. We cannot replace any of the other variables, 
since each appears twice in the rule.

b) A third component I (for length) that is at least 100, and

c) Any values in components 4 through 6.

Notice that this rule is thus equivalent to the “assignment statement” in rela
tional algebra:

LongMovie := ■nt i t ie ,y e a r  ( v ie n g th > io o (Movies))

whose right side is a relational-algebra expression. □

A query in Datalog is a collection of one or more rules. If there is only 
one relation that appears in the rule heads, then the value of this relation is 
taken to be the answer to the query. Thus, in Example 5.18, LongMovie is the 
answer to the query. If there is more than one relation among the rule heads, 
then one of these relations is the answer to the query, while the others assist 
in the definition of the answer. When there are several predicates defined by 
a collection of rules, we shall usually assume that the query result is named 
Answer.

5.3.4 Meaning of Datalog Rules
Example 5.18 gave us a hint of the meaning of a Datalog rule. More precisely, 
imagine the variables of the rule ranging over all possible values. Whenever 
these variables have values that together make all the subgoals true, then we 
see what the value of the head is for those variables, and we add the resulting 
tuple to the relation whose predicate is in the head.
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For instance, we can imagine the six variables of Example 5.18 ranging over 
all possible values. The only combinations of values that can make all the 
subgoals true are when the values of (t , y, l,g, s,p) in that order form a tuple of 
Movies. Moreover, since the I > 100 subgoal must also be true, this tuple must 
be one where I, the value of the len g th  component, is at least 100. When we 
find such a combination of values, we put the tuple (t , y) in the head’s relation 
LongMovie.

There are, however, restrictions that we must place on the way variables are 
used in rules, so that the result of a rule is a finite relation and so that rules 
with arithmetic subgoals or with negated subgoals (those with NOT in front of 
them) make intuitive sense. This condition, which we call the safety condition, 
is:

• Every variable that appears anywhere in the rule must appear in some 
nonnegated, relational subgoal of the body.

In particular, any variable that appears in the head, in a negated relational sub
goal, or in any arithmetic subgoal, must also appear in a nonnegated, relational 
subgoal of the body.

E xam ple 5 .19: Consider the rule

LongMovie(t,y) <— Movies(t,y,l,AND 1 > 100

from Example 5.18. The first subgoal is a nonnegated, relational subgoal, and 
it contains all the variables that appear anywhere in the rule, including the 
anonymous ones represented by underscores. In particular, the two variables 
t and y that appear in the head also appear in the first subgoal of the body. 
Likewise, variable I appears in an arithmetic subgoal, but it also appears in the 
first subgoal. Thus, the rule is safe. □

E xam ple 5 .20: The following rule has three safety violations:

P(x,y) Q(x,z) AND NOT R(w,x,z) AND x<y

1. The variable y appears in the head but not in any nonnegated, relational 
subgoal of the body. Notice that y ’s appearance in the arithmetic subgoal 
x  < y does not help to limit the possible values of y to a finite set. As 
soon as we find values a, b, and c for w, x, and 2 respectively that satisfy 
the first two subgoals, we are forced to add the infinite number of tuples 
(ib, d) such that d > b to the relation for the head predicate P.

2. Variable w appears in a negated, relational subgoal but not in a non
negated, relational subgoal.

3. Variable y appears in an arithmetic subgoal, but not in a nonnegated, 
relational subgoal.
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Thus, it is not a safe rule and cannot be used in Datalog. □

There is another way to define the meaning of rules. Instead of considering 
all of the possible assignments of values to variables, we consider the sets of 
tuples in the relations corresponding to each of the nonnegated, relational sub
goals. If some assignment of tuples for each nonnegated, relational subgoal is 
consistent, in the sense that it assigns the same value to each occurrence of any 
one variable, then consider the resulting assignment of values to all the variables 
of the rule. Notice that because the rule is safe, every variable is assigned a 
value.

For each consistent assignment, we consider the negated, relational subgoals 
and the arithmetic subgoals, to see if the assignment of values to variables makes 
them all true. Remember that a negated subgoal is true if its atom is false. If 
all the subgoals are true, then we see what tuple the head becomes under this 
assignment of values to variables. This tuple is added to the relation whose 
predicate is the head.

E xam ple 5.21: Consider the Datalog rule

P(x,y) «- Q(x,z) AND R(z,y) AND NOT Q(x,y)
Let relation Q contain the two tuples (1,2) and (1,3). Let relation R  contain 
tuples (2,3) and (3,1). There are two nonnegated, relational subgoals, Q(x,z)  
and R(z,y),  so we must consider all combinations of assignments of tuples 
from relations Q and R, respectively, to these subgoals. The table of Fig. 5.8 
considers all four combinations.

Tuple for 
Q(x,z)

Tuple for 
R (z,y)

Consistent
Assignment?

NOT Q(x,y) 
True?

Resulting
Head

1) (1,2) (2,3) Yes No —
2) (1,2) (3,1) No; 2 =  2,3 Irrelevant —
3) (1,3) (2,3) No; z = 3,2 Irrelevant —
4) (1,3) (3,1) Yes Yes P( 1,1)

Figure 5.8: All possible assignments of tuples to Q(x,z)  and R(z,y)

The second and third options in Fig. 5.8 are not consistent. Each assigns 
two different values to the variable 2 . Thus, we do not consider these tuple- 
assignments further.

The first option, where subgoal Q{x,z) is assigned the tuple (1,2) and sub
goal R(z,y)  is assigned tuple (2,3), yields a consistent assignment, with x, y, 
and z  given the values 1, 3, and 2, respectively. We thus proceed to the test of 
the other subgoals, those that are not nonnegated, relational subgoals. There 
is only one: NOT Q(x,y). For this assignment of values to the variables, this 
subgoal becomes NOT Q (l,3 ). Since (1,3) is a tuple of Q, this subgoal is false, 
and no head tuple is produced for the tuple-assignment (1).
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The final option is (4). Here, the assignment is consistent; x, y, and 2 are 
assigned the values 1, 1, and 3, respectively. The subgoal NOT Q(x,y) takes 
on the value NOT Q(l,l). Since (1,1) is not a tuple of Q, this subgoal is true. 
We thus evaluate the head P(x,y)  for this assignment of values to variables 
and find it is P(l,  1). Thus the tuple (1,1) is in the relation P. Since we have 
exhausted all tuple-assignments, this is the only tuple in P. □

5.3.5 Extensional and Intensional Predicates
It is useful to make the distinction between

• Extensional predicates, which are predicates whose relations are stored in 
a database, and

• Intensional predicates, whose relations are computed by applying one or 
more Datalog rules.

The difference is the same as that between the operands of a relational-algebra 
expression, which are “extensional” (i.e., defined by their extension, which is 
another name for the “current instance of a relation”) and the relations com
puted by a relational-algebra expression, either as the final result or as an 
intermediate result corresponding to some subexpression; these relations are 
“intensional” (i.e., defined by the programmer’s “intent”).

When talking of Datalog rules, we shall refer to the relation corresponding 
to a predicate as “intensional” or “extensional,” if the predicate is intensional 
or extensional, respectively. We shall also use the abbreviation IDB for “inten
sional database” to refer to either an intensional predicate or its correspond
ing relation. Similarly, we use abbreviation EDB, standing for “extensional 
database,” for extensional predicates or relations.

Thus, in Example 5.18, Movies is an EDB relation, defined by its extension. 
The predicate Movies is likewise an EDB predicate. Relation and predicate 
LongMovie are both intensional.

An EDB predicate can never appear in the head of a rule, although it can 
appear in the body of a rule. IDB predicates can appear in either the head or 
the body of rules, or both. It is also common to construct a single relation by 
using several rules with the same IDB predicate in the head. We shall see an 
illustration of this idea in Example 5.24, regarding the union of two relations.

By using a series of intensional predicates, we can build progressively more 
complicated functions of the EDB relations. The process is similar to the build
ing of relational-algebra expressions using several operators.

5.3.6 Datalog Rules Applied to Bags
Datalog is inherently a logic of sets. However, as long as there are no negated, 
relational subgoals, the ideas for evaluating Datalog rules when relations are sets 
apply to bags as well. When relations are bags, it is conceptually simpler to use
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the second approach for evaluating Datalog rules that we gave in Section 5.3.4. 
Recall this technique involves looking at each of the nonnegated, relational 
subgoals and substituting for it all tuples of the relation for the predicate of 
that subgoal. If a selection of tuples for each subgoal gives a consistent value to 
each variable, and the arithmetic subgoals all become true,1 then we see what 
the head becomes with this assignment of values to variables. The resulting 
tuple is put in the head relation.

Since we are now dealing with bags, we do not eliminate duplicates from 
the head. Moreover, as we consider all combinations of tuples for the subgoals, 
a tuple appearing n  times in the relation for a subgoal gets considered n  times 
as the tuple for that subgoal, each time in conjunction with all combinations of 
tuples for the other subgoals.

E xam ple 5.22 : Consider the rule

H(x,z) «— R(x,y) AND S(y,z)

where relation R(A, B) has the tuples:

B

and S(B ,C )  has tuples:

B
~ 2 ~

4
4

The only time we get a consistent assignment of tuples to the subgoals (i.e., 
an assignment where the value of y from each subgoal is the same) is when 
the first subgoal is assigned one of the tuples (1,2) from R  and the second 
subgoal is assigned tuple (2,3) from S. Since (1,2) appears twice in R, and 
(2,3) appears once in 5, there will be two assignments of tuples that give the 
variable assignments x — 1, y =  2, and 2 =  3. The tuple of the head, which 
is (x,z), is for each of these assignments (1,3). Thus the tuple (1,3) appears 
twice in the head relation H, and no other tuple appears there. That is, the 
relation

1 3 
1 3

l N ote th a t  th e re  m u st no t be any negated  re la tio n a l subgoals in th e  rule. T h ere  is not 
a  clearly  defined m eaning  of a rb itra ry  D ata log  ru les w ith  negated , re la tio n a l subgoals under 
th e  bag m odel.
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is the head relation defined by this rule. More generally, had tuple (1,2) ap
peared n  times in R  and tuple (2,3) appeared m  times in S, then tuple (1,3) 
would appear nm  times in H . □

If a relation is defined by several rules, then the result is the bag-union of 
whatever tuples are produced by each rule.

E xam ple 5.23: Consider a relation H  defined by the two rules

H(x,y) «- S(x,y) AND x>l 
H(x,y) <- S(x,y) AND y<5

where relation S(B, C) is as in Example 5.22; that is, S  =  {(2,3), (4,5), (4,5)}. 
The first rule puts each of the three tuples of S  into H, since they each have a 
first component greater than 1. The second rule puts only the tuple (2,3) into
H, since (4,5) does not satisfy the condition y < 5. Thus, the resulting relation 
H  has two copies of the tuple (2,3) and two copies of the tuple (4,5). □

5.3.7 Exercises for Section 5.3
E xercise 5 .3 .1 : Write each of the queries of Exercise 2.4.1 in Datalog. You 
should use only safe rules, but you may wish to use several IDB predicates 
corresponding to subexpressions of complicated relational-algebra expressions.

E xercise 5 .3 .2 : Write each of the queries of Exercise 2.4.3 in Datalog. Again, 
use only safe rules, but you may use several IDB predicates if you like.

E xercise 5 .3 .3 : The requirement we gave for safety of Datalog rules is suffi
cient to guarantee that the head predicate has a finite relation if the predicates 
of the relational subgoals have finite relations. However, this requirement is 
too strong. Give an example of a Datalog rule that violates the condition, yet 
whatever finite relations we assign to the relational predicates, the head relation 
will be finite.

5.4 Relational Algebra and Datalog
Each of the relational-algebra operators of Section 2.4 can be mimicked by one 
or several Datalog rules. In this section we shall consider each operator in turn. 
We shall then consider how to combine Datalog rules to mimic complex algebraic 
expressions. It is also true that any single safe Datalog rule can be expressed in 
relational algebra, although we shall not prove that fact here. However, Datalog 
queries are more powerful than relational algebra when several rules are allowed 
to interact; they can express recursions that are not expressable in the algebra 
(see Example 5.35).
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5.4.1 Boolean Operations
The boolean operations of relational algebra — union, intersection, and set 
difference — can each be expressed simply in Datalog. Here are the three 
techniques needed. We assume R  and S  are relations with the same number of 
attributes, n. We shall describe the needed rules using Answer as the name of 
the head predicate in all cases. However, we can use anything we wish for the 
name of the result, and in fact it is important to choose different predicates for 
the results of different operations.

• To take the union R U  S, use two rules and n  distinct variables

One rule has R(ai,a,2 , . . .  , an) as the lone subgoal and the other has 
S(ai, a,2 , ■ ■ ■ , an) alone. Both rules have the head Answer(ai, a2, . . .  , an). 
As a result, each tuple from R  and each tuple of 5  is put into the answer 
relation.

• To take the intersection R n  S, use a rule with body

R (a i,a2, . . .  ,an) AND S(a i ,a2, . . .  ,a„)
and head Answer (ai ,(1 2 , ■ ■ ■ , an). Then, a tuple is in the answer relation 
if and only if it is in both R  and S.

• To take the difference R  — S, use a rule with body

R (a i,a2, . . .  ,a„) AND NOT S(a i ,a2, . . .  ,a„)

and head Answer(ai ,a2, . . .  , an). Then, a tuple is in the answer relation 
if and only if it is in R  but not in S.

Example 5.24: Let the schemas for the two relations be R(A, B, C) and 
S (A ,B ,C ) .  To avoid confusion, we use different predicates for the various 
results, rather than calling them all Answer.

To take the union R  U S  we use the two rules:

1. U(x,y,z) <- R(x,y,z)
2. U (x ,y ,z) 4- S (x ,y ,z )

Rule (1) says that every tuple in R  is a tuple in the IDB relation U. Rule (2) 
similarly says that every tuple in S  is in U.

To compute R  fl S, we use the rule

I(a,b,c) •<— R(a,b,c) AND S(a,b,c)
Finally, the rule

D(a,b,c) «— R(a,b,c) AND NOT S(a,b,c) 
computes the difference R  — S. □
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Variables Are Local to a Rule

Notice that the names we choose for variables in a rule are arbitrary and 
have no connection to the variables used in any other rule. The reason 
there is no connection is that each rule is evaluated alone and contributes 
tuples to its head’s relation independent of other rules. Thus, for instance, 
we could replace the second rule of Example 5.24 by

U(a,b,c) «— S(a,b,c)

while leaving the first rule unchanged, and the two rules would still com
pute the union of R  and S. Note, however, that when substituting one 
variable u for another variable v within a rule, we must substitute u for 
all occurrences of v within the rule. Moreover, the substituting variable u 
that we choose must not be a variable that already appears in the rule.

5.4.2 Projection
To compute a projection of a relation R, we use one rule with a single subgoal 
with predicate R. The arguments of this subgoal are distinct variables, one 
for each attribute of the relation. The head has an atom with arguments that 
are the variables corresponding to the attributes in the projection list, in the 
desired order.

E xam ple 5.25 : Suppose we want to project the relation

Movies(title, year, length, genre, studioName, producerC#) 

onto its first three attributes —  title, year, and length. The rule 

P(t,y,l) «- Movies(t,y,l,g,s,p) 

serves, defining a relation called P  to be the result of the projection. □

5.4.3 Selection
Selections can be somewhat more difficult to express in Datalog. The sim
ple case is when the selection condition is the AND of one or more arithmetic 
comparisons. In that case, we create a rule with

1. One relational subgoal for the relation upon which we are performing the 
selection. This atom has distinct variables for each component, one for 
each attribute of the relation.
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2. For each comparison in the selection condition, an arithmetic subgoal 
that is identical to this comparison. However, while in the selection con
dition an attribute name was used, in the arithmetic subgoal we use the 
corresponding variable, following the correspondence established by the 
relational subgoal.

E xam ple 5.26: The selection

®le n g th > 100 AND s tu d io N a m e -^ ’ Fox’ (Movies) 

can be written as a Datalog rule 

S ( t ,y , l ,g , s , p )  «— M o v ie s ( t ,y ,l ,g ,s ,p )  AND 1 > 100 AND s = ’Fox’

The result is the relation S. Note that I and s are the variables corresponding 
to attributes len g th  and studioName in the standard order we have used for 
the attributes of Movies. □

Now, let us consider selections that involve the OR of conditions. We cannot 
necessarily replace such selections by single Datalog rules. However, selection 
for the OR of two conditions is equivalent to selecting for each condition sepa
rately and then taking the union of the results. Thus, the OR of n  conditions 
can be expressed by n  rules, each of which defines the same head predicate. 
The ith rule performs the selection for the ith  of the n  conditions.

E xam ple 5.27: Let us modify the selection of Example 5.26 by replacing the 
AND by an OR to get the selection:

& le n g th > 100 OR s tu d io N a m e = ’ F o x ’ (Movies)
That is, find all those movies that are either long or by Fox. We can write two 
rules, one for each of the two conditions:

1. S ( t ,y , l ,g , s , p )  M o v ie s ( t ,y ,l ,g ,s ,p )  AND 1 > 100
2. S ( t ,y , l ,g , s , p )  <- M o v ie s ( t ,y ,l ,g ,s ,p )  AND s = ’Fox’

Rule (1) produces movies at least 100 minutes long, and rule (2) produces 
movies by Fox. □

Even more complex selection conditions can be formed by several applica
tions, in any order, of the logical operators AND, OR, and NOT. However, there is 
a widely known technique, which we shall not present here, for rearranging any 
such logical expression into “disjunctive normal form,” where the expression is 
the disjunction (OR) of “conjuncts.” A conjunct, in turn, is the AND of “literals,” 
and a literal is either a comparison or a negated comparison.2

2See, e.g ., A . V . A ho an d  J . D . U llm an, F oundations o f  C om puter Science, C o m p u ter 
Science P ress , New Y ork, 1992.
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We can represent any literal by a subgoal, perhaps with a NOT in front of it. 
If the subgoal is arithmetic, the NOT can be incorporated into the comparison 
operator. For example, NOT x > 100 can be written as x < 100. Then, any 
conjunct can be represented by a single Datalog rule, with one subgoal for each 
comparison. Finally, every disjunctive-normal-form expression can be written 
by several Datalog rules, one rule for each conjunct. These rules take the union, 
or OR, of the results from each of the conjuncts.

E xam ple 5.28: We gave a simple instance of this algorithm in Example 5.27. 
A more difficult example can be formed by negating the condition of that ex
ample. We then have the expression:

^NOT (le n g th > 100 OR s tu d io N a m e =  * Fox ’} (Movies)
That is, find all those movies that are neither long nor by Fox.

Here, a NOT is applied to an expression that is itself not a simple comparison. 
Thus, we must push the NOT down the expression, using one form of DeMorgan’s 
laws, which says that the negation of an OR is the AND of the negations. That 
is, the selection can be rewritten:

ff(N0T ( le n g th > 100)) AND (NOT ( s tu d io N a m e =  ’Fox’))(Movies)
Now, we can take the NOT’s inside the comparisons to get the expression:

& leng th< 100 AND s tu d io N a m e ^ ’ F o x ’ (Movies)
This expression can be converted into the Datalog rule 

S(t,y,l,g,s,p) <- Movies(t,y,l,g,s,p) AND 1 < 100 AND s ^ ’Fox’
□
Exam ple 5.29: Let us consider a similar example where we have the negation 
of an AND in the selection. Now, we use the second form of DeMorgan’s law, 
which says that the negation of an AND is the OR of the negations. We begin 
with the algebraic expression

N̂OT (len g th > 1 0 0 AND s tu d io N  a m e= ’Fox ’) (Movies)
That is, find all those movies that are not both long and by Fox.

We apply DeMorgan’s law to push the NOT below the AND, to get:

^(NOT (le n g th > 100)) OR (NOT (s tu d io N a m e =  ’Fox’))(Movies)
Again we take the NOT’s inside the comparisons to get:

® length<lQ Q OR s tu d io N a m e ^ ’Fox’ (Movies)
Finally, we write two rules, one for each part of the OR. The resulting Datalog 
rules are:

1. S(t,y,l,g,s,p) «— Movies(t,y,l,g,s,p) AND 1 < 100
2. S(t,y,l,g,s,p) 4- Movies(t,y,l,g,s,p) AND s /  ’Fox’

□
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5.4.4 Product
The product of two relations R x  S  can be expressed by a single Datalog rule. 
This rule has two subgoals, one for R  and one for S. Each of these subgoals 
has distinct variables, one for each attribute of R  or S. The IDB predicate in 
the head has as arguments all the variables that appear in either subgoal, with 
the variables appearing in the -R-subgoal listed before those of the 5-subgoal.

E xam ple 5.30: Let us consider the two three-attribute relations R  and S  from 
Example 5.24. The rule

P(a,b,c,x,y,z) ■<— R(a,b,c) AND S(x,y,z)

defines P  to be R  x S. We have arbitrarily used variables at the beginning of 
the alphabet for the arguments of R  and variables at the end of the alphabet 
for S. These variables all appear in the rule head. □

5.4.5 Joins
We can take the natural join of two relations by a Datalog rule that looks much 
like the rule for a product. The difference is that if we want R  ix S, then 
we must use the same variable for attributes of R  and S  that have the same 
name and must use different variables otherwise. For instance, we can use the 
attribute names themselves as the variables. The head is an IDB predicate that 
has each variable appearing once.

E xam ple 5.31: Consider relations with schemas R (A ,B )  and S(B ,C ,D ).  
Their natural join may be defined by the rule

J(a,b,c,d) R(a,b) AND S(b,c,d)
Notice how the variables used in the subgoals correspond in an obvious way to 
the attributes of the relations R  and S. □

We also can convert theta-joins to Datalog. Recall from Section 2.4.12 how a 
theta-join can be expressed as a product followed by a selection. If the selection 
condition is a conjunct, that is, the AND of comparisons, then we may simply 
start with the Datalog rule for the product and add additional, arithmetic 
subgoals, one for each of the comparisons.

E xam ple 5.32: Consider the relations U (A ,B ,C )  and V (B ,C ,D )  and the 
theta-join:

U  x i  A < D  a n d  u .b ^ v .b  V

We can construct the Datalog rule

J(a,ub,uc,vb,vc,d) «— U(a,ub,uc) AND V(vb,vc,d) AND
a < d AND ub / vb
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to perform the same operation. We have used ub as the variable corresponding 
to attribute B  of U, and similarly used vb, uc, and vc, although any six distinct 
variables for the six attributes of the two relations would be fine. The first two 
subgoals introduce the two relations, and the second two subgoals enforce the 
two comparisons that appear in the condition of the theta-join. □

If the condition of the theta-join is not a conjunction, then we convert it to 
disjunctive normal form, as discussed in Section 5.4.3. We then create one rule 
for each conjunct. In this rule, we begin with the subgoals for the product and 
then add subgoals for each literal in the conjunct. The heads of all the rules are 
identical and have one argument for each attribute of the two relations being 
theta-joined.

E xam ple 5.33: In this example, we shall make a simple modification to the 
algebraic expression of Example 5.32. The AND will be replaced by an OR. There 
are no negations in this expression, so it is already in disjunctive normal form. 
There are two conjuncts, each with a single literal. The expression is:

U  x  a < d  OR u .b ^ v .b  V

Using the same variable-naming scheme as in Example 5.32, we obtain the 
two rules

1. J(a,ub,uc,vb,vc,d) U(a,ub,uc) AND V(vb,vc,d) AND a < d
2. J(a,ub,uc,vb,vc,d) -f- U(a,ub,uc) AND V(vb,vc,d) AND ub /  vb

Each rule has subgoals for the two relations involved plus a subgoal for one of 
the two conditions A < D  or U.B V.B. □

5.4.6 Simulating Multiple Operations with Datalog
Datalog rules are not only capable of mimicking a single operation of relational 
algebra. We can in fact mimic any algebraic expression. The trick is to look 
at the expression tree for the relational-algebra expression and create one IDB 
predicate for each interior node of the tree. The rule or rules for each IDB 
predicate is whatever we need to apply the operator at the corresponding node of 
the tree. Those operands of the tree that are extensional (i.e., they are relations 
of the database) are represented by the corresponding predicate. Operands 
that are themselves interior nodes are represented by the corresponding IDB 
predicate. The result of the algebraic expression is the relation for the predicate 
associated with the root of the expression tree.

E xam ple 5.34: Consider the algebraic expression

T ttitle ,y ea r  (& length> l(SO (Movies) fl <7'sttidio7Vame=’Fox’ (Movies) )
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n

® length >= 100 ® studioName = 'F o x '

Movies Movies

Figure 5.9: Expression tree

1. W(t,y,l,g,s,p) 4- Movies(t, y, 1, g, s, p) AND 1 > 100
2. X(t,y,l,g,s,p) 4 -  Movies(t,y,l,g,s,p) AND s = ’Fox’
3. YCt.y.l.g.s.p) -f- W(t,y,l,g,s,p) AND X(t,y,l,g,s,p)
4. Answer(t,y) 4 -  Y(t,y,l,g,s,p)

Figure 5.10: Datalog rules to perform several algebraic operations

from Example 2.17, whose expression tree appeared in Fig. 2.18. We repeat 
this tree as Fig. 5.9. There are four interior nodes, so we need to create four 
IDB predicates. Each of these predicates has a single Datalog rule, and we 
summarize all the rules in Fig. 5.10.

The lowest two interior nodes perform simple selections on the EDB relation 
Movies, so we can create the IDB predicates W  and X  to represent these 
selections. Rules (1) and (2) of Fig. 5.10 describe these selections. For example, 
rule (1) defines W  to be those tuples of Movies that have a length at least 100.

Then rule (3) defines predicate Y  to be the intersection of W  and X ,  using 
the form of rule we learned for an intersection in Section 5.4.1. Finally, rule (4) 
defines the answer to be the projection of Y  onto the t i t l e  and year at
tributes. We here use the technique for simulating a projection that we learned 
in Section 5.4.2.

Note that, because Y  is defined by a single rule, we can substitute for the Y  
subgoal in rule (4) of Fig. 5.10, replacing it with the body of rule (3). Then, we 
can substitute for the W  and X  subgoals, using the bodies of rules (1) and (2). 
Since the Movies subgoal appears in both of these bodies, we can eliminate one 
copy. As a result, the single rule

Answer(t,y) 4 -  Movies(t,y,l,g,s,p) AND 1 > 100 AND s = ’Fox’

suffices. □
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5.4.7 Comparison Between Datalog and Relational 
Algebra

We see from Section 5.4.6 that every expression in the basic relational algebra 
of Section 2.4 can be expressed as a Datalog query. There are operations in the 
extended relational algebra, such as grouping and aggregation from Section 5.2, 
that have no corresponding features in the Datalog version we have presented 
here. Likewise, Datalog does not support bag operations such as duplicate 
elimination.

It is also true that any single Datalog rule can be expressed in relational 
algebra. That is, we can write a query in the basic relational algebra that 
produces the same set of tuples as the head of that rule produces.

However, when we consider collections of Datalog rules, the situation chan
ges. Datalog rules can express recursion, which relational algebra can not. The 
reason is that IDB predicates can also be used in the bodies of rules, and the 
tuples we discover for the heads of rules can thus feed back to rule bodies 
and help produce more tuples for the heads. We shall not discuss here any of 
the complexities that arise, especially when the rules have negated subgoals. 
However, the following example will illustrate recursive Datalog.

Example 5.35: Suppose we have a relation Edge(X,Y) that says there is a 
directed edge (arc) from node X  to node Y.  We can express the transitive 
closure of the edge relation, that is, the relation Path(X,Y) meaning that there 
is a path of length 1 or more from node X  to node Y ,  as follows:

1. Path(X,Y) <- Edge(X,Y)
2. Path(X.Y) <- Edge(X,Z) AND Path(Z,Y)

Rule (1) says that every edge is a path. Rule (2) says that if there is an 
edge from node X  to some node Z  and a path from Z  to Y ,  then there is also a 
path from X  to Y.  If we apply Rule (1) and then Rule (2), we get the paths of 
length 2. If we take the Path facts we get from this application and use them in 
another application of Rule (2), we get paths of length 3. Feeding those Path 
facts back again gives us paths of length 4, and so on. Eventually, we discover 
all possible path facts, and on one round we get no new facts. At that point, 
we can stop. If we haven’t discovered the fact Path(a,b), then there really is 
no path in the graph from node a to node b. □

5.4.8 Exercises for Section 5.4
Exercise 5.4.1: Let R(a,b,c), S(a,b,c), and T(a,b,c) be three relations. 
Write one or more Datalog rules that define the result of each of the following 
expressions of relational algebra:

a) R  U S.

b) R  n  S.
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c) R - S .

d) (R  U S) -  T.

! e) ( R - S )  n  ( R - T ) .

f) n a ,b(R )-

! g) * a ,b (R )  n  P U (a ,b ){ ^b A S ) ) -

Exercise 5 .4 .2 : Let R (x ,y ,z )  be a relation. Write one or more Datalog rules 
that define ac{R), where C  stands for each of the following conditions:

a) x = y.

b) x < y AND y < z.

c) x < y OR y < z.

d) NOT (x < y OR x  > y).

! e) NOT ((x < y OR x  > y) AND y < z).

! f) NOT ((* < y OR x < z) AND y < z).

E xercise 5 .4 .3 : Let R(a,b,c), S(b,c,d), and T(d,e) be three relations. Write 
single Datalog rules for each of the natural joins:

a) R  m S.

b) 5  tx: T.

c) (R cxi S) m T. (Note: since the natural join is associative and commuta
tive, the order of the join of these three relations is irrelevant.)

E xercise 5 .4 .4 : Let R (x ,y ,z )  and S (x ,y ,z )  be two relations. Write one or 
more Datalog rules to define each of the theta-joins R  S, where C  is 
one of the conditions of Exercise 5.4.2. For each of these conditions, interpret 
each arithmetic comparison as comparing an attribute of R  on the left with an 
attribute of 5  on the right. For instance, x < y stands for R.x < S.y.

! E xercise 5 .4 .5 : It is also possible to convert Datalog rules into equivalent 
relational-algebra expressions. While we have not discussed the method of 
doing so in general, it is possible to work out many simple examples. For each 
of the Datalog rules below, write an expression of relational algebra that defines 
the same relation as the head of the rule.

a) P(x,y) <- Q(x,z) AND R(z,y)
b) P(x,y) •(- Q(x,z) AND Q(z,y)
c) P(x,y) Q(x,z) AND R(z,y) AND x < y
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5.5 Summary of Chapter 5
4- Relations as Bags: In commercial database systems, relations are actually 

bags, in which the same tuple is allowed to appear several times. The 
operations of relational algebra on sets can be extended to bags, but 
there are some algebraic laws that fail to hold.

♦  Extensions to Relational Algebra: To match the capabilities of SQL, some 
operators not present in the core relational algebra are needed. Sorting 
of a relation is an example, as is an extended projection, where compu
tation on columns of a relation is supported. Grouping, aggregation, and 
outerjoins are also needed.

♦  Grouping and Aggregation: Aggregations summarize a column of a rela
tion. Typical aggregation operators are sum, average, count, minimum, 
and maximum. The grouping operator allows us to partition the tuples 
of a relation according to their value (s) in one or more attributes before 
computing aggregation(s) for each group.

♦  Outerjoins: The outerjoin of two relations starts with a join of those re
lations. Then, dangling tuples (those that failed to join with any tuple) 
from either relation are padded with null values for the attributes belong
ing only to the other relation, and the padded tuples are included in the 
result.

♦  Datalog: This form of logic allows us to write queries in the relational 
model. In Datalog, one writes rules in which a head predicate or relation 
is defined in terms of a body, consisting of subgoals.

♦  Atoms: The head and subgoals are each atoms, and an atom consists of 
an (optionally negated) predicate applied to some number of arguments. 
Predicates may represent either relations or arithmetic comparisons such 
as <.

♦  IDB and EDB Predicates: Some predicates correspond to stored relations, 
and are called EDB (extensional database) predicates or relations. Other 
predicates, called IDB (intensional database), are defined by the rules. 
EDB predicates may not appear in rule heads.

♦  Safe Rules: Datalog rules must be safe, meaning that every variable in 
the rule appears in some nonnegated, relational subgoal of the body. Safe 
rules guarantee that if the EDB relations are finite, then the IDB relations 
will be finite.

♦  Relational Algebra and Datalog: All queries that can be expressed in core 
relational algebra can also be expressed in Datalog. If the rules are safe 
and nonrecursive, then they define exactly the same set of queries as core 
relational algebra.
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Chapter 6

The Database Language 
SQL

The most commonly used relational DBMS’s query and modify the database 
through a language called SQL (sometimes pronounced “sequel”). SQL stands 
for “Structured Query Language.” The portion of SQL that supports queries 
has capabilities very close to that of relational algebra, as extended in Sec
tion 5.2. However, SQL also includes statements for modifying the database 
(e.g., inserting and deleting tuples from relations) and for declaring a database 
schema. Thus, SQL serves as both a data-manipulation language and as a data- 
definition language. SQL also standardizes many other database commands, 
covered in Chapters 7 and 9.

There are many different dialects of SQL. First, there are three major stan
dards. There is ANSI (American National Standards Institute) SQL and an 
updated standard adopted in 1992, called SQL-92 or SQL2. The most recent 
SQL-99 (previously referred to as SQL3) standard extends SQL2 with object- 
relational features and a number of other new capabilities. There is also a 
collection of extensions to SQL-99, collectively called SQL:2003. Then, there 
are versions of SQL produced by the principal DBMS vendors. These all include 
the capabilities of the original ANSI standard. They also conform to a large 
extent to the more recent SQL2, although each has its variations and extensions 
beyond SQL2, including some, but not all, of the features in the SQL-99 and 
SQL:2003 standards.

This chapter introduces the basics of SQL: the query language and database 
modification statements. We also introduce the notion of a “transaction,” the 
basic unit of work for database systems. This study, although simplifed, will 
give you a sense of how database operations can interact and some of the re
sulting pitfalls.

The next chapter discusses constraints and triggers, as another way of ex
erting user control over the content of the database. Chapter 8 covers some 
of the ways that we can make our SQL queries more efficient, principally by
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declaring indexes and related structures. Chapter 9 covers database-related 
programming as part of a whole system, such as the servers that we commonly 
access over the Web. There, we shall see that SQL queries and other operations 
are almost never performed in isolation, but are embedded in a conventional 
host language, with which it must interact.

Finally, Chapter 10 explains a number of advanced database programming 
concepts. These include recursive SQL, security and access control in SQL, 
object-relational SQL, and the data-cube model of data.

The intent of this chapter and the following are to provide the reader with a 
sense of what SQL is about, more at the level of a “tutorial” than a “manual.” 
Thus, we focus on the most commonly used features only, and we try to use code 
that not only conforms to the standard, but to the usage of commercial DBMS’s. 
The references mention places where more of the details of the language and 
its dialects can be found.

6.1 Simple Queries in SQL
Perhaps the simplest form of query in SQL asks for those tuples of some one 
relation that satisfy a condition. Such a query is analogous to a selection in 
relational algebra. This simple query, like almost all SQL queries, uses the three 
keywords, SELECT, FROM, and WHERE that characterize SQL.

Movies(title, year, length, genre, studioName, producerC#) 
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

Figure 6.1: Example database schema, repeated

E xam ple 6.1 : In this and subsequent examples, we shall use the movie data
base schema from Section 2.2.8. For reference, these relation schemas are the 
ones shown in Fig. 6.1.

As our first query, let us ask about the relation

Movies(title, year, length, genre, studioName, producerC#)
for all movies produced by Disney Studios in 1990. In SQL, we say

SELECT *
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

This query exhibits the characteristic select-from-where form of most SQL 
queries.
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How SQL is Used

In this chapter, we assume a generic query interface, where we type SQL 
queries or other statements and have them execute. In practice, the generic 
interface is used rarely. Rather, there are large programs, written in a 
conventional language such as C or Java (called the host language). These 
programs issue SQL statements to a database, using a special library for 
the host language. Data is moved from host-language variables to the 
SQL statements, and the results of those statements are moved from the 
database to host-language variables. We shall have more to say about the 
matter in Chapter 9.

• The FROM clause gives the relation or relations to which the query refers. 
In our example, the query is about the relation Movies.

• The WHERE clause is a condition, much like a selection-condition in rela
tional algebra. Tuples must satisfy the condition in order to match the 
query. Here, the condition is that the studioName attribute of the tuple 
has the value ’D isney’ and the year attribute of the tuple has the value 
1990. All tuples meeting both stipulations satisfy the condition; other 
tuples do not.

• The SELECT clause tells which attributes of the tuples matching the con
dition are produced as part of the answer. The * in this example indicates 
that the entire tuple is produced. The result of the query is the relation 
consisting of all tuples produced by this process.

One way to interpret this query is to consider each tuple of the relation 
mentioned in the FROM clause. The condition in the WHERE clause is applied 
to the tuple. More precisely, any attributes mentioned in the WHERE clause are 
replaced by the value in the tuple’s component for that attribute. The condition 
is then evaluated, and if true, the components appearing in the SELECT clause 
are produced as one tuple of the answer. Thus, the result of the query is 
the Movies tuples for those movies produced by Disney in 1990, for example, 
Pretty Woman.

In detail, when the SQL query processor encounters the Movies tuple

title ________ | year \ length \ genre \ studioName \ producerC#
Pretty Woman | 1990 | 119 | romance | Disney | 999

(here, 999 is the imaginary certificate number for the producer of the movie), 
the value ’D isney’ is substituted for attribute studioName and value 1990 is 
substituted for attribute year in the condition of the WHERE clause, because 
these are the values for those attributes in the tuple in question. The WHERE 
clause thus becomes



246 CHAPTER 6. THE DATABASE LANGUAGE SQL

A Trick for Reading and Writing Queries

It is generally easist to examine a select-from-where query by first looking 
at the FROM clause, to learn which relations are involved in the query. 
Then, move to the WHERE clause, to learn what it is about tuples that is 
important to the query. Finally, look at the SELECT clause to see what 
the output is. The same order — from, then where, then select — is often 
useful when writing queries of your own, as well.

WHERE ’Disney' = ’Disney’ AND 1990 = 1990

Since this condition is evidently true, the tuple for Pretty Woman passes the 
test of the WHERE clause and the tuple becomes part of the result of the query.
□

6.1.1 Projection in SQL
We can, if we wish, eliminate some of the components of the chosen tuples; 
that is, we can project the relation produced by a SQL query onto some of 
its attributes. In place of the * of the SELECT clause, we may list some of 
the attributes of the relation mentioned in the FROM clause. The result will be 
projected onto the attributes listed.1

E xam ple 6 .2 : Suppose we wish to modify the query of Example 6.1 to produce 
only the movie title and length. We may write

SELECT title, length 
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

The result is a table with two columns, headed title and length. The tuples 
in this table are pairs, each consisting of a movie title and its length, such that 
the movie was produced by Disney in 1990. For instance, the relation schema 
and one of its tuples looks like:

title length
Pretty Woman 119

□
1T hus, th e  keyword SELECT in SQL actually  corresponds m ost closely to  th e  p ro jec tion  

o p e ra to r  of re la tional a lgebra, while th e  selection o p e ra to r of th e  a lgebra  corresponds to  th e  
WHERE clause o f SQL queries.
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Sometimes, we wish to produce a relation with column headers different 
from the attributes of the relation mentioned in the FROM clause. We may follow 
the name of the attribute by the keyword AS and an alias, which becomes the 
header in the result relation. Keyword AS is optional. That is, an alias can 
immediately follow what it stands for, without any intervening punctuation.

Example 6.3: We can modify Example 6.2 to produce a relation with at
tributes name and d u ra tio n  in place of t i t l e  and len g th  as follows.

SELECT title AS name, length AS duration 
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990;

The result is the same set of tuples as in Example 6.2, but with the columns 
headed by attributes name and du ra tion . For example,

name duration
Pretty Woman 119

could be the first tuple in the result. □

Another option in the SELECT clause is to use an expression in place of 
an attribute. Put another way, the SELECT list can function like the lists in 
an extended projection, which we discussed in Section 5.2.5. We shall see in 
Section 6.4 that the SELECT list can also include aggregates as in the 7  operator 
of Section 5.2.4.

Example 6.4: Suppose we want output as in Example 6.3, but with the length 
in hours. We might replace the SELECT clause of that example with

SELECT title AS name, length*0.016667 AS lengthlnHours

Then the same movies would be produced, but lengths would be calculated in 
hours and the second column would be headed by attribute lengthlnHours, 
as:

name lengthlnHours
Pretty Woman 1.98334

□

Example 6.5: We can even allow a constant as an expression in the SELECT 
clause. It might seem pointless to do so, but one application is to put some 
useful words into the output that SQL displays. The following query:
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Case Insensitivity

SQL is case insensitive, meaning that it treats upper- and lower-case let
ters as the same letter. For example, although we have chosen to write 
keywords like FROM in capitals, it is equally proper to write this keyword 
as From or from, or even FrOm. Names of attributes, relations, aliases, and 
so on are similarly case insensitive. Only inside quotes does SQL make 
a distinction between upper- and lower-case letters. Thus, ’FROM’ and 
’from’ are different character strings. Of course, neither is the keyword 
FROM.

SELECT title, length*0.016667 AS length, ’hrs.’ AS inHours 
FROM Movies
WHERE studioName = ’Disney’ AND year = 1990; 

produces tuples such as

title length inHours
Pretty Woman 1.98334 hrs.

We have arranged that the third column is called inHours, which fits with the 
column header length  in the second column. Every tuple in the answer will 
have the constant h r s . in the third column, which gives the illusion of being 
the units attached to the value in the second column. □

6.1.2 Selection in SQL
The selection operator of relational algebra, and much more, is available through 
the WHERE clause of SQL. The expressions that may follow WHERE include con
ditional expressions like those found in common languages such as C or Java.

We may build expressions by comparing values using the six common com
parison operators: =, <>, <, >, <=, and >=. The last four operators are as in C, 
but <> is the SQL symbol for “not equal to” (! = in C), and = in SQL is equality 
(== in C).

The values that may be compared include constants and attributes of the 
relations mentioned after FROM. We may also apply the usual arithmetic op
erators, +, *, and so on, to numeric values before we compare them. For 
instance, (year — 1930) * (year — 1930) < 100 is true for those years within 9 
of 1930. We may apply the concatenation operator I I to strings; for example 
’fo o ’ | |  ’b a r ’ has value ’foobar’ .

An example comparison is

studioName = ’Disney’
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SQL Queries and Relational Algebra

The simple SQL queries that we have seen so far all have the form:

SELECT L  
FROM R  
WHERE C

in which L  is a list of expressions, R  is a relation, and C  is a condition. 
The meaning of any such expression is the same as that of the relational- 
algebra expression

k l {<?c ( R ) )

That is, we start with the relation in the FROM clause, apply to each tuple 
whatever condition is indicated in the WHERE clause, and then project onto 
the list of attributes and/or expressions in the SELECT clause.

in Example 6.1. The attribute studioName of the relation Movies is tested for 
equality against the constant ’D isney’ . This constant is string-valued; strings 
in SQL are denoted by surrounding them with single quotes. Numeric constants, 
integers and reals, are also allowed, and SQL uses the common notations for 
reals such as -12 .34  or 1 .23E45.

The result of a comparison is a boolean value: either TRUE or FALSE.2 
Boolean values may be combined by the logical operators AND, OR, and NOT, 
with their expected meanings. For instance, we saw in Example 6.1 how two 
conditions could be combined by AND. The WHERE clause of this example eval
uates to true if and only if both comparisons are satisfied; that is, the studio 
name is ’D isney’ and the year is 1990. Here is an example of a query with a 
complex WHERE clause.

E xam ple 6 .6 : Consider the query

SELECT t i t l e
FROM Movies
WHERE (year > 1970 OR len g th  < 90) AND studioName = ’MGM’ ;

This query asks for the titles of movies made by MGM Studios that either were 
made after 1970 or were less than 90 minutes long. Notice that comparisons 
can be grouped using parentheses. The parentheses are needed here because the 
precedence of logical operators in SQL is the same as in most other languages: 
AND takes precedence over OR, and NOT takes precedence over both. □

2W ell th e re ’s a  b it  m ore to  boo lean  values; see Section 6.1.7.
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Representing Bit Strings

A string of bits is represented by B followed by a quoted string of 0’s and 
l ’s. Thus, B’011’ represents the string of three bits, the first of which 
is 0 and the other two of which are 1. Hexadecimal notation may also 
be used, where an X is followed by a quoted string of hexadecimal digits 
(0 through 9, and a through / ,  with the latter representing “digits” 10 
through 15). For instance, X’7 ff ’ represents a string of twelve bits, a 0 
followed by eleven l ’s. Note that each hexadecimal digit represents four 
bits, and leading 0 ’s are not suppressed.

6.1.3 Comparison of Strings
Two strings are equal if they are the same sequence of characters. Recall from 
Section 2.3.2 that strings can be stored as fixed-length strings, using CHAR, or 
variable-length strings, using VARCHAR. When comparing strings with different 
declarations, only the actual strings are compared; SQL ignores any “pad” 
characters that must be present in the database in order to give a string its 
required length.

When we compare strings by one of the “less than” operators, such as < or 
>=, we are asking whether one precedes the other in lexicographic order (i.e., 
in dictionary order, or alphabetically). That is, if 0102 • • • an and b\b2 ■ ■ ■ brn 
are two strings, then the first is “less than” the second if either 01 < 61, or if 
ai = &i and 02 < b2, or if «i =  b\, a2 — b2l and a3 < 63, and so on. We also say 
ai<i2 • • • an < &1&2 • • • bm if n < m  and aia2 •■•<!„ = &1&2 that is, the first
string is a proper prefix of the second. For instance, ’fo d d er’ < ’f  0 0 ’ , because 
the first two characters of each string are the same, f  o, and the third character of 
fodder precedes the third character of f  00 . Also, ’b a r ’ < ’b a rg a in ’ because 
the former is a proper prefix of the latter.

6.1.4 Pattern Matching in SQL
SQL also provides the capability to compare strings on the basis of a simple 
pattern match. An alternative form of comparison expression is

s LIKE p

where s is a string and p  is a pattern, that is, a string with the optional use 
of the two special characters °/, and _. Ordinary characters in p  match only 
themselves in s. But "/, in p  can match any sequence of 0 or more characters in 
s, and _ in p  matches any one character in s. The value of this expression is 
true if and only if string s matches pattern p. Similarly, s NOT LIKE p  is true 
if and only if string s does not match pattern p.
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E xam ple 6 .7 : We remember a movie “Star something,” and we remember 
that the something has four letters. What could this movie be? We can retrieve 
all such names with the query:

SELECT title 
FROM Movies
WHERE title LIKE ’Star ___

This query asks if the title attribute of a movie has a value that is nine characters 
long, the first five characters being S ta r  and a blank. The last four characters 
may be anything, since any sequence of four characters matches the four _ 
symbols. The result of the query is the set of complete matching titles, such as 
Star Wars and Star Trek. □

E xam ple 6 .8 : Let us search for all movies with a possessive (’s) in their titles. 
The desired query is

SELECT title 
FROM Movies
WHERE title LIKE ’%” s %> ;

To understand this pattern, we must first observe that the apostrophe, being 
the character that surrounds strings in SQL, cannot also represent itself. The 
convention taken by SQL is that two consecutive apostrophes in a string rep
resent a single apostrophe and do not end the string. Thus, ’ ’ s in a pattern is 
matched by a single apostrophe followed by an s.

The two "/, characters on either side of the ’ s match any strings whatsoever. 
Thus, any title with ’ s as a substring will match the pattern, and the answer 
to this query will include films such as Logan’s Run or Alice’s Restaurant. □

6.1.5 Dates and Times
Implementations of SQL generally support dates and times as special data 
types. These values are often representable in a variety of formats such as 
05/14/1948 or 14 May 1948. Here we shall describe only the SQL standard 
notation, which is very specific about format.

A date constant is represented by the keyword DATE followed by a quoted 
string of a special form. For example, DATE ’ 1948-05-14’ follows the required 
form. The first four characters are digits representing the year. Then come a 
hyphen and two digits representing the month. Note that, as in our example, 
a one-digit month is padded with a leading 0. Finally there is another hyphen 
and two digits representing the day. As with months, we pad the day with a 
leading 0 if that is necessary to make a two-digit number.

A time constant is represented similarly by the keyword TIME and a quoted 
string. This string has two digits for the hour, on the military (24-hour)
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Escape Characters in LIKE expressions

What if the pattern we wish to use in a LIKE expression involves the char
acters ’/, or _? Instead of having a particular character used as the escape 
character (e.g., the backslash in most UNIX commands), SQL allows us 
to specify any one character we like as the escape character for a single 
pattern. We do so by following the pattern by the keyword ESCAPE and 
the chosen escape character, in quotes. A character ’/, or _ preceded by 
the escape character in the pattern is interpreted literally as that charac
ter, not as a symbol for any sequence of characters or any one character, 
respectively. For example,

s LIKE 1 x'/.'/.x0/.’ ESCAPE ’x’

makes x the escape character in the pattern x7,‘/,x'/,. The sequence x“/0 is 
taken to be a single ’/». This pattern matches any string that begins and 
ends with the character ’/,. Note that only the middle ’/» has its “any string” 
interpretation.

clock. Then come a colon, two digits for the minute, another colon, and two 
digits for the second. If fractions of a second are desired, we may continue 
with a decimal point and as many significant digits as we like. For instance, 
TIME ’ 15 :0 0 :0 2 .5 ’ represents the time at which all students will have left a 
class that ends at 3 PM: two and a half seconds past three o’clock.

Alternatively, time can be expressed as the number of hours and minutes 
ahead of (indicated by a plus sign) or behind (indicated by a minus sign) Green
wich Mean Time (GMT). For instance, TIME ’12 :00 :00-8 :00’ represents noon 
in Pacific Standard Time, which is eight hours behind GMT.

To combine dates and times we use a value of type TIMESTAMP. These values 
consist of the keyword TIMESTAMP, a date value, a space, and a time value. 
Thus, TIMESTAMP ’ 1948-05-14 12:00:00’ represents noon on May 14, 1948.

We can compare dates or times using the same comparison operators we use 
for numbers or strings. That is, < on dates means that the first date is earlier 
than the second; < on times means that the first is earlier (within the same 
day) than the second.

6.1.6 Null Values and Comparisons Involving NULL
SQL allows attributes to have a special value NULL, which is called the null 
value. There are many different interpretations that can be put on null values. 
Here are some of the most common:

1. Value unknown: that is, “I know there is some value that belongs here 
but I don’t know what it is.” An unknown birthdate is an example.
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2. Value inapplicable: “There is no value that makes sense here.” For ex
ample, if we had a spouse attribute for the MovieStar relation, then an 
unmarried star might have NULL for that attribute, not because we don’t 
know the spouse’s name, but because there is none.

3. Value withheld: “We are not entitled to know the value that belongs 
here.” For instance, an unlisted phone number might appear as NULL in 
the component for a phone attribute.

We saw in Section 5.2.7 how the use of the outerjoin operator of relational al
gebra produces null values in some components of tuples; SQL allows outerjoins 
and also produces NULL’s when a query involves outerjoins; see Section 6.3.8. 
There are other ways SQL produces NULL’s as well. For example, certain inser
tions of tuples create null values, as we shall see in Section 6.5.1.

In WHERE clauses, we must be prepared for the possibility that a component 
of some tuple we are examining will be NULL. There are two important rules to 
remember when we operate upon a NULL value.

1. When we operate on a NULL and any value, including another NULL, using 
an arithmetic operator like x or +, the result is NULL.

2. When we compare a NULL value and any value, including another NULL, 
using a comparison operator like = or >, the result is UNKNOWN. The value 
UNKNOWN is another truth-value, like TRUE and FALSE; we shall discuss how 
to manipulate truth-value UNKNOWN shortly.

However, we must remember that, although NULL is a value that can appear 
in tuples, it is not a constant. Thus, while the above rules apply when we try 
to operate on an expression whose value is NULL, we cannot use NULL explicitly 
as an operand.

Example 6.9: Let x  have the value NULL. Then the value of x  + 3 is also NULL. 
However, NULL + 3 is not a legal SQL expression. Similarly, the value of x  =  3 
is UNKNOWN, because we cannot tell if the value of x, which is NULL, equals the 
value 3. However, the comparison NULL = 3 is not correct SQL. □

The correct way to ask if x has the value NULL is with the expression 
x IS NULL. This expression has the value TRUE if x  has the value NULL and 
it has value FALSE otherwise. Similarly, x IS NOT NULL has the value TRUE 
unless the value of x  is NULL.

6.1.7 The Truth-Value UNKNOWN
In Section 6.1.2 we assumed that the result of a comparison was either TRUE 
or FALSE, and these truth-values were combined in the obvious way using the 
logical operators AND, OR, and NOT. We have just seen that when NULL values
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Pitfalls Regarding Nulls

It is tempting to assume that NULL in SQL can always be taken to mean 
“a value that we don’t know but that surely exists.” However, there 
are several ways that intuition is violated. For instance, suppose x  is 
a component of some tuple, and the domain for that component is the 
integers. We might reason that 0 * x  surely has the value 0, since no 
matter what integer x  is, its product with 0 is 0. However, if x  has the 
value NULL, rule (1) of Section 6.1.6 applies; the product of 0 and NULL is 
NULL. Similarly, we might reason that x — x  has the value 0, since whatever 
integer x  is, its difference with itself is 0. However, again the rule about 
operations on nulls applies, and the result is NULL.

occur, comparisons can yield a third truth-value: UNKNOWN. We must now learn 
how the logical operators behave on combinations of all three truth-values.

The rule is easy to remember if we think of TRUE as 1 (i.e., fully true), FALSE 
as 0 (i.e., not at all true), and UNKNOWN as 1/2 (i.e., somewhere between true 
and false). Then:

1. The AND of two truth-values is the minimum of those values. That is, 
x  AND y is FALSE if either x  or y is FALSE; it is UNKNOWN if neither is FALSE 
but at least one is UNKNOWN, and it is TRUE only when both x  and y are 
TRUE.

2. The OR of two truth-values is the maximum of those values. That is, 
x  OR y is TRUE if either x  or y is TRUE; it is UNKNOWN if neither is TRUE but 
at least one is UNKNOWN, and it is FALSE only when both are FALSE.

3. The negation of truth-value v is 1 — v. That is, NOT x  has the value TRUE 
when x  is FALSE, the value FALSE when x  is TRUE, and the value UNKNOWN 
when x  has value UNKNOWN.

In Fig. 6.2 is a summary of the result of applying the three logical operators to 
the nine different combinations of truth-values for operands x  and y. The value 
of the last operator, NOT, depends only on x.

SQL conditions, as appear in WHERE clauses of select-from-where statements, 
apply to each tuple in some relation, and for each tuple, one of the three truth 
values, TRUE, FALSE, or UNKNOWN is produced. However, only the tuples for 
which the condition has the value TRUE become part of the answer; tuples with 
either UNKNOWN or FALSE as value are excluded from the answer. That situation 
leads to another surprising behavior similar to that discussed in the box on 
“Pitfalls Regarding Nulls,” as the next example illustrates.

E xam ple 6 .10: Suppose we ask about our running-example relation
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X y x  AND y x  OR y NOT x
TRUE TRUE TRUE TRUE FALSE
TRUE UNKNOWN UNKNOWN TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
UNKNOWN TRUE UNKNOWN TRUE UNKNOWN
UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN
UNKNOWN FALSE FALSE UNKNOWN UNKNOWN
FALSE TRUE FALSE TRUE TRUE
FALSE UNKNOWN FALSE UNKNOWN TRUE
FALSE FALSE FALSE FALSE TRUE

Figure 6.2: Truth table for three-valued logic

Movies(title, year, length, genre, studioName, producerC#)
the following query:

SELECT *
FROM Movies
WHERE length <= 120 OR length > 120;

Intuitively, we would expect to get a copy of the Movies relation, since each 
movie has a length that is either 120 or less or that is greater than 120.

However, suppose there are Movies tuples with NULL in the length compo
nent. Then both comparisons length <= 120 and length > 120 evaluate to 
UNKNOWN. The OR of two UNKNOWN’S is UNKNOWN, by Fig. 6.2. Thus, for any tuple 
with a NULL in the length component, the WHERE clause evaluates to UNKNOWN. 
Such a tuple is n o t  returned as part of the answer to the query. As a result, 
the true meaning of the query is “find all the Movies tuples with non-NULL 
lengths.” □

6.1.8 Ordering the Output
We may ask that the tuples produced by a query be presented in sorted order. 
The order may be based on the value of any attribute, with ties broken by the 
value of a second attribute, remaining ties broken by a third, and so on, as in 
the r  operation of Section 5.2.6. To get output in sorted order, we may add to 
the select-from-where statement a clause:

ORDER BY Clist of attributes>
The order is by default ascending, but we can get the output highest-first by 
appending the keyword DESC (for “descending”) to an attribute. Similarly, we 
can specify ascending order with the keyword ASC, but that word is unnecessary.

The ORDER BY clause follows the WHERE clause and any other clauses (i.e., the 
optional GROUP BY and HAVING clauses, which are introduced in Section 6.4).
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The ordering is performed on the result of the FROM, WHERE, and other clauses, 
just before we apply the SELECT clause. The tuples of this result are then 
sorted by the attributes in the list of the ORDER BY clause, and then passed to 
the SELECT clause for processing in the normal manner.

E xam ple  6 .11 : The following is a rewrite of our original query of Example 6.1, 
asking for the Disney movies of 1990 from the relation

M o v ie s ( ti t le , yeax, length., genre , studioName, producerC#)

To get the movies listed by length, shortest first, and among movies of equal 
length, alphabetically, we can say:

SELECT *
FROM Movies
WHERE studioName = ’D isney’ AND yeax = 1990 
ORDER BY le n g th , t i t l e ;

A subtlety of ordering is that all the attributes of Movies are available at the 
time of sorting, even if they are not part of the SELECT clause. Thus, we could 
replace SELECT * by SELECT producerC#, and the query would still be legal.
□

An additional option in ordering is that the list following ORDER BY can 
include expressions, just as the SELECT clause can. For instance, we can order 
the tuples of a relation R(A, B)  by the sum of the two components of the tuples, 
highest first, with:

SELECT *
FROM R
ORDER BY A+B DESC;

6.1.9 Exercises for Section 6.1 
Exercise 6 .1 .1 : If a query has a SELECT clause 

SELECT A B

how do we know whether A  and B  are two different attributes or B  is an alias 
of .4?

E xercise 6 .1 .2 : Write the following queries, based on our running movie 
database example

M o v ie s ( ti t le , y ea r, le n g th , genre, studioName, producerC#) 
S ta rsIn (m o v ieT itle , movieYear, starName)
MovieStar(name, ad d ress , gender, b ir th d a te )
MovieExec(name, ad d ress , c e r t# , netWorth)
Studio(nam e, ad d ress , presC#)



in SQL.

a) Find the address of MGM studios.

b) Find Sandra Bullock’s birthdate.

c) Find all the stars that appeared either in a movie made in 1980 or a movie 
with “Love” in the title.

d) Find all executives worth at least $10,000,000.

e) Find all the stars who either are male or live in Malibu (have string Malibu 
as a part of their address).

Exercise 6 .1 .3 : Write the following queries in SQL. They refer to the database 
schema of Exercise 2.4.1:

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Show the result of your queries using the data from Exercise 2.4.1.

a) Find the model number, speed, and hard-disk size for all PC’s whose price 
is under $1000.

b) Do the same as (a), but rename the speed column gigahertz and the hd 
column gigabytes.

c) Find the manufacturers of printers.

d) Find the model number, memory size, and screen size for laptops costing 
more than $1500.

e) Find all the tuples in the Printer relation for color printers. Remember 
that color is a boolean-valued attribute.

f) Find the model number and hard-disk size for those PC ’s that have a 
speed of 3.2 and a price less than $2000.

E xercise 6 .1 .4 : Write the following queries based on the database schema of 
Exercise 2.4.3:

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

and show the result of your query on the data of Exercise 2.4.3.
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a) Find the class name and country for all classes with at least 10 guns.

b) Find the names of all ships launched prior to 1918, but call the resulting 
column shipName.

c) Find the names of ships sunk in battle and the name of the battle in which 
they were sunk.

d) Find all ships that have the same name as their class.

e) Find the names of all ships that begin with the letter “R.”

! f) Find the names of all ships whose name consists of three or more words 
(e.g., King George V).

E xercise 6 .1 .5 : Let a and b be integer-valued attributes that may be NULL in 
some tuples. For each of the following conditions (as may appear in a WHERE 
clause), describe exactly the set of (a, 6) tuples that satisfy the condition, in
cluding the case where a and/or b is NULL.

a) a = 10 OR b = 20

b) a = 10 AND b = 20

c) a < 10 OR a >= 10

!d) a = b

!e) a <== b

! E xercise 6 .1 .6 : In Example 6.10 we discussed the query

SELECT *
FROM Movies
WHERE len g th  <= 120 OR len g th  > 120;

which behaves unintuitively when the length of a movie is NULL. Find a simpler, 
equivalent query, one with a single condition in the WHERE clause (no AND or OR 
of conditions).

6.2 Queries Involving More Than One Relation
Much of the power of relational algebra comes from its ability to combine two 
or more relations through joins, products, unions, intersections, and differences. 
We get all of these operations in SQL. The set-theoretic operations — union, 
intersection, and difference — appear directly in SQL, as we shall learn in 
Section 6.2.5. First, we shall learn how the select-from-where statement of SQL 
allows us to perform products and joins.
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6.2.1 Products and Joins in SQL

SQL has a simple way to couple relations in one query: list each relation in the 
FROM clause. Then, the SELECT and WHERE clauses can refer to the attributes of 
any of the relations in the FROM clause.

E xam ple 6.12 : Suppose we want to know the name of the producer of Star 
Wars. To answer this question we need the following two relations from our 
running example:

Movies(title, year, length, genre, studioName, producerC#) 
MovieExec(name, address, cert#, netWorth)

The producer certificate number is given in the Movies relation, so we can do a 
simple query on Movies to get this number. We could then do a second query 
on the relation MovieExec to find the name of the person with that certificate 
number.

However, we can phrase both these steps as one query about the pair of 
relations Movies and MovieExec as follows:

SELECT name
FROM Movies, MovieExec
WHERE title = ’Star Weirs’ AND producerC# = cert#;

This query asks us to consider all pairs of tuples, one from Movies and the other 
from MovieExec. The conditions on this pair are stated in the WHERE clause:

1. The t i t l e  component of the tuple from Movies must have value ’S ta r  
Wars’ .

2. The producerC# attribute of the Movies tuple must be the same certifi
cate number as the ce rt#  attribute in the MovieExec tuple. That is, 
these two tuples must refer to the same producer.

Whenever we find a pair of tuples satisfying both conditions, we produce 
the name attribute of the tuple from MovieExec as part of the answer. If the 
data is what we expect, the only time both conditions will be met is when the 
tuple from Movies is for Star Wars, and the tuple from MovieExec is for George 
Lucas. Then and only then will the title be correct and the certificate numbers 
agree. Thus, George Lucas should be the only value produced. This process is 
suggested in Fig. 6.3. We take up in more detail how to interpret multirelation 
queries in Section 6.2.4. □
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title producerC# name cert#

Figure 6.3: The query of Example 6.12 asks us to pair every tuple of Movies 
with every tuple of MovieExec and test two conditions

6.2.2 Disambiguating Attributes
Sometimes we ask a query involving several relations, and among these relations 
are two or more attributes with the same name. If so, we need a way to indicate 
which of these attributes is meant by a use of their shared name. SQL solves 
this problem by allowing us to place a relation name and a dot in front of an 
attribute. Thus R.A  refers to the attribute A  of relation R.

E xam ple 6 .13 : The two relations

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

each have attributes name and address. Suppose we wish to find pairs consist
ing of a star and an executive with the same address. The following query does 
the job.

SELECT MovieStar.name, MovieExec.name 
FROM MovieStar, MovieExec
WHERE MovieStar.address = MovieExec.address;

In this query, we look for a pair of tuples, one from MovieStar and the other 
from MovieExec, such that their address components agree. The WHERE clause 
enforces the requirement that the address attributes from each of the two 
tuples agree. Then, for each matching pair of tuples, we extract the two name 
attributes, first from the MovieStar tuple and then from the other. The result 
would be a set of pairs such as
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MovieStar. name MovieExec. name
Jane Fonda Ted Turner

□

The relation name, followed by a dot, is permissible even in situations where 
there is no ambiguity. For instance, we are free to write the query of Example 
6.12 as

SELECT MovieExec.name
FROM Movies, MovieExec
WHERE Movie.title = ’Star Wars’

AND Movie.producerC# = MovieExec.cert#;

Alternatively, we may use relation names and dots in front of any subset of the 
attributes in this query.

6.2.3 Tuple Variables
Disambiguating attributes by prefixing the relation name works as long as the 
query involves combining several different relations. However, sometimes we 
need to ask a query that involves two or more tuples from the same relation. 
We may list a relation R  as many times as we need to in the FROM clause, but 
we need a way to refer to each occurrence of R.  SQL allows us to define, for 
each occurrence of R  in the FROM clause, an “alias” which we shall refer to as 
a tuple variable. Each use of R  in the FROM clause is followed by the (optional) 
keyword AS and the name of the tuple variable; we shall generally omit the AS 
in this context.

In the SELECT and WHERE clauses, we can disambiguate attributes of R  by 
preceding them by the appropriate tuple variable and a dot. Thus, the tuple 
variable serves as another name for relation R  and can be used in its place when 
we wish.

E xam ple 6 .14: While Example 6.13 asked for a star and an executive sharing 
an address, we might similarly want to know about two stars who share an 
address. The query is essentially the same, but now we must think of two tuples 
chosen from relation MovieStar, rather than tuples from each of MovieStar and 
MovieExec. Using tuple variables as aliases for two uses of MovieStar, we can 
write the query as

SELECT Starl.name, Star2.name 
FROM MovieStar Starl, MovieStar Star2 
WHERE Starl.address = Star2.address 

AND Starl.name < Star2.name;
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Tuple Variables and Relation Names

Technically, references to attributes in SELECT and WHERE clauses are al
ways to a tuple variable. However, if a relation appears only once in the 
FROM clause, then we can use the relation name as its own tuple variable. 
Thus, we can see a relation name R  in the FROM clause as shorthand for 
R  AS R. Furthermore, as we have seen, when an attribute belongs un
ambiguously to one relation, the relation name (tuple variable) may be 
omitted.

We see in the FROM clause the declaration of two tuple variables, S ta r l  and 
S tar2; each is an alias for relation MovieStar. The tuple variables are used in 
the SELECT clause to refer to the name components of the two tuples. These 
aliases are also used in the WHERE clause to say that the two MovieStar tu
ples represented by S ta r l  and S tar2  have the same value in their address 
components.

The second condition in the WHERE clause, S t a r l .name < S ta r2 . name, says 
that the name of the first star precedes the name of the second star alphabet
ically. If this condition were omitted, then tuple variables S ta r l  and S tar2  
could both refer to the same tuple. We would find that the two tuple variables 
referred to tuples whose address components are equal, of course, and thus 
produce each star name paired with itself.3 The second condition also forces us 
to produce each pair of stars with a common address only once, in alphabetical 
order. If we used <> (not-equal) as the comparison operator, then we would 
produce pairs of married stars twice, like

Starl. name StarS.name
Paul Newman 
Joanne Woodward

Joanne Woodward 
Paul Newman

□

6.2.4 Interpreting Multirelation Queries

There are several ways to define the meaning of the select-from-where expres
sions that we have just covered. All are equivalent, in the sense that they each 
give the same answer for each query applied to the same relation instances. We 
shall consider each in turn.

3A sim ilar prob lem  occurs in  E xam ple  6.13 w hen th e  sam e ind iv idual is b o th  a  s ta r  and 
a n  executive. W e could solve th a t  p rob lem  by requ iring  th a t  th e  tw o nam es be  unequal.
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Nested Loops
The semantics that we have implicitly used in examples so far is that of tuple 
variables. Recall that a tuple variable ranges over all tuples of the corresponding 
relation. A relation name that is not aliased is also a tuple variable ranging 
over the relation itself, as we mentioned in the box on “Tuple Variables and 
Relation Names.” If there are several tuple variables, we may imagine nested 
loops, one for each tuple variable, in which the variables each range over the 
tuples of their respective relations. For each assignment of tuples to the tuple 
variables, we decide whether the WHERE clause is true. If so, we produce a tuple 
consisting of the values of the expressions following SELECT; note that each term 
is given a value by the current assignment of tuples to tuple variables. This 
query-answering algorithm is suggested by Fig. 6.4.

LET the tuple variables in the from-clause range over 
relat ions R\, R2, • • • , R n;

FOR each tuple t\ in relation R\ DO
FOR each tuple t2 in relation R 2 DO

FOR each tuple tn in relation R n DO
IF the where-clause is satisfied when the values 
from t \ , t 2, . . .  , t n are substituted for all 
attribute references THEN

evaluate the expressions of the select-clause 
according to t \ , t 2, . . .  , t n and produce the 
tuple of values that results.

Figure 6.4: Answering a simple SQL query

Parallel Assignment
There is an equivalent definition in which we do not explicitly create nested 
loops ranging over the tuple variables. Rather, we consider in arbitrary order, 
or in parallel, all possible assignments of tuples from the appropriate relations 
to the tuple variables. For each such assignment, we consider whether the 
WHERE clause becomes true. Each assignment that produces a true WHERE clause 
contributes a tuple to the answer; that tuple is constructed from the attributes 
of the SELECT clause, evaluated according to that assignment.

Conversion to Relational Algebra
A third approach is to relate the SQL query to relational algebra. We start with 
the tuple variables in the FROM clause and take the Cartesian product of their 
relations. If two tuple variables refer to the same relation, then this relation 
appears twice in the product, and we rename its attributes so all attributes have
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An Unintuitive Consequence of SQL Semantics

Suppose R, S, and T are unary (one-component) relations, each having 
attribute A  alone, and we wish to find those elements that are in R  and 
also in either S  or T  (or both). That is, we want to compute R  fl (5 U T). 
We might expect the following SQL query would do the job.

SELECT R.A 
FROM R, S, T
WHERE R.A = S.A OR R.A = T.A;

However, consider the situation in which T  is empty. Since then R.A  = 
T.A  can never be satisfied, we might expect the query to produce exactly 
R  C\ S, based on our intuition about how “OR” operates. Yet whichever of 
the three equivalent definitions of Section 6.2.4 one prefers, we find that the 
result is empty, regardless of how many elements R  and S  have in common. 
If we use the nested-loop semantics of Figure 6.4, then we see that the loop 
for tuple variable T  iterates 0 times, since there are no tuples in the relation 
for the tuple variable to range over. Thus, the if-statement inside the for- 
loops never executes, and nothing can be produced. Similarly, if we look 
for assignments of tuples to the tuple variables, there is no way to assign 
a tuple to T, so no assignments exist. Finally, if we use the Cartesian- 
product approach, we start with R  x S  x T, which is empty because T is 
empty.

unique names. Similarly, attributes of the same name from different relations 
are renamed to avoid ambiguity.

Having created the product, we apply a selection operator to it by convert
ing the WHERE clause to a selection condition in the obvious way. That is, each 
attribute reference in the WHERE clause is replaced by the attribute of the prod
uct to which it corresponds. Finally, we create from the SELECT clause a list 
of expressions for a final (extended) projection operation. As we did for the 
WHERE clause, we interpret each attribute reference in the SELECT clause as the 
corresponding attribute in the product of relations.

Example 6.15: Let us convert the query of Example 6.14 to relational algebra. 
First, there are two tuple variables in the FROM clause, both referring to relation 
MovieStar. Thus, our expression (without the necessary renaming) begins:

MovieStar x MovieStar

The resulting relation has eight attributes, the first four correspond to at
tributes name, address, gender, and birthdate from the first copy of relation 
MovieStar, and the second four correspond to the same attributes from the
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other copy of MovieStar. We could create names for these attributes with a 
dot and the aliasing tuple variable — e.g., S ta r l.g e n d e r  — but for succinct
ness, let us invent new symbols and call the attributes simply A x,A 2, . . . , j4g. 
Thus, Ai corresponds to S tarl.nam e, A5 corresponds to Star2.name, and so 
on.

Under this naming strategy for attributes, the selection condition obtained 
from the WHERE clause is A2 = A 6 and A t < A$. The projection list is A i ,A 5. 
Thus,

'KA1,A 5 ( a A 2= A e AND Aj<A5 (PM(̂ i,A2,A3,A4)(MovieStar) x 
P N (A 5,A e,A 7, a s ) (MovieStar)))

renders the entire query in relational algebra. □

6.2.5 Union, Intersection, and Difference of Queries
Sometimes we wish to combine relations using the set operations of relational 
algebra: union, intersection, and difference. SQL provides corresponding oper
ators that apply to the results of queries, provided those queries produce rela
tions with the same list of attributes and attribute types. The keywords used 
are UNION, INTERSECT, and EXCEPT for U, fl, and —, respectively. Words like 
UNION are used between two queries, and those queries must be parenthesized.

E xam ple 6 .16: Suppose we wanted the names and addresses of all female 
movie stars who are also movie executives with a net worth over $10,000,000. 
Using the following two relations:

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

we can write the query as in Fig. 6.5. Lines (1) through (3) produce a rela
tion whose schema is (name, address) and whose tuples are the names and 
addresses of all female movie stars.

1) (SELECT name, address
2) FROM MovieStar
3) WHERE gender = ’F’)
4) INTERSECT
5) (SELECT name, address
6) FROM MovieExec
7) WHERE netWorth > 10000000);

Figure 6.5: Intersecting female movie stars with rich executives

Similarly, lines (5) through (7) produce the set of “rich” executives, those 
with net worth over $10,000,000. This query also yields a relation whose schema
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Readable SQL Queries

Generally, one writes SQL queries so that each important keyword like 
FROM or WHERE starts a new line. This style offers the reader visual clues 
to the structure of the query. However, when a query or subquery is short, 
we shall sometimes write it out on a single line, as we did in Example 6.17. 
That style, keeping a complete query compact, also offers good readability.

has the attributes name and address only. Since the two schemas are the same, 
we can intersect them, and we do so with the operator of line (4). □

E xam ple 6.17: In a similar vein, we could take the difference of two sets of 
persons, each selected from a relation. The query

(SELECT name, address FROM MovieStar)
EXCEPT

(SELECT name, address FROM MovieExec);

gives the names and addresses of movie stars who are not also movie executives, 
regardless of gender or net worth. □

In the two examples above, the attributes of the relations whose intersection 
or difference we took were conveniently the same. However, if necessary to get 
a common set of attributes, we can rename attributes as in Example 6.3.

E xam ple 6.18: Suppose we wanted all the titles and years of movies that 
appeared in either the Movies or Starsln relation of our running example:

Movies(title, year, length, genre, studioName, producerC#) 
StarsIn(movieTitle, movieYear, starName)

Ideally, these sets of movies would be the same, but in practice it is common 
for relations to diverge; for instance we might have movies with no listed stars 
or a Starsln tuple that mentions a movie not found in the Movies relation.4 
Thus, we might write

(SELECT title, year FROM Movie)
UNION

(SELECT movieTitle AS title, movieYear AS year FROM Starsln);

The result would be all movies mentioned in either relation, with title and 
yeax as the attributes of the resulting relation. □

4T here  are  ways to  prevent th is  divergence; see Section 7.1.1.



6.2.6 Exercises for Section 6.2
Exercise 6 .2 .1 : Using the database schema of our running movie example

Movies(title, year, length, genre, studioName, producerC#) 
Starsln(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

write the following queries in SQL.

a) Who were the male stars in Titanic?

b) Which stars appeared in movies produced by MGM in 1995?

c) Who is the president of MGM studios?

! d) Which movies are longer than Gone With the Wind?

! e) Which executives are worth more than Merv Griffin?

E xercise 6 .2 .2 : Write the following queries, based on the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1, and evaluate your queries using the data of that exercise.

a) Give the manufacturer and speed of laptops with a hard disk of at least 
thirty gigabytes.

b) Find the model number and price of all products (of any type) made by 
manufacturer B.

c) Find those manufacturers that sell Laptops, but not PC’s.

! d) Find those hard-disk sizes that occur in two or more PC’s.

! e) Find those pairs of PC models that have both the same speed and RAM. 
A pair should be listed only once; e.g., list (i , j ) but not (j,i).

!! f) Find those manufacturers of at least two different computers (PC’s or 
laptops) with speeds of at least 3.0.

Exercise 6 .2 .3 : Write the following queries, based on the database schema
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Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3, and evaluate your queries using the data of that exercise.

a) Find the ships heavier than 35,000 tons.

b) List the name, displacement, and number of guns of the ships engaged in 
the battle of Guadalcanal.

c) List all the ships mentioned in the database. (Remember that all these 
ships may not appear in the Ships relation.)

! d) Find those countries that have both battleships and battlecruisers.

! e) Find those ships that were damaged in one battle, but later fought in

! f) Find those battles with at least three ships of the same country. 

E xercise 6 .2 .4 : A general form of relational-algebra query is

Here, L  is an arbitrary list of attributes, and C is an arbitrary condition. The 
list of relations Ri, R 2, . . .  , R n may include the same relation repeated several 
times, in which case appropriate renaming may be assumed applied to the R i’s. 
Show how to express any query of this form in SQL.

E xercise 6 .2 .5 : Another general form of relational-algebra query is

The same assumptions as in Exercise 6.2.4 apply here; the only difference is 
that the natural join is used instead of the product. Show how to express any 
query of this form in SQL.

6.3 Subqueries
In SQL, one query can be used in various ways to help in the evaluation of 
another. A query that is part of another is called a subquery. Subqueries can 
have subqueries, and so on, down as many levels as we wish. We already saw one 
example of the use of subqueries; in Section 6.2.5 we built a union, intersection, 
or difference query by connecting two subqueries to form the whole query. There 
are a number of other ways that subqueries can be used:

another.
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1. Subqueries can return a single constant, and this constant can be com
pared with another value in a WHERE clause.

2. Subqueries can return relations that can be used in various ways in WHERE 
clauses.

3. Subqueries can appear in FROM clauses, followed by a tuple variable that 
represents the tuples in the result of the subquery.

6.3.1 Subqueries that Produce Scalar Values
An atomic value that can appear as one component of a tuple is referred to 
as a scalar. A select-from-where expression can produce a relation with any 
number of attributes in its schema, and there can be any number of tuples in 
the relation. However, often we are only interested in values of a single attribute. 
Furthermore, sometimes we can deduce from information about keys, or from 
other information, that there will be only a single value produced for that 
attribute.

If so, we can use this select-from-where expression, surrounded by parenthe
ses, as if it were a constant. In particular, it may appear in a WHERE clause any 
place we would expect to find a constant or an attribute representing a compo
nent of a tuple. For instance, we may compare the result of such a subquery to 
a constant or attribute.

E xam ple 6.19: Let us recall Example 6.12, where we asked for the producer 
of Star Wars. We had to query the two relations

Movies(title, year, length, genre, studioName, producerC#) 
MovieExec(name, address, cert#, netWorth)

because only the former has movie title information and only the latter has 
producer names. The information is linked by “certificate numbers.” These 
numbers uniquely identify producers. The query we developed is:

SELECT name
FROM Movies, MovieExec
WHERE title = ’Star Wars’ AND producerC# = cert#;

There is another way to look at this query. We need the Movies relation 
only to get the certificate number for the producer of Star Wars. Once we have 
it, we can query the relation MovieExec to find the name of the person with this 
certificate. The first problem, getting the certificate number, can be written as 
a subquery, and the result, which we expect will be a single value, can be used 
in the “main” query to achieve the same effect as the query above. This query 
is shown in Fig. 6.6.

Lines (4) through (6) of Fig. 6.6 are the subquery. Looking only at this 
simple query by itself, we see that the result will be a unary relation with
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1) SELECT name
2) FROM MovieExec
3) WHERE cert# =
4) (SELECT producerC#
5) FROM Movies
6) WHERE title = ’Star Wars’

) ;

Figure 6.6: Finding the producer of Star Wars by using a nested subquery

attribute producerC#, and we expect to find only one tuple in this relation. 
The tuple will look like (12345), that is, a single component with some integer, 
perhaps 12345 or whatever George Lucas’ certificate number is. If zero tuples 
or more than one tuple is produced by the subquery of lines (4) through (6), it 
is a run-time error.

Having executed this subquery, we can then execute lines (1) through (3) of 
Fig. 6.6, as if the value 12345 replaced the entire subquery. That is, the “main” 
query is executed as if it were

SELECT name 
FROM MovieExec 
WHERE cert# = 12345;

The result of this query should be George Lucas. □

6.3.2 Conditions Involving Relations
There are a number of SQL operators that we can apply to a relation R  and 
produce a boolean result. However, the relation R  must be expressed as a 
subquery. As a trick, if we want to apply these operators to a stored table 
Foo, we can use the subquery (SELECT * FROM Foo). The same trick works 
for union, intersection, and difference of relations. Notice that those operators, 
introduced in Section 6.2.5 are applied to two subqueries.

Some of the operators below — IN, ALL, and ANY — will be explained first in 
their simple form where a scalar value s is involved. In this situation, the sub
query R  is required to produce a one-column relation. Here are the definitions 
of the operators:

1. EXISTS R  is a condition that is true if and only if R  is not empty.

2. s IN R  is true if and only if s is equal to one of the values in R. Likewise, 
s NOT IN R  is true if and only if s is equal to no value in R.  Here, we 
assume R  is a unary relation. We shall discuss extensions to the IN and 
NOT IN operators where R  has more than one attribute in its schema and 
s is a tuple in Section 6.3.3.
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3. s > ALL R  is true if and only if s is greater than every value in unary 
relation R. Similarly, the > operator could be replaced by any of the 
other five comparison operators, with the analogous meaning: s stands in 
the stated relationship to every tuple in R.  For instance, s <> ALL R  is 
the same as s NOT IN R.

4. s > ANY R  is true if and only if s is greater than at least one value in unary 
relation R. Similarly, any of the other five comparisons could be used in 
place of >, with the meaning that s stands in the stated relationship to 
at least one tuple of R. For instance, s = ANY R  is the same as s IN R.

The EXISTS, ALL, and ANY operators can be negated by putting NOT in front 
of the entire expression, just like any other boolean-valued expression. Thus, 
NOT EXISTS R  is true if and only if R  is empty. NOT s >= ALL R  is true if and 
only if s is not the maximum value in R, and NOT s > ANY R  is true if and 
only if s is the minimum value in R. We shall see several examples of the use 
of these operators shortly.

6.3.3 Conditions Involving Tuples
A tuple in SQL is represented by a parenthesized list of scalar values. Examples 
are (123, ’fo o ’) and (name, address, networth). The first of these has 
constants as components; the second has attributes as components. Mixing of 
constants and attributes is permitted.

If a tuple t has the same number of components as a relation R, then it 
makes sense to compare t  and R  in expressions of the type listed in Section 6.3.2. 
Examples are t  IN R  or t <> ANY R. The latter comparison means that there is 
some tuple in R  other than t. Note that when comparing a tuple with members 
of a relation R,  we must compare components using the assumed standard order 
for the attributes of R.

1) SELECT name
2) FROM MovieExec
3) WHERE cert# IN
4) (SELECT producerC#
5) FROM Movies
6) WHERE (title, year) IN
7) (SELECT movieTitle, movieYear
8) FROM Starsln
9) WHERE starName = ’Harrison Ford’

)
);

Figure 6.7: Finding the producers of Harrison Ford’s movies
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E xam ple  6 .20 : In Fig. 6.7 is a SQL query on the three relations

Movies(title, year, length, genre, studioName, producerC#) 
Starsln(movieTitle, movieYear, starName)
MovieExec(name, address, cert#, netWorth)

asking for all the producers of movies in which Harrison Ford stars. It consists 
of a “main” query, a query nested within that, and a third query nested within 
the second.

We should analyze any query with subqueries from the inside out. Thus, let 
us start with the innermost nested subquery: lines (7) through (9). This query 
examines the tuples of the relation Starsln and finds all those tuples whose 
starName component is ’Harrison Ford’. The titles and years of those movies 
are returned by this subquery. Recall that title and year, not title alone, is the 
key for movies, so we need to produce tuples with both attributes to identify a 
movie uniquely. Thus, we would expect the value produced by lines (7) through 
(9) to look something like Fig. 6.8.

title year

Star Wars 1977
Raiders of the Lost Ark 1981
The Fugitive 1993

Figure 6.8: Title-year pairs returned by inner subquery

Now, consider the middle subquery, lines (4) through (6). It searches the 
Movies relation for tuples whose title and year are in the relation suggested by 
Fig. 6.8. For each tuple found, the producer’s certificate number is returned, 
so the result of the middle subquery is the set of certificates of the producers 
of Harrison Ford’s movies.

Finally, consider the “main” query of lines (1) through (3). It examines the 
tuples of the MovieExec relation to find those whose cert# component is one 
of the certificates in the set returned by the middle subquery. For each of these 
tuples, the name of the producer is returned, giving us the set of producers of 
Harrison Ford’s movies, as desired. O

Incidentally, the nested query of Fig. 6.7 can, like many nested queries, be 
written as a single select-from-where expression with relations in the FROM clause 
for each of the relations mentioned in the main query or a subquery. The IN 
relationships are replaced by equalities in the WHERE clause. For instance, the 
query of Fig. 6.9 is essentially that of Fig. 6.7. There is a difference regarding the 
way duplicate occurrences of a producer — e.g., George Lucas — are handled, 
as we shall discuss in Section 6.4.1.
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SELECT name
FROM MovieExec, Movies, Starsln 
WHERE cert# = producerC# AND 

title = movieTitle AND 
year = movieYear AND 
starName = ’Harrison Ford’;

Figure 6.9: Ford’s producers without nested subqueries

6.3.4 Correlated Subqueries
The simplest subqueries can be evaluated once and for all, and the result used 
in a higher-level query. A more complicated use of nested subqueries requires 
the subquery to be evaluated many times, once for each assignment of a value 
to some term in the subquery that comes from a tuple variable outside the 
subquery. A subquery of this type is called a correlated subquery. Let us begin 
our study with an example.

E xam ple 6.21: We shall find the titles that have been used for two or more 
movies. We start with an outer query that looks at all tuples in the relation

Movies(title, year, length, genre, studioName, producerC#)

For each such tuple, we ask in a subquery whether there is a movie with the 
same title and a greater year. The entire query is shown in Fig. 6.10.

As with other nested queries, let us begin at the innermost subquery, lines 
(4) through (6). If O ld . t i t l e  in line (6) were replaced by a constant string 
such as ’King Kong’ , we would understand it quite easily as a query asking for 
the year or years in which movies titled King Kong were made. The present 
subquery differs little. The only problem is that we don’t  know what value 
O ld . t i t l e  has. However, as we range over Movies tuples of the outer query 
of lines (1) through (3), each tuple provides a value of O ld . t i t l e .  We then 
execute the query of lines (4) through (6) with this value for O ld . t i t l e  to 
decide the truth of the WHERE clause that extends from lines (3) through (6).

1) SELECT title
2) FROM Movies Old
3) WHERE year < ANY
4) (SELECT year
5) FROM Movies
6) WHERE title = Old.title 

);

Figure 6.10: Finding movie titles that appear more than once
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The condition of line (3) is true if any movie with the same title as Old. t i t l e  
has a later year than the movie in the tuple that is the current value of tuple 
variable Old. This condition is true unless the year in the tuple Old is the last 
year in which a movie of that title was made. Consequently, lines (1) through 
(3) produce a title one fewer times than there are movies with that title. A 
movie made twice will be listed once, a movie made three times will be listed 
twice, and so on.5 □

When writing a correlated query it is important that we be aware of the 
scoping rules for names. In general, an attribute in a subquery belongs to one 
of the tuple variables in that subquery’s FROM clause if some tuple variable’s 
relation has that attribute in its schema. If not, we look at the immediately 
surrounding subquery, then to the one surrounding that, and so on. Thus, 
year on line (4) and t i t l e  on line (6) of Fig. 6.10 refer to the attributes of 
the tuple variable that ranges over all the tuples of the copy of relation Movies 
introduced on line (5) — that is, the copy of the Movies relation addressed by 
the subquery of lines (4) through (6).

However, we can arrange for an attribute to belong to another tuple variable 
if we prefix it by that tuple variable and a dot. That is why we introduced 
the alias Old for the Movies relation of the outer query, and why we refer to 
Old. t i t l e  in line (6). Note that if the two relations in the FROM clauses of lines 
(2) and (5) were different, we would not need an alias. Rather, in the subquery 
we could refer directly to attributes of a relation mentioned in line (2).

6.3.5 Subqueries in FROM Clauses
Another use for subqueries is as relations in a FROM clause. In a FROM list, instead 
of a stored relation, we may use a parenthesized subquery. Since we don’t have 
a name for the result of this subquery, we must give it a tuple-variable alias. 
We then refer to tuples in the result of the subquery as we would tuples in any 
relation that appears in the FROM list.

E xam ple 6.22: Let us reconsider the problem of Example 6.20, where we 
wrote a query that finds the producers of Harrison Ford’s movies. Suppose we 
had a relation that gave the certificates of the producers of those movies. It 
would then be a simple matter to look up the names of those producers in the 
relation MovieExec. Figure 6.11 is such a query.

Lines (2) through (7) are the FROM clause of the outer query. In addition 
to the relation MovieExec, it has a subquery. That subquery joins Movies and 
S ta rs ln  on lines (3) through (5), adds the condition that the star is Harrison 
Ford on line (6), and returns the set of producers of the movies at line (2). This 
set is given the alias Prod on line (7).

5T h is  exam ple is th e  first occasion on w hich w e’ve been rem inded  th a t  re la tions in  SQL 
axe bags, n o t se ts. T h e re  a re  several ways th a t  dup lica tes m ay  crop  u p  in SQL relations. We 
shall discuss th e  m a tte r  in d e ta il in  Section 6.4.
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1) SELECT name
2) FROM MovieExec, (SELECT producerC#
3) FROM Movies, Starsln
4) WHERE title = movieTitle AND
5) year = movieYear AND
6) starName = ’Harrison Ford’
7) ) Prod
8) WHERE cert# = Prod.producerC#;

Figure 6.11: Finding the producers of Ford’s movies using a subquery in the 
FROM clause

At line (8), the relations MovieExec and the subquery aliased Prod are joined 
with the requirement that the certificate numbers be the same. The names of 
the producers from MovieExec that have certificates in the set aliased by Prod 
is returned at line (1). □

6.3.6 SQL Join Expressions
We can construct relations by a number of variations on the join operator 
applied to two relations. These variants include products, natural joins, theta- 
joins, and outerjoins. The result can stand as a query by itself. Alternatively, all 
these expressions, since they produce relations, may be used as subqueries in the 
FROM clause of a select-from-where expression. These expressions are principally 
shorthands for more complex select-from-where queries (see Exercise 6.3.11).

The simplest form of join expression is a cross join; that term is a synonym 
for what we called a Cartesian product or just “product” in Section 2.4.7. For 
instance, if we want the product of the two relations

Movies(title, year, length, genre, studioName, producerC#) 
Starsln(movieTitle, movieYear, starName)

we can say

Movies CROSS JOIN Starsln;
and the result will be a nine-column relation with all the attributes of Movies 
and S ta rs ln . Every pair consisting of one tuple of Movies and one tuple of 
S ta rs ln  will be a tuple of the resulting relation.

The attributes in the product relation can be called R.A, where R  is one 
of the two joined relations and A  is one of its attributes. If only one of the 
relations has an attribute named A, then the R  and dot can be dropped, as 
usual. In this instance, since Movies and S ta rs ln  have no common attributes, 
the nine attribute names suffice in the product.

However, the product by itself is rarely a useful operation. A more conven
tional theta-join is obtained with the keyword ON. We put JOIN between two
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relation names R  and S  and follow them by ON and a condition. The meaning 
of JOIN... ON is that the product of R  x S  is followed by a selection for whatever 
condition follows ON.

E xam p le 6 .2 3 : Suppose we want to join the relations

Movies(title, year, length, genre, studioName, producerC#) 
Starsln(movieTitle, movieYear, starName)

with the condition that the only tuples to be joined are those that refer to the 
same movie. That is, the titles and years from both relations must be the same. 
We can ask this query by

Movies JOIN Starsln ON
title = movieTitle AND year = movieYear;

The result is again a nine-column relation with the obvious attribute names. 
However, now a tuple from Movies and one from S ta rs ln  combine to form a 
tuple of the result only if the two tuples agree on both the title and year. As a 
result, two of the columns are redundant, because every tuple of the result will 
have the same value in both the t i t l e  and m ovieT itle  components and will 
have the same value in both year and movieYear.

If we are concerned with the fact that the join above has two redundant 
components, we can use the whole expression as a subquery in a FROM clause 
and use a SELECT clause to remove the undesired attributes. Thus, we could 
write

SELECT title, year, length, genre, studioName, 
producerC#, starName 

FROM Movies JOIN Starsln ON
title = movieTitle AND year = movieYear;

to get a seven-column relation which is the Movies relation’s tuples, each ex
tended in all possible ways with a star of that movie. □

6.3.7 Natural Joins
As we recall from Section 2.4.8, a natural join differs from a theta-join in that:

1. The join condition is that all pairs of attributes from the two relations 
having a common name are equated, and there are no other conditions.

2 . One of each pair of equated attributes is projected out.

The SQL natural join behaves exactly this way. Keywords NATURAL JOIN ap
pear between the relations to express the tx operator.

E xam ple 6 .2 4 : Suppose we want to compute the natural join of the relations
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MovieStar(name, ad d ress , gender, b ir th d a te )
MovieExec(name, ad d ress , c e r t# , netWorth)

The result will be a relation whose schema includes attributes name and address 
plus all the attributes that appear in one or the other of the two relations. 
A tuple of the result will represent an individual who is both a star and an 
executive and will have all the information pertinent to either: a name, address, 
gender, birthdate, certificate number, and net worth. The expression

MovieStar NATURAL JOIN MovieExec;

succinctly describes the desired relation. □

6.3.8 Outerjoins
The outerjoin operator was introduced in Section 5.2.7 as a way to augment 
the result of a join by the dangling tuples, padded with null values. In SQL, 
we can specify an outerjoin; NULL is used as the null value.

E xam ple 6.25 : Suppose we wish to take the outerjoin of the two relations

MovieStar(name, ad d ress , gender, b ir th d a te )
MovieExec(name, ad d ress , c e r t# , netWorth)

SQL refers to the standard outerjoin, which pads dangling tuples from both of 
its arguments, as a full outerjoin. The syntax; is unsurprising:

MovieStar NATURAL FULL OUTER JOIN MovieExec;

The result of this operation is a relation with the same six-attribute schema as 
Example 6.24. The tuples of this relation are of three kinds. Those representing 
individuals who are both stars and executives have tuples with all six attributes 
non-NULL. These are the tuples that are also in the result of Example 6.24.

The second kind of tuple is one for an individual who is a star but not an 
executive. These tuples have values for attributes name, address, gender, and 
b ir th d a te  taken from their tuple in MovieStar, while the attributes belonging 
only to MovieExec, namely ce rt#  and netWorth, have NULL values.

The third kind of tuple is for an executive who is not also a star. These 
tuples have values for the attributes of MovieExec taken from their MovieExec 
tuple and NULL’s in the attributes gender and b ir th d a te  that come only 
from MovieStar. For instance, the three tuples of the result relation shown 
in Fig. 6.12 correspond to the three types of individuals, respectively. □

All the variations on the outerjoin that we mentioned in Section 5.2.7 are also 
available in SQL. If we want a left- or right-outerjoin, we add the appropriate 
word LEFT or RIGHT in place of FULL. For instance,

MovieStar NATURAL LEFT OUTER JOIN MovieExec;
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name address gender birthdate cert# networth
Mary T yler Moore Maple S t. >F > 9 /9 /99 12345 $100-••
Tom Hanks Cherry Ln. >M> 8 / 8 /8 8 NULL NULL
George Lucas Oak Rd. NULL NULL 23456 $200- ■ •

Figure 6.12: Three tuples in the outerjoin of MovieStar and MovieExec

would yield the first two tuples of Fig. 6.12 but not the third. Similarly,

MovieStar NATURAL RIGHT OUTER JOIN MovieExec;

would yield the first and third tuples of Fig. 6.12 but not the second.
Next, suppose we want a theta-outerjoin instead of a natural outerjoin. 

Instead of using the keyword NATURAL, we may follow the join by ON and a 
condition that matching tuples must obey. If we also specify FULL OUTER JOIN, 
then after matching tuples from the two joined relations, we pad dangling tuples 
of either relation with NULL’s and include the padded tuples in the result.

E xam ple 6 .26: Let us reconsider Example 6.23, where we joined the relations 
Movies and S ta rs ln  using the conditions that the t i t l e  and m ovieT itle at
tributes of the two relations agree and that the year and movieYear attributes 
of the two relations agree. If we modify that example to call for a full outerjoin:

Movies FULL OUTER JOIN S ta rs ln  ON
t i t l e  = m ovieT itle AND year = movieYear;

then we shall get not only tuples for movies that have at least one star mentioned 
in S ta rs ln , but we shall get tuples for movies with no listed stars, padded with 
NULL’s in attributes m ovieT itle, movieYear, and starName. Likewise, for stars 
not appearing in any movie listed in relation Movies we get a tuple with NULL’s 
in the six attributes of Movies. □

The keyword FULL can be replaced by either LEFT or RIGHT in outerjoins of 
the type suggested by Example 6.26. For instance,

Movies LEFT OUTER JOIN S ta rs ln  ON
t i t l e  = m ovieT itle AND year = movieYear;

gives us the Movies tuples with at least one listed star and NULL-padded Movies 
tuples without a listed star, but will not include stars without a listed movie. 
Conversely,

Movies RIGHT OUTER JOIN S ta rs ln  ON
t i t l e  = m ovieT itle AND year = movieYear;

will omit the tuples for movies without a listed star but will include tuples for 
stars not in any listed movies, padded with NULL’s.
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6.3.9 Exercises for Section 6.3
Exercise 6 .3 .1 : Write the following queries, based on the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1. You should use at least one subquery in each of your answers 
and write each query in two significantly different ways (e.g., using different 
sets of the operators EXISTS, IN, ALL, and ANY).

a) Find the makers of PC’s with a speed of at least 3.0.

b) Find the printers with the highest price.

! c) Find the laptops whose speed is slower than that of any PC.

! d) Find the model number of the item (PC, laptop, or printer) with the 
highest price.

! e) Find the maker of the color printer with the lowest price.

!! f) Find the maker(s) of the PC(s) with the fastest processor among all those 
PC ’s that have the smallest amount of RAM.

E xercise 6.3.2 : Write the following queries, based on the database schema

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3. You should use at least one subquery in each of your answers 
and write each query in two significantly different ways (e.g., using different 
sets of the operators EXISTS, IN, ALL, and ANY).

a) Find the countries whose ships had the largest number of guns.

! b) Find the classes of ships, at least one of which was sunk in a battle.

c) Find the names of the ships with a 16-inch bore.

d) Find the battles in which ships of the Kongo class participated.

!! e) Find the names of the ships whose number of guns was the largest for 
those ships of the same bore.

E xercise 6 .3 .3 : Write the query of Fig. 6.10 without any subqueries.
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! Exercise 6 .3 .4 : Consider expression n i(R i  tx R 2  m • • • xi Rn) of relational 
algebra, where L  is a list of attributes all of which belong to R i . Show that this 
expression can be written in SQL using subqueries only. More precisely, write 
an equivalent SQL expression where no FROM clause has more than one relation 
in its list.

! E xercise 6 .3 .5 : Write the following queries without using the intersection or 
difference operators:

a) The intersection query of Fig. 6.5.

b) The difference query of Example 6.17.

! Exercise 6 .3 .6 : We have noticed that certain operators of SQL are redun
dant, in the sense that they always can be replaced by other operators. For 
example, we saw that s IN R  can be replaced by s = ANY R. Show that EXISTS 
and NOT EXISTS are redundant by explaining how to replace any expression of 
the form EXISTS R  or NOT EXISTS R  by an expression that does not involve 
EXISTS (except perhaps in the expression R  itself). Hint: Remember that it is 
permissible to have a constant in the SELECT clause.

Exercise 6 .3 .7 : For these relations from our running movie database schema

StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

describe the tuples that would appear in the following SQL expressions:

a) Studio CROSS JOIN MovieExec;
b) Starsln NATURAL FULL OUTER JOIN MovieStar;
c) Starsln FULL OUTER JOIN MovieStar ON name = starName;

! E xercise 6 .3 .8 : Using the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, rd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

write a SQL query that will produce information about all products — PC ’s, 
laptops, and printers — including their manufacturer if available, and whatever 
information about that product is relevant (i.e., found in the relation for that 
type of product).

Exercise 6 .3 .9 : Using the two relations
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Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)

from our database schema of Exercise 2.4.3, write a SQL query that will produce 
all available information about ships, including that information available in the 
Classes relation. You need not produce information about classes if there are 
no ships of that class mentioned in Ships.

! Exercise 6.3.10: Repeat Exercise 6.3.9, but also include in the result, for any 
class C that is not mentioned in Ships, information about the ship that has 
the same name C as its class. You may assume that there is a ship with the 
class name, even if it doesn’t appear in Ships.

! Exercise 6.3.11: The join operators (other than outerjoin) we learned in this 
section are redundant, in the sense that they can always be replaced by select- 
from-where expressions. Explain how to write expressions of the following forms 
using select-from-where:

a) R CROSS JOIN S;
b) R NATURAL JOIN S;
c) R JOIN S ON C where C is a SQL condition.

6.4 Full-Relation Operations
In this section we shall study some operations that act on relations as a whole, 
rather than on tuples individually or in small numbers (as do joins of several 
relations, for instance). First, we deal with the fact that SQL uses relations that 
are bags rather than sets, and a tuple can appear more than once in a relation. 
We shall see how to force the result of an operation to be a set in Section 6.4.1, 
and in Section 6.4.2 we shall see that it is also possible to prevent the elimination 
of duplicates in circumstances where SQL systems would normally eliminate 
them.

Then, we discuss how SQL supports the grouping and aggregation operator 
7  that we introduced in Section 5.2.4. SQL has aggregation operators and 
a GROUP-BY clause. There is also a “HAVING” clause that allows selection of 
certain groups in a way that depends on the group as a whole, rather than on 
individual tuples.

6.4.1 Eliminating Duplicates
As mentioned in Section 6.3.4, SQL’s notion of relations differs from the abstract 
notion of relations presented in Section 2.2. A relation, being a set, cannot 
have more than one copy of any given tuple. When a SQL query creates a new 
relation, the SQL system does not ordinarily eliminate duplicates. Thus, the 
SQL response to a query may list the same tuple several times.
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Recall from Section 6.2.4 that one of several equivalent definitions of the 
meaning of a SQL select-from-where query is that we begin with the Cartesian 
product of the relations referred to in the FROM clause. Each tuple of the 
product is tested by the condition in the WHERE clause, and the ones that pass 
the test are given to the output for projection according to the SELECT clause. 
This projection may cause the same tuple to result from different tuples of 
the product, and if so, each copy of the resulting tuple is printed in its turn. 
Further, since there is nothing wrong with a SQL relation having duplicates, the 
relations from which the Cartesian product is formed may have duplicates, and 
each identical copy is paired with the tuples from the other relations, yielding 
a proliferation of duplicates in the product.

If we do not wish duplicates in the result, then we may follow the key
word SELECT by the keyword DISTINCT. That word tells SQL to produce only 
one copy of any tuple and is the SQL analog of applying the <5 operator of 
Section 5.2.1 to the result of the query.

E xam ple  6 .27 : Let us reconsider the query of Fig. 6.9, where we asked for the 
producers of Harrison Ford’s movies using no subqueries. As written, George 
Lucas will appear many times in the output. If we want only to see each 
producer once, we may change line (1) of the query to

1) SELECT DISTINCT name

Then, the list of producers will have duplicate occurrences of names eliminated 
before printing.

Incidentally, the query of Fig. 6.7, where we used subqueries, does not nec
essarily suffer from the problem of duplicate answers. True, the subquery at 
line (4) of Fig. 6.7 will produce the certificate number of George Lucas several 
times. However, in the “main” query of line (1), we examine each tuple of 
MovieExec once. Presumably, there is only one tuple for George Lucas in that 
relation, and if so, it is only this tuple that satisfies the WHERE clause of line (3). 
Thus, George Lucas is printed only once. □

6.4.2 Duplicates in Unions, Intersections, and Differences
Unlike the SELECT statement, which preserves duplicates as a default and only 
eliminates them when instructed to by the DISTINCT keyword, the union, inter
section, and difference operations, which we introduced in Section 6.2.5, nor
mally eliminate duplicates. That is, bags are converted to sets, and the set 
version of the operation is applied. In order to prevent the elimination of dupli
cates, we must follow the operator UNION, INTERSECT, or EXCEPT by the keyword 
ALL. If we do, then we get the bag semantics of these operators as was discussed 
in Section 5.1.2.

E xam ple 6 .28 : Consider again the union expression from Example 6.18, but 
now add the keyword ALL, as:
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The Cost of Duplicate Elimination

One might be tempted to place DISTINCT after every SELECT, on the theory 
that it is harmless. In fact, it is very expensive to eliminate duplicates from 
a relation. The relation must be sorted or partitioned so that identical 
tuples appear next to each other. Only by grouping the tuples in this 
way can we determine whether or not a given tuple should be eliminated. 
The time it takes to sort the relation so that duplicates may be eliminated 
is often greater than the time it takes to execute the query itself. Thus, 
duplicate elimination should be used judiciously if we want our queries to 
run fast.

(SELECT title, year FROM Movies)
UNION ALL

(SELECT movieTitle AS title, movieYear AS year FROM Starsln);

Now, a title and year will appear as many times in the result as it appears in 
each of the relations Movies and S ta rs ln  put together. For instance, if a movie 
appeared once in the Movies relation and there were three stars for that movie 
listed in S ta rs ln  (so the movie appeared in three different tuples of S ta rs ln ), 
then that movie’s title and year would appear four times in the result of the 
union. □

As for union, the operators INTERSECT ALL and EXCEPT ALL are intersection 
and difference of bags. Thus, if R  and S  are relations, then the result of 
expression

R  INTERSECT ALL S

is the relation in which the number of times a tuple t  appears is the minimum 
of the number of times it appears in R  and the number of times it appears in
S.

The result of expression

R  EXCEPT ALL S

has tuple t as many times as the difference of the number of times it appears in 
R  minus the number of times it appears in S, provided the difference is positive. 
Each of these definitions is what we discussed for bags in Section 5.1.2.

6.4.3 Grouping and Aggregation in SQL
In Section 5.2.4, we introduced the grouping-and-aggregation operator 7  for 
our extended relational algebra. Recall that this operator allows us to partition
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the tuples of a relation into “groups,” based on the values of tuples in one or 
more attributes, as discussed in Section 5.2.3. We are then able to aggregate 
certain other columns of the relation by applying “aggregation” operators to 
those columns. If there are groups, then the aggregation is done separately for 
each group. SQL provides all the capability of the 7  operator through the use 
of aggregation operators in SELECT clauses and a special GROUP BY clause.

6.4.4 Aggregation Operators
SQL uses the five aggregation operators SUM, AVG, MIN, MAX, and COUNT that we 
met in Section 5.2.2. These operators are used by applying them to a scalar- 
valued expression, typically a column name, in a SELECT clause. One exception 
is the expression C0UNT(*), which counts all the tuples in the relation that is 
constructed from the FROM clause and WHERE clause of the query.

In addition, we have the option of eliminating duplicates from the column 
before applying the aggregation operator by using the keyword DISTINCT. That 
is, an expression such as COUNT (DISTINCT x) counts the number of distinct 
values in column x. We could use any of the other operators in place of COUNT 
here, but expressions such as SUM (DISTINCT x) rarely make sense, since it asks 
us to sum the different values in column x.

E xam ple 6 .2 9 : The following query finds the average net worth of all movie 
executives:

SELECT AVG(netWorth)
FROM MovieExec;

Note that there is no WHERE clause at all, so the keyword WHERE is properly 
omitted. This query examines the netWorth column of the relation

MovieExec(name, address, cert#, netWorth)
sums the values found there, one value for each tuple (even if the tuple is a 
duplicate of some other tuple), and divides the sum by the number of tuples. 
If there are no duplicate tuples, then this query gives the average net worth 
as we expect. If there were duplicate tuples, then a movie executive whose 
tuple appeared n  times would have his or her net worth counted n times in the 
average. □

E xam ple 6.30: The following query:

SELECT COUNT(*)
FROM Starsln;

counts the number of tuples in the S ta rs ln  relation. The similar query:

SELECT COUNT(starName)
FROM Starsln;
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counts the number of values in the starName column of the relation. Since 
duplicate values are not eliminated when we project onto the starName column 
in SQL, this count should be the same as the count produced by the query with 
C0UNT(*).

If we want to be certain that we do not count duplicate values more than 
once, we can use the keyword DISTINCT before the aggregated attribute, as:

SELECT COUNT(DISTINCT starName)
FROM S ta rs ln ;

Now, each star is counted once, no matter in how many movies they appeared.
□

6.4.5 Grouping
To group tuples, we use a GROUP BY clause, following the WHERE clause. The 
keywords GROUP BY are followed by a list of grouping attributes. In the simplest 
situation, there is only one relation reference in the FROM clause, and this relation 
has its tuples grouped according to their values in the grouping attributes. 
Whatever aggregation operators are used in the SELECT clause are applied only 
within groups.

E xam ple 6 .31: The problem of finding, from the relation

M o v ie s ( title , y ea r, len g th , genre, studioName, producerC#)

the sum of the lengths of all movies for each studio is expressed by

SELECT studioName, SUM(length)
FROM Movies
GROUP BY studioName;

We may imagine that the tuples of relation Movies are reorganized and grouped 
so that all the tuples for Disney studios are together, all those for MGM are 
together, and so on, as was suggested in Fig. 5.4. The sums of the length 
components of all the tuples in each group are calculated, and for each group, 
the studio name is printed along with that sum. □

Observe in Example 6.31 how the SELECT clause has two kinds of terms. 
These are the only terms that may appear when there is an aggregation in the 
SELECT clause.

1. Aggregations, where an aggregate operator is applied to an attribute or 
expression involving attributes. As mentioned, these terms are evaluated 
on a per-group basis.
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2. Attributes, such as studioName in this example, that appear in the GROUP 
BY clause. In a SELECT clause that has aggregations, only those attributes 
that are mentioned in the GROUP BY clause may appear unaggregated in 
the SELECT clause.

While queries involving GROUP BY generally have both grouping attributes 
and aggregations in the SELECT clause, it is technically not necessary to have 
both. For example, we could write

SELECT studioName
FROM Movies
GROUP BY studioName;

This query would group the tuples of Movies according to their studio name 
and then print the studio name for each group, no matter how many tuples 
there are with a given studio name. Thus, the above query has the same effect 
as

SELECT DISTINCT studioName 
FROM Movies;

It is also possible to use a GROUP BY clause in a query about several relations. 
Such a query is interpreted by the following sequence of steps:

1. Evaluate the relation R  expressed by the FROM and WHERE clauses. That 
is, relation R  is the Cartesian product of the relations mentioned in the 
FROM clause, to which the selection of the WHERE clause is applied.

2. Group the tuples of R  according to the attributes in the GROUP BY clause.

3. Produce as a result the attributes and aggregations of the SELECT clause, 
as if the query were about a stored relation R.

E xam ple 6.32: Suppose we wish to print a table listing each producer’s total 
length of film produced. We need to get information from the two relations

M o v ie s ( title , y ea r, len g th , genre, studioName, producerC#) 
MovieExec(name, address, c e r t# , netWorth)

so we begin by taking their theta-join, equating the certificate numbers from 
the two relations. That step gives us a relation in which each MovieExec tuple 
is paired with the Movies tuples for all the movies of that producer. Note that 
an executive who is not a producer will not be paired with any movies, and 
therefore will not appear in the relation. Now, we can group the selected tuples 
of this relation according to the name of the producer. Finally, we sum the 
lengths of the movies in each group. The query is shown in Fig. 6.13. □
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SELECT name, SUM(length)
FROM MovieExec, Movies 
WHERE producerC# = ce rt#
GROUP BY name;

Figure 6.13: Computing the length of movies for each producer

6.4.6 Grouping, Aggregation, and Nulls
When tuples have nulls, there are a few rules we must remember:

• The value NULL is ignored in any aggregation. It does not contribute to 
a sum, average, or count of an attribute, nor can it be the minimum or 
maximum in its column. For example, COUNT(*) is always a count of the 
number of tuples in a relation, but COUNT (A) is the number of tuples with 
non-NULL values for attribute A.

• On the other hand, NULL is treated as an ordinary value when forming 
groups. That is, we can have a group in which one or more of the grouping 
attributes are assigned the value NULL.

• When we perform any aggregation except count over an empty bag of 
values, the result is NULL. The count of an empty bag is 0.

E xam ple 6 .33: Suppose we have a relation R(A, B) with one tuple, both of 
whose components are NULL:

A | B 
NULL | NULL

Then the result of:

SELECT A, COUNT(B)
FROM R 
GROUP BY A;

is the one tuple (NULL, 0). The reason is that when we group by A, we find only 
a group for value NULL. This group has one tuple, and its fi-value is NULL. We 
thus count the bag of values {NULL}. Since the count of a bag of values does 
not count the NULL’s, this count is 0.

On the other hand, the result of:

SELECT A, SUM(B)
FROM R 
GROUP BY A;
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Order of Clauses in SQL Queries

We have now met all six clauses that can appear in a SQL “select-from- 
where” query: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY. 
Only the SELECT and FROM clauses are required. Whichever additional 
clauses appear must be in the order listed above.

is the one tuple (NULL, NULL). The reason is as follows. The group for value 
NULL has one tuple, the only tuple in R. However, when we try to sum the 
B-values for this group, we only find NULL, and NULL does not contribute to a 
sum. Thus, we are summing an empty bag of values, and this sum is defined 
to be NULL. □

6.4.7 HAVING Clauses
Suppose that we did not wish to include all of the producers in our table of 
Example 6.32. We could restrict the tuples prior to grouping in a way that 
would make undesired groups empty. For instance, if we only wanted the total 
length of movies for producers with a net worth of more than $10,000,000, we 
could change the third line of Fig. 6.13 to

WHERE producerC# = cert# AND networth > 10000000
However, sometimes we want to choose our groups based on some aggregate 

property of the group itself. Then we follow the GROUP BY clause with a HAVING 
clause. The latter clause consists of the keyword HAVING followed by a condition 
about the group.

Exam ple 6.34: Suppose we want to print the total film length for only those 
producers who made at least one film prior to 1930. We may append to Fig. 6.13 
the clause

HAVING MIN(year) < 1930
The resulting query, shown in Fig. 6.14, would remove from the grouped relation 
all those groups in which every tuple had a year component 1930 or higher.
□

There are several rules we must remember about HAVING clauses:

• An aggregation in a HAVING clause applies only to the tuples of the group 
being tested.

• Any attribute of relations in the FROM clause may be aggregated in the 
HAVING clause, but only those attributes that are in the GROUP BY list 
may appear unaggregated in the HAVING clause (the same rule as for the 
SELECT clause).
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SELECT name, SUM(length)
FROM MovieExec, Movies 
WHERE producerC# = cert#
GROUP BY name
HAVING MIN(year) < 1930;

Figure 6.14: Computing the total length of film for early producers

6.4.8 Exercises for Section 6.4
Exercise 6 .4 .1 : Write each of the queries in Exercise 2.4.1 in SQL, making 
sure that duplicates are eliminated.

E xercise 6 .4 .2 : Write each of the queries in Exercise 2.4.3 in SQL, making 
sure that duplicates are eliminated.

! E xercise 6 .4 .3 : For each of your answers to Exercise 6.3.1, determine whether 
or not the result of your query can have duplicates. If so, rewrite the query 
to eliminate duplicates. If not, write a query without subqueries that has the 
same, duplicate-free answer.

! E xercise 6 .4 .4 : Repeat Exercise 6.4.3 for your answers to Exercise 6.3.2.

! E xercise 6 .4 .5 : In Example 6.27, we mentioned that different versions of the 
query “find the producers of Harrison Ford’s movies” can have different answers 
as bags, even though they yield the same set of answers. Consider the version 
of the query in Example 6.22, where we used a subquery in the FROM clause. 
Does this version produce duplicates, and if so, why?

E xercise 6 .4 .6 : Write the following queries, based on the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1, and evaluate your queries using the data of that exercise.

a) Find the average speed of PC ’s.

b) Find the average speed of laptops costing over $1000.

c) Find the average price of PC ’s made by manufacturer “A.”

! d) Find the average price of PC’s and laptops made by manufacturer “D.”

e) Find, for each different speed, the average price of a PC.
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! f) Find for each manufacturer, the average screen size of its laptops.

! g) Find the manufacturers that make at least three different models of PC.

! h) Find for each manufacturer who sells PC ’s the maximum price of a PC.

! i) Find, for each speed of PC above 2.0, the average price.

!! j) Find the average hard disk size of a PC for all those manufacturers that 
make printers.

Exercise 6.4.7: Write the following queries, based on the database schema

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3, and evaluate your queries using the data of that exercise.

a) Find the number of battleship classes.

b) Find the average number of guns of battleship classes.

! c) Find the average number of guns of battleships. Note the difference be
tween (b) and (c); do we weight a class by the number of ships of that 
class or not?

! d) Find for each class the year in which the first ship of that class was 
launched.

! e) Find for each class the number of ships of that class sunk in battle.

!! f) Find for each class with at least three ships the number of ships of that 
class sunk in battle.

!! g) The weight (in pounds) of the shell fired from a naval gun is approximately 
one half the cube of the bore (in inches). Find the average weight of the 
shell for each country’s ships.

Exercise 6.4.8: In Example 5.10 we gave an example of the query: “find, for 
each star who has appeared in at least three movies, the earliest year in which 
they appeared.” We wrote this query as a 7  operation. Write it in SQL.

! Exercise 6.4.9: The 7  operator of extended relational algebra does not have 
a feature that corresponds to the HAVING clause of SQL. Is it possible to mimic 
a SQL query with a HAVING clause in relational algebra? If so, how would we 
do it in general?
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6.5 Database M odifications
To this point, we have focused on the normal SQL query form: the select-from- 
where statement. There are a number of other statement forms that do not 
return a result, but rather change the state of the database. In this section, we 
shall focus on three types of statements that allow us to

1. Insert tuples into a relation.

2. Delete certain tuples from a relation.

3. Update values of certain components of certain existing tuples.

We refer to these three types of operations collectively as modifications.

6.5.1 Insertion
The basic form of insertion statement is:

INSERT INTO R (A 1, . . .  , A n) VALUES (ui, . . .  , vn);

A tuple is created using the value for attribute Ai, for * =  1,2 , , . .  , n. If 
the list of attributes does not include all attributes of the relation R, then the 
tuple created has default values for all missing attributes.

E xam ple 6 .35: Suppose we wish to add Sydney Greenstreet to the list of 
stars of The Maltese Falcon. We say:

1) INSERT INTO Starsln(movieTitle, movieYear, starName)
2) VALUES(’The Maltese Falcon’, 1942, ’Sydney Greenstreet’);

The effect of executing this statement is that a tuple with the three components 
on line (2) is inserted into the relation S ta rs ln . Since all attributes of S ta rs ln  
are mentioned on line (1), there is no need to add default components. The 
values on line (2) are matched with the attributes on line (1) in the order given, 
so ’The M altese F alcon’ becomes the value of the component for attribute 
m ovieT itle, and so on. □

If, as in Example 6.35, we provide values for all attributes of the relation, 
then we may omit the list of attributes that follows the relation name. That is, 
we could just say:

INSERT INTO Starsln
VALUES(’The Maltese Falcon’, 1942, ’Sydney Greenstreet’);

However, if we take this option, we must be sure that the order of the values is 
the same as the standard order of attributes for the relation.
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• If you are not sure of the declared order for the attributes, it is best to 
list them in the INSERT clause in the order you choose for their values in 
the VALUES clause.

The simple INSERT described above only puts one tuple into a relation. 
Instead of using explicit values for one tuple, we can compute a set of tuples to 
be inserted, using a subquery. This subquery replaces the keyword VALUES and 
the tuple expression in the INSERT statement form described above.

E xam ple 6 .36: Suppose we want to add to the relation

Studio(name, add ress, presC#)

all movie studios that are mentioned in the relation

M o v ie s ( title , y ea r, len g th , genre, studioName, producerC#)

but do not appear in Studio. Since there is no way to determine an address or 
a president for such a studio, we shall have to be content with value NULL for 
attributes address and presC# in the inserted S tudio tuples. A way to make 
this insertion is shown in Fig. 6.15.

1) INSERT INTO Studio(name)
2) SELECT DISTINCT studioName
3) FROM Movies
4) WHERE studioName NOT IN
5) (SELECT name
6 ) FROM S tu d io );

Figure 6.15: Adding new studios

Like most SQL statements with nesting, Fig. 6.15 is easiest to examine from 
the inside out. Lines (5) and (6) generate all the studio names in the relation 
Studio. Thus, line (4) tests that a studio name from the Movies relation is 
none of these studios.

Now, we see that lines (2) through (6) produce the set of studio names 
found in Movies but not in Studio. The use of DISTINCT on line (2) assures 
that each studio will appear only once in this set, no matter how many movies it 
owns. Finally, line (1) inserts each of these studios, with NULL for the attributes 
address and presC#, into relation Studio. □

6.5.2 Deletion
The form of a deletion is

DELETE FROM R  WHERE <condition> ;
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The Timing of Insertions

The SQL standard requires that the query be evaluated completely before 
any tuples are inserted. For example, in Fig. 6.15, the query of lines (2) 
through (6) must be evaluated prior to executing the insertion of line (1). 
Thus, there is no possibility that new tuples added to S tudio at line (1) 
will affect the condition on line (4).

In this particular example, it does not matter whether or not inser
tions are delayed until the query is completely evaluated. However, sup
pose DISTINCT were removed from line (2) of Fig. 6.15. If we evaluate the 
query of lines (2) through (6) before doing any insertion, then a new stu
dio name appearing in several Movies tuples would appear several times in 
the result of this query and therefore would be inserted several times into 
relation Studio. However, if the DBMS inserted new studios into Studio 
as soon as we found them during the evaluation of the query of lines (2) 
through (6), something that would be incorrect according to the standard, 
then the same new studio would not be inserted twice. Rather, as soon 
as the new studio was inserted once, its name would no longer satisfy the 
condition of lines (4) through (6), and it would not appear a second time 
in the result of the query of lines (2) through (6).

The effect of executing this statement is that every tuple satisfying the condition 
will be deleted from relation R.

E xam ple 6.37: We can delete from relation

S ta rs ln (m o v ieT itle , movieYear, starName)

the fact that Sydney Greenstreet was a star in The Maltese Falcon by the SQL 
statement:

DELETE FROM S ta rs ln
WHERE m ovieT itle = ’The M altese F alcon’ AND 

movieYear = 1942 AND 
starName = ’Sydney G re e n s tre e t’ ;

Notice that unlike the insertion statement of Example 6.35, we cannot simply 
specify a tuple to be deleted. Rather, we must describe the tuple exactly by a 
WHERE clause. □

E xam ple 6 .38: Here is another example of a deletion. This time, we delete 
from relation

MovieExec(name, ad d ress , c e r t# , netWorth)
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several tuples at once by using a condition that can be satisfied by more than 
one tuple. The statement

DELETE FROM MovieExec 
WHERE netWorth < 10000000;

deletes all movie executives whose net worth is low — less than ten million 
dollars. □

6.5.3 Updates
While we might think of both insertions and deletions of tuples as “updates” 
to the database, an update in SQL is a very specific kind of change to the 
database: one or more tuples that already exist in the database have some of 
their components changed. The general form of an update statement is:

UPDATE R  SET <new-value assignments> WHERE <condition>;

Each new-value assignment is an attribute, an equal sign, and an expression. 
If there is more than one assignment, they are separated by commas. The effect 
of this statement is to find all the tuples in R  that satisfy the condition. Each 
of these tuples is then changed by having the expressions in the assignments 
evaluated and assigned to the components of the tuple for the corresponding 
attributes of R.

E xam ple 6 .39: Let us modify the relation

MovieExec(name, ad d ress , c e r t# , netWorth)

by attaching the title P res , in front of the name of every movie executive who 
is the president of a studio. The condition the desired tuples satisfy is that 
their certificate numbers appear in the presC# component of some tuple in the 
Studio relation. We express this update as:

1) UPDATE MovieExec
2) SET name = ’P res . ’ I I name
3) WHERE ce rt#  IN (SELECT presC# FROM S tu d io ) ;

Line (3) tests whether the certificate number from the MovieExec tuple is 
one of those that appear as a president’s certificate number in Studio.

Line (2) performs the update on the selected tuples. Recall that the operator 
I I denotes concatenation of strings, so the expression following the = sign in 
line (2) places the characters P re s . and a blank in front of the old value of the 
name component of this tuple. The new string becomes the value of the name 
component of this tuple; the effect is that ’ P re s . ’ has been prepended to the 
old value of name. □
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6.5.4 Exercises for Section 6.5
Exercise 6 .5 .1 : Write the following database modifications, based on the 
database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1. Describe the effect of the modifications on the data of that 
exercise.

a) Using two INSERT statements, store in the database the fact that PC 
model 1100 is made by manufacturer C, has speed 3.2, RAM 1024, hard 
disk 180, and sells for $2499.

! b) Insert the facts that for every PC there is a laptop with the same manu
facturer, speed, RAM, and hard disk, a 17-inch screen, a model number 
1100 greater, and a price $500 more.

c) Delete all PC’s with less than 100 gigabytes of hard disk.

d) Delete all laptops made by a manufacturer that doesn’t  make printers.

e) Manufacturer A buys manufacturer B. Change all products made by B so 
they are now made by A.

f) For each PC, double the amount of RAM and add 60 gigabytes to the 
amount of hard disk. (Remember that several attributes can be changed 
by one UPDATE statement.)

! g) For each laptop made by manufacturer B, add one inch to the screen size 
and subtract $100 from the price.

E xercise 6 .5 .2 : Write the following database modifications, based on the 
database schema

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3. Describe the effect of the modifications on the data of that 
exercise.

a) The two British battleships of the Nelson class — Nelson and Rodney — 
were both launched in 1927, had nine 16-inch guns, and a displacement 
of 34,000 tons. Insert these facts into the database.



296 CHAPTER 6. THE DATABASE LANGUAGE SQL

b) Two of the three battleships of the Italian Vittorio Veneto class — Vit
torio Veneto and Italia — were launched in 1940; the third ship of that 
class, Roma, was launched in 1942. Each had nine 15-inch guns and a 
displacement of 41,000 tons. Insert these facts into the database.

c) Delete from Ships all ships sunk in battle.

d) Modify the C lasses relation so that gun bores are measured in centime
ters (one inch =  2.5 centimeters) and displacements are measured in met
ric tons (one metric ton =  1.1 tons).

e) Delete all classes with fewer than three ships.

6.6 Transactions in SQL
To this point, our model of operations on the database has been that of one 
user querying or modifying the database. Thus, operations on the database are 
executed one at a time, and the database state left by one operation is the state 
upon which the next operation acts. Moreover, we imagine that operations are 
carried out in their entirety (“atomically”). That is, we assumed it is impossible 
for the hardware or software to fail in the middle of a modification, leaving the 
database in a state that cannot be explained as the result of the operations 
performed on it.

Real life is often considerably more complicated. We shall first consider what 
can happen to leave the database in a state that doesn’t reflect the operations 
performed on it, and then we shall consider the tools SQL gives the user to 
assure that these problems do not occur.

6.6.1 Serializability
In applications like Web services, banking, or airline reservations, hundreds 
of operations per second may be performed on the database. The operations 
initiate at any of thousands or millions of sites, such as desktop computers 
or automatic teller machines. It is entirely possible that we could have two 
operations affecting the same bank account or flight, and for those operations 
to overlap in time. If so, they might interact in strange ways.

Here is an example of what could go wrong if the DBMS were completely 
unconstrained as to the order in which it operated upon the database. This 
example involves a database interacting with people, and it is intended to illus
trate why it is important to control the sequences in which interacting events 
can occur. However, a DBMS would not control events that were so “large” 
that they involved waiting for a user to make a choice. The event sequences 
controlled by the DBMS involve only the execution of SQL statements.

Exam ple 6.40: The typical airline gives customers a Web interface where 
they can choose a seat for their flight. This interface shows a map of available
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seats, and the data for this map is obtained from the airline’s database. There 
might be a relation such as:

Flights(fltNo, fltDate, seatNo, seatStatus) 

upon which we can issue the query:

SELECT seatNo
FROM Flights
WHERE fltNo = 123 AND fltDate = DATE ’2008-12-25’

AND seatStatus = ’available’;

The flight number and date are example data, which would in fact be obtained 
from previous interactions with the customer.

When the customer clicks on an empty seat, say 22A, that seat is reserved 
for them. The database is modified by an update-statement, such as:

UPDATE Flights
SET seatStatus = ’occupied’
WHERE fltNo = 123 AND fltDate = DATE ’2008-12-25’

AND seatNo = ’22A’;

However, this customer may not be the only one reserving a seat on flight 
123 on Dec. 25, 2008 and this exact moment. Another customer may have asked 
for the seat map at the same time, in which case they also see seat 22A empty. 
Should they also choose seat 22A, they too believe they have reserved 22A. The 
timing of these events is as suggested by Fig. 6.16. □

User 1 finds 
seat empty

User 2 finds 
seat empty

User 1 sets seat 
22A occupied

User 2 sets seat 
22A occupied

Figure 6.16: Two customers trying to book the same seat simultaneously

As we see from Example 6.40, it is conceivable that two operations could 
each be performed correctly, and yet the global result not be correct: both 
customers believe they have been granted seat 22A. The problem is solved in 
SQL by the notion of a “transaction,” which is informally a group of operations 
that need to be performed together. Suppose that in Example 6.40, the query

time
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Assuring Serializable Behavior

In practice it is often impossible to require that operations run serially; 
there are just too many of them, and some parallelism is required. Thus, 
DBMS’s adopt a mechanism for assuring serializable behavior; even if 
the execution is not serial, the result looks to users as if operations were 
executed serially.

One common approach is for the DBMS to lock elements of the 
database so that two functions cannot access them at the same time. We 
mentioned locking in Section 1.2.4, and there is an extensive technology 
of how to implement locks in a DBMS. For example, if the transaction of 
Example 6.40 were written to lock other transactions out of the F lig h ts  
relation, then transactions that did not access F lig h ts  could run in par
allel with the seat-selection transaction, but no other invocation of the 
seat-selection operation could run in parallel.

and update shown would be grouped into one transaction .6 SQL then allows 
the programmer to state that a certain transaction must be serializable with 
respect to other transactions. That is, these transactions must behave as if they 
were run serially — one at a time, with no overlap.

Clearly, if the two invocations of the seat-selection operation are run serially 
(or serializably), then the error we saw cannot occur. One customer’s invocation 
occurs first. This customer sees seat 22A is empty, and books it. The other 
customer’s invocation then begins and is not given 22A as a choice, because it 
is already occupied. It may matter to the customers who gets the seat, but to 
the database all that is important is that a seat is assigned only once.

6.6.2 Atomicity
In addition to nonserialized behavior that can occur if two or more database op
erations are performed about the same time, it is possible for a single operation 
to put the database in an unacceptable state if there is a hardware or software 
“crash” while the operation is executing. Here is another example suggesting 
what might occur. As in Example 6.40, we should remember that real database 
systems do not allow this sort of error to occur in properly designed application 
programs.

E xam ple 6.41: Let us picture another common sort of database: a bank’s 
account records. We can represent the situation by a relation

®However, it would be  ex trem ely  unw ise to  g roup in to  a  single tra n sa c tio n  operations 
th a t  involved a  user, o r even a  com p u ter th a t  w as no t owned by th e  airline , such as a  travel 
ag en t’s com pu ter. A no ther m echanism  m u st be  used  to  deal w ith  event sequences th a t  include 
o pera tions ou tside  th e  datab ase .



6.6. TRANSACTIONS IN  SQL 299

Accounts(acctNo, balance)

Consider the operation of transferring $100 from the account numbered 123 
to the account 456. We might first check whether there is at least $100 in 
account 123, and if so, we execute the following two steps:

1. Add $100 to account 456 by the SQL update statement:

UPDATE Accounts
SET balance = balance + 100
WHERE acctNo = 456;

2 . Subtract $100 from account 123 by the SQL update statement:

UPDATE Accounts
SET balance = balance - 100
WHERE acctNo = 123;

Now, consider what happens if there is a failure after Step (1) but before 
Step (2). Perhaps the computer fails, or the network connecting the database to 
the processor that is actually performing the transfer fails. Then the database 
is left in a state where money has been transferred into the second account, but 
the money has not been taken out of the first account. The bank has in effect 
given away the amount of money that was to be transferred. □

The problem illustrated by Example 6.41 is that certain combinations of 
database operations, like the two updates of that example, need to be done 
atomically, that is, either they are both done or neither is done. For exam
ple, a simple solution is to have all changes to the database done in a local 
workspace, and only after all work is done do we commit the changes to the 
database, whereupon all changes become part of the database and visible to 
other operations.

6.6.3 Transactions
The solution to the problems of serialization and atomicity posed in Sections 
6.6.1 and 6.6.2 is to group database operations into transactions. A transaction 
is a collection of one or more operations on the database that must be executed 
atomically; that is, either all operations are performed or none are. In addition, 
SQL requires that, as a default, transactions are executed in a serializable 
manner. A DBMS may allow the user to specify a less stringent constraint on 
the interleaving of operations from two or more transactions. We shall discuss 
these modifications to the serializability condition in later sections.

When using the generic SQL interface (the facility wherein one types queries 
and other SQL statements), each statement is a transaction by itself. However,
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How the Database Changes During Transactions

Different systems may do different things to implement transactions. It is 
possible that as a transaction executes, it makes changes to the database. 
If the transaction aborts, then (unless the programmer took precautions) 
it is possible that these changes were seen by some other transaction. The 
most common solution is for the database system to lock the changed items 
until COMMIT or ROLLBACK is chosen, thus preventing other transactions 
from seeing the tentative change. Locks or an equivalent would surely be 
used if the user wants the transactions to run in a serializable fashion.

However, as we shall see starting in Section 6.6.4, SQL offers us sev
eral options regarding the treatment of tentative database changes. It 
is possible that the changed data is not locked and becomes visible even 
though a subsequent rollback makes the change disappear. It is up to the 
author of a transaction to decide whether it is safe for that transaction to 
see tentative changes of other transactions.

SQL allows the programmer to group several statements into a single transac
tion. The SQL command START TRANSACTION is used to mark the beginning 
of a transaction. There are two ways to end a transaction:

1. The SQL statement COMMIT causes the transaction to end successfully. 
Whatever changes to the database were caused by the SQL statement or 
statements since the current transaction began are installed permanently 
in the database (i.e., they are committed). Before the COMMIT statement 
is executed, changes are tentative and may or may not be visible to other 
transactions.

2. The SQL statement ROLLBACK causes the transaction to abort, or termi
nate unsuccessfully. Any changes made in response to the SQL statements 
of the transaction are undone (i.e., they are rolled back), so they never 
permanently appear in the database.

E xam ple 6.42: Suppose we want the transfer operation of Example 6.41 to 
be a single transaction. We execute BEGIN TRANSACTION before accessing the 
database. If we find that there are insufficient funds to make the transfer, 
then we would execute the ROLLBACK command. However, if there are sufficient 
funds, then we execute the two update statements and then execute COMMIT.
□

6.6.4 Read-Only Transactions
Examples 6.40 and 6.41 each involved a transaction that read and then (pos
sibly) wrote some data into the database. This sort of transaction is prone to
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Application- Versus System-Generated Rollbacks

In our discussion of transactions, we have presumed that the decision 
whether a transaction is committed or rolled back is made as part of the 
application issuing the transaction. That is, as in Examples 6.44 and 6.42, 
a transaction may perform a number of database operations, then decide 
whether to make any changes permanent by issuing COMMIT, or to return 
to the original state by issuing ROLLBACK. However, the system may also 
perform transaction rollbacks, to ensure that transactions are executed 
atomically and conform to their specified isolation level in the presence of 
other concurrent transactions or system crashes. Typically, if the system 
aborts a transaction then a special error code or exception is generated. 
If an application wishes to guarantee that its transactions are executed 
successfully, it must catch such conditions and reissue the transaction in 
question.

serialization problems. Thus we saw in Example 6.40 what could happen if two 
executions of the function tried to book the same seat at the same time, and 
we saw in Example 6.41 what could happen if there was a crash in the middle 
of a funds transfer. However, when a transaction only reads data and does not 
write data, we have more freedom to let the transaction execute in parallel with 
other transactions.

E xam ple 6 .43: Suppose we wrote a program that read data from the F lig h ts  
relation of Example 6.40 to determine whether a certain seat was available. 
We could execute many invocations of this program at once, without risk of 
permanent harm to the database. The worst that could happen is that while 
we were reading the availability of a certain seat, that seat was being booked 
or was being released by the execution of some other program. Thus, we might 
get the answer “available” or “occupied,” depending on microscopic differences 
in the time at which we executed the query, but the answer would make sense 
at some time. □

If we tell the SQL execution system that our current transaction is read
only, that is, it will never change the database, then it is quite possible that the 
SQL system will be able to take advantage of that knowledge. Generally it will 
be possible for many read-only transactions accessing the same data to run in 
parallel, while they would not be allowed to run in parallel with a transaction 
that wrote the same data.

We tell the SQL system that the next transaction is read-only by:

SET TRANSACTION READ ONLY;
This statement must be executed before the transaction begins. We can also 
inform SQL that the coming transaction may write data by the statement
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SET TRANSACTION READ WRITE;

However, this option is the default.

6.6.5 Dirty Reads
Dirty data is a common term for data written by a transaction that has not yet 
committed. A dirty read is a read of dirty data written by another transaction. 
The risk in reading dirty data is that the transaction that wrote it may even
tually abort. If so, then the dirty data will be removed from the database, and 
the world is supposed to behave as if that data never existed. If some other 
transaction has read the dirty data, then that transaction might commit or take 
some other action that reflects its knowledge of the dirty data.

Sometimes the dirty read matters, and sometimes it doesn’t. Other times 
it matters little enough that it makes sense to risk an occasional dirty read and 
thus avoid:

1. The time-consuming work by the DBMS that is needed to prevent dirty 
reads, and

2. The loss of parallelism that results from waiting until there is no possibility 
of a dirty read.

Here are some examples of what might happen when dirty reads are allowed.

E xam ple 6.44: Let us reconsider the account transfer of Example 6.41. How
ever, suppose that transfers are implemented by a program P  that executes the 
following sequence of steps:

1. Add money to account 2.

2. Test if account 1 has enough money.

(a) If there is not enough money, remove the money from account 2 and 
end.7

(b) If there is enough money, subtract the money from account 1 and 
end.

If program P  is executed serializably, then it doesn’t matter that we have put 
money temporarily into account 2. No one will see that money, and it gets 
removed if the transfer can’t  be made.

However, suppose dirty reads are possible. Imagine there are three accounts: 
A I, A2, and ^43, with $100, $200, and $300, respectively. Suppose transaction

7You should  be  aw are th a t  th e  p rog ram  P  is try in g  to  perform  functions th a t  would m ore 
typ ically  be done by th e  D BM S. In  p articu la r, w hen P  decides, as it  has done a t  th is  step , 
th a t  it  m u st no t com plete th e  tran sac tio n , it would issue a  rollback (ab o rt)  com m and to  th e  
DBM S an d  have th e  D BM S reverse th e  effects of th is  execution  o f P.
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Ti executes program P  to transfer $150 from A I  to A2. At roughly the same 
time, transaction T2 runs program P  to transfer $250 from A2 to A3. Here is 
a possible sequence of events:

1. T2  executes Step.(l) and adds $250 to A3, which now has $550.

2. Ti executes Step (1) and adds $150 to A2, which now has $350.

3. T2 executes the test of Step (2) and finds that A2 has enough funds ($350) 
to allow the transfer of $250 from A2 to A3.

4. Ti executes the test of Step (2) and finds that A I  does not have enough 
funds ($100) to allow the transfer of $150 from A I  to A2.

5. T2 executes Step (2b). It subtracts $250 from A2, which now has $100, 
and ends.

6 . Ti executes Step (2a). It subtracts $150 from A2, which now has —$50, 
and ends.

The total amount of money has not changed; there is still $600 among the three 
accounts. But because T2 read dirty data at the third of the six steps above, we 
have not protected against an account going negative, which supposedly was 
the purpose of testing the first account to see if it had adequate funds. □

E xam ple 6.45: Let us imagine a variation on the seat-choosing function of 
Example 6.40. In the new approach:

1. We find an available seat and reserve it by setting se a tS ta tu s  to ’occ
u p ied ’ for that seat. If there is none, end.

2. We ask the customer for approval of the seat. If so, we commit. If not, 
we release the seat by setting se a tS ta tu s  to ’a v a ila b le ’ and repeat 
Step (1) to get another seat.

If two transactions are executing this algorithm at about the same time, one 
might reserve a seat S, which later is rejected by the customer. If the second 
transaction executes Step (1) at a time when seat S  is marked occupied, the 
customer for that transaction is not given the option to take seat S.

As in Example 6.44, the problem is that a dirty read has occurred. The 
second transaction saw a tuple (with S  marked occupied) that was written by 
the first transaction and later modified by the first transaction. □

How important is the fact that a read was dirty? In Example 6.44 it was 
very important; it caused an account to go negative despite apparent safeguards 
against that happening. In Example 6.45, the problem does not look too serious. 
Indeed, the second traveler might not get their favorite seat, or might even be 
told that no seats existed. However, in the latter case, running the transaction
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again will almost certainly reveal the availability of seat S. It might well make 
sense to implement this seat-choosing function in a way that allowed dirty reads, 
in order to speed up the average processing time for booking requests.

SQL allows us to specify that dirty reads are acceptable for a given transac
tion. We use the SET TRANSACTION statement that we discussed in Section 6.6.4. 
The appropriate form for a transaction like that described in Example 6.45 is:

1) SET TRANSACTION READ WRITE
2) ISOLATION LEVEL READ UNCOMMITTED;

The statement above does two things:

1. Line (1) declares that the transaction may write data.

2. Line (2) declares that the transaction may run with the “isolation level” 
read-uncommitted. That is, the transaction is allowed to read dirty data. 
We shall discuss the four isolation levels in Section 6 .6 .6 . So far, we have 
seen two of them: serializable and read-uncommitted.

Note that if the transaction is not read-only (i.e., it may modify the data
base), and we specify isolation level READ UNCOMMITTED, then we must also 
specify READ WRITE. Recall from Section 6.6.4 that the default assumption is 
that transactions are read-write. However, SQL makes an exception for the 
case where dirty reads are allowed. Then, the default assumption is that the 
transaction is read-only, because read-write transactions with dirty reads entail 
significant risks, as we saw. If we want a read-write transaction to run with 
read-uncommitted as the isolation level, then we need to specify READ WRITE 
explicitly, as above.

6.6.6 Other Isolation Levels
SQL provides a total of four isolation levels. Two of them we have already 
seen: serializable and read-uncommitted (dirty reads allowed). The other two 
are read-committed and repeatable-read. They can be specified for a given trans
action by

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

or

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

respectively. For each, the default is that transactions are read-write, so we can 
add READ ONLY to either statement, if appropriate. Incidentally, we also have 
the option of specifying

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
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Interactions Among Transactions Running at 
Different Isolation Levels

A subtle point is that the isolation level of a transaction affects only what 
data that transaction may see; it does not affect what any other transaction 
sees. As a case in point, if a transaction T is running at level serializable, 
then the execution of T  must appear as if all other transactions run either 
entirely before or entirely after T. However, if some of those transactions 
are running at another isolation level, then they may see the data written 
by T as T  writes it. They may even see dirty data from T  if they are 
running at isolation level read-uncommitted, and T  aborts.

However, that is the SQL default and need not be stated explicitly.
The read-committed isolation level, as its name implies, forbids the reading 

of dirty (uncommitted) data. However, it does allow a transaction running at 
this isolation level to issue the same query several times and get different an
swers, as long as the answers reflect data that has been written by transactions 
that already committed.

E xam ple 6.46: Let us reconsider the seat-choosing program of Example 6.45, 
but suppose we declare it to run with isolation level read-committed. Then 
when it searches for a seat at Step (1), it will not see seats as booked if some 
other transaction is reserving them but not committed.8 However, if the trav
eler rejects seats, and one execution of the function queries for available seats 
many times, it may see a different set of available seats each time it queries, as 
other transactions successfully book seats or cancel seats in parallel with our 
transaction. □

Now, let us consider isolation level repeatable-read. The term is something 
of a misnomer, since the same query issued more than once is not quite guar
anteed to get the same answer. Under repeatable-read isolation, if a tuple is 
retrieved the first time, then we can be sure that the identical tuple will be 
retrieved again if the query is repeated. However, it is also possible that a 
second or subsequent execution of the same query will retrieve phantom tuples. 
The latter are tuples that result from insertions into the database while our 
transaction is executing.

E xam ple 6.47: Let us continue with the seat-choosing problem of Examples 
6.45 and 6.46. If we execute this function under isolation level repeatable-read,

8W h a t ac tually  h ap p en s m ay seem  m ysterious, since we have n o t addressed  th e  algorithm s 
for enforcing th e  various iso lation  levels. Possibly, shou ld  tw o tran sac tio n s  b o th  see a  seat 
as available and  try  to  book it, one will be forced by th e  system  to  roll back in o rd er to  
b reak  th e  deadlock (see th e  box on “A pplication- V ersus System -G enera ted  R ollbacks” in 
Section 6.6.3).



306 CHAPTER 6. THE DATABASE LANGUAGE SQL

then a seat that is available on the first query at Step (1) will remain available 
at subsequent queries.

However, suppose some new tuples enter the relation F lig h ts . For exam
ple, the airline may have switched the flight to a larger plane, creating some 
new tuples that weren’t there before. Then under repeatable-read isolation, a 
subsequent query for available seats may also retrieve the new seats. □

Figure 6.17 summarizes the differences between the four SQL isolation levels.

Isolation Level Dirty Reads Nonrepeat- 
able Reads

Phantoms

Read Uncommitted Allowed Allowed Allowed
Read Committed Not Allowed Allowed Allowed
Repeatable Read Not Allowed Not Allowed Allowed
Serializable Not Allowed Not Allowed Not Allowed

Figure 6.17: Properties of SQL isolation levels

6.6.7 Exercises for Section 6.6
Exercise 6 .6 .1 : This and the next exercises involve certain programs that 
operate on the two relations

Product(maker, model, type)
PC(model, speed, ram, hd, price)

from our running PC exercise. Sketch the following programs, including SQL 
statements and work done in a conventional language. Do not forget to issue 
BEGIN TRANSACTION, COMMIT, and ROLLBACK statements at the proper times 
and to tell the system your transactions are read-only if they are.

a) Given a speed and amount of RAM (as arguments of the function), look 
up the PC’s with that speed and RAM, printing the model number and 
price of each.

b) Given a model number, delete the tuple for that model from both PC and 
Product.

c) Given a model number, decrease the price of that model PC by $100.

d) Given a maker, model number, processor speed, RAM size, hard-disk size, 
and price, check that there is no product with that model. If there is such 
a model, print an error message for the user. If no such model existed 
in the database, enter the information about that model into the PC and 
Product tables.
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! E xercise 6 .6 .2 : For each of the programs of Exercise 6.6.1, discuss the atom
icity problems, if any, that could occur should the system crash in the middle 
of an execution of the program.

! E xercise 6 .6 .3 : Suppose we execute as a transaction T  one of the four pro
grams of Exercise 6.6.1, while other transactions that are executions of the same 
or a different one of the four programs may also be executing at about the same 
time. What behaviors of transaction T  may be observed if all the transactions 
run with isolation level READ UNCOMMITTED that would not be possible if they 
all ran with isolation level SERIALIZABLE? Consider separately the case that T  
is any of the programs (a) through (d) of Exercise 6.6.1.

!! Exercise 6 .6 .4 : Suppose we have a transaction T  that is a function which runs 
“forever,” and at each hour checks whether there is a PC that has a speed of 
3.5 or more and sells for under $1000. If it finds one, it prints the information 
and terminates. During this time, other transactions that are executions of 
one of the four programs described in Exercise 6.6.1 may run. For each of the 
four isolation levels — serializable, repeatable read, read committed, and read 
uncommitted — tell what the effect on T  of running at this isolation level is.

6.7 Summary of Chapter 6
4- SQL: The language SQL is the principal query language for relational 

database systems. The most recent full standard is called SQL-99 or 
SQL3. Commercial systems generally vary from this standard.

♦  Select-From-Where Queries: The most common form of SQL query has 
the form select-from-where. It allows us to take the product of several 
relations (the FROM clause), apply a condition to the tuples of the result 
(the WHERE clause), and produce desired components (the SELECT clause).

♦  Subqueries: Select-from-where queries can also be used as subqueries 
within a WHERE clause or FROM clause of another query. The operators 
EXISTS, IN, ALL, and ANY may be used to express boolean-valued con
ditions about the relations that are the result of a subquery in a WHERE 
clause.

♦  Set Operations on Relations: We can take the union, intersection, or 
difference of relations by connecting the relations, or connecting queries 
defining the relations, with the keywords UNION, INTERSECT, and EXCEPT, 
respectively.

♦  Join Expressions: SQL has operators such as NATURAL JOIN that may be 
applied to relations, either as queries by themselves or to define relations 
in a FROM clause.



308 CHAPTER 6. THE DATABASE LANGUAGE SQL

♦  Null Values: SQL provides a special value NULL that appears in compo
nents of tuples for which no concrete value is available. The arithmetic 
and logic of NULL is unusual. Comparison of any value to NULL, even 
another NULL, gives the tru th  value UNKNOWN. That truth value, in turn, 
behaves in boolean-valued expressions as if it were halfway between TRUE 
and FALSE.

♦  Outerjoins: SQL provides an OUTER JOIN operator that joins relations 
but also includes in the result dangling tuples from one or both relations; 
the dangling tuples are padded with NULL’s in the resulting relation.

♦  The Bag Model of Relations: SQL actually regards relations as bags of 
tuples, not sets of tuples. We can force elimination of duplicate tuples 
with the keyword DISTINCT, while keyword ALL allows the result to be a 
bag in certain circumstances where bags are not the default.

♦  Aggregations: The values appearing in one column of a relation can be 
summarized (aggregated) by using one of the keywords SUM, AVG (average 
value), MIN, MAX, or COUNT. Tuples can be partitioned prior to aggregation 
with the keywords GROUP BY. Certain groups can be eliminated with a 
clause introduced by the keyword HAVING.

♦  Modification Statements: SQL allows us to change the tuples in a relation. 
We may INSERT (add new tuples), DELETE (remove tuples), or UPDATE 
(change some of the existing tuples), by writing SQL statements using 
one of these three keywords.

♦  Transactions: SQL allows the programmer to group SQL statements into 
transactions, which may be committed or rolled back (aborted). Trans
actions may be rolled back by the application in order to undo changes, 
or by the system in order to guarantee atomicity and isolation.

♦  Isolation Levels: SQL defines four isolation levels called, from most strin
gent to least stringent: “serializable” (the transaction must appear to 
run either completely before or completely after each other transaction), 
“repeatable-read” (every tuple read in response to a query will reappear if 
the query is repeated), “read-committed” (only tuples written by transac
tions that have already committed may be seen by this transaction), and 
“read-uncommitted” (no constraint on what the transaction may see).

6.8 References for Chapter 6
Many books on SQL programming are available. Some popular ones are [3], 
[5], and [7]. [6] is an early exposition of the SQL-99 standard.

SQL was first defined in [4]. It was implemented as part of System R [1], 
one of the first generation of relational database prototypes.
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Chapter 7

Constraints and Triggers

In this chapter we shall cover those aspects of SQL that let us create “active” el
ements. An active element is an expression or statement that we write once and 
store in the database, expecting the element to execute at appropriate times. 
The time of action might be when a certain event occurs, such as an insertion 
into a particular relation, or it might be whenever the database changes so that 
a certain boolean-valued condition becomes true.

One of the serious problems faced by writers of applications that update 
the database is that the new information could be wrong in a variety of ways. 
For example, there are often typographical or transcription errors in manually 
entered data. We could write application programs in such a way that every 
insertion, deletion, and update command has associated with it the checks 
necessary to assure correctness. However, it is better to store these checks in 
the database, and have the DBMS administer the checks. In this way, we can 
be sure a check will not be forgotten, and we can avoid duplication of work.

SQL provides a variety of techniques for expressing integrity constraints 
as part of the database schema. In this chapter we shall study the principal 
methods. We have already seen key constraints, where an attribute or set of 
attributes is declared to be a key for a relation. SQL supports a form of refer
ential integrity, called a “foreign-key constraint,” the requirement that a value 
in an attribute or attributes of one relation must also appear as a value in an 
attribute or attributes of another relation. SQL also allows constraints on at
tributes, constraints on tuples, and interrelation constraints called “assertions.” 
Finally, we discuss “triggers,” which are a form of active element that is called 
into play on certain specified events, such as insertion into a specific relation.

7.1 Keys and Foreign Keys
Recall from Section 2.3.6 that SQL allows us to define an attribute or attributes 
to be a key for a relation with the keywords PRIMARY KEY or UNIQUE. SQL also 
uses the term “key” in connection with certain referential-integrity constraints.
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These constraints, called “foreign-key constraints,” assert that a value appear
ing in one relation must also appear in the primary-key component (s) of another 
relation.

7.1.1 Declaring Foreign-Key Constraints
A foreign key constraint is an assertion that values for certain attributes must 
make sense. Recall, for instance, that in Example 2.21 we considered how 
to express in relational algebra the constraint that the producer “certificate 
number” for each movie was also the certificate number of some executive in 
the MovieExec relation.

In SQL we may declare an attribute or attributes of one relation to be a 
foreign key, referencing some attribute(s) of a second relation (possibly the same 
relation). The implication of this declaration is twofold:

1. The referenced attribute(s) of the second relation must be declared UNIQUE 
or the PRIMARY KEY for their relation. Otherwise, we cannot make the 
foreign-key declaration.

2. Values of the foreign key appearing in the first relation must also appear 
in the referenced attributes of some tuple. More precisely, let there be a 
foreign-key F  that references set of attributes G of some relation. Suppose 
a tuple t of the first relation has non-NULL values in all the attributes of F ; 
call the list of t's values in these attributes t[F], Then in the referenced 
relation there must be some tuple s that agrees with t[F] on the attributes 
G. That is, s[G] =  t[F],

As for primary keys, we have two ways to declare a foreign key.

a) If the foreign key is a single attribute we may follow its name and type by 
a declaration that it “references” some attribute (which must be a key — 
primary or unique) of some table. The form of the declaration is

REFERENCES <table> (<attribute>)

b) Alternatively, we may append to the list of attributes in a CREATE TABLE 
statement one or more declarations stating that a set of attributes is a 
foreign key. We then give the table and its attributes (which must be a 
key) to which the foreign key refers. The form of this declaration is:

FOREIGN KEY (< attributes>) REFERENCES <table> (<attributes>)

E xam ple 7 .1 : Suppose we wish to declare the relation 

Studio(name, add ress, presC#)
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whose primary key is name and which has a foreign key presC# that references 
c e rt#  of relation

MovieExec(name, ad d ress , c e r t# , netWorth)

We may declare presC# directly to reference ce rt#  as follows:

CREATE TABLE Studio (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT REFERENCES MovieExec(cert#)

);

An alternative form is to add the foreign key declaration separately, as

CREATE TABLE Studio (
name CHAR(30) PRIMARY KEY, 
address VARCHAR(255), 
presC# INT,
FOREIGN KEY (presC#) REFERENCES MovieExec(cert#)

);

Notice that the referenced attribute, c e rt#  in MovieExec, is a key of that rela
tion, as it must be. The meaning of either of these two foreign key declarations 
is that whenever a value appears in the presC# component of a S tudio tuple, 
that value must also appear in the ce rt#  component of some MovieExec tuple. 
The one exception is that, should a particular S tudio tuple have NULL as the 
value of its presC# component, there is no requirement that NULL appear as 
the value of a c e rt#  component (but note that c e rt#  is a primary key and 
therefore cannot have NULL’s anyway). □

7.1.2 Maintaining Referential Integrity
The schema designer may choose from among three alternatives to enforce a 
foreign-key constraint. We can learn the general idea by exploring Example 
7.1, where it is required that a presC# value in relation S tudio also be a c e rt#  
value in MovieExec. The following actions will be prevented by the DBMS (i.e., 
a run-time exception or error will be generated).

a) We try to insert a new Studio tuple whose presC# value is not NULL and 
is not the ce rt#  component of any MovieExec tuple.

b) We try to update a S tudio tuple to change the presC# component to a 
non-NULL value that is not the ce rt#  component of any MovieExec tuple.

c) We try to delete a MovieExec tuple, and its c e rt#  component, which is 
not NULL, appears as the presC# component of one or more Studio tuples.
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d) We try to update a MovieExec tuple in a way that changes the ce rt#  
value, and the old c e rt#  is the value of presC# of some movie studio.

For the first two modifications, where the change is to the relation where 
the foreign-key constraint is declared, there is no alternative; the system has 
to reject the violating modification. However, for changes to the referenced 
relation, of which the last two modifications are examples, the designer can 
choose among three options:

1. The Default Policy: Reject Violating Modifications. SQL has a default 
policy that any modification violating the referential integrity constraint 
is rejected.

2. The Cascade Policy. Under this policy, changes to the referenced at
tribute (s) are mimicked at the foreign key. For example, under the cas
cade policy, when we delete the MovieExec tuple for the president of a 
studio, then to maintain referential integrity the system will delete the 
referencing tuple(s) from Studio. If we update the ce rt#  for some movie 
executive from c.\ to C2, and there was some Studio tuple with c\ as 
the value of its presC# component, then the system will also update this 
presC# component to have value c^.

3. The Set-Null Policy. Here, when a modification to the referenced relation 
affects a foreign-key value, the latter is changed to NULL. For instance, if 
we delete from MoveExec the tuple for a president of a studio, the system 
would change the presC# value for that studio to NULL. If we updated that 
president’s certificate number in MovieExec, we would again set presC# 
to NULL in Studio.

These options may be chosen for deletes and updates, independently, and 
they are stated with the declaration of the foreign key. We declare them with 
ON DELETE or ON UPDATE followed by our choice of SET NULL or CASCADE.

E xam ple 7.2 : Let us see how we might modify the declaration of

Studio(nam e, add ress, presC#)

in Example 7.1 to specify the handling of deletes and updates in the

MovieExec(name, add ress, c e r t# , netWorth)

relation. Figure 7.1 takes the first of the CREATE TABLE statements in that 
example and expands it with ON DELETE and ON UPDATE clauses. Line (5) says 
that when we delete a MovieExec tuple, we set the presC# of any studio of 
which he or she was the president to NULL. Line ('6) says that if we update the 
ce rt#  component of a MovieExec tuple, then any tuples in S tudio with the 
same value in the presC# component are changed similarly.
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1)
2)
3)
4)
5)
6 )

CREATE TABLE Studio (
name CHAR(30) PRIMARY KEY,
address VARCHAR(255),
presC# INT REFERENCES MovieExec(cert#)

ON DELETE SET NULL
ON UPDATE CASCADE

);

Figure 7.1: Choosing policies to preserve referential integrity

Dangling Tuples and Modification Policies

A tuple with a foreign key value that does not appear in the referenced 
relation is said to be a dangling tuple. Recall that a tuple which fails to 
participate in a join is also called “dangling.” The two ideas are closely 
related. If a tuple’s foreign-key value is missing from the referenced rela
tion, then the tuple will not participate in a join of its relation with the 
referenced relation, if the join is on equality of the foreign key and the key 
it references (called a foreign-key join). The dangling tuples are exactly 
the tuples that violate referential integrity for this foreign-key constraint.

Note that in this example, the set-null policy makes more sense for deletes, 
while the cascade policy seems preferable for updates. We would expect that 
if, for instance, a studio president retires, the studio will exist with a “null” 
president for a while. However, an update to the certificate number of a studio 
president is most likely a clerical change. The person continues to exist and to 
be the president of the studio, so we would like the presC# attribute in S tudio 
to follow the change. □

7.1.3 Deferred Checking of Constraints
Let us assume the situation of Example 7.1, where presC# in Studio is a 
foreign key referencing ce rt#  of MovieExec. Arnold Schwarzenegger retires as 
Governor of California and decides to found a movie studio, called La Vista 
Studios, of which he will naturally be the president. If we execute the insertion:

INSERT INTO Studio
VALUES(’La V is ta ’ , ’New York’ , 23456);

we are in trouble. The reason is that there is no tuple of MovieExec with 
certificate number 23456 (the presumed newly issued certificate for Arnold 
Schwarzenegger), so there is an obvious violation of the foreign-key constraint.
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One possible fix is first to insert the tuple for La Vista without a president’s 
certificate, as:

INSERT INTO Studio(name, address)
VALUES(’La V is ta ’ , ’New York’ );

This change avoids the constraint violation, because the La-Vista tuple is in
serted with NULL as the value of presC#, and NULL in a foreign key does not 
require that we check for the existence of any value in the referenced column. 
However, we must insert a tuple for Arnold Schwarzenegger into MovieExec, 
with his correct certificate number before we can apply an update statement 
such as

UPDATE Studio
SET presC# = 23456
WHERE name = ’La V is ta ’ ;

If we do not fix MovieExec first, then this update statement will also violate 
the foreign-key constraint.

Of course, inserting Arnold Schwarzenegger and his certificate number into 
MovieExec before inserting La Vista into S tudio will surely protect against 
a foreign-key violation in this case. However, there are cases of circular con
straints that cannot be fixed by judiciously ordering the database modification 
steps we take.

E xam ple 7 .3 : If movie executives were limited to studio presidents, then we 
might want to declare ce r t#  to be a foreign key referencing S tudio (presC#); 
we would first have to declare presC# to be UNIQUE, but that declaration makes 
sense if you assume a person cannot be the president of two studios at the same 
time.

Now, it is impossible to insert new studios with new presidents. We can’t 
insert a tuple with a new value of presC# into Studio, because that tuple would 
violate the foreign-key constraint from presC# to MovieExec (c e rt# ) . We can’t 
insert a tuple with a new value of c e r t#  into MovieExec, because that would 
violate the foreign-key constraint from ce rt#  to S tudio (presC#). □

The problem of Example 7.3 can be solved as follows.

1. First, we must group the two insertions (one into S tudio  and the other 
into MovieExec) into a single transaction.

2. Then, we need a way to tell the DBMS not to check the constraints until 
after the whole transaction has finished its actions and is about to commit.

To inform the DBMS about point (2), the declaration of any constraint — 
key, foreign-key, or other constraint types we shall meet later in this chapter — 
may be followed by one of DEFERRABLE or NOT DEFERRABLE. The latter is the
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default, and means that every time a database modification statement is ex
ecuted, the constraint is checked immediately afterwards, if the modification 
could violate the foreign-key constraint. However, if we declare a constraint to 
be DEFERRABLE, then we have the option of having it wait until a transaction is 
complete before checking the constraint.

We follow the keyword DEFERRABLE by either INITIALLY DEFERRED or IN
ITIALLY IMMEDIATE. In the former case, checking will be deferred to just before 
each transaction commits. In the latter case, the check will be made immedi
ately after each statement.

E xam ple 7 .4 : Figure 7.2 shows the declaration of S tudio modified to allow 
the checking of its foreign-key constraint to be deferred until the end of each 
transaction. We have also declared presC# to be UNIQUE, in order that it may 
be referenced by other relations’ foreign-key constraints.

CREATE TABLE S tudio (
name CHAR(30) PRIMARY KEY, 
address VARCHAR(255), 
presC# INT UNIQUE

REFERENCES MovieExec(cert#)
DEFERRABLE INITIALLY DEFERRED

);

Figure 7.2: Making presC# unique and deferring the checking of its foreign-key 
constraint

If we made a similar declaration for the hypothetical foreign-key constraint 
from MovieExec (ce rt# ) to Studio (presC#) mentioned in Example 7.3, then 
we could write transactions that inserted two tuples, one into each relation, and 
the two foreign-key constraints would not be checked until after both insertions 
had been done. Then, if we insert both a new studio and its new president, and 
use the same certificate number in each tuple, we would avoid violation of any 
constraint. □

There are two additional points about deferring constraints that we should 
bear in mind:

• Constraints of any type can be given names. We shall discuss how to do 
so in Section 7.3.1.

• If a constraint has a name, say MyConstraint, then we can change a 
deferrable constraint from immediate to deferred by the SQL statement

SET CONSTRAINT MyConstraint DEFERRED;

and we can reverse the process by replacing DEFERRED in the above to 
IMMEDIATE.
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7.1.4 Exercises for Section 7.1
Exercise 7 .1 .1 : Our running example movie database of Section 2.2.8 has 
keys defined for all its relations.

Movies(t i t l e , ye a r , len g th , genre, studioName, producerC#) 
S ta r s ln (m ov ieT itle . movieYear. starName)
M ovieStar(name, add ress, gender, b ir th d a te )
MovieExec(name, add ress, c e r t# , netWorth)
S tu d io (name, add ress, presC#)

Declare the following referential integrity constraints for the movie database as 
in Exercise 7.1.1.

a) The producer of a movie must be someone mentioned in MovieExec. Mod
ifications to MovieExec that violate this constraint are rejected.

b) Repeat (a), but violations result in the producerC# in Movie being set to 
NULL.

c) Repeat (a), but violations result in the deletion or update of the offending 
Movie tuple.

d) A movie that appears in S ta rs ln  must also appear in Movie. Handle 
violations by rejecting the modification.

e) A star appearing in S ta rs ln  must also appear in MovieStar. Handle 
violations by deleting violating tuples.

E xercise 7 .1 .2 : We would like to declare the constraint that every movie in 
the relation Movie must appear with at least one star in S ta rs ln . Can we do 
so with a foreign-key constraint? Why or why not?

E xercise 7 .1 .3 : Suggest suitable keys and foreign keys for the relations of the 
PC database:

Product(m aker, model, type)
PC(model, speed, ram, hd, p ric e )
Laptop(model, speed, ram, hd, screen , p r ic e )
P rin ter(m o d e l, c o lo r, ty p e , p rice )

of Exercise 2.4.1. Modify your SQL schema from Exercise 2.3.1 to include 
declarations of these keys.

E xercise 7 .1 .4 : Suggest suitable keys for the relations of the battleships 
database

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent) 
Ships(name, c la s s ,  launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e ,  r e s u l t )
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of Exercise 2.4.3. Modify your SQL schema from Exercise 2.3.2 to include 
declarations of these keys.

E xercise 7 .1 .5 : Write the following referential integrity constraints for the 
battleships database as in Exercise 7.1.4. Use your assumptions about keys 
from that exercise, and handle all violations by setting the referencing attribute 
value to NULL.

a) Every class mentioned in Ships must be mentioned in C lasses.

b) Every battle mentioned in Outcomes must be mentioned in B a ttle s .

c) Every ship mentioned in Outcomes must be mentioned in Ships.

7.2 Constraints on Attributes and Tuples
Within a SQL CREATE TABLE statement, we can declare two kinds of constraints:

1. A constraint on a single attribute.

2. A constraint on a tuple as a whole.

In Section 7.2.1 we shall introduce a simple type of constraint on an attribute’s 
value: the constraint that the attribute not have a NULL value. Then in Sec
tion 7.2.2 we cover the principal form of constraints of type (1): attribute-based 
CHECK constraints. The second type, the tuple-based constraints, are covered 
in Section 7.2.3.

There are other, more general kinds of constraints that we shall meet in 
Sections 7.4 and 7.5. These constraints can be used to restrict changes to 
whole relations or even several relations, as well as to constrain the value of a 
single attribute or tuple.

7.2.1 Not-Null Constraints
One simple constraint to associate with an attribute is NOT NULL. The effect is to 
disallow tuples in which this attribute is NULL. The constraint is declared by the 
keywords NOT NULL following the declaration of the attribute in a CREATE TABLE 
statement.

E xam ple 7 .5 : Suppose relation Studio required presC# not to be NULL, per
haps by changing line (4) of Fig. 7.1 to:

4) presC# INT REFERENCES MovieExec(cert#) NOT NULL

This change has several consequences. For instance:
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• We could not insert a tuple into Studio by specifying only the name 
and address, because the inserted tuple would have NULL in the presC# 
component.

• We could not use the set-null policy in situations like line (5) of Fig. 7.1, 
which tells the system to fix foreign-key violations by making presC# be 
NULL.

□

7.2.2 Attribute-Based CHECK Constraints
More complex constraints can be attached to an attribute declaration by the 
keyword CHECK and a parenthesized condition that must hold for every value of 
this attribute. In practice, an attribute-based CHECK constraint is likely to be a 
simple limit on values, such as an enumeration of legal values or an arithmetic 
inequality. However, in principle the condition can be anything that could 
follow WHERE in a SQL query. This condition may refer to the attribute being 
constrained, by using the name of that attribute in its expression. However, 
if the condition refers to any other relations or attributes of relations, then 
the relation must be introduced in the FROM clause of a subquery (even if the 
relation referred to is the one to which the checked attribute belongs).

An attribute-based CHECK constraint is checked whenever any tuple gets a 
new value for this attribute. The new value could be introduced by an update 
for the tuple, or it could be part of an inserted tuple. In the case of an update, 
the constraint is checked on the new value, not the old value. If the constraint 
is violated by the new value, then the modification is rejected.

It is important to understand that an attribute-based CHECK constraint is 
not checked if the database modification does not change the attribute with 
which the constraint is associated. This limitation can result in the constraint 
becoming violated, if other values involved in the constraint do change. First, 
let us consider a simple example of an attribute-based check. Then we shall see 
a constraint that involves a subquery, and also see the consequence of the fact 
that the constraint is only checked when its attribute is modified.

E xam ple 7 .6 : Suppose we want to require that certificate numbers be at least 
six digits. We could modify line (4) of Fig. 7.1, a declaration of the schema for 
relation

Studio(name, ad d ress , presC#)

to be

4) presC# INT REFERENCES MovieExec(cert#)
CHECK (presC# >= 100000)

For another example, the attribute gender of relation
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MovieStar(name, ad d ress , gender, b ir th d a te )

was declared in Fig. 2.8 to be of data type CHAR(l) — that is, a single character. 
However, we really expect that the only characters that will appear there axe 
’F ’ and ’M \  The following substitute for line (4) of Fig. 2.8 enforces the rule:

4) gender CHAR(l) CHECK (gender IN ( ’F ’ , ’M’) ) ,

Note that the expression ( ’F ’ ’M’) describes a one-component relation with 
two tuples. The constraint says that the value of any gender component must 
be in this set. □

E xam ple 7 .7 : We might suppose that we could simulate a referential integrity 
constraint by an attribute-based CHECK constraint that requires the existence 
of the referred-to value. The following is an erroneous attempt to simulate the 
requirement that the presC# value in a

Studio(name, ad d ress, presC#)

tuple must appear in the ce rt#  component of some

MovieExec(name, ad d ress , c e r t# , netWorth)

tuple. Suppose line (4) of Fig. 7.1 were replaced by

4) presC# INT CHECK
(presC# IN (SELECT c e rt#  FROM MovieExec))

This statement is a legal attribute-based CHECK constraint, but let us look at 
its effect. Modifications to S tudio that introduce a presC# that is not also a 
c e rt#  of MovieExec will be rejected. That is almost what the similar foreign-key 
constraint would do, except that the attribute-based check will also reject a NULL 
value for presC# if there is no NULL value for ce rt# . But far more importantly, 
if we change the MovieExec relation, say by deleting the tuple for the president 
of a studio, this change is invisible to the above CHECK constraint. Thus, the 
deletion is permitted, even though the attribute-based CHECK constraint on 
presC# is now violated. □

7.2.3 Tuple-Based CHECK Constraints
To declare a constraint on the tuples of a single table R, we may add to the list of 
attributes and key or foreign-key declarations, in R ’s CREATE TABLE statement, 
the keyword CHECK followed by a parenthesized condition. This condition can 
be anything that could appear in a WHERE clause. It is interpreted as a condition 
about a tuple in the table R , and the attributes of R  may be referred to by 
name in this expression. However, as for attribute-based CHECK constraints, the 
condition may also mention, in subqueries, other relations or other tuples of 
the same relation R.
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Limited Constraint Checking: Bug or Feature?

One might wonder why attribute- and tuple-based checks are allowed to 
be violated if they refer to other relations or other tuples of the same rela
tion. The reason is that such constraints can be implemented much more 
efficiently than more general constraints can. With attribute- or tuple- 
based checks, we only have to evaluate that constraint for the tuple(s) 
that are inserted or updated. On the other hand, assertions must be eval
uated every time any one of the relations they mention is changed. The 
careful database designer will use attribute- and tuple-based checks only 
when there is no possibility that they will be violated, and will use an
other mechanism, such as assertions (Section 7.4) or triggers (Section 7.5) 
otherwise.

The condition of a tuple-based CHECK constraint is checked every time a 
tuple is inserted into R  and every time a tuple of R  is updated. The condition 
is evaluated for the new or updated tuple. If the condition is false for that 
tuple, then the constraint is violated and the insertion or update statement 
that caused the violation is rejected. However, if the condition mentions some 
other relation in a subquery, and a change to that relation causes the condition 
to become false for some tuple of R, the check does not inhibit this change. 
That is, like an attribute-based CHECK, a tuple-based CHECK is invisible to other 
relations. In fact, even a deletion from R  can cause the condition to become 
false, if R  is mentioned in a subquery.

On the other hand, if a tuple-based check does not have subqueries, then 
we can rely on its always holding. Here is an example of a tuple-based CHECK 
constraint that involves several attributes of one tuple, but no subqueries.

E xam ple 7.8 : Recall Example 2.3, where we declared the schema of table 
MovieStar. Figure 7.3 repeats the CREATE TABLE statement with the addition 
of a primary-key declaration and one other constraint, which is one of several 
possible “consistency conditions” that we might wish to check. This constraint 
says that if the star’s gender is male, then his name must not begin with ’Ms. ’ .

In line (2), name is declared the primary key for the relation. Then line (6) 
declares a constraint. The condition of this constraint is true for every female 
movie star and for every star whose name does not begin with ’ Ms. ’ . The only 
tuples for which it is not true are those where the gender is male and the name 
does begin with ’ Ms. ’ . Those are exactly the tuples we wish to exclude from 
MovieStar. □
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1) CREATE TABLE MovieStar (
2) name CHAR(30) PRIMARY KEY,
3) address VARCHAR(255),
4) gender CHAR(l),
5) b ir th d a te  DATE,
6) CHECK (gender = ’F ’ OR name NOT LIKE ’Ms.*/.’ ) 

);

Figure 7.3: A constraint on the table MovieStar

Writing Constraints Correctly

Many constraints are like Example 7.8, where we want to forbid tuples 
that satisfy two or more conditions. The expression that should follow 
the check is the OR of the negations, or opposites, of each condition; this 
transformation is one of “DeMorgan’s laws” : the negation of the AND of 
terms is the OR of the negations of the same terms. Thus, in Example 7.8 
the first condition was that the star is male, and we used gender = ’F ’ 
as a suitable negation (although perhaps gender <> ’M’ would be the 
more normal way to phrase the negation). The second condition is that 
the name begins with ’Ms. ’, and for this negation we used the NOT LIKE 
comparison. This comparison negates the condition itself, which would be 
name LIKE ’Ms.’/.’ in SQL.

7.2.4 Comparison of Tuple- and Attribute-Based  
Constraints

If a constraint on a tuple involves more than one attribute of that tuple, then 
it must be written as a tuple-based constraint. However, if the constraint 
involves only one attribute of the tuple, then it can be written as either a 
tuple- or attribute-based constraint. In either case, we do not count attributes 
mentioned in subqueries, so even a attribute-based constraint can mention other 
attributes of the same relation in subqueries.

When only one attribute of the tuple is involved (not counting subqueries), 
then the condition checked is the same, regardless of whether a tuple- or 
attribute-based constraint is written. However, the tuple-based constraint will 
be checked more frequently than the attribute-based constraint — whenever any 
attribute of the tuple changes, rather than only when the attribute mentioned 
in the constraint changes.

7.2.5 Exercises for Section 7.2
E xercise 7 .2 .1 : Write the following constraints for attributes of the relation
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M o v ie s ( tit le , y ea r, len g th , genre, studioName, producerC#)

a) The year cannot be before 1915.

b) The length cannot be less than 60 nor more than 250.

c) The studio name can only be Disney, Fox, MGM, or Paramount.

E xercise 7 .2 .2 : Write the following constraints on attributes from our exam
ple schema

Product(m aker, model, type)
PC(model, speed, ram, hd, p rice )
Laptop(model, speed, ram, hd, screen , p rice )
P rin ter(m o d e l, c o lo r, ty p e , p rice )

of Exercise 2.4.1.

a) The speed of a laptop must be at least 2.0.

b) The only types of printers are laser, ink-jet, and bubble-jet.

c) The only types of products are PC ’s, laptops, and printers.

! d) A model of a product must also be the model of a PC, a laptop, or a 
printer.

E xercise 7 .2 .3 : Write the following constraints as tuple-based CHECK con
straints on one of the relations of our running movies example:

M o v ie s ( t i t le , y ea r, len g th , genre, studioName, producerC#) 
S ta rsIn (m o v ieT itle , movieYear, starName)
MovieStar(name, ad d ress , gender, b ir th d a te )
MovieExec(name, ad d ress , c e r t# , netWorth)
Studio(name, ad d ress , presC#)

If the constraint actually involves two relations, then you should put constraints 
in both relations so that whichever relation changes, the constraint will be 
checked on insertions and updates. Assume no deletions; it is not always pos
sible to maintain tuple-based constraints in the face of deletions.

a) A star may not appear in a movie made before they were born.

! b) No two studios may have the same address.

! c) A name that appears in MovieStar must not also appear in MovieExec.

! d) A studio name that appears in S tudio must also appear in at least one 
Movies tuple.
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!! e) If a producer of a movie is also the president of a studio, then they must 
be the president of the studio that made the movie.

E xercise 7 .2 .4 : Write the following as tuple-based CHECK constraints about 
our “PC” schema.

a) A PC with a processor speed less than 2.0 must not sell for more than 
$600.

b) A laptop with a screen size less than 15 inches must have at least a 40 
gigabyte hard disk or sell for less than $1000.

E xercise 7 .2 .5 : Write the following as tuple-based CHECK constraints about 
our “battleships” schema:

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent) 
Ships(name, c la s s ,  launched)
B attles(nam e, d ate)
Outcomes(ship, b a t t l e ,  r e s u l t )

a) No class of ships may have guns with larger than a 16-inch bore.

b) If a class of ships has more than 9 guns, then their bore must be no larger 
than 14 inches.

! c) No ship can be in battle before it is launched.

E xercise 7 .2 .6 : In Examples 7.6 and 7.8, we introduced constraints on the 
gender attribute ofMovieStar. What restrictions, if any, do each of these con
straints enforce if the value of gender is NULL?

7.3 M odification of Constraints
It is possible to add, modify, or delete constraints at any time. The way to 
express such modifications depends on whether the constraint involved is asso
ciated with an attribute, a table, or (as in Section 7.4) a database schema.

7.3.1 Giving N ames to Constraints
In order to modify or delete an existing constraint, it is necessary that the 
constraint have a name. To do so, we precede the constraint by the keyword 
CONSTRAINT and a name for the constraint.

E xam ple 7.9: We could rewrite line (2) of Fig. 2.9 to name the constraint 
that says attribute name is a primary key, as

2) name CHAR(30) CONSTRAINT NamelsKey PRIMARY KEY,



326 CHAPTER 7. CONSTRAINTS AND TRIGGERS

Similarly, we could name the attribute-based CHECK constraint that appeared 
in Example 7.6 by:

4) gender CHAR(l) CONSTRAINT NoAndro
CHECK (gender IN ( ’F>, >M’) ) ,

Finally, the following constraint:

6) CONSTRAINT R ig h tT itle
CHECK (gender = ’F ’ OR name NOT LIKE ’Ms.*/.’) ;

is a rewriting of the tuple-based CHECK constraint in line (6) of Fig. 7.3 to give 
that constraint a name. □

7.3.2 Altering Constraints on Tables
We mentioned in Section 7.1.3 that we can switch the checking of a constraint 
from immediate to deferred or vice-versa with a SET CONSTRAINT statement. 
Other changes to constraints are effected with an ALTER TABLE statement. We 
previously discussed some uses of the ALTER TABLE statement in Section 2.3.4, 
where we used it to add and delete attributes.

ALTER TABLE statements can affect constraints in several ways. You may 
drop a constraint with keyword DROP and the name of the constraint to be 
dropped. You may also add a constraint with the keyword ADD, followed by the 
constraint to be added. Note, however, that the added constraint must be of a 
kind that can be associated with tuples, such as tuple-based constraints, key, or 
foreign-key constraints. Also note that you cannot add a constraint to a table 
unless it holds at that time for every tuple in the table.

E xam ple 7 .10: Let us see how we would drop and add the constraints of 
Example 7.9 on relation MovieStar. The following sequence of three statements 
drops them:

ALTER TABLE MovieStar DROP CONSTRAINT NamelsKey;
ALTER TABLE MovieStar DROP CONSTRAINT NoAndro;
ALTER TABLE MovieStar DROP CONSTRAINT R ig h tT itle ;

Should we wish to reinstate these constraints, we would alter the schema 
for relation MovieStax by adding the same constraints, for example:

ALTER TABLE MovieStar ADD CONSTRAINT NamelsKey 
PRIMARY KEY (name);

ALTER TABLE MovieStar ADD CONSTRAINT NoAndro 
CHECK (gender IN ( ’F ’ ( ’M’) ) ;

ALTER TABLE MovieStar ADD CONSTRAINT R ig h tT itle  
CHECK (gender = >F’ OR name NOT LIKE >Ms.7.’) ;
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Name Your Constraints

Remember, it is a good idea to give each of your constraints a name, even 
if you do not believe you will ever need to refer to it. Once the constraint 
is created without a name, it is too late to give it one later, should you 
wish to alter it. However, should you be faced with a situation of having 
to alter a nameless constraint, you will find that your DBMS probably has 
a way for you to query it for a list of all your constraints, and that it has 
given your unnamed constraint an internal name of its own, which you 
may use to refer to the constraint.

These constraints are now tuple-based, rather than attribute-based checks. We 
cannot bring them back as attribute-based constraints.

The name is optional for these reintroduced constraints. However, we cannot 
rely on SQL remembering the dropped constraints. Thus, when we add a former 
constraint we need to write the constraint again; we cannot refer to it by its 
former name. □

7.3.3 Exercises for Section 7.3
Exercise 7 .3 .1 : Show how to alter your relation schemas for the movie exam
ple:

M o v ie ( title , y ea r, len g th , genre, studioName, producerC#) 
S ta rs ln (m o v ieT itle , movieYear, starName)
MovieStar(name, ad d ress, gender, b ir th d a te )
MovieExec(name, ad d ress, c e r t# , netWorth)
Studio(nam e, ad d ress , presC#)

in the following ways.

a) Make t i t l e  and year the key for Movie.

b) Require the referential integrity constraint that the producer of every 
movie appear in MovieExec.

c) Require that no movie length be less than 60 nor greater than 250.

! d) Require that no name appear as both a movie star and movie executive 
(this constraint need not be maintained in the face of deletions).

! e) Require that no two studios have the same address.

Exercise 7 .3 .2 : Show how to alter the schemas of the “battleships” database:
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C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent) 
Ships(name, c la s s ,  launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e ,  r e s u l t )

to have the following tuple-based constraints.

a) C lass and country form a key for relation C lasses.

b) Require the referential integrity constraint that every battle appearing in 
Outcomes also appears in B a ttle s .

c) Require the referential integrity constraint that every ship appearing in 
Outcomes appears in Ships.

d) Require that no ship has more than 14 guns.

! e) Disallow a ship being in battle before it is launched.

7.4 Assertions
The most powerful forms of active elements in SQL are not associated with 
particular tuples or components of tuples. These elements, called “triggers” 
and “assertions,” are part of the database schema, on a par with tables.

• An assertion is a boolean-valued SQL expression that must be true at all 
times.

• A trigger is a series of actions that are associated with certain events, such 
as insertions into a particular relation, and that are performed whenever 
these events arise.

Assertions are easier for the programmer to use, since they merely require the 
programmer to state what must be true. However, triggers are the feature 
DBMS’s typically provide as general-purpose, active elements. The reason is 
that it is very hard to implement assertions efficiently. The DBMS must deduce 
whether any given database modification could affect the truth of an assertion. 
Triggers, on the other hand, tell exactly when the DBMS needs to deal with 
them.

7.4.1 Creating Assertions
The SQL standard proposes a simple form of assertion that allows us to enforce 
any condition (expression that can follow WHERE). Like other schema elements, 
we declare an assertion with a CREATE statement. The form of an assertion is:

CREATE ASSERTION <assertion-name> CHECK (<condition>)
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The condition in an assertion must be true when the assertion is created and 
must remain true; any database modification that causes it to become false will 
be rejected.1 Recall that the other types of CHECK constraints we have covered 
can be violated under certain conditions, if they involve subqueries.

7.4.2 Using Assertions
There is a difference between the way we write tuple-based CHECK constraints 
and the way we write assertions. Tuple-based checks can refer directly to the 
attributes of that relation in whose declaration they appear. An assertion has no 
such privilege. Any attributes referred to in the condition must be introduced 
in the assertion, typically by mentioning their relation in a select-from-where 
expression.

Since the condition must have a boolean value, it is necessary to combine 
results in some way to make a single true/false choice. For example, we might 
write the condition as an expression producing a relation, to which NOT EXISTS 
is applied; that is, the constraint is that this relation is always empty. Alter
natively, we might apply an aggregation operator like SUM to a column of a 
relation and compare it to a constant. For instance, this way we could require 
that a sum always be less than some limiting value.

E xam ple 7.11: Suppose we wish to require that no one can become the pres
ident of a studio unless their net worth is at least $10,000,000. We declare an 
assertion to the effect that the set of movie studios with presidents having a net 
worth less than $10,000,000 is empty. This assertion involves the two relations

MovieExec(name, add ress, c e r t# , netWorth)
Studio(name, ad d ress , presC#)

The assertion is shown in Fig. 7.4. □

CREATE ASSERTION RichPres CHECK 
(NOT EXISTS

(SELECT Studio.name 
FROM S tud io , MovieExec
WHERE presC# = ce rt#  AND netWorth < 10000000

)
);

Figure 7.4: Assertion guaranteeing rich studio presidents

1However, rem em ber from  Section 7.1.3 th a t  it is possible to  defer th e  checking of a  
constra in t un til ju s t  before its  tran sac tio n  com m its. If  we do so w ith  an  assertion , it m ay 
briefly becom e false un til th e  end  of a  tran sac tio n .



330 CHAPTER 7. CONSTRAINTS AND TRIGGERS

E xam ple 7 .12: Here is another example of an assertion. It involves the rela
tion

M o v ie s ( title , y ea r, len g th , genre, studioName, producerC#)

and says the total length of all movies by a given studio shall not exceed 10,000 
minutes.

CREATE ASSERTION SumLength CHECK (10000 >= ALL
(SELECT SUM(length) FROM Movies GROUP BY studioName)

);

As this constraint involves only the relation Movies, it seemingly could have 
been expressed as a tuple-based CHECK constraint in the schema for Movies 
rather than as an assertion. That is, we could add to the definition of table 
Movies the tuple-based CHECK constraint

CHECK (10000 >= ALL
(SELECT SUM(length) FROM Movies GROUP BY studioName));

Notice that in principle this condition applies to every tuple of table Movies. 
However, it does not mention any attributes of the tuple explicitly, and all the 
work is done in the subquery.

Also observe that if implemented as a tuple-based constraint, the check 
would not be made on deletion of a tuple from the relation Movies. In this 
example, that difference causes no harm, since if the constraint was satisfied 
before the deletion, then it is surely satisfied after the deletion. However, if the 
constraint were a lower bound on total length, rather than an upper bound as 
in this example, then we could find the constraint violated had we written it as 
a tuple-based check rather than an assertion. □

As a final point, it is possible to drop an assertion. The statement to do so 
follows the pattern for any database schema element:

DROP ASSERTION <assertion name>

7.4.3 Exercises for Section 7.4
E xercise 7 .4 .1 : Write the following assertions. The database schema is from 
the “PC” example of Exercise 2.4.1:

Product(m aker, model, type)
PC(model, speed, ram, hd, p r ic e )
Laptop(model, speed, ram, hd, screen , p ric e )
P rin ter(m o d e l, c o lo r, ty p e , p rice )

a) No manufacturer of PC’s may also make laptops.



7.4. ASSERTIONS 331

Comparison of Constraints

The following table lists the principal differences among attribute-based 
checks, tuple-based checks, and assertions.

Type of 
Constraint

Where
Declared

When
Activated

Guaranteed 
to Hold?

Attribute- 
based CHECK

With
attribute

On insertion 
to relation or 
attribute update

Not if 
sub queries

Tuple- 
based CHECK

Element of 
relation schema

On insertion 
to relation or 
tuple update

Not if 
subqueries

Assertion Element of 
database schema

On any change to 
any mentioned 
relation

Yes

b) A manufacturer of a PC must also make a laptop with at least as great a 
processor speed.

c) If a laptop has a larger main memory than a PC, then the laptop must 
also have a higher price than the PC.

d) If the relation Product mentions a model and its type, then this model 
must appear in the relation appropriate to that type.

E xercise 7 .4 .2 : Write the following as assertions. The database schema is 
from the battleships example of Exercise 2.4.3.

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent) 
Ships(name, c la s s ,  launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e ,  r e s u l t )

a) No class may have more than 2 ships.

! b) No country may have both battleships and battlecruisers.

! c) No ship with more than 9 guns may be in a battle with a ship having 
fewer than 9 guns that was sunk.

! d) No ship may be launched before the ship that bears the name of the first 
ship’s class.

! e) For every class, there is a ship with the name of that class.
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! E xercise 7 .4 .3 : The assertion of Exercise 7.11 can be written as two tuple- 
based constraints. Show how to do so.

7.5 Triggers
Triggers, sometimes called event-condition-action rules or ECA rules, differ 
from the kinds of constraints discussed previously in three ways.

1. Triggers are only awakened when certain events, specified by the database 
programmer, occur. The sorts of events allowed are usually insert, delete, 
or update to a particular relation. Another kind of event allowed in many 
SQL systems is a transaction end.

2. Once awakened by its triggering event, the trigger tests a condition. If 
the condition does not hold, then nothing else associated with the trigger 
happens in response to this event.

3. If the condition of the trigger is satisfied, the action associated with the 
trigger is performed by the DBMS. A possible action is to modify the ef
fects of the event in some way, even aborting the transaction of which the 
event is part. However, the action could be any sequence of database op
erations, including operations not connected in any way to the triggering 
event.

7.5.1 Triggers in SQL
The SQL trigger statement gives the user a number of different options in the 
event, condition, and action parts. Here are the principal features.

1. The check of the trigger’s condition and the action of the trigger may be 
executed either on the state of the database (i.e., the current instances of 
all the relations) that exists before the triggering event is itself executed 
or on the state that exists after the triggering event is executed.

2. The condition and action can refer to both old and/or new values of tuples 
that were updated in the triggering event.

3. It is possible to define update events that are limited to a particular 
attribute or set of attributes.

4. The programmer has an option of specifying that the trigger executes 
either:

(a) Once for each modified tuple (a row-level trigger), or
(b) Once for all the tuples that are changed in one SQL statement (a 

statement-level trigger, remember that one SQL modification state
ment can affect many tuples).
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Before giving the details of the syntax for triggers, let us consider an example 
that will illustrate the most important syntactic as well as semantic points. 
Notice in the example trigger, Fig. 7.5, the key elements and the order in which 
they appear:

a) The CREATE TRIGGER statement (line 1).

b) A clause indicating the triggering event and telling whether the trigger 
uses the database state before or after the triggering event (line 2).

c) A REFERENCING clause to allow the condition and action of the trigger to 
refer to the tuple being modified (lines 3 through 5). In the case of an 
update, such as this one, this clause allows us to give names to the tuple 
both before and after the change.

d) A clause telling whether the trigger executes once for each modified row 
or once for all the modifications made by one SQL statement (line 6).

e) The condition, which uses the keyword WHEN and a boolean expression 
(line 7).

f) The action, consisting of one or more SQL statements (lines 8 through 
10).

Each of these elements has options, which we shall discuss after working through 
the example.

E xam ple 7 .13: In Fig. 7.13 is a SQL trigger that applies to the

MovieExec(name, add ress, c e r t# , netWorth)

table. It is triggered by updates to the netWorth attribute. The effect of this 
trigger is to foil any attempt to lower the net worth of a movie executive.

1) CREATE TRIGGER NetWorthTrigger
2) AFTER UPDATE OF netWorth ON MovieExec
3) REFERENCING
4) OLD ROW AS OldTuple,
5) NEW ROW AS NewTuple
6) FOR EACH ROW
7) WHEN (OldTuple.netW orth > NewTuple.netWorth)
8) UPDATE MovieExec
9) SET netWorth = OldTuple.netW orth 

10) WHERE ce rt#  = NewTuple. c e r t# ;

Figure 7.5: A SQL trigger
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Line (1) introduces the declaration with the keywords CREATE TRIGGER and 
the name of the trigger. Line (2) then gives the triggering event, namely the 
update of the netWorth attribute of the MovieExec relation. Lines (3) through 
(5) set up a way for the condition and action portions of this trigger to talk 
about both the old tuple (the tuple before the update) and the new tuple 
(the tuple after the update). These tuples will be referred to as OldTuple and 
NewTuple, according to the declarations in lines (4) and (5), respectively. In the 
condition and action, these names can be used as if they were tuple variables 
declared in the FROM clause of an ordinary SQL query.

Line (6), the phrase FOR EACH ROW, expresses the requirement that this 
trigger is executed once for each updated tuple. Line (7) is the condition part 
of the trigger. It says that we only perform the action when the new net worth 
is lower than the old net worth; i.e., the net worth of an executive has shrunk.

Lines (8) through (10) form the action portion. This action is an ordinary 
SQL update statement that has the effect of restoring the net worth of the 
executive to what it was before the update. Note that in principle, every tuple of 
MovieExec is considered for update, but the WHERE-clause of line (10) guarantees 
that only the updated tuple (the one with the proper ce rt# ) will be affected.
□

7.5.2 The Options for Trigger Design

Of course Example 7.13 illustrates only some of the features of SQL triggers. In 
the points that follow, we shall outline the options that are offered by triggers 
and how to express these options.

• Line (2) of Fig. 7.5 says that the condition test and action of the rule 
are executed on the database state that exists after the triggering event, 
as indicated by the keyword AFTER. We may replace AFTER by BEFORE, 
in which case the WHEN condition is tested on the database state that 
exists before the triggering event is executed. If the condition is true, 
then the action of the trigger is executed on that state. Finally, the event 
that awakened the trigger is executed, regardless of whether the condition 
is still true. There is a third option, INSTEAD OF, that we discuss in 
Section 8.2.3, in connection with modification of views.

• Besides UPDATE, other possible triggering events are INSERT and DELETE. 
The OF netWorth clause in line (2) of Fig. 7.5 is optional for UPDATE 
events, and if present defines the event to be only an update of the at
tribute^) listed after the keyword OF. An OF clause is not permitted for 
INSERT or DELETE events; these events make sense for entire tuples only.

• The WHEN clause is optional. If it is missing, then the action is executed 
whenever the trigger is awakened. If present, then the action is executed 
only if the condition following WHEN is true.



7.5. TRIGGERS 335

• While we showed a single SQL statement as an action, there can be any 
number of such statements, separated by semicolons and surrounded by 
BEGIN.. .END.

• When the triggering event of a row-level trigger is an update, then there 
will be old and new tuples, which are the tuple before the update and 
after, respectively. We give these tuples names by the OLD ROW AS and 
NEW ROW AS clauses seen in lines (4) and (5). If the triggering event 
is an insertion, then we may use a NEW ROW AS clause to give a name 
for the inserted tuple, and OLD ROW AS is disallowed. Conversely, on a 
deletion OLD ROW AS is used to name the deleted tuple and NEW ROW AS 
is disallowed.

• If we omit the FOR EACH ROW on line (6) or replace it by the default 
FOR EACH STATEMENT, then a row-level trigger such as Fig. 7.5 becomes a 
statement-level trigger. A statement-level trigger is executed once when
ever a statement of the appropriate type is executed, no matter how many 
rows — zero, one, or many — it actually affects. For instance, if we update 
an entire table with a SQL update statement, a statement-level update 
trigger would execute only once, while a row-level trigger would execute 
once for each tuple to which an update was applied.

• In a statement-level trigger, we cannot refer to old and new tuples di
rectly, as we did in lines (4) and (5). However, any trigger — whether 
row- or statement-level — can refer to the relation of old tuples (deleted 
tuples or old versions of updated tuples) and the relation of new tuples 
(inserted tuples or new versions of updated tuples), using declarations 
such as OLD TABLE AS O ldStuff and NEW TABLE AS NewStuff.

E xam ple 7.14: Suppose we want to prevent the average net worth of movie 
executives from dropping below $500,000. This constraint could be violated by 
an insertion, a deletion, or an update to the netWorth column of

MovieExec(name, address, cert#, netWorth)
The subtle point is that we might, in one statement insert, delete, or change 
many tuples of MovieExec. During the modification, the average net worth 
might temporarily dip below $500,000 and then rise above it by the time all the 
modifications are made. We only want to reject the entire set of modifications 
if the net worth is below $500,000 at the end of the statement.

It is necessary to write one trigger for each of these three events: insert, 
delete, and update of relation MovieExec. Figure 7.6 shows the trigger for the 
update event. The triggers for the insertion and deletion of tuples are similar.

Lines (3) through (5) declare that NewStuff and O ldStuff are the names 
of relations containing the new tuples and old tuples that are involved in the 
database operation that awakened our trigger. Note that one database state
ment can modify many tuples of a relation, and if such a statement executes, 
there can be many tuples in NewStuff and O ldStuff.
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1) CREATE TRIGGER AvgNetWorthTrigger
2) AFTER UPDATE OF netWorth ON MovieExec
3) REFERENCING
4) OLD TABLE AS O ldS tuff,
5) NEW TABLE AS NewStuff
6) FOR EACH STATEMENT
7) WHEN (500000 > (SELECT AVG(netWorth) FROM MovieExec))
8) BEGIN
9)

10)

11)
12)

DELETE FROM MovieExec
WHERE (name, ad d ress , c e r t# , netWorth) IN NewStuff; 
INSERT INTO MovieExec

(SELECT * FROM O ld S tu ff);
13) END;

Figure 7.6: Constraining the average net worth

If the operation is an update, then tables NewStuff and O ldStuff are the 
new and old versions of the updated tuples, respectively. If an analogous trigger 
were written for deletions, then the deleted tuples would be in O ldStuff, and 
there would be no declaration of a relation name like NewStuff for NEW TABLE 
in this trigger. Likewise, in the analogous trigger for insertions, the new tuples 
would be in NewStuff, and there would be no declaration of O ldStuff.

Line (6) tells us that this trigger is executed once for a statement, regardless 
of how many tuples are modified. Line (7) is the condition. This condition is 
satisfied if the average net worth after the update is less than $500,000.

The action of lines (8) through (13) consists of two statements that restore 
the old relation MovieExec if the condition of the WHEN clause is satisfied; i.e., 
the new average net worth is too low. Lines (9) and (10) remove all the new 
tuples, i.e., the updated versions of the tuples, while lines (11) and (12) restore 
the tuples as they were before the update. □

E xam p le 7.15 : An important use of BEFORE triggers is to fix up the inserted 
tuples in some way before they are inserted. Suppose that we want to insert 
movie tuples into

M o v ie s ( ti t le , y e a r , len g th , genre , studioName, producerC#)

but sometimes, we will not know the year of the movie. Since year is part of the 
primary key, we cannot have NULL for this attribute. However, we could make 
sure that year is not NULL with a trigger and replace NULL by some suitable 
value, perhaps one that we compute in a complex way. In Fig. 7.7 is a trigger 
that takes the simple expedient of replacing NULL by 1915 (something that could 
be handled by a default value, but which will serve as an example).

Line (2) says that the condition and action execute before the insertion 
event. In the referencing-clause of lines (3) through (5), we define names for
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1) CREATE TRIGGER FixY earTrigger
2) BEFORE INSERT ON Movies
3) REFERENCING
4) NEW ROW AS NewRow
5) NEW TABLE AS NewStuff
6) FOR EACH ROW
7) WHEN NewRow.year IS NULL
8) UPDATE NewStuff SET year = 1915;

Figure 7.7: Fixing NULL’s in inserted tuples

both the new row being inserted and a table consisting of only that row. Even 
though the trigger executes once for each inserted tuple [because line (6) declares 
this trigger to be row-level], the condition of line (7) needs to be able to refer 
to an attribute of the inserted row, while the action of line (8) needs to refer to 
a table in order to describe an update. □

7.5.3 Exercises for Section 7.5
E xercise 7 .5 .1 : Write the triggers analogous to Fig. 7.6 for the insertion and 
deletion events on MovieExec.

E xercise 7 .5 .2 : Write the following as triggers. In each case, disallow or 
undo the modification if it does not satisfy the stated constraint. The database 
schema is from the “PC” example of Exercise 2.4.1:

Product(m aker, model, type)
PC(model, speed, ram, hd, p r ic e )
Laptop(model, speed, ram, hd, screen , p ric e )
P rin ter(m o d e l, co lo r , ty p e , p r ic e )

a) When updating the price of a PC, check that there is no lower priced PC 
with the same speed.

b) When inserting a new printer, check that the model number exists in 
Product.

! c) When making any modification to the Laptop relation, check that the 
average price of laptops for each manufacturer is at least $1500.

! d) When updating the RAM or hard disk of any PC, check that the updated 
PC has at least 100 times as much hard disk as RAM.

! e) When inserting a new PC, laptop, or printer, make sure that the model 
number did not previously appear in any of PC, Laptop, or P rin te r .
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Exercise 7 .5 .3 : Write the following as triggers. In each case, disallow or 
undo the modification if it does not satisfy the stated constraint. The database 
schema is from the battleships example of Exercise 2.4.3.

C la s se s (c la s s , ty p e , country , numGuns, bore , displacem ent) 
Ships(name, c la s s ,  launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e ,  r e s u l t )

a) When a new class is inserted into C lasses, also insert a ship with the 
name of that class and a NULL launch date.

b) When a new class is inserted with a displacement greater than 35,000 
tons, allow the insertion, but change the displacement to 35,000.

! c) If a tuple is inserted into Outcomes, check that the ship and battle are 
listed in Ships and B a ttle s , respectively, and if not, insert tuples into 
one or both of these relations, with NULL components where necessary.

! d) When there is an insertion into Ships or an update of the c la ss  attribute 
of Ships, check that no country has more than 20 ships.

!! e) Check, under all circumstances that could cause a violation, that no ship 
fought in a battle that was at a later date than another battle in which 
that ship was sunk.

Exercise 7 .5 .4 : Write the following as triggers. In each case, disallow or undo 
the modification if it does not satisfy the stated constraint. The problems are 
based on our running movie example:

M o v ie s ( title , y ea r, len g th , genre, studioName, producerC#) 
S ta rs ln (m o v ieT itle , movieYear, starName)
MovieStar(name, ad d ress , gender, b ir th d a te )
MovieExec(name, ad d ress , c e r t# , netWorth)
Studio(name, add ress, presC#)

You may assume that the desired condition holds before any change to the 
database is attempted. Also, prefer to modify the database, even if it means 
inserting tuples with NULL or default values, rather than rejecting the attempted 
modification.

a) Assure that at all times, any star appearing in S ta rs ln  also appears in 
MovieStar.

b) Assure that at all times every movie executive appears as either a studio 
president, a producer of a movie, or both.

c) Assure that every movie has at least one male and one female star.
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d) Assure that the number of movies made by any studio in any year is no 
more than 100.

e) Assure that the average length of all movies made in any year is no more 
than 120.

7.6 Summary of Chapter 7
♦  Referential-Integrity Constraints: We can declare that a value appearing 

in some attribute or set of attributes must also appear in the correspond
ing attribute(s) of some tuple of the same or another relation. To do so, 
we use a REFERENCES or FOREIGN KEY declaration in the relation schema.

♦  Attribute-Based Check Constraints: We can place a constraint on the 
value of an attribute by adding the keyword CHECK and the condition to 
be checked after the declaration of that attribute in its relation schema.

♦  Tuple-Based Check Constraints: We can place a constraint on the tuples 
of a relation by adding the keyword CHECK and the condition to be checked 
to the declaration of the relation itself.

♦  Modifying Constraints: A tuple-based check can be added or deleted with 
an ALTER statement for the appropriate table.

♦  Assertions: We can declare an assertion as an element of a database 
schema. The declaration gives a condition to be checked. This condition 
may involve one or more relations of the database schema, and may involve 
the relation as a whole, e.g., with aggregation, as well as conditions about 
individual tuples.

♦  Invoking the Checks: Assertions are checked whenever there is a change 
to one of the relations involved. Attribute- and tuple-based checks are 
only checked when the attribute or relation to which they apply changes 
by insertion or update. Thus, the latter constraints can be violated if 
they have subqueries.

♦  Triggers: The SQL standard includes triggers that specify certain events 
(e.g., insertion, deletion, or update to a particular relation) that awaken 
them. Once awakened, a condition can be checked, and if true, a spec
ified sequence of actions (SQL statements such as queries and database 
modifications) will be executed.

7.7 References for Chapter 7
References [5] and [4] survey all aspects of active elements in database systems.
[1] discusses recent thinking regarding active elements in SQL-99 and future
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standards. References [2] and [3] discuss HiPAC, an early prototype system 
that offered active database elements.

1. R. J. Cochrane, H. Pirahesh, and N. Mattos, “Integrating triggers and 
declarative constraints in SQL database systems,” Intl. Conf. on Very 
Large Databases, pp. 567-579, 1996.

2. U. Dayal et al., “The HiPAC project: combining active databases and 
timing constraints,” SIGMOD Record 17:1, pp. 51-70, 1988.

3. D. R. McCarthy and U. Dayal, “The architecture of an active database 
management system,” Proc. ACM SIGMOD Intl. Conf. on Management 
of Data, pp. 215-224, 1989.

4. N. W. Paton and 0 . Diaz, “Active database systems,” Computing Surveys 
31:1 (March, 1999), pp. 63-103.

5. J. Widom and S. Ceri, Active Database Systems, Morgan-Kaufmann, San 
Francisco, 1996.



Chapter 8

Views and Indexes

We begin this chapter by introducing virtual views, which are relations that 
are defined by a query over other relations. Virtual views are not stored in 
the database, but can be queried as if they existed. The query processor will 
replace the view by its definition in order to execute the query.

Views can also be materialized, in the sense that they are constructed peri
odically from the database and stored there. The existence of these materialized 
views can speed up the execution of queries. A very important specialized type 
of “materialized view” is the index, a stored data structure whose sole purpose 
is to speed up the access to specified tuples of one of the stored relations. We 
introduce indexes here and consider the principal issues in selecting the right 
indexes for a stored table.

8.1 Virtual Views
Relations that are defined with a CREATE TABLE statement actually exist in the 
database. That is, a SQL system stores tables in some physical organization. 
They are persistent, in the sense that they can be expected to exist indefi
nitely and not to change unless they are explicitly told to change by a SQL 
modification statement.

There is another class of SQL relations, called (virtual) views, that do not 
exist physically. Rather, they are defined by an expression much like a query. 
Views, in turn, can be queried as if they existed physically, and in some cases, 
we can even modify views.

8.1.1 Declaring Views
The simplest form of view definition is:

CREATE VIEW <view-name> AS <view-definition>;

The view definition is a SQL query.

341
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Relations, Tables, and Views

SQL programmers tend to use the term “table” instead of “relation.” The 
reason is that it is important to make a distinction between stored rela
tions, which are “tables,” and virtual relations, which are “views.” Now 
that we know the distinction between a table and a view, we shall use “re
lation” only where either a table or view could be used. When we want to 
emphasize that a relation is stored, rather than a view, we shall sometimes 
use the term “base relation” or “base table.”

There is also a third kind of relation, one that is neither a view nor 
stored permanently. These relations are temporary results, as might be 
constructed for some subquery. Temporaries will also be referred to as 
“relations” subsequently.

E xam ple 8 .1 : Suppose we want to have a view that is a part of the

M o v ie s ( title , yeax, len g th , genre, studioName, producerC#)

relation, specifically, the titles and years of the movies made by Paramount 
Studios. We can define this view by

1) CREATE VIEW ParamountMovies AS
2) SELECT t i t l e ,  year
3) FROM Movies
4) WHERE studioName = ’Paramount’ ;

First, the name of the view is ParamountMovies, as we see from line (1). 
The attributes of the view are those listed in line (2), namely t i t l e  and year. 
The definition of the view is the query of lines (2) through (4). □

E xam ple 8 .2 : Let us consider a more complicated query used to define a 
view. Our goal is a relation MovieProd with movie titles and the names of their 
producers. The query defining the view involves two relations:

M o v ie s ( t i t le , y ea r, len g th , genre, studioName, producerC#) 
MovieExec(name, add ress, c e r t# , netWorth)

The following view definition

CREATE VIEW MovieProd AS 
SELECT t i t l e ,  name 
FROM Movies, MovieExec 
WHERE producerC# = c e rt# ;

joins the two relations and requires that the certificate numbers match. It then 
extracts the movie title and producer name from pairs of tuples that agree on 
the certificates. □
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8.1.2 Querying Views
A view may be queried exactly as if it were a stored table. We mention its 
name in a FROM clause and rely on the DBMS to produce the needed tuples by 
operating on the relations used to define the virtual view.

E xam ple 8 .3 : We may query the view ParamountMovies just as if it were a 
stored table, for instance:

SELECT t i t l e
FROM ParamountMovies
WHERE year = 1979;

finds the movies made by Paramount in 1979. □

E xam ple 8 .4 : It is also possible to write queries involving both views and 
base tables. An example is:

SELECT DISTINCT starName
FROM ParamountMovies, S ta rs ln
WHERE t i t l e  = m ovieT itle AND year = movieYear;

This query asks for the name of all stars of movies made by Paramount. □

The simplest way to interpret what a query involving virtual views means 
is to replace each view in a FROM clause by a subquery that is identical to the 
view definition. That subquery is followed by a tuple variable, so we can refer 
to its tuples. For instance, the query of Example 8.4 can be thought of as the 
query of Fig. 8.1.

SELECT DISTINCT starName 
FROM (SELECT t i t l e ,  year 

FROM Movies
WHERE studioName = ’Paramount’

) Pm, S ta rs ln  
WHERE P m .ti t le  = m ovieT itle AND Pm.year = movieYear;

Figure 8.1: Interpreting the use of a virtual view as a subquery

8.1.3 Renaming Attributes
Sometimes, we might prefer to give a view’s attributes names of our own choos
ing, rather than use the names that come out of the query defining the view. 
We may specify the attributes of the view by listing them, surrounded by paren
theses, after the name of the view in the CREATE VIEW statement. For instance, 
we could rewrite the view definition of Example 8.2 as:
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CREATE VIEW M ovieProd(m ovieTitle, prodName) AS 
SELECT t i t l e ,  name 
FROM Movies, MovieExec 
WHERE producerC# = c e rt# ;

The view is the same, but its columns are headed by attributes m ovieT itle 
and prodName instead of t i t l e  and name.

8.1.4 Exercises for Section 8.1
Exercise 8 .1 .1 : From the following base tables of our running example

MovieStar(name, add ress, gender, b ir th d a te )
MovieExec(name, add ress, c e r t# , netWorth)
Studio(name, add ress, presC#)

Construct the following views:

a) A view RichExec giving the name, address, certificate number and net 
worth of all executives with a net worth of at least $10,000,000.

b) A view StudioPres giving the name, address, and certificate number of 
all executives who are studio presidents.

c) A view E xecutiveS tar giving the name, address, gender, birth date, cer
tificate number, and net worth of all individuals who are both executives 
and stars.

E xercise 8 .1 .2 : Write each of the queries below, using one or more of the 
views from Exercise 8.1.1 and no base tables.

a) Find the names of females who are both stars and executives.

b) Find the names of those executives who are both studio presidents and 
worth at least $10,000,000.

! c) Find the names of studio presidents who are also stars and are worth at 
least $50,000,000.

8.2 M odifying Views
In limited circumstances it is possible to execute an insertion, deletion, or up
date to a view. At first, this idea makes no sense at all, since the view does not 
exist the way a base table (stored relation) does. What could it mean, say, to 
insert a new tuple into a view? Where would the tuple go, and how would the 
database system remember that it was supposed to be in the view?

For many views, the answer is simply “you can’t do that.” However, for 
sufficiently simple views, called updatable views, it is possible to translate the
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modification of the view into an equivalent modification on a base table, and 
the modification can be done to the base table instead. In addition, “instead- 
of” triggers can be used to turn a view modification into modifications of base 
tables. In that way, the programmer can force whatever interpretation of a 
view modification is desired.

8.2.1 View Removal
An extreme modification of a view is to delete it altogether. This modification 
may be done whether or not the view is updatable. A typical DROP statement 
is

DROP VIEW ParamountMovies;

Note that this statement deletes the definition of the view, so we may no longer 
make queries or issue modification commands involving this view. However 
dropping the view does not affect any tuples of the underlying relation Movies. 
In contrast,

DROP TABLE Movies

would not only make the Movies table go away. It would also make the view 
ParamountMovies unusable, since a query that used it would indirectly refer to 
the nonexistent relation Movies.

8.2.2 Updatable Views
SQL provides a formal definition of when modifications to a view axe permit
ted. The SQL rules are complex, but roughly, they permit modifications on 
views that are defined by selecting (using SELECT, not SELECT DISTINCT) some 
attributes from one relation R  (which may itself be an updatable view). Two 
important technical points:

• The WHERE clause must not involve R  in a subquery.

• The FROM clause can only consist of one occurrence of R  and no other 
relation.

• The list in the SELECT clause must include enough attributes that for 
every tuple inserted into the view, we can fill the other attributes out 
with NULL values or the proper default. For example, it is not permitted 
to project out an attribute that is declared NOT NULL and has no default.

An insertion on the view can be applied directly to the underlying relation R. 
The only nuance is that we need to specify that the attributes in the SELECT 
clause of the view are the only ones for which values are supplied.
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E xam ple 8 .5 : Suppose we insert into view ParamountMovies of Example 8.1 
a tuple like:

INSERT INTO ParamountMovies 
VALUES(’S ta r T rek’ , 1979);

View ParamountMovies meets the SQL updatability conditions, since the view 
asks only for some components of some tuples of one base table:

M o v ie s ( title , y ea r, len g th , genre, studioName, producerC#)

The insertion on ParamountMovies is executed as if it were the same insertion 
on Movies:

INSERT INTO M o v ie s ( title , year)
VALUES(’S ta r T rek’ , 1979);

Notice that the attributes t i t l e  and year had to be specified in this insertion, 
since we cannot provide values for other attributes of Movies.

The tuple inserted into Movies has values ’S ta r  T rek’ for t i t l e ,  1979 for 
year, and NULL for the other four attributes. Curiously, the inserted tuple, since 
it has NULL as the value of attribute studioName, will not meet the selection 
condition for the view ParamountMovies, and thus, the inserted tuple has no 
effect on the view. For instance, the query of Example 8.3 would not retrieve 
the tuple ( ’S ta r T rek’ , 1979).

To fix this apparent anomaly, we could add studioName to the SELECT clause 
of the view, as:

CREATE VIEW ParamountMovies AS 
SELECT studioName, t i t l e ,  year 
FROM Movies
WHERE studioName = ’Paramount’ ;

Then, we could insert the Star-Trek tuple into the view by:

INSERT INTO ParamountMovies
VALUES( ’Paramount’ , ’S ta r  T rek’ , 1979);

This insertion has the same effect on Movies as:

INSERT INTO Movies(studioName, t i t l e ,  year)
VALUES(’Paramount’ , ’S ta r  T rek’ , 1979);

Notice that the resulting tuple, although it has NULL in the attributes not 
mentioned, does yield the appropriate tuple for the view ParamountMovies.
□
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We may also delete from an updatable view. The deletion, like the insertion, 
is passed through to the underlying relation R. However, to make sure that only 
tuples that can be seen in the view are deleted, we add (using AND) the condition 
of the WHERE clause in the view to the WHERE clause of the deletion.

E xam ple 8 .6 : Suppose we wish to delete from the updatable Paramount
Movies view all movies with “Trek” in their titles. We may issue the deletion 
statement

DELETE FROM ParamountMovies 
WHERE t i t l e  LIKE ’‘/.Trek*/.’ ;

This deletion is translated into an equivalent deletion on the Movies base table; 
the only difference is that the condition defining the view ParamountMovies is 
added to the conditions of the WHERE clause.

DELETE FROM Movies
WHERE t i t l e  LIKE ’‘/.Trek’/,’ AND studioName = ’Paramount’ ;

is the resulting delete statement. □

Similarly, an update on an updatable view is passed through to the under
lying relation. The view update thus has the effect of updating all tuples of the 
underlying relation that give rise in the view to updated view tuples.

E xam ple 8 .7 : The view update

UPDATE ParamountMovies 
SET year = 1979
WHERE t i t l e  = ’S ta r  Trek th e  Movie’ ;

is equivalent to the base-table update

UPDATE Movies 
SET year = 1979
WHERE t i t l e  = ’S ta r  Trek th e  Movie’ AND 

studioName = ’Paramount’ ;

□

8.2.3 Instead-Of Triggers on Views
When a trigger is defined on a view, we can use INSTEAD OF in place of BEFORE 
or AFTER. If we do so, then when an event awakens the trigger, the action of 
the trigger is done instead of the event itself. That is, an instead-of trigger 
intercepts attempts to modify the view and in its place performs whatever 
action the database designer deems appropriate. The following is a typical 
example.
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W hy Some Views Are Not Updatable

Consider the view MovieProd of Example 8.2, which relates movie titles 
and producers’ names. This view is not updatable according to the SQL 
definition, because there are two relations in the FROM clause: Movies and 
MovieExec. Suppose we tried to insert a tuple like

( ’G rea test Show on E a r th ’ , ’C ecil B. DeM ille’)

We would have to insert tuples into both Movies and MovieExec. We 
could use the default value for attributes like len g th  or address, but 
what could be done for the two equated attributes producerC# and ce rt#  
that both represent the unknown certificate number of DeMille? We could 
use NULL for both of these. However, when joining relations with NULL’s, 
SQL does not recognize two NULL values as equal (see Section 6.1.6). 
Thus, ’G rea test Show on E a r th ’ would not be connected with ’C ecil 
B. DeM ille’ in the MovieProd view, and our insertion would not have 
been done correctly.

E xam ple 8.8 : Let us recall the definition of the view of all movies owned by 
Paramount:

CREATE VIEW ParamountMovies AS 
SELECT t i t l e ,  year 
FROM Movies
WHERE studioName = ’Paramount’ ;

from Example 8.1. As we discussed in Example 8.5, this view is updatable, but 
it has the unexpected flaw that when you insert a tuple into ParamountMovies, 
the system cannot deduce that the studioName attribute is surely Paramount, 
so studioName is NULL in the inserted Movies tuple.

A better result can be obtained if we create an instead-of trigger on this 
view, as shown in Fig. 8.2. Much of the trigger is unsurprising. We see the 
keyword INSTEAD OF on line (2), establishing that an attempt to insert into 
ParamountMovies will never take place.

Rather, lines (5) and (6) is the action that replaces the attempted insertion. 
There is an insertion into Movies, and it specifies the three attributes that we 
know about. Attributes t i t l e  and year come from the tuple we tried to insert 
into the view; we refer to these values by the tuple variable NewRow that was 
declared in line (3) to represent the tuple we are trying to insert. The value 
of attribute studioName is the constant ’ Paramount ’ . This value is not part 
of the inserted view tuple. Rather, we assume it is the correct studio for the 
inserted movie, because the insertion came through the view ParamountMovies.
□
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1) CREATE TRIGGER Param ountInsert
2) INSTEAD OF INSERT ON ParamountMovies
3) REFERENCING NEW ROW AS NewRow
4) FOR EACH ROW
5) INSERT INTO M o v ie s ( title , y ea r, studioName)
6) VALUES(NewRow.title, NewRow.year, ’Paramount’ );

Figure 8.2: Trigger to replace an insertion on a view by an insertion on the 
underlying base table

8.2.4 Exercises for Section 8.2
E xercise 8 .2 .1 : Which of the views of Exercise 8.1.1 are updatable?

E xercise 8 .2 .2 : Suppose we create the view:

CREATE VIEW DisneyComedies AS
SELECT t i t l e ,  y ea r, len g th  FROM Movies
WHERE studioName = ’D isney’ AND genre = ’comedy’ ;

a) Is this view updatable?

b) Write an instead-of trigger to handle an insertion into this view.

c) Write an instead-of trigger to handle an update of the length for a movie 
(given by title and year) in this view.

E xercise 8 .2 .3 : Using the base tables

Product(m aker, model, type)
PC(model, speed, ram, hd, p rice )

suppose we create the view:

CREATE VIEW NewPC AS
SELECT maker, model, speed, ram, hd, p r ic e  
FROM P roduct, PC
WHERE Product.model = PC.model AND type = ’p c ’ ;

Notice that we have made a check for consistency: that the model number not 
only appears in the PC relation, but the type attribute of Product indicates 
that the product is a PC.

a) Is this view updatable?

b) Write an instead-of trigger to handle an insertion into this view.

c) Write an instead-of trigger to handle an update of the price.

d) Write an instead-of trigger to handle a deletion of a specified tuple from 
this view.
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8.3 Indexes in SQL
An index on an attribute A  of a relation is a data structure that makes it 
efficient to find those tuples that have a fixed value for attribute A. We could 
think of the index as a binary search tree of (key, value) pairs, in which a key a 
(one of the values that attribute A  may have) is associated with a “value” that 
is the set of locations of the tuples that have a in the component for attribute 
A. Such an index may help with queries in which the attribute A  is compared 
with a constant, for instance A  =  3, or even A  < 3. Note that the key for the 
index can be any attribute or set of attributes, and need not be the key for 
the relation on which the index is built. We shall refer to the attributes of the 
index as the index key when a distinction needs to be made.

The technology of implementing indexes on large relations is of central im
portance in the implementation of DBMS’s. The most important data structure 
used by a typical DBMS is the “B-tree,” which is a generalization of a balanced 
binary tree. We shall take up B-trees when we talk about DBMS implementa
tion, but for the moment, thinking of indexes as binary search trees will suffice.

8.3.1 M otivation for Indexes
When relations are very large, it becomes expensive to scan all the tuples of a 
relation to find those (perhaps very few) tuples that match a given condition. 
For example, consider the first query we examined:

SELECT *
FROM Movies
WHERE studioName = ’D isney’ AND year = 1990;

from Example 6.1. There might be 10,000 Movies tuples, of which only 200 
were made in 1990.

The naive way to implement this query is to get all 10,000 tuples and test 
the condition of the WHERE clause on each. It would be much more efficient if we 
had some way of getting only the 200 tuples from the year 1990 and testing each 
of them to see if the studio was Disney. It would be even more efficient if we 
could obtain directly only the 10 or so tuples that satisfied both the conditions 
of the WHERE clause — that the studio is Disney and the year is 1990; see the 
discussion of “multiattribute indexes,” in Section 8.3.2.

Indexes may also be useful in queries that involve a join. The following 
example illustrates the point.

E xam ple 8 .9 : Recall the query

SELECT name
FROM Movies, MovieExec
WHERE t i t l e  = ’S ta r  Wars’ AND producerC# = c e r t# ;
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from Example 6.12 that asks for the name of the producer of Star Wars. If 
there is an index on t i t l e  of Movies, then we can use this index to get the 
tuple for Star Wars. From this tuple, we can extract the producerC# to get 
the certificate of the producer.

Now, suppose that there is also an index on ce rt#  of MovieExec. Then we 
can use the producerC# with this index to find the tuple of MovieExec for the 
producer of Star Wars. From this tuple, we can extract the producer’s name. 
Notice that with these two indexes, we look at only the two tuples, one from 
each relation, that are needed to answer the query. Without indexes, we have 
to look at every tuple of the two relations. □

8.3.2 Declaring Indexes
Although the creation of indexes is not part of any SQL standard up to and 
including SQL-99, most commercial systems have a way for the database de
signer to say that the system should create an index on a certain attribute for 
a certain relation. The following syntax is typical. Suppose we want to have 
an index on attribute year for the relation Movies. Then we say:

CREATE INDEX YearIndex ON M ovies(year);

The result will be that an index whose name is Year Index will be created on 
attribute year of the relation Movies. Henceforth, SQL queries that specify a 
year may be executed by the SQL query processor in such a way that only those 
tuples of Movies with the specified year are ever examined; there is a resulting 
decrease in the time needed to answer the query.

Often, a DBMS allows us to build a single index on multiple attributes. 
This type of index takes values for several attributes and efficiently finds the 
tuples with the given values for these attributes.

E xam ple 8.10: Since t i t l e  and year form a key for Movies, we might expect 
it to be common that values for both these attributes will be specified, or neither 
will. The following is a typical declaration of an index on these two attributes:

CREATE INDEX Keylndex ON M o v ie s ( title , y e a r ) ;

Since ( t i t l e ,  year) is a key, if follows that when we are given a title and 
year, we know the index will find only one tuple, and that will be the desired 
tuple. In contrast, if the query specifies both the title and year, but only 
Yearlndex is available, then the best the system can do is retrieve all the 
movies of that year and check through them for the given title.

If, as is often the case, the key for the multiattribute index is really the 
concatenation of the attributes in some order, then we can even use this index 
to find all the tuples with a given value in the first of the attributes. Thus, 
part of the design of a multiattribute index is the choice of the order in which 
the attributes are listed. For instance, if we were more likely to specify a title
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than a year for a movie, then we would prefer to order the attributes as above; 
if a year were more likely to be specified, then we would ask for an index on 
(y ear, t i t l e ) .  □

If we wish to delete the index, we simply use its name in a statement like: 

DROP INDEX YearIndex;

8.3.3 Exercises for Section 8.3
E xercise 8 .3 .1 : For our running movies example:

M o v ie s ( title , y ea r, len g th , genre, studioName, producerC#) 
S ta rs ln (m o v ieT itle , movieYear, starName)
MovieExec(name, ad d ress , c e r t# , netWorth)
Studio(name, ad d ress, presC#)

Declare indexes on the following attributes or combination of attributes:

a) studioName.

b) address of MovieExec.

c) genre and length .

8.4 Selection of Indexes
Choosing which indexes to create requires the database designer to analyze 
a trade-off. In practice, this choice is one of the principal factors that influ
ence whether a database design gives acceptable performance. Two important 
factors to consider are:

• The existence of an index on an attribute may speed up greatly the exe
cution of those queries in which a value, or range of values, is specified for 
that attribute, and may speed up joins involving that attribute as well.

• On the other hand, every index built for one or more attributes of some 
relation makes insertions, deletions, and updates to that relation more 
complex and time-consuming.

8.4.1 A Simple Cost Model
To understand how to choose indexes for a database, we first need to know 
where the time is spent answering a query. The details of how relations are 
stored will be taken up when we consider DBMS implementation. But for 
the moment, let us state that the tuples of a relation are normally distributed
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among many pages of a disk.1 One page, which is typically several thousand 
bytes at least, will hold many tuples.

To examine even one tuple requires that the whole page be brought into 
main memory. On the other hand, it costs little more time to examine all the 
tuples on a page than to examine only one. There is a great time saving if the 
page you want is already in main memory, but for simplicity we shall assume 
that never to be the case, and every page we need must be retrieved from the 
disk.

8.4.2 Some Useful Indexes
Often, the most useful index we can put on a relation is an index on its key. 
There are two reasons:

1. Queries in which a value for the key is specified are common. Thus, an 
index on the key will get used frequently.

2. Since there is at most one tuple with a given key value, the index returns 
either nothing or one location for a tuple. Thus, at most one page must 
be retrieved to get that tuple into main memory (although there may be 
other pages that need to be retrieved to use the index itself).

The following example shows the power of key indexes, even in a query that 
involves a join.

E xam ple 8.11: Recall Figure 6.3, where we suggested an exhaustive pairing 
of tuples of Movies and MovieExec to compute a join. Implementing the join 
this way requires us to read each of the pages holding tuples of Movies and 
each of the pages holding tuples of MovieExec at least once. In fact, since these 
pages may be too numerous to fit in main memory at the same time, we may 
have to read each page from disk many times. With the right indexes, the whole 
query might be done with as few as two page reads.

An index on the key t i t l e  and year for Movies would help us find the one 
Movies tuple for Star Wars quickly. Only one page — the page containing that 
tuple — would be read from disk. Then, after finding the producer-certificate 
number in that tuple, an index on the key ce rt#  for MovieExec would help us 
quickly find the one tuple for the producer in the MovieExec relation. Again, 
only one page with MovieExec tuples would be read from disk, although we 
might need to read a small number of other pages to use the ce r t#  index. □

When the index is not on a key, it may or may not be able to improve the 
time spent retrieving from disk the tuples needed to answer a query. There are 
two situations in which an index can be effective, even if it is not on a key.

1 Pages a re  usually  referred  to  as “blocks” in discussion of d a tab ases, b u t if you are  fam iliar 
w ith  a  paged-m em ory  system  from  opera tin g  system s you shou ld  th in k  of th e  d isk  as d iv ided 
in to  pages.
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1. If the attribute is almost a key; that is, relatively few tuples have a given 
value for that attribute. Even if each of the tuples with a given value is 
on a different page, we shall not have to retrieve many pages from disk.

2. If the tuples are “clustered” on that attribute. We cluster a relation on an 
attribute by grouping the tuples with a common value for that attribute 
onto as few pages as possible. Then, even if there are many tuples, we 
shall not have to retrieve nearly as many pages as there are tuples.

E xam ple 8.12: As an example of an index of the first kind, suppose Movies 
had an index on t i t l e  rather than t i t l e  and year. Since t i t l e  by itself is not 
a key for the relation, there would be titles such as King Kong, where several 
tuples matched the index key t i t l e .  If we compared use of the index on t i t l e  
with what happens in Example 8.11, we would find that a search for movies with 
title King Kong would produce three tuples (because there are three movies with 
that title, from years 1933, 1976, and 2005). It is possible that these tuples are 
on three different pages, so all three pages would be brought into main memory, 
roughly tripling the amount of time this step takes. However, since the relation 
Movies probably is spread over many more than three pages, there is still a 
considerable time saving in using the index.

At the next step, we need to get the three producerC# values from these 
three tuples, and find in the relation MovieExec the producers of these three 
movies. We can use the index on c e rt#  to find the three relevant tuples of 
MovieExec. Possibly they are on three different pages, but we still spend less 
time than we would if we had to bring the entire MovieExec relation into main 
memory. □

E xam ple 8 .13: Now, suppose the only index we have on Movies is one on 
year, and we want to answer the query:

SELECT *
FROM Movies 
WHERE year = 1990;

First, suppose the tuples of Movies are not clustered by year; say they are 
stored alphabetically by title. Then this query gains little from the index on 
year. If there are, say, 100 movies per page, there is a good chance that any 
given page has at least one movie made in 1990. Thus, a large fraction of the 
pages used to hold the relation Movies will have to be brought to main memory.

However, suppose the tuples of Movies are clustered on year. Then we could 
use the index on year to find only the small number of pages that contained 
tuples with year =  1990. In this case, the year index will be of great help. In 
comparison, an index on the combination of t i t l e  and year would be of little 
help, no matter what attribute or attributes we used to cluster Movies. □
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8.4.3 Calculating the Best Indexes to Create
It might seem that the more indexes we create, the more likely it is that an 
index useful for a given query will be available. However, if modifications are 
the most frequent action, then we should be very conservative about creating 
indexes. Each modification on a relation R  forces us to change any index on 
one or more of the modified attributes of R. Thus, we must read and write not 
only the pages of R  that are modified, but also read and write certain pages 
that hold the index. But even when modifications are the dominant form of 
database action, it may be an efficiency gain to create an index on a frequently 
used attribute. In fact, since some modification commands involve querying the 
database (e.g., an INSERT with a select-from-where subquery or a DELETE with 
a condition) one must be very careful how one estimates the relative frequency 
of modifications and queries.

Remember that the typical relation is stored over many disk blocks (pages), 
and the principal cost of a query or modification is often the number of pages 
that need to be brought to main memory. Thus, indexes that let us find a 
tuple without examining the entire relation can save a lot of time. However, 
the indexes themselves have to be stored, at least partially, on disk, so accessing 
and modifying the indexes themselves cost disk accesses. In fact, modification, 
since it requires one disk access to read a page and another disk access to write 
the changed page, is about twice as expensive as accessing the index or the data 
in a query.

To calculate the new value of an index, we need to make assumptions 
about which queries and modifications are most likely to be performed on the 
database. Sometimes, we have a history of queries that we can use to get good 
information, on the assumption that the future will be like the past. In other 
cases, we may know that the database supports a particular application or ap
plications, and we can see in the code for those applications all the SQL queries 
and modifications that they will ever do. In either situation, we are able to list 
what we expect are the most common query and modification forms. These 
forms can have variables in place of constants, but should otherwise look like 
real SQL statements. Here is a simple example of the process, and of the 
calculations that we need to make.

E xam ple 8.14: Let us consider the relation

S ta rsIn (m o v ieT itle , movieYear, starName)

Suppose that there are three database operations that we sometimes perform 
on this relation:

Q i : We look for the title and year of movies in which a given star appeared. 
That is, we execute a query of the form:

SELECT m ovieT itle , movieYear 
FROM S ta rs ln  
WHERE starName = s;



356 CHAPTER 8. VIEWS AND INDEXES

for some constant s.

Q2: We look for the stars that appeared in a given movie. That is, we execute 
a query of the form:

SELECT starName
FROM S ta rs ln
WHERE m ovieT itle = t  AND movieYear = y;

for constants t and y.

I: We insert a new tuple into Stairs In. That is, we execute an insertion of 
the form:

INSERT INTO S ta rs ln  VALUES(i, y ,  s) ;

for constants t, y, and s.

Let us make the following assumptions about the data:

1. S ta rs ln  occupies 10 pages, so if we need to examine the entire relation 
the cost is 10.

2. On the average, a star has appeared in 3 movies and a movie has 3 stars.

3. Since the tuples for a given star or a given movie are likely to be spread 
over the 10 pages of S ta rs ln , even if we have an index on starName or on 
the combination of m ovieT itle and movieYear, it will take 3 disk accesses 
to find the (average of) 3 tuples for a star or movie. If we have no index 
on the star or movie, respectively, then 10 disk accesses are required.

4. One disk access is needed to read a page of the index every time we use 
that index to locate tuples with a given value for the indexed attribute (s). 
If an index page must be modified (in the case of an insertion), then 
another disk access is needed to write back the modified page.

5. Likewise, in the case of an insertion, one disk access is needed to read a 
page on which the new tuple will be placed, and another disk access is 
needed to write back this page. We assume that, even without an index, 
we can find some page on which an additional tuple will fit, without 
scanning the entire relation.

Figure 8.3 gives the costs of each of the three operations; Qi (query given a 
star), Q2  (query given a movie), and I  (insertion). If there is no index, then we 
must scan the entire relation for Q j or Q2  (cost 10),2 while an insertion requires

2T here  is a  sub tle  po in t th a t  we shall ignore here. In  m any  s itu a tio n s , it is possible to  
s to re  a  re la tio n  on  disk using consecutive pages o r tracks. In  th a t  case, th e  cost of re triev ing  
th e  en tire  re la tion  m ay be  significantly  less th a n  re triev ing  th e  sam e num ber o f pages chosen 
random ly.
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Action No Index Star Index Movie Index Both Indexes
Qi 10 4 10 4
Qi 10 10 4 4

I 2 4 4 6
Average 2 +  8pi +  8p2 4 +  6p2 4 +  6pi (M&1£1

Figure 8.3: Costs associated with the three actions, as a function of which 
indexes are selected

merely that we access a page with free space and rewrite it with the new tuple 
(cost of 2, since we assume that page can be found without an index). These 
observations explain the column labeled “No Index.”

If there is an index on stars only, then Q2  still requires a scan of the entire 
relation (cost 10). However, Q 1 can be answered by accessing one index page 
to find the three tuples for a given star and then making three more accesses 
to find those tuples. Insertion I  requires that we read and write both a page 
for the index and a page for the data, for a total of 4 disk accesses.

The case where there is an index on movies only is symmetric to the case 
for stars only. Finally, if there are indexes on both stars and movies, then it 
takes 4 disk accesses to answer either Q1 or Qi- However, insertion I  requires 
that we read and write two index pages as well as a data page, for a total of 6 
disk accesses. That observation explains the last column in Fig. 8.3.

The final row in Fig. 8.3 gives the average cost of an action, on the assump
tion that the fraction of the time we do Qi is p\ and the fraction of the time 
we do Q2  is P2 ; therefore, the fraction of the time we do I  is 1 — pi — p2.

Depending on pi and p2, any of the four choices of index/no index can yield 
the best average cost for the three actions. For example, if pi = p2  =0 .1 , then 
the expression 2 +  8pi +  8 p2  is the smallest, so we would prefer not to create any 
indexes. That is, if we are doing mostly insertion, and very few queries, then 
we don’t want an index. On the other hand, if pi = P2  = 0.4, then the formula 
6 — 2 pi — 2p 2  turns out to be the smallest, so we would prefer indexes on both 
starName and on the (m ovieT itle, movieYear) combination. Intuitively, if 
we are doing a lot of queries, and the number of queries specifying movies and 
stars are roughly equally frequent, then both indexes are desired.

If we have pi = 0 .5  and p2 = 0 .1 , then an index on stars only gives the best 
average value, because 4 +  6p2 is the formula with the smallest value. Likewise, 
Pi = 0 .1  and P2  = 0.5 tells us to create an index on only movies. The intuition 
is that if only one type of query is frequent, create only the index that helps 
that type of query. □

8.4.4 Automatic Selection of Indexes to Create
“Tuning” a database is a process that includes not only index selection, but the 
choice of many different parameters. We have not yet discussed much about
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physical implementation of databases, but some examples of tuning issues are 
the amount of main memory to allocate to various processes and the rate at 
which backups and checkpoints are made (to facilitate recovery from a crash). 
There are a number of tools that have been designed to take the responsibility 
from the database designer and have the system tune itself, or at least advise 
the designer on good choices.

We shall mention some of these projects in the bibliographic notes for this 
chapter. However, here is an outline of how the index-selection portion of tuning 
advisors work.

1. The first step is to establish the query workload. Since a DBMS normally 
logs all operations anyway, we may be able to examine the log and find a 
set of representative queries and database modifications for the database 
at hand. Or it is possible that we know, from the application programs 
that use the database, what the typical queries will be.

2. The designer may be offered the opportunity to specify some constraints, 
e.g., indexes that must, or must not, be chosen.

3. The tuning advisor generates a set of possible candidate indexes, and 
evaluates each one. Typical queries are given to the query optimizer of 
the DBMS. The query optimizer has the ability to estimate the running 
times of these queries under the assumption that one particular set of 
indexes is available.

4. The index set resulting in the lowest cost for the given workload is sug
gested to the designer, or it is automatically created.

A subtle issue arises when we consider possible indexes in step (3). The 
existence of previously chosen indexes may influence how much benefit (im
provement in average execution time of the query mix) another index offers. A 
“greedy” approach to choosing indexes has proven effective.

a) Initially, with no indexes selected, evaluate the benefit of each of the 
candidate indexes. If at least one provides positive benefit (i.e., it reduces 
the average execution time of queries), then choose that index.

b) Then, reevaluate the benefit of each of the remaining candidate indexes, 
assuming that the previously selected index is also available. Again, 
choose the index that provides the greatest benefit, assuming that benefit 
is positive.

c) In general, repeat the evaluation of candidate indexes under the assump
tion that all previously selected indexes are available. Pick the index with 
maximum benefit, until no more positive benefits can be obtained.
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8.4.5 Exercises for Section 8.4
E xercise 8 .4 .1 : Suppose that the relation S ta rs ln  discussed in Example 8.14 
required 100 pages rather than 10, but all other assumptions of that example 
continued to hold. Give formulas in terms of pi and p? to measure the cost of 
queries Q\ and Q2 and insertion I, under the four combinations of index/no in
dex discussed there.

! E xercise 8 .4 .2 : In this problem, we consider indexes for the relation

Ships(name, c l a s s , launched)

from our running battleships exercise. Assume:

i. name is the key.

ii. The relation Ships is stored over 50 pages.

Hi. The relation is clustered on c la s s  so we expect that only one disk access 
is needed to find the ships of a given class.

iv. On average, there are 5 ships of a class, and 25 ships launched in any 
given year.

v. With probability p\ the operation on this relation is a query of the form 
SELECT * FROM Ships WHERE name = n.

vi. With probability p2 the operation on this relation is a query of the form 
SELECT * FROM Ships WHERE c la s s  = c.

vii. With probability pz the operation on this relation is a query of the form 
SELECT * FROM Ships WHERE launched = y.

viii. With probability 1 — pi — p2 — P3  the operation on this relation is an 
insertion of a new tuple into Ships.

You can also make the assumptions about accessing indexes and finding empty 
space for insertions that were made in Example 8.14.

Consider the creation of indexes on name, c la ss , and launched. For each 
combination of indexes, estimate the average cost of an operation. As a function 
of Pi, P2 , and pz, what is the best choice of indexes?

8.5 M aterialized Views
A view describes how a new relation can be constructed from base tables by 
executing a query on those tables. Until now, we have thought of views only as 
logical descriptions of relations. However, if a view is used frequently enough, 
it may even be efficient to materialize it; that is, to maintain its value at all 
times. As with maintaining indexes, there is a cost involved in maintaining a 
materialized view, since we must recompute parts of the materialized view each 
time one of the underlying base tables changes.
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8.5.1 Maintaining a Materialized View
In principle, the DBMS needs to recompute a materialized view every time one 
of its base tables changes in any way. For simple views, it is possible to limit 
the number of times we need to consider changing the materialized view, and it 
is possible to limit the amount of work we do when we must maintain the view. 
We shall take up an example of a join view, and see that there are a number of 
opportunities to simplify our work.

E xam ple 8.15 : Suppose we frequently want to find the name of the producer 
of a given movie. We might find it advantageous to materialize a view:

CREATE MATERIALIZED VIEW MovieProd AS 
SELECT t i t l e ,  y ea r, name 
FROM Movies, MovieExec 
WHERE producerC# = ce rt#

To start, the DBMS does not have to consider the effect on MovieProd of an 
update on any attribute of Movies or MovieExec that is not mentioned in the 
query that defines the materialized view. Surely any modification to a relation 
that is neither Movies nor MovieExec can be ignored as well. However, there are 
a number of other simplifications that enable us to handle other modifications 
to Movies or MovieExec more efficiently than a re-execution of the query that 
defines the materialized view.

1. Suppose we insert a new movie into Movies, say t i t l e  = ’K il l  B i l l ’ , 
year =  2003, and producerC# =  23456. Then we only need to look up 
c e rt#  =  23456 in MovieExec. Since c e rt#  is the key for MovieExec, there 
can be at most one name returned by the query

SELECT name FROM MovieExec 
WHERE ce rt#  = 23456;

As this query returns name = ’Quentin T a ran tin o ’, the DBMS can in
sert the proper tuple into MovieProd by:

INSERT INTO MovieProd
VALUES(’K il l  B i l l ’ , 2003, ’Quentin T a ran tin o ’) ;

Note that, since MovieProd is materialized, it is stored like any base table, 
and this operation makes sense; it does not have to be reinterpreted by 
an instead-of trigger or any other mechanism.

2. Suppose we delete a movie from Movies, say the movie with t i t l e  = 
’Dumb & Dumber’ and year =  1994. The DBMS has only to delete this 
one movie from MovieProd by:
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DELETE FROM MovieProd
WHERE t i t l e  = ’Dumb & Dumber’ AND year = 1994;

3. Suppose we insert a tuple into MovieExec, and that tuple has ce r t#  =  
34567 and name = ’Max B ia ly s to ck ’ . Then the DBMS may have to 
insert into MovieProd some movies that were not there because their 
producer was previously unknown. The operation is:

INSERT INTO MovieProd
SELECT t i t l e ,  y ea r, ’Max B ia ly s to ck ’
FROM Movies
WHERE producerC# = 34567;

4. Suppose we delete the tuple with c e r t#  =  45678 from MovieExec. Then 
the DBMS must delete from MovieProd all movies that have producerC# 
=  45678, because there now can be no matching tuple in MovieExec for 
their underlying Movies tuple. Thus, the DBMS executes:

DELETE FROM MovieProd
WHERE ( t i t l e ,  year) IN

(SELECT t i t l e ,  year FROM Movies 
WHERE producerC# = 45678);

Notice that it is not sufficient to look up the name corresponding to 45678 
in MovieExec and delete all movies from MovieProd that have that pro
ducer name. The reason is that, because name is not a key for MovieExec, 
there could be two producers with the same name.

We leave as an exercise the consideration of how updates to Movies that involve 
t i t l e  or year are handled, and how updates to MovieExec involving c e rt#  are 
handled. □

The most important thing to take away from Example 8.15 is that all the 
changes to the materialized view are incremental. That is, we never have to 
reconstruct the whole view from scratch. Rather, insertions, deletions, and up
dates to a base table can be implemented in a join view such as MovieProd 
by a small number of queries to the base tables followed by modification state
ments on the materialized view. Moreover, these modifications do not affect all 
the tuples of the view, but only those that have at least one attribute with a 
particular constant.

It is not possible to find rules such as those in Example 8.15 for any ma
terialized view we could construct; some are just too complicated. However, 
many common types of materialized view do allow the view to be maintained 
incrementally. We shall explore another common type of materialized view — 
aggregation views — in the exercises.
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8.5.2 Periodic Maintenance of Materialized Views
There is another setting in which we may use materialized views, yet not have 
to worry about the cost or complexity of maintaining them up-to-date as the 
underlying base tables change. We shall encounter the option when we study 
OLAP in Section 10.6, but for the moment let us remark that it is common for 
databases to serve two purposes. For example, a department store may use its 
database to record its current inventory; this data changes with every sale. The 
same database may be used by analysts to study buyer patterns and to predict 
when the store is going to need to restock an item.

The analysts’ queries may be answered more efficiently if they can query 
materialized views, especially views that aggregate data (e.g., sum the inven
tories of different sizes of shirt after grouping by style). But the database is 
updated with each sale, so modifications are far more frequent than queries. 
When modifications dominate, it is costly to have materialized views, or even 
indexes, on the data.

What is usually done is to create materialized views, but not to try to keep 
them up-to-date as the base tables change. Rather, the materialized views 
are reconstructed periodically (typically each night), when other activity in 
the database is low. The materialized views are only used by analysts, and 
their data might be out of date by as much as 24 hours. However, in normal 
situations, the rate at which an item is bought by customers changes slowly. 
Thus, the data will be “good enough” for the analysts to predict items that 
are selling well and those that are selling poorly. Of course if Brad P itt is seen 
wearing a Hawaiian shirt one morning, and every cool guy has to buy one by 
that evening, the analysts will not notice they are out of Hawaiian shirts until 
the next morning, but the risk of that sort of occurrence is low.

8.5.3 Rewriting Queries to Use Materialized Views
A materialized view can be referred to in the FROM clause of a query, just as 
a virtual view can (Section 8.1.2). However, because a materialized view is 
stored in the database, it is possible to rewrite a query to use a materialized 
view, even if that view was not mentioned in the query as written. Such a 
rewriting may enable the query to execute much faster, because the hard parts 
of the query, e.g., joining of relations, may have been carried out already when 
the materialized view was constructed.

However,we must be very careful to check that the query can be rewritten to 
use a materialized view. A complete set of rules that will let us use materialized 
views of any kind is beyond the scope of this book. However, we shall offer a 
relatively simple rule that applies to the view of Example 8.15 and similar views.

Suppose we have a materialized view V  defined by a query of the form:

SELECT L v  
FROM R v  
WHERE Cv
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where L y  is a list of attributes, R y  is a list of relations, and Cy is a condition. 
Similarly, suppose we have a query Q of the same form:

SELECT L q  
FROM R q 
WHERE C q

Here are the conditions under which we can replace part of the query Q by the 
view V.

1. The relations in list R y  all appear in the list R q .

2. The condition Cq is equivalent to Cy AND C for some condition C. As a 
special case, Cq could be equivalent to C y, in which case the “AND C” is 
unnecessary.

3. If C  is needed, then the attributes of relations on list R y  that C  mentions 
are attributes on the list L y.

4. Attributes on the list L q that come from relations on the list R y  are also 
on the list L y.

If all these conditions are met, then we can rewrite Q to use V , as follows:

a) Replace the list R q by V  and the relations that are on list R q but not 
on R y.

b) Replace Cq by C. If C is not needed (i.e., Cy = Cq ), then there is no 
WHERE clause.

E xam ple 8 .16: Suppose we have the materialized view MovieProd from Ex
ample 8.15. This view is defined by the query V:

SELECT t i t l e ,  y ea r, name 
FROM Movies, MovieExec 
WHERE producerC# = ce rt#

Suppose also that we need to answer the query Q that asks for the names of 
the stars of movies produced by Max Bialystock. For this query we need the 
relations:

M o v ie s ( title , y ea r, len g th , genre, studioName, producerC#) 
S ta rs ln (m o v ieT itle , movieYear, starName)
MovieExec(name, add ress, c e r t# , netWorth)

The query Q can be written:

SELECT starName
FROM S ta rs ln , Movies, MovieExec 
WHERE m ovieT itle = t i t l e  AND movieYear = year AND 

producerC# = c e rt#  AND name = ’Max B ia ly s to ck ’ ;
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Let us compare the view definition V  with the query Q, to see that they 
meet the conditions listed above.

1. The relations in the FROM clause of V  are all in the FROM clause of Q.

2. The condition from Q can be written as the condition from V  AND C, 
where C —

m ovieT itle = t i t l e  AND movieYear = year AND 
name = ’Max B ia ly s to ck ’

3. The attributes of C  that come from relations of V  (Movies and Movie
Exec) are t i t l e ,  year, and name. These attributes all appear in the 
SELECT clause of V.

4. No attribute from the SELECT list of Q is from a relation that appears in 
the FROM list of V.

We may thus use V  in Q, yielding the rewritten query:

SELECT starName
FROM S ta rs ln , MovieProd
WHERE m ovieT itle = t i t l e  AND movieYear = year AND 

name = ’Max B ia ly s to ck ’ ;

That is, we replaced Movies and MovieExec in the FROM clause by the mate
rialized view MovieProd. We also removed the condition of the view from the 
WHERE clause, leaving only the condition C. Since the rewritten query involves 
the join of only two relations, rather than three, we expect the rewritten query 
to execute in less time than the original. □

8.5.4 Automatic Creation of Materialized Views
The ideas that were discussed in Section 8.4.4 for indexes can apply as well 
to materialized views. We first need to establish or approximate the query 
workload. An automated materialized-view-selection advisor needs to generate 
candidate views. This task can be far more difficult than generating candi
date indexes. In the case of indexes, there is only one possibile index for each 
attribute of each relation. We could also consider indexes on small sets of at
tributes of a relation, but even if we do, generating all the candidate indexes is 
straightforward. However, with materialized views, any query could in principle 
define a view, so there is no limit on what views we need to consider.

The process can be limited if we remember that there is no point in creating 
a materialized view that does not help for at least one query of our expected 
workload. For example, suppose some or all of the queries in our workload 
have the form considered in Section 8.5.3. Then we can use the analysis of that 
section to find the views that can help a given query. We can limit ourselves to 
candidate materialized views that:
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1. Have a list of relations in the FROM clause that is a subset of those in the 
FROM clause of at least one query of the workload.

2. Have a WHERE clause that is the AND of conditions that each appear in at 
least one query.

3. Have a list of attributes in the SELECT clause that is sufficient to be used 
in at least one query.

To evaluate the benefit of a materialized view, let the query optimizer esti
mate the running times of the queries, both with and without the materialized 
view. Of course, the optimizer must be designed to take advantage of materi
alized views; all modern optimizers know how to exploit indexes, but not all 
can exploit materialized views. Section 8.5.3 was an example of the reasoning 
that would be necessary for a query optimizer to perform, if it were to take 
advantage of such views.

There is another issue that comes up when we consider automatic choice of 
materialized views, but that did not surface for indexes. An index on a relation 
is generally smaller than the relation itself, and all indexes on one relation 
take roughly the same amount of space. However, materialized views can vary 
radically in size, and some — those involving joins — can be very much larger 
than the relation or relations on which they are built. Thus, we may need to 
rethink the definition of the “benefit” of a materialized view. For example, we 
might want to define the benefit to be the improvement in average running time 
of the query workload divided by the amount of space the view occupies.

8.5.5 Exercises for Section 8.5
Exercise 8 .5 .1 : Complete Example 8.15 by considering updates to either of 
the base tables.

Exercise 8 .5 .2 : Suppose the view NewPC of Exercise 8.2.3 were a materialized 
view. What modifications to the base tables Product and PC would require a 
modification of the materialized view? How would you implement those modi
fications incrementally?

E xercise 8 .5 .3 : This exercise explores materialized views that are based on 
aggregation of data. Suppose we build a materialized view on the base tables

C la s se s (c la s s , ty p e , country , numGuns, bo re , displacem ent) 
Ships(name, c la s s ,  launched)

from our running battleships exercise, as follows:

CREATE MATERIALIZED VIEW S h ip S ta ts  AS
SELECT country , AVG(displacement) ,  COUNT(*)
FROM C lasses , Ships
WHERE C la s se s .c la s s  = S h ip s .c la s s
GROUP BY country;
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What modifications to the base tables C lasses and Ships would require a 
modification of the materialized view? How would you implement those modi
fications incrementally?

Exercise 8 .5 .4 : In Section 8.5.3 we gave conditions under which a materialized 
view of simple form could be used in the execution of a query of similar form. 
For the view of Example 8.15, describe all the queries of that form, for which 
this view could be used.

8.6 Summary of Chapter 8
♦  Virtual Views: A virtual view is a definition of how one relation (the view) 

may be constructed logically from tables stored in the database or other 
views. Views may be queried as if they were stored relations. The query 
processor modifies queries about a view so the query is instead about the 
base tables that are used to define the view.

♦  Updatable Views: Some virtual views on a single relation are updatable, 
meaning that we can insert into, delete from, and update the view as if 
it were a stored table. These operations are translated into equivalent 
modifications to the base table over which the view is defined.

♦  Instead-Of Triggers: SQL allows a special type of trigger to apply to a 
virtual view. When a modification to the view is called for, the instead- 
of trigger turns the modification into operations on base tables that are 
specified in the trigger.

♦  Indexes: While not part of the SQL standard, commercial SQL systems 
allow the declaration of indexes on attributes; these indexes speed up 
certain queries or modifications that involve specification of a value, or 
range of values, for the indexed attribute(s).

♦  Choosing Indexes: While indexes speed up queries, they slow down data
base modifications, since the indexes on the modified relation must also 
be modified. Thus, the choice of indexes is a complex problem, depending 
on the actual mix of queries and modifications performed on the database.

♦  Automatic Index Selection: Some DBMS’s offer tools that choose indexes 
for a database automatically. They examine the typical queries and mod
ifications performed on the database and evaluate the cost trade-offs for 
different indexes that might be created.

4- Materialized Views: Instead of treating a view as a query on base tables, 
we can use the query as a definition of an additional stored relation, whose 
value is a function of the values of the base tables.
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♦  Maintaining Materialized Views: As the base tables change, we must 
make the corresponding changes to any materialized view whose value is 
affected by the change. For many common kinds of materialized views, 
it is possible to make the changes to the view incrementally, without 
recomputing the entire view.

♦  Rewriting Queries to Use Materialized Views: The conditions under which 
a query can be rewritten to use a materialized view are complex. However, 
if the query optimizer can perform such rewritings, then an automatic de
sign tool can consider the improvement in performance that results from 
creating materialized views and can select views to materialize, automat
ically.
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[3] introduces the greedy algorithm for selecting materialized views.
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Chapter 9

SQL in a Server 
Environment

We now turn to the question of how SQL fits into a complete programming 
environment. The typical server environment is introduced in Section 9.1. Sec
tion 9.2 introduces the SQL terminology for client-server computing and con
necting to a database.

Then, we turn to how programming is really done, when SQL must be used 
to access a database as part of a typical application. In Section 9.3 we see 
how to embed SQL in programs that are written in an ordinary programming 
language, such as C. A critical issue is how we move data between SQL relations 
and the variables of the surrounding, or “host,” language. Section 9.4 considers 
another way to combine SQL with general-purpose programming: persistent 
stored modules, which are pieces of code stored as part of a database schema 
and executable on command from the user.

A third programming approach is a “call-level interface,” where we program 
in some conventional language and use a library of functions to access the 
database. In Section 9.5 we discuss the SQL-standard library called SQL/CLI, 
for making calls from C programs. Then, in Section 9.6 we meet Java’s JDBC 
(database connectivity), which is an alternative call-level interface. Finally, 
another popular call-level interface, PHP, is covered in Section 9.7.

9.1 The Three-Tier Architecture
Databases are used in many different settings, including small, standalone 
databases. For example, a scientist may run a copy of MySQL or Microsoft 
Access on a laboratory computer to store experimental data. However, there is 
a very common architecture for large database installations; this architecture 
motivates the discussion of the entire chapter. The architecture is called three- 
tier or three-layer, because it distinguishes three different, interacting functions:

369
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1. Web Servers. These are processes that connect clients to the database 
system, usually over the Internet or possibly a local connection.

2. Application Servers. These processes perform the “business logic,” what
ever it is the system is intended to do.

3. Database Servers. These processes run the DBMS and perform queries 
and modifications at the request of the application servers.

The processes may all run on the same processor in a small system, but it is 
common to dedicate a large number of processors to each of the tiers. Figure 9.1 
suggests how a large database installation would be organized.

Figure 9.1: The Three-Tier Architecture

9.1.1 The Web-Server Tier
The web-server processes manage the interactions with the user. When a user 
makes contact, perhaps by opening a URL, a web server, typically running



9.1. THE THREE-TIER ARCHITECTURE 371

Apache/Tomcat, responds to the request. The user then becomes a client of 
this web-server process. Typically, the client’s actions are performed by the 
web-browser, e.g., managing of the filling of forms, which are then posted to 
the web server.

As an example, let us consider a site such as Amazon.com. A user (cus
tomer) opens a connection to the Amazon database system by entering the 
URL www. amazon. com into their browser. The Amazon web-server presents a 
“home page” to the user, which includes forms, menus, and buttons enabling 
the user to express what it is they want to do. For example, the user may set a 
menu to Books and enter into a form the title of the book they are interested in. 
The client web-browser transmits this information to the Amazon web-server, 
and that web-server must negotiate with the next tier — the application tier — 
to fulfill the client’s request.

9.1.2 The Application Tier
The job of the application tier is to turn data, from the database, into a response 
to the request that it receives from the web-server. Each web-server process 
can invoke one or more application-tier processes to handle the request; these 
processes can be on one machine or many, and they may be on the same or 
different machines from the web-server processes.

The actions performed by the application tier are often referred to as the 
business logic of the organization operating the database. That is, one designs 
the application tier by reasoning out what the response to a request by the 
potential customer should be, and then implementing that strategy.

In the case of our example of a book at Amazon.com, this response would 
be the elements of the page that Amazon displays about a book. That data 
includes the title, author, price, and several other pieces of information about 
the book. It also includes links to more information, such as reviews, alternative 
sellers of the book, and similar books.

In a simple system, the application tier may issue database queries directly 
to the database tier, and assemble the results of those queries, perhaps in an 
HTML page. In a more complex system, there can be several subtiers to the 
application tier, and each may have its own processes. A common architecture 
is to have a subtier that supports “objects.” These objects can contain data 
such as the title and price of a book in a “book object.” Data for this object is 
obtained by a database query. The object may also have methods that can be 
invoked by the application-tier processes, and these methods may in turn cause 
additional queries to be issued to the database when and if they are invoked.

Another subtier may be present to support database integration. That is, 
there may be several quite independent databases that support operations, and 
it may not be possible to issue queries involving data from more than one 
database at a time. The result^'of queries to different sources may need to be 
combined at the integration subtier. To make integration more complex, the 
databases may not be compatable in a number of important ways. We shall
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examine the technology of information integration elsewhere. However, for the 
moment, consider the following hypothetical example.

E xam ple 9 .1 : The Amazon database containing information about a book 
may have a price in dollars. But the customer is in Europe, and their account 
information is in another database, located in Europe, with billing information 
in Euros. The integration subtier needs to know that there is a difference in 
currencies, when it gets a price from the books database and uses that price to 
enter data into a bill that is displayed to the customer. □

9.1.3 The Database Tier
Like the other tiers, there can be many processes in the database tier, and 
the processes can be distributed over many machines, or all be together on 
one. The database tier executes queries that are requested from the application 
tier, and may also provide some buffering of data. For example, a query that 
produces many tuples may be fed one-at-a-time to the requesting process of the 
application tier.

Since creating connections to the database takes significant time, we nor
mally keep a large number of connections open and allow application processes 
to share these connections. Each application process must return the connection 
to the state in which it was found, to avoid unexpected interactions between 
application processes.

The balance of this chapter is about how we implement a database tier. 
Especially, we need to learn:

1. How do we enable a database to interact with “ordinary” programs that 
are written in a conventional language such as C or Java?

2. How do we deal with the differences in data-types supported by SQL and 
conventional languages? In particular, relations are the results of queries, 
and these are not directly supported by conventional languages.

3. How do we manage connections to a database when these connections are 
shared between many short-lived processes?

9.2 The SQL Environment
In this section we shall take the broadest possible view of a DBMS and the 
databases and programs it supports. We shall see how databases are defined and 
organized into clusters, catalogs, and schemas. We shall also see how programs 
are linked with the data they need to manipulate. Many of the details depend 
on the particular implementation, so we shall concentrate on the general ideas 
that are contained in the SQL standard. Sections 9.5, 9.6, and 9.7 illustrate 
how these high-level concepts appear in a “call-level interface,” which requires 
the programmer to make explicit connections to databases.
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9.2.1 Environments
A SQL environment is the framework under which data may exist and SQL 
operations on data may be executed. In practice, we should think of a SQL 
environment as a DBMS running at some installation. For example, ABC 
company buys a license for the Megatron 2010 DBMS to run on a collection 
of ABC’s machines. The system running on these machines constitutes a SQL 
environment.

All the database elements we have discussed — tables, views, triggers, and so 
on — are defined within a SQL environment. These elements axe organized into 
a hierarchy of structures, each of which plays a distinct role in the organization. 
The structures defined by the SQL standard are indicated in Fig. 9.2.

Figure 9.2: Organization of database elements within the environment

Briefly, the organization consists of the following structures:

1. Schemas. These are collections of tables, views, assertions, triggers, and 
some other types of information (see the box on “More Schema Elements” 
in Section 9.2.2). Schemas are the basic units of organization, close to 
what we might think of as a “database,” but in fact somewhat less than 
a database as we shall see in point (3) below.

2. Catalogs. These are collections of schemas. They are the basic unit for 
supporting unique, accessible terminology. Each catalog has one or more 
schemas; the names of schemas within a catalog must be unique, and
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each catalog contains a special schema called INFORMATION_SCHEMA that 
contains information about all the schemas in the catalog.

3. Clusters. These are collections of catalogs. Each user has an associated 
cluster: the set of all catalogs accessible to the user (see Section 10.1 for 
an explanation of how access to catalogs and other elements is controlled). 
A cluster is the maximum scope over which a query can be issued, so in 
a sense, a cluster is “the database” as seen by a particular user.

9.2.2 Schemas

The simplest form of schema declaration is:

CREATE SCHEMA <schema name> <element declarations>

The element declarations are of the forms discussed in various places, such as 
Sections 2.3, 8.1.1, 7.5.1, and 9.4.1.

E xam ple 9 .2 : We could declare a schema that includes the five relations about 
movies that we have been using in our running example, plus some of the other 
elements we have introduced, such as views. Figure 9.3 sketches the form of 
such a declaration. O

CREATE SCHEMA MovieSchema
CREATE TABLE MovieStar . . .  as in Fig. 7.3

Create-table statements for the four other tables 
CREATE VIEW MovieProd . . .  as in Example 8.2 

Other view declarations 
CREATE ASSERTION RichPres . . .  as in Example 7.11

Figure 9.3: Declaring a schema

It is not necessary to declare the schema all at once. One can modify or 
add to the “current” schema using the appropriate CREATE, DROP, or ALTER 
statement, e.g., CREATE TABLE followed by the declaration of a new table for 
the schema. We change the “current” schema with a SET SCHEMA statement. 
For example,

SET SCHEMA MovieSchema;

makes the schema described in Fig. 9.3 the current schema. Then, any decla
rations of schema elements are added to that schema, and any DROP or ALTER 
statements refer to elements already in that schema.
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More Schema Elements

Some schema elements that we have not already mentioned, but that oc
casionally are useful are:

• Domains: These are sets of values or simple data types. They are 
little used today, because object-relational DBMS’s provide more 
powerful type-creation mechanisms; see Section 10.4.

• Character sets: These are sets of symbols and methods for encoding 
them. ASCII and Unicode are common options.

• Collations: A collation specifies which characters are “less than” 
which others. For example, we might use the ordering implied by 
the ASCII code, or we might treat lower-case and capital letters the 
same and not compare anything that isn’t a letter.

• Grant statements: These concern who has access to schema elements. 
We shall discuss the granting of privileges in Section 10.1.

• Stored Procedures: These are executable code; see Section 9.4.

Just as schema elements like tables are ere: ithin a schema, schemas are 
created and modified within a catalog. In principle, we would expect the process 
of creating and populating catalogs to be analogous to the process of creating 
and populating schemas. Unfortunately, SQL does not define a standard way 
to do so, such as a statement

followed by a list of schemas belonging to that catalog and the declarations of 
those schemas.

However, SQL does stipulate a statement

This statement allows us to set the “current” catalog, so new schemas will go 
into that catalog and schema modifications will refer to schemas in that catalog 
should there be a name ambiguity.

9.2.4 Clients and Servers in the SQL Environment

9.2.3 Catalogs

CREATE CATALOG <catalog name>

SET CATALOG <catalog name>

A SQL environment is more than a collection of catalogs and schemas. It 
contains elements whose purpose is to support operations on the database or
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Complete Names for Schema Elements

Formally, the name for a schema element such as a table is its catalog 
name, its schema name, and its own name, connected by dots in that 
order. Thus, the table Movies in the schema MovieSchema in the catalog 
MovieCatalog can be referred to as

M ovieCatalog.MovieSchema.Movies

If the catalog is the default or current catalog, then we can omit that 
component of the name. If the schema is also the default or current schema, 
then that part too can be omitted, and we are left with the element’s own 
name, as is usual. However, we have the option to use the full name if we 
need to access something outside the current schema or catalog.

databases represented by those catalogs and schemas. According to the SQL 
standard, within a SQL environment are two special kinds of processes: SQL 
clients and SQL servers.

In terms of Fig. 9.1, a “SQL server” plays the role what we called a “database 
server there. A “SQL client” is like the application servers from that figure. 
The SQL standard does not define processes analogous to what we called “Web 
servers” or “clients” in Fig. 9.1.

9.2.5 Connections
If we wish to run some program involving SQL at a host where a SQL client ex
ists, then we may open a connection between the client and server by executing 
a SQL statement

CONNECT TO <server name> AS <connection name> 
AUTHORIZATION <name and password>

The server name is something that depends on the installation. The word 
DEFAULT can substitute for a name and will connect the user to whatever SQL 
server the installation treats as the “default server.” We have shown an au
thorization clause followed by the user’s name and password. The latter is the 
typical method by which a user would be identified to the server, although other 
strings following AUTHORIZATION might be used.

The connection name can be used to refer to the connection later on. The 
reason we might have to refer to the connection is that SQL allows several 
connections to be opened by the user, but only one can be active at any time. 
To switch among connections, we can make connl become the active connection 
by the statement:
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SET CONNECTION connl;

Whatever connection was currently active becomes dormant until it is reacti
vated with another SET CONNECTION statement that mentions it explicitly.

We also use the name when we drop the connection. We can drop connection 
connl by

DISCONNECT connl;

Now, connl is terminated; it is not dormant and cannot be reactivated.
However, if we shall never need to refer to the connection being created, then 

AS and the connection name may be omitted from the CONNECT TO statement. 
It is also permitted to skip the connection statements altogether. If we simply 
execute SQL statements at a host with a SQL client, then a default connection 
will be established on our behalf.

9.2.6 Sessions
The SQL operations that are performed while a connection is active form a 
session. The session lasts as long as the connection that created it. For example, 
when a connection is made dormant, its session also becomes dormant, and 
reactivation of the connection by a SET CONNECTION statement also makes the 
session active. Thus, we have shown the session and connection as two aspects 
of the link between client and server in Fig. 9.4. j

Each session has a current catalog and a current schema within that catalog. 
These may be set with statements SET SCHEMA and SET CATALOG, as discussed 
in Sections 9.2.2 and 9.2.3. There is also an authorized user for every session, 
as we shall discuss in Section 10.1.

Figure 9.4: The SQL client-server interactions
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The Languages of the SQL Standard

Implementations conforming to the SQL standard are required to support 
at least one of the following seven host languages: ADA, C, Cobol, Fortran, 
M (formerly called Mumps, and used primarily in the medical community), 
Pascal, and PL/I. We shall use C in our examples.

9.2.7 Modules
A module is the SQL term for an application program. The SQL standard 
suggests that there are three kinds of modules, but insists only that a SQL 
implementation offer the user at least one of these types.

1. Generic SQL Interface. The user may type SQL statements that axe 
executed by a SQL server. In this mode, each query or other statement 
is a module by itself. It is this mode that we imagined for most of our 
examples in this book, although in practice it is rarely used.

2. Embedded SQL. This style will be discussed in Section 9.3. Typically, a 
preprocessor turns the embedded SQL statements into suitable function or 
procedure calls to the SQL system. The compiled host-language program, 
including these function calls, is a module.

3. True Modules. The most general style of modules envisioned by SQL is 
a collection of stored functions or procedures, some of which are host- 
language code and some of which are SQL statements. They commu
nicate among themselves by passing parameters and perhaps via shared 
variables. PSM modules (Section 9.4) are an example of this type of 
module.

An execution of a module is called a SQL agent. In Fig. 9.4 we have shown 
both a module and an SQL agent, as one unit, calling upon a SQL client 
to establish a connection. However, we should remember that the distinction 
between a module and an SQL agent is analogous to the distinction between 
a program and a process; the first is code, the second is an execution of that 
code.

9.3 The SQL/Host-Language Interface
To this point, we have used the generic SQL interface in our examples. That 
is, we have assumed there is a SQL interpreter, which accepts and executes the 
sorts of SQL queries and commands that we have learned. Although provided 
as an option by almost all DBMS’s, this mode of operation is actually rare. In 
real systems, such as those described in Section 9.1, there is a program in some



9.3. THE SQL/HOST-LANGUAGE INTERFACE 379

conventional host language such as C, but some of the steps in this program are 
actually SQL statements.

H ost language

H ost-language

com piler

T
O bject-code

program

SQL library

Figure 9.5: Processing programs with SQL statements embedded

A sketch of a typical programming system that involves SQL statements is 
in Fig. 9.5. There, we see the programmer writing programs in a host language, 
but with some special “embedded” SQL statements. There are two ways this 
embedding could take place.

1. Call-Level Interface. A library is provided, and the embedding of SQL in 
the host language is really calls to functions or methods in this library. 
SQL statements are usually string arguments of these methods. This 
approach, often referred to as a call-level interface or CLI, is discussed in 
Section 9.5 and is represented by the curved arrow in Fig. 9.5 from the 
user directly to the host language.

2. Directly Embedded SQL. The entire host-language program, with embed
ded SQL statements, is sent to a preprocessor, which changes the embed
ded SQL statements into something that makes sense in the host language. 
Typically, the SQL statements are replaced by calls to library functions 
or methods, so the difference between a CLI and direct embedding of SQL 
is more a matter of “look and feel” than of substance. The preprocessed 
host-language program is then compiled in the usual manner and operates 
on the database through execution of the library calls.
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In this section, we shall learn the SQL standard for direct embedding in a 
host language — C in particular. We are also introduced to a number of con
cepts, such as cursors, that appear in all, or almost all, systems for embedding 
SQL.

9.3.1 The Impedance Mismatch Problem
The basic problem of connecting SQL statements with those of a conventional 
programming language is impedance mismatch: the fact that the data model 
of SQL differs so much from the models of other languages. As we know, SQL 
uses the relational data model at its core. However, C and similar languages 
use a data model with integers, reals, arithmetic, characters, pointers, record 
structures, arrays, and so on. Sets are not represented directly in C or these 
other languages, while SQL does not use pointers, loops and branches, or many 
other common programming-language constructs. As a result, passing data 
between SQL and other languages is not straightforward, and a mechanism 
must be devised to allow the development of programs that use both SQL and 
another language.

One might first suppose that it is preferable to use a single language. Ei
ther do all computation in SQL or forget SQL and do all computation in a 
conventional language. However, we can dispense with the idea of omitting 
SQL when there are database operations involved. SQL systems greatly aid the 
programmer in writing database operations that can be executed efficiently, yet 
that can be expressed at a very high level. SQL takes from the programmer’s 
shoulders the need to understand how data is organized in storage or how to 
exploit that storage structure to operate efficiently on the database.

On the other hand, there are many important things that SQL cannot do 
at all. For example, one cannot write a SQL query to compute n factorial, 
something that is an easy exercise in C or similar languages.1 As another 
example, SQL cannot format its output directly into a convenient form such 
as a graphic. Thus, real database programming requires both SQL and a host 
language.

9.3.2 Connecting SQL to the Host Language
When we wish to use a SQL statement within a host-language program, we 
warn the preprocessor that SQL code is coming with the keywords EXEC SQL in 
front of the statement. We transfer information between the database, which 
is accessed only by SQL statements, and the host-language program through 
shared, variables, which are allowed to appear in both host-language statements

1W e should  be  careful here. T here  are extensions to  th e  basic SQL language, such as 
recursive SQ L discussed in Section 10.2 o r S Q L /P S M  discussed in Section 9.4, th a t  do offer 
“T uring  com pleteness” —  th e  ab ility  to  com pute  any th in g  th a t  can  be  com pu ted  in  any o th er 
p rog ram m ing  language. However, these  extensions were never in tended  for general-purpose 
calcu la tion , an d  we do no t regard  th em  as general-purpose languages.
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and SQL statements. Shared variables are prefixed by a colon within a SQL 
statement, but they appear without the colon in host-language statements.

A special variable, called SQLSTATE in the SQL standard, serves to con
nect the host-language program with the SQL execution system. The type of 
SQLSTATE is an array of five characters. Each time a function of the SQL library 
is called, a code is put in the variable SQLSTATE that indicates any problems 
found during that call. The SQL standard also specifies a large number of 
five-character codes and their meanings.

For example, ’00000’ (five zeroes) indicates that no error condition oc
curred, and ’ 02000 ’ indicates that a tuple requested as part of the answer to 
a SQL query could not be found. The latter code is very important, since it 
allows us to create a loop in the host-language program that examples tuples 
from some relation one-at-a-time and to break the loop after the last tuple has 
been examined.

9.3.3 The DECLARE Section
To declare shared variables, we place their declarations between two embedded 
SQL statements:

EXEC SQL BEGIN DECLARE SECTION;

EXEC SQL END DECLARE SECTION;

What appears between them is called the declare section. The form of variable 
declarations in the declare section is whatever the host language requires. It 
only makes sense to declare variables to have types that both the host language 
and SQL can deal with, such as integers, reals, and character strings or arrays.

E xam ple 9 .3 : The following statements might appear in a C function that 
updates the S tudio relation:

EXEC SQL BEGIN DECLARE SECTION;
char studioName[50], studioA ddr[256]; 
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

The first and last statements are the required beginning and end of the declare 
section. In the middle is a statement declaring two shared variables, s tu d io 
Name and studioAddr. These are both character arrays and, as we shall see, 
they can be used to hold a name and address of a studio that are made into 
a tuple and inserted into the S tudio relation. The third statement declares 
SQLSTATE to be a six-character array.2 □

2W e shall use six  charac te rs  for th e  five-character value o f SQLSTATE because in  p rog ram s 
to  follow we w ant to  use th e  C  function  strcm p  to  te s t w h e th er SQLSTATE has a  ce rta in  value. 
Since strcm p  expects s trin g s to  be  te rm in a te d  by ’ \ 0 ’ , we need a  s ix th  ch a rac te r for th is  
endm arker. T h e  six th  ch a rac te r  m u st be se t in itia lly  to  ’ \ 0 ’ , b u t we shall n o t show th is  
assignm ent in p rog ram s to  follow.
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9.3.4 Using Shared Variables
A shared variable can be used in SQL statements in places where we expect or 
allow a constant. Recall that shared variables are preceded by a colon when 
so used. Here is an example in which we use the variables of Example 9.3 as 
components of a tuple to be inserted into relation Studio.

E xam ple 9 .4 : In Fig. 9.6 is a sketch of a C function getS tud io  that prompts 
the user for the name and address of a studio, reads the responses, and inserts 
the appropriate tuple into Studio. Lines (1) through (4) are the declarations 
from Example 9.3. We omit the C code that prints requests and scans entered 
text to fill the two arrays studioName and studioAddr.

void g e tS tu d io () {

1) EXEC SQL BEGIN DECLARE SECTION;
2) char studioName[50], studioA ddr[256];
3) char SQLSTATE[6];
4) EXEC SQL END DECLARE SECTION;

/*  p r in t  req u est th a t  s tu d io  name and address 
be en tered  and read  response in to  v a r ia b le s  
studioName and studioAddr */

5) EXEC SQL INSERT INTO Studio(name, address)
6) VALUES ( : studioName, :stud ioA ddr);

}

Figure 9.6: Using shared variables to insert a new studio

Then, in lines (5) and (6) is an embedded SQL INSERT statement. This 
statement is preceded by the keywords EXEC SQL to indicate that it is indeed 
an embedded SQL statement rather than ungrammatical C code. The values 
inserted by lines (5) and (6) are not explicit constants, as they were in all 
previous examples; rather, the values appearing in line (6) are shared variables 
whose current values become components of the inserted tuple. □

Any SQL statement that does not return a result (i.e., is not a query) can be 
embedded in a host-language program by preceding it with EXEC SQL. Examples 
of embeddable SQL statements include insert-, delete-, and update-statements 
and those statements that create, modify, or drop schema elements such as 
tables and views.

However, select-from-where queries are not embeddable directly into a host 
language, because of the “impedance mismatch.” Queries produce bags of tu
ples as a result, while none of the major host languages support a set or bag
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data type directly. Thus, embedded SQL must use one of two mechanisms for 
connecting the result of queries with a host-language program:

1. Single-Row SELECT Statements. A query that produces a single tuple can 
have that tuple stored in shared variables, one variable for each component 
of the tuple.

2. Cursors. Queries producing more than one tuple can be executed if we 
declare a cursor for the query. The cursor ranges over all tuples in the 
answer relation, and each tuple in turn can be fetched into shared variables 
and processed by the host-language program.

We shall consider each of these mechanisms in turn.

9.3.5 Single-Row Select Statements
The form of a single-row select is the same as an ordinary select-from-where 
statement, except that following the SELECT clause is the keyword INTO and a 
list of shared variables. These shared variables each are preceded by a colon, 
as is the case for all shared variables within a SQL statement. If the result 
of the query is a single tuple, this tuple’s components become the values of 
these variables. If the result is either no tuple or more than one tuple, then no 
assignment to the shared variables is made, and an appropriate error code is 
written in the variable SQLSTATE.

E xam ple 9 .5 : We shall write a C function to read the name of a studio and 
print the net worth of the studio’s president. A sketch of this function is shown 
in Fig. 9.7. It begins with a declare section, lines (1) through (5), for the 
variables we shall need. Next, C statements that we do not show explicitly 
obtain a studio name from the standard input.

Lines (6) through (9) are the single-row select statement. It is quite similar 
to queries we have already seen. The two differences are that the value of 
variable studioName is used in place of a constant string in the condition of 
line (9), and there is an INTO clause at line (7) that tells us where to put the 
result of the query. In this case, we expect a single tuple, and tuples have only 
one component, that for attribute netWorth. The value of this one component 
of one tuple is placed in the shared variable presNetWorth. □

9.3.6 Cursors
The most versatile way to connect SQL queries to a host language is with a 
cursor that runs through the tuples of a relation. This relation can be a stored 
table, or it can be something that is generated by a query. To create and use a 
cursor, we need the following statements:

1. A cursor declaration, whose simplest form is:
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void printN etW orthQ  {

1) EXEC SQL BEGIN DECLARE SECTION;
2) char studioName [50];
3) in t  presNetWorth;
4) char SQLSTATE[6];
5) EXEC SQL END DECLARE SECTION;

/*  p r in t  req u es t th a t  s tu d io  name be en te red , 
read  response in to  studioName * /

6) EXEC SQL SELECT netWorth
7) INTO :presNetWorth
8) FROM S tud io , MovieExec
9) WHERE presC# = ce rt#  AND

S tu d io . name = :studioName;

/*  check th a t  SQLSTATE has a l l  0 ’s and i f  so , p r in t  
th e  value of presNetWorth */

}

Figure 9.7: A single-row select embedded in a C function

EXEC SQL DECLARE <cursor name> CURSOR FOR <query>

The query can be either an ordinary select-from-where query or a relation 
name. The cursor ranges over the tuples of the relation produced by the 
query.

2. A statement EXEC SQL OPEN, followed by the cursor name. This state
ment initializes the cursor to a position where it is ready to retrieve the 
first tuple of the relation over which the cursor ranges.

3. One or more uses of a fetch statement. The purpose of a fetch statement 
is to get the next tuple of the relation over which the cursor ranges. The 
fetch statement has the form:

EXEC SQL FETCH FROM <cursor name> INTO <list of variables>

There is one variable in the list for each attribute of the tuple’s relation. 
If there is a tuple available to be fetched, these variables are assigned 
the values of the corresponding components from that tuple. If the tuples 
have been exhausted, then no tuple is returned, and the value of SQLSTATE 
is set to ’ 02000 ’ , a code that means “no tuple found.”
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4. The statement EXEC SQL CLOSE followed by the name of the cursor. This 
statement closes the cursor, which now no longer ranges over tuples of the 
relation. It can, however, be reinitialized by another OPEN statement, in 
which case it ranges anew over the tuples of this relation.

E xam ple 9 .6 : Suppose we wish to determine the number of movie executives 
whose net worths fall into a sequence of bands of exponentially growing size, 
each band corresponding to a number of digits in the net/worth. We shall 
design a query that retrieves the netWorth field of all the (MovieExec tuples 
into a shared variable called worth. A cursor called execCursor will range over 
all these one-component tuples. Each time a tuple is fetched, we compute the 
number of digits in the integer worth and increment the appropriate element 
of an array counts.

The C function worthRanges begins in line (1) of Fig. 9.8. Line (2) declares 
some variables used only by the C function, not by the embedded SQL. The 
array counts holds the counts of executives in the various bands, d ig i t s  counts 
the number of digits in a net worth, and i  is an index ranging over the elements 
of array counts.

Lines (3) through (6) are a SQL declare section in which shared vari
able worth and the usual SQLSTATE are declared. Lines (7) and (8) declare 
execCursor to be a cursor that ranges over the values produced by the query 
on line (8). This query simply asks for the netWorth components of all the tu
ples in MovieExec. This cursor is then opened at line (9). Line (10) completes 
the initialization by zeroing the elements of array counts.

The main work is done by the loop of lines (11) through (16). At line (12) 
a tuple is fetched into shared variable worth. Since tuples produced by the 
query of line (8) have only one component, we need only one shared variable, 
although in general there would be as many variables as there are components 
of the retrieved tuples. Line (13) tests whether the fetch has been successful. 
Here, we use a macro N0_M0RE_TUPLES, defined by

#define N0_M0RE_TUPLES ! (strcmp(SqLSTATE,"02000"))

Recall that "02000" is the SQLSTATE code that means no tuple was found. If 
there are no more tuples, we break out of the loop and go to line (17).

If a tuple has been fetched, then at line (14) we initialize the number of digits 
in the net worth to 1. Line (15) is a loop that repeatedly divides the net worth 
by 10 and increments d ig i t s  by 1. When the net worth reaches 0 after division 
by 10, d ig i t s  holds the correct number of digits in the value of worth that was 
originally retrieved. Finally, line (16) increments the appropriate element of the 
array counts by 1. We assume that the number of digits is no more than 14. 
However, should there be a net worth with 15 or more digits, line (16) will not 
increment any element of the counts array, since there is no appropriate range; 
i.e., enormous net worths are thrown away and do not affect the statistics.

Line (17) begins the wrap-up of the function. The cursor is closed, and lines 
(18) and (19) print the values in the counts array. □
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1) void worthRangesO {

2) in t  i ,  d i g i t s ,  co u n ts [15];
3) EXEC SQL BEGIN DECLARE SECTION;
4) in t  worth;
5) char SQLSTATE[6];
6) EXEC SQL END DECLARE SECTION;
7) EXEC SQL DECLARE execCursor CURSOR FOR
8) SELECT netWorth FROM MovieExec;

9) EXEC SQL OPEN execCursor;
10) f o r ( i= l ;  i<15; i++) co u n ts [ i]  = 0;
11) w h ile ( l)  {
12) EXEC SQL FETCH FROM execCursor INTO :worth;
13) if(N0_M0RE_TUPLES) break;
14) d ig i t s  = 1;
15) w hile((w orth  /= 10) > 0) d ig its+ + ;
16) i f ( d i g i t s  <= 14) c o u n ts [d ig i ts ]++;

>
17) EXEC SQL CLOSE execCursor;
18) fo r ( i= 0 ; i<15; i++)
19) p r in t f  ( " d ig i t s  = */,d: number of execs = 7,d\n",

i ,  c o u n ts [ i ] ) ;
}

Figure 9.8: Grouping executive net worths into exponential bands

9.3.7 Modifications by Cursor
When a cursor ranges over the tuples of a base table (i.e., a relation that is 
stored in the database), then one can not only read the current tuple, but 
one can update or delete the current tuple. The syntax of these UPDATE and 
DELETE statements are the same as we encountered in Section 6.5, with the 
exception of the WHERE clause. That clause may only be WHERE CURRENT OF 
followed by the n^ame of the cursor. Of course it is possible for the host-language 
program reading'the tuple to apply whatever condition it likes to the tuple 
before deciding whether or not to delete or update it.

E xam ple  9 .7 : In Fig. 9.9 we see a C function that looks at each tuple of 
MovieExec and decides either to delete the tuple or to double the net worth. In 
lines (3) and (4) we declare variables that correspond to the four attributes of 
MovieExec, as well as the necessary SQLSTATE. Then, at line (6), execCursor 
is declared to range over the stored relation MovieExec itself.

Lines (8) through (14) are the loop, in which the cursor execCursor refers 
to each tuple of MovieExec, in turn. Line (9) fetches the current tuple into
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1) void changeWorth() {

2) EXEC SQL BEGIN DECLARE SECTION;
3) in t  certN o, worth;
4) char execName [31] , execAddr[256], SQLSTATE[6];
5) EXEC SQL END DECLARE SECTION; /
6) EXEC SQL DECLARE execCursor CURSOR FOR MovieExec;

7) EXEC SQL OPEN execCursor;
8) w h ile (l)  {
9) EXEC SQL FETCH FROM execCursor INTO :execName,

:execAddr, : certN o, :worth;
10) if(N0_M0RE_TUPLES) break;
11) i f  (worth < 1000)
12) EXEC SQL DELETE FROM MovieExec

WHERE CURRENT OF execCursor;
13) e ls e
14) EXEC SQL UPDATE MovieExec

SET netWorth = 2 * netWorth 
WHERE CURRENT OF execCursor;

}
15) EXEC SQL CLOSE execCursor;

>

Figure 9.9: Modifying executive net worths

the four variables used for this purpose; note that only worth is actually used. 
Line (10) tests whether we have exhausted the tuples of MovieExec. We have 
again used the macro N0_M0RE_TUPLES for the condition that variable SQLSTATE 
has the “no more tuples” code "02000".

In the test of line (11) we ask if the net worth is under $1000. If so, the 
tuple is deleted by the DELETE statement of line (12). Note that the WHERE 
clause refers to the cursor, so the current tuple of MovieExec, the one we just 
fetched, is deleted from MovieExec. If the net worth is at least $1000, then at 
line (14), the net worth in the same tuple is doubled, instead. □

9.3.8 Protecting Against Concurrent Updates
Suppose that as we examine the net worths of movie executives using the func
tion worthRanges of Fig. 9.8, some other process is modifying the underlying 
MovieExec relation. What should we do about this possibility? Perhaps noth
ing. We might be happy with approximate statistics, and we don’t  care whether 
or not we count an executive who was in the process of being deleted, for ex
ample. Then, we simply accept what tuples we get through the cursor.
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However, we may not wish to allow concurrent changes to affect the tuples 
we see through this cursor. Rather, we may insist on the statistics being taken 
on the relation as it exists at some point in time. In terms of the transactions 
of Section 6.6, we want the code that runs the cursor through the relation to be 
serializable with any other operations on the relation. To obtain this guarantee, 
we may declare the cursor insensitive to concurrent changes.

E xam ple  9 .8 : We could modify lines (7) and (8) of Fig. 9.8 to be:

7) EXEC SQL DECLARE execCursor INSENSITIVE CURSOR FOR
8) SELECT netWorth FROM MovieExec;

If execCursor is so declared, then the SQL system will guarantee that changes 
to relation MovieExec made between one opening and closing of execCursor 
will not affect the set of tuples fetched. □

There are certain cursors ranging over a relation R  about which we may say 
with certainty that they will not change R. Such a cursor can run simultane
ously with an insensitive cursor for R, without risk of changing the relation R  
that the insensitive cursor sees. If we declare a cursor FOR READ ONLY, then the 
database system can be sure that the underlying relation will not be modified 
because of access to the relation through this cursor.

E xam ple  9 .9 : We could append after line (8) of worthRanges in Fig. 9.8 a 
line

FOR READ ONLY;

If so, then any attem pt to execute a modification through cursor execCursor 
would cause an error. □

9.3.9 Dynamic SQL
Our model of SQL embedded in a host language has been that of specific SQL 
queries and commands within a host-language program. An alternative style 
of embedded SQL has the statements themselves be computed by the host 
language/Such statements are not known at compile time, and thus cannot be 
handled by a SQL preprocessor or a host-language compiler.

An example of such a situation is a program that prompts the user for an 
SQL query, reads the query, and then executes that query. The generic interface 
for ad-hoc SQL queries that we assumed in Chapter 6 is an example of just such 
a program. If queries are read and executed at run-time, there is nothing that 
can be done at compile-time. The query has to be parsed and a suitable way 
to execute the query found by the SQL system, immediately after the query is 
read.

The host-language program must instruct the SQL system to take the char
acter string just read, to turn it into an executable SQL statement, and finally to 
execute that statement. There are two dynamic SQL statements that perform 
these two steps.
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1. EXEC SQL PREPARE V  FROM <expression>, where V  is a SQL variable. 
The expression can be any host-language expression whose value is a 
string; this string is treated as a SQL statement. Presumably, the SQL 
statement is parsed and a good way to execute it is found by the SQL 
system, but the statement is not executed. Rather, the plan for executing 
the SQL statement becomes the value of V.

2. EXEC SQL EXECUTE V. This statement causes the SQL statement denoted 
by variable V  to be executed. '

Both steps can be combined into one, with the statement:

EXEC SQL EXECUTE IMMEDIATE <expression>

The disadvantage of combining these two parts is seen if we prepare a statement 
once and then execute it many times. With EXECUTE IMMEDIATE the cost of 
preparing the statement is paid each time the statement is executed, rather 
than paid only once, when we prepare it.

E xam ple 9 .10 : In Fig. 9.10 is a sketch of a C program that reads text from 
standard input into a variable query, prepares it, and executes it. The SQL 
variable SQLquery holds the prepared query. Since the query is only executed 
once, the line:

EXEC SQL EXECUTE IMMEDIATE :query;

could replace lines (6) and (7) of Fig. 9.10. □

1) void readQueryO {

2) EXEC SQL BEGIN DECLARE SECTION;
3) char *query;
4) EXEC SQL END DECLARE SECTION;

5) /*  prompt u se r fo r  a query, a l lo c a te  space ( e .g . ,
use m alloc) and make shared v a r ia b le  :query po in t 
to  th e  f i r s t  ch a rac te r  of th e  query * /

6) EXEC SQL PREPARE SQLquery FROM :query;
7) EXEC SQL EXECUTE SQLquery;

>

Figure 9.10: Preparing and executing a dynamic SQL query
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9.3.10 Exercises for Section 9.3
E xercise 9 .3 .1 : Write the following embedded SQL queries, based on the 
database schema

Product(m aker, model, type)
PC(model, speed, ram, hd, p r ic e )
Laptop(model, speed, ram, hd, sc reen , p r ic e )
P rin te r(m o d e l, c o lo r , ty p e , p r ic e )

of Exercise 2.4.1. You may use any host language with which you are familiar, 
and details of host-language programming may be replaced by clear comments 
if you wish.

a) Ask the user for a price and find the PC whose price is closest to the 
desired price. Print the maker, model number, and speed of the PC.

b) Ask the user for minimum values of the speed, RAM, hard-disk size, and 
screen size that they will accept. Find all the laptops that satisfy these 
requirements. Print their specifications (all attributes of Laptop) and 
their manufacturer.

! c) Ask the user for a manufacturer. Print the specifications of all products 
by that manufacturer. That is, print the model number, product-type, 
and all the attributes of whichever relation is appropriate for that type.

!! d) Ask the user for a “budget” (total price of a PC and printer), and a 
minimum speed of the PC. Find the cheapest “system” (PC plus printer) 
that is within the budget and minimum speed, but make the printer a 
color printer if possible. Print the model numbers for the chosen system.

e) Ask the user for a manufacturer, model number, speed, RAM, hard-disk 
size, and price of a new PC. Check that there is no PC with that model 
number. Print a warning if so, and otherwise insert the information into 
tables Product and PC.

Write the following embedded SQL queries, based on the

C la s s e s (c la s s ,  ty p e , coun try , numGuns, bo re , displacem ent) 
Ships(name, c la s s ,  launched)
B attles(nam e, date)
Outcomes(ship, b a t t l e ,  r e s u l t )

of Exercise 2.4.3.

a) The firepower of a ship is roughly proportional to the number of guns 
times the cube of the bore of the guns. Find the class with the largest 
firepower.
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! b) Ask the user for the name of a battle. Find the countries of the ships 
involved in the battle. Print the country with the most ships sunk and 
the country with the most ships damaged.

c) Ask the user for the name of a class and the other information required 
for a tuple of table C lasses. Then ask for a list of the names of the ships 
of that class and their dates launched. However, the user need not give 
the first name, which will be the name of the class. Insert the information 
gathered into C lasses and Ships.

! d) Examine the B a ttle s , Outcomes, and Ships relations for ships that were 
in battle before they were launched. Prompt the user when there is an 
error found, offering the option to change the date of launch or the date 
of the battle. Make whichever change is requested.

9.4 Stored Procedures
In this section, we introduce you to Persistent, Stored Modules (SQL/PSM, 
or just PSM). PSM is part of the latest revision to the SQL standard, called 
SQL:2003. It allows us to write procedures in a simple, general-purpose lan
guage and to store them in the database, as part of the schema. We can then 
use these procedures in SQL queries and other statements to perform compu
tations that cannot be done with SQL alone. Each commercial DBMS offers its 
own extension of PSM. In this book, we shall describe the SQL/PSM standard, 
which captures the major ideas of these facilities, and which should help you 
understand the language associated with any particular system. References to 
PSM extensions provided with several major commercial systems are in the 
bibliographic notes.

9.4.1 Creating PSM  Functions and Procedures
In PSM, you define modules, which are collections of function and procedure 
definitions, temporary relation declarations, and several other optional decla
rations. The major elements of a procedure declaration are:

CREATE PROCEDURE <name> (<param eters>)
<local declarations>
<procedure body>;

This form should be familiar from a number of programming languages; it con
sists of a procedure name, a parenthesized list of parameters, some optional 
local-variable declarations, and the executable body of code that defines the 
procedure. A function is defined in almost the same way, except that the key
word FUNCTION is used, and there is a return-value type that must be specified. 
That is, the elements of a function definition are:
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CREATE FUNCTION <name> (<param eters>) RETURNS <type>
<local declarations >
<function body> ;

The parameters of a PSM procedure are mode-name-type triples. That 
is, the parameter name is not only followed by its declared type, as usual in 
programming languages, but it is preceded by a “mode,” which is either IN, 
OUT, or INOUT. These three keywords indicate that the parameter is input-only, 
output-only, or both input and output, respectively. IN is the default, and can 
be omitted.

Function parameters, on the other hand, may only be of mode IN. That is, 
PSM forbids side-effects in functions, so the only way to obtain information 
from a function is through its return-value. We shall not specify the IN mode 
for function parameters, although we do so in procedure definitions.

E xam ple  9 .11 : While we have not yet learned the variety of statements that 
can appear in procedure and function bodies, one kind should not surprise 
us: an SQL statement. The limitation on these statements is the same as 
for embedded SQL, as we introduced in Section 9.3.4: only single-row-select 
statements and cursor-based accesses are permitted as queries. In Fig. 9.11 is a 
PSM procedure that takes two addresses — an old address and a new address — 
as parameters and replaces the old address by the new everywhere it appears 
in MovieStar.

1) CREATE PROCEDURE Move(
2) IN oldAddr VARCHAR(255),
3) IN newAddr VARCHAR(255)

)
4) UPDATE MovieStar
5) SET address = newAddr
6) WHERE address = oldAddr;

Figure 9.11: A procedure to change addresses

Line (1) introduces the procedure and its name, Move. Lines (2) and (3) de
clare two input parameters, both of whose types are VARCHAR(255). This type 
is consistent with the type we declared for the attribute address of MovieStar 
in Fig. 2.8. Lines (4) through (6) are a conventional UPDATE statement. How
ever, notice that the parameter names can be used as if they were constants. 
Unlike host-language variables, which require a colon prefix when used in SQL 
(see Section 9.3.2), parameters and other local variables of PSM procedures and 
functions require no colon. □

9.4.2 Some Simple Statement Forms in PSM
Let us begin with a potpourri of statement forms that are easy to master.
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1. The call-statement: The form of a procedure call is:

CALL <procedure name> (<argument l is t> ) ;

That is, the keyword CALL is followed by the name of the procedure and 
a parenthesized list of arguments, as in most any language. This call can, 
however, be made from a variety of places:

i. From a host-language program, in which it might appear as 

EXEC SQL CALL Foo(:x , 3 ); 

for instance.
ii. As a statement of another PSM function or procedure.

Hi. As a SQL command issued to the generic SQL interface. For exam
ple, we can issue a statement such as

CALL F o o (l, 3) ;

to such an interface, and have stored procedure Foo executed with 
its two parameters set equal to 1 and 3, respectively.

Note that it is not permitted to call a function. You invoke functions in 
PSM as you do in C: use the function name and suitable arguments as 
part of an expression.

2. The return-statement: Its form is

RETURN <expression>;

This statement can only appear in a function. It evaluates the expression 
and sets the return-value of the function equal to that result. However, 
at variance with common programming languages, the return-statement 
of PSM does not terminate the function. Rather, control continues with 
the following statement, and it is possible that the return-value will be 
changed before the function completes.

3. Declarations of local variables: The statement form

DECLARE <name> < ty p e> ;

declares a variable with the given name to have the given type. This 
variable is local, and its value is not preserved by the DBMS after a run
ning of the function or procedure. Declarations must precede executable 
statements in the function or procedure body.

4. Assignment Statements: The form of an assignment is:
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SET <variable> = <expression>;

Except for the introductory keyword SET, assignment in PSM is quite 
like assignment in other languages. The expression on the right of the 
equal-sign is evaluated, and its value becomes the value of the variable on 
the left. NULL is a permissible expression. The expression may even be a 
query, as long as it returns a single value.

5. Statement groups: We can form a list of statements ended by semicolons 
and surrounded by keywords BEGIN and END. This construct is treated 
as a single statement and can appear anywhere a single statement can. 
In particular, since a procedure or function body is expected to be a 
single statement, we can put any sequence of statements in the body by 
surrounding them by BEGIN. . .  END.

6. Statement labels: We label a statement by prefixing it with a name (the 
label) and a colon.

9.4.3 Branching Statements
For our first complex PSM statement type, let us consider the if-statement. 
The form is only a little strange; it differs from C or similar languages in that:

1. The statement ends with keywords END IF.

2. If-statements nested within the else-clause are introduced with the single 
word ELSEIF.

Thus, the general form of an if-statement is as suggested by Fig. 9.12. The 
condition is any boolean-valued expression, as can appear in the WHERE clause 
of SQL statements. Each statement list consists of statements ended by semi
colons, but does not need a surrounding BEGIN. . .  END. The final ELSE and its 
statement(s) are optional; i.e., I F . . .THEN.. .END IF alone or with ELSEIF’s is 
acceptable.

E xam ple  9 .12: Let us write a function to take a year y and a studio s, and 
return a boolean that is TRUE if and only if studio s produced at least one 
comedy in year y or did not produce any movies at all in that year. The code 
appears in Fig. 9.13.

Line (1) introduces the function and includes its arguments. We do not need 
to specify a mode for the arguments, since that can only be IN for a function. 
Lines (2) and (3) test for the case where there are no movies at all by studio 
s/in year y, in which case we set the return-value to TRUE at line (4). Note 

/chat line (4) does not cause the function to return. Technically, it is the flow of 
control dictated by the if-statements that causes control to jump from line (4) 
to line (9), where the function completes and returns.
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IF <condition> / t t  THEN 
<statement list>

ELSEIF <condition> / t t  THEN 
<statement list>

ELSEIF

ELSE
<statement list>

END IF;

Figure 9.12: The form of an if-statement

1) CREATE FUNCTION BandW(y INT, s CHAR(15)) RETURNS BOOLEAN

2) IF NOT EXISTS(
3) SELECT * FROM Movies WHERE year = y AND

studioName = s)
4) THEN RETURN TRUE;
5) ELSEIF 1 <=
6) (SELECT C0UNT(*) FROM Movies WHERE year = y AND

studioName = s AND genre = ’comedy’)
7) THEN RETURN TRUE;
8) ELSE RETURN FALSE;
9) END IF;

Figure 9.13: If there are any movies at all, then at least one has to be a comedy

If studio s made movies in year y, then lines (5) and (6) test if at least one 
of them was a comedy. If so, the return-value is again set to true, this time at 
line (7). In the remaining case, studio s made movies but only in color, so we 
set the return-value to FALSE at line (8). □

9.4.4 Queries in PSM
There are several ways that select-from-where queries are used in PSM.

1. Subqueries can be used in conditions, or in general, any place a subquery 
is legal in SQL. We saw two examples of subqueries in lines (3) and (6) 
of Fig. 9.13, for instance.

2. Queries that return a single value can be used as the right sides of assign
ment statements.

3. A single-row select statement is a legal statement in PSM. Recall this 
statement has an INTO clause that specifies variables into which the com
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ponents of the single returned tuple are placed. These variables could be 
local variables or parameters of a PSM procedure. The general form was 
discussed in the context of embedded SQL in Section 9.3.5.

4. We can declare and use a cursor, essentially as it was described in Sec
tion 9.3.6 for embedded SQL. The declaration of the cursor, OPEN, FETCH, 
and CLOSE statements are all as described there, with the exceptions that:

(a) No EXEC SQL appears in the statements, and
(b) The variables do not use a colon prefix.

CREATE PROCEDURE SomeProc(IN studioName CHAR(15))

DECLARE presNetWorth INTEGER;

SELECT netWorth 
INTO presNetWorth 
FROM Studio, MovieExec
WHERE presC# = cert# AND Studio.name = studioName;

Figure 9.14: A single-row select in PSM

E xam ple  9 .13: In Fig. 9.14 is the single-row select of Fig. 9.7, redone for 
PSM and placed in the context of a hypothetical procedure definition. Note 
that, because the single-row select returns a one-component tuple, we could 
also get the same effect from an assignment statement, as:

SET presNetWorth = (SELECT netWorth 
FROM Studio, MovieExec
WHERE presC# = cert# AND Studio.name = studioName);

We shall defer examples of cursor use until we learn the PSM loop statements 
in the next section. □

9.4.5 Loops in PSM
The basic loop construct in PSM is:

LOOP
< statement list>

END LOOP;
One often labels the LOOP statement, so it is possible to break out of the loop, 
using a statement:
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LEAVE <loop label> ;

In the common case that the loop involves the fetching of tuples via a cursor, 
we often wish to leave the loop when there axe no more tuples. It is useful to 
declare a condition name for the SQLSTATE value that indicates no tuple found 
( ’02000’, recall); we do so with:

DECLARE Not.Found CONDITION FOR SQLSTATE ’02000’ ;

More generally, we can declare a condition with any desired name corresponding 
to any SQLSTATE value by

DECLARE <name> CONDITION FOR SQLSTATE <value>;

We are now ready to take up an example that ties together cursor operations 
and loops in PSM.

E xam ple 9 .14: Figure 9.15 shows a PSM procedure that takes a studio name 
s as an input argument and produces in output arguments mean and variance 
the mean and variance of the lengths of all the movies owned by studio s. Lines 
(1) through (4) declare the procedure and its parameters.

Lines (5) through (8) are local declarations. We define Not JFound to be the 
name of the condition that means a FETCH failed to return a tuple at line (5). 
Then, at line (6), the cursor MovieCursor is defined to return the set of the 
lengths of the movies by studio s. Lines (7) and (8) declare two local vari
ables that we’ll need. Integer newLength holds the result of a FETCH, while 
movieCount counts the number of movies by studio s. We need movieCount 
so that, at the end, we can convert a sum of lengths into an average (mean) of 
lengths and a sum of squares of the lengths into a variance.

The rest of the lines are the body of the procedure. We shall use mean 
and v ariance as temporary variables, as well as for “returning” the results at 
the end. In the major loop, mean actually holds the sum of the lengths, and 
variance  actually holds the sum of the squares of the lengths. Thus, lines 
(9) through (11) initialize these variables and the count of the movies to 0. 
Line (12) opens the cursor, and lines (13) through (19) form the loop labeled 
movieLoop.

Line (14) performs a fetch, and at line (15) we check that another tuple was 
found. If not, we leave the loop. Lines (16) through (18) accumulate values; we 
add 1 to movieCount, add the length to mean (which, recall, is really computing 
the sum of lengths), and we add the square of the length to variance.

When all movies by studio s have been seen, we leave the loop, and control 
passes to line (20). At that line, we turn mean into its correct value by dividing 
the sum of lengths by the count of movies. At line (21), we make variance 
truly hold the variance by dividing the sum of squares of the lengths by the 
number of movies and subtracting the square of the mean. See Exercise 9.4.4 
for a discussion of why this calculation is correct. Line (22) closes the cursor, 
and we are done. □
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2) IN s CHAR(15),
3) OUT mean REAL,
4) OUT variance REAL
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)
5) DECLARE Not_Found CONDITION FOR SQLSTATE ’02000’;
6) DECLARE MovieCursor CURSOR FOR

SELECT length FROM Movies WHERE studioName = s;
7) DECLARE newLength INTEGER;
8) DECLARE movieCount INTEGER;

BEGIN
9) SET mean = 0.0;
10) SET variance = 0.0;
11) SET movieCount = 0;
12) OPEN MovieCursor;
13) movieLoop: LOOP
14) FETCH FROM MovieCursor INTO newLength;
15) IF Not_Found THEN LEAVE movieLoop END IF;
16) SET movieCount = movieCount + 1;
17) SET mean = mean + newLength;
18) SET variance = variance + newLength * newLength;
19) END LOOP;
20) SET mean = mean/movieCount;
21) SET variance = variance/movieCount - mean * mean;
22) CLOSE MovieCursor;

END;

Figure 9.15: Computing the mean and variance of lengths of movies by one 
studio

9.4.6 For-Loops
There is also in PSM a for-loop construct, but it is used only to iterate over a 
cursor. The form of the statement is shown in Fig. 9.16. This statement not 
only declares a cursor, but it handles for us a number of “grubby details” : the 
opening and closing of the cursor, the fetching, and the checking whether there 
are no more tuples to be fetched. However, since we are not fetching tuples for 
ourselves, we can not specify the variable(s) into which component(s) of a tuple 
are placed. Thus, the names used for the attributes in the result of the query 
are also treated by PSM as local variables of the same type.

E xam ple 9.15 : Let us redo the procedure of Fig. 9.15 using a for-loop. The 
code is shown in Fig. 9.17. Many things have not changed. The declaration 
of the procedure in lines (1) through (4) of Fig. 9.17 are the same, as is the
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Other Loop Constructs

PSM also allows while- and repeat-loops, which have the expected mean
ing, as in C. That is, we can create a loop of the form

WHILE <condition> DO 
<statement list>

END WHILE;

or a loop of the form

REPEAT
<statement list>

UNTIL <condition>
END REPEAT;

Incidentally, if we label these loops, or the loop formed by a loop-statement 
or for-statement, then we can place the label as well after the END LOOP 
or other ender. The advantage of doing so is that it makes clearer where 
each loop ends, and it allows the PSM compiler to catch some syntactic 
errors involving the omission of an END.

FOR <loop name> AS <cursor name> CURSOR FOR 
<query>

DO
<statement list>

END FOR;

Figure 9.16: The PSM for-statement

declaration of local variable movieCount at line (5).
However, we no longer need to declare a cursor in the declaration portion of 

the procedure, and we do not need to define the condition Not_Found. Lines (6) 
through (8) initialize the variables, as before. Then, in line (9) we see the for- 
loop, which also defines the cursor MovieCursor. Lines (11) through (13) are 
the body of the loop. Notice that in lines (12) and (13), we refer to the length 
retrieved via the cursor by the attribute name length , rather than by the local 
variable name newLength, which does not exist in this version of the procedure. 
Lines (15) and (16) compute the correct values for the output variables, exactly 
as in the earlier version of this procedure. □
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1) CREATE PROCEDURE MeanVar(
2) IN s CHAR(15),
3) OUT mean REAL,
4) OUT variance REAL 

)
5) DECLARE movieCount INTEGER;

BEGIN
6) SET mean = 0.0;
7) SET variance = 0.0;
8) SET movieCount = 0;
9) FOR movieLoop AS MovieCursor CURSOR FOR 

SELECT length FROM Movies WHERE studioName =
10) DO
11) SET movieCount = movieCount + 1;
12) SET mean = mean + length;
13) SET variance = variance + length * length;
14) END FOR;
15) SET mean = mean/movieCount;
16) SET variance = variance/movieCount - mean * mean

END;

Figure 9.17: Computing the mean and variance of lengths using a for-loop

9.4.7 Exceptions in PSM
A SQL system indicates error conditions by setting a nonzero sequence of digits 
in the five-character string SQLSTATE. We have seen one example of these codes: 
’02000’ for “no tuple found.” For another example, ’21000’ indicates that a 
single-row select has returned more than one row.

PSM allows us to declare a piece of code, called an exception handler, that is 
invoked whenever one of a list of these error codes appears in SQLSTATE during 
the execution of a statement or list of statements. Each exception handler 
is associated with a block of code, delineated by BEGIN.. .END. The handler 
appears within this block, and it applies only to statements within the block. 

The components of the handler are:

1. A list of exception conditions that invoke the handler when raised.

2. Code to be executed when one of the associated exceptions is raised.

3. An indication of where to go after the handler has finished its work.

The form of a handler declaration is:

DECLARE <where to go next> HANDLER FOR <condition list> 
<statem ent>
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W hy Do We Need Names in For-Loops?

Notice that movieLoop and MovieCursor, although declared at line (9) 
of Fig. 9.17, are never used in that procedure. Nonetheless, we have to 
invent names, both for the for-loop itself and for the cursor over which it 
iterates. The reason is that the PSM interpreter will translate the for-loop 
into a conventional loop, much like the code of Fig. 9.15, and in this code, 
there is a need for both names.

The choices for “where to go” are:

a) CONTINUE, which means that after executing the statement in the han
dler declaration, we execute the statement after the one that raised the 
exception.

b) EXIT, which means that after executing the handler’s statement, control 
leaves the BEGIN. . .  END block in which the handler is declared. The state
ment after this block is executed next.

c) UNDO, which is the same as EXIT, except that any changes to the database 
or local variables that were made by the statements of the block executed 
so far are undone. That is, the block is a transaction, which is aborted 
by the exception.

The “condition list” is a comma-separated list of conditions, which are either 
declared conditions, like Not_Found in line (5) of Fig. 9.15, or expressions of the 
form SQLSTATE and a five-character string.

E xam ple 9.16: Let us write a PSM function that takes a movie title as ar
gument and returns the year of the movie. If there is no movie of that title or 
more than one movie of that title, then NULL must be returned. The code is 
shown in Fig. 9.18.

Lines (2) and (3) declare symbolic conditions; we do not have to make these 
definitions, and could as well have used the SQL states for which they stand in 
line (4). Lines (4), (5), and (6) are a block, in which we first declare a handler 
for the two conditions in which either zero tuples are returned, or more than 
one tuple is returned. The action of the handler, on line (5), is simply to set 
the return-value to NULL.

Line (6) is the statement that does the work of the function GetYear. It is 
a SELECT statement that is expected to return exactly one integer, since that is 
what the function GetYear returns. If there is exactly one movie with title t (the 
input parameter of the function), then this value will be returned. However, if 
an exception is raised at line (6), either because there is no movie with title t 
or several movies with that title, then the handler is invoked, and NULL instead
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1) CREATE FUNCTION G etY ear(t VARCHAR(255)) RETURNS INTEGER

2) DECLARE Not_Found CONDITION FOR SQLSTATE ’02000’ ;
3) DECLARE Too.Many CONDITION FOR SQLSTATE ’21000’ ;

BEGIN
4) DECLARE EXIT HANDLER FOR Not_Found, Too_Many
5) RETURN NULL;
6) RETURN (SELECT year FROM Movies WHERE t i t l e  = t ) ;

END;

Figure 9.18: Handling exceptions in which a single-row select returns other than 
one tuple

becomes the return-value. Also, since the handler is an EXIT handler, control 
next passes to the point after the END. Since that point is the end of the function, 
GetYear returns at that time, with the return-value NULL. □

9.4.8 Using PSM  Functions and Procedures
As we mentioned in Section 9.4.2, we can call a PSM procedure anywhere SQL 
statements can appear, e.g., as embedded SQL, from PSM code itself, or from 
SQL issued to the generic interface. We invoke a procedure by preceding it 
by the keyword CALL. In addition, a PSM function can be used as part of an 
expression, e.g., in a WHERE clause. Here is an example of how a function can 
be used within an expression.

E xam ple 9 .17 : Suppose that our schema includes a module with the function 
GetYear of Fig. 9.18. Imagine that we are sitting at the generic interface, and 
we want to enter the fact that Denzel Washington was a star of Remember the 
Titans. However, we forget the year in which that movie was made. As long 
as there was only one movie of that name, and it is in the Movies relation, we 
don’t have to look it up in a preliminary query. Rather, we can issue to the 
generic SQL interface the following insertion:

INSERT INTO S ta rs in (m o v ieT itle , movieYear, starName)
VALUES( ’Remember th e  T ita n s ’ , GetYear( ’Remember th e  T ita n s ’) ,  

’Denzel W ashington’) ;

Since GetYear returns NULL if there is not a unique movie by the name of 
Remember the Titans, it is possible that this insertion will have NULL in the 
middle component. □

9.4.9 Exercises for Section 9.4 
E xercise 9 .4 .1 : Using our running movie database:
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Movies(title, year, length, genre, studioName, producerC#) 
Starsln(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

write PSM procedures or functions to perform the following tasks:

a) Given the name of a movie studio, produce the net worth of its president.

b) Given a name and address, return 1 if the person is a movie star but not 
an executive, 2 if the person is an executive but not a star, 3 if both, and
4 if neither.

! c) Given a studio name, assign to output parameters the titles of the two 
longest movies by that studio. Assign NULL to one or both parameters if 
there is no such movie (e.g., if there is only one movie by a studio, there 
is no “second-longest”).

! d) Given a star name, find the earliest (lowest year) movie of more than 120 
minutes length in which they appeared. If there is no such movie, return 
the year 0.

e) Given an address, find the name of the unique star with that address if 
there is exactly one, and return NULL if there is none or more than one.

f) Given the name of a star, delete them from MovieStar and delete all their 
movies from S ta rs ln  and Movies.

Exercise 9 .4 .2 : Write the following PSM functions or procedures, based on
the database schema

Product(maker, model, type)
PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

of Exercise 2.4.1.

a) Take a price as argument and return the model number of the PC whose 
price is closest.

b) Take a maker and model as arguments, and return the price of whatever 
type of product that model is.

! c) Take model, speed, ram, hard-disk, and price information as arguments, 
and insert this information into the relation PC. However, if there is al
ready a PC with that model number (tell by assuming that violation of 
a key constraint on insertion will raise an exception with SQLSTATE equal 
to ’23000’), then keep adding 1 to the model number until you find a 
model number that is not already a PC model number.
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! d) Given a price, produce the number of PC ’s, the number of laptops, and 
the number of printers selling for more than that price.

E xercise 9 .4 .3 : Write the following PSM functions or procedures, based on 
the database schema

Classes(class, type, country, numGuns, bore, displacement) 
Ships(name, class, launched)
Battles(name, date)
Outcomes(ship, battle, result)

of Exercise 2.4.3.

a) The firepower of a ship is roughly proportional to the number of guns 
times the cube of the bore. Given a class, find its firepower.

! b) Given the name of a battle, produce the two countries whose ships were 
involved in the battle. If there are more or fewer than two countries 
involved, produce NULL for both countries.

c) Take as arguments a new class name, type, country, number of guns, bore, 
and displacement. Add this information to C lasses and also add the ship 
with the class name to Ships.

! d) Given a ship name, determine if the ship was in a battle with a date before 
the ship was launched. If so, set the date of the battle and the date the 
ship was launched to 0.

E xercise 9 .4 .4 : In Fig. 9.15, we used a tricky formula for computing the 
variance of a sequence of numbers x \ , x 2, . .. ,x n. Recall that the variance is 
the average square of the deviation of these numbers from their mean. That is, 
the variance is — x)2)/n , where the mean x  is (5ZILi x i)/n . Prove
that the formula for the variance used in Fig. 9.15, which is

(Y,(xi)2) / n -  (CjTxi)lnf 
i=l i=1

yields the same value.

9.5 Using a Call-Level Interface
When using a call-level interface (CLI), we write ordinary host-language code, 
and we use a library of functions that allow us to connect to and access a 
database, passing SQL statements to that database. The differences between 
this approach and embedded SQL programming are, in one sense, cosmetic, 
since the preprocessor replaces embedded SQL by calls to library functions 
much like the functions in the standard SQL/CLI.
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We shall give three examples of call-level interfaces. In this section, we 
cover the standard SQL/CLI, which is an adaptation of ODBC (Open Database 
Connectivity). We cover JDBC, which is a collection of classes that support 
database access from Java programs. Then, we explore PHP, which is a way to 
embed database access in Web pages described by HTML.

9.5.1 Introduction to SQL/CLI
A program written in C and using SQL/CLI (hereafter, just CLI) will include 
the header file s q lc l i .h ,  from which it gets a large number of functions, type 
definitions, structures, and symbolic constants. The program is then able to 
create and deal with four kinds of records (structs, in C):

1. Environments. A record of this type is created by the application (client) 
program in preparation for one or more connections to the database server.

2. Connections. One of these records is created to connect the application 
program to the database. Each connection exists within some environ
ment.

3. Statements. An application program can create one or more statement 
records. Each holds information about a single SQL statement, including 
an implied cursor if the statement is a query. At different times, the 
same CLI statement can represent different SQL statements. Every CLI 
statement exists within some connection.

4. Descriptions. These records hold information about either tuples or pa
rameters. The application program or the database server, as appropriate, 
sets components of description records to indicate the names and types of 
attributes and/or their values. Each statement has several of these created 
implicitly, and the user can create more if needed. In our presentation of 
CLI, description records will generally be invisible.

Each of these records is represented in the application program by a handle, 
which is a pointer to the record. The header file s q l c l i . h provides types for the 
handles of environments, connections, statements, and descriptions: SQLHENV, 
SQLHDBC, SQLHSTMT, and SQLHDESC, respectively, although we may think of them 
as pointers or integers. We shall use these types and also some other defined 
types with obvious interpretations, such as SQL_CHAR and SQL_INTEGER, that 
are provided in s q lc l i .h .

We shall not go into detail about how descriptions are set and used. How
ever, (handles for) the other three types of records are created by the use of a 
function

SQLAllocHandle(ft7fype, hln, hOut)

Here, the three arguments are:
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1. hType is the type of handle desired. Use SQL_HANDLE_ENV for a new envi
ronment, SQL_HANDLEJDBC for a new connection, or SQL-HANDLE-STMT for 
a new statement.

2. hln is the handle of the higher-level element in which the newly allocated 
element lives. This parameter is SQL JJULL-HANDLE if you want an envi
ronment; the latter name is a defined constant telling SQLAllocHandle 
that there is no relevant value here. If you want a connection handle, 
then hln is the handle of the environment within which the connection 
will exist, and if you want a statement handle, then hln  is the handle of 
the connection within which the statement will exist.

3. hOut is the address of the handle that is created by SQLAllocHandle.

SQLAllocHandle also returns a value of type SQLRETURN (an integer). This 
value is 0 if no errors occurred, and there are certain nonzero values returned 
in the case of errors.

E xam ple 9 .18: Let us see how the function worthRanges of Fig. 9.8, which we 
used as an example of embedded SQL, would begin in CLI. Recall this function 
examines all the tuples of MovieExec and breaks their net worths into ranges. 
The initial steps are shown in Fig. 9.19.

1) # include s q lc l i .h
2) SQLHENV myEnv;
3) SQLHDBC myCon;
4) SQLHSTMT ex e cS ta t;
5) SQLRETURN erro rC odel, errorCode2, errorCode3;

6) errorC odel = SQLAllocHandle(SQL_HANDLE_ENV,
SQL_NULL_HANDLE, ftmyEnv);

7) i f ( ! errorC odel) {
8) errorCode2 = SQLAllocHandle(SQL_HANDLE_DBC,

myEnv, fanyCon);
9) i f ( ! errorCode2)

10) errorCode3 = SQLAllocHandle(SQL_HANDLE_STMT,
myCon, ftex ecS ta t); }

Figure 9.19: Declaring and creating an environment, a connection, and a state
ment

Lines (2) through (4) declare handles for an environment, connection, and 
statement, respectively; their names are myEnv, myCon, and execS tat, respec
tively. We plan that execS tat will represent the SQL statement

SELECT netWorth FROM MovieExec;
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much as did the cursor execCursor in Fig. 9.8, but as yet there is no SQL 
statement associated with execStat. Line (5) declares three variables into 
which function calls can place their response and indicate an error. A value of
0 indicates no error occurred in the call.

Line (6) calls SQLAllocHandle, asking for an environment handle (the first 
argument), providing a null handle in the second argument (because none is 
needed when we are requesting an environment handle), and providing the 
address of myEnv as the third argument; the generated handle will be placed 
there. If line (6) is successful, lines (7) and (8) use the environment handle to 
get a connection handle in myCon. Assuming that call is also successful, lines 
(9) and (10) get a statement handle for execStat. □

9.5.2 Processing Statements
At the end of Fig. 9.19, a statement record whose handle is execStat, has been 
created. However, there is as yet no SQL statement with which that record 
is associated. The process of associating and executing SQL statements with 
statement handles is analogous to the dynamic SQL described in Section 9.3.9. 
There, we associated the text of a SQL statement with what we called a “SQL 
variable,” using PREPARE, and then executed it using EXECUTE.

The situation in CLI is quite analogous, if we think of the “SQL variable” 
as a statement handle. There is a function

SQLPrepare (,s/i, st, si)

that takes:

1. A statement handle sh,

2. A pointer to a SQL statement st, and

3. A length si for the character string pointed to by st. If we don’t know the 
length, a defined constant SQLJJTS tells SQLPrepare to figure it out from 
the string itself. Presumably, the string is a “null-terminated string,” and 
it is sufficient for SQLPrepare to scan it until encountering the endmarker 
’\0\

The effect of this function is to arrange that the statement referred to by the 
handle sh now represents the particular SQL statement st.

Another function

SQLExecute(sh)

causes the statement to which handle sh refers to be executed. For many forms 
of SQL statement, such as insertions or deletions, the effect of executing this 
statement on the database is obvious. Less obvious is what happens when the 
SQL statement referred to by sh is a query. As we shall see in Section 9.5.3,
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there is an implicit cursor for this statement that is part of the statement record 
itself. The statement is in principle executed, so we can imagine that all the 
answer tuples are sitting somewhere, ready to be accessed. We can fetch tuples 
one at a time, using the implicit cursor, much as we did with real cursors in 
Sections 9.3 and 9.4.

E xam ple  9 .19 : Let us continue with the function worthRanges that we began 
in Fig. 9.19. The following two function calls associate the query

SELECT netWorth FROM MovieExec;

with the statement referred to by handle execS tat:

11) SQ LPrepare(execStat, "SELECT netWorth FROM MovieExec",
SQL.NTS);

12) SQ LExecute(execStat);

These lines could appear right after line (10) of Fig. 9.19. Remember that 
SQLJITS tells SQLPrepare to determine the length of the null-terminated string 
to which its second argument refers. □

As with dynamic SQL, the prepare and execute steps can be combined into 
one if we use the function SQLExecDirect. An example that combines lines 
(11) and (12) above is:

SQLExecDirect(execStat, "SELECT netWorth FROM MovieExec", 
SQL.NTS);

9.5.3 Fetching Data From a Query Result
The function that corresponds to a FETCH command in embedded SQL or PSM 
is

SQLFetch(s/()

where sh is a statement handle. We presume the statement referred to by sh 
has been executed already, or the fetch will cause an error. SQLFetch, like all 
CLI functions, returns a value of type SQLRETURN that indicates either success 
or an error. The return value SQL_N0_DATA tells us tuples were left in the query 
result. As in our previous examples of fetching, this value will be used to get 
us out of a loop in which we repeatedly fetch new tuples from the result.

However, if we follow the SQLExecute of Example 9.19 by one or more 
SQLFetch calls, where does the tuple appear? The answer is that its components 
go into one of the description records associated with the statement whose 
handle appears in the SQLFetch call. We can extract the same component at 
each fetch by binding the component to a host-language variable, before we 
begin fetching. The function that does this job is:
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SQLBindCol(sft, colNo, colType, pVar, varSize, varlnfo)

The meanings of these six arguments are:

1. sh is the handle of the statement involved.

2. colNo is the number of the component (within the tuple) whose value we 
obtain.

3. colType is a code for the type of the variable into which the value of the 
component is to be placed. Examples of codes provided by s q l c l i .h  are 
SQL.CHAR for character arrays and strings, and SQL.INTEGER for integers.

4. p Var is a pointer to the variable into which the value is to be placed.

5. varSize is the length in bytes of the value of the variable pointed to by 
pVar.

6. varlnfo is a pointer to an integer that can be used by SQLBindCol to 
provide additional information about the value produced.

E xam ple  9 .20: Let us redo the entire function worthRanges from Fig. 9.8, 
using CLI calls instead of embedded SQL. We begin as in Fig. 9.19, but for 
the sake of succinctness, we skip all error checking except for the test whether 
SQLFetch indicates that no more tuples are present. The code is shown in 
Fig. 9.20.

Line (3) declares the same local variables that the embedded-SQL version 
of the function uses, and lines (4) through (7) declare additional local variables 
using the types provided in s q lc l i .h ;  these are variables that involve SQL in 
some way. Lines (4) through (6) are as in Fig. 9.19. New are the declarations 
on line (7) of worth (which corresponds to the shared variable of that name in 
Fig. 9.8) and w orthlnfo , which is required by SQLBindCol, but not used.

Lines (8) through (10) allocate the needed handles, as in Fig. 9.19, and 
lines (11) and (12) prepare and execute the SQL statement, as discussed in 
Example 9.19. In line (13), we see the binding of the first (and only) column of 
the result of this query to  the variable worth. The first argument is the handle 
for the statement involved, and the second argument is the column involved,
1 in this case. The third argument is the type of the column, and the fourth 
argument is a pointer to the place where the value will be placed: the variable 
worth. The fifth argument is the size of that variable, and the final argument 
points to w orth lnfo , a place for SQLBindCol to put additional information 
(which we do not use here).

The balance of the function resembles closely lines (11) through (19) of 
Fig. 9.8. The while-loop begins at line (14) of Fig. 9.20. Notice that we fetch 
a tuple and check that we are not out of tuples, all within the condition of the 
while-loop, on line (14). If there is a tuple, then in lines (15) through (17) we 
determine the number of digits the integer (which is bound to worth) has and 
increment the appropriate count. After the loop finishes, i.e., all tuples returned
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1) #include sqlcli.h
2) void worthRangesO {

int i, digits, counts[15];
SQLHENV myEnv;
SQLHDBC myCon;
SQLHSTMT execStat;
SQLINTEGER worth, worthlnfo;

SQLAllocHandle(SQL_HANDLE_ENV,
SQL_NULL_HANDLE, tonyEnv);

SQLAllocHandle(SQL_HANDLE_DBC, myEnv, &myCon); 
SQLAllocHandle(SQL_HANDLE_STMT, myCon, ftexecStat); 
SQLPrepare(execStat,

"SELECT netWorth FROM MovieExec", SQL_NTS); 
SQLExecute(execStat);
SQLBindCol(execStat, 1, SQL_INTEGER, &worth, 

sizeof(worth), ftworthlnfo); 
while(SQLFetch(execStat) != SQL_N0_DATA) { 

digits = 1;
while((worth /= 10) > 0) digits++; 
if(digits <= 14) counts[digits]++;

>
for(i=0; i<15; i++)

printf ("digits = */,d: number of execs = */.d\n",
i, counts[i]);

Figure 9.20: Grouping executive net worths: CLI version

by the statement execution of line (12) have been examined, the resulting counts 
are printed out at lines (18) and (19). □

9.5.4 Passing Parameters to Queries
Embedded SQL gives us the ability to execute a SQL statement, part of which 
consists of values determined by the current contents of shared variables. There 
is a similar capability in CLI, but it is rather more complicated. The steps 
needed are:

1. Use SQLPrepare to prepare a statement in which some portions, called 
parameters, are replaced by a question-mark. The ith  question-mark rep
resents the ith  parameter.

3)
4)
5)
6)
7)

8)

9)
10)
11)

12)
13)

14)
15)
16)
17)

18) 
19)
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Extracting Components with SQLGetData

An alternative to binding a program variable to an output of a query’s 
result relation is to fetch tuples without any binding and then trans
fer components to program variables as needed. The function to use is 
SQLGetData, and it takes the same arguments as SQLBindCol. However, 
it only copies data once, and it must be used after each fetch in order to 
have the same effect as initially binding the column to a variable.

2. Use function SQLBindParameter to bind values to the places where the 
question-marks are found. This function has ten arguments, of which we 
shall explain only the essentials.

3. Execute the query with these bindings, by calling SQLExecute. Note 
that if we change the values of one or more parameters, we need to call 
SQLExecute again.

The following example will illustrate the process, as well as indicate the impor
tant arguments needed by SQLBindParameter.

E xam ple 9.21: Let us reconsider the embedded SQL code of Fig. 9.6, where 
we obtained values for two variables studioName and studioAddr and used 
them as the components of a tuple, which we inserted into Studio. Figure 9.21 
sketches how this process would work in CLI. It assumes that we have a state
ment handle myStat to use for the insertion statement.

/* get values for studioName and studioAddr */

1) SQLPrepare(myStat,
"INSERT INTO Studio(name, address) VALUESC?, ?)", 
SQL.NTS);

2) SQLBindParameter(myStat, 1,..., studioName,...);
3) SQLBindParameter(myStat, 2,..., studioAddr,...);
4) SQLExecute(myStat);

Figure 9.21: Inserting a new studio by binding parameters to values

The code begins with steps (not shown) to give studioName and studioAddr 
values. Line (1) shows statement myStat being prepared to be an insertion 
statement with two parameters (the question-marks) in the VALUE clause. Then, 
lines (2) and (3) bind the first and second question-marks, to the current con
tents of studioName and studioAddr, respectively. Finally, line (4) executes 
the insertion. If the entire sequence of steps in Fig. 9.21, including the un
seen work to obtain new values for studioName and studioAddr, are placed
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in a loop, then each time around the loop, a new tuple, with a new name and 
address for a studio, is inserted into S tudio. □

9.5.5 Exercises for Section 9.5
Exercise 9 .5 .1 : Repeat the problems of Exercise 9.3.1, but write the code in 
C with CLI calls.

Exercise 9 .5 .2 : Repeat the problems of Exercise 9.3.2, but write the code in 
C with CLI calls.

9.6 JDBC
Java Database Connectivity, or JDBC, is a facility similar to CLI for allowing 
Java programs to access SQL databases. The concepts resemble those of CLI, 
although Java’s object-oriented flavor is evident in JDBC.

9.6.1 Introduction to JDBC
The first steps we must take to use JDBC are:

1. include the line:

import ja v a .s q l .* ;

to make the JDBC classes available to your Java program.

2. Load a “driver” for the database system we shall use. The driver we need 
depends on which DBMS is available to us, but we load the needed driver 
with the statement:

Class.forNam e(<driver name>) ;

For example, to get the driver for a MySQL database, execute:

Class.forName("com.mysql.j dbc.Driver");

The effect is that a class called DriverManager is available. This class is 
analogous in many ways to the environment whose handle we get as the 
first step in using CLI.

3. Establish a connection to the database. A variable of class Connection is 
created if we apply the method getC onnection to DriverManager.

The Java statement to establish a connection looks like:
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Connection myCon = D riverM anager.getConnection(<URL>,
<user nam e>, <passw ord>);

That is, the method g e t Connect ion. takes as arguments the URL for the 
database to which you wish to connect, your user name, and your password. It 
returns an object of class Connection, which we have chosen to call myCon.

E xam ple 9.22: Each DBMS has its own way of specifying the URL in the 
getConnection method. For instance, if you want to connect to a MySQL 
database, the form of the URL is

jdbc:m ysql: / /< h o s t nam e>/<database name>

□

A JDBC Connection object is quite analogous to a CLI connection, and it 
serves the same purpose. By applying the appropriate methods to a Connection 
like myCon, we can create statement objects, place SQL statements “in” those 
objects, bind values to SQL statement parameters, execute the SQL statements, 
and examine results a tuple at a time.

9.6.2 Creating Statements in JDBC
There are two methods we can apply to a Connection object in order to create 
statements:

1. createS tatem en tO  returns a Statement object. This object has no 
associated SQL statement yet, so method createS tatem en tO  may be 
thought of as analogous to the CLI call to SQLAllocHandle that takes a 
connection handle and returns a statement handle.

2. prepareS tatem ent(Q ), where Q is a SQL query passed as a string ar
gument, returns a PreparedStatement object. Thus, we may draw an 
analogy between executing prepareStatem ent (Q) in JDBC with the two 
CLI steps in which we get a statement handle with SQLAllocHandle and 
then apply SQLPrepare to that handle and the query Q.

There are four different methods that execute SQL statements. Like the 
methods above, they differ in whether or not they take a SQL statement as an 
argument. However, these methods also distinguish between SQL statements 
that are queries and other statements, which are collectively called “updates.” 
Note that the SQL UPDATE statement is only one small example of what JDBC 
terms an “update.” The latter include all modification statements, such as 
inserts, and all schema-related statements such as CREATE TABLE. The four 
“execute” methods are:
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a) executeQueryCQ) takes a statement Q, which must be a query, and is 
applied to a Statement object. This method returns a ResultSet object, 
which is the set (bag, to be precise) of tuples produced by the query Q. 
We shall see how to access these tuples in Section 9.6.3.

b) executeQueryO is applied to a PreparedStatement object. Since a pre
pared statement already has an associated query, there is no argument. 
This method also returns a ResultSet object.

c) executeUpdate (U) takes a nonquery statement U and, when applied to 
a Statement object, executes U. The effect is felt on the database only; 
no ResultSet object is returned.

d) executeUpdate(), with no argument, is applied to a PreparedStatement 
object. In that case, the SQL statement associated with the prepared 
statement is executed. This SQL statement must not be a query, of 
course.

E xam ple 9 .23: Suppose we have a Connection object myCon, and we wish to 
execute the query

SELECT netWorth FROM MovieExec;

One way to do so is to create a Statement object execStat, and then use it to 
execute the query directly.

Statement execStat = myCon.createStatementO;
ResultSet worths = execStat.executeQuery(

"SELECT netWorth FROM MovieExec");

The result of the query is a ResultSet object, which we have named worths. 
We’ll see in Section 9.6.3 how to extract the tuples from worths and process 
them.

An alternative is to prepare the query immediately and later execute it. 
This approach would be preferable should we want to execute the same query 
repeatedly. Then, it makes sense to prepare it once and execute it many times, 
rather than having the DBMS prepare the same query many times. The JDBC 
steps needed to follow this approach are:

PreparedStatement execStat = myCon.prepareStatement(
"SELECT netWorth FROM MovieExec");

ResultSet worths = execStat.executeQuery();

The result of executing the query is again a ResultSet object, which we have 
called worths. □
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E xam ple 9 .24: If we want to execute a parameterless nonquery, we can per
form analogous steps in both styles. There is no result set, however. For 
instance, suppose we want to insert into S ta rs ln  the fact that Denzel Wash
ington starred in Remember the Titans in the year 2000. We may create and 
use a statement s ta rS ta t  in either of the following ways:

Statem ent s ta rS ta t  = m yCon.createStatem ent() ; 
s t a r S t a t . executeUpdate("INSERT INTO S ta rs ln  VALUES(" + 

" ’Remember th e  T ita n s ’ , 2000, ’Denzel Washington’) " ) ;

or

PreparedStatem ent s ta rS ta t  = myCon.prepareStatement(
"INSERT INTO S ta rs ln  VALUES( ’Remember th e  T ita n s ’ ,"  + 
"2000, ’Denzel Washington’) " ) ;  

s ta rS ta t.e x ecu te U p d a teO ;

Notice that each of these sequences of Java statements takes advantage of the 
fact that +  is the Java operator that concatenates strings. Thus, we are able 
to extend SQL statements over several lines of Java, as needed. □

9.6.3 Cursor Operations in JDBC
When we execute a query and obtain a result-set object, we may, in effect, run 
a cursor through the tuples of the result set. To do so, the R esu ltSe t class 
provides the following useful methods:

1. n e x t() , when applied to a ResultSet object, causes an implicit cursor to 
move to the next tuple (to the first tuple the first time it is applied). This 
method returns FALSE if there is no next tuple.

2. g e tS tr in g ( i) , g e t l n t ( 0 ,  g e tF lo a t( i) ,  and analogous methods for the 
other types that SQL values can take, each return the *th component of 
the tuple currently indicated by the cursor. The method appropriate to 
the type of the *th component must be used.

E xam ple 9.25: Having obtained the result set worths as in Example 9.23, 
we may access its tuples one at a time. Recall that these tuples have only one 
component, of type integer. The form of the loop is:

w h ile (w o rth s .n ex t() )  {
in t  worth = w o r th s .g e tIn t(1);
/*  process th i s  n e t worth * /

>;

□



416 CHAPTER 9. SQL IN  A  SERVER ENVIRONMENT

9.6.4 Parameter Passing
As in CLI, we can use a question-mark in place of a portion of a query, and then 
bind values to those parameters. To do so in JDBC, we need to create a prepared 
statement, and we need to apply to that PreparedStatement object methods 
such as s e tS t r in g ( i , v ) or s e t  In t  ( i , v ) that bind the value v, which must 
be of the appropriate type for the method, to the *th parameter in the query.

E xam ple 9 .26 : Let us mimic the CLI code in Example 9.21, where we pre
pared a statement to insert a new studio into relation S tudio, with parameters 
for the name and address of that studio. The Java code to prepare this state
ment, set its parameters, and execute it is shown in Fig. 9.22. We continue to 
assume that connection object myCon is available to us.

1) P reparedStatem ent s tu d io S ta t  = m yCon.prepareStatem ent(
2) "INSERT INTO Studio(nam e, address) VALUESC?, ? ) " ) ;

/*  g e t va lu es f o r  v a r ia b le s  studioName and studioAddr
from th e  u se r * /

3) s tu d io S ta t .s e tS t r in g ( l ,  studioName);
4) s tu d io S ta t . s e tS tr in g (2 , studioA ddr);
5) s tu d io S ta t . executeU pdate( ) ;

Figure 9.22: Setting and using parameters in JDBC

In lines (1) and (2), we create and prepare the insertion statement. It has 
parameters for each of the values to be inserted. After line (2), we could begin 
a loop in which we repeatedly ask the user for a studio name and address, 
and place these strings in the variables studioName and studioAddr. This 
assignment is not shown, but represented by a comment. Lines (3) and (4) set 
the first and second parameters to the strings that are the current values of 
studioName and studioAddr, respectively. Finally, at line (5), we execute the 
insertion statement with the current values of its parameters. After line (5), we 
could go around the loop again, beginning with the steps represented by the 
comment. □

9.6.5 Exercises for Section 9.6
E xercise 9 .6 .1 : Repeat Exercise 9.3.1, but write the code in Java using JDBC. 

E xercise 9 .6 .2 : Repeat Exercise 9.3.2, but write the code in Java using JDBC.

9.7 PH P
PHP is a scripting language for helping to create HTML Web pages. It provides 
support for database operations through an available library, much as JDBC
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W hat Does PH P Stand For?

Originally, PHP was an acronym for “Personal Home Page.” More re
cently, it is said to be the recursive acronym “PHP: Hypertext Preproces
sor” in the spirit of other recursive acronyms such as GNU (= “GNU is 
Not Unix”).

does. In this section we shall give a brief overview of PHP and show how 
database operations are performed in this language.

9.7.1 PH P Basics
All PHP code is intended to exist inside HTML text. A browser will recognize 
that text is PHP code by placing it inside a special tag, which looks like:

<?php
PHP code goes here

?>

Many aspects of PHP, such as assignment statements, branches, and loops, 
will be familiar to the C or Java programmer, and we shall not cover them 
explicitly. However, there are some interesting features of PHP of which we 
should be aware.

V ariables

Variables are untyped and need not be declared. All variable names begin with 
$.

Often, a variable will be declared to be a member of a “class,” in which 
case certain functions (analogous to methods in Java) may be applied to that 
variable. The function-application operator is ->, comparable to the dot in 
Java or C-l—1-.

S trings

String values in PHP can be surrounded by either single or double quotes, but 
there is an important difference. Strings surrounded by single quotes are treated 
literally, just like SQL strings. However, when a string has double quotes around 
it, any variable names within the string are replaced by their values.

E xam ple 9 .27: In the following code:

$foo = ’b a r ’ ;
$x = ’Step up to  th e  $foo’ ;
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the value of $x is Step up to  th e  $foo. However, if the following code is 
executed instead:

$foo = "bar";
$x = "Step up to  th e  $foo";

the value of $x is Step up to  th e  bar. It doesn’t m atter whether b ar has 
single or double quotes, since it contains no dollar-signs and therefore no vari
ables. However, the variable $f oo is replaced only when surrounded by double 
quotes, as in the second example. □

Concatenation of strings is denoted by a dot. Thus,

$y = "$foo" . ’b a r ’ ;

gives $y the value barbar.

9.7.2 Arrays

PHP has ordinary arrays (called numeric), which are indexed 0 ,1 ,. . .  . It also 
has arrays that are really mappings, called associative arrays. The indexes 
(keys) of an associative array can be any strings, and the array associates a 
single value with each key. Both kinds of arrays use the conventional square 
brackets for indexing, but for associative arrays, an array element is represented 
by:

<key> => <value>

E xam ple 9 .28 : The following line:

$a = a r r a y (3 0 ,2 0 ,1 0 ,0 );

sets $a to be a numeric array of length four, with $a[0] equal to 30, $ a [ l]  
equal to 20, and so on. □

E xam ple  9 .29: The following line:

$seasons = a r r a y ( ’s p r in g ’ => ’warm’ , ’ summer’ => ’h o t ’ , 
’f a l l ’ => ’warm’ , ’w in te r’ => ’c o ld ’) ;

makes $seasons be an array of length four, but it is an associative array. For 
instance, $seasons[ ’summer’] has the value ’h o t ’ . □
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9.7.3 The PEAR DB Library
PHP has a collection of libraries called PEAR (PHP Extension and Application 
Repository). One of these libraries, DB, has generic functions that are analo
gous to the methods of JDBC. We tell the function DB:: connect which vendor’s 
DBMS we wish to access, but none of the other functions of DB need to know 
about which DBMS we are using. Note that the double colon in DB:: connect 
is PH P’s way of saying “the function connect in the DB library.” We make the 
DB library available to our PHP program with the statement:

include(D B.php);

9.7.4 Creating a Database Connection Using DB
The form of an invocation of the connect function is:

$myCon = DB:: connect ( < vendor> : / / Cuser nam e>: <password>
<host nam e>/<database n am e> );

The components of this call are like those in the analogous JDBC statement 
that creates a connection (see Section 9.6.1). The one exception is the vendor, 
which is a code used by the DB library. For example, m ysqli is the code for 
recent versions of the MySQL database.

After executing this statement, the variable $myCon is a connection. Like all 
PHP variables, $myCon can change its type. But as long as it is a connection, we 
may apply to it a number of useful functions that enable us to manipulate the 
database to which the connection was made. For example, we can disconnect 
from the database by

$myCon->disconnect();

Remember that -> is the PHP way of applying a function to an “object.”

9.7.5 Executing SQL Statements
All SQL statements are referred to as “queries” and are executed by the func
tion query, which takes the statement as an argument and is applied to the 
connection variable.

E xam ple 9 .30: Let us duplicate the insertion statement of Example 9.24, 
where we inserted Denzel Washington and Remember the Titans into the S ta rs 
ln  table. Assuming that $myCon has connected to our movie database, We can 
simply say:

$ re s u lt  = $myCon->query("INSERT INTO S ta rs ln  VALUES(" . 
" ’Denzel Washington’ , 2000, ’Remember th e  T ita n s ’) " ) ;
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Note that the dot concatenates the two strings that form the query. We only 
broke the query into two strings because it was necessary to break it over two 
lines.

The variable $ re s u lt  will hold an error code if the insert-statement failed 
to execute. If the “query” were really a SQL query, then $ re s u lt  is a cursor 
to the tuples of the result (see Section 9.7.6). □

PHP allows SQL to have parameters, denoted by question-marks, as we 
shall discuss in Section 9.7.7. However, the ability to expand variables in doubly 
quoted strings gives us another easy way to execute SQL statements that depend 
on user input. In particular, since PHP is used within Web pages, there are 
built-in ways to exploit HTML’s capabilities.

We often get information from a user of a Web page by showing them a form 
and having their answers “posted.” PHP provides an associative array called 
$_P0ST with all the information provided by the user. Its keys are the names 
of the form elements, and the associated values are what the user has entered 
into the form.

E xam ple 9 .31: Suppose we ask the user to fill out a form whose elements are 
t i t l e ,  year, and starName. These three values will form a tuple that we may 
insert into the table S ta rs ln . The statement:

$ re s u lt  = $myCon->query("INSERT INTO S ta rs ln  VALUES(
$_P 0ST [> title> ], $_P0ST[’y e a r’] , $_P0ST[’starName’] ) " ) ;

will obtain the posted values for these three form elements. Since the query 
argument is a double-quoted string, PHP evaluates terms like $-POST [ ’t i t l e ’] 
and replaces them by their values. □

9.7.6 Cursor Operations in PH P
When the query function gets a true query as argument, it returns a result 
object, that is, a list of tuples. Each tuple is a numeric array, indexed by 
integers starting at 0. The essential function that we can apply to a result 
object is letchRowO, which returns the next row, or 0 (false) if there is no 
next row.

1) $worths = $myCon->query("SELECT netWorth FROM MovieExec");
2) w hile ($ tup le  = $worths->fetchRow()) {
3) $worth = $ tu p le [0];

/ /  p rocess th i s  value of $worth
}

Figure 9.23: Finding and processing net worths in PHP
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E xam ple 9.32: In Fig. 9.23 is PHP code that is the equivalent of the JDBC 
in Examples 9.23 and 9.25. It assumes that connection $myCon is available, as 
before.

Line (1) passes the query to the connection $myCon, and the result object is 
assigned to the variable $worths. We then enter a loop, in which we repeatedly 
get a tuple from the result and assign this tuple to the variable $ tuple, which 
technically becomes an array of length 1, with only a component for the column 
netWorth. As in C, the value returned by fetchRowO becomes the value of 
the condition in the while-statement. Thus, if no tuple is found, this value,
0, terminates the loop. At line (3), the value of the tuple’s first (and only) 
component is extracted and assigned to the variable $worth. We do not show 
the processing of this value. □

9.7.7 Dynamic SQL in PH P

As in JDBC, PHP allows a SQL query to contain question-marks. These 
question-marks are placeholders for values that can be filled in later, during 
the execution of the statement. The process of doing so is as follows.

We may apply p repare and execute functions to a connection; these func
tions are analogous to similarly named functions discussed in Section 9.3.9 and 
elsewhere. Function p repare  takes a SQL statement as argument and returns 
a prepared version of that statement. Function execute takes two arguments: 
the prepared statement and an array of values to substitute for the question- 
marks in the statement. If there is only one question-mark, a simple variable, 
rather than an array, suffices.

E xam ple 9 .33 : Let us again look at the problem of Example 9.26, where we 
prepared to insert many name-address pairs into relation Studio. To begin, we 
prepare the query, with parameters, by:

$prepQuery = $myCon->prepare("INSERT INTO Studio(name, " . 
"address) VALUES(? ,? ) " ) ;

Now, $prepQuery is a “prepared query.” We can use it as an argument to 
execute along with an array of two values, a studio name and address. For 
example, we could perform the following statements:

$args = a r r a y ( ’MGM’ , ’Los A ngeles’);
$ re s u lt  = $myCon->execute($prepQuery, $ a rg s ) ;

The advantage of this arrangement is the same as for all implementations of 
dynamic SQL. If we insert many different tuples this way, we only have to 
prepare the insertion statement once and can execute it many times. □
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9.7.8 Exercises for Section 9.7
E xercise 9 .7 .1 : Repeat Exercise 9.3.1, but write the code using PHP.

Exercise 9 .7 .2 : Repeat Exercise 9.3.2, but write the code using PHP.

Exercise 9 .7 .3 : In Example 9.31 we exploited the feature of PHP that strings 
in double-quotes have variables expanded. How essential is this feature? Could 
we have done something analogous in JDBC? If so, how?

9.8 Summary of Chapter 9
♦  Three-Tier Architectures: Large database installations that support large- 

scale user interactions over the Web commonly use three tiers of processes: 
web servers, application servers, and database servers. There can be many 
processes active at each tier, and these processes can be at one processor 
or distributed over many processors.

♦  Client-Server Systems in the SQL Standard: The standard talks of SQL 
clients connecting to SQL servers, creating a connection (link between the 
two processes) and a session (sequence of operations). The code executed 
during the session comes from a module, and the execution of the module 
is called a SQL agent.

♦  The Database Environment: An installation using a SQL DBMS creates 
a SQL environment. Within the environment, database elements such as 
relations are grouped into (database) schemas, catalogs, and clusters. A 
catalog is a collection of schemas, and a cluster is the largest collection of 
elements that one user may see.

♦  Impedance Mismatch: The data model of SQL is quite different from the 
data models of conventional host languages. Thus, information passes 
between SQL and the host language through shared variables that can 
represent components of tuples in the SQL portion of the program.

♦  Embedded SQL: Instead of using a generic query interface to express SQL 
queries and modifications, it is often more effective to write programs 
that embed SQL queries in a conventional host language. A preprocessor 
converts the embedded SQL statements into suitable function calls of the 
host language.

♦  Cursors: A cursor is a SQL variable that indicates one of the tuples of 
a relation. Connection between the host language and SQL is facilitated 
by having the cursor range over each tuple of the relation, while the 
components of the current tuple are retrieved into shared variables and 
processed using the host language.
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♦  Dynamic SQL: Instead of embedding particular SQL statements in a host- 
language program, the host program may create character strings that are 
interpreted by the SQL system as SQL statements and executed.

♦  Persistent Stored Modules: We may create collections of procedures and 
functions as part of a database schema. These are written in a special 
language that has all the familiar control primitives, as well as SQL state
ments.

♦ The Call-Level Interface: There is a standard library of functions, called 
SQL/CLI or ODBC, that can be linked into any C program. These func
tions give capabilities similar to embedded SQL, but without the need for 
a preprocessor.

♦  JDBC: Java Database Connectivity is a collection of Java classes analo
gous to CLI for connecting Java programs to a database.

♦  PHP: Another popular system for implementing a call-level interface is 
PHP. This language is found embedded in HTML pages and enables these 
pages to interact with a database.

9.9 References for Chapter 9
The PSM standard is [4], and [5] is a comprehensive book on the subject. 
Oracle’s version of PSM is called PL/SQL; a summary can be found in [2]. 
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[1].

[3] is a popular reference on JDBC. [7] is one on PHP, which was originally 
developed by one of the book’s authors, R. Lerdorf.
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Chapter 10

Advanced Topics in 
Relational Databases

This chapter introduces additional topics that are of interest to the database 
programmer. We begin with a section on the SQL standard for authorization 
of access to database elements. Next, we see the SQL extension that allows 
for recursive programming in SQL — queries that use their own results. Then, 
we look at the object-relational model, and how it is implemented in the SQL 
standard.

The remainder of the chapter concerns “OLAP,” or on-line analytic pro
cessing. OLAP refers to complex queries of a nature that causes them to take 
significant time to execute. Because they are so expensive, some special tech
nology has developed to handle them efficiently. One important direction is 
an implementation of relations, called the “data cube,” that is rather different 
from the conventional bag-of-tuples approach of SQL.

10.1 Security and User Authorization in SQL
SQL postulates the existence of authorization ID ’s, which are essentially user 
names. SQL also has a special authorization ID called PUBLIC, which includes 
any user. Authorization ID’s may be granted privileges, much as they would be 
in the file system environment maintained by an operating system. For example, 
a UNIX system generally controls three kinds of privileges: read, write, and 
execute. That list of privileges makes sense, because the protected objects of a 
UNIX system are files, and these three operations characterize well the things 
one typically does with files. However, databases are much more complex than 
file systems, and the kinds of privileges used in SQL are correspondingly more 
complex.

In this section, we shall first learn what privileges SQL allows on database 
elements. We shall then see how privileges may be acquired by users (by au
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thorization ID’s, that is). Finally, we shall see how privileges may be taken 
away.

10.1.1 Privileges
SQL defines nine types of privileges: SELECT, INSERT, DELETE, UPDATE, REF
ERENCES, USAGE, TRIGGER, EXECUTE, and UNDER. The first four of these apply 
to a relation, which may be either a base table or a view. As their names 
imply, they give the holder of the privilege the right to query (select from) the 
relation, insert into the relation, delete from the relation, and update tuples of 
the relation, respectively.

A SQL statement cannot be executed without the privileges appropriate to 
that statement; e.g., a select-from-where statement requires the SELECT priv
ilege on every table it accesses. We shall see how the module can get those 
privileges shortly. SELECT, INSERT, and UPDATE may also have an associated 
list of attributes, for instance, SELECT (name, addr). If so, then only those 
attributes may be seen in a selection, specified in an insertion, or changed in 
an update, respectively. Note that, when granted, privileges such as these will 
be associated with a particular relation, so it will be clear at that time to what 
relation attributes name and addr belong.

The REFERENCES privilege on a relation is the right to refer to that relation in 
an integrity constraint. These constraints may take any of the forms mentioned 
in Chapter 7, such as assertions, attribute- or tuple-based checks, or referential 
integrity constraints. The REFERENCES privilege may also have an attached 
list of attributes, in which case only those attributes may be referenced in a 
constraint. A constraint cannot be created unless the owner of the schema in 
which the constraint appears has the REFERENCES privilege on all data involved 
in the constraint.

USAGE is a privilege that applies to several kinds of schema elements other 
than relations and assertions (see Section 9.2.2); it is the right to use that 
element in one’s own declarations. The TRIGGER privilege on a relation is the 
right to define triggers on that relation. EXECUTE is the right to execute a piece 
of code, such as a PSM procedure or function. Finally, UNDER is the right to 
create subtypes of a given type. The matter of types appears in Section 10.4.

E xam ple 10.1: Let us consider what privileges are needed to execute the in
sertion statement of Fig. 6.15, which we reproduce here as Fig. 10.1. First, 
it is an insertion into the relation Studio, so we require an INSERT privilege 
on Studio. However, since the insertion specifies only the component for at
tribute name, it is acceptable to have either the privilege INSERT or the privi
lege INSERT(name) on relation Studio. The latter privilege allows us to insert 
S tudio tuples that specify only the name component and leave other compo
nents to take their default value or NULL, which is what Fig. 10.1 does.

However, notice that the insertion statement of Fig. 10.1 involves two sub
queries, starting at lines (2) and (5). To carry out these selections we require
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Triggers and Privileges

It is a bit subtle how privileges are handled for triggers. First, if you have 
the TRIGGER privilege for a relation, you can attempt to create any trigger 
you like on that relation. However, since the condition and action portions 
of the trigger are likely to query and/or modify portions of the database, 
the trigger creator must have the necessary privileges for those actions. 
When someone performs an activity that awakens the trigger, they do 
not need the privileges that the trigger condition and action require; the 
trigger is executed under the privileges of its creator.

1) INSERT INTO Studio(name)
2) SELECT DISTINCT studioName
3) FROM Movies
4) WHERE studioName NOT IN
5) (SELECT name
6) FROM Studio);

Figure 10.1: Adding new studios

the privileges needed for the subqueries. Thus, we need the SELECT privilege 
on both relations involved in FROM clauses: Movies and Studio. Note that just 
because we have the INSERT privilege on Studio doesn’t mean we have the 
SELECT privilege on Studio, or vice versa. Since it is only particular attributes 
of Movies and S tudio that get selected, it is sufficient to have the privilege 
SELECT (studioName) on Movies and the privilege SELECT (name) on Studio, 
or privileges that include these attributes within a list of attributes. □

10.1.2 Creating Privileges
There are two aspects to the awarding of privileges: how they are created ini
tially, and how they are passed from user to user. We shall discuss initialization 
here and the transmission of privileges in Section 10.1.4.

First, SQL elements such as schemas or modules have an owner. The owner 
of something has all privileges associated with that thing. There are three 
points at which ownership is established in SQL.

1. When a schema is created, it and all the tables and other schema elements 
in it are owned by the user who created it. This user thus has all possible 
privileges on elements of the schema.

2. When a session is initiated by a CONNECT statement, there is an oppor
tunity to indicate the user with an AUTHORIZATION clause. For instance,
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the connection statement

CONNECT TO S ta r f le e t - s q l - s e rv e r  AS connl 
AUTHORIZATION k irk ;

would create a connection called connl to a database server whose name 
is S ta r f  le e t - s q l - s e rv e r ,  on behalf of user k irk . Presumably, the SQL 
implementation would verify that the user name is valid, for example by 
asking for a password. It is also possible to include the password in the 
AUTHORIZATION clause, as we discussed in Section 9.2.5. That approach 
is somewhat insecure, since passwords are then visible to someone looking 
over Kirk’s shoulder.

3. When a module is created, there is an option to give it an owner by using 
an AUTHORIZATION clause. For instance, a clause

AUTHORIZATION p ica rd ;

in a module-creation statement would make user p ic a rd  the owner of 
the module. It is also acceptable to specify no owner for a module, in 
which case the module is publicly executable, but the privileges necessary 
for executing any operations in the module must come from some other 
source, such as the user associated with the connection and session during 
which the module is executed.

10.1.3 The Privilege-Checking Process
As we saw above, each module, schema, and session has an associated user; in 
SQL terms, there is an associated authorization ID for each. Any SQL operation 
has two parties:

1. The database elements upon which the operation is performed and

2. The agent that causes the operation.

The privileges available to the agent derive from a particular authorization ID 
called the current authorization ID. That ID is either

a) The module authorization ID, if the module that the agent is executing 
has an authorization ID, or

b) The session authorization ID if not.

We may execute the SQL operation only if the current authorization ID pos
sesses all the privileges needed to carry out the operation on the database 
elements involved.
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E xam ple 10.2: To see the mechanics of checking privileges, let us reconsider 
Example 10.1. We might suppose that the referenced tables — Movies and 
Studio — are part of a schema called MovieSchema, which was created by 
and is owned by user janeway. At this point, user janeway has all privileges 
on these tables and any other elements of the schema MovieSchema. She may 
choose to grant some privileges to others by the mechanism to be described in 
Section 10.1.4, but let us assume none have been granted yet. There are several 
ways that the insertion of Example 10.1 can be executed.

1. The insertion could be executed as part of a module created by user 
janeway and containing an AUTHORIZATION janeway clause. The module 
authorization ID, if there is one, always becomes the current authorization 
ID. Then, the module and its SQL insertion statement have exactly the 
same privileges user janeway has, which includes all privileges on the 
tables Movies and Studio.

2. The insertion could be part of a module that has no owner. User janeway 
opens a connection with an AUTHORIZATION j aneway clause in the CON
NECT statement. Now, janeway is again the current authorization ID, so 
the insertion statement has all the privileges needed.

3. User janeway grants all privileges on tables Movies and S tudio to user 
archer, or perhaps to the special user PUBLIC, which stands for “all 
users.” Suppose the insertion statement is in a module with the clause

AUTHORIZATION arch er

Since the current authorization ID is now archer, and this user has the 
needed privileges, the insertion is again permitted.

4. As in (3), suppose user janeway has given user a rch er the needed priv
ileges. Also, suppose the insertion statement is in a module without an 
owner; it is executed in a session whose authorization ID was set by 
an AUTHORIZATION arch er clause. The current authorization ID is thus 
archer, and that ID has the needed privileges.

□
There are several principles that are illustrated by Example 10.2. We shall 

summarize them below.

• The needed privileges are always available if the data is owned by the 
same user as the user whose ID is the current authorization ID. Scenarios 
(1) and (2) above illustrate this point.

• The needed privileges are available if the user whose ID is the current 
authorization ID has been granted those privileges by the owner of the 
data, or if the privileges have been granted to user PUBLIC. Scenarios (3) 
and (4) illustrate this point.
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• Executing a module owned by the owner of the data, or by someone 
who has been granted privileges on the data, makes the needed privileges 
available. Of course, one needs the EXECUTE privilege on the module itself. 
Scenarios (1) and (3) illustrate this point.

• Executing a publicly available module during a session whose authoriza
tion ID is that of a user with the needed privileges is another way to 
execute the operation legally. Scenarios (2) and (4) illustrate this point.

10.1.4 Granting Privileges
So far, the only way we have seen to have privileges on a database element is to 
be the creator and owner of that element. SQL provides a GRANT statement to 
allow one user to give a privilege to another. The first user retains the privilege 
granted, as well; thus GRANT can be thought of as “copy a privilege.”

There is one important difference between granting privileges and copying. 
Each privilege has an associated grant option. That is, one user may have a 
privilege like SELECT on table Movies “with grant option,” while a second user 
may have the same privilege, but without the grant option. Then the first user 
may grant the privilege SELECT on Movies to a third user, and moreover that 
grant may be with or without the grant option. However, the second user, who 
does not have the grant option, may not grant the privilege SELECT on Movies 
to anyone else. If the third user got the privilege with the grant option, then 
that user may grant the privilege to a fourth user, again with or without the 
grant option, and so on.

A grant statement has the form:

GRANT <privilege list> ON <database element> TO <user list>

possibly followed by WITH GRANT OPTION.
The database element is typically a relation, either a base table or a view. 

If it is another kind of element, the name of the element is preceded by the 
type of that element, e.g., ASSERTION. The privilege list is a list of one or 
more privileges, e.g., SELECT or INSERT(name). Optionally, the keywords ALL 
PRIVILEGES may appear here, as a shorthand for all the privileges that the 
grantor may legally grant on the database element in question.

In order to execute this grant statement legally, the user executing it must 
possess the privileges granted, and these privileges must be held with the grant 
option. However, the grantor may hold a more general privilege (with the grant 
option) than the privilege granted. For instance, the privilege INSERT (name) 
on table S tudio  might be granted, while the grantor holds the more general 
privilege INSERT on S tudio, with grant option.

E xam ple  10.3: User janeway, who is the owner of the MovieSchema schema 
that contains tables
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M o v ie s ( t i t le , y e a r , len g th , genre, studioName, producerC#) 
Studio(name, ad d ress, presC#)

grants the INSERT and SELECT privileges on table S tudio and privilege SELECT 
on Movies to users k irk  and p icard . Moreover, she includes the grant option 
with these privileges. The grant statements are:

GRANT SELECT, INSERT ON Studio TO k irk , p ica rd  
WITH GRANT OPTION;

GRANT SELECT ON Movies TO k irk , p ica rd  
WITH GRANT OPTION;

Now, p ica rd  grants to user s isk o  the same privileges, but without the 
grant option. The statements executed by p ica rd  are:

GRANT SELECT, INSERT ON Studio TO s isk o ;
GRANT SELECT ON Movies TO s isk o ;

Also, k irk  grants to s isk o  the minimal privileges needed for the insertion of 
Fig. 10.1, namely SELECT and INSERT(name) on S tudio and SELECT on Movies. 
The statements are:

GRANT SELECT, INSERT(name) ON Studio TO s isk o ;
GRANT SELECT ON Movies TO s isk o ;

Note that s isk o  has received the SELECT privilege on Movies and S tudio from 
two different users. He has also received the INSERT (name) privilege on Studio 
twice: directly from k irk  and via the generalized privilege INSERT from p icard .
□

10.1.5 Grant Diagrams
Because of the complex web of grants and overlapping privileges that may result 
from a sequence of grants, it is useful to represent grants by a graph called a 
grant diagram. A SQL system maintains a representation of this diagram to 
keep track of both privileges and their origins (in case a privilege is revoked; 
see Section 10.1.6).

The nodes of a grant diagram correspond to a user and a privilege. Note 
that the ability to do something (e.g., SELECT on relation R) with the grant 
option and the same ability without the grant option are different privileges. 
These two different privileges, even if they belong to the same user, must be 
represented by two different nodes. Likewise, a user may hold two privileges, 
one of which is strictly more general than the other (e.g., SELECT on R  and 
SELECT on R(A). These two privileges are also represented by two different 
nodes.

If user U grants privilege P  to user V, and this grant was based on the fact 
that U holds privilege Q (Q could be P  with the grant option, or it could be
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some generalization of P, again with the grant option), then we draw an arc 
from the node for U/Q  to the node for V /P . As we shall see, privileges may 
be lost when arcs of this graph are deleted. That is why we use separate nodes 
for a pair of privileges, one of which includes the other, such as a privilege with 
and without the grant option. If the more powerful privilege is lost, the less 
powerful one might still be retained.

E xam ple 10.4: Figure 10.2 shows the grant diagram that results from the 
sequence of grant statements of Example 10.3. We use the convention that a * 
after a user-privilege combination indicates that the privilege includes the grant 
option. Also, ** after a user-privilege combination indicates that the privilege 
derives from ownership of the database element in question and was not due to 
a grant of the privilege from elsewhere. This distinction will prove important 
when we discuss revoking privileges in Section 10.1.6. A doubly starred privilege 
automatically includes the grant option. □

Figure 10.2: A grant diagram
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10.1.6 Revoking Privileges
A granted privilege can be revoked at any time. The revoking of privileges may 
be required to cascade, in the sense that revoking a privilege with the grant 
option that has been passed on to other users may require those privileges to 
be revoked too. The simple form of a revoke statement begins:

REVOKE <privilege list> ON <database element> FROM <user list>

The statement ends with one of the following:

1. CASCADE. If chosen, then when the specified privileges are revoked, we 
also revoke any privileges that were granted only because of the revoked 
privileges. More precisely, if user U has revoked privilege P  from user V, 
based on privilege Q belonging to U, then we delete the arc in the grant 
diagram from U/Q  to V /P . Now, any node that is not accessible from 
some ownership node (doubly starred node) is also deleted.

2. RESTRICT. In this case, the revoke statement cannot be executed if the 
cascading rule described in the previous item would result in the revoking 
of any privileges due to the revoked privileges having been passed on to 
others.

It is permissible to replace REVOKE by REVOKE GRANT OPTION FOR, in which 
case the core privileges themselves remain, but the option to grant them to 
others is removed. We may have to modify a node, redirect arcs, or create a 
new node to reflect the changes for the affected users. This form of REVOKE also 
must be followed by either CASCADE or RESTRICT.

E xam ple 10.5: Continuing with Example 10.3, suppose that janeway revokes 
the privileges she granted to p ica rd  with the statements:

REVOKE SELECT, INSERT ON Studio FROM p ica rd  CASCADE;
REVOKE SELECT ON Movies FROM p icard  CASCADE;

We delete the arcs of Fig. 10.2 from these janeway privileges to the corre
sponding p ica rd  privileges. Since CASCADE was stipulated, we also have to see 
if there are any privileges that are not reachable in the graph from a doubly 
starred (ownership-based) privilege. Examining Fig. 10.2, we see that p ic a rd ’s 
privileges are no longer reachable from a doubly starred node (they might have 
been, had there been another path to a p ica rd  node). Also, s isk o ’s privilege 
to INSERT into S tudio is no longer reachable. We thus delete not only p ic a rd ’s 
privileges from the grant diagram, but we delete s isk o ’s INSERT privilege.

Note that we do not delete sisko  ’ s SELECT privileges on Movies and Studio 
or his INSERT (name) privilege on Studio, because these are all reachable from 
janeway’s ownership-based privileges via k irk ’s privileges. The resulting grant 
diagram is shown in Fig. 10.3. □
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Figure 10.3: Grant diagram after revocation of p ic a rd ’s privileges

E xam ple 10.6: There are a few subtleties that we shall illustrate with abstract 
examples. First, when we revoke a general privilege p, we do not also revoke a 
privilege that is a special case of p. For instance, consider the following sequence 
of steps, whereby user U, the owner of relation R, grants the INSERT privilege 
on relation R  to user V, and also grants the INSERT (A) privilege on the same 
relation.

Step By Action
1 U GRANT INSERT ON R  TO V
2 U GRANT INSERT (A) ON R  TO V
3 U REVOKE INSERT ON R  FROM V  RESTRICT

When U revokes INSERT from V, the INSERT (A) privilege remains. The 
grant diagrams after steps (2) and (3) are shown in Fig. 10.4.

Notice that after step (2) there are two separate nodes for the two similar 
but distinct privileges that user V  has. Also observe that the RESTRICT option 
in step (3) does not prevent the revocation, because V  had not granted the
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(a) After step (2) (b) After step (3)

Figure 10.4: Revoking a general privilege leaves a more specific privilege

option to any other user. In fact, V  could not have granted either privilege, 
because V  obtained them without grant option. □

E xam ple 10.7: Now, let us consider a similar example where U grants V  
a privilege p* that includes the grant option and then revokes only the grant 
option. Assume the grant by U was based on its privilege q*. In this case, we 
must replace the arc from the U/q* node to V/p* by an arc from U/q* to V/p,
i.e., the same privilege without the grant option. If there was no such node 
V/p, it must be created. In normal circumstances, the node V/p* becomes 
unreachable, and any grants of p  made by V  will also be unreachable. However, 
it may be that V  was granted p* by some other user besides U, in which case 
the V /p* node remains accessible.

Here is a typical sequence of steps:

Step By Action
1 U GRANT p  TO V  WITH GRANT OPTION
2 V  GRANT p  TO W
3 U REVOKE GRANT OPTION FOR p  FROM V  CASCADE

In step (1), U grants the privilege p  to V  with the grant option. In step (2), 
V  uses the grant option to grant p  to W . The diagram is then as shown in 
Fig. 10.5(a).

Then in step (3), U revokes the grant option for privilege p  from V, but 
does not revoke the privilege itself. Since there is no node V/p, we create one. 
The arc from U /p**  to V/P*  is removed and replaced by one from U/p * * to 
V/p.

Now, the nodes V/p* and W /p  are not reachable from any ** node. Thus, 
these nodes are deleted from the diagram. The resulting grant diagram is shown 
in Fig. 10.5(b). □
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(a) After step (2) (b) After step (3)

Figure 10.5: Revoking a grant option leaves the underlying privilege

10.1.7 Exercises for Section 10.1
E xercise 10.1.1: Indicate what privileges are needed to execute the following 
queries. In each case, mention the most specific privileges as well as general 
privileges that are sufficient.

a) The query of Fig. 6.5.

b) The query of Fig. 6.7.

c) The insertion of Fig. 6.15.

d) The deletion of Example 6.37.

e) The update of Example 6.39.

f) The tuple-based check of Fig. 7.3.

g) The assertion of Example 7.11.

E xercise 10.1.2: Show the grant diagrams after steps (4) through (6) of the 
sequence of actions listed in Fig. 10.6. Assume A  is the owner of the relation 
to which privilege p  refers.

Step By Action___________________________________
1 A  GRANT p TO B  WITH GRANT OPTION
2 A  GRANT p TO C
3 B  GRANT p  TO D  WITH GRANT OPTION
4 D GRANT p  TO B , C , E  WITH GRANT OPTION
5 B  REVOKE p  FROM D  CASCADE
6 A  REVOKE p  FROM C  CASCADE

Figure 10.6: Sequence of actions for Exercise 10.1.2

Exercise 10.1.3: Show the grant diagrams after steps (5) and (6) of the se
quence of actions listed in Fig. 10.7. Assume A  is the owner of the relation to 
which privilege p  refers.
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1 A GRANT p  TO B , E  WITH GRANT OPTION
2 B GRANT p  TO C  WITH GRANT OPTION
3 C GRANT p  TO D WITH GRANT OPTION
4 E GRANT p  TO C
5 E GRANT p  TO D  WITH GRANT OPTION
6 A REVOKE GRANT OPTION FOR p  FROM B  CASCADE

Figure 10.7: Sequence of actions for Exercise 10.1.3

Exercise 10.1.4: Show the final grant diagram after the following steps, as
suming A  is the owner of the relation to which privilege p  refers.

Step By Action
1 A  GRANT p  TO B  WITH GRANT OPTION
2 B  GRANT p  TO B  WITH GRANT OPTION
3 A  REVOKE p FROM B  CASCADE

10.2 Recursion in SQL
The SQL-99 standard includes provision for recursive definitions of queries. 
Although this feature is not part of the “core” SQL-99 standard that every 
DBMS is expected to implement, at least one major system — IBM’s DB2 — 
does implement the SQL-99 proposal, which we describe in this section.

10.2.1 Defining Recursive Relations in SQL
The WITH statement in SQL allows us to define temporary relations, recursive 
or not. To define a recursive relation, the relation can be used within the WITH 
statement itself. A simple form of the WITH statement is:

WITH R  AS <definition of R>  <query involving R>

That is, one defines a temporary relation named R, and then uses R  in some 
query. The temporary relation is not available outside the query that is part of 
the WITH statement.

More generally, one can define several relations after the WITH, separating 
their definitions by commas. Any of these definitions may be recursive. Sev
eral defined relations may be mutually recursive; that is, each may be defined 
in terms of some of the other relations, optionally including itself. However, 
any relation that is involved in a recursion must be preceded by the keyword 
RECURSIVE. Thus, a more general form of WITH statement is shown in Fig. 10.8.

E xam ple 10.8: Many examples of the use of recursion can be found in a study 
of paths in a graph. Figure 10.9 shows a graph representing some flights of two
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WITH
[RECURSIVE] R i AS <definition of R i> , 
[RECURSIVE] R 2 AS <definition of R 2> ,

[RECURSIVE] R n AS <definition of R n> 
< query involving R i, R2, . . .  ,R n >

Figure 10.8: Form of a WITH statement defining several temporary relations

hypothetical airlines — Untried Airlines (UA), and Arcane Airlines (AA) — 
among the cities San Francisco, Denver, Dallas, Chicago, and New York. The 
data of the graph can be represented by a relation

F l ig h t s ( a i r l in e ,  frm , to ,  d e p a r ts , a r r iv e s )  

and the particular tuples in this table are shown in Fig. 10.9.

AA 1900-2200

Figure 10.9: A map of some airline flights

airline from to departs arrives
UA SF DEN 930 1230
AA SF DAL 900 1430
UA DEN CHI 1500 1800
UA DEN DAL 1400 1700
AA DAL CHI 1530 1730
AA DAL NY 1500 1930
AA CHI NY 1900 2200
UA CHI NY 1830 2130

Figure 10.10: Tuples in the relation F lig h ts

The simplest recursive question we can ask is “For what pairs of cities (x , y) 
is it possible to get from city x  to city y by taking one or more flights?” Before
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writing this query in recursive SQL, it is useful to express the recursion in 
the Datalog notation of Section 5.3. Since many concepts involving recursion 
are easier to express in Datalog than in SQL, you may wish to review the 
terminology of that section before proceeding. The following two Datalog rules 
describe a relation R eaches(x,y) that contains exactly these pairs of cities.

1. R eaches(x.y) «— F lig h ts ( a ,x ,y ,d , r )
2. R eaches(x,y) •<— R eaches(x,z) AND R eaches(z,y)

The first rule says that Reaches contains those pairs of cities for which there 
is a direct flight from the first to the second; the airline a, departure time d, 
and arrival time r are arbitrary in this rule. The second rule says that if you 
can reach from city x  to city z and you can reach from z to city y, then you 
can reach from x to y.

Evaluating a recursive relation requires that we apply the Datalog rules 
repeatedly, starting by assuming there are no tuples in Reaches. We begin 
by using Rule (1) to get the following pairs in Reaches: (SF, DEN), (SF, DAL), 
(DEN, CHI), (DEN, DAL), (DAL, CHI), (DAL, NY), and (CHI, NY). These are the seven 
pairs represented by arcs in Fig. 10.9.

In the next round, we apply the recursive Rule (2) to put together pairs 
of arcs such that the head of one is the tail of the next. That gives us the 
additional pairs (SF, CHI), (DEN, NY), and (SF, NY). The third round combines 
all one- and two-arc pairs together to form paths of length up to four arcs. 
In this particular diagram, we get no new pairs. The relation Reaches thus 
consists of the ten pairs (a;, y) such that y is reachable from x  in the diagram 
of Fig. 10.9. Because of the way we drew the diagram, these pairs happen to 
be exactly those (x ,y ) such that y is to the right of x  in Fig 10.9.

From the two Datalog rules for Reaches in Example 10.8, we can develop 
a SQL query that produces the relation Reaches. This SQL query places the 
Datalog rules for Reaches in a WITH statement, and follows it by a query. In 
our example, the desired result was the entire Reaches relation, but we could 
also ask some query about Reaches, for instance the set of cities reachable from 
Denver.

1) WITH RECURSIVE Reaches(frm , to )  AS
2) (SELECT frm, to  FROM F lig h ts )
3) UNION
4) (SELECT R I.frm , R2.to
5) FROM Reaches RI, Reaches R2
6) WHERE R I.to  = R2.frm)
7) SELECT * FROM Reaches;

Figure 10.11: Recursive SQL query for pairs of reachable cities

Figure 10.11 shows how to express Reaches as a SQL query. Line (1) intro
duces the definition of Reaches, while the actual definition of this relation is in
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Mutual Recursion

There is a graph-theoretic way to check whether two relations or predi
cates are mutually recursive. Construct a dependency graph whose nodes 
correspond to the relations (or predicates if we are using Datalog rules). 
Draw an arc from relation A  to relation B  if the definition of B  depends 
directly on the definition of A. That is, if Datalog is being used, then A 
appears in the body of a rule with B  at the head. In SQL, A  would appear 
in a FROM clause, somewhere in the definition of B, possibly in a subquery. 
If there is a cycle involving nodes R  and S, then R  and 5  are mutually 
recursive. The most common case will be a loop from R  to R, indicating 
that R  depends recursively upon itself.

lines (2) through (6).
That definition is a union of two queries, corresponding to the two Datalog 

rules by which Reaches was defined. Line (2) is the first term of the union and 
corresponds to the first, or basis rule. It says that for every tuple in the F lig h ts  
relation, the second and third components (the f  rm and to  components) are a 
tuple in Reaches.

Lines (4) through (6) correspond to Rule (2), the recursive rule, in the 
definition of Reaches. The two Reaches subgoals in Rule (2) are represented in 
the FROM clause by two aliases RI and R2 for Reaches. The first component of 
RI corresponds to x  in Rule (2), and the second component of R2 corresponds 
to y. Variable z  is represented by both the second component of RI and the 
first component of R2; note that these components are equated in line (6).

Finally, line (7) describes the relation produced by the entire query. It is a 
copy of the Reaches relation. As an alternative, we could replace line (7) by a 
more complex query. For instance,

7) SELECT to  FROM Reaches WHERE frm = ’DEN’ ; 

would produce all those cities reachable from Denver. □

10.2.2 Problematic Expressions in Recursive SQL
The SQL standard for recursion does not allow an arbitrary collection of mutu
ally recursive relations to be written in a WITH clause. There is a small matter 
that the standard requires only that linear recursion be supported. A linear 
recursion, in Datalog terms, is one in which no rule has more than one subgoal 
that is mutually recursive with the head. Notice that Rule (2) in Example 10.8 
has two subgoals with predicate Reaches that are mutually recursive with the 
head (a predicate is always mutually recursive with itself; see the box on Mutual
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Recursion). Thus, technically, a DBMS might refuse to execute Fig. 10.11 and 
yet conform to the standard.1

But there is a more important restriction on SQL recursions, one that, if 
violated leads to recursions that cannot be executed by the query processor in 
any meaningful way. To be a legal SQL recursion, the definition of a recursive 
relation R  may involve only the use of a mutually recursive relation S  (including 
R  itself) if that use is “monotone” in S. A use of S  is monotone if adding an 
arbitrary tuple to S  might add one or more tuples to R, or it might leave 
R  unchanged, but it can never cause any tuple to be deleted from R. The 
following example suggests what can happen if the monotonicity requirement 
is not respected.

E xam ple 10.9: Suppose relation R  is a unary (one-attribute) relation, and its 
only tuple is (0). R  is used as an EDB relation in the following Datalog rules:

1. P(x) <- R(x) AND NOT Q(x)
2. Q(x) «- R(x) AND NOT P(x)

Informally, the two rules tell us that an element x  in R  is either in P  or in Q 
but not both. Notice that P  and Q are mutually recursive.

If we start out, assuming that both P  and Q are empty, and apply the 
rules once, we find that P  — {(0)} and Q =  {(0)}; that is, (0) is in both IDB 
relations. On the next round, we apply the rules to the new values for P  and 
Q again, and we find that now both are empty. This cycle repeats as long as 
we like, but we never converge to a solution.

In fact, there are two “solutions” to the Datalog rules:

a) P  =  {(0)} Q =  0
b) p  =  0 Q =  {(0)}

However, there is no reason to assume one over the other, and the simple 
iteration we suggested as a way to compute recursive relations never converges 
to either. Thus, we cannot answer a simple question such as “Is P(0) true?”

The problem is not restricted to Datalog. The two Datalog rules of this 
example can be expressed in recursive SQL. Figure 10.12 shows one way of 
doing so. This SQL does not adhere to the standard, and no DBMS should 
execute it. □

The problem in Example 10.9 is that the definitions of P  and Q in Fig. 10.12 
are not monotone. Look at the definition of P  in lines (2) through (5) for 
instance. P  depends on Q, with which it is mutually recursive, but adding a 
tuple to Q can delete a tuple from P. Notice that if R  — {(0)} and Q is empty, 
then P  =  {(0)}. But if we add (0) to Q, then we delete (0) from P. Thus, the 
definition of P  is not monotone in Q, and the SQL code of Fig. 10.12 does not 
meet the standard.

1N ote, however, th a t  we can  replace e ith e r  one o f th e  uses o f R eaches in  line (5) of F ig . 10.11 
by F l ig h t s ,  an d  th u s  m ake th e  recursion  linear. N onlinear recursions can  frequen tly  —  
a lthough  n o t alw ays —  be m ade lin ear in  th is  fashion.
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1) WITH
2) RECURSIVE P(x) AS
3) (SELECT *
4) EXCEPT
5) (SELECT *

6) RECURSIVE Q(x) AS
7) (SELECT *
8) EXCEPT
9) (SELECT *

10) SELECT * FROM P;

Figure 10.12: Query with nonmonotonic behavior, illegal in SQL

E xam ple 1 0 .1 0 : Aggregation can also lead to nonmonotonicity. Suppose we 
have unary (one-attribute) relations P  and Q defined by the following two 
conditions:

1. P  is the union of Q and an EDB relation R.

2. Q has one tuple that is the sum of the members of P.

We can express these conditions by a WITH statement, although this statement 
violates the monotonicity requirement of SQL. The query shown in Fig. 10.13 
asks for the value of P.

1) WITH
2) RECURSIVE P(x) AS
3) (SELECT * FROM R)
4) UNION
5) (SELECT * FROM Q),

6) RECURSIVE Q(x) AS
7) SELECT SUM(x) FROM P

8) SELECT * FROM P;

Figure 10.13: Nonmonotone query involving aggregation, illegal in SQL

Suppose that R  consists of the tuples (12) and (34), and initially P  and Q 
are both empty. Figure 10.14 summarizes the values computed in the first six 
rounds. Note that both relations are computed, in one round, from the values 
of the relations at the previous round. Thus, P  is computed in the first round
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Round P Q
1) {(12), (34)} {NULL}
2) {(12), (34),NULL} {(46)}
3) {(12), (34), (46)} {(46)}
4) {(12), (34), (46)} {(92)}
5) {(12), (34), (92)} {(92)}
6) {(12), (34), (92)} {(138)}

Figure 10.14: Iterative calculation for a nonmonotone aggregation

to be the same as R, and Q is {NULL}, since the old, empty value of P  is used 
in line (7).

At the second round, the union of lines (3) through (5) is the set

R  U {NULL} =  {(12), (34), NULL}

so that set becomes the new value of P. The old value of P  was {(12), (34)}, 
so on the second round Q =  {(46)}. That is, 46 is the sum of 12 and 34.

At the third round, we get P  =  {(12), (34), (46)} at lines (2) through (5). 
Using the old value of P, {(12), (34), NULL}, Q is defined by lines (6) and (7) to 
be {(46)} again. Remember that NULL is ignored in a sum.

At the fourth round, P  has the same value, {(12), (34), (46)}, but Q gets 
the value {(92)}, since 12+34+46=92. Notice that Q has lost the tuple (46), 
although it gained the tuple (92). That is, adding the tuple (46) to P  has 
caused a tuple (by coincidence the same tuple) to be deleted from Q. That 
behavior is the nonmonotonicity that SQL prohibits in recursive definitions, 
confirming that the query of Fig. 10.13 is illegal. In general, at the 2*th round, 
P  will consist of the tuples (12), (34), and (46* — 46), while Q consists only of 
the tuple (46*). □

10.2.3 Exercises for Section 10.2
Exercise 10.2.1: The relation

Flights(airline, frm, to, departs, arrives)

from Example 10.8 has arrival- and departure-time information that we did not 
consider. Suppose we are interested not only in whether it is possible to reach 
one city from another, but whether the journey has reasonable connections. 
That is, when using more than one flight, each flight must arrive at least an 
hour before the next flight departs. You may assume that no journey takes 
place over more than one day, so it is not necessary to worry about arrival close 
to midnight followed by a departure early in the morning.

a) Write this recursion in Datalog.
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b) Write the recursion in SQL.

! Exercise 10.2 .2 : In Example 10.8 we used frm as an attribute name. Why 
did we not use the more obvious name from?

Exercise 10.2 .3 : Suppose we have a relation

SequelOf(movie, sequel)

that gives the immediate sequels of a movie, of which there can be more than 
one. We want to define a recursive relation FollowOn whose pairs (x, y) are 
movies such that y was either a sequel of x, a sequel of a sequel, or so on.

a) Write the definition of FollowOn as recursive Datalog rules.

b) Write the definition of FollowOn as a SQL recursion.

c) Write a recursive SQL query that returns the set of pairs (x , y) such that 
movie y is a follow-on to movie x, but is not a sequel of x.

d) Write a recursive SQL query that returns the set of pairs (a;, y) meaning 
that y is a follow-on of x, but is neither a sequel nor a sequel of a sequel.

! e) Write a recursive SQL query that returns the set of movies x  that have 
at least two follow-ons. Note that both could be sequels, rather than one 
being a sequel and the other a sequel of a sequel.

! f) Write a recursive SQL query that returns the set of pairs (x , y) such that 
movie y is a follow-on of x  but y has at most one follow-on.

E xercise 10.2 .4 : Suppose we have a relation

Rel(class, rclass, mult)

that describes how one ODL class is related to other classes. Specifically, this 
relation has tuple (c, d, m) if there is a relation from class c to class d. This 
relation is multivalued if m =  ’m u lti ’ and it is single-valued if m  =  ’s in g le ’ . 
It is possible to view Rel as defining a graph whose nodes are classes and in 
which there is an arc from c to d labeled m  if and only if (c, d, m) is a tuple 
of Rel. Write a recursive SQL query that produces the set of pairs (c, d) such 
that:

a) There is a path from class c to class d in the graph described above.

b) There is a path from c to d along which every arc is labeled s in g le .

! c) There is a path from c to d along which at least one arc is labeled m ulti.

d) There is a path from c to d but no path along which all arcs are labeled 
s in g le .
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! e) There is a path from c to d along which arc labels alternate s in g le  and 
m ulti.

f) There are paths from c to d and from d to c along which every arc is 
labeled sin g le .

10.3 The Object-Relational M odel
The relational model and the object-oriented model typified by ODL are two 
important points in a spectrum of options that could underlie a DBMS. For an 
extended period, the relational model was dominant in the commercial DBMS 
world. Object-oriented DBMS’s made limited inroads during the 1990’s, but 
never succeeded in winning significant market share from the vendors of re
lational DBMS’s. Rather, the vendors of relational systems have moved to 
incorporate many of the ideas found in ODL or other object-oriented-database 
proposals. As a result, many DBMS products that used to be called “relational” 
are now called “object-relational.”

This section extends the abstract relational model to incorporate several 
important object-relational ideas. It is followed by sections that cover object- 
relational extensions of SQL. We introduce the concept of object-relations in 
Section 10.3.1, then discuss one of its earliest embodiments — nested rela
tions — in Section 10.3.2. ODL-like references for object-relations are discussed 
in Section 10.3.3, and in Section 10.3.4 we compare the object-relational model 
with the pure object-oriented approach.

10.3.1 From Relations to Object-Relations
While the relation remains the fundamental concept, the relational model has 
been extended to the object-relational model by incorporation of features such 
as:

1. Structured types for attributes. Instead of allowing only atomic types for 
attributes, object-relational systems support a type system like ODL’s: 
types built from atomic types and type constructors for structs, sets, and 
bags, for instance. Especially important is a type that is a bag of structs, 
which is essentially a relation. That is, a value of one component of a 
tuple can be an entire relation, called a “nested relation.”

2. Methods. These are similar to methods in ODL or any object-oriented 
programming system.

3. Identifiers for tuples. In object-relational systems, tuples play the role of 
objects. It therefore becomes useful in some situations for each tuple to 
have a unique ID that distinguishes it from other tuples, even from tuples 
that have the same values in all components. This ID, like the object- 
identifier assumed in ODL, is generally invisible to the user, although
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there are even some circumstances where users can see the identifier for 
a tuple in an object-relational system.

4. References. While the pure relational model has no notion of references 
or pointers to tuples, object-relational systems can use these references in 
various ways.

In the next sections, we shall elaborate upon and illustrate each of these addi
tional capabilities of object-relational systems.

10.3.2 Nested Relations
In the nested-relational model, we allow attributes of relations to have a type 
that is not atomic; in particular, a type can be a relation schema. As a result, 
there is a convenient, recursive definition of the types of attributes and the 
types (schemas) of relations:

BASIS: An atomic type (integer, real, string, etc.) can be the type of an 
attribute.

INDUCTION: A relation’s type can be any schema consisting of names for one 
or more attributes, and any legal type for each attribute. In addition, a schema 
also can be the type of any attribute.

In what follows, we shall generally omit atomic types where they do not 
matter. An attribute that is a schema will be represented by the attribute name 
and a parenthesized list of the attributes of its schema. Since those attributes 
may themselves have structure, parentheses can be nested to any depth.

E xam ple 10.11: Let us design a nested-relation schema for stars that incor
porates within the relation an attribute movies, which will be a relation rep
resenting all the movies in which the star has appeared. The relation schema 
for attribute movies will include the title, year, and length of the movie. The 
relation schema for the relation S ta rs  will include the name, address, and birth
date, as well as the information found in movies. Additionally, the address 
attribute will have a relation type with attributes s t r e e t  and c ity . We can 
record in this relation several addresses for the star. The schema for S ta rs  can 
be written:

S tars(nam e, a d d re s s ( s t r e e t ,  c i t y ) ,  b i r th d a te ,  
m o v ie s ( t i t le ,  y ea r, len g th ))

An example of a possible relation for nested relation S ta rs  is shown in 
Fig. 10.15. We see in this relation two tuples, one for Carrie Fisher and one 
for Mark Hamill. The values of components are abbreviated to conserve space, 
and the dashed lines separating tuples are only for convenience and have no 
notational significance.
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address birthdate

Fisher street city

Maple H 'wood
Locust Malibu

9/9/99 title year length

Star Wars 1977 124
Empire 1980 127
Return 1983 133

Hamill street city

Oak B 'wood
8/ 8/88 title year length

Star Wars 1977 124
Empire 1980 127
Return 1983 133

Figure 10.15: A nested relation for stars and their movies

In the Carrie Fisher tuple, we see her name, an atomic value, followed 
by a relation for the value of the address component. That relation has two 
attributes, s t r e e t  and c ity , and there are two tuples, corresponding to her 
two houses. Next comes the birthdate, another atomic value. Finally, there is a 
component for the movies attribute; this attribute has a relation schema as its 
type, with components for the title, year, and length of a movie. The relation 
for the movies component of the Carrie Fisher tuple has tuples for her three 
best-known movies.

The second tuple, for Mark Hamill, has the same components. His relation 
for address has only one tuple, because in our imaginary data, he has only 
one house. His relation for movies looks just like Carrie Fisher’s because their 
best-known movies happen, by coincidence, to be the same. Note that these 
two relations are two different tuple-components. These components happen to 
be identical, just like two components that happened to have the same integer 
value, e.g., 124. □

10.3.3 References

The fact that movies like Star Wars will appear in several relations that are 
values of the movies attribute in the nested relation S ta rs  is a cause of redun
dancy. In effect, the schema of Example 10.11 has the nested-relation analog of 
not being in BCNF. However, decomposing this S ta rs  relation will not elimi
nate the redundancy. Rather, we need to arrange that among all the tuples of 
all the movies relations, a movie appears only once.

To cure the problem, object-relations need the ability for one tuple t to refer 
to another tuple s, rather than incorporating s directly in t. We thus add to 
our model an additional inductive rule: the type of an attribute also can be a
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reference to a tuple with a given schema or a set of references to tuples with a 
given schema.

If an attribute A  has a type that is a reference to a single tuple with a 
relation schema named R, we show the attribute A in a schema as A(*R). 
Notice that this situation is analogous to an ODL relationship A  whose type is 
R\ i.e., it connects to a single object of type R. Similarly, if an attribute A  has 
a type that is a set of references to tuples of schema R, then A  will be shown 
in a schema as A({*i?}). This situation resembles an ODL relationship A  that 
has type Set<i?>.

Fisher

Hamill

address

street city

Maple H'wood
Locust Malibu

street city

Oak B 'wood

birthdate

9/9/99

8 / 8/88

title year length

Star Wars 1977 124
Empire 1980 127
Return 1983 133

Stars Movies

Figure 10.16: Sets of references as the value of an attribute

E xam ple  10.12: An appropriate way to fix the redundancy in Fig. 10.15 is 
to use two relations, one for stars and one for movies. In this example only, we 
shall use a relation called Movies that is an ordinary relation with the same 
schema as the attribute movies in Example 10.11. A new relation S ta rs  has 
a schema similar to the nested relation Stairs of that example, but the movies 
attribute will have a type that is a set of references to Movies tuples. The 
schemas of the two relations are thus:

Movies(title, year, length)
Stars(name, address(street, city), birthdate, 

movies ({*Movies}-))

The data of Fig. 10.15, converted to this new schema, is shown in Fig. 10.16. 
Notice that, because each movie has only one tuple, although it can have many 
references, we have eliminated the redundancy inherent in the schema of Ex
ample 10.11. □
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10.3.4 Object-Oriented Versus Object-Relational

The object-oriented data model, as typified by ODL, and the object-relational 
model discussed here, are remarkably similar. Some of the salient points of 
comparison follow.

O bjects and Tuples

An object’s value is really a struct with components for its attributes and re
lationships. It is not specified in the ODL standard how relationships are to 
be represented, but we may assume that an object is connected to related ob
jects by some collection of references. A tuple is likewise a struct, but in the 
conventional relational model, it has components for only the attributes. Re
lationships would be represented by tuples in another relation, as suggested in 
Section 4.5.2. However the object-relational model, by allowing sets of refer
ences to be a component of tuples, also allows relationships to be incorporated 
directly into the tuples that represent an “object” or entity.

\

M eth od s

We did not discuss the use of methods as part of an object-relational schema. 
However, in practice, the SQL-99 standard and all implementations of object- 
relational ideas allow the same ability as ODL to declare and define methods 
associated with any class or type.

T yp e S ystem s

The type systems of the object-oriented and object-relational models are quite 
similar. Each is based on atomic types and construction of new types by struct- 
and collection-type-constructors. The choice of collection types may vary, but 
all variants include at least sets and bags. Moreover, the set (or bag) of structs 
type plays a special role in both models. It is the type of classes in ODL, and 
the type of relations in the object-relational model.

R eferences and O b ject-ID ’s

A pure object-oriented model uses object-ID’s that are completely hidden from 
the user, and thus cannot be seen or queried. The object-relational model allows 
references to be part of a type, and thus it is possible under some circumstances 
for the user to see their values and even remember them for future use. You 
may regard this situation as anything from a serious bug to a stroke of genius, 
depending on your point of view, but in practice it appears to make little 
difference.
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Backw ards C om patib ility

With little difference in essential features of the two models, it is interesting to 
consider why object-relational systems have dominated the pure object-oriented 
systems in the marketplace. The reason, we believe, is as follows. As relational 
DBMS’s evolved into object-relational DBMS’s, the vendors were careful to 
maintain backwards compatibility. That is, newer versions of the system would 
still run the old code and accept the same schemas, should the user not care 
to adopt any of the object-oriented features. On the other hand, migration 
to a pure object-oriented DBMS would require the installations to rewrite and 
reorganize extensively. Thus, whatever competitive advantage could be argued 
for object-oriented database systems was insufficient to motivate many to make 
the switch.

10.3.5 Exercises for Section 10.3
Exercise 10.3.1: Using the notation developed for nested relations and re
lations with references, give one or more relation schemas that represent the 
following information. In each case, you may exercise some discretion regard
ing what attributes of a relation are included, but try to keep close to the 
attributes found in our running movie example. Also, indicate whether your 
schemas exhibit redundancy, and if so, what could be done to avoid it.

a) Movies, with the usual attributes plus all their stars and the usual infor
mation about the stars.

! b) Studios, all the movies made by that studio, and all the stars of each 
movie, including all the usual attributes of studios, movies^ and stars.

c) Movies with their studio, their stars, and all the usual attributes of these.

Exercise 10.3.2: Represent the banking information of Exercise 4.1.1 in the 
object-relational model developed in this section. Make sure that it is easy, 
given the tuple for a customer, to find their account (s) and also easy, given the 
tuple for an account to find the customer(s) that hold that account. Also, try 
to avoid redundancy.

! Exercise 10.3.3: If the data of Exercise 10.3.2 were modified so that an ac
count could be held by only one customer [as in Exercise 4.1.2(a)], how could 
your answer to Exercise 10.3.2 be simplified?

! Exercise 10.3.4: Render the players, teams, and fans of Exercise 4.1.3 in the 
object-relational model.

! Exercise 10.3.5: Render the genealogy of Exercise 4.1.6 in the object-rela- 
tional model.
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10.4 User-Defined Types in SQL
We now turn to the way SQL-99 incorporates many of the object-oriented fea
tures that we saw in Section 10.3. The central extension that turns the relational 
model into the object-relational model in SQL is the user-defined type, or UDT. 
We find UDT’s used in two distinct ways:

1. A UDT can be the type of a table.

2. A UDT can be the type of an attribute belonging to some table.

10.4.1 Defining Types in SQL
The SQL-99 standard allows the programmer to define UDT’s in several ways. 
The simplest is as a renaming of an existing type.

CREATE TYPE T  AS <primitive ty p e> ;

renames a primitive type such as INTEGER. Its purpose is to prevent errors 
caused by accidental coercions among values that logically should not be com
pared or interchanged, even though they have the same primitive data type. 
An example should make the purpose clear.

E xam ple 10.13: In our running movies example, there are several attributes 
of type INTEGER. These include len g th  of Movies, c e rt#  of MovieExec, and 
presC# of Studio. It makes sense to compare a value of c e rt#  with a value of 
presC#, and we could even take a value from one of these two attributes and 
store it in a tuple as the value of the other attribute. However, It would not 
make sense to compare a movie length with the certificate number of a movie 
executive, or to take a len g th  value from a Movies tuple and store it in the 
c e rt#  attribute of a MovieExec tuple.

If we create types:

CREATE TYPE CertType AS INTEGER;
CREATE TYPE LengthType AS INTEGER;

then we can declare ce rt#  and presC# to be of type CertType instead of 
INTEGER in their respective relation declarations, and we can declare leng th  
to be of type LengthType in the Movies declaration. In that case, an object- 
relational DBMS will intercept attempts to compare values of one type with 
the other, or to use a value of one type in place of the other. O

A more powerful form of UDT declaration in SQL is similar to a class dec
laration in ODL, with some distinctions. First, key declarations for a relation 
with a user-defined type are part of the table definition, not the type defini
tion; that is, many SQL relations can be declared to have the same UDT but 
different keys and other constraints. Second, in SQL we do not treat relation
ships as properties. A relationship can be represented by a separate relation,
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as was discussed in Section 4.10.5, or through references, which are covered in 
Section 10.4.5. This form of UDT definition is:

CREATE TYPE T  AS (<attribute declarations>);

E xam ple 10.14: Figure 10.17 shows two UDT’s, AddressType and StarType. 
A tuple of type AddressType has two components, whose attributes are s t r e e t  
and c ity . The types of these components are character strings of length 50 and 
20, respectively. A tuple of type StarType also has two components. The first is 
attribute name, whose type is a 30-character string, and the second is address, 
whose type is itself a UDT AddressType, that is, a tuple with s t r e e t  and c i ty  
components. □

CREATE TYPE AddressType AS ( 
s t r e e t  CHAR(50), 
c i ty  CHAR(20)

) ;

CREATE TYPE StarType AS ( 
name CHAR(30), 
address AddressType

);

Figure 10.17: Two type definitions

10.4.2 M ethod Declarations in U D T ’s
The declaration of a method resembles the way a function in PSM is introduced; 
see Section 9.4.1. There is no analog of PSM procedures as methods. That is, 
every method returns a value of some type. While function declarations and 
definitions in PSM are combined, a method needs both a declaration, which 
follows the parenthesized list of attributes in the CREATE TYPE statement, and 
a separate definition, in a CREATE METHOD statement. The actual code for the 
method need not be PSM, although it could be. For example, the method body 
could be Java with JDBC used to access the database.

A method declaration looks like a PSM function declaration, with the key
word METHOD replacing CREATE FUNCTION. However, SQL methods typically 
have no arguments; they are applied to rows, just as ODL methods are ap
plied to objects. In the definition of the method, SELF refers to this tuple, if 
necessary.

E xam ple 10.15: Let us extend the definition of the type AddressType of 
Fig. 10.17 with a method houseNumber that extracts from the s t r e e t  com
ponent the portion devoted to the house address. For instance, if the s t r e e t



10.4. USER-DEFINED TYPES IN  SQL 453

component were ’ 123 Maple S t . ’ , then houseNumber should return ’ 123 ’ . 
Exactly how houseNumber works is not visible in its declaration; the details are 
left for the definition. The revised type definition is thus shown in Fig. 10.18.

CREATE TYPE AddressType AS ( 
s t r e e t  CHAR(50), 
c i ty  CHAR(20)
)
METHOD houseNumberO RETURNS CHAR(IO);

Figure 10.18: Adding a method declaration to a UDT

We see the keyword METHOD, followed by the name of the method and a 
parenthesized list of its arguments and their types. In this case, there are no ar
guments, but the parentheses are still needed. Had there been arguments, they 
would have appeared, followed by their types, such as (a INT, b CHAR(5)).
□

10.4.3 Method Definitions
Separately, we need to define the method. A simple form of method definition 
is:

CREATE METHOD <method name, arguments, and return type>
FOR <UDT name>

Cmethod body>

That is, the UDT for which the method is defined is indicated in a FOR clause. 
The method definition need not be contiguous to, or part of, the definition of 
the type to which it belongs.

E xam ple 10.16: For instance, we could define the method houseNumber from 
Example 10.15 as in Fig. 10.19. We have omitted the body of the method 
because accomplishing the intended separation of the string s t r in g  as intended 
is nontrivial, even if a general-purpose host language is used. □

CREATE METHOD houseNumberO RETURNS CHAR(10)
FOR AddressType 
BEGIN

END;

Figure 10.19: Defining a method
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10.4.4 Declaring Relations with a UDT
Having declared a type, we may declare one or more relations whose tuples are 
of that type. The form of relation declarations is like that of Section 2.3.3, but 
the attribute declarations are omitted from the parenthesized list of elements, 
and replaced by a clause with OF and the name of the UDT. That is, the 
alternative form of a CREATE TABLE statement, using a UDT, is:

CREATE TABLE Ctable name> OF <UDT name>
(<list of elem ents>);

The parenthesized list of elements can include keys, foreign keys, and tuple- 
based constraints. Note that all these elements are declared for a particular 
table, not for the UDT. Thus, there can be several tables with the same UDT 
as their row type, and these tables can have different constraints, and even 
different keys. If there are no constraints or key declarations desired for the 
table, then the parentheses are not needed.

E xam ple 10.17: We could declare MovieStar to be a relation whose tuples 
are of type StarType by

CREATE TABLE MovieStar OF StarType (
PRIMARY KEY (name)

);

As a result, table MovieStar has two attributes, name and address. The first 
attribute, name, is an ordinary character string, but the second, address, has 
a type that is itself a UDT, namely the type AddressType. Attribute name is 
a key for this relation, so it is not possible to have two tuples with the same 
name. □

10.4.5 References
The effect of object identity in object-oriented languages is obtained in SQL 
through the notion of a reference. A table may have a reference column that 
serves as the “identity” for its tuples. This column could be the primary key of 
the table, if there is one, or it could be a column whose values are generated and 
maintained unique by the DBMS, for example. We shall defer to Section 10.4.6 
the matter of defining reference columns until we first see how reference types 
are used.

To refer to the tuples of a table with a reference column, an attribute may 
have as its type a reference to another type. If T  is a UDT, then REF(T) is the 
type of a reference to a tuple of type T. Further, the reference may be given 
a scope, which is the name of the relation whose tuples are referred to. Thus, 
an attribute A  whose values are references to tuples in relation R, where R  is 
a table whose type is the UDT T, would be declared by:
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CREATE TYPE StarType AS ( 
name CHAR(30), 
address AddressType, 
bestMovie REF(MovieType) SCOPE Movies

);

Figure 10.20: Adding a best movie reference to StarType

A REF(T) SCOPE R

If no scope is specified, the reference can go to any relation of type T.

E xam ple 10.18: Let us record in MovieStar the best movie for each star. 
Assume that we have declared an appropriate relation Movies, and that the 
type of this relation is the UDT MovieType; we shall define both MovleType 
and Movies later, in Fig. 10.21. Figure 10.20 is a new definition of StarType 
that includes an attribute bestMovies that is a reference to a movie. Now, if 
relation MovieStar is defined to have the UDT of Fig. 10.20, then each star 
tuple will have a component that refers to a Movies tuple — the star’s best 
movie. □

10.4.6 Creating Object ID ’s for Tables
In order to refer to rows of a table, such as Movies in Example 10.18, that 
table needs to have an “object-ID” for its tuples. Such a table is said to be 
referenceable. In a CREATE TABLE statement where the type of the table is a 
UDT (as in Section 10.4.4), we may include an element of the form:

REF IS <attribute name> <how generated>

The attribute name is a name given to the column that will serve as the object- 
ID for tuples. The “how generated” clause can be:

1. SYSTEM GENERATED, meaning that the DBMS is responsible for maintain
ing a unique value in this column of each tuple, or

2. DERIVED, meaning that the DBMS will use the primary key of the relation 
to produce unique values for this column.

E xam ple 10.19: Figure 10.21 shows how the UDT MovieType and relation 
Movies could be declared so that Movies is referenceable. The UDT is declared 
in lines (1) through (4). Then the relation Movies is defined to have this type in 
lines (5) through (7). Notice that we have declared t i t l e  and year, together, 
to be the key for relation Movies in line (7).

We see in line (6) that the name of the “identity” column for Movies is 
movielD. This attribute, which automatically becomes a fourth attribute of
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1) CREATE TYPE MovieType AS (
2) t i t l e  CHAR(30),
3) year INTEGER,
4) genre CHAR(10)

) ;

5) CREATE TABLE Movies OF MovieType (
6) REF IS movielD SYSTEM GENERATED,
7) PRIMARY KEY ( t i t l e ,  year)

) ;

Figure 10.21: Creating a referenceable table

Movies, along with t i t l e ,  year, and genre, may be used in queries like any 
other attribute of Movies.

Line (6) also says that the DBMS is responsible for generating the value of 
movielD each time a new tuple is inserted into Movies. Had we replaced SYSTEM 
GENERATED by DERIVED, then new tuples would get their value of movielD by 
some calculation, performed by the system, on the values of the primary-key 
attributes t i t l e  and year taken from the new tuple. □

E xam ple 10.20: Now, let us see how to represent the many-many relationship 
between movies and stars using references. Previously, we represented this 
relationship by a relation like S ta rs ln  that contains tuples with the keys of 
Movies and MovieStar. As an alternative, we may define S ta rs ln  to have 
references to tuples from these two relations.

First, we need to redefine MovieStar so it is a referenceable table, thusly:

CREATE TABLE MovieStar OF StarType (
REF IS s ta rID  SYSTEM GENERATED,
PRIMARY KEY (name)

);

Then, we may declare the relation S ta rs ln  to have two attributes, which 
are references, one to a movie tuple and one to a star tuple. Here is a direct 
definition of this relation:

CREATE TABLE S ta rs ln  (
s t a r  REF(StarType) SCOPE M ovieStar, 
movie REF(MovieType) SCOPE Movies

);

Optionally, we could have defined a UDT as above, and then declared S ta rs ln  
to be a table of that type. □
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10.4.7 Exercises for Section 10.4
E xercise 10.4.1: For our running movies example, choose type names for the 
attributes of each of the relations. Give attributes the same UDT if their values 
can reasonably be compared or exchanged, and give them different UDT’s if 
they should not have their values compared or exchanged.

E xercise 10.4.2: Write type declarations for the following types:

a) NameType, with components for first, middle, and last names and a title.

b) PersonType, with a name of the person and references to the persons that 
are their mother and father. You must use the type from part (a) in your 
declaration.

c) MarriageType, with the date of the marriage and references to the hus
band and wife.

E xercise 10.4.3: Redesign our running products database schema of Exer
cise 2.4.1 to use type declarations and reference attributes where appropriate. 
In particular, in the relations PC, Laptop, and P r in te r  make the model at
tribute be a reference to the Product tuple for that model.

E xercise 10.4.4: In Exercise 10.4.3 we suggested that model numbers in the 
tables PC, Laptop, and P r in te r  could be references to tuples of the Product 
table. Is it also possible to make the model attribute in Product a reference to 
the tuple in the relation for that type of product? Why or why not?

Exercise 10.4.5: Redesign our running battleships database schema of Exer
cise 2.4.3 to use type declarations and reference attributes where appropriate. 
Look for many-one relationships and try to represent them using an attribute 
with a reference type.

10.5 Operations on Object-Relational Data
All appropriate SQL operations from previous chapters apply to tables that are 
declared with a UDT or that have attributes whose type is a UDT. There are 
also some entirely new operations we can use, such as reference-following. How
ever, some familiar operations, especially those that access or modify columns 
whose type is a UDT, involve new syntax.

10.5.1 Following References
Suppose a; is a value of type REF(T). Then x  refers to some tuple t of type T. 
We can obtain tuple t itself, or components of t, by two means:
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1. Operator -> has essentially the same meaning as this operator does in C. 
That is, if X is a reference to a tuple t, and a is an attribute of t, then 
x->a is the value of the attribute a in tuple t.

2. The DEREF operator applies to a reference and produces the tuple refer
enced.

E xam ple  10.21: Let us use the relation S ta rs ln  from Example 10.20 to find 
the movies in which Brad P itt starred. Recall that the schema is

S ta r s ln ( s t a r , movie)

where s t a r  and movie are references to tuples of MovieStar and Movies, re
spectively. A possible query is:

1) SELECT DEREF(movie)
2) FROM S ta rs ln
3) WHERE star->nam e = ’Brad P i t t ’ ;

In line (3), the expression star->nam e produces the value of the name com
ponent of the MovieStar tuple referred to by the s tax  component of any given 
S ta rs ln  tuple. Thus, the WHERE clause identifies those S ta rs ln  tuples whose 
s t a r  components are references to the Brad-Pitt MovieStar tuple. Line (1) 
then produces the movie tuple referred to by the movie component of those 
tuples. All three attributes — t i t l e ,  year, and genre — will appear in the 
printed result.

Note that we could have replaced line (1) by:

1) SELECT movie

However, had we done so, we would have gotten a list of system-generated 
gibberish that serves as the internal unique identifiers for certain movie tuples. 
We would not see the information in the referenced tuples. □

10.5.2 Accessing Components of Tuples with a UDT
When we define a relation to have a UDT, the tuples must be thought of as single 
objects, rather than lists with components corresponding to the attributes of 
the UDT. As a case in point, consider the relation Movies declared in Fig. 10.21. 
This relation has UDT MovieType, which has three attributes: t i t l e ,  year, 
and genre. However, a tuple t  in Movies has only one component, not three. 
That component is the object itself.

If we “drill down” into the object, we can extract the values of the three 
attributes in the type MovieType, as well as use any methods defined for that 
type. However, we have to access these attributes properly, since they are not 
attributes of the tuple itself. Rather, every UDT has an implicitly defined 
observer method for each attribute of that UDT. The name of the observer
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method for an attribute x  is x(). We apply this method as we would any other 
method for this UDT; we attach it with a dot to an expression that evaluates 
to an object of this type. Thus, if t is a variable whose value is of type T, and 
a: is an attribute of T, then t.x() is the value of x  in the tuple (object) denoted 
by t.

E xam ple 10.22: Let us find, from the relation Movies of Fig. 10.21 the year(s) 
of movies with title King Kong. Here is one way to do so:

SELECT m.yearO
FROM Movies m
WHERE m .t i t le O  = ’King Kong’ ;

Even though the tuple variable m  would appear not to be needed here, 
we need a variable whose value is an object of type MovieType — the UDT 
for relation Movies. The condition of the WHERE clause compares the constant 
’King Kong’ to the value of m . t i t le O ,  the observer method for attribute 
t i t l e  applied to a MovieType object m. Similarly, the value in the SELECT 
clause is expressed m .yearO ; this expression applies the observer method for 
year to the object m. □

In practice, object-relational DBMS’s do not use method syntax to extract 
an attribute from an object. Rather, the parentheses are dropped, and we shall 
do so in what follows. For instance, the query of Example 10.22 will be written:

SELECT m.year
FROM Movies m
WHERE m.title = ’King Kong’;

The tuple variable m  is still necessary, however.
The dot operator can be used to apply methods as well as to find attribute 

values within objects. These methods should have the parentheses attached, 
even if they take no arguments.

E xam ple 10.23: Suppose relation MovieStar has been declared to have UDT 
StarType, which we should recall from Example 10.14 has an attribute address 
of type AddressType. That type, in turn, has a method houseNumberO, which 
extracts the house number from an object of type AddressType (see Exam
ple 10.15). Then the query

SELECT MAX(s.address.houseNumber())
FROM MovieStar s

extracts the address component from a StarType object s, then applies the 
houseNumberO method to that AddressType object. The result returned is 
the largest house number of any movie star. □
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10.5.3 Generator and M utator Functions
In order to create data that conforms to a UDT, or to change components 
of objects with a UDT, we can use two kinds of methods that are created 
automatically, along with the observer methods, whenever a UDT is defined. 
These are:

1. A generator method. This method has the name of the type and no 
argument. It may be invoked without being applied to any object. That 
is, if T is a UDT, then T() returns an object of type T , with no values in 
its various components.

2. Mutator methods. For each attribute x  of UDT T , there is a mutator 
method x(v). When applied to an object of type T, it changes the x  
attribute of that object to have value v. Notice that the mutator and 
observer method for an attribute each have the name of the attribute, 
but differ in that the mutator has an argument.

E xam ple  10.24: We shall write a PSM procedure that takes as arguments 
a street, a city, and a name, and inserts into the relation MovieStar (of type 
StarType according to Example 10.17) an object constructed from these values, 
using calls to the proper generator and mutator functions. Recall from Exam
ple 10.14 that objects of StarType have a name component that is a character 
string, but an address component that is itself an object of type AddressType. 
The procedure In s e r tS ta r  is shown in Fig. 10.22.

1) CREATE PROCEDURE In s e r tS ta r (
2) IN s CHAR(50),
3) IN c CHAR(20),
4) IN n CHAR(30)

)
5) DECLARE newAddr AddressType;
6) DECLARE newStar S tarT ype;

BEGIN
7) SET newAddr = AddressType() ;
8) SET newStar = S tarType() ;
9) newAddr. s t r e e t ( s ) ;

10) newAddr. c i t y ( c ) ;
11) newSt a r .nam e(n);
12) new Star.address(new A ddr);
13) INSERT INTO MovieStar VALUES(newStar);

END;

Figure 10.22: Creating and storing a StarType object
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Lines (2) through (4) introduce the arguments s, c, and n, which will provide 
values for a street, city, and star name, respectively. Lines (5) and (6) declare 
two local variables. Each is of one of the UDT’s involved in the type for objects 
that exist in the relation MovieStar. At lines (7) and (8) we create empty 
objects of each of these two types.

Lines (9) and (10) put real values in the object newAddr; these values are 
taken from the procedure arguments that provide a street and a city. Line (11) 
similarly installs the argument n as the value of the name component in the 
object newStar. Then line (12) takes the entire newAddr object and makes it 
the value of the address component in newStar. Finally, line (13) inserts the 
constructed object into relation MovieStar. Notice that, as always, a relation 
that has a UDT as its type has but a single component, even if that component 
has several attributes, such as name and address in this example.

To insert a star into MovieStar, we can call procedure In se rtS ta r .

CALL I n s e r tS ta r ( ’345 Spruce S t . ’ , ’G lendale’ , ’Gwyneth P altrow ’) ;  

is an example. □

It is much simpler to insert objects into a relation with a UDT if your DBMS 
provides a generator function that takes values for the attributes of the UDT and 
returns a suitable object. For example, if we have functions AddressType(s,c) 
and S tarT ype(n,a) that return objects of the indicated types, then we can 
make the insertion at the end of Example 10.24 with an INSERT statement of a 
familiar form:

INSERT INTO MovieStar VALUES(
StarType( ’Gwyneth P altrow ’ ,

AddressType( ’345 Spruce S t . ’ , ’G lendale’) ) ) ;

10.5.4 Ordering Relationships on U D T ’s
Objects that are of some UDT are inherently abstract, in the sense that there 
is no way to compare two objects of the same UDT, either to test whether they 
are “equal” or whether one is less than another. Even two objects that have all 
components identical will not be considered equal unless we tell the system to 
regard them as equal. Similarly, there is no obvious way to sort the tuples of 
a relation that has a UDT unless we define a function that tells which of two 
objects of that UDT precedes the other.

Yet there are many SQL operations that require either an equality test or 
both an equality and a “less than” test. For instance, we cannot eliminate 
duplicates if we can’t tell whether two tuples are equal. We cannot group by an 
attribute whose type is a UDT unless there is an equality test for that UDT. 
We cannot use an ORDER BY clause or a comparison like < in a WHERE clause 
unless we can compare two elements.
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To specify an ordering or comparison, SQL allows us to issue a CREATE 
ORDERING statement for any UDT. There are a number of forms this statement 
may take, and we shall only consider the two simplest options:

1. The statement

CREATE ORDERING FOR T  EQUALS ONLY BY STATE;

says that two members of UDT T  are considered equal if all of their 
corresponding components are equal. There is no < defined on objects of 
UDT T.

2. The following statement

CREATE ORDERING FOR T
ORDERING FULL BY RELATIVE WITH F;

says that any of the six comparisons (<, <=, >, >=, =, and <>) may be 
performed on objects of UDT T. To tell how objects x \ and x 2 compare, 
we apply the function F  to these objects. This function must be writ
ten so that F (x i ,x 2) < 0 whenever we want to conclude that x\ < x 2; 
F (x \ ,x 2) =  0 means that X\ = x 2, and F (x i ,x 2) > 0 means that x \ > x 2. 
If we replace “ORDERING FULL” with “EQUALS ONLY,” then F (x i ,x 2) =  0 
indicates that x\ — x 2, while any other value of F (x i ,x 2) means that 
x i ^  x2. Comparison by < is impossible in this case.

E xam ple 10.25: Let us consider a possible ordering on the UDT StarType 
from Example 10.14. If we want only an equality on objects of this UDT, we 
could declare:

CREATE ORDERING FOR StarType EQUALS ONLY BY STATE;

That statement says that two objects of StarType are equal if and only if their 
names are equal as character strings, and their addresses are equal as objects 
of UDT AddressType.

The problem is that, unless we define an ordering for AddressType, an 
object of that type is not even equal to itself. Thus, we also need to create 
at least an equality test for AddressType. A simple way to do so is to declare 
that two AddressType objects are equal if and only if their streets and cities 
are each equal as strings. We could do so by:

CREATE ORDERING FOR AddressType EQUALS ONLY BY STATE;

Alternatively, we could define a complete ordering of AddressType objects. 
One reasonable ordering is to order addresses first by cities, alphabetically, and 
among addresses in the same city, by street address, alphabetically. To do so, we 
have to define a function, say AddrLEG, that takes two AddressType arguments 
and returns a negative, zero, or positive value to indicate that the first is less 
than, equal to, or greater than the second. We declare:
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CREATE ORDERING FOR AddressType 
ORDERING FULL BY RELATIVE WITH AddrLEG;

The function AddrLEG is shown in Fig. 10.23. Notice that if we reach line (7), 
it must be that the two c i ty  components are the same, so we compare the 
s t r e e t  components. Likewise, if we reach line (9), the only remaining possi
bility is that the cities are the same and the first street precedes the second 
alphabetically. □

1) CREATE FUNCTION AddrLEG(
2) x l AddressType,
3) x2 AddressType
4) ) RETURNS INTEGER

5) IF x l .c i ty O  < x2 . c i t y () THEN RETURN(-1)
6) ELSEIF x l .c i ty O  > x 2 .c i ty ( )  THEN RETURN(1)
7) ELSEIF x l . s t r e e t () < x 2 .s t r e e t ( )  THEN RETURN(-1)
8) ELSEIF x1 .s t r e e t () = x 2 .s t r e e t ( )  THEN RETURN(0)
9) ELSE RETURN(1)

END IF;

Figure 10.23: A comparison function for address objects

In practice, commercial DBMS’s each have their own way of allowing the 
user to define comparisons for a UDT. In addition to the two approaches men
tioned above, some of the capabilities offered are:

a) Strict Object Equality. Two objects are equal if and only if they are the 
same object.

b) Method-Defined Equality. A function is applied to two objects and returns 
true or false, depending on whether or not the two objects should be 
considered equal.

c) Method-Defined Mapping. A function is applied to one object and returns 
a real number. Objects are compared by comparing the real numbers 
returned.

10.5.5 Exercises for Section 10.5
E xercise 10.5.1: Use the S ta rs ln  relation of Example 10.20 and the Movies 
and MovieStar relations accessible through S ta rs ln  to write the following quer
ies:

a) Find the names of the stars of Dogma.
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! b) Find the titles and years of all movies in which at least one star lives in 
Malibu.

c) Find all the movies (objects of type MovieType) that starred Melanie 
Griffith.

! d) Find the movies (title and year) with at least five stars.

Exercise 10.5 .2 : Using your schema from Exercise 10.4.3, write the following 
queries. Don’t  forget to use references whenever appropriate.

a) Find the manufacturers of PC’s with a hard disk larger than 60 gigabytes.

b) Find the manufacturers of laser printers.

! c) Produce a table giving for each model of laptop, the model of the lap
top having the highest processor speed of any laptop made by the same 
manufacturer.

Exercise 10.5.3: Using your schema from Exercise 10.4.5, write the following 
queries. Don’t forget to use references whenever appropriate and avoid joins 
(i.e., subqueries or more than one tuple variable in the FROM clause).

a) Find the ships with a displacement of more than 35,000 tons.

b) Find the battles in which at least one ship was sunk.

! c) Find the classes that had ships launched after 1930.

!! d) Find the battles in which at least one US ship was damaged.

Exercise 10.5.4: Assuming the function AddrLEG of Fig. 10.23 is available, 
write a suitable function to compare objects of type StarType, and declare your 
function to be the basis of the ordering of StarType objects.

! Exercise 10.5.5: Write a procedure to take a star name as argument and 
delete from S ta rs ln  and MovieStar all tuples involving that star.

10.6 On-Line Analytic Processing
An important application of databases is examination of data for patterns or 
trends. This activity, called OLAP (standing for On-Line Analytic Processing 
and pronounced “oh-lap”), generally involves highly complex queries that use 
one or more aggregations. These queries are often termed OLAP queries or 
decision-support queries. Some examples will be given in Section 10.6.2. A 
typical example is for a company to search for those of its products that have 
markedly increasing or decreasing overall sales.

Decision-support queries typically examine very large amounts of data, even 
if the query results are small. In contrast, common database operations, such
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as bank deposits or airline reservations, each touch only a tiny portion of the 
database; the latter type of operation is often referred to as OLTP (On-Line 
Transaction Processing, spoken “oh-ell-tee-pee”).

A recent trend in DBMS’s is to provide specialized support for OLAP 
queries. For example, systems often support a “data cube” in some way. We 
shall discuss the architecture of these systems in Section 10.7.

10.6.1 OLAP and Data Warehouses
It is common for OLAP applications to take place in a separate copy of the 
master database, called a data warehouse. Data from many separate databases 
may be integrated into the warehouse. In a common scenario, the warehouse 
is only updated overnight, while the analysts work on a frozen copy during the 
day. The warehouse data thus gets out of date by as much as 24 hours, which 
limits the timeliness of its answers to OLAP queries, but the delay is tolerable 
in many decision-support applications.

There are several reasons why data warehouses play an important role in 
OLAP applications. First, the warehouse may be necessary to organize and 
centralize data in a way that supports OLAP queries; the data may initially 
be scattered across many different databases. But often more important is the 
fact that OLAP queries, being complex and touching much of the data, take 
too much time to be executed in a transaction-processing system with high 
throughput requirements. Recall the discussion of serializable transactions in 
Section 6.6. Trying to run a long transaction that needed to touch much of 
the database serializably with other transactions would stall ordinary OLTP 
operations more than could be tolerated. For instance, recording new sales 
as they occur might not be permitted if there were a concurrent OLAP query 
computing average sales.

10.6.2 OLAP Applications
A common OLAP application uses a warehouse of sales data. Major store chains 
will accumulate terabytes of information representing every sale of every item 
at every store. Queries that aggregate sales into groups and identify significant 
groups can be of great use to the company in predicting future problems and 
opportunities.

E xam ple 10.26: Suppose the Aardvark Automobile Co. builds a data ware
house to analyze sales of its cars. The schema for the warehouse might be:

S a le s (se ria lN o , d a te , d e a le r , p ric e )
A utos(serialN o, model, co lo r)
Dealers(nam e, c i ty ,  s t a t e ,  phone)

A typical decision-support query might examine sales on or after April 1, 2006 
to see how the recent average price per vehicle varies by state. Such a query is 
shown in Fig. 10.24.
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SELECT s t a t e ,  AVG(price)
FROM S a le s , D ealers 
WHERE S a le s .d e a le r  = Dealers.nam e AND 

d a te  >= >2006-01-04’
GROUP BY s ta te ;

Figure 10.24: Find average sales price by state

Notice how the query of Fig. 10.24 touches much of the data of the database, 
as it classifies every recent S ales fact by the state of the dealer that sold it. 
In contrast, a typical OLTP query such as “find the price at which the auto 
with serial number 123 was sold,” would touch only a single tuple of the data, 
provided there was an index on serial number. □

For another OLAP example, consider a credit-card company trying to decide 
whether applicants for a card are likely to be credit-worthy. The company 
creates a warehouse of all its current customers and their payment history. 
OLAP queries search for factors, such as age, income, home-ownership, and 
zip-code, that might help predict whether customers will pay their bills on time. 
Similarly, hospitals may use a warehouse of patient data — their admissions, 
tests administered, outcomes, diagnoses, treatments, and so on — to analyze 
for risks and select the best modes of treatment.

10.6.3 A Multidimensional View of OLAP Data
In typical OLAP applications there is a central relation or collection of data, 
called the fact table. A fact table represents events or objects of interest, such 
as sales in Example 10.26. Often, it helps to think of the objects in the fact 
table as arranged in a multidimensional space, or “cube.” Figure 10.25 suggests 
three-dimensional data, represented by points within the cube; we have called 
the dimensions car, dealer, and date, to correspond to our earlier example of 
automobile sales. Thus, in Fig. 10.25 we could think of each point as a sale of 
a single automobile, while the dimensions represent properties of that sale.

Figure 10.25: Data organized in a multidimensional space
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A data space such as Fig. 10.25 will be referred to informally as a “data 
cube,” or more precisely as a raw-data cube when we want to distinguish it 
from the more complex “data cube” of Section 10.7. The latter, which we shall 
refer to as a formal data cube when a distinction from the raw-data cube is 
needed, differs from the raw-data cube in two ways:

1. It includes aggregations of the data in all subsets of dimensions, as well 
as the data itself.

2. Points in the formal data cube may represent an initial aggregation of 
points in the raw-data cube. For instance, instead of the “car” dimension 
representing each individual car (as we suggested for the raw-data cube), 
that dimension might be aggregated by model only. There are points of a 
formal data cube that represent the total sales of all cars of a given model 
by a given dealer on a given day.

The distinctions between the raw-data cube and the formal data cube are 
reflected in the two broad directions that have been taken by specialized systems 
that support cube-structured data for OLAP:

1. ROLAP, or Relational OLAP. In this approach, data may be stored in 
relations with a specialized structure called a “star schema,” described 
in Section 10.6.4. One of these relations is the “fact table,” which con
tains the raw, or unaggregated, data, and corresponds to what we called 
the raw-data cube. Other relations give information about the values 
along each dimension. The query language, index structures, and other 
capabilities of the system may be tailored to the assumption that data is 
organized this way.

2. MOLAP, or Multidimensional OLAP. Here, a specialized structure, the 
formal “data cube” mentioned above, is used to hold the data, includ
ing its aggregates. Nonrelational operators may be implemented by the 
system to support OLAP queries on data in this structure.

10.6.4 Star Schemas
A star schema consists of the schema for the fact table, which links to several 
other relations, called “dimension tables.” The fact table is at the center of the 
“star,” whose points are the dimension tables. A fact table normally has several 
attributes that represent dimensions, and one or more dependent attributes 
that represent properties of interest for the point as a whole. For instance, 
dimensions for sales data might include the date of the sale, the place (store) 
of the sale, the type of item sold, the method of payment (e.g., cash or a credit 
card), and so on. The dependent attribute(s) might be the sales price, the cost 
of the item, or the tax, for instance.

E xam ple 10.27: The S ales relation from Example 10.26
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S a le s (se ria lN o , d a te , d e a le r , p r ic e )  

is a fact table. The dimensions are:

1. seria lN o , representing the automobile sold, i.e., the position of the point 
in the space of possible automobiles.

2. date , representing the day of the sale, i.e., the position of the event in 
the time dimension.

3. d ea le r, representing the position of the event in the space of possible 
dealers.

The one dependent attribute is p r ic e , which is what OLAP queries to this 
database will typically request in an aggregation. However, queries asking for 
a count, rather than sum or average price would also make sense, e.g., “list the 
total number of sales for each dealer in the month of May, 2006.” □

Supplementing the fact table are dimension tables describing the values 
along each dimension. Typically, each dimension attribute of the fact table 
is a foreign key, referencing the key of the corresponding dimension table, as 
suggested by Fig. 10.26. The attributes of the dimension tables also describe 
the possible groupings that would make sense in a SQL GROUP BY query. An 
example should make the ideas clearer.

Dimension Dimension
table table

table table

Figure 10.26: The dimension attributes in the fact table reference the keys of 
the dimension tables

E xam ple  10.28: For the automobile data of Example 10.26, two of the three 
dimension tables might be:
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A utos(serialN o , model, co lo r)
D ealers(nam e, c i ty ,  s t a t e ,  phone)

Attribute seria lN o  in the fact table S ales is a foreign key, referencing seria lN o 
of dimension table Autos.2 The attributes Autos .model and A utos. co lo r give 
properties of a given auto. If we join the fact table Sales with the dimension 
table Autos, then the attributes model and co lo r may be used for grouping 
sales in interesting ways. For instance, we can ask for a breakdown of sales by 
color, or a breakdown of sales of the Gobi model by month and dealer.

Similarly, attribute d ea le r  of Sales is a foreign key, referencing name of 
the dimension table D ealers. If S ales and D ealers are joined, then we have 
additional options for grouping our data; e.g., we can ask for a breakdown of 
sales by state or by city, as well as by dealer.

One might wonder where the dimension table for time (the d a te  attribute of 
Sales) is. Since time is a physical property, it does not make sense to store facts 
about time in a database, since we cannot change the answer to questions such 
as “in what year does the day July 5, 2007 appear?” However, since grouping 
by various time units, such as weeks, months, quarters, and years, is frequently 
desired by analysts, it helps to build into the database a notion of time, as if 
there were a time “dimension table” such as

Days(day, week, month, year)

A typical tuple of this imaginary “relation” would be (5,27,7,2007), represent
ing July 5, 2007. The interpretation is that this day is the fifth day of the 
seventh month of the year 2007; it also happens to fall in the 27th full week 
of the year 2007. There is a certain amount of redundancy, since the week 
is calculable from the other three attributes. However, weeks axe not exactly 
commensurate with months, so we cannot obtain a grouping by months from 
a grouping by weeks, or vice versa. Thus, it makes sense to imagine that both 
weeks and months are represented in this “dimension table.” □

10.6.5 Slicing and Dicing
We can think of the points of the raw-data cube as partitioned along each 
dimension at some level of granularity. For example, in the time dimension, we 
might partition ( “group by” in SQL terms) according to days, weeks, months, 
years, or not partition at all. For the cars dimension, we might partition by 
model, by color, by both model and color, or not partition. For dealers, we can 
partition by dealer, by city, by state, or not partition.

A choice of partition for each dimension “dices” the cube, as suggested by 
Fig. 10.27. The result is that the cube is divided into smaller cubes that repre
sent groups of points whose statistics are aggregated by a query that performs 
this partitioning in its GROUP BY clause. Through the WHERE clause, a query also

2It h ap p en s th a t  se r ia lN o  is also a  key for th e  S a le s  re la tio n , b u t th e re  need n o t be  an 
a t tr ib u te  th a t  is b o th  a  key for th e  fact tab le  an d  a  foreign key fo r som e dim ension tab le .
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/

date

Figure 10.27: Dicing the cube by partitioning along each dimension

has the option of focusing on particular partitions along one or more dimensions 
(i.e., on a particular “slice” of the cube).

E xam ple 10.29: Figure 10.28 suggests a query in which we ask for a slice in 
one dimension (the date), and dice in two other dimensions (car and dealer). 
The date is divided into four groups, perhaps the four years over which data 
has been accumulated. The shading in the diagram suggests that we are only 
interested in one of these years.

The cars are partitioned into three groups, perhaps sedans, SUV’s, and 
convertibles, while the dealers are partitioned into two groups, perhaps the 
eastern and western regions. The result of the query is a table giving the total 
sales in six categories for the one year of interest. □

date — *-

Figure 10.28: Selecting a slice of a diced cube 

The general form of a so-called “slicing and dicing” query is thus:

SELECT <grouping attributes and aggregations>
FROM <fact table joined with some dimension tables>
WHERE <certain attributes are constant>
GROUP BY <grouping attributes > ;

E xam ple 10.30: Let us continue with our automobile example, but include 
the conceptual Days dimension table for time discussed in Example 10.28. If
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Drill-Down and Roll-Up

Example 10.30 illustrates two common patterns in sequences of queries 
that slice-and-dice the data cube.

1. Drill-down is the process of partitioning more finely and/or focusing 
on specific values in certain dimensions. Each of the steps except 
the last in Example 10.30 is an instance of drill-down.

2. Roll-up is the process of partitioning more coarsely. The last step, 
where we grouped by years instead of months to eliminate the effect 
of randomness in the data, is an example of roll-up.

the Gobi isn’t selling as well as we thought it would, we might try to find out 
which colors are not doing well. This query uses only the Autos dimension table 
and can be written in SQL as:

SELECT co lo r , SUM(price)
FROM S ales NATURAL JOIN Autos 
WHERE model = ’Gobi’
GROUP BY co lo r;

This query dices by color and then slices by model, focusing on a particular 
model, the Gobi, and ignoring other data.

Suppose the query doesn’t  tell us much; each color produces about the same 
revenue. Since the query does not partition on time, we only see the total over 
all time for each color. We might suppose that the recent trend is for one or 
more colors to have weak sales. We may thus issue a revised query that also 
paxtitions time by month. This query is:

SELECT co lo r , month, SUM(price)
FROM (Sales NATURAL JOIN Autos) JOIN Days ON d ate  = day 
WHERE model = ’Gobi’
GROUP BY c o lo r, month;

It is important to remember that the Days relation is not a conventional stored 
relation, although we may treat it as if it had the schema

Days(day, week, month, year)

The ability to use such a “relation” is one way that a system specialized to 
OLAP queries could differ from a conventional DBMS.

We might discover that red Gobis have not sold well recently. The next 
question we might ask is whether this problem exists at all dealers, or whether



472 CHAPTER 10. ADVANCED TOPICS IN  RELATIONAL DATABASES

only some dealers have had low sales of red Gobis. Thus, we further focus the 
query by looking at only red Gobis, and we partition along the dealer dimension 
as well. This query is:

SELECT d e a le r , month, SUM(price)
FROM (S ales NATURAL JOIN Autos) JOIN Days ON d a te  = day
WHERE model = ’Gobi’ AND co lo r = ’r e d ’
GROUP BY month, d ea le r;

At this point, we find that the sales per month for red Gobis are so small 
that we cannot observe any trends easily. Thus, we decide that it was a mistake 
to partition by month. A better idea would be to partition only by years, and 
look at only the last two years (2006 and 2007, in this hypothetical example). 
The final query is shown in Fig. 10.29. □

SELECT d e a le r , y ea r, SUM(price)
FROM (S ales NATURAL JOIN Autos) JOIN Days ON d ate  = day
WHERE model = ’Gobi’ AND 

co lo r = ’r e d ’ AND 
(year = 2006 OR year = 2007)

GROUP BY y ea r, d ea le r;

Figure 10.29: Final slicing-and-dicing query about red Gobi sales

10.6.6 Exercises for Section 10.6
Exercise 10.6.1: An on-line seller of computers wishes to maintain data about 
orders. Customers can order their PC with any of several processors, a selected 
amount of main memory, any of several disk units, and any of several CD or 
DVD readers. The fact table for such a database might be:

0 rd e rs (c u s t , d a te , p roc , memory, hd, od, quant, p ric e )

We should understand attribute cu st to be an ID that is the foreign key for 
a dimension table about customers, and understand attributes proc, hd (hard 
disk), and od (optical disk: CD or DVD, typically) analogously. For example, 
an hd ID might be elaborated in a dimension table giving the manufacturer of 
the disk and several disk characteristics. The memory attribute is simply an 
integer: the number of megabytes of memory ordered. The quant attribute is 
the number of machines of this type ordered by this customer, and the p r ic e  
attribute is the total cost of each machine ordered.

a) Which are dimension attributes, and which are dependent attributes?
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b) For some of the dimension attributes, a dimension table is likely to be 
needed. Suggest appropriate schemas for these dimension tables.

! E xercise 10.6.2: Suppose that we want to examine the data of Exercise 10.6.1 
to find trends and thus predict which components the company should order 
more of. Describe a series of drill-down and roll-up queries that could lead to 
the conclusion that customers are beginning to prefer a DVD drive to a CD 
drive.

10.7 Data Cubes
In this section, we shall consider the “formal” data cube and special operations 
on data presented in this form. Recall from Section 10.6.3 that the formal data 
cube (just “data cube” in this section) precomputes all possible aggregates in 
a systematic way. Surprisingly, the amount of extra storage needed is often 
tolerable, and as long as the warehoused data does not change, there is no 
penalty incurred trying to keep all the aggregates up-to-date.

In the data cube, it is normal for there to be some aggregation of the raw 
data of the fact table before it is entered into the data-cube and its further 
aggregates computed. For instance, in our cars example, the dimension we 
thought of as a serial number in the star schema might be replaced by the 
model of the car. Then, each point of the data cube becomes a description of a 
model, a dealer and a date, together with the sum of the sales for that model, 
on that date, by that dealer. We shall continue to call the points of the (formal) 
data cube a “fact table,” even though the interpretation of the points may be 
slightly different from fact tables in a star schema built from a raw-data cube.

10.7.1 The Cube Operator
Given a fact table F, we can define an augmented table C U B E (F )  that adds 
an additional value, denoted *, to each dimension. The * has the intuitive 
meaning “any,” and it represents aggregation along the dimension in which 
it appears. Figure 10.30 suggests the process of adding a border to the cube 
in each dimension, to represent the * value and the aggregated values that 
it implies. In this figure we see three dimensions, with the lightest shading 
representing aggregates in one dimension, darker shading for aggregates over 
two dimensions, and the darkest cube in the corner for aggregation over all 
three dimensions. Notice that if the number of values along each dimension 
is reasonably large, then the “border” represents only a small addition to the 
volume of the cube (i.e., the number of tuples in the fact table). In that case, 
the size of the stored data C U B E (F )  is not much greater than the size of F  
itself.

A tuple of the table C U B E (F )  that has * in one or more dimensions will 
have for each dependent attribute the sum (or another aggregate function) of 
the values of that attribute in all the tuples that we can obtain by replacing
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Figure 10.30: The cube operator augments a data cube with a border of aggre
gations in all combinations of dimensions

the *’s by real values. In effect, we build into the data the result of aggregating 
along any set of dimensions. Notice, however, that the C U B E  operator does 
not support aggregation at intermediate levels of granularity based on values in 
the dimension tables. For instance, we may either leave data broken down by 
day (or whatever the finest granularity for time is), or we may aggregate time 
completely, but we cannot, with the C U B E  operator alone, aggregate by weeks, 
months, or years.

E xam ple 10.31: Let us reconsider the Aardvark database from Example 10.26 
in the light of what the C U B E  operator can give us. Recall the fact table from 
that example is

S ales(se ria lN o , d a te , d e a le r , p rice )

However, the dimension represented by serialN o is not well suited for the cube, 
since the serial number is a key for Sales. Thus, summing the price over all 
dates, or over all dealers, but keeping the serial number fixed has no effect; we 
would still get the “sum” for the one auto with that serial number. A more 
useful data cube would replace the serial number by the two attributes — model 
and color — to which the serial number connects Sales via the dimension table 
Autos. Notice that if we replace serialN o by model and color, then the cube 
no longer has a key among its dimensions. Thus, an entry of the cube would 
have the total sales price for all automobiles of a given model, with a given 
color, by a given dealer, on a given date.

There is another change that is useful for the data-cube implementation 
of the Sales fact table. Since the C U B E  operator normally sums dependent 
variables, and we might want to get average prices for sales in some category, 
we need both the sum of the prices for each category of automobiles (a given 
model of a given color sold on a given day by a given dealer) and the total 
number of sales in that category. Thus, the relation Sales to which we apply 
the C U B E operator is



10.7. DATA CUBES 475

Sales(m odel, co lo r, d a te , d e a le r , v a l ,  cn t)

The attribute v a l is intended to be the total price of all automobiles for the 
given model, color, date, and dealer, while cn t is the total number of automo
biles in that category.

Now, let us consider the relation CUBE(Sales). A hypothetical tuple that 
would be in CUBE(Sales) is:

( ’Gobi’ , ’r e d ’ , ’2001-05-21’ , ’F riend ly  F red ’ , 45000, 2)

The interpretation is that on May 21, 2001, dealer Friendly Fred sold two red 
Gobis for a total of $45,000. In S ales, this tuple might appear as well, or there 
could be in Sales two tuples, each with a cn t of 1, whose v a l’s summed to 
45,000.

The tuple

( ’Gobi’ , *, ’2001-05-21’ , ’F riend ly  F red ’ , 152000, 7)

says that on May 21, 2001, Friendly Fred sold seven Gobis of all colors, for 
a total price of $152,000. Note that this tuple is in CUBE(Sales) but not in 
Sales.

Relation CUBE(Sales) also contains tuples that represent the aggregation 
over more than one attribute. For instance,

( ’Gobi’ , *, ’2001-05-21’ , *, 2348000, 100)

says that on May 21, 2001, there were 100 Gobis sold by all the dealers, and 
the total price of those Gobis was $2,348,000.

( ’Gobi’ , *, *, *, 1339800000, 58000)

Says that over all time, dealers, and colors, 58,000 Gobis have been sold for a 
total price of $1,339,800,000. Lastly, the tuple

(*, *, *, *, 3521727000, 198000)

tells us that total sales of all Aardvark models in all colors, over all time at all 
dealers is 198,000 cars for a total price of $3,521,727,000. □

10.7.2 The Cube Operator in SQL
SQL gives us a way to apply the cube operator within queries. If we add the 
term WITH CUBE to a group-by clause, then we get not only the tuple for each 
group, but also the tuples that represent aggregation along one or more of the 
dimensions along which we have grouped. These tuples appear in the result 
with NULL where we have used *.
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E xam ple  10.32 : We can construct a materialized view that is the data cube 
we called CUBE(Sales) in Example 10.31 by the following:

CREATE MATERIALIZED VIEW SalesCube AS
SELECT model, c o lo r , d a te , d e a le r ,  SUM(val), SUM(cnt) 
FROM S ales
GROUP BY model, co lo r , d a te , d e a le r  WITH CUBE;

The view SalesCube will then contain not only the tuples that are implied by 
the group-by operation, such as

( ’Gobi’ , ’r e d ’ , ’2001-05-21’ , ’F rien d ly  F red ’ , 45000, 2)

but will also contain those tuples of C U B E ( S a le s )  that are constructed by rolling 
up the dimensions listed in the GROUP BY. Some examples of such tuples would 
be:

( ’Gobi’ , NULL, ’2001-05-21’ , ’F rien d ly  F red ’ , 152000, 7) 
( ’Gobi’ , NULL, ’2001-05-21’ , NULL, 2348000, 100)
( ’Gobi’ , NULL, NULL, NULL, 1339800000, 58000)
(NULL, NULL, NULL, NULL, 3521727000, 198000)

Recall that NULL is used to indicate a rolled-up dimension, equivalent to the * 
we used in the abstract C U B E  operator’s result. □

A variant of the CUBE operator, called ROLLUP, produces the additional ag
gregated tuples only if they aggregate over a tail of the sequence of grouping 
attributes. We indicate this option by appending WITH ROLLUP to the group-by 
clause.

E xam ple 10.33: We can get the part of the data cube for S a les that is 
constructed by the ROLLUP operator with:

CREATE MATERIALIZED VIEW SalesR ollup AS
SELECT model, c o lo r , d a te , d e a le r ,  SUM(val), SUM(cnt) 
FROM S ales
GROUP BY model, co lo r , d a te , d e a le r  WITH ROLLUP;

The view SalesR ollup will contain tuples

( ’Gobi’ , ’r e d ’ , ’2001-05-21’ , ’F rien d ly  F red ’ , 45000, 2) 
( ’Gobi’ , ’r e d ’ , ’2001-05-21’ , NULL, 3678000, 135)
( ’Gobi’ , ’r e d ’ , NULL, NULL, 657100000, 34566)
( ’Gobi’ , NULL, NULL, NULL, 1339800000, 58000)
(NULL, NULL, NULL, NULL, 3521727000, 198000)

because these tuples represent aggregation along some dimension and all di
mensions, if any, that follow it in the list of grouping attributes.

However, S alesR ollup would not contain tuples such as
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( ’Gobi’ , NULL, ’2001-05-21’ , ’F riend ly  F red ’ , 152000, 7) 
( ’Gobi’ , NULL, ’2001-05-21’ , NULL, 2348000, 100)

These each have NULL in a dimension (co lo r in both cases) but do not have 
NULL in one or more of the following dimension attributes. □

10.7.3 Exercises for Section 10.7
Exercise 10.7.1: What is the ratio of the size of CUBE(F) to the size of F  if 
fact table F  has the following characteristics?

a) F  has ten dimension attributes, each with ten different values.

b) F  has ten dimension attributes, each with two different values.

E xercise 10.7.2: Use the materialized view SalesCube from Example 10.32 
to answer the following queries:

a) Find the total sales of blue cars for each dealer.

b) Find the total number of green Gobis sold by dealer “Smilin’ Sally.”

c) Find the average number of Gobis sold on each day of March, 2007 by 
each dealer.

E xercise 10.7.3: What help, if any, would the rollup SalesR ollup of Exam
ple 10.33 be for each of the queries of Exercise 10.7.2?

E xercise 10.7.4: In Exercise 10.6.1 we spoke of PC-order data organized as 
a fact table with dimension tables for attributes cust, proc, memory, hd, and 
od. That is, each tuple of the fact table Orders has an ID for each of these 
attributes, leading to information about the PC involved in the order. Write a 
SQL query that will produce the data cube for this fact table.

E xercise 10.7.5: Answer the following queries using the data cube from Exer
cise 10.7.4. If necessary, use dimension tables as well. You may invent suitable 
names and attributes for the dimension tables.

a) Find, for each processor speed, the total number of computers ordered in 
each month of the year 2007.

b) List for each type of hard disk (e.g., SCSI or IDE) and each processor 
type the number of computers ordered.

c) Find the average price of computers with 3.0 gigahertz processors for each 
month from Jan., 2005.

E xercise 10.7.6: The cube tuples mentioned in Example 10.32 are not in 
the rollup of Example 10.33. Are there other rollups that would contain these 
tuples?
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!! E xercise 10.7 .7 : If the fact table F  to which we apply the C U B E  operator is 
sparse (i.e., there are many fewer tuples in F  than the product of the number 
of possible values along each dimension), then the ratio of the sizes of C U B E (F )  

and F  can be very large. How large can it be?

10.8 Summary of Chapter 10
♦  Privileges: For security purposes, SQL systems allow many different kinds 

of privileges to be managed for database elements. These privileges in
clude the right to select (read), insert, delete, or update relations, the 
right to reference relations (refer to them in a constraint), and the right 
to create triggers.

♦  Grant Diagrams: Privileges may be granted by owners to other users or 
to the general user PUBLIC. If granted with the grant option, then these 
privileges may be passed on to others. Privileges may also be revoked. 
The grant diagram is a useful way to remember enough about the history 
of grants and revocations to keep track of who has what privilege and 
from whom they obtained those privileges.

♦  SQL Recursive Queries: In SQL, one can define a relation recursively — 
that is, in terms of itself. Or, several relations can be defined to be 
mutually recursive.

♦  Monotonicity: Negations and aggregations involved in a SQL recursion 
must be monotone — inserting tuples in one relation does not cause tuples 
to be deleted from any relation, including itself. Intuitively, a relation may 
not be defined, directly or indirectly, in terms of a negation or aggregation 
of itself.

♦  The Object-Relational Model: An alternative to pure object-oriented data
base models like ODL is to extend the relational model to include the 
major features of object-orientation. These extensions include nested re
lations, i.e., complex types for attributes of a relation, including relations 
as types. Other extensions include methods defined for these types, and 
the ability of one tuple to refer to another through a reference type.

♦  User-Defined Types in SQL: Object-relational capabilities of SQL are cen
tered around the UDT, or user-defined type. These types may be declared 
by listing their attributes and other information, as in table declarations. 
In addition, methods may be declared for UDT’s.

♦  Relations With a UDT as Type: Instead of declaring the attributes of a 
relation, we may declare that relation to have a UDT. If we do so, then 
its tuples have one component, and this component is an object of the 
UDT.



♦  Reference Types: A type of an attribute can be a reference to a UDT. 
Such attributes essentially are pointers to objects of that UDT.

♦  Object Identity for UDT’s: When we create a relation whose type is a 
UDT, we declare an attribute to serve as the “object-ID” of each tuple. 
This component is a reference to the tuple itself. Unlike in object-oriented 
systems, this “OID” column may be accessed by the user, although it is 
rarely meaningful.

♦  Accessing components of a UDT: SQL provides observer and mutator 
functions for each attribute of a UDT. These functions, respectively, re
turn and change the value of that attribute when applied to any object 
of that UDT.

♦  Ordering Functions for UDT’s: In order to compare objects, or to use 
SQL operations such as DISTINCT, GROUP BY, or ORDER BY, it is necessary 
for the implementer of a UDT to provide a function that tells whether 
two objects are equal or whether one precedes the other.

♦  OLAP: On-line analytic processing involves complex queries that touch 
all or much of the data, at the same time. Often, a separate database, 
called a data warehouse, is constructed to run such queries while the actual 
database is used for short-term transactions (OLTP, or on-line transaction 
processing).

♦  ROLAP and MOLAP: It is frequently useful, for OLAP queries, to think 
of the data as residing in a multidimensional space, with dimensions cor
responding to independent aspects of the data represented. Systems that 
support such a view of data take either a relational point of view (RO
LAP, or relational-OLAP systems), or use the specialized data-cube model 
(MOLAP, or multidimensional-OLAP systems).

♦  Star Schemas: In a star schema, each data element (e.g., a sale of an item) 
is represented in one relation, called the fact table, while information 
helping to interpret the values along each dimension (e.g., what kind of 
product is item 1234?) is stored in a dimension table for each dimension.

♦  The Cube Operator: A specialized operator called cube pre-aggregates the 
fact table along all subsets of dimensions. It may add little to the space 
needed by the fact table, and greatly increases the speed with which many 
OLAP queries can be answered.

♦  Data Cubes in SQL: We can turn the result of a query into a data cube 
by appending WITH CUBE to a group-by clause. We can also construct a 
portion of the cube by using WITH ROLLUP there.
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Chapter 11

The Semistructured-Data 
Model

We now turn to a different kind of data model. This model, called “semistruc
tured,” is distinguished by the fact that the schema is implied by the data, 
rather than being declared separately from the data as is the case for the re
lational model and all the other models we studied up to this point. After a 
general discussion of semistructured data, we turn to the most important man
ifestation of this idea: XML. We shall cover ways to describe XML data, in 
effect enforcing a schema for this “schemaless” data. These methods include 
DTD’s (Document Type Definitions) and the language XML Schema.

11.1 Semistructured Data
The semistructured-data model plays a special role in database systems:

1. It serves as a model suitable for integration of databases, that is, for de
scribing the data contained in two or more databases that contain similar 
data with different schemas.

2. It serves as the underlying model for notations such as XML, to be taken 
up in Section 11.2, that are being used to share information on the Web.

In this section, we shall introduce the basic ideas behind “semistructured data” 
and how it can represent information more flexibly than the other models we 
have met previously.

11.1.1 Motivation for the Semistructured-Data Model
The models we have seen so far — E/R , UML, relational, ODL — each start 
with a schema. The schema is a rigid framework into which data is placed. This
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rigidity provides certain advantages. Especially, the relational model owes much 
of its success to the existence of efficient implementations. This efficiency comes 
from the fact that the data in a relational database must fit the schema, and the 
schema is known to the query processor. For instance, fixing the schema allows 
the data to be organized with data structures that support efficient answering 
of queries, as we discussed in Section 8.3.

On the other hand, interest in the semistructured-data model is motivated 
primarily by its flexibility. In particular, semistructured data is “schemaless.” 
More precisely, the data is self-describing; it carries information about what its 
schema is, and that schema can vary arbitrarily, both over time and within a 
single database.

One might naturally wonder whether there is an advantage to creating a 
database without a schema, where one could enter data at will, and attach to 
the data whatever schema information you felt was appropriate for that data. 
There are actually some small-scale information systems, such as Lotus Notes, 
that take the self-describing-data approach. This flexibility may make query 
processing harder, but it offers significant advantages to users. For example, we 
can maintain a database of movies in the semistructured model and add new 
attributes like “would I like to see this movie?” as we wish. The attributes 
do not need to have a value for all movies, or even for more than one movie. 
Likewise, we can add relationships like “homage to,” without having to change 
the schema or even represent the relationship in more than one pair of movies.

11.1.2 Semistructured Data Representation
A database of semistructured data is a collection of nodes. Each node is either 
a leaf or interior. Leaf nodes have associated data; the type of this data can 
be any atomic type, such as numbers and strings. Interior nodes have one or 
more arcs out. Each arc has a label, which indicates how the node at the head 
of the arc relates to the node at the tail. One interior node, called the root, 
has no arcs entering and represents the entire database. Every node must be 
reachable from the root, although the graph structure is not necessarily a tree.

E xam ple  11.1: Figure 11.1 is an example of a semistructured database about 
stars and movies. We see a node at the top labeled Root; this node is the entry 
point to the data and may be thought of as representing all the information in 
the database. The central objects or entities — stars and movies in this case — 
are represented by nodes that are children of the root.

We also see many leaf nodes. At the far left is a leaf labeled C arrie  F isher, 
and at the far right is a leaf labeled 1977, for instance. There are also many 
interior nodes. Three particular nodes we have labeled cf, mh, and sw, standing 
for “Carrie Fisher,” “Mark Hamill,” and “Star Wars,” respectively. These labels 
are not part of the model, and we placed them on these nodes only so we would 
have a way of referring to the nodes, which otherwise would be nameless, in the 
text. We may think of node sw, for instance, as representing the concept “Star
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Root

Figure 11.1: Semistructured data representing a movie and stars

Wars” : the title and year of this movie, other information not shown, such as 
its length, and its stars, two of which are shown. □

A label L  on the arc from node N  to node M  can play one of two roles:

1. It may be possible to think of N  as representing an object or entity, while 
M  represents one of its attributes. Then, L  represents the name of the 
attribute.

2. We may be able to think of N  and M  as objects or entities and L  as the 
name of a relationship from N  to M.

E xam ple 11.2: Consider Fig. 11.1 again. The node indicated by cf may be 
thought of as representing the S ta r  object for Carrie Fisher. We see, leaving 
this node, an arc labeled name, which represents the attribute name and leads to 
a leaf node holding the correct name. We also see two arcs, each labeled address. 
These arcs lead to unnamed nodes which we may think of as representing two 
addresses of Carrie Fisher. There is no schema to tell us whether stars can have 
more than one address; we simply put two address nodes in the graph if we feel 
it is appropriate.

Notice in Fig. 11.1 how both nodes have out-arcs labeled street and city. 
Moreover, these arcs each lead to leaf nodes with the appropriate atomic values. 
We may think of address nodes as structs or objects with two fields, named street 
and city. However, in the semistructured model, it is entirely appropriate to 
add other components, e.g., zip, to some addresses, or to have one or both fields 
missing.
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The other kind of arc also appears in Fig. 11.1. For instance, the node cf 
has an out-arc leading to the node sw and labeled starsln. The node mh (for 
Mark Hamill) has a similar arc, and the node sw has arcs labeled star Of to both 
nodes cf and mh. These arcs represent the stars-in relationship between stars 
and movies. □

11.1.3 Information Integration Via Semistructured Data
The flexibility and self-describing nature of semistructured data has made it 
important in two applications. We shall discuss its use for data exchange in 
Section 11.2, but here we shall consider its use as a tool for information inte
gration. As databases have proliferated, it has become a common requirement 
that data in two or more of them be accessible as if they were one database. For 
instance, companies may merge; each has its own personnel database, its own 
database of sales, inventory, product designs, and perhaps many other matters. 
If corresponding databases had the same schemas, then combining them would 
be simple; for instance, we could take the union of the tuples in two relations 
that had the same schema and played the same roles in the the two databases.

However, life is rarely that simple. Independently developed databases are 
unlikely to share a schema, even if they talk about the same things, such as per
sonnel. For instance, one employee database may record spouse-name, another 
not. One may have a way to represent several addresses, phones, or emails for 
an employee, another database may allow only one of each. One may treat con
sultants as employees, another not. One database might be relational, another 
object-oriented.

To make matters more complex, databases tend over time to be used in so 
many different applications that it is impossible to turn them off and copy or 
translate their data into another database, even if we could figure out an efficient 
way to transform the data from one schema to another. This situation is often 
referred to as the legacy-database problem,; once a database has been in existence 
for a while, it becomes impossible to disentangle it from the applications that 
grow up around it, so the database can never be decommissioned.

A possible solution to the legacy-database problem is suggested in Fig. 11.2. 
We show two legacy databases with an interface; there could be many legacy 
systems involved. The legacy systems are each unchanged, so they can support 
their usual applications.

For flexibility in integration, the interface supports semistructured data, and 
the user is allowed to query the interface using a query language that is suitable 
for such data. The semistructured data may be constructed by translating the 
data at the sources, using components called wrappers (or “adapters”) that are 
each designed for the purpose of translating one source to semistructured data.

Alternatively, the semistructured data at the interface may not exist at all. 
Rather, the user queries the interface as if there were semistructured data, while 
the interface answers the query by posing queries to the sources, each referring 
to the schema found at that source.
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User

Figure 11.2: Integrating two legacy databases through an interface that sup
ports semistructured data

E xam ple 11.3: We can see in Fig. 11.1a possible effect of information about 
stars being gathered from several sources. Notice that the address information 
for Carrie Fisher has an address concept, and the address is then broken into 
street and city. That situation corresponds roughly to data that had a nested- 
relationschemalike S ta rs  (name, a d d re s s ( s tre e t ,  c i ty ) ) .

On the other hand, the address information for Mark Hamill has no address 
concept at all, just street and city. This information may have come from 
a schema such as S ta rs  (name, s t r e e t ,  c i ty )  that can represent only one 
address for a star. Some of the other variations in schema that are not reflected 
in the tiny example of Fig. 11.1, but that could be present if movie information 
were obtained from several sources, include: optional film-type information, a 
director, a producer or producers, the owning studio, revenue, and information 
on where the movie is currently playing. □

11.1.4 Exercises for Section 11.1
E xercise 11.1.1: Since there is no schema to design in the semistructured- 
data model, we cannot ask you to design schemas to describe different situations. 
Rather, in the following exercises we shall ask you to suggest how particular 
data might be organized to reflect certain facts.

a) Add to Fig. 11.1 the facts that Star Wars was directed by George Lucas 
and produced by Gary Kurtz.

b) Add to Fig. 11.1 information about Empire Strikes Back and Return of 
the Jedi, including the facts that Carrie Fisher and Mark Hamill appeared 
in these movies.

c) Add to (b) information about the studio (Fox) for these movies and the 
address of the studio (Hollywood).
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Exercise 11.1.2: Suggest how typical data about banks and customers, as in 
Exercise 4.1.1, could be represented in the semistructured model.

Exercise 11.1.3: Suggest how typical data about players, teams, and fans, 
as was described in Exercise 4.1.3, could be represented in the semistructured 
model.

Exercise 11.1.4: Suggest how typical data about a genealogy, as was de
scribed in Exercise 4.1.6, could be represented in the semistructured model.

! E xercise 11.1.5: UML and the semistructured-data model are both “graphi
cal” in nature, in the sense that they use nodes, labels, and connections among 
nodes as the medium of expression. Yet there is an essential difference between 
the two models. What is it?

11.2 XML

XML (Extensible Markup Language) is a tag-based notation designed originally 
for “marking” documents, much like the familiar HTML. Nowadays, data with 
XML “markup” can be represented in many ways. However, in this section 
we shall refer to XML data as represented in one or more documents. While 
HTML’s tags talk about the presentation of the information contained in doc
uments — for instance, which portion is to be displayed in italics or what the 
entries of a list are — XML tags are intended to talk about the meanings of 
pieces of the document.

In this section we shall introduce the rudiments of XML. We shall see that it 
captures, in a linear form, the same structure as do the graphs of semistructured 
data introduced in Section 11.1. In particular, tags can play the same role as 
the labels on the arcs of a semistructured-data graph.

11.2.1 Semantic Tags

Tags in XML are text surrounded by triangular brackets, i.e., < . ..> ,  as in 
HTML. Also as in HTML, tags generally come in matching pairs, with an 
opening tag like <Foo> and a matched closing tag that is the same word with a 
slash, like </Foo>. Between a matching pair <Foo> and </Foo>, there can be 
text, including text with nested HTML tags, and any number of other nested 
matching pairs of XML tags. A pair of matching tags and everything that 
comes between them is called an element.

A single tag, with no matched closing tag, is also permitted in XML. In this 
form, the tag has a slash before the right bracket, for example, <Foo/>. Such a 
tag cannot have any other elements or text nested within it. It can, however, 
have attributes (see Section 11.2.4).
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11.2.2 XML W ith and W ithout a Schema
XML is designed to be used in two somewhat different modes:

1. Well-formed XML allows you to invent your own tags, much like the 
arc-labels in semistructured data. This mode corresponds quite closely 
to semistructured data, in that there is no predefined schema, and each 
document is free to use whatever tags the author of the document wishes. 
Of course the nesting rule for tags must be obeyed, or the document is 
not well-formed.

2. Valid XML involves a “DTD,” or “Document Type Definition” (see Sec
tion 11.3) that specifies the allowable tags and gives a grammar for how 
they may be nested. This form of XML is intermediate between the 
strict-schema models such as the relational model, and the completely 
schemaless world of semistructured data. As we shall see in Section 11.3, 
DTD’s generally allow more flexibility in the data than does a conven
tional schema; DTD’s often allow optional fields or missing fields, for 
instance.

11.2.3 Well-Formed XML
The minimal requirement for well-formed XML is that the document begin with 
a declaration that it is XML, and that it have a root element that is the entire 
body of the text. Thus, a well-formed XML document would have an outer 
structure like:

<? xml v e rs io n  = "1.0" encoding = "u tf-8 "  standalone = "yes" ?>
<SomeTag>

</SomeTag>

The first line indicates that the file is an XML document. The encoding UTF-8 
(UTF =  “Unicode Transformation Format”) is a common choice of encoding for 
characters in documents, because it is compatible with ASCII and uses only one 
byte for the ASCII characters. The attribute standalone = "yes" indicates 
that there is no DTD for this document; i.e., it is well-formed XML. Notice 
that this initial declaration is delineated by special markers < ? .. .?>. The root 
element for this document is labeled <SomeTag>.

E xam ple 11.4: In Fig. 11.3 is an XML document that corresponds roughly 
to the data in Fig. 11.1. In particular, it corresponds to the tree-like portion 
of the semistructured data — the root and all the nodes and arcs except the 
“sideways” arcs among the nodes cf, mh, and sw. We shall see in Section 11.2.4 
how those may be represented.

The root element is StarMovieData. Within this element, we see two el
ements, each beginning with the tag <Star> and ending with its matching
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<? xml v ers io n  = "1 .0" encoding = " u tf -8 "  standalone = "yes" ?> 
<StarMovieData>

<Star>
<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple S t.< /S tre e t>
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust L n .< /S treet>
<City>Malibu</City>

</Address>
</S tar>
<Star>

<Name>Mark Hamill</Name>
<Street>456 Oak R d.< /S treet>
<City>Brentwood</City>

</S tar>
<Movie>

< T itle> S ta r W ars</Title>
<Year>1977</Year>

</Movie>
</StarMovieData>

Figure 11.3: An XML document about stars and movies

</S tar> . Within each element is a subelement giving the name of the star. 
One element, for Carrie Fisher, also has two subelements, each giving the ad
dress of one of her homes. These elements are each delineated by an <Address> 
opening tag and its matched closing tag. The element for Mark Hamill has only 
subelements for one street and one city, and does not use an <Address> tag to 
group these. This distinction appeared as well in Fig. 11.1. We also see one 
element with opening tag <Movie> and its matched closing tag. This element 
has subelements for the title and year of the movie.

Notice that the document of Fig. 11.3 does not represent the relationship 
“stars-in” between stars and movies. We could indicate the movies of a star by 
including, within the element devoted to that star, the titles and years of their 
movies. Figure 11.4 is an example of this representation. □

11.2.4 Attributes
As in HTML, an XML element can have attributes (name-value pairs) within 
its opening tag. An attribute is an alternative way to represent a leaf node 
of semistructured data. Attributes, like tags, can represent labeled arcs in
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<Star>
<Name>Mark Hamill</Name>
<Street>O ak</Street>
<City>Brentwood</City>
<Movie>

< T itle> S tar W ars</Title>
<Year>1977</Year>

</Movie>
<Movie>

<Title>Empire S tr ik e s  Back</Title>
<Year>1980</Year>

</Movie>
</Star>

Figure 11.4: Nesting movies within stars

a semistructured-data graph. Attributes can also be used to represent the 
“sideways” arcs as in Fig. 11.1.

E xam ple 11.5: The title or year children of the movie node labeled sw could 
be represented directly in the <Movie> element, rather than being represented 
by nested elements. That is, we could replace the <Movie> element of Fig. 11.3 
by:

<Movie year = 1977><Title>Star Wars</Title></Movie>

We could even make both child nodes be attributes by:

<Movie t i t l e  = "S ta r Wars" year = 1977></Movie>

or even:

<Movie t i t l e  = "S tar Wars" year = 1977 />

Notice that here we use a single tag without a matched closing tag, as indicated 
by the slash at the end. □

11.2.5 Attributes That Connect Elements
An important use for attributes is to represent connections in a semistructured 
data graph that do not form a tree. We shall see in Section 11.3.4 how to 
declare certain attributes to be identifiers for their elements. We shall also see 
how to declare that other attributes are references to these element identifiers. 
For the moment, let us just see an example of how these attributes could be 
used.



492 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

E xam ple  11.6: Figure 11.5 can be interpreted as an exact representation in 
XML of the semistructured data graph of Fig. 11.1. However, in order to make 
the interpretation, we need to have enough schema information that we know 
the attribute s t a r  ID is an identifier for the element in which it appears. That 
is, c f is the identifier of the first <Star> element (for Carrie Fisher) and mh is 
the identifier of the second <Star> element (for Mark Hamill). Likewise, we 
must establish that the attribute movielD within a <Movie> tag is an identifier 
for that element. Thus, sw is an identifier for the lone <Movie> element in 
Fig. 11.5.

<? xml v e rs io n  = "1.0" encoding = " u tf -8 "  standalone = "yes" ?> 
<StarMovieData>

<Star s ta rlD  = "cf" s ta r r e d ln  = "sw">
<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple S t.< /S tre e t>
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust L n .< /S treet>
<City>Malibu</City>

</Address>
</S tar>
<Star s ta rlD  = "mh" s ta r r e d ln  = "sw">

<Name>Mark Hamill</Name>
<Street>456 Oak R d .< /S tree t>
<City>Brentwood</City>

</S tar>
<Movie movielD = "sw" sta rsO f = " c f" , "mh">

< T itle> S ta r W ars</Title>
<Year>1977</Year>

</Movie>
</StarMovieData>

Figure 11.5: Adding stars-in information to  our XML document

Moreover, the schema must also say that the attributes s ta r r e d ln  for 
<Star> elements and sta rsO f for <Movie> elements are references to one or 
more ID’s. That is, the value sw for s ta r r e d ln  within each of the <Movie> 
elements says that both Carrie Fisher and Mark Hamill starred in Star Wars. 
Likewise, the list of ID’s cf and mh that is the value of s ta rsO f in the <Movie> 
element says that both these stars were stars of Star Wars. □
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11.2.6 Namespaces
There axe situations in which XML data involves tags that come from two or 
more different sources, and which may therefore have conflicting names. For 
example, we would not want to confuse an HTML tag used in text with an 
XML tag that represents the meaning of that text. In Section 11.4, we shall see 
how XML Schema requires tags from two separate vocabularies. To distinguish 
among different vocabularies for tags in the same document, we can use a 
namespace for a set of tags.

To say that an element’s tag should be interpreted as part of a certain 
namespace, we can use the attribute xmlns in its opening tag. There is a 
special form used for this attribute:

xmlns: name=" URI”

Within the element having this attribute, name can modify any tag to say the 
tag belongs to this namespace. That is, we can create qualified names of the 
form name: tag, where name is the name of the namespace to which the tag tag 
belongs.

The URI (Universal Resource Identifier) is typically a URL referring to a 
document that describes the meaning of the tags in the namespace. This de
scription need not be formal; it could be an informal article about expectations. 
It could even be nothing at all, and still serve the purpose of distinguishing dif
ferent tags that had the same name.

E xam ple 11.7: Suppose we want to say that in element StarMovieData 
of Fig. 11.5 certain tags belong to the namespace defined in the document 
info lab .steu iford .edu/m ovies. We could choose a name such as md for the 
namespace by using the opening tag:

<md:StarMovieData xmlns:md=
"http://infolab.Stanford.edu/movies">

Our intent is that StarMovieData itself is part of this namespace, so it gets 
the prefix md:, as does its closing tag /md:StarMovieData. Inside this element, 
we have the option of asserting that the tags of subelements belong to this 
namespace by prefixing their opening and closing tags with md:. □

11.2.7 XML and Databases
Information encoded in XML is not always intended to be stored in a database. 
It has become common for computers to share data across the Internet by 
passing messages in the form of XML elements. These messages live for a 
very short time, although they may have been generated using data from one 
database and wind up being stored as tuples of a database at the receiving 
end. For example, the XML data in Fig. 11.5 might be turned into some tuples
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to insert into relations MovieStar and S ta rs ln  of our running example movie 
database.

However, it is becoming increasingly common for XML to appear in roles 
traditionally reserved for relational databases. For example, we discussed in 
Section 11.1.3 how systems that integrate the data of an enterprise produce 
integrated views of many databases. XML is becoming an important option 
as the way to represent these views, as an alternative to views consisting of 
relations or classes of objects. The integrated views are then queried using one 
of the specialized XML query languages that we shall meet in Chapter 12.

When we store XML in a database, we must deal with the requirement that 
access to information must be efficient, especially for very large XML documents 
or very large collections of small documents.1 A relational DBMS provides 
indexes and other tools for making access efficient, a subject we introduced 
in Section 8.3. There are two approaches to storing XML to provide some 
efficiency:

1. Store the XML data in a parsed form, and provide a library of tools to 
navigate the data in that form. Two common standards are called SAX 
(Simple API for XML) and DOM (Document Object Model).

2. Represent the documents and their elements as relations, and use a con
ventional, relational DBMS to store them.

In order to represent XML documents as relations, we should start by giving 
each document and each element of those documents a unique ID. For the 
document, the ID could be its URL or path in a file system. A possible relational 
database schema is:

DocRoot(docID, rootElementID)
SubElement(parentID, ch ildID , p o s itio n ) 
E lem entA ttribute(elem entID , name, value) 
ElementValue(elementID, value)

This schema is suitable for documents that obey the restriction that each ele
ment either contains only text or contains only subelements. Accommodating 
elements with mixed content of text and subelements is left as an exercise.

The first relation, DocRoot relates document ID’s to the ID’s of their root 
element. The second relation, SubElement, connects an element (the “par
ent”) to each of its immediate subelements (“children”). The third attribute of 
SubElement gives the position of the child among all the children of the parent.

The third relation, E lem entA ttribute relates elements to their attributes; 
each tuple gives the name and value of one of the attributes of an element. 
Finally, Element Value relates those elements that have no subelements to the 
text, if any, that is contained in that element.

1 Recall th a t  XM L d a ta  need no t tak e  th e  form  of docum en ts (i.e., a  h eader w ith  a  roo t 
elem ent) a t  all. F or exam ple, XM L d a ta  could be  a  s tream  of elem ents w ith o u t headers. 
However, we shall continue to  speak of “docum en ts” as XM L d a ta .
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There is a small m atter that values of attributes and elements can have 
different types, e.g., integers or strings, while relational attributes each have a 
unique type. We could treat the two attributes named value as always being 
strings, and interpret those strings that were integers or another type properly 
as we processed the data. Or we could split each of the last two relations into 
as many relations as there are different types of data.

11.2.8 Exercises for Section 11.2
E xercise 11.2.1: Repeat Exercise 11.1.1 using XML.

E xercise 11.2.2: Show that any relation can be represented by an XML doc
ument. Hint: Create an element for each tuple with a subelement for each 
component of that tuple.

E xercise 11.2.3: How would you represent an empty element (one that had 
neither text nor subelements) in the database schema of Section 11.2.7?

E xercise 11.2.4: In Section 11.2.7 we gave a database schema for representing 
documents that do not have mixed, content — elements that contain a mixture 
of text (#PCDATA) and subelements. Show how to modify the schema when 
elements can have mixed content.

11.3 Docum ent Type Definitions
For a computer to process XML documents automatically, it is helpful for there 
to be something like a schema for the documents. It is useful to know what 
kinds of elements can appear in a collection of documents and how elements 
can be nested. The description of the schema is given by a grammar-like set of 
rules, called a document type definition, or DTD. It is intended that companies 
or communities wishing to share data will each create a DTD that describes the 
form(s) of the data they share, thus establishing a shared view of the semantics 
of their elements. For instance, there could be a DTD for describing protein 
structures, a DTD for describing the purchase and sale of auto parts, and so 
on.

11.3.1 The Form of a DTD
The gross structure of a DTD is:

<! DOCTYPE root-tag [
<! ELEMENT element-name ( components) > 

more elements
]>



496 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

The opening root-tag and its matched closing tag surround a document 
that conforms to the rules of this DTD. Element declarations, introduced by 
! ELEMENT, give the tag used to surround the portion of the document that 
represents the element, and also give a parenthesized list of “components.” The 
latter are elements that may or must appear in the element being described. 
The exact requirements on components are indicated in a manner we shall see 
shortly.

There are two important special cases of components:

1. (#PCDATA) (“parsed character data”) after an element name means that 
element has a value that is text, and it has no elements nested within. 
Parsed character data may be thought of as HTML text. It can have 
formatting information within it, and the special characters like < must 
be escaped, by & lt; and similar HTML codes. For instance,

<!ELEMENT T i t le  (#PCDATA)>

says that between < T itle>  and < /T itle >  tags a character string can 
appear. However, any nested tags are not part of the XML; they could 
be HTML, for instance.

2. The keyword EMPTY, with no parentheses, indicates that the element is 
one of those that has no matched closing tag. It has no subelements, nor 
does it have text as a value. For instance,

<!ELEMENT Foo EMPTY>

says that the only way the tag Foo can appear is as <Foo/>.

E xam ple  11.8: In Fig. 11.6 we see a DTD for stars.2 The DTD name and root 
element is S ta rs . The first element definition says that inside the matching pair 
of tags < S ta rs> .. .< /S ta rs>  we shall find zero or more S ta r  elements, each 
representing a single star. It is the * in (S tar* ) that says “zero or more,” i.e., 
“any number of.”

The second element, S ta r, is declared to consist of three kinds of subele
ments: Name, Address, and Movies. They must appear in this order, and each 
must be present. However, the + following Address says “one or more” ; that 
is, there can be any number of addresses listed for a star, but there must be at 
least one. The Name element is then defined to be parsed character data. The 
fourth element says that an address element consists of subelements for a street 
and a city, in that order.

Then, the Movies element is defined to have zero or more elements of type 
Movie within it; again, the * says “any number of.” A Movie element is defined 
to consist of title and year elements, each of which are simple text. Figure 11.7 
is an example of a document that conforms to the DTD of Fig. 11.6. □
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<!DOCTYPE S ta rs  [
<!ELEMENT S ta rs  (S tar*)>
<!ELEMENT S ta r (Name, Address+, Movies)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (S tre e t ,  C ity)>
<!ELEMENT S tre e t  (#PCDATA)>
<!ELEMENT C ity  (#PCDATA)>
<!ELEMENT Movies (Movie*)>
<!ELEMENT Movie (T i t le ,  Year)>
<!ELEMENT T i t le  (#PCDATA)>
<!ELEMENT Year (#PCDATA)>

]>

Figure 11.6: A DTD for movie stars

The components of an element E  are generally other elements. They must 
appear between the tags <E>  and < /E >  in the order listed. However, there 
are several operators that control the number of times elements appear.

1. A * following an element means that the-element may occur any number 
of times, including zero times.

2. A + following an element means that the element may occur one or more 
times.

3. A ? following an element means that the element may occur either zero 
times or one time, but no more.

4. We can connect a list of options by the “or” symbol I to indicate that ex
actly one option appears. For example, if <Movie> elements had <Genre> 
subelements, we might declare these by

<!ELEMENT Genre (Comedy I Drama IS ciF i|T een)>

to indicate that each <Genre> element has one of these four subelements.

5. Parentheses can be used to group components. For example, if we declared 
addresses to have the form

<!ELEMENT Address S tr e e t ,  (C ity |Z ip )>

then <Address> elements would each have a <S treet>  subelement fol
lowed by either a <City> or <Zip> subelement, but not both.

2N ote th a t  th e  stars-and-m ovies X M L docum ent of F ig . 11.3 is n o t in tended  to  conform  
to  th is  D T D .
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<Stars>
<Star>

<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple St.</Street> 
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust Ln.</Street> 
<City>Malibu</City>

</Address>
<Movies>

<Movie>
<Title>Star Wars</Title> 
<Year>1977</Year>

</Movie>
<Movie>

<Title>Empire Strikes Back</Title> 
<Year>1980</Year>

</Hovie>
<Movie>

<Title>Return of the Jedi</Title> 
<Year>1983</Year>

</Movie>
</Movies>

</Star>
<Star>

<Name>Mark Hamill</Name>
<Address>

<Street>456 Oak Rd.<Street> 
<City>Brentwood</City>

</Address>
<Movies>

<Movie>
<Title>Star Wars</Title> 
<Year>1977</Year>

</Movie>
<Movie>

<Title>Empire Strikes Back</Title> 
<Year>1980</Year>

</Movie>
<Movie>

<Title>Return of the Jedi</Title>
<Year>1983</Year>

</Movie>
</Movies>

</Star>
</Stars>

Figure 11.7: Example of a document following the DTD of Fig. 11.6
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11.3.2 Using a DTD
If a document is intended to conform to a certain DTD, we can either:

a) Include the DTD itself as a preamble to the document, or

b) In the opening line, refer to the DTD, which must be stored separately 
in the file system accessible to the application that is processing the doc
ument.

E xam ple 11.9: Here is how we might introduce the document of Fig. 11.7 to 
assert that it is intended to conform to the DTD of Fig. 11.6.

<?xml v ers io n  = "1.0" encoding = "u tf-8 "  standalone = "no"?>
<!DOCTYPE S ta rs  SYSTEM " s ta r .d td ">

The attribute standalone = "no" says that a DTD is being used. Recall we 
set this attribute to "yes" when we did not wish to specify a DTD for the 
document. The location from which the DTD can be obtained is given in the 
! DOCTYPE clause, where the keyword SYSTEM followed by a file name gives this 
location. □

11.3.3 Attribute Lists
A DTD also lets us specify which attributes an element may have, and what 
the types of these attributes are. A declaration of the form

<!ATTLIST element-name attribute-name type >

says that the named attribute can be an attribute of the named element, and 
that the type of this attribute is the indicated type. Several attributes can be 
defined in one ATTLIST statement, but it is not necessary to do so, and the 
ATTLIST statements can appear in any position in the DTD.

The most common type for attributes is CDATA. This type is essentially 
character-string data with special characters like < escaped as in #PCDATA. No
tice that CDATA does not take a pound sign as #PCDATA does. Another option 
is an enumerated type, which is a list of possible strings, surrounded by paren
theses and separated by | ’s. Following the data type there can be a keyword 
#REQUIRED or #IMPLIED, which means that the attribute must be present, or is 
optional, respectively.

E xam ple 11.10: Instead of having the title and year be subelements of a 
<Movie> element, we could make these be attributes instead. Figure 11.8 shows 
possible attribute-list declarations. Notice that Movie is now an empty element. 
We have given it three attributes: t i t l e ,  year, and genre. The first two are 
CDATA, while the genre has values from an enumerated type. Note that in the 
document, the values, such as comedy, appear with quotes. Thus,

<Movie t i t l e  = "S tar Wars" year = "1977" genre = " sc iF i"  />

is a possible movie element in a document that conforms to this DTD. □
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<!ELEMENT Movie EMPTY>
<!ATTLIST Movie

t i t l e  CDATA #REQUIRED 
year CDATA #REQUIRED
genre (comedy I drama I s c iF i I teen ) #IMPLIED

>

Figure 11.8: Data about movies will appear as attributes

<!D0CTYPE StarMovieData [
<!ELEMENT StarMovieData (S ta r* , Movie*)>
<!ELEMENT S ta r  (Name, Address+)>

<!ATTLIST S ta r
s t a r ld  ID #REQUIRED 
s ta r r e d ln  IDREFS #IMPLIED

>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (S tr e e t ,  C ity)>
<!ELEMENT S tre e t  (#PCDATA)>
<!ELEMENT C ity  (#PCDATA)>
<!ELEMENT Movie (T i t le ,  Year)>

<!ATTLIST Movie
movield ID #REQUIRED 
starsO f IDREFS #IMPLIED

>
<!ELEMENT T i t le  (#PCDATA)>
<!ELEMENT Year (#PCDATA)>

]>

Figure 11.9: A DTD for stars and movies, using ID’s and IDREF’s

11.3.4 Identifiers and References

Recall from Section 11.2.5 that certain attributes can be used as identifiers for 
elements. In a DTD, we give these attributes the type ID. Other attributes 
have values that are references to these element ID’s; these attributes may be 
declared to have type IDREF. The value of an IDREF attribute must also be the 
value of some ID attribute of some element, so the IDREF is in effect a pointer 
to the ID. An alternative is to give an attribute the type IDREFS. In that case, 
the value of the attribute is a string consisting of a list of ID’s, separated by 
whitespace. The effect is that an IDREFS attribute links its element to a set of 
elements — the elements identified by the ID’s on the list.
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E xam ple 11.11: Figure 11.9 shows a DTD in which stars and movies are 
given equal status, and the ID-IDREFS correspondence is used to describe the 
many-many relationship between movies and stars that was suggested in the 
semistructured data of Fig. 11.1. The structure differs from that of the DTD 
in Fig. 11.6, in that stars and movies have equal status; both are subelements 
of the root element. That is, the name of the root element for this DTD is 
StarMovieData, and its elements are a sequence of stars followed by a sequence 
of movies.

A star no longer has a set of movies as subelements, as was the case for the 
DTD of Fig. 11.6. Rather, its only subelements are a name and address, and in 
the beginning <Star> tag we shall find an attribute s ta r r e d ln  of type IDREFS, 
whose value is a list of ID’s for the movies of the star.

<? xml v ers io n  = "1.0" encoding = "u tf-8 "  standalone = "yes" ?> 
<StarMovieData>

<Star s ta rlD  = "cf" s ta r r e d ln  = "sw">
<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple S t.< /S tre e t>  
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust L n .< /S treet>
<City>Malibu</City>

</Address>
</Star>
<Star s tarID  = "mh" s ta r r e d ln  = "sw">

<Name>Mark Hamill</Name>
<Address>

<Street>456 Oak R d.< /S treet>
<City>Brentwood</City>

</Address>
</Star>
<Movie movielD = "sw" s tarsO f = "cf mh">

< T itle> S tar W ars</Title>
<Year>1977</Year>

</Movie>
</StarMovieData>

Figure 11.10: Adding stars-in information to our XML document

A <Star> element also has an attribute stair Id. Since it is declared to be 
of type ID, the value of s t a r ld  may be referenced by <Movie> elements to 
indicate the stars of the movie. That is, when we look at the attribute list for 
Movie in Fig. 11.9, we see that it has an attribute movield of type ID; these
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are the ID’s that will appear on lists that are the values of s ta rred ln . elements. 
Symmetrically, the attribute s ta rsO f of Movie is an IDREFS, a list of ID’s for 
stars. □

11.3.5 Exercises for Section 11.3
E xercise 11.3 .1 : Add to the document of Fig. 11.10 the following facts:

a) Carrie Fisher and Mark Hamill also starred in The Empire Strikes Back 
(1980) and Return of the Jedi (1983).

b) Harrison Ford also starred in Star Wars, in the two movies mentioned in
(a), and the movie Firewall (2006).

c) Carrie Fisher also starred in Hannah and Her Sisters (1985).

d) M att Damon starred in The Bourne Identity (2002).

E xercise 11.3.2: Suggest how typical data about banks and customers, as 
was described in Exercise 4.1.1, could be represented as a DTD.

E xercise 11.3 .3 : Suggest how typical data about players, teams, and fans, as 
was described in Exercise 4.1.3, could be represented as a DTD.

E xercise 11.3.4: Suggest how typical data about a genealogy, as was de
scribed in Exercise 4.1.6, could be represented as a DTD.

! E xercise 11.3.5: Using your representation from Exercise 11.2.2, devise an 
algorithm that will take any relation schema (a relation name and a list of 
attribute names) and produce a DTD describing a document that represents 
that relation.

11.4 XML Schema
XML Schema is an alternative way to provide a schema for XML documents. 
It is more powerful than DTD’s, giving the schema designer extra capabilities. 
For instance, XML Schema allows arbitrary restrictions on the number of oc
currences of subelements. It allows us to declare types, such as integer or float, 
for simple elements, and it gives us the ability to declare keys and foreign keys.

11.4.1 The Form of an XML Schema
An XML Schema description of a schema is itself an XML document. It uses 
the namespace at the URL:

h t t p : //www.w3. org/2001/XMLSchema
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that is provided by the World-Wide-Web Consortium. Each XML-Schema doc
ument thus has the form:

<? xml v ers io n  = "1.0" encoding = "u tf-8 "  ?>
<xs: schema xmlns:xs="h t t p : //www.w3. org/2001/XMLSchema">

< /x s : schema>

The first line indicates XML, and uses the special brackets <? amd ?>. The 
second line is the root tag for the document that is the schema. The attribute 
xmlns (XML namespace) makes the variable xs stand for the namespace for 
XML Schema that was mentioned above. It is this namespace that causes 
the tag <xs: schema> to be interpreted as schema in the namespace for XML 
Schema. As discussed in Section 11.2.6, qualifying each XML-Schema term we 
use with the prefix x s : will cause each such tag to be interpreted according 
to the rules for XML Schema. Between the opening <xs: schema> tag and its 
matched closing tag < /x s : schema> will appear a schema. In what follows, we 
shall learn the most important tags from the XML-Schema namespace and what 
they mean.

11.4.2 Elements
An important component of schemas is the element, which is similar to an 
element definition in a DTD. In the discussion that follows, you should be alert 
to the fact that, because XML-Schema definitions are XML documents, these 
schemas are themselves composed of “elements.” However, the elements of 
the schema itself, each of which has a tag that begins with x s :, are not the 
elements being defined by the schema.3 The form of an element definition in 
XML Schema is:

<xs: element name = element name type = element type > 
constraints and/or structure information 

</xs:elem ent>

The element name is the chosen tag for these elements in the schema being 
defined. The type can be either a simple type or a complex type. Simple 
types include the common primitive types, such as x s :in te g e r , x s :s tr in g , 
and x s : boolean. There can be no subelements for an element of a simple type.

E xam ple 11.12: Here are title and year elements defined in XML Schema:

<xs:elem ent name = "T itle "  type = " x s :s tr in g "  />
<xs:elem ent name = "Year" type = "x s :in te g e r"  />

3To fu rth e r  assist in th e  d istin c tio n  betw een tag s th a t  are  p a r t  o f a  schem a definition and 
th e  tag s of th e  schem a being defined, we shall begin each of th e  la t te r  w ith  a  cap ita l le tte r.
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Each of these <xs: elem ent> elements is itself empty, so it can be closed by /> 
with no matched closing tag. The first defined element has name T i t le  and is 
of string type. The second element is named Year and is of type integer. In 
documents (perhaps talking about movies) with <Title>  and <Year> elements, 
these elements will not be empty, but rather will be followed by a string (the 
title) or integer (the yeax), and a matched closing tag, < /T itle>  or </Year>, 
respectively. □

11.4.3 Complex Types
A complex type in XML Schema can have several forms, but the most com
mon is a sequence of elements. These elements are required to occur in the 
sequence given, but the number of repetitions of each element can be controlled 
by attributes minOccurs and maxOccurs, that appear in the element definitions 
themselves. The meanings of these attributes are as expected; no fewer than 
minOccurs occurrences of each element may appear in the sequence, and no 
more than maxOccurs occurrences may appeax. If there is more than one oc
currence, they must all appear consecutively. The default, if one or both of 
these attributes are missing, is one occurrence. To say that there is no upper 
limit on occurrences, use the value "unbounded" for maxOccurs.

<xs: complexType name = type name >
<xs: sequence>

list of element definitions 
< /x s : sequence>

< /x s : complexType>

Figure 11.11: Defining a complex type that is a sequence of elements

The form of a definition for a complex-type that is a sequence of elements is 
shown in Fig. 11.11. The name for the complex type is optional, but is needed if 
we are going to use this complex type as the type of one or more elements of the 
schema being defined. An alternative is to place the complex-type definition 
between an opening <xs:element> tag and its matched closing tag, to make 
that complex type be the type of the element.

E xam ple 11.13: Let us write a complete XML-Schema document that defines 
a very simple schema for movies. The root element for movie documents will 
be <Movies>, and the root will have zero or more <Movie> subelements. Each 
<Movie> element will have two subelements: a title and year, in that order. 
The XML-Schema document is shown in Fig. 11.12.

Lines (1) and (2) are a typical preamble to an XML-Schema definition. In 
lines (3) through (8), we define a complex type, whose name is movieType. 
This type consists of a sequence of two elements named T i t le  and Year; they 
are the elements we saw in Example 11.12. The type definition itself does not
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1) <? xml v ers io n  = "1.0" encoding = "u tf-8 "  ?>
2) <xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

3) <xs: complexType name = "movieType">
4) <xs:sequence>
5) <xs:elem ent name = "T itle "  type = " x s :s tr in g "  />
6) <xs:elem ent name = "Year" type = "x s : in teg e r"  />
7) < /x s : sequence>
8) < /x s : complexType>

9) <xs:elem ent name = "Movies">
10) <xs: complexType>
11) <xs: sequence>
12) <xs:elem ent name = "Movie" type = "movieType"

minOccurs = "0" maxOccurs = "unbounded" />
13) < /x s : sequence>
14) </xs:complexType>
15) </xs:elem ent>

16) </xs:schema>

Figure 11.12: A schema for movies in XML Schema

create any elements, but notice how the name movieType is used in line (12) 
to make this type be the type of Movie elements.

Lines (9) through (15) define the element Movies. Although we could have 
created a complex type for this element, as we did for Movie, we have chosen to 
include the type in the element definition itself. Thus, we put no type attribute 
in line (9). Rather, between the opening <xs:element> tag at line (9) and 
its matched closing tag at line (15) appears a complex-type definition for the 
element Movies. This complex type has no name, but it is defined at line (11) 
to be a sequence. In this case, the sequence has only one kind of element, Movie, 
as indicated by line (12). This element is defined to have type movieType — 
the complex type we defined at lines (3) through (8). It is also defined to have 
between zero and infinity occurrences. Thus, the schema of Fig. 11.12 says the 
same thing as the DTD we show in Fig. 11.13. □

There are several other ways we can construct a complex type.

• In place of x s : sequence we could use x s : a l l ,  which means that each of 
the elements between the opening <xs: a ll>  tag and its matched closing 
tag must occur, in any order, exactly once each.

• Alternatively, we could replace xs:sequence by xs:cho ice . Then, ex
actly one of the elements found between the opening <xs:choice> tag
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<!DOCTYPE Movies [
<!ELEMENT Movies (Movie*)>
<!ELEMENT Movie (T i t l e ,  Year)>
<!ELEMENT T i t le  (#PCDATA)>
<!ELEMENT Year (#PCDATA)>

]>

Figure 11.13: A DTD for movies

and its matched closing tag will appear.

The elements inside a sequence or choice can have minOccurs and maxOccurs 
attributes to govern how many times they can appear. In the case of a choice, 
only one of the elements can appear at all, but it can appear more than once if 
it has a value of maxOccurs greater than 1. The rules for x s : a l l  are different. 
It is not permitted to have a maxOccurs value other than 1, but minOccurs can 
be either 0 or 1. In the former case, the element might not appear at all.

11.4.4 Attributes
A complex type can have attributes. That is, when we define a complex type 
T, we can include instances of element <xs: a t t r i b u t e d  When we use T as 
the type of an element E, then E  can have (or must have) an instance of this 
attribute. The form of an attribute definition is:

<xs: a t t r i b u t e  name = attribute name type = type name 
other information about the attribute />

The “other information” may include information such as a default value and 
usage (required or optional — the latter is the default).

E xam ple 11.14: The notation

< x s :a t t r ib u te  name = "year" type = " x s :in te g e r"  
d e fa u lt  = "0" />

defines year to be an attribute of type integer. We do not know of what 
element year is an attribute; it depends where the above definition is placed. 
The default value of year is 0, meaning that if an element without a value for 
attribute year occurs in a document, then the value of year is taken to be 0. 

As another instance:

<xs:a t t r i b u t e  name = "year" type = " x s :in te g e r"  
use = "requ ired"  />
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is another definition of the attribute year. However, setting use to req u ired  
means that any element of the type being defined must have a value for attribute 
year. □

Attribute definitions are placed within a complex-type definition. In the 
next example, we rework Example 11.13 by making the type movieType have 
attributes for the title and year, rather than subelements for that information.

1) <? xml v ers io n  = "1.0" encoding = "u tf-8 "  ?>
2) <xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

3) <xs: complexType name = "movieType">
4) <xs:a t t r ib u te  name = " t i t l e "  type = " x s :s tr in g "

use = "requ ired" />
5) <xs: a t t r ib u te  name = "year" type = "x s :in te g e r"

use = "requ ired" />
6) < /x s : complexType>

7) <xs:elem ent name = "Movies">
8) <xs: complexType>
9) <xs: sequence>

10) <xs:elem ent name = "Movie" type = "movieType"
minOccurs = "0" maxOccurs = "unbounded" />

11) < /x s : sequence>
12) </xs:complexType>
13) </xs:elem ent>

14) </xs:schema>

Figure 11.14: Using attributes in place of simple elements

E xam ple 11.15: Figure 11.14 shows the revised XML Schema definition. At 
lines (4) and (5), the attributes t i t l e  and year are defined to be required 
attributes for elements of type movieType. When element Movie is given that 
type at line (10), we know that every <Movie> element must have values for 
t i t l e  and year. Figure 11.15 shows the DTD resembling Fig. 11.14. □

11.4.5 Restricted Simple Types
It is possible to create a restricted version of a simple type such as integer or 
string by limiting the values the type can take. These types can then be used as 
the type of an attribute or element. We shall consider two kinds of restrictions 
here:
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<!DOCTYPE Movies [
<!ELEMENT Movies (Movie*)>
<!ELEMENT Movie EMPTY>

<!ATTLIST Movie
t i t l e  CDATA #REQUIRED 
year CDATA #REQUIRED

>
]>

Figure 11.15: DTD equivalent for Fig. 11.14

1. Restricting numerical values by using m in lnc lusive  to state the lower 
bound, m axlnclusive to state the upper bound.4

2. Restricting values to  an enumerated type.

The form of a range restriction is shown in Fig. 11.16. The restriction has a 
base, which may be a primitive type (e.g., x s :s tr in g )  or another simple type.

<xs: simpleType name = type name >
< x s : r e s t r ic t io n  base = base type > 

upper and/or lower bounds 
< /x s :re s t r ic t io n >

< /x s : simpleType>

Figure 11.16: Form of a range restriction

E xam ple 11.16: Suppose we want to restrict the year of a movie to be no 
earlier than 1915. Instead of using x s : in te g e r  as the type for element Year in 
line (6) of Fig. 11.12 or for the attribute year in line (5) of Fig. 11.14, we could 
define a new simple type as in Fig. 11.17. The type movieYearType would then 
be used in place of x s : in te g e r  in the two lines cited above. □

Our second way to restrict a simple type is to provide an enumeration of 
values. The form of a single enumerated value is:

<xs: enum eration value = some value />

A restriction can consist of any number of these values.

4T h e  “inclusive” m eans th a t  th e  range of values includes th e  given b ound . A n a lte rn a tiv e  
is to  replace I n c lu s iv e  by  E x c lu s iv e , m eaning  th a t  th e  s ta te d  b o unds are  ju s t  o u tside  th e  
p e rm itte d  range.
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<xs:simpleType name = "movieYearType">
< x s :r e s t r ic t io n  base = "x s:in teg e r">

<xs:m inlnclusive value = "1915" />
< /x s :re s tr ic t io n >

<xs: simpleType>

Figure 11.17: A type that restricts integer values to be 1915 or greater

E xam ple 11.17: Let us design a simple type suitable for the genre of movies. 
In our running example, we have supposed that there are only four possible 
genres: comedy, drama, sciFi, and teen. Figure 11.18 shows how to define 
a type genreType that could serve as the type for an element or attribute 
representing our genres of movies. □

<xs:simpleType name = "genreType">
< x s :r e s t r ic t io n  base = "x s :s tr in g ">

<xs:enum eration value = "comedy" />
<xs:enum eration value = "drama" />
<xs:enum eration value = " sc iF i"  />
<xs:enum eration value = "teen" />

< /x s :r e s t r i c t i o n  
<xs: simpleType>

Figure 11.18: A enumerated type in XML Schema

11.4.6 Keys in XML Schema
An element can have a key declaration, which says that when we look at a 
certain class C of elements, values of one or more given fields within those 
elements are unique. The concept of “field” is actually quite general, but the 
most common case is for a field to be either a subelement or an attribute. 
The class C of elements is defined by a “selector.” Like fields, selectors can be 
complex, but the most common case is a sequence of one or more element names, 
each a subelement of the one before it. In terms of a tree of semistructured 
data, the class is all those nodes reachable from a given node by following a 
particular sequence of arc labels.

E xam ple 11.18: Suppose we want to say, about the semistructured data in 
Fig. 11.1, that among all the nodes we can reach from the root by following 
a star label, what we find following a further name label leads us to a unique 
value. Then the “selector” would be star and the “field” would be name. The 
implication of asserting this key is that within the root element shown, there
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cannot be two stars with the same name. If movies had names instead of titles, 
then the key assertion would not prevent a movie and a star from having the 
same name. Moreover, if there were actually many elements like the tree of 
Fig. 11.1 found in one document (e.g., each of the objects we called “Root” in 
that figure were actually a single movie and its stars), then different trees could 
have the same star name without violating the key constraint. □

The form of a key declaration is

<xs:key name = key name >
<xs: s e le c to r  xpath = path description >
< x s :f ie ld  xpath = path description >

</xs:key>

There can be more than one line with an x s : f i e ld  element, in case several fields 
are needed to form the key. An alternative is to use the element xs:unique in 
place of xs:key. The difference is that if “key” is used, then the fields must 
exist for each element defined by the selector. However, if “unique” is used, 
then they might not exist, and the constraint is only that they are unique if 
they exist.

The selector path can be any sequence of elements, each of which is a subele
ment of the previous. The element names are separated by slashes. The field 
can be any subelement of the last element on the selector path, or it can be 
an attribute of that element. If it is an attribute, then it is preceded by the 
“at-sign.” There are other options, and in fact, the selector and field can be 
any XPath expressions; we take up the XPath query language in Section 12.1.

E xam ple 11.19: In Fig. 11.19 we see an elaboration of Fig. 11.12. We have 
added the element Genre to the definition of movieType, in order to have a 
nonkey subelement for a movie. Lines (3) through (10) define genreType as in 
Example 11.17. The Genre subelement of movieType is added at line (15).

The definition of the Movies element has been changed in lines (24) through 
(28) by the addition of a key. The name of the key is movieKey; this name will 
be used if it is referenced by a foreign key, as we shall discuss in Section 11.4.7. 
Otherwise, the name is irrelevant. The selector path is just Movie, and there 
are two fields, T i t le  and Year. The meaning of this key declaration is that, 
within any Movies element, among all its Movie subelements, no two can have 
both the same title and the same year, nor can any of these values be missing. 
Note that because of the way movieType was defined at lines (13) and (14), 
with no values for minOccurs or maxOccurs for T i t le  or Year, the defaults, 1, 
apply, and there must be exactly one occurrence of each. □

11.4.7 Foreign Keys in XML Schema
We can also declare that an element has, perhaps deeply nested within it, a 
field or fields that serve as a reference to the key for some other element. This
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1) <? xml v ers io n  = "1.0" encoding = "u tf-8 "  ?>
2) <xs:schema xm lns:xs = "http://www.w3.org/2001/XMLSchema">

3) <xs: simpleType name = "genreType">
4) <xs:r e s t r i c t io n  base = "x s :s tr in g ">
5) <xs:enum eration value = "comedy" />
6) <xs:enum eration value = "drama" />
7) <xs:enum eration value = " sc iF i"  />
8) <xs:enum eration value = "teen" />
9) < /x s :re s tr ic t io n >

10) <xs:simpleType>

11) <xs: complexType name = "movieType">
12) <xs: sequence>
13) <xs:elem ent name = " T itle "  type = " x s :s tr in g "  />
14) <xs:elem ent name = "Year" type = " x s :in te g e r"  />
15) <xs:elem ent name = "Genre" type = "genreType"

minOccurs = "0" maxOccurs = "1" />
16) </xs:sequence>
17) </xs:complexType>

18) <xs:elem ent name = "Movies">
19) <xs: complexType>
20) <xs: sequence>
21) <xs:elem ent name = "Movie" type = "movieType"

minOccurs = "0" maxOccurs = "unbounded" />
22) < /x s : sequence>
23) < /x s : complexType>
24) <xs:key name = "movieKey">
25) < x s :se le c to r  xpath = "Movie" />
26) < x s :f ie ld  xpath = "T itle "  />
27) < x s :f ie ld  xpath = "Year" />
28) </xs:key>
29) </xs:elem ent>

30) < /x s : schema>

Figure 11.19: A schema for movies in XML Schema
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capability is similar to what we get with ID’s and IDREF’s in a DTD (see 
Section 11.3.4). However, the latter are untyped references, while references in 
XML Schema are to particular types of elements. The form of a foreign-key 
definition in XML Schema is:

<xs:keyref name = foreign-key name r e f e r  = key name >
<xs: s e le c to r  xpath = path description >
<xs: f i e ld  xpath = path description >

</xs:keyref>

The schema element is x s:key re f. The foreign-key itself has a name, and it 
refers to the name of some key or unique value. The selector and field(s) are as 
for keys.

E xam ple 11.20: Figure 11.20 shows the definition of an element <Stars>. 
We have used the style of XML Schema where each complex type is defined 
within the element that uses it. Thus, we see at lines (4) through (6) that a 
<Stars> element consists of one or more <Star> subelements.

At lines (7) through (11), we see that each <Star> element has three kinds 
of subelements. There is exactly one <Name> and one <Address> subelement, 
and any number of <StarredIn> subelements. In lines (12) through (15), we 
find that a <StarredIn> element has no subelements, but it does have two 
attributes, t i t l e  and year.

Lines (22) through (26) define a foreign key. In line (22) we see that the 
name of this foreign-key constraint is movieRef and that it refers to the key 
movieKey that was defined in Fig. 11.19. Notice that this foreign key is defined 
within the <Stars> definition. The selector is S ta r /S ta rre d ln . That is, it says 
we should look at every <StarredIn> subelement of every <Star> subelement 
of a <Stars> element. From that <StarredIn> element, we extract the two 
fields t i t l e  and year. The @ indicates that these axe attributes rather than 
subelements. The assertion made by this foreign-key constraint is that any 
title-year pair we find in this way will appear in some <Movie> element as the 
pair of values for its subelements <Title>  and <Year>. □

11.4.8 Exercises for Section 11.4
E xercise 11.4.1: Give an example of a document that conforms to the XML 
Schema definition of Fig. 11.12 and an example of one that has all the elements 
mentioned, but does not conform to the definition.

Exercise 11.4.2: Rewrite Fig. 11.12 so that there is a named complex type 
for Movies, but no named type for Movie.

Exercise 11.4.3: Write the XML Schema definitions of Fig. 11.19 and 11.20 
as a DTD.
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1) <? xml v ers io n  = "1.0" encoding = "u tf-8 "  ?>
2) <xs:schema xmlns:xs = "http://wwu.w3.org/2001/XMLSchema">

3) <xs:elem ent name = "Stars">

4) <xs: complexType>
5) <xs: sequence>
6) <xs:elem ent name = "S tar"  minOccurs = "1"

maxOccurs = "unbounded">
7) <xs: complexType>
8) <xs: sequence>
9) <xs:elem ent name = "Name"

type = " x s ;s tr in g "  />
10) <xs:elem ent name = "Address"

type = " x s :s tr in g "  />
11) <xs:elem ent name = "S tarred ln "

minOccurs = "0" 
maxOccurs = "unbounded">

12) <xs: complexType>
13) <xs: a t t r ib u te  name = " t i t l e "

type = " x s :s tr in g "  />
14) <xs:a t t r ib u te  name = "year"

type = "x s :in te g e r"  />
15) </xs:complexType>
16) </xs:elem ent>
17) </xs:sequence>
18) < /x s : complexType>
19) </xs:elem ent>
20) < /x s : sequence>
21) </xs:complexType>

22) <xs:keyref name = "movieRef" r e f e r s  = "movieKey">
23) < x s :se le c to r  xpath = "S ta r /S ta rre d ln "  />
24) < x s :f ie ld  xpath = " O title "  />
25) < x s :f ie ld  xpath = "Syear" />
26) < /xs:keyref>

27) </xs:elem ent>

Figure 11.20: Stars with a foreign key
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11.5 Summary of Chapter 11
♦  Semistructured Data: In this model, data is represented by a graph. 

Nodes are like objects or values of attributes, and labeled axes connect an 
object to both the values of its attributes and to other objects to which 
it is connected by a relationship.

♦  XML: The Extensible Markup Language is a World-Wide-Web Consor
tium standard that representes semistructured data linearly.

♦  XML Elements: Elements consist of an opening tag <Foo>, a matched 
closing tag </Foo>, and everything between them. What appears can be 
text, or it can be subelements, nested to any depth.

♦  XML Attributes: Tags can have attribute-value pairs within them. These 
attributes provide additional information about the element with which 
they are associated.

♦  Document Type Definitions: The DTD is a simple, grammatical form 
of defining elements and attributes of XML, thus providing a rudimen
tary schema for those XML documents that use the DTD. An element is 
defined to have a sequence of subelements, and these elements can be re
quired to appear exactly once, at most once, a t least once, or any number 
of times. An element can also be defined to have a list of required and/or 
optional attributes.

♦  Identifiers and References in D TD ’s: To represent graphs that are not 
trees, a DTD allows us to declare attributes of type ID and IDREF(S). An 
element can thus be given an identifier, and that identifier can be referred 
to by other elements from which we would like to establish a link.

♦  XML Schema: This notation is another way to define a schema for cer
tain XML documents. XML Schema definitions are themselves written in 
XML, using a set of tags in a namespace that is provided by the World- 
Wide-Web Consortium.

♦  Simple Types in XML Schema: The usual sorts of primitive types, such as 
integers and strings, are provided. Additional simple types can be defined 
by restricting a simple type, such as by providing a range for values or by 
giving an enumeration of permitted values.

♦  Complex Types in XML Schema: Structured types for elements may be 
defined to be sequences of elements, each with a minimum and maximum 
number of occurrences. Attributes of an element may also be defined in 
its complex type.

♦  Keys and Foreign Keys in XML Schema: A set of elements and/or at
tributes may be defined to have a unique value within the scope of some
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enclosing element. Other sets of elements and/or attributes may be de
fined to have a value that appears as a key within some other kind of 
element.

11.6 References for Chapter 11
Semistructured data as a data model was first studied in [5] and [4]. LOREL, 
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Chapter 12

Programming Languages 
for XML

We now turn to programming languages for semistructured data. All the widely 
used languages of this type apply to XML data, and might be used for semistruc
tured data represented in other ways as well. In this chapter, we shall study 
three such languages. The first, XPath, is a simple language for describing sets 
of similar paths in a graph of semistructured data. XQuery is an extension 
of XPath that adopts something of the style of SQL. It allows iterations over 
sets, subqueries, and many other features that will be familiar from the study 
of SQL.

The third topic of this chapter is XSLT. This language was developed orig
inally as a transformation language, capable of restructuring XML documents 
or turning them into printable (HTML) documents. However, its expressive 
power is actually quite similar to that of XQuery, and it is capable of producing 
XML results. Thus, it can serve as a query language for XML.

12.1 XPath

In this section, we introduce XPath. We begin with a discussion of the data 
model used in the most recent version of XPath, called XPath 2.0; this model 
is used in XQuery as well. This model plays a role analogous to the “bag of 
tuples of primitive-type components” that is used in the relational model as the 
value of a relation.

In later sections, we learn about XPath path expressions and their meaning. 
In general, these expressions allow us to move from elements of a document to 
some or all of their subelements. Using “axes,” we are also able to move within 
documents in a variety of ways, and to obtain the attributes of elements.

517
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12.1.1 The XPath Data Model
As in the relational model, XPath assumes that all values — those it produces 
and those constructed in intermediate steps — have the same general “shape.” 
In the relational model, this “shape” is a bag of tuples. Tuples in a given 
bag all have the same number of components, and the components each have 
a primitive type, e.g., integer or string. In XPath, the analogous “shape” is 
sequence of items. An item is either:

1. A value of primitive type: integer, real, boolean, or string, for example.

2. A node. There are many kinds of nodes, but in our introduction, we shall 
only talk about three kinds:

(a) Documents. These are files containing an XML document, perhaps 
denoted by their local path name or a URL.

(b) Elements. These are XML elements, including their opening tags, 
their matched closing tag if there is one, and everything in between 
(i.e., below them in the tree of semistructured data that an XML 
document represents).

(c) Attributes. These are found inside opening tags, as we discussed in 
several places in Chapter 11.

The items in a sequence need not be all of the same type, although often they 
will be.

E xam ple 12.1: Figure 12.1 is a sequence of four items. The first is the integer 
10; the second is a string, and the third is a real. These are all items of primitive 
type.

10

"ten"

10.0

<Number base = "8">
<Digit>l</Digit>
<Digit>2</Digit>

</Number>

@val="10"

Figure 12.1: A sequence of five items

The fourth item is a node, and this node’s type is “element.” Notice that 
the element has tag Number with an attribute and two subelements with tag 
D ig it. The last item is an attribute node. □
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1 2 .1.2 Document Nodes
While the documents to which XPath is applied can come from various sources, 
it is common to apply XPath to documents that are files. We can make a 
document node from a file by applying the function:

doc (file name)

The named file should be an XML document. We can name a file either by 
giving its local name or a URL if it is remote. Thus, examples of document 
nodes include:

doc("m ovies. xml")
doc( " /u s r /s a lly /d a ta /m o v ie s . xml")
doc(" in fo la b . S tan fo rd . edu/~hector/m ovies. xml")

Every XPath query refers to a document. In many cases, this document will be 
apparent from the context. For example, recall our discussion of XML-Schema 
keys in Section 11.4.6. We used XPath expressions to denote the selector and 
field(s) for a key. In that context, the document was “whatever document the 
schema definition is being applied to.”

12.1.3 Path Expressions
Typically, an XPath expression starts at the root of a document and gives a se
quence of tags and slashes (/), say /7 i/T 2/  • • • /T n. We evaluate this expression 
by starting with a sequence of items consisting of one node: the document. We 
then process each of T i,T 2, . . .  in turn. To process Tj, consider the sequence 
of items that results from processing the previous tags, if any. Examine those 
items, in order, and find for each all its subelements whose tag is Tj. Those 
items are appended to the output sequence, in the order in which they appear 
in the document.

As a special case, the root tag T\ for the document is considered a “subele
ment” of the document node. Thus, the expression /T i produces a sequence 
of one item, which is an element node consisting of the entire contents of the 
document. The difference may appear subtle; before we applied the expression 
/T i, we had a document node representing the file, and after applying /T i to 
that node we have an element node representing the text in the file.

E xam ple 12.2: Suppose our document is a file containing the XML text 
of Fig. 11.5, which we reproduce here as Fig. 12.2. The path expression 
/StarM ovieData produces the sequence of one element. This element has tag 
<StarMovieData>, of course, and it consists of everything in Fig. 12.2 except 
for line (1).

Now, consider the path expression

/StarM ovieData/Star/Name
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1) <? xml version= "1 .0" encoding="utf-8" standalone="yes" ?>
2) <StarMovieData>
3) <S tar s ta rID  = "cf" s ta r r e d ln  = "sw">
4) <Name>Carrie Fisher</Name>
5) <Address>
6) <Street>123 Maple S t.< /S tre e t>
7) <City>Hollywood</City>
8) </Address>
9) <Address>

10) <Street>5 Locust L n .< /S treet>
11) <City>Malibu</City>
12) </Address>
13) < /S tar>
14) <Star s ta rlD  = "mh" s ta r r e d ln  = "sw">
15) <Name>Mark Hamill</Name>
16) <Street>456 Oak R d .< /S tree t>
17) <City>Brentwood</City>
18) < /S tar>
19) <Movie movielD = "sw" sta rsO f = " c f" , "mh">
20) < T itle> S ta r W ars</Title>
21) <Year>1977</Year>
22) </Movie>
23) </StarMovieData>

Figure 12.2: An XML document for applying path expressions

When we apply the StarMovieData tag to the sequence consisting of the doc
ument, we get the sequence consisting of the root element, as discussed above. 
Next, we apply to this sequence the tag S ta r. There are two subelements of 
the StarMovieData element that have tag S ta r. These are lines (3) through 
(12) for star Carrie Fisher and lines (14) through (18) for star Mark Hamill. 
Thus, the result of the path expression /S tarM ovieD ata/S tar is the sequence 
of these two elements, in that order.

Finally, we apply to this sequence the tag Name. The first element has one 
Name subelement, at line (4). The second element also has one Name subelement, 
at line (15). Thus, the sequence

<Name>Carrie Fisher</Name>
<Name>Mark Hamill</Name>

is the result of applying the path expression /StarM ovieData/Star/Nam e to 
the document of Fig. 12.2. □
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12.1.4 Relative Path Expressions
In several contexts, we shall use XPath expressions that are relative to the 
current node or sequence of nodes.

• In Section 11.4.6 we talked about selector and field values that were really 
XPath expressions relative to a node or sequence of nodes for which we 
were defining a key.

• In Example 12.2 we talked about applying the XPath expression S ta r  to 
the element consisting of the entire document, or the expression Name to 
a sequence of S ta r  elements.

Relative expressions do not start with a slash. Each such expression must be 
applied in some context, which will be clear from its use. The similarity to the 
way files and directories are designated in a UNIX file system is not accidental.

12.1.5 Attributes in Path Expressions
Path expressions allow us to find all the elements within a document that are 
reached from the root along a particular kind of path (a sequence of tags). 
Sometimes, we want to find not these elements but rather the values of an 
attribute of those elements. If so, we can end the path expression by an at
tribute name preceded by an at-sign. That is, the path-expression form is 
/T 1/T 2/ - - - /T n/@A.

The result of this expression is computed by first applying the path expres
sion /T i/T 2/  • • • /T n to get a sequence of elements. We then look at the opening 
tag of each element, in turn, to find an attribute A. If there is one, then the 
value of that attribute is appended to the sequence that forms the result.

E xam ple 12.3: The path expression

/S tarM ovieD ata/S tar/® starID

applied to the document of Fig. 12.2 finds the two S ta r  elements and looks into 
their opening tags at lines (3) and (14) to find the values of their s ta rlD  at
tributes. Both elements have this attribute, so the result sequence is "cf " "mh".
□

12.1.6 Axes
So far, we have only navigated through semistructured-data graphs in two ways: 
from a node to its children or to an attribute. XPath in fact provides a large 
number of axes, which are modes of navigation. Two of these axes are child 
(the default axis) and attribute, for which @ is really a shorthand. At each step 
in a path expression, we can prefix a tag or attribute name by an axis name 
and a double-colon. For example,
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/StarMovieData/Star/OstarlD

is really shorthand for:

/child::StarMovieData/child::Star/attribute::starID

Some of the other axes are parent, ancestor (really a proper ancestor), de
scendant (a proper descendant), next-sibling (any sibling to the right), previous- 
sibling (any sibling to the left), self, and descendant-or-self. The latter has a 
shorthand / /  and takes us from a sequence of elements to those elements and 
all their subelements, at any level of nesting.

E xam ple 12.4: It might look hard to find, in the document of Fig. 12.2, all 
the cities where stars live. The problem is that Mark Hamill’s city is not nested 
within an Address element, so it is not reached along the same paths as Carrie 
Fisher’s cities. However, the path expression

//City

finds all the C ity  subelements, at any level of nesting, and returns them in the 
order in which they appear in the document. That is, the result of this path 
expression is the sequence:

<City>Hollywood</City>
<City>Malibu</City>
<City>Brentwood</City>

which we obtain from lines (7), (11), and (17), respectively.
We could also use the / /  axis within the path expression. For example, 

should the document contain city information that wasn’t about stars (e.g., 
studios and their addresses), then we could restrict the paths that we consider 
to make sure that the city was a subelement of a S ta r  element. For the given 
document, the path expression

/S ta rM o v ieD ata /S tar//C ity

produces the same three C ity  elements as a result. □

Some of the other axes have shorthands as well. For example, . .  stands for 
parent, and . for self. We have already seen @ for attribute and /  for child.

12.1.7 Context of Expressions
In order to understand the meaning of an axis like parent, we need to explore 
further the view of data in XPath. Results of expressions are sequences of 
elements or primitive values. However, XPath expressions and their results do 
not exist in isolation; if they did, it would not make sense to ask for the “parent” 
of an element. Rather, there is normally a context in which the expression is
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evaluated. In all our examples, there is a single document from which elements 
are extracted. If we think of an element in the result of some XPath expression 
as a reference to the element in the document, then it makes sense to apply 
axes like parent, ancestor, or next-sibling to the element in the sequence.

For example, we mentioned in Section 11.4.6 that keys in XML Schema are 
defined by a pair of XPath expressions. Key constraints apply to XML docu
ments that obey the schema that includes the constraint. Each such document 
provides the context for the XPath expressions in the schema itself. Thus, it is 
permitted to use all the XPath axes in these expressions.

12.1.8 Wildcards
Instead of specifying a tag along every step of a path, we can use a * to say 
“any tag.” Likewise, instead of specifying an attribute, @* says “any attribute.”

E xam ple 12.5 : Consider the path expression

/StarMovieData/*/@*

applied to the document of Fig. 12.2. First, /StarM ovieData/* takes us to 
every subelement of the root element. There are three: two stars and a movie. 
Thus, the result of this path expression is the sequence of elements in lines (3) 
through (13), (14) through (18), and (19) through (22).

However, the expression asks for the values of all the attributes of these 
elements. We therefore look for attributes among the outermost tags of each 
of these elements, and return their values in the order in which they appear in 
the document. Thus, the sequence

"cf" "sw" "mh" "sw" "sw" "cf" "mh"

is the result of the XPath query.
A subtle point is that the value of the sta rsO f attribute in line (19) is itself 

a sequence of items — strings " c f" and "mh". XPath expands sequences that 
are part of other sequences, so all items are at the “top level,” as we showed 
above. That is, a sequence of items is not itself an item. □

12.1.9 Conditions in Path Expressions
As we evaluate a path expression, we can restrict ourselves to follow only a 
subset of the paths whose tags match the tags in the expression. To do so, we 
follow a tag by a condition, surrounded by square brackets. This condition can 
be anything that has a boolean value. Values can be compared by comparison 
operators such as = or >=. “Not equal” is represented as in C, by !=. A com
pound condition can be constructed by connecting comparisons with operators 
or or and.

The values compared can be path expressions, in which case we are compar
ing the sequences returned by the expressions. Comparisons have an implied
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“there exists” sense; two sequences are related if any pair of items, one from 
each sequence, are related by the given comparison operator. An example 
should make this concept clear.

E xam ple 12.6: The following path expression:

/S ta rM o v ieD ata /S ta r[//C ity  = "Malibu"]/Name

returns the names of the movie stars who have at least one home in Malibu. To 
begin, the path expression /S tarM ovieD ata/S tar returns a sequence of all the 
S ta r  elements. For each of these elements, we need to evaluate the tru th  of the 
condition / /C i ty  = "Malibu". Here, / /C i ty  is a path expression, but it, like 
any path expression in a condition, is evaluated relative to the element to which 
the condition is applied. That is, we interpret the expression assuming that the 
element were the entire document to which the path expression is applied.

We start with the element for Carrie Fisher, lines (3) through (13) of 
Fig. 12.2. The expression / /C i ty  causes us to look for all subelements, nested 
zero or more levels deep, that have a C ity  tag. There are two, at lines (7) and 
(11). The result of the path expression / /C i ty  applied to the Carrie-Fisher 
element is thus the sequence:

<City>Hollywood</City>
<City>Malibu</City>

Each item in this sequence is compared with the value "Malibu". An element 
whose type is a primitive value such as a string can be equated to that string, 
so the second item passes the test. As a result, the entire S ta r  element of lines 
(3) through (13) satisfies the condition.

When we apply the condition to the second item, lines (14) through (18) 
for Mark Hamill, we find a C ity  subelement, but its value does not match 
"Malibu" and this element fails the condition. Thus, only the Carrie-Fisher 
element is in the result of the path expression

/S ta rM o v ieD ata /S ta r[//C ity  = "Malibu"]

We have still to finish the XPath query by applying to this sequence of 
one element the continuation of the path expression, /Name. At this stage, 
we search for a Name subelement of the Carrie-Fisher element and find it 
at line (4). Consequently, the query result is the sequence of one element, 
<Name>Carrie Fisher</Name>. □

Several other useful forms of condition are:

• An integer [j] by itself is true only when applied the ith  child of its parent.

• A tag [T] by itself is true only for elements that have one or more subele
ments with tag T.
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• Similarly, an attribute [A] by itself is true only for elements that have a 
value for the attribute A.

Example 12.7: Figure 12.3 is a variant of our running movie example, in 
which we have grouped all the movies with a common title as one Movie element, 
with subelements that have tag Version. The title is an attribute of the movie, 
and the year is an attribute of the version. Versions have Star subelements. 
Consider the XPath query, applied to this document:

/Movies/Movie/Version[1]/@year

It asks for the year in which the first version of each movie was made, and the 
result is the sequence "1933" "1984".

1) <? xml version="1.0" encoding="utf-8" standalone="yes" ?>
2) <Movies>
3) <Movie t i t l e  = "King Kong">
4) cVersion year = "1933">
5) <Star>Fay Wray</Star>
6) </Version>
7) <Version year = "1976">
8) < S tar> Jeff B ridges</S tar>
9) < S tar> Jessica  Lange</Star>

10) </Version>
11) CVersion year = "2005" />
12) </Movie>
13) <Movie t i t l e  = "Footloose">
14) <Version year = "1984">
15) <Star>Kevin Bacon</Star>
16) <Star>John Lithgow</Star>
17) <Star>Sarah J e s s ic a  Parker< /S tar>
18) </Version>
19) </Movie>
20) </Movies>

Figure 12.3: An XML document for applying path expressions

In more detail, there are four Version elements that match the path

/Movies/Movie/Version

These are at lines (4) through (6), (7) through (10), line (11), and lines (14) 
through (18), respectively. Of these, the first and last are the first children of 
their respective parents. The year attributes for these versions are 1933 and 
1984, respectively. □
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E xam ple  12.8: The XPath query:

/M ovies/M ovie/V ersion[Star]

applied to the document of Fig. 12.3 returns three V ersion elements. The 
condition [S ta r] is interpreted as “has at least one S ta r  subelement.” That 
condition is true for the V ersion elements of lines (4) through (6), (7) through 
(10), and (14) through (18); it is false for the element of line (11). □

<Products>
<Maker name = "A">

<PC model = "1001" p r ic e  = "2114">
<Speed>2. 66</Speed>
<RAM>1024</RAM>
<HardDisk>250</HardDisk>

</PC>
<PC model = "1002" p r ic e  = "995">

<Speed>2. 10</Speed>
<RAM>512</RAM>
<HardDisk>250</HardDisk>

</PC>
<Laptop model = "2004" p r ic e  = "1150">

<Speed>2. 00</Speed>
<RAM>512</RAM>
<HardDisk>60</HardDisk>
<Screen>13. 3</Screen>

</Laptop>
<Laptop model = "2005" p r ic e  = "2500">

<Speed>2. 16</Speed>
<RAM>1024</RAM>
<HardD i  sk>120</HardD i  sk>
<Screen>17.0</Screen>

</Laptop>
</Maker>

Figure 12.4: XML document with product data — beginning

12.1.10 Exercises for Section 12.1
E xercise 12.1 .1 : Figures 12.4 and 12.5 are the beginning and end, respec
tively, of an XML document that contains some of the data from our running 
products exercise. Write the following XPath queries. What is the result of 
each?
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<Maker name = "E">
<PC model = "1011" p r ic e  = "959"> 

<Speed>l. 86</Speed> 
<RAM>2048</RAM> 
<HardDisk>160</HardDisk>

</PC>
<PC model = "1012" p r ic e  = "649"> 

<Speed>2. 80</Speed> 
<RAM>1024</RAM> 
<HardDisk>160</HardDisk>

</PC>
<Laptop model = "2001" p r ic e  = "3673"> 

<Speed>2. 00</Speed> 
<RAM>2048</RAM> 
<HardDisk>240</HardDisk> 
<Screen>20.1</Screen>

</Laptop>
< P rin te r model = "3002" p r ic e  = "239"> 

<Color>false</Color> 
<Type>laser</Type>

< /P rin te r>
<Maker name = "H">

< P rin te r model = "3006" p ric e  = "100"> 
<Color>true</Color> 
<Type>ink-jet</Type>

< /P rin te r>
< P rin te r model = "3007" p ric e  = "200"> 

<C olor>true</Color> 
<Type>laser</Type>

< /P rin te r>
</Maker>

</Products>

Figure 12.5: XML document with product data — end
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a) Find the amount of RAM on each PC.

b) Find the price of each product of any kind.

c) Find all the printer elements.

! d) Find the makers of laser printers.

! e) Find the makers of PC ’s and/or laptops.

f) Find the model numbers of PC ’s with a hard disk of at least 200 gigabytes. 

!! g) Find the makers of at least two PC’s.

E xercise 12.1.2: The document of Fig. 12.6 contains data similar to that 
used in our running battleships exercise. In this document, data about ships is 
nested within their class element, and information about battles appears inside 
each ship element. Write the following queries in XPath. What is the result of 
each?

a) Find the names of all ships.

b) Find all the C lass elements for classes with a displacement larger than 
35000.

c) Find all the Ship elements for ships that were launched before 1917.

d) Find the names of the ships that were sunk.

! e) Find the years in which ships having the same name as their class were 
launched.

! f) Find the names of all ships that were in battles.

!! g) Find the Ship elements for all ships that fought in two or more battles.

12.2 XQuery

XQuery is an extension of XPath that has become a standard for high-level 
querying of databases containing data in XML form. This section will introduce 
some of the important capabilities of XQuery.
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<Ships>
<Class name = "Kongo" type = "be" country = "Japan"

numGuns = "8" bore = "14" displacem ent = "32000"> 
<Ship name = "Kongo" launched = "1913" />
<Ship name = "H iei" launched = "1914" />
<Ship name = "K irishim a" launched = "1915">

< B attle  outcome = "sunk">Guadalcanal</Battle> 
</Ship>
<Ship name = "Haruna" launched = "1915" />

</Class>
<Class name = "North C arolina" type = "bb" country = "USA" 

numGuns = "9" bore = "16" displacem ent = "37000"> 
<Ship name = "North C arolina" launched = "1941" />
<Ship name = "Washington" launched = "1941">

<B attle  outcome = "ok">Guadalcanal</Battle>
</Ship>

</Class>
<Class name = "Tennessee" type = "bb" country = "USA"

numGuns = "12" bore = "14" displacem ent = "32000"> 
<Ship name = "Tennessee" launched = "1920">

< B attle  outcome = "ok">Surigao S tra it< /B a ttle >  
</Ship>
<Ship name = "C a lifo rn ia"  launched = "1921">

< B attle  outcome = "ok">Surigao S tra it< /B a ttle >
</Class>
<Class name = "King George V" type = "bb" 

country = "Great B rita in "
numGuns = "10" bore = "14" displacem ent = "32000"> 

<Ship name = "King George V" launched = "1940" />
<Ship name = "Prince of Wales" launched = "1941">

< B attle  outcome = "damaged">Denmark S tra it< /B a tt le >  
< B attle  outcome = "sunk">M alaya</Battle>

</Ship>
<Ship name = "Duke of York" launched = "1941">

< B attle  outcome = "ok">North Cape</Battle>
</Ship>
<Ship name = "Howe" launched = "1942" />
<Ship name = "Anson" launched = "1942" />

</Class>
</Ships>

Figure 12.6: XML document containing battleship data
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Case Sensitivity of XQuery

XQuery is case sensitive. Thus, keywords such as l e t  or fo r  need to be 
written in lower case, just like keywords in C or Java.

12.2.1 XQuery Basics
XQuery uses the same model for values that we introduced for XPath in Sec
tion 12.1.1. That is, all values produced by XQuery expressions are sequences 
of items. Items are either primitive values or nodes of various types, including 
elements, attributes, and documents. Elements in a sequence are assumed to 
exist in the context of some document, as discussed in Section 12.1.7.

XQuery is a functional language, which implies that any XQuery expression 
can be used in any place that an expression is expected. This property is a very 
strong one. SQL, for example, allows subqueries in many places; but SQL does 
not permit, for example, any subquery to be any operand of any comparison in 
a where-clause. The functional property is a double-edged sword. It requires 
every operator of XQuery to make sense when applied to lists of more than one 
item, leading to some unexpected consequences.

To start, every XPath expression is an XQuery expression. There is, how
ever, much more to XQuery, including FLWR (pronounced “flower”) expres
sions, which are in some sense analogous to SQL select-from-where expressions.

12.2.2 FLWR Expressions
Beyond XPath expressions, the most important form of XQuery expression 
involves clauses of four types, called for-, let-, where-, and return- (FLWR) 
clauses.1 We shall introduce each type of clause in turn. However, we should 
be aware that there are options in the order and occurrences of these clauses.

1. The query begins with zero or more for- and let-clauses. There can be 
more than one of each kind, and they can be interlaced in any order, e.g., 
for, for, let, for, let.

2. Then comes an optional where-clause.

3. Finally, there is exactly one return-clause.

E xam ple  12.9: Perhaps the simplest FLWR expression is:

re tu rn  <Greeting>Hello World</Greeting>

It examines no data, and produces a value that is a simple XML element. □

1 T h e re  is also an  o rder-by  clause th a t  we sha ll in tro d u ce  in  Section 12.2.10. For th a t  
reason , F L W R  is a  less com m on acronym  for th e  p rincipal form  of X Q uery  query  th a n  is 
FLW O R .
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L et C lauses

The simple form of a let-clause is:

l e t  variable := expression

The intent of this clause is that the expression is evaluated and assigned to 
the variable for the remainder of the FLWR expression. Variables in XQuery 
must begin with a dollar-sign. Notice that the assignment symbol is :=, not 
an equal sign (which is used, as in XPath, in comparisons). More generally, 
a comma-separated list of assignments to variables can appear where we have 
shown one.

E xam ple 12.10: One use of let-clauses is to assign a variable to refer to one 
of the documents whose data is used by the query. For example, if we want to 
query a document in file s t a r  s . xml, we can start our query with:

l e t  $ s ta rs  := d o c("sta rs .x m l")

In what follows, the value of $ s ta rs  is a single doc node. It can be used in front 
of an XPath expression, and that expression will apply to the XML document 
contained in the file s t a r s . xml. □

For C lauses

The simple form of a for-clause is:

fo r  variable in  expression

The intent is that the expression is evaluated. The result of any expression 
is a sequence of items. The variable is assigned to each item, in turn, and 
what follows this for-clause in the query is executed once for each value of the 
variable. You will not be much deceived if you draw an analogy between an 
XQuery for-clause and a C for-statement. More generally, several variables may 
be set ranging over different sequences of items in one for-clause.

E xam ple 12.11: We shall use the data suggested in Fig. 12.7 for a num
ber of examples in this section. The data consists of two files, stairs.xm l in 
Fig. 12.7(a) and movies .xml in Fig. 12.7(b). Each of these files has data similar 
to what we used in Section 12.1, but the intent is that what is shown is just a 
small sample of the actual contents of these files.

Suppose we start a query:

l e t  $movies := doc("movies.xml") 
fo r  $m in  $movies/Movies/Movie

. . .  something done w ith each Movie element
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1) <? xml version= "1 .0" encoding="utf-8" standalone="yes" ?>
2) <Stars>
3) <Star>
4) <Name>Carrie Fisher</Name>
5) <Address>
6) <Street>123 Maple S t.< /S tre e t>
7) <City>Hollywood</City>
8) </Address>
9) <Address>

10) <Street>5 Locust L n .< /S treet>
11) <City>Malibu</City>
12) </Address>
13) < /S tar>

. . .  more s ta r s
14) < /S tars>

(a) Document s ta rs .x m l

15) <? xml version="1 .0" encoding="utf-8" standalone="yes" ?>
16) <Movies>
17) <Movie t i t l e  = "King Kong">
18) <Version year = "1933">
19) <Star>Fay Wray</Star>
20) </Version>
21) <Version year = "1976">
22) < S tar> Jeff B ridges</S tar>
23) < S tar> Jessica  Lange</Star>
24) </Version>
25) <Version year = "2005" />
26) </Movie>
27) <Movie t i t l e  = "Footloose">
28) <Version year = "1984">
29) <Star>Kevin Bacon</Star>
30) <Star>John Lithgow</Star>
31) <Star>Sarah J e s s ic a  P arker< /S tar>
32) </Version>
33) </Movie>

. . .  more movies
34) </Movies>

(b) Document m ovies. xml

Figure 12.7: Data for XQuery examples
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Boolean Values in XQuery

A comparision like $x = 10 evaluates to true or false (strictly speaking, 
to one of the names x s : tru e  or x s : f a ls e  from the namespace for XML 
Schema). However, several other types of expressions can be interpreted as 
true or false, and so can serve as the value of a condition in a where-clause. 
The important coercions to remember are:

1. If the value is a sequence of items, then the empty sequence is inter
preted as false and nonempty sequences as true.

2. Among numbers, 0 and NaN (“not a number,” in essence an infinite 
number) are false, and other numbers are true.

3. Among strings, the empty string is false and other strings are true.

Notice that $movies/Movies/Movie is an XPath expression that tells us to start 
with the document in file m ovies. xml, then go to the root Movies element, and 
then form the sequence of all Movie subelements. The body of the “for-loop” 
will be executed first with $m equal to the element of lines (17) through (26) 
of Fig. 12.7, then with $m equal to the element of lines (27) through (33), and 
then with each of the remaining Movie elements in the document. □

T he W here C lause

The form of a where-clause is:

where condition

This clause is applied to an item, and the condition, which is an expression, 
evaluates to true or false. If the value is true, then the return-clause is applied to 
the current values of any vaxiables in the query. Otherwise, nothing is produced 
for the current values of variables.

T he R etu rn  C lause

The form of this clause is:

re tu rn  expression

The result of a FLWR expression, like that of any expression in XQuery, is 
a sequence of items. The sequence of items produced by the expression in 
the return-clause is appended to the sequence of items produced so far. Note 
that although there is only one return-clause, this clause may be executed many
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times inside “for-loops,” so the result of the query may be constructed in stages. 
We should not think of the return-clause as a “return-statement,” since it does 
not end processing of the query.

E xam ple  12.12: Let us complete the query we started in Example 12.11 by 
asking for a list of all the star elements found among the versions of all movies. 
The query is:

l e t  $movies := docC'movies.xml") 
fo r  $m in  $movies/Movies/Movie 
re tu rn  $m /V ersion/S tar

The first value of $min the “for-loop” is the element of lines (17) through (26) 
of Fig. 12.7. From that Movie element, the XPath expression /V e rs io n /S ta r  
produces a sequence of the three S ta r  elements at lines (19), (22), and (23). 
That sequence begins the result of the query.

<Star>Fay Wray</Star>
< S tar> Jeff B ridges</S tar>
< S tar> Jessica  Lange</Star>
<Star>Kevin Bacon</Star>
<Star>John Lithgow</Star>
<Star>Sarah J e s s ic a  Parker< /S tar>

Figure 12.8: Beginning of the result sequence for the query of Example 12.12

The next value of $m is the element of lines (27) through (33). Now, the 
result of the expression in the return-clause is the sequence of elements in lines 
(29), (30), and (31). Thus the beginning of the result sequence looks like that 
in Fig. 12.8. □

12.2.3 Replacement of Variables by Their Values
Let us consider a modification to the query of Example 12.12. Here, we want to 
produce not just a sequence of <Star> elements, but rather a sequence of Movie 
elements, each containing all the stars of movies with a given title, regardless 
of which version they starred in. The title will be an attribute of the Movie 
element.

Figure 12.9 shows an attem pt that seems right, but in fact is not correct. 
The expression we return for each value of $m seems to be an opening <Movie> 
tag followed by the sequence of S ta r  elements for that movie, and finally a 
closing </Movie> tag. The <Movie> tag has a t i t l e  attribute that is a copy of 
the same attribute from the Movie element in file movies.xml. However, when 
we execute this program, what appears is:
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Sequences of Sequences

We should remind the reader that sequences of items can have no internal 
structure. Thus, in Fig. 12.8, there is no separator between Jessica Lange 
and Kevin Bacon, or any grouping of the first three stars and the last 
three, even though these groups were produced by different executions of 
the return-clause.

l e t  $movies := doc("movies.xml") 
fo r  $m in  $movies/Movies/Movie
re tu rn  <Movie t i t l e  = $m /Stitle>$m /Version/Star</M ovie>

Figure 12.9: Erroneous attempt to produce Movie elements

<Movie t i t l e  = "$m/Qtitle">$m/Version/Star</M ovie>
<Movie t i t l e  = "$m/@ title">$m/Version/Star</M ovie>

The problem is that, between tags, or as the value of an attribute, any text 
string is permissible. This return statement looks no different, to the XQuery 
processor, than the return of Example 12.9, where we really were producing text 
inside matching tags. In order to get text interpreted as XQuery expressions 
inside tags, we need to surround the text by curly braces.

l e t  $movies := doc("movies.xml") 
fo r  $m in  $movies/Movies/Movie
re tu rn  <Movie t i t l e  = {$m/@title}>{$m/Version/Star}</Movie>

Figure 12.10: Adding curly braces fixes the problem

The proper way to meet our goal is shown in Fig. 12.10. In this query, 
the expressions $ m /ti t le  and $m /V ersion/Star inside the braces are properly 
interpreted as XPath expressions. The first is replaced by a text string, and 
the second is replaced by a sequence of S ta r  elements, as intended.

E xam ple 12.13: This example not only further illustrates the use of curly 
braces to force interpretation of expressions, but also emphasizes how any 
XQuery expression can be used wherever an expression of any kind is per
mitted. Our goal is to duplicate the result of Example 12.12, where we got a 
sequence of S ta r elements, but to make the entire sequence of stars be within 
a S ta rs  element. We cannot use the trick of Fig. 12.10 with S ta rs  in place 
of S ta r, because that would place many S ta rs  tags around separate groups of 
stars.
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l e t  $ starS eq  := (
l e t  $movies := doc("m ovies.xml") 
fo r  $m in  $movies/Movies/Movie 
re tu rn  $m /V ersion/S tar

)
r e tu rn  <S tars>{$starSeq}</S tars>

Figure 12.11: Putting tags around a sequence

Figure 12.11 does the job. We assign the sequence of S ta r  elements that 
results from the query of Example 12.12 to a local variable $starSeq. We then 
return that sequence, surrounded by tags, being careful to enclose the variable 
in braces so it is evaluated and not treated literally. □

12.2.4 Joins in XQuery
We can join two or more documents in XQuery in much the same way as we 
join two or more relations in SQL. In each case we need variables, each of 
which ranges over elements of one of the documents or tuples of one of the 
relations, respectively. In SQL, we use a from-clause to introduce the needed 
tuple variables (which may just be the table name itself); in XQuery we use a 
for-clause.

However, we must be very careful how we do comparisons in a join. First, 
there is the m atter of comparison operators such as = or < operating on se
quences with the meaning of “there exist elements that compare” as discussed 
in Section 12.1.9. We shall take up this point again in Section 12.2.5. Ad
ditionally, equality of elements is by “element identity” (analogous to “object 
identity”). That is, an element is not equal to a different element, even if it 
looks the same, character-by-character. Fortunately, we usually do not want to 
compare elements, but really the primitive values such as strings and integers 
that appear as values of their attributes and subelements. The comparison 
operators work as expected on primitive values; < is “precedes in lexicographic 
order” for strings.

There is a built-in function data(E ) that extracts the value of an element 
E. We can use this function to extract the text from an element that is a string 
with matching tags.

E xam ple 12.14: Suppose we want to find the cities in which stars mentioned 
in the movies.xml file of Fig. 12.7(b) live. We need to consult the s ta rs .x m l 
file of Fig. 12.7(a) to get that information. Thus, we set up a variable ranging 
over the S ta r  elements of m ovies. xml and another variable ranging over the 
S ta r  elements of s t a r s  .xml. When the data in a S ta r  element of movies .xml 
matches the data in the Name subelement of a S ta r  element of s ta irs . xml, then 
we have a match, and we extract the C ity  element of the latter.



12.2. XQUERY 537

Figure 12.12 shows a solution. The let-clause introduces variables to stand 
for the two documents. As before, this shorthand is not necessary, and we could 
have used the document nodes themselves in the XPath expressions of the next 
two lines. The for-clause introduces a doubly nested loop. Variable $ s l ranges 
over each S ta r  element of movies.xml and $s2 does the same for s ta rs .x m l.

l e t  $movies := doc("m ovies.xm l"),
$ s ta rs  := d o c("sta rs .x m l") 

fo r  $ s l in  $m ovies/M ovies/M ovie/V ersion/Star,
$s2 in  $ s ta r s /S ta r s /S ta r  

where d a ta ($ s l)  = data($s2/Name) 
re tu rn  $s2/A ddress/C ity

Figure 12.12: Finding the cities of stars

The where-clause uses the built-in function d a ta  to extract the strings that 
are the values of the elements $ s l and $s2. Finally, the return-clause produces 
a C ity  element. □

12.2.5 XQuery Comparison Operators
We shall now consider another puzzle where things don’t quite work as expected. 
Our goal is to find the stars in s t a r s . xml of Fig. 12.7(a) that live at 123 Maple 
St., Malibu. Our first attempt is in Fig. 12.13.

l e t  $ s ta rs  := d o c("sta rs .x m l") 
fo r  $s in  $ s ta r s /S ta r s /S ta r  
where $ s /A d d ress /S tree t = "123 Maple S t."  and 

$s/A ddress/C ity  = "Malibu" 
re tu rn  $s/Name

Figure 12.13: An erroneous attempt to find who lives at 123 Maple St., Malibu

In the where-clause, we compare S tre e t  elements and C ity  elements with 
strings, but that works as expected, because an element whose value is a string 
is coerced to that string, and the comparison will succeed when expected. The 
problem is seen when $s takes the S ta r  element of lines (3) through (13) of 
Fig. 12.7 as its value. Then, XPath expression $ s/A d d ress/S tree t produces 
the sequence of two elements of lines (6) and (10) as its value. Since the = 
operator returns true if any pair of items, one from each side, equate, the value 
of the first condition is true; line (6), after coercion, is equal to the string 
"123 Maple S t." .  Similarly, the second condition compares the list of two 
C ity elements of lines (7) and (11) with the string "Malibu", and equality is 
found for line (11). As a result, the Name element for Carrie Fisher [line (4)] is 
returned.
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But Carrie Fisher doesn’t live at 123 Maple St., Malibu. She lives at 123 
Maple St., Hollywood, and elsewhere in Malibu. The existential nature of 
comparisons has caused us to fail to notice that we were getting a street and 
city from different addresses.

XQuery provides a set of comparison operators that only compare sequences 
consisting of a single item, and fail if either operand is a sequence of more than 
one item. These operators are two-letter abbreviations for the comparisons: eq, 
ne, I t ,  g t, le , and ge. We could use eq in place of = to catch the case where 
we are actually comparing a string with several streets or cities. The revised 
query is shown in Fig. 12.14.

l e t  $ s ta r s  := doc ("s ta irs , xml") 
fo r  $s in  $ s ta r s /S ta r s /S ta r
where $ s /A d d re ss /S tree t eq "123 Maple S t."  and 

$ s/A ddress/C ity  eq "Malibu" 
re tu rn  $s/Name

Figure 12.14: A second erroneous attem pt to find who lives at 123 Maple St., 
Malibu

This query does not allow the Carrie-Fisher element to pass the test of the 
where-clause, because the left sides of the eq operator are not single items, and 
therefore the comparison fails. Unfortunately, it will not report any star with 
two or more addresses, even if one of those addresses is 123 Maple St., Malibu. 
Writing a correct query is tricky, regardless of which version of the comparison 
operators we use, and we leave a correct query as an exercise.

12.2.6 Elimination of Duplicates
XQuery allows us to eliminate duplicates in sequences of any kind, by applying 
the built-in function d is t in c t-v a lu e s . There is a subtlely that must be noted, 
however. Strictly speaking, distinct-values applies to primitive types. It will 
strip the tags from an element that is a tagged text-string, but it won’t put 
them back. Thus, the input to d is t in c t- v a lu e s  can be a list of elements and 
the result a list of strings.

E xam ple 12.15: Figure 12.11 gathered all the S ta r  elements from all the 
movies and returned them as a sequence. However, a star that appeared 
in several movies would appear several times in the sequence. By applying 
d is t in c t-v a lu e s  to the result of the subquery that becomes the value of vari
able $ s ta rseq , we can eliminate all but one copy of each S ta r  element. The 
new query is shown in Fig. 12.15.

Notice, however, that what is produced is a list of the names of the stars 
surrounded by the S ta rs  tags, as:

<Stars>"Fay Wray" " Je f f  B ridges" < /S tars>
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l e t  $starS eq  := d is t in c t-v a lu e s (
l e t  $movies := doc("movies.xml") 
fo r  $m in  $movies/Movies/Movie 
re tu rn  $m /V ersion/Star

)
re tu rn  <Stars>{$starSeq}</Stars>

Figure 12.15: Eliminating duplicate stars

In comparison, the version in Fig. 12.11 produced

<Stars><Star>Fay Wray</Star> <S tar>Jeff B ridges</S tar>  • • •
< /S tars>

but might produce duplicates. □

12.2.7 Quantification in XQuery
There are expressions that say, in effect, “for all” and “there exists.” Their 
forms, respectively, are:

every variable in  expressionl s a t i s f i e s  expressions 
some variable in  expressionl s a t i s f i e s  expressions

Here, expressionl produces a sequence of items, and the variable takes on each 
item, in turn, as its value. For each such value, expressions (which normally 
involves the variable) is evaluated, and should produce a boolean value.

In the “every” version, the result of the entire expression is false if some item 
produced by expressionl makes expressions false; the result is true otherwise. 
In the “some” version, the result of the entire expression is true if some item 
produced by expressionl makes expressions true; the result is false otherwise.

l e t  $ s ta rs  := docO 'stars.xm l") 
fo r  $s in  $ s ta r s /S ta r s /S ta r  
where every $c in  $s/A ddress/C ity  s a t i s f i e s  

$c = "Hollywood" 
re tu rn  $s/Name

Figure 12.16: Finding the stars who only live in Hollywood

E xam ple 12.16: Using the data in the file s t a r s ,  xml of Fig. 12.7(a), we want 
to find those stars who live in Hollywood and nowhere else. That is, no matter 
how many addresses they have, they all have city Hollywood. Figure 12.16 
shows how to write this query. Notice that $s/A ddress/C ity  produces the
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sequence of C ity  elements of the star $s. The where-clause is thus satisfied if 
and only if every element on that list is <City>Hollywood</City>.

Incidentally, we could change the “every” to “some” and find the stars that 
have at least one home in Hollywood. However, it is rarely necessary to use the 
“some” version, since most tests in XQuery are existentially quantified anyway. 
For instance,

l e t  $ s ta r s  := d o c ("s ta rs .x m l") 
fo r  $s in  $ s ta r s /S ta r s /S ta r  
where $s/A ddress/C ity  = "Hollywood" 
re tu rn  $s/Name

produces the stars with a home in Hollywood, without using a “some” expres
sion. Recall our discussion in Section 12.2.5 of how a comparision such as =, 
with a sequence of more than one item on either or both sides, is true if we can 
match any items from the two sides. □

12.2.8 Aggregations
XQuery provides built-in functions to compute the usual aggregations such as 
count, sum, or max. They take any sequence as argument; that is, they can be 
applied to the result of any XQuery expression.

l e t  $movies := doc("m ovies.xml") 
fo r  $m in  $movies/Movies/Movie 
where count($m /Version) > 1 
r e tu rn  $m

Figure 12.17: Finding the movies with multiple versions

E xam ple 12.17: Let us examine the data in file movies.xml of Fig. 12.7(b) 
and produce those Movie elements that have more than one version. Figure
12.17 does the job. The XPath expression $m/Version produces the sequence 
of V ersion elements for the movie $m. The number of items in the sequence is 
counted. If that count exceeds 1, the where-clause is satisfied, and the movie 
element $m is appended to the result. □

12.2.9 Branching in XQuery Expressions
There is an if-then-else expression in XQuery of the form

i f  ( expressionl) then  expression2 e ls e  expressions

To evaluate this expression, first evaluate expressionl; if it is true, evaluate 
expression2, which becomes the result of the whole expression. If expressionl 
is false, the result of the whole expression is expressions.
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This expression is not a statement — there are no statements in XQuery, 
only expressions. Thus, the analog in C is the ?: expression, not the if-then-else 
statement. Like the expression in C, there is no way to omit the “else” part. 
However, we can use as expressions the empty sequence, which is denoted (). 
This choice makes the conditional expression produce the empty sequence when 
the test-condition is not satisfied.

E xam ple 12.18: Our goal in this example is to produce each of the versions 
of King Kong, tagging the most recent version L a te st and the earlier versions 
Old. In line (1), we set variable $kk to be the Movie element for King Kong. 
Notice that we have used an XPath condition in this line, to make sure that we 
produce only that one element. Of course, if there were several Movie elements 
that had the title King Kong, then all of them would be on the sequence of items 
that is the value of $kk, and the query would make no sense. However, we are 
assuming title is a key for movies in this structure, since we have explicitly 
grouped versions of movies with the same title.

1) l e t  $kk :=
doc("m ovies.xm l")/M ovies/M ovie[@ title = "King Kong"]

2) fo r  $v in  $kk/Version
3) re tu rn
4) i f  ($v/@year = max($kk/Version/@year))
5) then  <Latest>{$v}</Latest>
6) e ls e  <01d>{$v}</01d>

Figure 12.18: Tagging the versions of King Kong

Line (2) causes $v to iterate over all versions of King Kong. For each such 
version, we return one of two elements. To tell which, we evaluate the condition 
of line (4). On the right of the equal-sign is the maximum year of any of the 
King-Kong versions, and on the left is the year of the version $v. If they are 
equal, then $v is the latest version, and we produce the element of line (5). If 
not, then $v is an old version, and we produce the element of line (6). □

12.2.10 Ordering the Result of a Query
It is possible to sort the results as part of a FLWR query, if we add an order- 
clause before the return-clause. In fact, the query form we have been concen
trating on here is usually called FLWOR (but still pronounced “flower”), to 
acknowledge the optional presence of an order-clause. The form of this clause 
is:

o rder list of expressions

The sort is based on the value of the first expression, ties are broken by the 
value of the second expression, and so on. The default order is ascending, but 
the keyword descending following an expression reverses the order.
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What happens when an order is present is analogous to what happens in 
SQL. Just before we reach the stage in query processing where the output is 
assembled (the SELECT clause in SQL; the return-clause in XQuery), the result 
of previous clauses is assembled and sorted. In the case of SQL, the intermediate 
result is a set of bindings of tuples to the tuple variables that range over each of 
the relations in the FROM clause. Specifically, it is all those bindings that pass 
the test of the WHERE clause.

In XQuery, we should think of the intermediate result as a sequence of 
bindings of variables to values. The variables are those defined in the for- and 
let-clauses that precede the order-clause, and the sequence consists of all those 
bindings that pass the test of the where-clause. These bindings are each used to 
evaluate the expressions in the order-clause, and the values of those expressions 
govern the position of the binding in the order of all the bindings. Once we 
have the order of bindings, we use them, in turn, to evaluate the expression in 
the return-clause.

E xam ple 12.19: Let us consider all versions of all movies, order them by year, 
and produce a sequence of Movie elements with the title and year as attributes. 
The data comes from file movies.xml in Fig. 12.7(b), as usual. The query is 
shown in Fig. 12.19.

l e t  $movies := doc("m ovies.xml") 
fo r  $m in  $movies/Movies/Movie,

$v in  $m/Version 
o rder $v/@year
re tu rn  <Movie t i t l e  = "{$m /© title}" year = "{$v/@year}" />

Figure 12.19: Construct the sequence of title-year pairs, ordered by year

When we reach the order-clause, bindings provide values for the three vari
ables $movies, $m, and $v. The value doc ("movies .xml) is bound to $movies 
in every one of these bindings. However, the values of $m and $v vary; for each 
pair consisting of a movie and a version of that movie, there will be one binding 
for the two variables. For instance, the first such binding associates with $m the 
element in lines (17) through (26) of Fig. 12.7(b) and associates with $v the 
element of lines (18) through (20).

The bindings are sorted according to the value of attribute year in the 
element to which $v is bound. There may be many movies with the same year, 
and the ordering does not specify how these are to be ordered. As a result, all 
we know is that the movie-version pairs with a given year will appear together 
in some order, and the groups for each year will be in the ascending order of 
year. If we wanted to specify a total ordering of the bindings, we could, for 
example, add a second term to the list in the order-clause, such as:

o rder $v/®year, $m /@ title



to break ties alphabetically by title.
After sorting the bindings, each binding is passed to the return-clause, in 

the order chosen. By substituting for the variables in the return-clause, we 
produce from each binding a single Movie element. □

12.2.11 Exercises for Section 12.2
E xercise 1 2 .2 .1 : Using the product data from Figs. 12.4 and 12.5, write the 
following in XQuery.

a) Find the P r in te r  elements with a price less than 100.

b) Find the P r in te r  elements with a price less than 100, and produce the 
sequence of these elements surrounded by a tag <CheapPrinters>.

! c) Find the names of the makers of both printers and laptops.

! d) Find the names of the makers that produce at least two PC’s with a speed 
of 3.00 or more.

! e) Find the makers such that every PC they produce has a price no more 
than 1000.

!! f) Produce a sequence of elements of the form

<LaptopXModel>a;</Model><Maker>2/</Maker></Laptop>

where x  is the model number and y is the name of the maker of the laptop.

E xercise 12 .2 .2 : Using the battleships data of Fig. 12.6, write the following 
in XQuery.

a) Find the names of the classes that had at least 10 guns.

b) Find the names of the ships that had at least 10 guns.

c) Find the names of the ships that were sunk.

d) Find the names of the classes with at least 3 ships.

! e) Find the names of the classes such that no ship of that class was in a 
battle.

!! f) Find the names of the classes that had at least two ships launched in the 
same year.

!! g) Produce a sequence of items of the form

< B attle  name = arXShip name = y />• • • < /B attle>
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where x  is the name of a battle and y the name of a ship in the battle. 
There may be more than one Ship element in the sequence.

! Exercise 12.2 .3 : Solve the problem of Section 12.2.5; write a query that finds 
the star(s) living at a given address, even if they have several addresses, without 
finding stars that do not live at that address.

! Exercise 12.2 .4 : Do there exist expressions E  and F  such that the expres
sion every $x in  E  s a t i s f i e s  F  is true, but some $x in  E  s a t i s f i e s  F  
is false? Either give an example or explain why it is impossible.

12.3 Extensible Stylesheet Language
XSLT (Extensible Stylesheet Language for Transformations) is a standard of 
the World-Wide-Web Consortium. Its original purpose was to allow XML doc
uments to be transformed into HTML or similar forms that allowed the doc
ument to be viewed or printed. However, in practice, XSLT is another query 
language for XML. Like XPath or XQuery, we can use XSLT to extract data 
from documents or turn one document form into another form.

12.3.1 XSLT Basics
Like XML Schema, XSLT specifications are XML documents; these specifica
tions are usually called stylesheets. The tags used in XSLT are found in a 
namespace, which is http://www.w3.org/1999/XSL/Transform . Thus, at the 
highest level, a stylesheet looks like Fig. 12.20.

<? xml v e rs io n  = "1 .0" encoding = " u tf -8 "  ?>
< x s l: s ty le s h e e t  xm lns:xsl =

"h t t p : / / www.w3. org/1999/XSL/Transf orm">

< /x s l : s ty le sh ee t>

Figure 12.20: The form of an XSLT stylesheet

12.3.2 Templates
A stylesheet will have one or more templates. To apply a stylesheet to an XML 
document, we go down the list of templates until we find one that matches 
the root. As processing proceeds, we often need to find matching templates 
for elements nested within the document. If so, we again search the list of 
templates for a match according to matching rules that we shall learn in this 
section. The simplest form of a template tag is:
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< x s l: tem plate match = "XPath expression">

The XPath expression, which can be either rooted (beginning with a slash) or 
relative, describes the elements of an XML document to which this template is 
applied. If the expression is rooted, then the template is applied to every ele
ment of the document that matches the path. Relative expressions are applied 
when a template T  has within it a tag <xsl:apply-tem plates> . In that case, 
we look among the children of the elements to which T is applied. In that way, 
we can traverse an XML document’s tree in a depth-first manner, performing 
complicated transformations on the document.

The simplest content of a template is text, typically HTML. When a tem
plate matches a document, the text inside that document is produced as output. 
Within the text can be calls to apply templates to the children and/or obtain 
values from the document itself, e.g., from attributes of the current element.

1) <? xml v ers io n  = "1.0" encoding = "u tf-8 "  ?>
2) < x s l:s ty le sh e e t xm lns:xsl =
3) "h t t p ://www.w3 . org/1999/XSL/Transform">
4) < x sl:tem p la te  match = "/">
5) <HTML>
6) <B0DY>
7) <B>This i s  a document</b>
8) </body>
9) </html>

10) < /xsl:tem pla te>
11) < /x s l:s ty le sh e e t>

Figure 12.21: Printing output for any document

E xam ple 12.20: In Fig. 12.21 is an exceedingly simple stylesheet. It applies 
to any document and produces the same HTML document, regardless of its 
input. This HTML document says “This is a document” in boldface.

Line (4) introduces the one template in the stylesheet. The value of the 
match attribute is " /" , which matches only the root. The body of the template, 
lines (5) through (9), is simple HTML. When these lines are produced as output, 
the resulting file can be treated as HTML and displayed by a browser or other 
HTML processor. □

12.3.3 Obtaining Values From XML Data
It is unusual that the document we produce does not depend in any way on the 
input to the transformation, as was the case in Example 12.20. The simplest 
way to extract data from the input is with the va lue-o f tag. The form of this 
tag is:
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<? xml version="1.0" encoding="utf-8" standalone="yes" ?> 
<Movies>

<Movie title = "King Kong">
<Version year = "1933">

<Star>Fay Wray</Star>
</Version>
<Version year = "1976">

<Star>Jeff Bridges</Star>
<Star>Jessica Lange</Star>

</Version>
CVersion year = "2005" />

</Movie>
<Movie title = "Footloose">

CVersion year = "1984">
<Star>Kevin Bacon</Star>
<Star>John Lith.gow</Star>
<Star>Sarah Jessica Parker</Star>

</Version>
</Movie>

... more movies
</Movies>

Figure 12.22: The file m ovies. xml

<xsl:value-of select = "expression" />

The expression is an XPath expression that should produce a string as value. 
Other values, such as elements containing text, are coerced into strings in the 
obvious way.

E xam ple 12.21: In Fig. 12.22 we reproduce the file movies.xml that was 
used in Section 12.2 as a running example. In this example of a stylesheet, we 
shall use v a lu e -o f to obtain all the titles of movies and print them, one to a 
line. The stylesheet is shown in Fig. 12.23.

At line (4), we see that the template matches every Movie element, so we 
process them one at a time. Line (5) applies the v a lu e-o f operation with an 
XPath expression O ti t le .  That is, we go to the t i t l e  attribute of each Movie 
element and take the value of that attribute. This value is produced as output, 
and followed at line (6) by the HTML break tag, so the next movie title will be 
printed on the next line. □

12.3.4 Recursive Use of Templates
The most interesting and powerful transformations require recursive application 
of templates at various elements of the input. Having selected a template to
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1) <? xml version = "1.0" encoding = "utf-8" ?>
2) <xsl:stylesheet xmlns:xsl =
3) "http://www.w3.org/1999/XSL/Transform">
4) <xsl:template match = "/Movies/Movie">
5) <xsl:value-of select = "Stitle" />
6) <BR/>
7) </xsl:template>
8) </xsl:stylesheet>

Figure 12.23: Printing the titles of movies

apply to the root of the input document, we can ask that a template be applied 
to each of its subelements, by using the app ly -tem plates tag. If we want to 
apply a certain template to only some subset of the subelements, e.g., those 
with a certain tag, we can use a s e le c t  expression, as:

< x sl:ap p ly -tem p la tes  s e le c t  = "expression" />

When we encounter such a tag within a template, we find the set of matching 
subelements of the current element (the element to which the template is being 
applied). For each subelement, we find the first template that matches and 
apply it to the subelement.

E xam ple 12.22: In this example, we shall use XSLT to transform an XML 
document into another XML document, rather than into an HTML document. 
Let us examine Fig. 12.24. There are four templates, and together they process 
movie data in the form of Fig. 12.22. The first template, lines (4) through (8), 
matches the root. It says to output the text <Movies> and then apply templates 
to the children of the root element. We could have specified that templates were 
to be applied only to children that are tagged <Movie>, but since we expect no 
other tags among the children, we did not specify:

6) < x sl:ap p ly -tem p la tes  s e le c t  = "Movie" />

Notice that after applying templates to the <Movie> children (which will 
result in the printing of many elements), we close the <Movies> element in the 
output with the appropriate closing tag at line (7). Also observe that we can tell 
the difference between tags that are output text, such as lines (5) and (7), from 
tags that are XSLT, because all XSLT tags must be from the x s l  namespace.

Now, let us see what applying templates to the <Movie> elements does. The 
first (and only) template that matches these elements is the second, at lines (9) 
through (15). This template begins by outputting the text <Movie t i t l e  = " 
at line (10). Then, line (11) obtains the title of the movie and emits it to the 
output. Line (12) finishes the quoted attribute value and the <Movie> tag in 
the output. Line (13) applies templates to all the children of the movie, which 
should be versions. Finally, line (14) emits the matching </Movie> ending tag.
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1) <? xml version = "1.0" encoding = "utf-8" ?>
2) <xsl:stylesheet xmlns:xsl =
3) "http://www.w3.org/1999/XSL/Transform">

4) <xsl:template match = "/Movies">
5) <Movies>
6) <xsl:apply-templates />
7) </Movies>
8) </xsl:template>

9) <xsl:template match = "Movie">
10) <Movie title = "
11) <xsl:value-of select = "fititle” />
12) ">
13) <xsl:apply-templates />
14) </Movie>
15) </xsl:template>

16) <xsl:template match = "Version">
17) <xsl:apply-templates />
18) </xsl:template>

19) <xsl:template match = "Star">
20) <Star name = "
21) <xsl:value-of select = "." />
22) " />
23) </xsl:template>

24) </xsl:stylesheet>

Figure 12.24: Transforming the m ovies. xml file

When line (13) calls for templates to be applied to all the versions of a 
movie, the only matching template is that of lines (16) through (18), which 
does nothing but apply templates to the children of the version, which should 
be <Star> elements. Thus, what gets generated between each opening <Movie> 
tag and its matched closing tag is determined by the last template of lines (19) 
through (23). This template is applied to each <Star> element.

Star elements from the input are transformed in the output. Instead of the 
star’s name being text, as it is in Fig. 12.22, the template starting at line (19) 
produces a <Star> element with the name as an attribute. Line (21) says to 
select the <Star> element itself (the dot represents the .“self” axis as an XPath 
expression) as a value for the output. However, all output is text, so the tags 
of the element are not part of the output. That result is exactly what we want,
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since the value of the attribute name should be a string, not an element. The 
empty <Star> element is completed on line (22). For instance, given the input 
of Fig. 12.22, the output would be as shown in Fig. 12.25. □

<Movies>
<Movie t i t l e  = "King Kong">

<Star name = "Fay Wray" />
<Star name = " Je ff  B ridges" />
<Star name = " Je s s ic a  Lange" /> 

</Movie>
<Movie t i t l e  = "Footloose">

<Star name = "Kevin Bacon" />
<Star name = "John Lithgow" />
<Star name = "Sarah J e s s ic a  Parker" /> 

</Movie>
. . .  more movies

</Movies>

Figure 12.25: Output of the transform of Fig. 12.24

12.3.5 Iteration in XSLT
We can put a loop within a template that gives us freedom over the order in 
which we visit certain subelements of the element to which the template is being 
applied. The f  o r-each  tag creates the loop, with a form:

< x s l:fo r-e ach  s e le c t  = "expression">

The expression is an XPath expression whose value is a sequence of items. 
Whatever is between the opening <for-each> tag and its matched closing tag 
is executed for each item, in turn.

E xam ple 12.23: In Fig. 12.26 is a copy of our document s ta r s  .xml; we wish 
to transform it to an HTML list of all the names of stars followed by an HTML 
list of all the cities in which stars live. Figure 12.27 has a template that does 
the job.

There is one template, which matches the root. The first thing that happens 
is at line (5), where the HTML tag <0L> is emitted to start an ordered list. 
Then, line (6) starts a loop, which iterates over each <Star> subelement. At 
lines (7) through (9), a list item with the name of that star is emitted. Line (11) 
ends the list of names and begins a list of cities. The second loop, lines (12) 
through (16), runs through each <Address> element and emits a list item for 
the city. Line (17) closes the second list. □



550 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

<? xml versions"1.0" encoding="utf-8" standalone="yes" ?> 
<Stars>

<Star>
<Name>Carrie Fisher</Name>
<Address>

<Street>123 Maple St.</Street> 
<City>Hollywood</City>

</Address>
<Address>

<Street>5 Locust Ln.</Street> 
<City>Malibu</City>

</Address>
</Star>

... more stars
</Stars>

Figure 12.26: Document s ta rs .x m l

1) <? xml version = "1.0" encoding = "utf-8" ?>
2) <xsl:stylesheet xmlns:xsl =
3) "http://www.w3.org/1999/XSL/Transform">
4) <xsl:template match = "/">
5) <0L>
6) <xsl:for-each select = "Stars/Star" />
7) <LI>
8) <xsl:value-of select = "Name">
9) </li>
10) </xsl:for-each>
11) </ol><P/xOL>
12) <xsl:for-each select = "Stars/Star/Addre
13) <LI>
14) <xsl:value-of select = "City">
15) </li>
16) </xsl:for-each>
17) </ol>
18) </xsl:template>
19) </xsl:stylesheet>

Figure 12.27: Printing names and cities of stars
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12.3.6 Conditionals in XSLT
We can introduce branching into our templates by using an i f  tag. The form 
of this tag is:

<xsl:if test = "boolean expression">

Whatever appears between this tag and its matched closing tag is executed if 
and only if the boolean expression is true. There is no else-clause, but we can 
follow this expression by another i f  that has the opposite test condition should 
we wish.

1) <? xml version = "1.0" encoding = "utf-8" ?>
2) <xsl:stylesheet xmlns:xsl =
3) "http://www.w3.org/1999/XSL/Transform">
4) <xsl:template match = "/">
5) <TABLE border = "5"><TR><TH>Stars</thx/tr>
6) <xsl:for-each select = "Stars/Star" />
7) <xsl:if test = "Address/City = ’Hollywood’">
8) <TRXTD>
9) <xsl:value-of select = "Name" />
10) </tdx/tr>
11) </xsl:if>
12) </xsl:for-each>
13) </table>
14) </xsl:template>
15) </xsl:stylesheet>

Figure 12.28: Finding the names of the stars who live in Hollywood

E xam ple 12.24: Figure 12.28 is a stylesheet that prints a one-column table, 
with header “Stars.” There is one template, which matches the root. The first 
thing this template does is print the header row at line (5). The for-each loop 
of lines (6) through (12) iterates over each star. The conditional of line (7) 
tests whether the star has at least one home in Hollywood. Remember that 
the equal-sign represents a comparison is true if any item on the left equals any 
item on the right. That is what we want, since we asked whether any of the 
homes a star has is in Hollywood. Lines (8) through (10) print a row of the 
table. □

12.3.7 Exercises for Section 12.3
E xercise 12.3.1: Suppose our input XML document has the form of the prod
uct data of Figs. 12.4 and 12.5. Write XSLT stylesheets to produce each of the 
following documents.
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a) An HTML file consisting of a header “Manufacturers” followed by an 
enumerated list of the names of all the makers of products listed in the 
input.

b) An HTML file consisting of a table with headers “Model” and “Price,” 
with a row for each PC. That row should have the proper model and price 
for the PC.

! c) An HTML file consisting of a table whose headers are “Model,” “Price,” 
“Speed,” and “Ram” for all Laptops, followed by another table with the 
same headers for PC ’s.

d) An XML file with root tag <PCs> and subelements having tag <PC>. This 
tag has attributes model, p r ic e , speed, and ram. In the output, there 
should be one <PC> element for each <PC> element of the input file, and 
the values of the attributes should be taken from the corresponding input 
element.

!! e) An XML file with root tag <Products> whose subelements are <Product> 
elements. Each <Product> element has attributes type, maker, model, 
and p ric e , where the type is one of "PC", "Laptop", or " P r in te r" . There 
should be one <Product> element in the output for every PC, laptop, 
and printer in the input file, and the output values should be chosen 
appropriately from the input data.

! f) Repeat part (b), but make the output file a Latex file.

E xercise 12.3 .2 : Suppose our input XML document has the form of the prod
uct data of Fig. 12.6. Write XSLT stylesheets to produce each of the following
documents.

a) An HTML file with a header for each class. Under each header is a table 
with column-headers “Name” and “Launched” with the appropriate entry 
for each ship of the class.

b) An HTML file with root tag <Losers> and subelements <Ship>, each of 
whose values is the name of one of the ships that were sunk.

! c) An XML file with root tag <Ships> and subelements <Ship> for each 
ship. These elements each should have attributes name, c la s s , country 
and numGuns with the appropriate values taken from the input file.

! d) Repeat (c), but only list those ships that were in at least one battle.

e) An XML file identical to the input, except that <B attle>  elements should 
be empty, with the outcome and name of the battle as two attributes.
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12.4 Summary of Chapter 12
♦  XPath: This language is a simple way to express many queries about XML 

data. You describe paths from the root of the document by sequences of 
tags. The path may end at an attribute rather than an element.

♦  The XPath Data Model: All XPath values are sequences of items. An 
item is either a primitive value or an element. An element is an opening 
XML tag, its matched closing tag, and everything in between.

♦  Axes: Instead of proceeding down the tree in a path, one can follow 
another axis, including jumps to any descendant, a parent, or a sibling.

♦  XPath Conditions: Any step in a path can be constrained by a condition, 
which is a boolean-valued expression. This expression appears in square 
brackets.

♦  XQuery: This language is a more advanced form of query language for 
XML documents. It uses the same data model as XPath. XQuery is a 
functional language.

♦  FLWR Expressions: Many queries in XQuery consist of let-, for-, where- 
and return-clauses. “Let” introduces temporary definitions of variables; 
“for” creates loops; “where” supplies conditions to be tested, and “return” 
defines the result of the query.

♦  Comparison Operators in XQuery and XPath: The conventional compar
ison operators such as < apply to sequences of items, and have a “there- 
exists” meaning. They are true if the stated relation holds between any 
pair of items, one from each of the lists. To be assured that single items 
are being compared, we can use letter codes for the operators, such as I t  
for “less than.”

♦  Other XQuery Expressions: XQuery has many operations that resemble 
those in SQL. These operators include existential and universal quantifi
cation, aggregation, duplicate-elimination, and sorting of results.

♦  XSLT: This language is designed for transformations of XML documents, 
although it also can be used as a query language. A “program” in this 
language has the form of an XML document, with a special namespace 
that allows us to use tags to describe a transformation.

♦  Templates: The heart of XSLT is a template, which matches certain el
ements of the input document. The template describes output text, and 
can extract values from the input document for inclusion in the output. 
A template can also call for templates to be applied recursively to the 
children of an element.
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♦  XSLT Programming Constructs: A template can also include XSLT con
structs that behave like an iterative programming language. These con
structs include for-loops and if-statements.

12.5 References for Chapter 12
The World-Wide-Web Consortium site for the definition of XPath is [2], The 
site for XQuery is [3], and for XSLT it is [4].

[1] is an introduction to the XQuery language. There are tutorials for XPath, 
XQuery, and XSLT at [5].

1. D. D. Chamberlin, “XQuery: an XML Query Language,” IBM  Systems 
Journal 41:4 (2002), pp. 597-615. See also
www.research.ibm.com/j  ournal/s j /4 1 4 /chamberlin.pdf

2. World-Wide-Web Consortium h t t p : //www. w3. org/TR/xpath

3. World-Wide-Web Consortium http://www.w3.org/TR/xquery

4. World-Wide-Web Consortium h t t p : / / www. w3. org /T R /xslt

5. W3 Schools, http://www.w3schools.com
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Chapter 13

Secondary Storage 
Management

Database systems always involve secondary storage — the disks and other de
vices that store large amounts of data that persists over time. This chapter 
summarizes what we need to know about how a typical computer system man
ages storage. We review the memory hierarchy of devices with progressively 
slower access but larger capacity. We examine disks in particular and see how 
the speed of data access is affected by how we organize our data on the disk. 
We also study mechanisms for making disks more reliable.

Then, we turn to how data is represented. We discuss the way tuples of a 
relation or similar records or objects are stored. Efficiency, as always, is the 
key issue. We cover ways to find records quickly, and how to manage insertions 
and deletions of records, as well as records whose sizes grow and shrink.

13.1 The Memory Hierarchy
We begin this section by examining the memory hierarchy of a computer system. 
We then focus on disks, by far the most common device at the “secondary- 
storage” level of the hierarchy. We give the rough parameters that determine 
the speed of access and look at the transfer of data from disks to the lower 
levels of the memory hierarchy.

13.1.1 The Memory Hierarchy
A typical computer system has several different components in which data may 
be stored. These components have data capacities ranging over at least seven 
orders of magnitude and also have access speeds ranging over seven or more 
orders of magnitude. The cost per byte of these components also varies, but 
more slowly, with perhaps three orders of magnitude between the cheapest and

557
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most expensive forms of storage. Not surprisingly, the devices with smallest 
capacity also offer the fastest access speed and have the highest cost per byte. 
A schematic of the memory hierarchy is shown in Fig. 13.1.

DBMS

Nonvolatile

t
Volatile

I
Figure 13.1: The memory hierarchy

Here are brief descriptions of the levels, from the lowest, or fastest-smallest 
level, up.

1. Cache. A typical machine has a megabyte or more of cache storage. 
On-board cache is found on the same chip as the microprocessor itself, 
and additional level-2 cache is found on another chip. Data and instruc
tions are moved to cache from main memory when they are needed by 
the processor. Cached data can be accessed by the processor in a few 
nanoseconds.

2. Main Memory. In the center of the action is the computer’s main memory. 
We may think of everything that happens in the computer — instruction 
executions and data manipulations — as working on information that is 
resident in main memory (although in practice, it is normal for what is 
used to migrate to the cache). A typical machine in 2008 is configured 
with about a gigabyte of main memory, although much larger main mem
ories are possible. Typical times to move data from main memory to the 
processor or cache are in the 10-100 nanosecond range.

3. Secondary Storage. Secondary storage is typically magnetic disk, a device 
we shall consider in detail in Section 13.2. In 2008, single disk units 
have capacities of up to a terabyte, and one machine can have several 
disk units. The time to transfer a single byte between disk and main
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Computer Quantities are Powers of 2

It is conventional to talk of sizes or capacities of computer components 
as if they were powers of 10: megabytes, gigabytes, and so on. In reality, 
since it is most efficient to design components such as memory chips to 
hold a number of bits that is a power of 2, all these numbers are really 
shorthands for nearby powers of 2. Since 210 =  1024 is very close to a 
thousand, we often maintain the fiction that 210 =  1000, and talk about 
210 with the prefix “kilo,” 220 as “mega,” 230 as “giga,” 240 as “tera,” and 
250 as “peta,” even though these prefixes in scientific parlance refer to 103, 
106, 109, 1012 and 1015, respectively. The discrepancy grows as we talk of 
larger numbers. A “gigabyte” is really 1.074 x 109 bytes.

We use the standard abbreviations for these numbers: K, M, G, T, and 
P for kilo, mega, giga, tera, and peta, respectively. Thus, 16Gb is sixteen 
gigabytes, or strictly speaking 234 bytes. Since we sometimes want to talk 
about numbers that are the conventional powers of 10, we shall reserve for 
these the traditional numbers, without the prefixes “kilo,” “mega,” and 
so on. For example, “one million bytes” is 1,000,000 bytes, while “one 
megabyte” is 1,048,576 bytes.

A recent trend is to use “kilobyte,” “megabyte,” and so on for exact 
powers of ten, and to replace the third and fourth letters by “bi” to repre
sent the similar powers of two. Thus, “kibibyte” is 1024 bytes, “mebibyte” 
is 1,048,576 bytes, and so on. We shall not use this convention.

memory is around 10 miliseconds. However, large numbers of bytes can 
be transferred at one time, so the m atter of how fast data moves from 
and to disk is somewhat complex.

4. Tertiary Storage. As capacious as a collection of disk units can be, there
are databases much larger than what can be stored on the disk(s) of a
single machine, or even several machines. To serve such needs, tertiary 
storage devices have been developed to hold data volumes measured in ter
abytes. Tertiary storage is characterized by significantly higher read/write
times than secondary storage, but also by much larger capacities and 
smaller cost per byte than is available from magnetic disks. Many ter
tiary devices involve robotic arms or conveyors that bring storage media 
such as magnetic tape or optical disks (e.g., DVD’s) to a reading device. 
Retrieval takes seconds or minutes, but capacities in the petabyte range 
are possible.
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13.1.2 Transfer of Data Between Levels

Normally, data moves between adjacent levels of the hierarchy. At the secondary 
and tertiary levels, accessing the desired data or finding the desired place to 
store data takes a great deal of time, so each level is organized to transfer 
large amounts of data to or from the level below, whenever any data at all is 
needed. Especially important for understanding the operation of a database 
system is the fact that the disk is organized into disk blocks (or just blocks, or 
as in operating systems, pages) of perhaps 4-64 kilobytes. Entire blocks axe 
moved to or from a continuous section of main memory called a buffer. Thus, 
a key technique for speeding up database operations is to arrange data so that 
when one piece of a disk block is needed, it is likely that other data on the same 
block will also be needed at about the same time.

The same idea applies to other hierarchy levels. If we use tertiary storage, 
we try  to arrange so that when we select a unit such as a DVD to read, we 
need much of what is on that DVD. At a lower level, movement between main 
memory and cache is by units of cache lines, typically 32 consecutive bytes. 
The hope is that entire cache lines will be used together. For example, if a 
cache line stores consecutive instructions of a program, we hope that when 
the first instruction is needed, the next few instructions will also be executed 
immediately thereafter.

13.1.3 Volatile and Nonvolatile Storage
An additional distinction among storage devices is whether they are volatile or 
nonvolatile. A volatile device “forgets” what is stored in it when the power goes 
off. A nonvolatile device, on the other hand, is expected to keep its contents 
intact even for long periods when the device is turned off or there is a power 
failure. The question of volatility is important, because one of the characteristic 
capabilities of a DBMS is the ability to retain its data even in the presence of 
errors such as power failures.

Magnetic and optical materials hold their data in the absence of power. 
Thus, essentially all secondary and tertiary storage devices are nonvolatile. On 
the other hand, main memory is generally volatile (although certain types of 
more expensive memory chips, such as flash memory, can hold their data after 
a power failure). A significant part of the complexity in a DBMS comes from 
the requirement that no change to the database can be considered final until it 
has migrated to nonvolatile, secondary storage.

13.1.4 Virtual Memory-
Typical software executes in virtual-memory, an address space that is typically 
32 bits; i.e., there are 232 bytes, or 4 gigabytes, in a virtual memory. The 
operating system manages virtual memory, keeping some of it in main memory 
and the rest on disk. Transfer between memory and disk is in units of disk
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M oore’s Law

Gordon Moore observed many years ago that integrated circuits were im
proving in many ways, following an exponential curve that doubles about 
every 18 months. Some of these parameters that follow “Moore’s law” are:

1. The number of instructions per second that can be executed for unit 
cost. Until about 2005, the improvement was achieved by making 
processor chips faster, while keeping the cost fixed. After that year, 
the improvement has been maintained by putting progressively more 
processors on a single, fixed-cost chip.

2. The number of memory bits that can be bought for unit cost and 
the number of bits that can be put on one chip.

3. The number of bytes per unit cost on a disk and the capacity of the 
largest disks.

On the other hand, there are some other important parameters that 
do not follow Moore’s law; they grow slowly if at all. Among these slowly 
growing parameters are the speed of accessing data in main memory and 
the speed at which disks rotate. Because they grow slowly, “latency” 
becomes progressively larger. That is, the time to move data between 
levels of the memory hierarchy appears enormous today, and will only get 
worse.

blocks (pages). Virtual memory is an artifact of the operating system and its 
use of the machine’s hardware, and it is not a level of the memory hierarchy.

The path in Fig. 13.1 involving virtual memory represents the treatment 
of conventional programs and applications. It does not represent the typical 
way data in a database is managed, since a DBMS manages the data itself. 
However, there is increasing interest in main-memory database systems, which 
do indeed manage their data through virtual memory, relying on the operating 
system to bring needed data into main memory through the paging mechanism. 
Main-memory database systems, like most applications, are most useful when 
the data is small enough to remain in main memory without being swapped 
out by the operating system.

13.1.5 Exercises for Section 13.1
Exercise 13.1.1: Suppose that in 2008 the typical computer has a processor 
chip with two processors (“cores”) that each run at 3 gigahertz, has a disk of 
250 gigabytes, and a main memory of 1 gigabyte. Assume that Moore’s law 
(these factors double every 18 months) holds into the indefinite future.
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a) When will petabyte disks be common?

b) When will terabyte main memories be common?

c) When will terahertz processor chips be common (i.e., the total number of 
cycles per second of all the cores on a chip will be approximately 1012?

d) W hat will be a typical configuration (processor, disk, memory) in the year 
2015?

! Exercise 13.1 .2 : Commander Data, the android from the 24th century on 
Star Trek: The Next Generation once proudly announced that his processor 
runs at “12 teraops.” While an operation and a cycle may not be the same, let 
us suppose they are, and that Moore’s law continues to hold for the next 300 
years. If so, what would Data’s true processor speed be?

13.2 Disks
The use of secondary storage is one of the important characteristics of a DBMS, 
and secondary storage is almost exclusively based on magnetic disks. Thus, to 
motivate many of the ideas used in DBMS implementation, we must examine 
the operation of disks in detail.

13.2.1 Mechanics of Disks
The two principal moving pieces of a  disk drive are shown in Fig. 13.2; they 
are a disk assembly and a head assembly. The disk assembly consists of one 
or more circular platters that rotate around a central spindle. The upper and 
lower surfaces of the platters are covered with a thin layer of magnetic material, 
on which bits are stored. 0’s and l ’s are represented by different patterns in the 
magnetic material. A common diameter for disk platters is 3.5 inches, although 
disks with diameters from an inch to several feet have been built.

The disk is organized into tracks, which are concentric circles on a single 
platter. The tracks that are at a fixed radius from the center, among all the 
surfaces, form one cylinder. Tracks occupy most of a surface, except for the 
region closest to the spindle, as can be seen in the top view of Fig. 13.3. The 
density of data is much greater along a track than radially. In 2008, a typical 
disk has about 100,000 tracks per inch but stores about a million bits per inch 
along the tracks.

Tracks are organized into sectors, which are segments of the circle separated 
by gaps that are not magnetized to represent either 0’s or l ’s.1 The sector is an 
indivisible unit, as far as reading and writing the disk is concerned. It is also 
indivisible as far as errors are concerned. Should a portion of the magnetic layer

1 W e show each tra c k  w ith  th e  sam e n u m b er o f sec to rs in  F ig . 13.3. However, th e  n u m b er 
o f sec to rs p e r  tra c k  no rm ally  varies, w ith  th e  o u te r  track s hav ing  m ore sec to rs th a n  inn er 
tracks.
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Figure 13.2: A typical disk

be corrupted in some way, so that it cannot store information, then the entire 
sector containing this portion cannot be used. Gaps often represent about 10% 
of the total track and are used to help identify the beginnings of sectors. As we 
mentioned in Section 13.1.2, blocks are logical units of data that are transferred 
between disk and main memory; blocks consist of one or more sectors.

Figure 13.3: Top view of a disk surface

The second movable piece shown in Fig. 13.2, the head assembly, holds the 
disk heads. For each surface there is one head, riding extremely close to the 
surface but never touching it (or else a “head crash” occurs and the disk is 
destroyed). A head reads the magnetism passing under it, and can also alter 
the magnetism to write information on the disk. The heads are each attached 
to an arm, and the arms for all the surfaces move in and out together, being 
part of the rigid head assembly.

E xam ple 13.1: The Megatron 7^7 disk has the following characteristics, which
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are typical of a large vintage-2008 disk drive.

• There are eight platters providing sixteen surfaces.

• There are 216, or 65,536, tracks per surface.

• There are (on average) 28 =  256 sectors per track.

• There are 212 =  4096 bytes per sector.

The capacity of the disk is the product of 16 surfaces, times 65,536 tracks, 
times 256 sectors, times 4096 bytes, or 240 bytes. The Megatron 747 is thus a 
terabyte disk. A single track holds 256 x 4096 bytes, or 1 megabyte. If blocks 
are 214, or 16,384 bytes, then one block uses 4 consecutive sectors, and there 
are (on average) 256/4 =  32 blocks on a track. □

13.2.2 The Disk Controller
One or more disk drives are controlled by a disk controller, which is a small 
processor capable of:

1. Controlling the mechanical actuator that moves the head assembly, to 
position the heads at a particular radius, i.e., so that any track of one 
particular cylinder can be read or written.

2. Selecting a sector from among all those in the cylinder at which the heads 
are positioned. The controller is also responsible for knowing when the ro
tating spindle has reached the point where the desired sector is beginning 
to move under the head.

3. Transferring bits between the desired sector and the computer’s main 
memory.

4. Possibly, buffering an entire track or more in local memory of the disk 
controller, hoping that many sectors of this track will be read soon, and 
additional accesses to the disk can be avoided.

Figure 13.4 shows a simple, single-processor computer. The processor com
municates via a data bus with the main memory and the disk controller. A 
disk controller can control several disks; we show three disks in this example.

13.2.3 Disk Access Characteristics
Accessing (reading or writing) a block requires three steps, and each step has 
an associated delay.

1. The disk controller positions the head assembly at the cylinder containing 
the track on which the block is located. The time to do so is the seek time.
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Disks

Figure 13.4: Schematic of a simple computer system

2. The disk controller waits while the first sector of the block moves under 
the head. This time is called the rotational latency.

3. All the sectors and the gaps between them pass under the head, while the 
disk controller reads or writes data in these sectors. This delay is called 
the transfer time.

The sum of the seek time, rotational latency, and transfer time is the latency 
of the disk.

The seek time for a typical disk depends on the distance the heads have to 
travel from where they are currently located. If they are already at the desired 
cylinder, the seek time is 0. However, it takes roughly a millisecond to start 
the disk heads moving, and perhaps 10 milliseconds to move them across all 
the tracks.

A typical disk rotates once in roughly 10 milliseconds. Thus, rotational 
latency ranges from 0 to 10 milliseconds, and the average is 5. TYansfer times 
tend to be much smaller, since there are often many blocks on a track. Thus, 
transfer times are in the sub-millisecond range. When you add all three delays, 
the typical average latency is about 10 milliseconds, and the maximum latency 
about twice that.

E xam ple 13.2: Let us examine the time it takes to read a 16,384-byte block 
from the Megatron 747 disk. First, we need to know some timing properties of 
the disk:

• The disk rotates at 7200 rpm; i.e., it makes one rotation in 8.33 millisec
onds.

• To move the head assembly between cylinders takes one millisecond to 
start and stop, plus one additional millisecond for every 4000 cylinders
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traveled. Thus, the heads move one track in 1.00025 milliseconds and 
move from the innermost to the outermost track, a distance of 65,536 
tracks, in about 17.38 milliseconds.

• Gaps occupy 10% of the space around a track.

Let us calculate the minimum, maximum, and average times to read that
16,384-byte block. The minimum time is just the transfer time. That is, the 
block might be on a track over which the head is positioned already, and the 
first sector of the block might be about to pass under the head.

Since there are 4096 bytes per sector on the Megatron 747 (see Example 13.1 
for the physical specifications of the disk), the block occupies four sectors. The 
heads must therefore pass over four sectors and the three gaps between them. 
We assume that gaps represent 10% of the circle and sectors the remaining 90%. 
There are 256 gaps and 256 sectors around the circle. Since the gaps together 
cover 36 degrees of arc and sectors the remaining 324 degrees, the total degrees 
of arc covered by 3 gaps and 4 sectors is 36 x 3/256 +  324 x 4/256 =  5.48 
degrees. The transfer time is thus (5.48/360) x 0.00833 =  .00013 seconds. That 
is, 5.48/360 is the fraction of a rotation needed to read the entire block, and 
.00833 seconds is the amount of time for a 360-degree rotation.

Now, let us look at the maximum possible time to read the block. In the 
worst case, the heads are positioned at the innermost cylinder, and the block 
we want to read is on the outermost cylinder (or vice versa). Thus, the first 
thing the controller must do is move the heads. As we observed above, the time 
it takes to move the Megatron 747 heads across all cylinders is about 17.38 
milliseconds. This quantity is the seek time for the read.

The worst thing that can happen when the heads arrive at the correct cylin
der is that the beginning of the desired block has just passed under the head. 
Assuming we must read the block starting at the beginning, we have to wait 
essentially a full rotation, or 8.33 milliseconds, for the beginning of the block 
to reach the head again. Once that happens, we have only to wait an amount 
equal to the transfer time, 0.13 milliseconds, to read the entire block. Thus, 
the worst-case latency is 17.38 +  8.33 +  0.13 =  25.84 milliseconds.

Last, let us compute the average latency. Two of the components of the 
latency are easy to compute: the transfer time is always 0.13 milliseconds, and 
the average rotational latency is the time to rotate the disk half way around, or
4.17 milliseconds. We might suppose that the average seek time is just the time 
to move across half the tracks. However, that is not quite right, since typically, 
the heads are initially somewhere near the middle and therefore will have to 
move less than half the distance, on average, to the desired cylinder. We leave 
it as an exercise to show that the average distance traveled is 1/3 of the way 
across the disk.

The time it takes the Megatron 747 to move 1/3 of the way across the disk 
is 1 +  (65536/3)/4000 =  6.46 milliseconds. Our estimate of the average latency 
is thus 6.46 +  4.17 +  0.13 =  10.76 milliseconds; the three terms represent average 
seek time, average rotational latency, and transfer time, respectively. □
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13.2.4 Exercises for Section 13.2
E xercise 13.2.1: The Megatron 777 disk has the following characteristics:

1. There are ten surfaces, with 100,000 tracks each.

2. Tracks hold an average of 1000 sectors of 1024 bytes each.

3. 20% of each track is used for gaps.

4. The disk rotates at 10,000 rpm.

5. The time it takes the head to move n  tracks is 1 +  0.0002n milliseconds. 

Answer the following questions about the Megatron 777.

a) What is the capacity of the disk?

b) If tracks are located on the outer inch of a 3.5-inch-diameter surface, what 
is the average density of bits in the sectors of a track?

c) What is the maximum seek time?

d) What is the maximum rotational latency?

e) If a block is 65,546 bytes (i.e., 64 sectors), what is the transfer time of a 
block?

! f) What is the average seek time?

g) What is the average rotational latency?

! E xercise 13.2.2: Suppose the Megatron 747 disk head is at cylinder 8192,
i.e., 1/8 of the way across the cylinders. Suppose that the next request is for a 
block on a random cylinder. Calculate the average time to read this block.

!! Exercise 13.2.3: Prove that if we move the head from a random cylinder to 
another random cylinder, the average distance we move is 1/3 of the way across 
the disk (neglecting edge effects due to the fact that the number of cylinders is 
finite).

!! Exercise 13.2.4: Exercise 13.2.3 assumes that we move from a random track 
to another random track. Suppose, however, that the number of sectors per 
track is proportional to the length (or radius) of the track, so the bit density 
is the same for all tracks. Suppose also that we need to move the head from a 
random sector to another random sector. Since the sectors tend to congregate 
at the outside of the disk, we might expect that the average head move would 
be less than 1/3 of the way across the tracks. Assuming that tracks occupy 
radii from 0.75 inches to 1.75 inches, calculate the average number of tracks the 
head travels when moving between two random sectors.
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E xercise 13.2.5: To modify a block on disk, we must read it into main mem
ory, perform the modification, and write it back. Assume that the modification 
in main memory takes less time than it does for the disk to rotate, and that the 
disk controller postpones other requests for disk access until the block is ready 
to be written back to the disk. For the Megatron 747 disk, what is the time to 
modify a block?

13.3 Accelerating Access to Secondary Storage
Just because a disk takes an average of, say, 10 milliseconds to access a block, 
it does not follow that an application such as a database system will get the 
data it requests 10 milliseconds after the request is sent to the disk controller. 
If there is only one disk, the disk may be busy with another access for the same 
process or another process. In the worst case, a request for a disk access arrives 
more than once every 10 milliseconds, and these requests back up indefinitely. 
In that case, the scheduling latency becomes infinite.

There are several things we can do to decrease the average time a disk access 
takes, and thus improve the throughput (number of disk accesses per second that 
the system can accomodate). We begin this section by arguing that the “I/O  
model” is the right one for measuring the time database operations take. Then, 
we consider a number of techniques for speeding up typical database accesses 
to disk:

1. Place blocks that are accessed together on the same cylinder, so we can 
often avoid seek time, and possibly rotational latency as well.

2. Divide the data among several smaller disks rather than one large one. 
Having more head assemblies that can go after blocks independently can 
increase the number of block accesses per unit time.

3. “Mirror” a disk: making two or more copies of the data on different disks. 
In addition to saving the data in case one of the disks fails, this strategy, 
like dividing the data among several disks, lets us access several blocks at 
once.

4. Use a disk-scheduling algorithm, either in the operating system, in the 
DBMS, or in the disk controller, to select the order in which several 
requested blocks will be read or written.

5. Prefetch blocks to main memory in anticipation of their later use.

13.3.1 The I/O  Model of Computation
Let us imagine a simple computer running a DBMS and trying to serve a 
number of users who are performing queries and database modifications. For 
the moment, assume our computer has one processor, one disk controller, and
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one disk. The database itself is much too large to fit in main memory. Key parts 
of the database may be buffered in main memory, but generally, each piece of 
the database that one of the users accesses will have to be retrieved initially 
from disk. The following rule, which defines the I/O  model of computation, can 
thus be assumed.

D om inance o f I /O  cost: The time taken to perform a disk ac
cess is much larger than the time likely to be used manipulating 
that data in main memory. Thus, the number of block accesses 
(Disk I /O ’s) is a good approximation to the time needed by the 
algorithm and should be minimized.

E xam ple 13.3: Suppose our database has a relation R  and a query asks for 
the tuple of R  that has a certain key value k. It is quite desirable to have 
an index on R  to identify the disk block on which the tuple with key value k 
appears. However it is generally unimportant whether the index tells us where 
on the block this tuple appears.

For instance, if we assume a Megatron 747 disk, it will take on the order 
of 11 milliseconds to read a 16K-byte block. In 11 milliseconds, a modern 
microprocessor can execute millions of instructions. However, searching for 
the key value k once the block is in main memory will only take thousands of 
instructions, even if the dumbest possible linear search is used. The additional 
time to perform the search in main memory will therefore be less than 1% of 
the block access time and can be neglected safely. □

13.3.2 Organizing Data by Cylinders
Since seek time represents about half the time it takes to access a block, it makes 
sense to store data that is likely to be accessed together, such as relations, on 
a single cylinder, or on as many adjacent cylinders as are needed. In fact, if we 
choose to read all the blocks on a single track or on a cylinder consecutively, 
then we can neglect all but the first seek time (to move to the cylinder) and 
the first rotational latency (to wait until the first of the blocks moves under the 
head). In that case, we can approach the theoretical transfer rate for moving 
data on or off the disk.

E xam ple 13.4: Suppose relation R  requires 1024 blocks of a Megatron 747 
disk to hold its tuples. Suppose also that we need to access all the tuples of 
R; for example we may be doing a search without an index or computing a 
sum of the values of a particular attribute of R. If the blocks holding R  are 
distributed around the disk at random, then we shall need an average latency 
(10.76 milliseconds — see Example 13.2) to access each, for a total of 11 seconds.

However, 1024 blocks are exactly one cylinder of the Megatron 747. We can 
access them all by performing one average seek (6.46 milliseconds), after which 
we can read the blocks in some order, one right after another. We can read all 
the blocks on a cylinder in 16 rotations of the disk, since there are 16 tracks.
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Sixteen rotations take 16 x 8.33 =  133 milliseconds. The total time to access R  
is thus about 139 milliseconds, and we speed up the operation on R  by a factor 
of about 80. □

13.3.3 Using M ultiple Disks
We can often improve the performance of our system if we replace one disk, with 
many heads locked together, by several disks with their independent heads. The 
arrangement was suggested in Fig. 13.4, where we showed three disks connected 
to a single controller. As long as the disk controller, bus, and main memory 
can handle n times the data-transfer rate, then n  disks will have approximately 
the performance of one disk that operates n  times as fast.

Thus, using several disks can increase the ability of a database system to 
handle heavy loads of disk-access requests. However, as long as the system is 
not overloaded (when requests will queue up and are delayed for a long time or 
ignored), there is no change in how long it takes to perform any single block 
access. If we have several disks, then the technique known as striping (described 
in the next example) will speed up access to large database objects — those 
that occupy a large number of blocks.

E xam ple 1 3 .5 : Suppose we have four Megatron 747 disks and want to access 
the relation R  of Example 13.4 faster than the 139-millisecond time that was 
suggested for storing R  on one cylinder of one disk. We can “stripe” R  by 
dividing it among the four disks. The first disk can receive blocks 1 ,5 ,9 ,.. .  of 
R, the second disk holds blocks 2 ,6 ,1 0 ,.. .,  the third holds blocks 3 ,7 ,1 1 ,.. .,  
and the last disk holds blocks 4 ,8 ,1 2 ,.. .,  as suggested by Fig. 13.5. Let us 
contrive that on each of the disks, all the blocks of R  are on four tracks of a 
single cylinder.

r^i h  
f^i r~i

IZD H  
HD

10 [V]
HD

Figure 13.5: Striping a relation across four disks

Then to retrieve the 256 blocks of R  on one of the disks requires an average 
seek time (6.46 milliseconds) plus four rotations of the disk, one rotation for 
each track. That is 6.46 +  4 x 8.33 =  39.8 milliseconds. Of course we have to 
wait for the last of the four disks to finish, and there is a high probability that 
one will take substantially more seek time than average. However, we should 
get a speedup in the time to access R  by about a factor of three on the average, 
when there are four disks. □
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13.3.4 Mirroring Disks
There are situations where it makes sense to have two or more disks hold identi
cal copies of data. The disks are said to be mirrors of each other. One important 
motivation is that the data will survive a head crash by either disk, since it is 
still readable on a mirror of the disk that crashed. Systems designed to enhance 
reliability often use pairs of disks as mirrors of each other.

If we have n  disks, each holding the same data, then the rate at which we 
can read blocks goes up by a factor of n, since the disk controller can assign a 
read request to any of the n  disks. In fact, the speedup could be even greater 
than n, if a clever controller chooses to read a block from the disk whose head 
is currently closest to that block. Unfortunately, the writing of disk blocks does 
not speed up at all. The reason is that the new block must be written to each 
of the n  disks.

13.3.5 Disk Scheduling and the Elevator Algorithm
Another effective way to improve the throughput of a disk system is to have the 
disk controller choose which of several requests to execute first. This approach 
cannot be used if accesses have to be made in a certain sequence, but if the 
requests are from independent processes, they can all benefit, on the average, 
from allowing the scheduler to choose among them judiciously.

A simple and effective way to schedule large numbers of block requests is 
known as the elevator algorithm. We think of the disk head as making sweeps 
across the disk, from innermost to outermost cylinder and then back again, 
just as an elevator makes vertical sweeps from the bottom to top of a building 
and back again. As heads pass a cylinder, they stop if there are one or more 
requests for blocks on that cylinder. All these blocks are read or written, as 
requested. The heads then proceed in the same direction they were traveling 
until the next cylinder with blocks to access is encountered. When the heads 
reach a position where there are no requests ahead of them in their direction of 
travel, they reverse direction.

E xam ple 13.6: Suppose we are scheduling a Megatron 747 disk, which we 
recall has average seek, rotational latency, and transfer times of 6.46, 4.17, 
and 0.13, respectively (in this example, all times are in milliseconds). Suppose 
that at some time there are pending requests for block accesses at cylinders 
8000, 24,000, and 56,000. The heads are located at cylinder 8000. In addition, 
there are three more requests for block accesses that come in at later times, as 
summarized in Fig. 13.6. For instance, the request for a block from cylinder
16,000 is made at time 10 milliseconds.

We shall assume that each block access incurs time 0.13 for transfer and
4.17 for average rotational latency, i.e., we need 4.3 milliseconds plus whatever 
the seek time is for each block access. The seek time can be calculated by the 
rule for the Megatron 747 given in Example 13.2: 1 plus the number of tracks 
divided by 4000. Let us see what happens if we schedule disk accesses using
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Cylinder 
of request

First time 
available

8000 0
24000 0
56000 0
16000 10
64000 20
40000 30

Figure 13.6: Arrival times for four block-access requests

the elevator algorithm. The first request, a t cylinder 8000, requires no seek, 
since the heads are already there. Thus, a t time 4.3 the first access will be 
complete. The request for cylinder 16,000 has not arrived at this point, so we 
move the heads to cylinder 24,000, the next requested “stop” on our sweep to 
the highest-numbered tracks. The seek from cylinder 8000 to 24,000 takes 5 
milliseconds, so we arrive at time 9.3 and complete the access in another 4.3. 
Thus, the second access is complete at time 13.6. By this time, the request for 
cylinder 16,000 has arrived, but we passed that cylinder at time 7.3 and will 
not come back to it until the next pass.

We thus move next to cylinder 56,000, taking time 9 to seek and 4.3 for 
rotation and transfer. The third access is thus complete at time 26.9. Now, the 
request for cylinder 64,000 has arrived, so we continue outward. We require 3 
milliseconds for seek time, so this access is complete at time 26.9+3+4.3 =  34.2.

At this time, the request for cylinder 40,000 has been made, so it and the 
request at cylinder 16,000 remain. We thus sweep inward, honoring these two 
requests. Figure 13.7 summarizes the times at which requests are honored.

Cylinder 
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
64000 34.2
40000 45.5
16000 56.8

Figure 13.7: Finishing times for block accesses using the elevator algorithm

Let us compare the performance of the elevator algorithm with a more naive 
approach such as first-come-first-served. The first three requests are satisfied 
in exactly the same manner, assuming that the order of the first three requests 
was 8000, 24,000, and 56,000. However, at that point, we go to cylinder 16,000,
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because that was the fourth request to arrive. The seek time is 11 for this 
request, since we travel from cylinder 56,000 to 16,000, more than half way 
across the disk. The fifth request, at cylinder 64,000, requires a seek time of 13, 
and the last, at 40,000, uses seek time 7. Figure 13.8 summarizes the activity 
caused by first-come-first-served scheduling. The difference between the two 
algorithms — 14 milliseconds — may not appear significant, but recall that 
the number of requests in this simple example is small and the algorithms were 
assumed not to deviate until the fourth of the six requests. □

Cylinder 
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
16000 42.2
64000 59.5
40000 70.8

Figure 13.8: Finishing times for block accesses using the first-come-first-served 
algorithm

13.3.6 Prefetching and Large-Scale Buffering
Our final suggestion for speeding up some secondary-memory algorithms is 
called prefetching or sometimes double buffering. In some applications we can 
predict the order in which blocks will be requested from disk. If so, then we can 
load them into main memory buffers before they are needed. One advantage to 
doing so is that we are thus better able to schedule the disk, such as by using 
the elevator algorithm, to reduce the average time needed to access a block. In 
the extreme case, where there are many access requests waiting at all times, we 
can make the seek time per request be very close to the minimum seek time, 
rather than the average seek time.

13.3.7 Exercises for Section 13.3
E xercise 13.3.1: Suppose we are scheduling I/O  requests for a Megatron 747 
disk, and the requests in Fig. 13.9 are made, with the head initially at track 
32,000. At what time is each request serviced fully if:

a) We use the elevator algorithm (it is permissible to start moving in either 
direction at first).

b) We use first-come-first-served scheduling.
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Cylinder First time
of Request available

8000 0
48000 1
4000 10

40000 20

Figure 13.9: Arrival times for four block-access requests

Exercise 13.3.2: Suppose we use two Megatron 747 disks as mirrors of one 
another. However, instead of allowing reads of any block from either disk, we 
keep the head of the first disk in the inner half of the cylinders, and the head 
of the second disk in the outer half of the cylinders. Assuming read requests 
are on random tracks, and we never have to write:

a) What is the average rate at which this system can read blocks?

b) How does this rate compare with the average rate for mirrored Megatron 
747 disks with no restriction?

c) What disadvantages do you foresee for this system?

E xercise 13.3.3: Let us explore the relationship between the arrival rate of 
requests, the throughput of the elevator algorithm, and the average delay of 
requests. To simplify the problem, we shall make the following assumptions:

1. A pass of the elevator algorithm always proceeds from the innermost to 
outermost track, or vice-versa, even if there are no requests a t the extreme 
cylinders.

2. When a pass starts, only those requests that are already pending will be 
honored, not requests that come in while the pass is in progress, even if 
the head passes their cylinder.2

3. There will never be two requests for blocks on the same cylinder waiting 
on one pass.

Let A  be the interarrival rate, that is the time between requests for block ac
cesses. Assume that the system is in steady state, that is, it has been accepting 
and answering requests for a long time. For a Megatron 747 disk, compute as 
a function of A:

2 T h e  p u rpose  o f  th is  assu m p tio n  is to  avoid having to  deal w ith  th e  fac t th a t  a  typ ica l pass 
of th e  e levator a lg o rith m  goes fast a t  firs t, as th e re  w ill b e  few w aiting  requests w here th e  
head  h as recen tly  been, an d  slows dow n as i t  m oves in to  an  a re a  of th e  d isk  w here it  has no t 
recen tly  been. T h e  analysis o f th e  way request d ensity  varies du ring  a  pass is an  in terestin g  
exercise in its  ow n righ t.
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a) The average time taken to perform one pass.

b) The number of requests serviced on one pass.

c) The average time a request waits for service.

!! Exercise 13.3.4: In Example 13.5, we saw how dividing the data to be sorted 
among four disks could allow more than one block to be read at a time. Sup
pose our data is divided randomly among n  disks, and requests for data are also 
random. Requests must be executed in the order in which they are received 
because there are dependencies among them that must be respected (see Chap
ter 18, for example, for motivation for this constraint). What is the average 
throughput for such a system?

! E xercise 13.3.5: If we read k randomly chosen blocks from one cylinder, on 
the average how far around the cylinder must we go before we pass all of the 
blocks?

13.4 Disk Failures

In this section we shall consider the ways in which disks can fail and what can 
be done to mitigate these failures.

1. The most common form of failure is an intermittent failure, where an 
attempt to read or write a sector is unsuccessful, but with repeated tries 
we are able to read or write successfully.

2. A more serious form of failure is one in which a bit or bits are permanently 
corrupted, and it becomes impossible to read a sector correctly no matter 
how many times we try. This form of error is called media decay.

3. A related type of error is a write failure, where we attempt to write 
a sector, but we can neither write successfully nor can we retrieve the 
previously written sector. A possible cause is that there was a power 
outage during the writing of the sector.

4. The most serious form of disk failure is a disk crash, where the entire disk 
becomes unreadable, suddenly and permanently.

We shall discuss parity checks as a way to detect intermittent failures. We also 
discuss “stable storage,” a technique for organizing a disk so that media decays 
or failed writes do not result in permanent loss. Finally, we examine techniques 
collectively known as “RAID” for coping with disk crashes.
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13.4.1 Interm ittent Failures

An intermittent failure occurs if we try  to read a sector, but the correct content 
of that sector is not delivered to the disk controller. If the controller has a way 
to tell that the sector is good or bad (as we shall discuss in Section 13.4.2), 
then the controller can reissue the read request when bad data is read, until 
the sector is returned correctly, or some preset limit, like 100 tries, is reached.

Similarly, the controller may attempt to write a sector, but the contents of 
the sector are not what was intended. The only way to check that the write was 
correct is to let the disk go around again and read the sector. A straightforward 
way to perform the check is to read the sector and compare it with the sector 
we intended to write. However, instead of performing the complete comparison 
at the disk controller, it is simpler to read the sector and see if a good sector 
was read. If so, we assume the write was correct, and if the sector read is bad, 
then the write was apparently unsuccessful and must be repeated.

13.4.2 Checksums

How a reading operation can determine the good/bad status of a sector may 
appear mysterious at first. Yet the technique used in modern disk drives is quite 
simple: each sector has some additional bits, called the checksum, that are set 
depending on the values of the data bits stored in that sector. If, on reading, 
we find that the checksum is not proper for the data bits, then we know there 
is an error in reading. If the checkum is proper, there is still a small chance 
that the block was not read correctly, but by using many checksum bits we can 
make the probability of missing a bad read arbitrarily small.

A simple form of checksum is based on the parity of all the bits in the sector. 
If there is an odd number of l ’s among a collection of bits, we say the bits have 
odd parity and add a parity bit that is 1. Similarly, if there is an even number 
of l ’s among the bits, then we say the bits have even parity and add parity bit
0. As a result:

• The number of l ’s among a collection of bits and their parity bit is always 
even.

When we write a sector, the disk controller can compute the parity bit and 
append it to the sequence of bits written in the sector. Thus, every sector will 
have even parity.

E xam ple 1 3 .7 : If the sequence of bits in a sector were 01101000, then there 
is an odd number of l ’s, so the parity bit is 1. If we follow this sequence by its 
parity bit we have 011010001. If the given sequence of bits were 11101110, we 
have an even number of l ’s, and the parity bit is 0. The sequence followed by 
its parity bit is 111011100. Note that each of the nine-bit sequences constructed 
by adding a parity bit has even parity. □
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Any one-bit error in reading or writing the bits and their parity bit results 
in a sequence of bits that has odd parity, i.e., the number of l ’s is odd. It is 
easy for the disk controller to count the number of l ’s and to determine the 
presence of an error if a sector has odd parity.

Of course, more than one bit of the sector may be corrupted. If so, the 
probability is 50% that the number of 1-bits will be even, and the error will not 
be detected. We can increase our chances of detecting errors if we keep several 
parity bits. For example, we could keep eight parity bits, one for the first bit 
of every byte, one for the second bit of every byte, and so on, up to the eighth 
and last bit of every byte. Then, on a massive error, the probability is 50% 
that any one parity bit will detect an error, and the chance that none of the 
eight do so is only one in 28, or 1/256. In general, if we use n independent bits 
as a checksum, then the chance of missing an error is only 1/2". For instance, 
if we devote 4 bytes to a checksum, then there is only one chance in about four 
billion that the error will go undetected.

13.4.3 Stable Storage
While checksums will almost certainly detect the existence of a media failure 
or a failure to read or write correctly, it does not help us correct the error. 
Moreover, when writing we could find ourselves in a position where we overwrite 
the previous contents of a sector and yet cannot read the new contents correctly. 
That situation could be serious if, say, we were adding a small increment to 
an account balance and now have lost both the original balance and the new 
balance. If we could be assured that the contents of the sector contained either 
the new or old balance, then we would only have to determine whether the 
write was successful or not.

To deal with the problems above, we can implement a policy known as 
stable storage on a disk or on several disks. The general idea is that sectors 
are paired, and each pair represents one sector-contents X .  We shall refer to 
the pair of sectors representing X  as the “left” and “right” copies, X l and X r . 
We continue to assume that the copies are written with a sufficient number of 
parity-check bits so that we can rule out the possibility that a bad sector looks 
good when the parity checks are considered. Thus, we shall assume that if the 
read function returns a good value w for either X l or X r , then w is the true 
value of X . The stable-storage writing policy is:

1. Write the value of X  into X l - Check that the value has status “good” ;
i.e., the parity-check bits are correct in the written copy. If not, repeat the 
write. If after a set number of write attempts, we have not successfully 
written X  into X l , assume that there is-a media failure in this sector. A 
fix-up such as substituting a spare sector for X l must be adopted.

2. Repeat (1) for X r .

The stable-storage reading policy is to alternate trying to read X l  and X r ,
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until a good value is returned. Only if no good value is returned after some 
large, prechosen number of tries, is X  truly unreadable.

13.4.4 Error-Handling Capabilities of Stable Storage
The policies described in Section 13.4.3 are capable of compensating for several 
different kinds of errors. We shall outline them here.

1. Media failures. If, after storing X  in sectors X l and X r , one of them 
undergoes a media failure and becomes permanently unreadable, we can 
always read X  from the other. If both X l and X r  have failed, then we 
cannot read X ,  but the probability of both failing is extremely small.

2. Write failure. Suppose that as we write X ,  there is a system failure — 
e.g., a power outage. It is possible that X  will be lost in main memory, 
and also the copy of X  being written at the time will be garbled. For 
example, half the sector may be written with part of the new value of X ,  
while the other half remains as it was. When the system becomes available 
and we examine X l and X r , we are sure to be able to determine either 
the old or new value of X .  The possible cases are:

(a) The failure occurred as we were writing X l ■ Then we shall find that 
the status of X l  is “bad.” However, since we never got to write X r , 
its status will be “good” (unless there is a coincident media failure 
at X r , which is extremely unlikely). Thus, we can obtain the old 
value of X .  We may also copy X r  into X l  to repair the damage to 
X l .

(b) The failure occurred after we wrote X l-  Then we expect that X l  
will have status “good,” and we may read the new value of X  from 
X l - Since X r  may or may not have the correct value of X ,  we 
should also copy X l  into X r .

13.4.5 Recovery from Disk Crashes
The most serious mode of failure for disks is the “disk crash” or “head crash,” 
where data is permanently destroyed. If the data was not backed up on another 
medium, such as a tape backup system, or on a mirror disk as we discussed in 
Section 13.3.4, then there is nothing we can do to recover the data. This 
situation represents a disaster for many DBMS applications, such as banking 
and other financial applications.

Several schemes have been developed to reduce the risk of data loss by disk 
crashes. They generally involve redundancy, extending the idea of parity checks 
from Section 13.4.2 or duplicated sectors, as in Section 13.4.3. The common 
term for this class of strategies is RAID, or Redundant Arrays of Independent 
Disks.
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The rate at which disk crashes occur is generally measured by the mean time 
to failure, the time after which 50% of a population of disks can be expected to 
fail and be unrecoverable. For modern disks, the mean time to failure is about 
10 years. We shall make the convenient assumption that if the mean time to 
failure is n years, then in any given year, 1 /nth of the surviving disks fail. In 
reality, there is a tendency for disks, like most electronic equipment, to fail early 
or fail late. That is, a small percentage have manufacturing defects that lead 
to their early demise, while those without such defects will survive for many 
years, until wear-and-tear causes a failure.

However, the mean time to a disk crash does not have to be the same as 
the mean time to data loss. The reason is that there are a number of schemes 
available for assuring that if one disk fails, there are others to help recover the 
data of the failed disk. In the remainder of this section, we shall study the most 
common schemes.

Each of these schemes starts with one or more disks that hold the data (we’ll 
call these the data disks) and adding one or more disks that hold information 
that is completely determined by the contents of the data disks. The latter are 
called redundant disks. When there is a disk crash of either a data disk or a 
redundant disk, the other disks can be used to restore the failed disk, and there 
is no permanent information loss.

13.4.6 Mirroring as a Redundancy Technique
The simplest scheme is to mirror each disk, as discussed in Section 13.3.4. 
We shall call one of the disks the data disk, while the other is the redundant 
disk, which is which doesn’t  matter in this scheme. Mirroring, as a protection 
against data loss, is often referred to as RAID level 1. It gives a mean time 
to memory loss that is much greater than the mean time to disk failure, as 
the following example illustrates. Essentially, with mirroring and the other 
redundancy schemes we discuss, the only way data can be lost is if there is a 
second disk crash while the first crash is being repaired.

E xam ple 13.8: Suppose each disk has a 10-year mean time to failure, which 
we shall take to mean that the probability of failure in any given year is 10%. 
If disks are mirrored, then when a disk fails, we have only to replace it with a 
good disk and copy the mirror disk to the new one. At the end, we have two 
disks that are mirrors of each other, and the system is restored to its former 
state.

The only thing that could go wrong is that during the copying the mirror 
disk fails. Now, both copies of at least part of the data have been lost, and 
there is no way to recover.

But how often will this sequence of events occur? Suppose that the process 
of replacing the failed disk takes 3 hours, which is 1/8 of a day, or 1/2920 of a 
year. Since we assume the average disk lasts 10 years, the probability that the 
mirror disk will fail during copying is (1/10) x (1/2920), or one in 29,200. If
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one disk fails every 10 years, then one of the two disks will fail once in 5 years 
on the average. One in every 29,200 of these failures results in data loss. Put 
another way, the mean time to a failure involving data loss is 5 x 29,200 =
146,000 years. □

13.4.7 Parity Blocks

While mirroring disks is an effective way to reduce the probability of a disk crash 
involving data loss, it uses as many redundant disks as there are data disks. 
Another approach, often called RAID level 4, uses only one redundant disk, no 
m atter how many data disks there are. We assume the disks are identical, so 
we can number the blocks on each disk from 1 to some number n. Of course, 
all the blocks on all the disks have the same number of bits; for instance, the
16,384-byte blocks of the Megatron 747 have 8 x 16,384 =  131,072 bits. In the 
redundant disk, the *th block consists of parity checks for the *th blocks of all 
the data disks. That is, the j th  bits of all the ith  blocks, including both the 
data disks and the redundant disk, must have an even number of l ’s among 
them, and we always choose the bit of the redundant disk to make this condition 
true.

We saw in Example 13.7 how to force the condition to be true. In the 
redundant disk, we choose bit j  to be 1 if an odd number of the data disks 
have 1 in that bit, and we choose bit j  of the redundant disk to be 0 if there 
are an even number of l ’s in that bit among the data disks. The term for this 
calculation is the modulo-2 sum. That is, the modulo-2 sum of bits is 0 if there 
are an even number of l ’s among those bits, and 1 if there are an odd number 
of l ’s.

E xam p le 1 3 .9 : Suppose for sake of an extremely simple example that blocks 
consist of only one byte — eight bits. Let there be three data disks, called
1, 2, and 3, and one redundant disk, called disk 4. Focus on the first block 
of all these disks. If the data disks have in their first blocks the following bit 
sequences:

disk 1: 11110000 
disk 2: 10101010 
disk 3: 00111000

then the redundant disk will have in block 1 the parity check bits:

disk 4: 01100010

Notice how in each position, an even number of the four 8-bit sequences have 
l ’s. There are two l ’s in positions 1, 2, 4, 5, and 7, four l ’s in position 3, and 
zero l ’s in positions 6 and 8. □
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R eading

Reading blocks from a data disk is no different from reading blocks from any 
disk. There is generally no reason to read from the redundant disk, but we 
could.

W riting

When we write a new block of a data disk, we need not only to change that 
block, but we need to change the corresponding block of the redundant disk 
so it continues to hold the parity checks for the corresponding blocks of all the 
data disks. A naive approach would read the corresponding blocks of the n  data 
disks, take their modulo-2 sum, and rewrite the block of the redundant disk. 
That approach requires a write of the data block that is rewritten, the reading 
of the n  — 1 other data blocks, and a write of the block of the redundant disk. 
The total is thus n + 1 disk I /O ’s.

A better approach is to look only at the old and new versions of the data 
block i being rewritten. If we take their modulo-2 sum, we know in which 
positions there is a change in the number of l ’s among the blocks numbered i 
on all the disks. Since these changes are always by one, any even number of l ’s 
changes to an odd number. If we change the same positions of the redundant 
block, then the number of l ’s in each position becomes even again. We can 
perform these calculations using four disk I/O ’s:

1. Read the old value of the data block being changed.

2. Read the corresponding block of the redundant disk.

3. Write the new data block.

4. Recalculate and write the block of the redundant disk.

E xam ple 13.10: Suppose the three first blocks of the data disks are as in 
Example 13.9:

disk 1: 11110000 
disk 2: 10101010 
disk 3: 00111000

Suppose also that the block on the second disk changes from 10101010 to 
11001100. We take the modulo-2 sum of the old and new values of the block 
on disk 2, to get 01100110. That tells us we must change positions 2, 3, 6, and 
7 of the first block of the redundant disk. We read that block: 01100010. We 
replace this block by a new block that we get by changing the appropriate po
sitions; in effect we replace the redundant block by the modulo-2 sum of itself 
and 01100110, to get 00000100. Another way to express the new redundant 
block is that it is the modulo-2 sum of the old and new versions of the block
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The Algebra of Modulo-2 Sums

It may be helpful for understanding some of the tricks used with parity 
checks to know the algebraic rules involving the modulo-2 sum opera
tion on bit vectors. We shall denote this operation ©. As an example, 
1100 ® 1010 =  0110. Here are some useful rules about ffi:

• The commutative law: x  © y = y ffi x.

•  The associative law. x  © (y © z) — (x © y) © z.

• The all-0 vector of the appropriate length, which we denote 0, is the 
identity for ©; that is, x  ffi 0 =  0 ffi x  =  x.

• ffi is its own inverse: x ffi x = 0. As a useful consequence, if x ffi y =  2 , 
then we can “add” x  to both sides and get y =  x  ffi z.

being rewritten and the old value of the redundant block. In our example, the 
first blocks of the four disks — three data disks and one redundant — have 
become:

disk 1: 11110000 
disk 2: 11001100 
disk 3: 00111000 
disk 4: 00000100

after the write to the block on the second disk and the necessary recomputation 
of the redundant block. Notice that in the blocks above, each column continues 
to have an even number of l ’s. □

Failure R ecovery

Now, let us consider what we would do if one of the disks crashed. If it is the 
redundant disk, we swap in a new disk, and recompute the redundant blocks. If 
the failed disk is one of the data disks, then we need to swap in a good disk and 
recompute its data from the other disks. The rule for recomputing any missing 
data is actually simple, and doesn’t depend on which disk, data or redundant, 
is failed. Since we know that the number of l ’s among corresponding bits of all 
disks is even, it follows that:

• The bit in any position is the modulo-2 sum of all the bits in the corre
sponding positions of all the other disks.

If one doubts the above rule, one has only to consider the two cases. If the 
bit in question is 1, then the number of corresponding bits in the other disks
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that are 1 must be odd, so their modulo-2 sum is 1. If the bit in question is 0, 
then there are an even number of l ’s among the corresponding bits of the other 
disks, and their modulo-2 sum is 0.

E xam ple 13.11: Suppose that disk 2 fails. We need to recompute each block 
of the replacement disk. Following Example 13.9, let us see how to recompute 
the first block of the second disk. We are given the corresponding blocks of the 
first and third data disks and the redundant disk, so the situation looks like:

disk 1: 11110000 
disk 2: ???????? 
disk 3: 00111000 
disk 4: 01100010

If we take the modulo-2 sum of each column, we deduce that the missing block 
is 10101010, as was initially the case in Example 13.9. □

13.4.8 An Improvement: RAID 5
The RAID level 4 strategy described in Section 13.4.7 effectively preserves data 
unless there are two almost simultaneous disk crashes. However, it suffers from 
a bottleneck defect that we can see when we re-examine the process of writing 
a new data block. Whatever scheme we use for updating the disks, we need to 
read and write the redundant disk’s block. If there are n data disks, then the 
number of disk writes to the redundant disk will be n  times the average number 
of writes to any one data disk.

However, as we observed in Example 13.11, the rule for recovery is the 
same as for the data disks and redundant disks: take the modulo-2 sum of 
corresponding bits of the other disks. Thus, we do not have to treat one disk as 
the redundant disk and the others as data disks. Rather, we could treat each 
disk as the redundant disk for some of the blocks. This improvement is often 
called RAID level 5.

For instance, if there are n  +  1 disks numbered 0 through n, we could treat 
the ith  cylinder of disk j  as redundant if j  is the remainder when i is divided 
by n  +  1.

E xam ple 13.12: In our running example, n = 3 so there are 4 disks. The 
first disk, numbered 0, is redundant for its cylinders numbered 4, 8, 12, and so 
on, because these are the numbers that leave remainder 0 when divided by 4. 
The disk numbered 1 is redundant for blocks numbered 1, 5, 9, and so on; disk 
2 is redundant for blocks 2, 6, 1 0 ,.. .,  and disk 3 is redundant for 3, 7, 1 1 ,... .

As a result, the reading and writing load for each disk is the same. If all 
blocks are equally likely to be written, then for one write, each disk has a 1/4 
chance that the block is on that disk. If not, then it has a 1/3 chance that 
it will be the redundant disk for that block. Thus, each of the four disks is 
involved in 1/4 +  (3/4) x (1/3) =  1/2 of the writes. □
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13.4.9 Coping W ith M ultiple Disk Crashes
There is a theory of error-correcting codes that allows us to deal with any 
number of disk crashes — data or redundant — if we use enough redundant 
disks. This strategy leads to the highest RAID “level,” RAID level 6. We 
shall give only a simple example here, where two simultaneous crashes are 
correctable, and the strategy is based on the simplest error-correcting code, 
known as a Hamming code.

In our description we focus on a system with seven disks, numbered 1 
through 7. The first four are data disks, and disks 5 through 7 are redun
dant. The relationship between data and redundant disks is summarized by 
the 3 x 7  matrix of 0’s and l ’s in Fig. 13.10. Notice that:

a) Every possible column of three 0’s and l ’s, except for the all-0 column, 
appears in the matrix of Fig. 13.10.

b) The columns for the redundant disks have a single 1.

c) The columns for the data disks each have at least two l ’s.

Data Redundant

Disk number 1 2 3 4 5 6 7

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

Figure 13.10: Redundancy pattern for a system that can recover from two 
simultaneous disk crashes

The meaning of each of the three rows of 0’s and l ’s is that if we look at 
the corresponding bits from all seven disks, and restrict our attention to those 
disks that have 1 in that row, then the modulo-2 sum of these bits must be 0. 
Put another way, the disks with 1 in a given row of the matrix are treated as 
if they were the entire set of disks in a RAID level 4 scheme. Thus, we can 
compute the bits of one of the redundant disks by finding the row in which that 
disk has 1, and talcing the modulo-2 sum of the corresponding bits of the other 
disks that have 1 in the same row.

For the matrix of Fig. 13.10, this rule implies:

1. The bits of disk 5 are the modulo-2 sum of the corresponding bits of disks 
1, 2, and 3.

2. The bits of disk 6 are the modulo-2 sum of the corresponding bits of disks 
1, 2, and 4.
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3. The bits of disk 7 are the modulo-2 sum of the corresponding bits of disks 
1, 3, and 4.

We shall see shortly that the particular choice of bits in this matrix gives us a 
simple rule by which we can recover from two simultaneous disk crashes.

R eading

We may read data from any data disk normally. The redundant disks can be 
ignored.

W riting

The idea is similar to the writing strategy outlined in Section 13.4.8, but now 
several redundant disks may be involved. To write a block of some data disk, 
we compute the modulo-2 sum of the new and old versions of that block. These 
bits are then added, in a modulo-2 sum, to the corresponding blocks of all those 
redundant disks that have 1 in a row in which the written disk also has 1.

E xam ple 13.13: Let us again assume that blocks are only eight bits long, 
and focus on the first blocks of the seven disks involved in our RAID level 6 
example. First, suppose the data and redundant first blocks are as given in 
Fig. 13.11. Notice that the block for disk 5 is the modulo-2 sum of the blocks 
for the first three disks, the sixth row is the modulo-2 sum of rows 1, 2, and 4, 
and the last row is the modulo-2 sum of rows 1, 3, and 4.

Disk Contents

1) 11110000
2) 10101010
3) 00111000
4) 01000001
5) 01100010
6) 00011011
7) 10001001

Figure 13.11: First blocks of all disks

Suppose we rewrite the first block of disk 2 to be 00001111. If we sum this 
sequence of bits modulo-2 with the sequence 10101010 that is the old value of 
this block, we get 10100101. If we look at the column for disk 2 in Fig. 13.10, 
we find that this disk has l ’s in the first two rows, but not the third. Since 
redundant disks 5 and 6 have 1 in rows 1 and 2, respectively, we must perform 
the sum modulo-2 operation on the current contents of their first blocks and 
the sequence 10100101 just calculated. That is, we flip the values of positions 1,
3, 6, and 8 of these two blocks. The resulting contents of the first blocks of all



586 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

disks is shown in Fig. 13.12. Notice that the new contents continue to satisfy the 
constraints implied by Fig. 13.10: the modulo-2 sum of corresponding blocks 
that have 1 in a particular row of the matrix of Fig. 13.10 is still all 0’s. □

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) 11000111
6) 10111110
7) 10001001

Figure 13.12: First blocks of all disks after rewriting disk 2 and changing the 
redundant disks

Failure R ecovery

Now, let us see how the redundancy scheme outlined above can be used to 
correct up to two simultaneous disk crashes. Let the failed disks be a and b. 
Since all columns of the matrix of Fig. 13.10 are different, we must be able to 
find some row r in which the columns for a and b are different. Suppose that a 
has 0 in row r, while b has 1 there.

Then we can compute the correct b by taking the modulo-2 sum of corre
sponding bits from all the disks other than b that have 1 in row r. Note that 
a is not among these, so none of these disks have failed. Having recomputed b, 
we must recompute a, with all other disks available. Since every column of the 
matrix of Fig. 13.10 has a 1 in some row, we can use this row to recompute disk 
a by taking the modulo-2 sum of bits of those other disks with a 1 in this row.

Disk Contents

1) 11110000
2) ????????
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.13: Situation after disks 2 and 5 fail
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E xam ple 13.14: Suppose that disks 2 and 5 fail at about the same time. 
Consulting the matrix of Fig. 13.10, we find that the columns for these two 
disks differ in row 2, where disk 2 has 1 but disk 5 has 0. We may thus 
reconstruct disk 2 by taking the modulo-2 sum of corresponding bits of disks
1, 4, and 6, the other three disks with 1 in row 2. Notice that none of these 
three disks has failed. For instance, following from the situation regarding the 
first blocks in Fig. 13.12, we would initially have the data of Fig. 13.13 available 
after disks 2 and 5 failed.

If we take the modulo-2 sum of the contents of the blocks of disks 1, 4, and
6, we find that the block for disk 2 is 00001111. This block is correct as can be 
verified from Fig. 13.12. The situation is now as in Fig. 13.14.

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.14: After recovering disk 2

Now, we see that disk 5’s column in Fig. 13.10 has a 1 in the first row. We 
can therefore recompute disk 5 by taking the modulo-2 sum of corresponding 
bits from disks 1, 2, and 3, the other three disks that have 1 in the first row. 
For block 1, this sum is 11000111. Again, the correctness of this calculation 
can be confirmed by Fig. 13.12. □

13.4.10 Exercises for Section 13.4
Exercise 13.4.1: Compute the parity bit for the following bit sequences:

a) 00111011.

b) 00000000.

c) 10101101.

Exercise 13.4.2: We can have two parity bits associated with a string if we 
follow the string by one bit that is a parity bit for the odd positions and a 
second that is the parity bit for the even positions. For each of the strings in 
Exercise 13.4.1, find the two bits that serve in this way.
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Additional Observations About RAID Level 6

1. We can combine the ideas of RAID levels 5 and 6, by varying the 
choice of redundant disks according to the block or cylinder number. 
Doing so will avoid bottlenecks when writing; the scheme described 
in Section 13.4.9 will cause bottlenecks at the redundant disks.

2. The scheme described in Section 13.4.9 is not restricted to four data 
disks. The number of disks can be one less than any power of 2, say 
2k — 1. Of these disks, k are redundant, and the remaining 2k — k  — 1 
are data disks, so the redundancy grows roughly as the logarithm of 
the number of data disks. For any k , we can construct the matrix 
corresponding to Fig. 13.10 by writing all possible columns of k 0’s 
and l ’s, except the all-O’s column. The columns with a single 1 
correspond to the redundant disks, and the columns with more than 
one 1 are the data disks.

E xercise 13.4.3: Suppose we use mirrored disks as in Example 13.8, the 
failure rate is 4% per year, and it takes 8 hours to replace a disk. What is the 
mean time to a disk failure involving loss of data?

! E xercise 13.4.4: Suppose that a disk has probability F  of failing in a given 
year, and it takes H  hours to replace a disk.

a) If we use mirrored disks, what is the mean time to data loss, as a function 
of F  and H I

b) If we use a RAID level 4 or 5 scheme, with N  disks, what is the mean 
time to data loss?

!! E xercise 13.4.5: Suppose we use three disks as a mirrored group; i.e., all 
three hold identical data. If the yearly probability of failure for one disk is F, 
and it takes H  hours to restore a disk, what is the mean time to data loss?

E xercise 13.4.6: Suppose we are using a RAID level 4 scheme with four data 
disks and one redundant disk. As in Example 13.9 assume blocks are a single 
byte. Give the block of the redundant disk if the corresponding blocks of the 
data disks are:

a) 01010110,11000000, 00111011, and 11111011.

b) 11110000, 11111000, 00111111, and 00000001.
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Error-Correcting Codes and RAID Level 6

There is a theory that guides our selection of a suitable matrix, like that 
of Fig. 13.10, to determine the content of redundant disks. A code of 
length n  is a set of bit-vectors (called code words) of length n. The Ham
ming distance between two code words is the number of positions in which 
they differ, and the minimum distance of a code is the smallest Hamming 
distance of any two different code words.

If C is any code of length n, we can require that the corresponding 
bits on n disks have one of the sequences that are members of the code. As 
a very simple example, if we are using a disk and its mirror, then n =  2, 
and we can use the code C — {00,11}. That is, the corresponding bits 
of the two disks must be the same. For another example, the matrix of 
Fig. 13.10 defines the code consisting of the 16 bit-vectors of length 7 that 
have arbitrary values for the first four bits and have the remaining three 
bits determined by the rules for the three redundant disks.

If the minimum distance of a code is d, then disks whose corresponding 
bits are required to be a vector in the code will be able to tolerate d — 1 
simultaneous disk crashes. The reason is that, should we obscure d — 1 
positions of a code word, and there were two different ways these positions 
could be filled in to make a code word, then the two code words would have 
to differ in at most the d — 1 positions. Thus, the code could not have 
minimum distance d. As an example, the matrix of Fig. 13.10 actually 
defines the well-known Hamming code, which has minimum distance 3. 
Thus, it can handle two disk crashes.

E xercise 13.4.7: Using the same RAID level 4 scheme as in Exercise 13.4.6, 
suppose that data disk 1 has failed. Recover the block of that disk under the 
following circumstances:

a) The contents of disks 2 through 4 are 01010110,11000000, and 00111011, 
while the redundant disk holds 11111011.

b) The contents of disks 2 through 4 are 11110000, 11111000, and 00111111, 
while the redundant disk holds 00000001.

E xercise 13.4.8: Suppose the block on the first disk in Exercise 13.4.6 is 
changed to 10101010. What changes to the corresponding blocks on the other 
disks must be made?

Exercise 13.4.9: Suppose we have the RAID level 6 scheme of Example 13.13, 
and the blocks of the four data disks are 00111100, 11000111, 01010101, and 
10000100, respectively.
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a) What are the corresponding blocks of the redundant disks?

b) If the third disk’s block is rewritten to be 10000000, what steps must be 
taken to change other disks?

E xercise 13.4.10: Describe the steps taken to recover from the following fail
ures using the RAID level 6 scheme with seven disks: (a) disks 1 and 7, (b) disks 
1 and 4, (c) disks 3 and 6.

13.5 Arranging D ata on Disk
We now turn to the m atter of how disks are used store databases. A data 
element such as a tuple or object is represented by a record, which consists of 
consecutive bytes in some disk block. Collections such as relations are usually 
represented by placing the records that represent their data elements in one or 
more blocks. It is normal for a disk block to hold only elements of one relation, 
although there are organizations where blocks hold tuples of several relations. 
In this section, we shall cover the basic layout techniques for both records and 
blocks.

13.5.1 Fixed-Length Records

The simplest sort of record consists of fixed-length fields, one for each attribute 
of the represented tuple. Many machines allow more efficient reading and writ
ing of main memory when data begins at an address that is a multiple of 4 or 8; 
some even require us to do so. Thus, it is common to begin all fields at a mul
tiple of 4 or 8, as appropriate. Space not used by the previous field is wasted. 
Note that, even though records are kept in secondary, not main, memory, they 
are manipulated in main memory. Thus it is necessary to lay out the record so 
it can be moved to main memory and accessed efficiently there.

Often, the record begins with a header, a fixed-length region where infor
mation about the record itself is kept. For example, we may want to keep in 
the record:

1. A pointer to the schema for the data stored in the record. For example, 
a tuple’s record could point to the schema for the relation to which the 
tuple belongs. This information helps us find the fields of the record.

2. The length of the record. This information helps us skip over records 
without consulting the schema.

3. Timestamps indicating the time the record was last modified, or last read. 
This information may be useful for implementing database transactions 
as will be discussed in Chapter 18.
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4. Pointers to the fields of the record. This information can substitute for 
schema information, and it will be seen to be important when we consider 
variable-length fields in Section 13.7.

CREATE TABLE M ovieStar(
name CHAR(30) PRIMARY KEY, 
address VARCHAR(255), 
gender CHAR(l), 
b ir th d a te  DATE

);

Figure 13.15: A SQL table declaration

E xam ple 13.15: Figure 13.15 repeats our running MovieStar schema. Let us 
assume all fields must start at a byte that is a multiple of four. Tuples of this 
relation have a header and the following four fields:

1. The first field is for name, and this field requires 30 bytes. If we assume 
that all fields begin at a multiple of 4, then we allocate 32 bytes for the 
name.

2. The next attribute is address. A VARCHAR attribute requires a fixed- 
length segment of bytes, with one more byte than the maximum length 
(for the string’s endmarker). Thus, we need 256 bytes for address.

3. Attribute gender is a single byte, holding either the character ’M’ or ’F ’ . 
We allocate 4 bytes, so the next field can start at a multiple of 4.

4. Attribute b ir th d a te  is a SQL DATE value, which is a 10-byte string. We 
shall allocate 12 bytes to its field, to keep subsequent records in the block 
aligned at multiples of 4.

. The header of the record will hold:

a) A pointer to the record schema.

b) The record length.

c) A timestamp indicating when the record was created.

We shall assume each of these items is 4 bytes long. Figure 13.16 shows the 
layout of a record for a MovieStar tuple. The length of the record is 316 bytes.
□
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to  schem a 
length

tim estam p gender

nam e address birthdate

0 12 44

header

300304 316

Figure 13.16: Layout of records for tuples of the MovieStar relation

13.5.2 Packing Fixed-Length Records into Blocks
Records representing tuples of a relation are stored in blocks of the disk and 
moved into main memory (along with their entire block) when we need to 
access or update them. The layout of a block that holds records is suggested 
in Fig. 13.17.

header record 1 record 2 record n

Figure 13.17: A typical block holding records 

In addition to the records, there is a block header holding information such
as:

1. Links to one or more other blocks that are part of a network of blocks 
such as those that will be described in Chapter 14 for creating indexes to 
the tuples of a relation.

2. Information about the role played by this block in such a network.

3. Information about which relation the tuples of this block belong to.

4. A “directory” giving the offset of each record in the block.

5. Timestamp(s) indicating the time of the block’s last modification and/or 
access.

By fax the simplest case is when the block holds tuples from one relation, 
and the records for those tuples have a fixed format. In that case, following 
the header, we pack as many records as we can into the block and leave the 
remaining space unused.

E xam ple  13.16: Suppose we are storing records with the layout developed in 
Example 13.15. These records are 316 bytes long. Suppose also that we use 
4096-byte blocks. Of these bytes, say 12 will be used for a block header, leaving 
4084 bytes for data. In this space we can fit twelve records of the given 316-byte 
format, and 292 bytes of each block axe wasted space. □
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13.5.3 Exercises for Section 13.5
E xercise 13.5.1: Suppose a record has the following fields in this order: A 
character string of length 15, an integer of 2 bytes, a SQL date, and a SQL time 
(no decimal point). How many bytes does the record take if:

a) Fields can start at any byte.

b) Fields must start at a byte that is a multiple of 4.

c) Fields must start at a byte that is a multiple of 8.

E xercise 13.5.2: Repeat Exercise 13.5.1 for the list of fields: a real of 8 bytes, 
a character string of length 17, a single byte, and a SQL date.

E xercise 13.5.3: Assume fields are as in Exercise 13.5.1, but records also have 
a record header consisting of two 4-byte pointers and a character. Calculate 
the record length for the three situations regarding field alignment (a) through
(c) in Exercise 13.5.1.

E xercise 13.5.4: Repeat Exercise 13.5.2 if the records also include a header 
consisting of an 8-byte pointer, and ten 2-byte integers.

13.6 Representing Block and Record Addresses
When in main memory, the address of a block is the virtual-memory address 
of its first byte, and the address of a record within that block is the virtual- 
memory address of the first byte of that record. However, in secondary storage, 
the block is not part of the application’s virtual-memory address space. Rather, 
a sequence of bytes describes the location of the block within the overall system 
of data accessible to the DBMS: the device ID for the disk, the cylinder number, 
and so on. A record can be identified by giving its block address and the offset 
of the first byte of the record within the block.

In this section, we shall begin with a discussion of address spaces, especially 
as they pertain to the common “client-server” architecture for DBMS’s (see 
Section 9.2.4). We then discuss the options for representing addresses, and 
finally look at “pointer swizzling,” the ways in which we can convert addresses 
in the data server’s world to the world of the client application programs.

13.6.1 Addresses in Client-Server Systems
Commonly, a database system consists of a server process that provides data 
from secondary storage to one or more client processes that are applications 
using the data. The server and client processes may be on one machine, or the 
server and the various clients can be distributed over many machines.

The client application uses a conventional “virtual” address space, typically 
32 bits, or about 4 billion different addresses. The operating system or DBMS
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decides which parts of the address space are currently located in main memory, 
and hardware maps the virtual address space to physical locations in main 
memory. We shall not think further of this virtual-to-physical translation, and 
shall think of the client address space as if it were main memory itself.

The server’s data lives in a database address space. The addresses of this 
space refer to blocks, and possibly to offsets within the block. There are several 
ways that addresses in this address space can be represented:

1. Physical Addresses. These are byte strings that let us determine the 
place within the secondary storage system where the block or record can 
be found. One or more bytes of the physical address are used to indicate 
each of:

(a) The host to which the storage is attached (if the database is stored 
across more than one machine),

(b) An identifier for the disk or other device on which the block is lo
cated,

(c) The number of the cylinder of the disk,
(d) The number of the track within the cylinder,
(e) The number of the block within the track, and
(f) (In some cases) the offset of the beginning of the record within the 

block.

2. Logical Addresses. Each block or record has a “logical address,” which is 
an arbitrary string of bytes of some fixed length. A map table, stored on 
disk in a known location, relates logical to physical addresses, as suggested 
in Fig. 13.18.

logical physical

Figure 13.18: A map table translates logical to physical addresses

Notice that physical addresses are long. Eight bytes is about the minimum 
we could use if we incorporate all the listed elements, and some systems use 
many more bytes. For example, imagine a database of objects that is designed 
to last for 100 years. In the future, the database may grow to encompass one
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million machines, and each machine might be fast enough to create one object 
every nanosecond. This system would create around 277 objects, which requires 
a minimum of ten bytes to represent addresses. Since we would probably prefer 
to reserve some bytes to represent the host, others to represent the storage 
unit, and so on, a rational address notation would use considerably more than 
10 bytes for a system of this scale.

13.6.2 Logical and Structured Addresses
One might wonder what the purpose of logical addresses could be. All the infor
mation needed for a physical address is found in the map table, and following 
logical pointers to records requires consulting the map table and then going 
to the physical address. However, the level of indirection involved in the map 
table allows us considerable flexibility. For example, many data organizations 
require us to move records around, either within a block or from block to block. 
If we use a map table, then all pointers to the record refer to this map table, 
and all we have to do when we move or delete the record is to change the entry 
for that record in the table.

Many combinations of logical and physical addresses are possible as well, 
yielding structured address schemes. For instance, one could use a physical 
address for the block (but not the offset within the block), and add the key value 
for the record being referred to. Then, to find a record given this structured 
address, we use the physical part to reach the block containing that record, and 
we examine the records of the block to find the one with the proper key.

A similar, and very useful, combination of physical and logical addresses is 
to keep in each block an offset table that holds the offsets of the records within 
the block, as suggested in Fig. 13.19. Notice that the table grows from the front 
end of the block, while the records are placed starting at the end of the block. 
This strategy is useful when the records need not be of equal length. Then, we 
do not know in advance how many records the block will hold, and we do not 
have to allocate a fixed amount of the block header to the table initially.

offset
tab le - *"

— header — — unused —

Figure 13.19: A block with a table of offsets telling us the position of each 
record within the block

The address of a record is now the physical address of its block plus the offset
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of the entry in the block’s offset table for that record. This level of indirection 
within the block offers many of the advantages of logical addresses, without the 
need for a global map table.

• We can move the record around within the block, and all we have to do 
is change the record’s entry in the offset table; pointers to the record will 
still be able to find it.

•  We can even allow the record to move to another block, if the offset table 
entries are large enough to hold a forwarding address for the record, giving 
its new location.

• Finally, we have an option, should the record be deleted, of leaving in its 
offset-table entry a tombstone, a special value that indicates the record has 
been deleted. Prior to its deletion, pointers to this record may have been 
stored at various places in the database. After record deletion, following 
a pointer to this record leads to the tombstone, whereupon the pointer 
can either be replaced by a null pointer, or the data structure otherwise 
modified to reflect the deletion of the record. Had we not left the tomb
stone, the pointer might lead to some new record, with surprising, and 
erroneous, results.

13.6.3 Pointer Swizzling

Often, pointers or addresses are part of records. This situation is not typical 
for records that represent tuples of a relation, but it is common for tuples 
that represent objects. Also, modern object-relational database systems allow 
attributes of pointer type (called references), so even relational systems need the 
ability to represent pointers in tuples. Finally, index structures are composed 
of blocks that usually have pointers within them. Thus, we need to study 
the management of pointers as blocks are moved between main and secondary 
memory.

As we mentioned earlier, every block, record, object, or other referenceable 
data item has two forms of address: its database address in the server’s address 
space, and a memory address if the item is currently copied in virtual memory. 
When in secondary storage, we surely must use the database address of the 
item. However, when the item is in the main memory, we can refer to the item 
by either its database address or its memory address. It is more efficient to put 
memory addresses wherever an item has a pointer, because these pointers can 
be followed using a single machine instruction.

In contrast, following a database address is much more time-consuming. We 
need a table that translates from all those database addresses that are currently 
in virtual memory to their current memory address. Such a translation table 
is suggested in Fig. 13.20. It may look like the map table of Fig. 13.18 that 
translates between logical and physical addresses. However:
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a) Logical and physical addresses are both representations for the database 
address. In contrast, memory addresses in the translation table are for 
copies of the corresponding object in memory.

b) All addressable items in the database have entries in the map table, while 
only those items currently in memory are mentioned in the translation 
table.

D Baddr m em -addr

Figure 13.20: The translation table turns database addresses into their equiva
lents in memory

To avoid the cost of translating repeatedly from database addresses to mem
ory addresses, several techniques have been developed that are collectively 
known as pointer swizzling. The general idea is that when we move a block 
from secondary to main memory, pointers within the block may be “swizzled,” 
that is, translated from the database address space to the virtual address space. 
Thus, a pointer actually consists of:

1. A bit indicating whether the pointer is currently a database address or a 
(swizzled) memory address.

2. The database or memory pointer, as appropriate. The same space is used 
for whichever address form is present at the moment. Of course, not all 
the space may be used when the memory address is present, because it is 
typically shorter than the database address.

E xam ple 13.17: Figure 13.21 shows a simple situation in which the Block 1 
has a record with pointers to a second record on the same block and to a record 
on another block. The figure also shows what might happen when Block 1 
is copied to memory. The first pointer, which points within Block 1, can be 
swizzled so it points directly to the memory address of the target record.

However, if Block 2 is not in memory at this time, then we cannot swizzle the 
second pointer; it must remain unswizzled, pointing to the database address of 
its target. Should Block 2 be brought to memory later, it becomes theoretically 
possible to swizzle the second pointer of Block 1. Depending on the swizzling 
strategy used, there may or may not be a list of such pointers that are in
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memory, referring to Block 2; if so, then we have the option of swizzling the 
pointer at that time. □

D isk M em ory

B lock 2

Figure 13.21: Structure of a pointer when swizzling is used

A u to m a tic  Sw izzling

There are several strategies we can use to determine when to swizzle pointers. If 
we use automatic swizzling, then as soon as a block is brought into memory, we 
locate all its pointers and addresses and enter them into the translation table 
if they are not already there. These pointers include both the pointers from 
records in the block to elsewhere and the addresses of the block itself and/or 
its records, if these are addressable items. We need some mechanism to locate 
the pointers within the block. For example:

1. If the block holds records with a known schema, the schema will tell us 
where in the records the pointers are found.

2. If the block is used for one of the index structures we shall discuss in 
Chapter 14, then the block will hold pointers at known locations.

3. We may keep within the block header a list of where the pointers are.

When we enter into the translation table the addresses for the block just 
moved into memory, and/or its records, we know where in memory the block 
has been buffered. We may thus create the translation-table entry for these 
database addresses straightforwardly. When we insert one of these database 
addresses A  into the translation table, we may find it in the table already, 
because its block is currently in memory. In this case, we replace A  in the block
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just moved to memory by the corresponding memory address, and we set the 
“swizzled” bit to true. On the other hand, if A  is not yet in the translation 
table, then its block has not been copied into main memory. We therefore 
cannot swizzle this pointer and leave it in the block as a database pointer.

Suppose that during the use of this data, we follow a pointer P  and we find 
that P  is still unswizzled, i.e., in the form of a database pointer. We consult the 
translation table to see if database address P  currently has a memory equivalent. 
If not, block B  must be copied into a memory buffer. Once B  is in memory, 
we can “swizzle” P  by replacing its database form by the equivalent memory 
form.

Sw izzling on  D em and

Another approach is to leave all pointers unswizzled when the block is first 
brought into memory. We enter its address, and the addresses of its pointers, 
into the translation table, along with their memory equivalents. If we follow a 
pointer P  that is inside some block of memory, we swizzle it, using the same 
strategy that we followed when we found an unswizzled pointer using automatic 
swizzling.

The difference between on-demand and automatic swizzling is that the latter 
tries to get all the pointers swizzled quickly and efficiently when the block is 
loaded into memory. The possible time saved by swizzling all of a block’s 
pointers at one time must be weighed against the possibility that some swizzled 
pointers will never be followed. In that case, any time spent swizzling and 
unswizzling the pointer will be wasted.

An interesting option is to arrange that database pointers look like invalid 
memory addresses. If so, then we can allow the computer to follow any pointer 
as if it were in its memory form. If the pointer happens to be unswizzled, then 
the memory reference will cause a hardware trap. If the DBMS provides a 
function that is invoked by the trap, and this function “swizzles” the pointer 
in the manner described above, then we can follow swizzled pointers in single 
instructions, and only need to do something more time consuming when the 
pointer is unswizzled.

N o Sw izzling

Of course it is possible never to swizzle pointers. We still need the translation 
table, so the pointers may be followed in their unswizzled form. This approach 
does offer the advantage that records cannot be pinned in memory, as discussed 
in Section 13.6.5, and decisions about which form of pointer is present need not 
be made.

P rogram m er C ontrol o f  Sw izzling

In some applications, it may be known by the application programmer whether 
the pointers in a block are likely to be followed. This programmer may be able
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to specify explicitly that a block loaded into memory is to have its pointers 
swizzled, or the programmer may call for the pointers to be swizzled only as 
needed. For example, if a programmer knows that a block is likely to be accessed 
heavily, such as the root block of a B-tree (discussed in Section 14.2), then the 
pointers would be swizzled. However, blocks that are loaded into memory, used 
once, and then likely dropped from memory, would not be swizzled.

13.6.4 Returning Blocks to Disk
When a block is moved from memory back to disk, any pointers within that 
block must be “unswizzled”; that is, their memory addresses must be replaced 
by the corresponding database addresses. The translation table can be used 
to associate addresses of the two types in either direction, so in principle it is 
possible to find, given a memory address, the database address to which the 
memory address is assigned.

However, we do not want each unswizzling operation to require a search of 
the entire translation table. While we have not discussed the implementation 
of this table, we might imagine that the table of Fig. 13.20 has appropriate 
indexes. If we think of the translation table as a relation, then the problem 
of finding the memory address associated with a database address x  can be 
expressed as the query:

SELECT memAddr 
FROM T ransla tionT ab le  
WHERE dbAddr = x;

For instance, a hash table using the database address as the key might be 
appropriate for an index on the dbAddr attribute; Chapter 14 suggests possible 
data structures.

If we want to support the reverse query,

SELECT dbAddr
FROM T ransla tionT ab le
WHERE memAddr = y;

then we need to have an index on attribute memAddr as well. Again, Chapter 14 
suggests data structures suitable for such an index. Also, Section 13.6.5 talks 
about linked-list structures that in some circumstances can be used to go from 
a memory address to all main-memory pointers to that address.

13.6.5 Pinned Records and Blocks
A block in memory is said to be pinned if it cannot at the moment be written 
back to disk safely. A bit telling whether or not a block is pinned can be located 
in the header of the block. There are many reasons why a block could be pinned, 
including requirements of a recovery system as discussed in Chapter 17. Pointer 
swizzling introduces an important reason why certain blocks must be pinned.
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If a block Bi has within it a swizzled pointer to some data item in block B 2, 
then we must be very careful about moving block B2 back to disk and reusing 
its main-memory buffer. The reason is that, should we follow the pointer in 
B i, it will lead us to the buffer, which no longer holds B 2\ in effect, the pointer 
has become dangling. A block, like B 2, that is referred to by a swizzled pointer 
from somewhere else is therefore pinned.

When we write a block back to disk, we not only need to “unswizzle” any 
pointers in that block. We also need to make sure it is not pinned. If it is 
pinned, we must either unpin it, or let the block remain in memory, occupying 
space that could otherwise be used for some other block. To unpin a block 
that is pinned because of swizzled pointers from outside, we must “unswizzle” 
any pointers to it. Consequently, the translation table must record, for each 
database address whose data item is in memory, the places in memory where 
swizzled pointers to that item exist. Two possible approaches are:

1. Keep the list of references to a memory address as a linked list attached 
to the entry for that address in the translation table.

2. If memory addresses are significantly shorter than database addresses, we 
can create the linked list in the space used for the pointers themselves. 
That is, each space used for a database pointer is replaced by

(a) The swizzled pointer, and

(b) Another pointer that forms part of a linked list of all occurrences of 
this pointer.

Figure 13.22 suggests how two occurrences of a memory pointer y could be 
linked, starting at the entry in the translation table for database address 
x  and its corresponding memory address y.

y !
/

y

Swizzled pointer

Translation table

Figure 13.22: A linked list of occurrences of a swizzled pointer
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13.6.6 Exercises for Section 13.6

Exercise 13.6.1: If we represent physical addresses for the Megatron 747 disk 
by allocating a separate byte or bytes to each of the cylinder, track within 
a cylinder, and block within a track, how many bytes do we need? Make a 
reasonable assumption about the maximum number of blocks on each track; 
recall that the Megatron 747 has a variable number of sectors/track.

Exercise 13.6.2: Repeat Exercise 13.6.1 for the Megatron 777 disk described 
in Exercise 13.2.1

Exercise 13.6.3: If we wish to represent record addresses as well as block 
addresses, we need additional bytes. Assuming we want addresses for a single 
Megatron 747 disk as in Exercise 13.6.1, how many bytes would we need for 
record addresses if we:

a) Included the number of the byte within a block as part of the physical 
address.

b) Used structured addresses for records. Assume that the stored records 
have a 4-byte integer as a key.

Exercise 13.6.4: Today, IP addresses have four bytes. Suppose that block 
addresses for a world-wide address system consist of an IP address for the host, 
a device number between 1 and 1000, and a block address on an individual 
device (assumed to be a Megatron 747 disk). How many bytes would block 
addresses require?

Exercise 13.6.5: In IP version 6, IP addresses are 16 bytes long. In addition, 
we may want to address not only blocks, but records, which may start at any 
byte of a block. However, devices will have their own IP address, so there will 
be no need to represent a device within a host, as we suggested was necessary 
in Exercise 13.6.4. How many bytes would be needed to represent addresses in 
these circumstances, again assuming devices were Megatron 747 disks?

Exercise 13.6.6: Suppose we wish to represent the addresses of blocks on a 
Megatron 747 disk logically, i.e., using identifiers of k bytes for some k. We also 
need to store on the disk itself a map table, as in Fig. 13.18, consisting of pairs 
of logical and physical addresses. The blocks used for the map table itself are 
not part of the database, and therefore do not have their own logical addresses 
in the map table. Assuming that physical addresses use the minimum possible 
number of bytes for physical addresses (as calculated in Exercise 13.6.1), and 
logical addresses likewise use the minimum possible number of bytes for logical 
addresses, how many blocks of 4096 bytes does the map table for the disk 
occupy?
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! Exercise 13.6.7: Suppose that we have 4096-byte blocks in which we store 
records of 100 bytes. The block header consists of an offset table, as in Fig. 
13.19, using 2-byte pointers to records within the block. On an average day, two 
records per block are inserted, and one record is deleted. A deleted record must 
have its pointer replaced by a “tombstone,” because there may be dangling 
pointers to it. For specificity, assume the deletion on any day always occurs 
before the insertions. If the block is initially empty, after how many days will 
there be no room to insert any more records?

Exercise 13.6.8: Suppose that if we swizzle all pointers automatically, we 
can perform the swizzling in half the time it would take to swizzle each one 
separately. If the probability that a pointer in main memory will be followed at 
least once is p, for what values of p  is it more efficient to swizzle automatically 
than on demand?

! E xercise 13.6.9: Generalize Exercise 13.6.8 to include the possibility that we 
never swizzle pointers. Suppose that the important actions take the following 
times, in some arbitrary time units:

i. On-demand swizzling of a pointer: 30.

ii. Automatic swizzling of pointers: 20 per pointer.

Hi. Following a swizzled pointer: 1.

iv. Following an unswizzled pointer: 10.

Suppose that in-memory pointers are either not followed (probability 1 — p) 
or are followed k times (probability p). For what values of k and p  do no- 
swizzling, automatic-swizzling, and on-demand-swizzling each offer the best 
average performance?

13.7 Variable-Length Data and Records
Until now, we have made the simplifying assumptions that records have a fixed 
schema, and that the schema is a list of fixed-length fields. However, in practice, 
we also may wish to represent:

1. Data items whose size varies. For instance, in Fig. 13.15 we considered a 
MovieStar relation that had an address field of up to 255 bytes. While 
there might be some addresses that long, the vast majority of them will 
probably be 50 bytes or less. We could save more than half the space used 
for storing MovieStar tuples if we used only as much space as the actual 
address needed.

2. Repeating fields. If we try to represent a many-many relationship in a 
record representing an object, we shall have to store references to as many 
objects as are related to the given object.
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3. Variable-format records. Sometimes we do not know in advance what the 
fields of a record will be, or how many occurrences of each field there 
will be. An important example is a record that represents an XML ele
ment, which might have no constraints at all, or might be allowed to have 
repeating subelements, optional attributes, and so on.

4. Enormous fields. Modern DBMS’s support attributes whose values are 
very large. For instance, a movie record might have a field that is a 2- 
gigabyte MPEG encoding of the movie itself, as well as more mundane 
fields such as the title of the movie.

13.7.1 Records W ith Variable-Length Fields

If one or more fields of a record have variable length, then the record must 
contain enough information to let us find any field of the record. A simple 
but effective scheme is to put all fixed-length fields ahead of the variable-length 
fields. We then place in the record header:

1. The length of the record.

2. Pointers to (i.e., offsets of) the beginnings of all the variable-length fields 
other than the first (which we know must immediately follow the fixed- 
length fields).

E xam p le 1 3 .18 : Suppose we have movie-star records with name, address, 
gender, and birthdate. We shall assume that the gender and birthdate are 
fixed-length fields, taking 4 and 12 bytes, respectively. However, both name 
and address will be represented by character strings of whatever length is ap
propriate. Figure 13.23 suggests what a typical movie-star record would look 
like. Note that no pointer to the beginning of the name is needed; that field 
begins right after the fixed-length portion of the record. □

other header inform ation 
record length 

to address 
gender

birthdate address

Figure 13.23: A MovieStar record with name and address implemented as 
variable-length character strings
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Representing Null Values

Tuples often have fields that may be NULL. The record format of Fig. 13.23 
offers a convenient way to represent NULL values. If a field such as address 
is null, then we put a null pointer in the place where the pointer to an 
address goes. Then, we need no space for an address, except the place for 
the pointer. This arrangement can save space on average, even if address 
is a fixed-length field but frequently has the value NULL.

13.7.2 Records W ith Repeating Fields
A similar situation occurs if a record contains a variable number of occurrences 
of a field F, but the field itself is of fixed length. It is sufficient to group all 
occurrences of field F  together and put in the record header a pointer to the 
first. We can locate all the occurrences of the field F  as follows. Let the number 
of bytes devoted to one instance of field F  be L. We then add to the offset for 
the field F  all integer multiples of L, starting at 0, then L, 2L, 3L, and so on. 
Eventually, we reach the offset of the field following F  or the end of the record, 
whereupon we stop.

E xam ple 13.19: Suppose we redesign our movie-star records to hold only 
the name and address (which are variable-length strings) and pointers to all 
the movies of the star. Figure 13.24 shows how this type of record could be 
represented. The header contains pointers to the beginning of the address field 
(we assume the name field always begins right after the header) and to the 
first of the movie pointers. The length of the record tells us how many movie 
pointers there are. □

other header inform ation 
record length 

to address
to m ovie pointers

address

pointers to movies

Figure 13.24: A record with a repeating group of references to movies

An alternative representation is to keep the record of fixed length, and put 
the variable-length portion — be it fields of variable length or fields that repeat
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an indefinite number of times — on a separate block. In the record itself we 
keep:

1. Pointers to the place where each repeating field begins, and

2. Either how many repetitions there are, or where the repetitions end.

Figure 13.25 shows the layout of a record for the problem of Example 13.19, 
but with the variable-length fields name and address, and the repeating field 
s ta r r e d ln  (a set of movie references) kept on a separate block or blocks.

Figure 13.25: Storing variable-length fields separately from the record

There are advantages and disadvantages to using indirection for the variable- 
length components of a record:

• Keeping the record itself fixed-length allows records to be searched more 
efficiently, minimizes the overhead in block headers, and allows records to 
be moved within or among blocks with minimum effort.

• On the other hand, storing variable-length components on another block 
increases the number of disk I /O ’s needed to examine all components of 
a record.

A compromise strategy is to keep in the fixed-length portion of the record 
enough space for:

1. Some reasonable number of occurrences of the repeating fields,
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2. A pointer to a place where additional occurrences could be found, and

3. A count of how many additional occurrences there are.

If there are fewer than this number, some of the space would be unused. If there 
are more than can fit in the fixed-length portion, then the pointer to additional 
space will be nonnull, and we can find the additional occurrences by following 
this pointer.

13.7.3 Variable-Format Records
An even more complex situation occurs when records do not have a fixed 
schema. We mentioned an example: records that represent XML elements. 
For another example, medical records may contain information about many 
tests, but there are thousands of possible tests, and each patient has results for 
relatively few of them. If the outcome of each test is an attribute, we would 
prefer that the record for each tuple hold only the attributes for which the 
outcome is nonnull.

The simplest representation of variable-format records is a sequence of tagged 
fields, each of which consists of the value of the field preceded by information 
about the role of this field, such as:

1. The attribute or field name,

2. The type of the field, if it is not apparent from the field name and some 
readily available schema information, and

3. The length of the field, if it is not apparent from the type.

E xam ple 13.20: Suppose movie stars may have additional attributes such 
as movies directed, former spouses, restaurants owned, and a number of other 
known but unusual pieces of information. In Fig. 13.26 we see the beginning of 
a hypothetical movie-star record using tagged fields. We suppose that single
byte codes are used for the various possible field names and types. Appropriate 
codes are indicated on the figure, along with lengths for the two fields shown, 
both of which happen to be of type string. □

code for name

icode for string type 
T length_________

code fo r restaurant owned 
| code fo r string type 
|  y length_____________

n : 14 Clint Eastwood R 16 Hog's Breath Inri

Figure 13.26: A record with tagged fields
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13.7.4 Records That Do Not Fit in a Block

Today, DBMS’s frequently are used to manage datatypes with large values; 
often values do not fit in one block. Typical examples are video or audio “clips.” 
Often, these large values have a variable length, but even if the length is fixed 
for all values of the type, we need special techniques to represent values that are 
larger than blocks. In this section we shall consider a technique called “spanned 
records.” The management of extremely large values (megabytes or gigabytes) 
is addressed in Section 13.7.5.

Spanned records also are useful in situations where records are smaller than 
blocks, but packing whole records into blocks wastes significant amounts of 
space. For instance, the wasted space in Example 13.16 was only 7%, but if 
records are just slightly larger than half a block, the wasted space can approach 
50%. The reason is that then we can pack only one record per block.

The portion of a record that appears in one block is called a record fragment. 
A record with two or more fragments is called spanned, and records that do not 
cross a block boundary are unspanned.

If records can be spanned, then every record and record fragment requires 
some extra header information:

1. Each record or fragment header must contain a bit telling whether or not 
it is a fragment.

2. If it is a fragment, then it needs bits telling whether it is the first or last 
fragment for its record.

3. If there is a next and/or previous fragment for the same record, then the 
fragment needs pointers to these other fragments.

E xam ple  13.21: Figure 13.27 suggests how records that were about 60% of a 
block in size could be stored with three records for every two blocks. The header 
for record fragment 2a contains an indicator that it is a fragment, an indicator 
that it is the first fragment for its record, and a pointer to next fragment, 2b. 
Similarly, the header for 2b indicates it is the last fragment for its record and 
holds a back-pointer to the previous fragment 2a. □

13.7.5 BLOBs

Now, let us consider the representation of truly large values for records or fields 
of records. The common examples include images in various formats (e.g., GIF, 
or JPEG), movies in formats such as MPEG, or signals of all sorts: audio, radar, 
and so on. Such values are often called binary, large objects, or BLOBs. When 
a field has a BLOB as value, we must rethink at least two issues.
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block header 

record header

record 1
record

2 -a
record

2 -b record 3

b lock 1 block 2

Figure 13.27: Storing spanned records across blocks

Storage o f  B L O B s

A BLOB must be stored on a sequence of blocks. Often we prefer that these 
blocks are allocated consecutively on a cylinder or cylinders of the disk, so the 
BLOB may be retrieved efficiently. However, it is also possible to store the 
BLOB on a linked list of blocks.

Moreover, it is possible that the BLOB needs to be retrieved so quickly 
(e.g., a movie that must be played in real time), that storing it on one disk 
does not allow us to retrieve it fast enough. Then, it is necessary to stripe the 
BLOB across several disks, that is, to alternate blocks of the BLOB among 
these disks. Thus, several blocks of the BLOB can be retrieved simultaneously, 
increasing the retrieval rate by a factor approximately equal to the number of 
disks involved in the striping.

R etrieva l o f  B L O B s

Our assumption that when a client wants a record, the block containing the 
record is passed from the database server to the client in its entirety may not 
hold. We may want to pass only the “small” fields of the record, and allow the 
client to request blocks of the BLOB one at a time, independently of the rest of 
the record. For instance, if the BLOB is a 2-hour movie, and the client requests 
that the movie be played, the BLOB could be shipped several blocks at a time 
to the client, at just the rate necessary to play the movie.

In many applications, it is also important that the client be able to request 
interior portions of the BLOB without having to receive the entire BLOB. 
Examples would be a request to see the 45th minute of a movie, or the ending 
of an audio clip. If the DBMS is to support such operations, then it requires a 
suitable index structure, e.g., an index by seconds on a movie BLOB.

13.7.6 Column Stores
An alternative to storing tuples as records is to store each column as a record. 
Since an entire column of a relation may occupy far more than a single block, 
these records may span many blocks, much as long files do. If we keep the
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values in each column in the same order, then we can reconstruct the relation 
from the column records. Alternatively, we can keep tuple ID’s or integers with 
each value, to tell which tuple the value belongs to.

E xam ple  13.22 : Consider the relation

The column for X  can be represented by the record (a, c, e) and the column for 
Y  can be represented by the record (b ,d ,f ). If we want to indicate the tuple 
to which each value belongs, then we can represent the two columns by the 
records (( l,a ) , (2 ,c), (3 ,e)) and ((1,6), (2,d), (3 ,/) ) ,  respectively. No matter 
how many tuples the relation above had, the columns would be represented by 
variable-length records of values or repeating groups of tuple ID’s and values.
□

If we store relations by columns, it is often possible to compress data, the 
the values all have a known type. For example, an attribute gender in a relation 
might have type CHAR(l), but we would use four bytes in a tuple-based record, 
because it is more convenient to have all components of a tuple begin at word 
boundaries. However, if all we are storing is a sequence of gender values, then 
it would make sense to store the column by a sequence of bits. If we did so, we 
would compress the data by a factor of 32.

However, in order for column-based storage to make sense, it must be the 
case that most queries call for examination of all, or a large fraction of the values 
in each of several columns. Recall our discussion in Section 10.6 of “analytic” 
queries, which are the common kind of queries with the desired characteristic. 
These “OLAP” queries may benefit from organizing the data by columns.

13.7.7 Exercises for Section 13.7
Exercise 13.7 .1 : A patient record consists of the following fixed-length fields: 
the patient’s date of birth, social-security number, and patient ID, each 10 bytes 
long. It also has the following variable-length fields: name, address, and patient 
history. If pointers within a record require 4 bytes, and the record length is a 
4-byte integer, how many bytes, exclusive of the space needed for the variable- 
length fields, are needed for the record? You may assume that no alignment of 
fields is required.

E xercise 13.7 .2 : Suppose records are as in Exercise 13.7.1, and the variable- 
length fields name, address, and history each have a length that is uniformly 
distributed. For the name, the range is 10-50 bytes; for address it is 20-80 
bytes, and for history it is 0-1000 bytes. W hat is the average length of a 
patient record?



13.7. VARIABLE-LENGTH DATA AND RECORDS 611

The Merits of Data Compression

One might think that with storage so cheap, there is little advantage to 
compressing data. However, storing data in fewer disk blocks enables us 
to read and write the data faster, since we use fewer disk I /O ’s. When 
we need to read entire columns, then storage by compressed columns can 
result in significant speedups. However, if we want to read or write only 
a single tuple, then column-based storage can lose. The reason is that in 
order to decompress and find the value for the one tuple we want, we need 
to read the entire column. In contrast, tuple-based storage allows us to 
read only the block containing the tuple. An even more extreme case is 
when the data is not only compressed, but encrypted.

In order to make access of single values efficient, we must both com
press and encrypt on a block-by-block basis. The most efficient compres
sion methods generally perform better when they are allowed to compress 
large amounts of data as a group, and they do not lend themselves to 
block-based decompression. However, in special cases such as the com
pression of a gender column discussed in Section 13.7.6, we can in fact do 
block-by-block compression that is as good as possible.

E xercise 13.7.3: Suppose that the patient records of Exercise 13.7.1 are aug
mented by an additional repeating field that represents cholesterol tests. Each 
cholesterol test requires 16 bytes for a date and an integer result of the test. 
Show the layout of patient records if:

a) The repeating tests are kept with the record itself.

b) The tests are stored on a separate block, with pointers to them in the 
record.

E xercise 13.7.4: Starting with the patient records of Exercise 13.7.1, suppose 
we add fields for tests and their results. Each test consists of a test name, a 
date, and a test result. Assume that each such test requires 40 bytes. Also, 
suppose that for each patient and each test a result is stored with probability 
P-

a) Assuming pointers and integers each require 4 bytes, what is the average 
number of bytes devoted to test results in a patient record, assuming that 
all test results are kept within the record itself, as a variable-length field?

b) Repeat (a), if test results are represented by pointers within the record 
to test-result fields kept elsewhere.

! c) Suppose we use a hybrid scheme, where room for k test results are kept 
within the record, and additional test results are found by following a
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pointer to another block (or chain of blocks) where those results are kept. 
As a function of p, what value of k minimizes the amount of storage used 
for test results?

!! d) The amount of space used by the repeating test-result fields is not the 
only issue. Let us suppose that the figure of merit we wish to minimize 
is the number of bytes used, plus a penalty of 10,000 if we have to store 
some results on another block (and therefore will require a disk I/O  for 
many of the test-result accesses we need to do. Under this assumption, 
what is the best value of k as a function of p?

!! E xercise 13.7.5: Suppose blocks have 1000 bytes available for the storage of 
records, and we wish to store on them fixed-length records of length r, where 
500 < r  < 1000. The value of r  includes the record header, but a record 
fragment requires an additional 16 bytes for the fragment header. For what 
values of r  can we improve space utilization by spanning records?

!! E xercise 13.7.6: An MPEG movie uses about one gigabyte per hour of play. 
If we carefully organized several movies on a Megatron 747 disk, how many 
could we deliver with only small delay (say 100 milliseconds) from one disk. 
Use the timing estimates of Example 13.2, but remember that you can choose 
how the movies are laid out on the disk.

13.8 Record M odifications
Insertions, deletions, and updates of records often create special problems. 
These problems are most severe when the records change their length, but 
they come up even when records and fields are all of fixed length.

13.8.1 Insertion
First, let us consider insertion of new records into a relation. If the records of 
a relation are kept in no particular order, we can just find a block with some 
empty space, or get a new block if there is none, and put the record there.

There is more of a problem when the tuples must be kept in some fixed 
order, such as sorted by their primary key (e.g., see Section 14.1.1). If we need 
to insert a new record, we first locate the appropriate block for that record. 
Suppose first that there is space in the block to put the new record. Since 
records must be kept in order, we may have to slide records around in the block 
to make space available at the proper point. If we need to slide records, then 
the block organization that we showed in Fig. 13.19, which we reproduce here 
as Fig. 13.28, is useful. Recall from our discussion in Section 13.6.2 that we 
may create an “offset table” in the header of each block, with pointers to the 
location of each record in the block. A pointer to a record from outside the 
block is a “structured address,” that is, the block address and the location of 
the entry for the record in the offset table.
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offset
table

header — unused

/y ///////) record
record 4

I

record 3 2 record 1

Figure 13.28: An offset table lets us slide records within a block to make room 
for new records

If we can find room for the inserted record in the block at hand, then we 
simply slide the records within the block and adjust the pointers in the offset 
table. The new record is inserted into the block, and a new pointer to the record 
is added to the offset table for the block. However, there may be no room in 
the block for the new record, in which case we have to find room outside the 
block. There are two major approaches to solving this problem, as well as 
combinations of these approaches.

1. Find space on a “nearby” block. For example, if block Bi has no available 
space for a record that needs to be inserted in sorted order into that 
block, then look at the following block B 2 in the sorted order of the 
blocks. If there is room in B 2, move the highest record(s) of B i to B 2, 
leave forwarding addresses (recall Section 13.6.2) and slide the records 
around on both blocks.

2. Create an overflow block. In this scheme, each block B  has in its header 
a place for a pointer to an overflow block where additional records that 
theoretically belong in B  can be placed. The overflow block for B  can 
point to a second overflow block, and so on. Figure 13.29 suggests the 
structure. We show the pointer for overflow blocks as a nub on the block, 
although it is in fact part of the block header.

B lock B  overflow  block
for B

Figure 13.29: A block and its first overflow block



614 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.8.2 Deletion

When we delete a record, we may be able to reclaim its space. If we use an 
offset table as in Fig. 13.28 and records can slide around the block, then we 
can compact the space in the block so there is always one unused region in the 
center, as suggested by that figure.

If we cannot slide records, we should maintain an available-space list in the 
block header. Then we shall know where, and how large, the available regions 
are, when a new record is inserted into the block. Note that the block header 
normally does not need to hold the entire available space list. It is sufficient to 
put the list head in the block header, and use the available regions themselves 
to hold the links in the list, much as we did in Fig. 13.22.

There is one additional complication involved in deletion, which we must 
remember regardless of what scheme we use for reorganizing blocks. There 
may be pointers to the deleted record, and if so, we don’t want these pointers 
to dangle or wind up pointing to a new record that is put in the place of the 
deleted record. The usual technique, which we pointed out in Section 13.6.2, is 
to place a tombstone in place of the record. This tombstone is permanent; it 
must exist until the entire database is reconstructed.

Where the tombstone is placed depends on the nature of record pointers. 
If pointers go to fixed locations from which the location of the record is found, 
then we put the tombstone in that fixed location. Here are two examples:

1. We suggested in Section 13.6.2 that if the offset-table scheme of Fig. 13.28 
were used, then the tombstone could be a null pointer in the offset table, 
since pointers to the record were really pointers to the offset table entries.

2. If we are using a map table, as in Fig. 13.18, to translate logical record 
addresses to physical addresses, then the tombstone can be a null pointer 
in place of the physical address.

If we need to replace records by tombstones, we should place the bit that serves 
as a tombstone at the very beginning of the record. Then, only this bit must 
remain where the record used to begin, and subsequent bytes can be reused for 
another record, as suggested by Fig. 13.30.

Figure 13.30: Record 1 can be replaced, but the tombstone remains; record 2 
has no tombstone and can be seen when we follow a pointer to it
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13.8.3 Update
When a fixed-length record is updated, there is no effect on the storage system, 
because we know it can occupy exactly the same space it did before the update. 
However, when a variable-length record is updated, we have all the problems 
associated with both insertion and deletion, except that it is never necessary to 
create a tombstone for the old version of the record.

If the updated record is longer than the old version, then we may need 
to create more space on its block. This process may involve sliding records 
or even the creation of an overflow block. If variable-length portions of the 
record are stored on another block, as in Fig. 13.25, then we may need to move 
elements around that block or create a new block for storing variable-length 
fields. Conversely, if the record shrinks because of the update, we have the 
same opportunities as with a deletion to recover or consolidate space.

13.8.4 Exercises for Section 13.8
Exercise 13.8.1: Relational database systems have always preferred to use 
fixed-length tuples if possible. Give three reasons for this preference.

13.9 Summary of Chapter 13
♦  Memory Hierarchy: A computer system uses storage components ranging 

over many orders of magnitude in speed, capacity, and cost per bit. From 
the smallest/most expensive to largest/cheapest, they are: cache, main 
memory, secondary memory (disk), and tertiary memory.

♦  Disks/Secondary Storage: Secondary storage devices are principally mag
netic disks with multigigabyte capacities. Disk units have several circular 
platters of magnetic material, with concentric tracks to store bits. Plat
ters rotate around a central spindle. The tracks at a given radius from 
the center of a platter form a cylinder.

♦  Blocks and Sectors: Tracks are divided into sectors, which are separated 
by unmagnetized gaps. Sectors are the unit of reading and writing from 
the disk. Blocks are logical units of storage used by an application such 
as a DBMS. Blocks typically consist of several sectors.

♦  Disk Controller: The disk controller is a processor that controls one or 
more disk units. It is responsible for moving the disk heads to the proper 
cylinder to read or write a requested track. It also may schedule competing 
requests for disk access and buffers the blocks to be read or written.

♦  Disk Access Time: The latency of a disk is the time between a request to 
read or write a block, and the time the access is completed. Latency is 
caused principally by three factors: the seek time to move the heads to



the proper cylinder, the rotational latency during which the desired block 
rotates under the head, and the transfer time, while the block moves under 
the head and is read or written.

♦  Speeding Up Disk Access: There are several techniques for accessing disk 
blocks faster for some applications. They include dividing the data among 
several disks (striping), mirroring disks (maintaining several copies of the 
data, also to allow parallel access), and organizing data that will be ac
cessed together by tracks or cylinders.

♦  Elevator Algorithm: We can also speed accesses by queueing access re
quests and handling them in an order that allows the heads to make one 
sweep across the disk. The heads stop to handle a request each time 
it reaches a cylinder containing one or more blocks with pending access 
requests.

♦  Disk Failure Modes: To avoid loss of data, systems must be able to handle 
errors. The principal types of disk failure are intermittent (a read or write 
error that will not reoccur if repeated), permanent (data on the disk is 
corrupted and cannot be properly read), and the disk crash, where the 
entire disk becomes unreadable.

♦  Checksums: By adding a parity check (extra bit to make the number of 
l ’s in a bit string even), intermittent failures and permanent failures can 
be detected, although not corrected.

♦  Stable Storage: By making two copies of all data and being careful about 
the order in which those copies are written, a single disk can be used to 
protect against almost all permanent failures of a single sector.

♦  RAID: These schemes allow data to survive a disk crash. RAID level 
4 adds a disk whose contents are a parity check on corresponding bits 
of all other disks, level 5 varies the disk holding the parity bit to avoid 
making the parity disk a writing bottleneck. Level 6 involves the use of 
error-correcting codes and may allow survival after several simultaneous 
disk crashes.

♦  Records: Records are composed of several fields plus a record header. The 
header contains information about the record, possibly including such 
matters as a timestamp, schema information, and a record length. If the 
record has varying-length fields, the header may also help locate those 
fields.

♦  Blocks: Records are generally stored within blocks. A block header, with 
information about that block, consumes some of the space in the block, 
with the remainder occupied by one or more records. To support in
sertions, deletions and modifications of records, we can put in the block 
header an offset table that has pointers to each of the records in the block.
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♦  Spanned Records: Generally, a record exists within one block. However, 
if records are longer than blocks, or we wish to make use of leftover space 
within blocks, then we can break records into two or more fragments, one 
on each block. A fragment header is then needed to link the fragments of 
a record.

♦  BLOBs: Very large values, such as images and videos, are called BLOBs 
(binary, large objects). These values must be stored across many blocks 
and may require specialized storage techniques such as reserving a cylinder 
or striping the blocks of the BLOB.

♦  Database Addresses: Data managed by a DBMS is found among several 
storage devices, typically disks. To locate blocks and records in this stor
age system, we can use physical addresses, which are a description of 
the device number, cylinder, track, sector(s), and possibly byte within a 
sector. We can also use logical addresses, which are arbitrary character 
strings that are translated into physical addresses by a map table.

♦  Pointer Swizzling: When disk blocks are brought to main memory, the 
database addresses need to be translated to memory addresses, if pointers 
are to be followed. The translation is called swizzling, and can either be 
done automatically, when blocks are brought to memory, or on-demand, 
when a pointer is first followed.

♦  Tombstones: When a record is deleted, pointers to it will dangle. A 
tombstone in place of (part of) the deleted record warns the system that 
the record is no longer there.

♦  Pinned Blocks: For various reasons, including the fact that a block may 
contain swizzled pointers, it may be unacceptable to copy a block from 
memory back to its place on disk. Such a block is said to be pinned. If the 
pinning is due to swizzled pointers, then they must be unswizzled before 
returning the block to disk.

13.10 References for Chapter 13
The RAID idea can be traced back to [8] on disk striping. The name and error- 
correcting capability is from [7]. The model of disk failures in Section 13.4 
appears in unpublished work of Lampson and Sturgis [5].

There are several useful surveys of disk-related material. A study of RAID 
systems is in [2]. [10] surveys algorithms suitable for the secondary storage 
model (block model) of computation. [3] is an important study of how one 
optimizes a system involving processor, memory, and disk, to perform specific 
tasks.

References [4] and [11] have more information on record and block struc
tures. [9] discusses column stores as an alternative to the conventional record
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structures. Tombstones as a technique for dealing with deletion is from [6]. [1] 
covers data representation issues, such as addresses and swizzling in the context 
of object-oriented DBMS’s.
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Chapter 14 

Index Structures

It is not sufficient simply to scatter the records that represent tuples of a relation 
among various blocks. To see why, think how we would answer the simple query 
SELECT * FROM R. We would have to examine every block in the storage system 
to find the tuples of R. A better idea is to reserve some blocks, perhaps several 
whole cylinders, for R. Now, at least we can find the tuples of R  without 
scanning the entire data store.

However, this organization offers little help for a query like

SELECT * FROM R WHERE a=10;

Section 8.4 introduced us to the importance of creating indexes to speed up 
queries that specify values for one or more attributes. As suggested in Fig. 14.1, 
an index is any data structure that takes the value of one or more fields and 
finds the records with that value “quickly.” In particular, an index lets us find 
a record without having to look at more than a small fraction of all possible 
records. The field(s) on whose values the index is based is called the search key, 
or just “key” if the index is understood.

value
m atching

records

Figure 14.1: An index takes a value for some field(s) and finds records with the 
matching value
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Different Kinds of “Keys”

There are many meanings of the term “key.” We used it in Section 2.3.6 
to mean the primary key of a relation. We shall also speak of “sort keys,” 
the attribute(s) on which a file of records is sorted. We just introduced 
“search keys,” the attribute(s) for which we are given values and asked to 
search, through an index, for tuples with matching values. We try to use 
the appropriate adjective — “primary,” “sort,” or “search” — when the 
meaning of “key” is unclear. However, in many cases, the three kinds of 
keys are one and the same.

In this chapter, we shall introduce the most common form of index in 
database systems: the B-tree. We shall also discuss hash tables in secondary 
storage, which is another important index structure. Finally, we consider other 
index structures that are designed to handle multidimensional data. These 
structures support queries that specify values or ranges for several attributes 
at once.

14.1 Index-Structure Basics

In this section, we introduce concepts that apply to all index structures. Stor
age structures consist of files, which are similar to the files used by operating 
systems. A data file may be used to store a relation, for example. The data file 
may have one or more index files. Each index file associates values of the search 
key with pointers to data-file records that have that value for the attribute(s) 
of the search key.

Indexes can be “dense,” meaning there is an entry in the index file for every 
record of the data file. They can be “sparse,” meaning that only some of the 
data records are represented in the index, often one index entry per block of 
the data file. Indexes can also be “primary” or “secondary.” A primary index 
determines the location of the records of the data file, while a secondary index 
does not. For example, it is common to create a primary index on the primary 
key of a relation and to create secondary indexes on some of the other attributes.

We conclude the section with a study of information retrieval from doc
uments. The ideas of the section are combined to yield “inverted indexes,” 
which enable efficient retrieval of documents that contain one or more given 
keywords. This technique is essential for answering search queries on the Web, 
for instance.
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14.1.1 Sequential Files
A sequential file is created by sorting the tuples of a relation by their primary 
key. The tuples are then distributed among blocks, in this order.

E xam ple 14.1: Fig 14.2 shows a sequential file on the right. We imagine 
that keys are integers; we show only the key field, and we make the atypical 
assumption that there is room for only two records in one block. For instance, 
the first block of the file holds the records with keys 10 and 20. In this and 
several other examples, we use integers that are sequential multiples of 10 as 
keys, although there is surely no requirement that keys form an arithmetic 
sequence. □

Although in Example 14.1 we supposed that records were packed as tightly 
as possible into blocks, it is common to leave some space initially in each block to 
accomodate new tuples that may be added to a relation. Alternatively, we may 
accomodate new tuples with overflow blocks, as we suggested in Section 13.8.1.

14.1.2 Dense Indexes
If records Eire sorted, we can build on them a dense index, which is a sequence 
of blocks holding only the keys of the records and pointers to the records them
selves; the pointers are addresses in the sense discussed in Section 13.6. The 
index blocks of the dense index maintain these keys in the same sorted order as 
in the file itself. Since keys and pointers presumably take much less space than 
complete records, we expect to use many fewer blocks for the index than for 
the file itself. The index is especially advantageous when it, but not the data 
file, can fit in main memory. Then, by using the index, we can find any record 
given its search key, with only one disk I/O  per lookup.

E xam ple 14.2: Figure 14.2 suggests a dense index on a sorted file. The 
first index block contains pointers to the first four records (an atypically small 
number of pointers for one block), the second block has pointers to the next 
four, and so on. □

The dense index supports queries that ask for records with a given search- 
key value. Given key value K , we search the index blocks for K , and when we 
find it, we follow the associated pointer to the record with key K . It might 
appear that we need to examine every block of the index, or half the blocks of 
the index, on average, before we find K . However, there are several factors that 
make the index-based search more efficient than it seems.

1. The number of index blocks is usually small compared with the number 
of data blocks.

2. Since keys are sorted, we can use binary search to find K . If there are n 
blocks of the index, we only look at log2 n  of them.
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Figure 14.2: A dense index (left) on a sequential data file (right)

3. The index may be small enough to be kept permanently in main memory 
buffers. If so, the search for key K  involves only main-memory accesses, 
and there are no expensive disk I/O ’s to be performed.

14.1.3 Sparse Indexes
A sparse index typically has only one key-pointer pair per block of the data file. 
It thus uses less space than a dense index, at the expense of somewhat more 
time to find a record given its key. You can only use a sparse index if the data 
file is sorted by the search key, while a dense index can be used for any search 
key. Figure 14.3 shows a sparse index with one key-pointer per data block. The 
keys are for the first records on each data block.

E xam ple  14.3: As in Example 14.2, we assume that the data file is sorted, 
and keys are all the integers divisible by 10, up to some large number. We also 
continue to assume that four key-pointer pairs fit on an index block. Thus, the 
first sparse-index block has entries for the first keys on the first four blocks, 
which are 10, 30, 50, and 70. Continuing the assumed pattern of keys, the 
second index block has the first keys of the fifth through eighth blocks, which 
we assume are 90, 110, 130, and 150. We also show a third index block with 
first keys from the hypothetical ninth through twelfth data blocks. □

To find the record with search-key value K , we search the sparse index for 
the largest key less than or equal to K . Since the index file is sorted by key, a
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Figure 14.3: A sparse index on a sequential file

binary search can locate this entry. We follow the associated pointer to a data 
block. Now, we must search this block for the record with key K . Of course the 
block must have enough format information that the records and their contents 
can be identified. Any of the techniques from Sections 13.5 and 13.7 can be 
used.

14.1.4 Multiple Levels of Index

An index file can cover many blocks. Even if we use binary search to find the 
desired index entry, we still may need to do many disk I /O ’s to get to the record 
we want. By putting an index on the index, we can make the use of the first 
level of index more efficient.

Figure 14.4 extends Fig. 14.3 by adding a second index level (as before, we 
assume keys are every multiple of 10). The same idea would let us place a third- 
level index on the second level, and so on. However, this idea has its limits, 
and we prefer the B-tree structure described in Section 14.2 over building many 
levels of index.

In this example, the first-level index is sparse, although we could have chosen 
a dense index for the first level. However, the second and higher levels must 
be sparse. The reason is that a dense index on an index would have exactly as 
many key-pointer pairs as the first-level index, and therefore would take exactly 
as much space as the first-level index.
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Figure 14.4: Adding a second level of sparse index

14.1.5 Secondary Indexes
A secondary index serves the purpose of any index: it is a data structure that 
facilitates finding records given a value for one or more fields. However, the 
secondary index is distinguished from the primary index in that a secondary 
index does not determine the placement of records in the data file. Rather, the 
secondary index tells us the current locations of records; that location may have 
been decided by a primary index on some other field. An important consequence 
of the distinction between primary and secondary indexes is that:

•  Secondary indexes are always dense. It makes no sense to talk of a sparse, 
secondary index. Since the secondary index does not influence location, 
we could not use it to predict the location of any record whose key was 
not mentioned in the index file explicitly.

E xam ple  14.4: Figure 14.5 shows a typical secondary index. The data file 
is shown with two records per block, as has been our standard for illustration. 
The records have only their search key shown; this attribute is integer valued, 
and as before we have taken the values to be multiples of 10. Notice that, unlike 
the data file in Fig. 14.2, here the data is not sorted by the search key.

However, the keys in the index file are sorted. The result is that the pointers 
in one index block can go to many different data blocks, instead of one or a few 
consecutive blocks. For example, to retrieve all the records with search key 20, 
we not only have to look at two index blocks, but we are sent by their pointers 
to three different data blocks. Thus, using a secondary index may result in
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Figure 14.5: A secondary index

many more disk I /O ’s than if we get the same number of records via a primary 
index. However, there is no help for this problem; we cannot control the order 
of tuples in the data block, because they are presumably ordered according to 
some other attribute(s). □

14.1.6 Applications of Secondary Indexes
Besides supporting additional indexes on relations that are organized as sequen
tial files, there are some data structures where secondary indexes are needed for 
even the primary key. One of these is the “heap” structure, where the records 
of the relation are kept in no particular order.

A second common structure needing secondary indexes is the clustered file. 
Suppose there are relations R  and S, with a many-one relationship from the 
tuples of R  to tuples of S. It may make sense to store each tuple of R  with the 
tuple of S  to which it is related, rather than according to the primary key of R. 
An example will illustrate why this organization makes good sense in special 
situations.

E xam ple 14.5 : Consider our standard movie and studio relations:

M o v ie ( tit le , y ea r, len g th , genre, studioName, producerC#) 
Studio(name, add ress, presC#)

Suppose further that the most common form of query is:
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SELECT t i t l e ,  year 
FROM Movie, S tudio
WHERE presC# = zzz AND Movie. studioName = Studio.nam e;

Here, zzz represents any possible certificate number for a studio president. That 
is, given the president of a studio, we need to find all the movies made by that 
studio.

If we are convinced that the above query is typical, then instead of ordering 
Movie tuples by the primary key t i t l e  and year, we can create a clustered 
file structure for both relations S tudio and Movie, as suggested by Fig. 14.6. 
Following each S tudio  tuple are all the Movie tuples for all the movies owned 
by that studio.

studio 1 studio 2 studio 3 studio 4

movies by 
studio 1

movies by 
studio 2

movies by 
studio 3

movies by 
studio 4

Figure 14.6: A clustered file with each studio clustered with the movies made 
by that studio

If we create an index for S tudio  with search key presC#, then whatever the 
value of zzz is, we can quickly find the tuple for the proper studio. Moreover, 
all the Movie tuples whose value of attribute studioName matches the value 
of name for that studio will follow the studio’s tuple in the clustered file. As 
a result, we can find the movies for this studio by making almost as few disk 
I /O ’s as possible. The reason is that the desired Movie tuples are packed 
almost as densely as possible onto the following blocks. However, an index on 
any attribute(s) of Movie would have to be a secondary index. □

14.1.7 Indirection in Secondary Indexes

There is some wasted space, perhaps a significant amount of wastage, in the 
structure suggested by Fig. 14.5. If a search-key value appears n  times in the 
data file, then the value is written n times in the index file. It would be better 
if we could write the key value once for all the pointers to data records with 
that value.

A convenient way to avoid repeating values is to use a level of indirection, 
called buckets, between the secondary index file and the data file. As shown in 
Fig. 14.7, there is one pair for each search key K . The pointer of this pair goes 
to a position in a “bucket file,” which holds the “bucket” for K . Following this 
position, until the next position pointed to by the index, are pointers to all the 
records with search-key value K .
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Figure 14.7: Saving space by using indirection in a secondary index

E xam ple 14.6: For instance, let us follow the pointer from search key 50 
in the index file of Fig. 14.7 to the intermediate “bucket” file. This pointer 
happens to take us to the last pointer of one block of the bucket file. We search 
forward, to the first pointer of the next block. We stop at that point, because 
the next pointer of the index file, associated with search key 60, points to the 
next record in the bucket file. □

The scheme of Fig. 14.7 saves space as long as search-key values are larger 
than pointers, and the average key appears at least twice. However, even if not, 
there is an important advantage to using indirection with secondary indexes: 
often, we can use the pointers in the buckets to help answer queries without 
ever looking at most of the records in the data file. Specifically, when there are 
several conditions to a query, and each condition has a secondary index to help 
it, we can find the bucket pointers that satisfy all the conditions by intersecting 
sets of pointers in memory, and retrieving only the records pointed to by the 
surviving pointers. We thus save the I/O  cost of retrieving records that satisfy 
some, but not all, of the conditions.1

E xam ple 14.7: Consider the usual Movie relation:

M o v ie (title , y ea r, len g th , genre, studioName, producerC#)

1 We also could use this pointer-intersection trick if we got the pointers directly from the 
index, rather than from buckets.
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Suppose we have secondary indexes with indirect buckets on both studioName 
and yeax, and we are asked the query

SELECT t i t l e  
FROM Movie
WHERE studioName = ’D isney’ AND year = 2005; 

that is, find all the Disney movies made in 2005.

Buckets Buckets
for Movie tuples for

studio year

Studio Year
index index

Figure 14.8: Intersecting buckets in main memory

Figure 14.8 shows how we can answer this query using the indexes. Using 
the index on studioName, we find the pointers to all records for Disney movies, 
but we do not yet bring any of those records from disk to memory. Instead, 
using the index on year, we find the pointers to all the movies of 2005. We then 
intersect the two sets of pointers, getting exactly the movies that were made 
by Disney in 2005. Finally, we retrieve from disk all data blocks holding one or 
more of these movies, thus retrieving the minimum possible number of blocks.
□

14.1.8 Document Retrieval and Inverted Indexes
For many years, the information-retrieval community has dealt with the storage 
of documents and the efficient retrieval of documents with a given set of key
words. With the advent of the World-Wide Web and the feasibility of keeping
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all documents on-line, the retrieval of documents given keywords has become 
one of the largest database problems. While there are many kinds of queries 
that one can use to find relevant documents, the simplest and most common 
form can be seen in relational terms as follows:

• A document may be thought of as a tuple in a relation Doc. This relation 
has very many attributes, one corresponding to each possible word in a 
document. Each attribute is boolean — either the word is present in the 
document, or it is not. Thus, the relation schema may be thought of as

Doc(hasCat, hasDog, ... )

where hasCat is true if and only if the document has the word “cat” at 
least once.

• There is a secondary index on each of the attributes of Doc. However, 
we save the trouble of indexing those tuples for which the value of the 
attribute is FALSE; instead, the index leads us to only the documents for 
which the word is present. That is, the index has entries only for the 
search-key value TRUE.

• Instead of creating a separate index for each attribute (i.e., for each word), 
the indexes are combined into one, called an inverted index. This in
dex uses indirect buckets for space efficiency, as was discussed in Sec
tion 14.1.7.

E xam ple 1 4 .8 : An inverted index is illustrated in Fig. 14.9. In place of a data 
file of records is a collection of documents, each of which may be stored on one 
or more disk blocks. The inverted index itself consists of a set of word-pointer 
pairs; the words are in effect the search key for the index. The inverted index 
is kept in a sequence of blocks, just like any of the indexes discussed so far.

The pointers refer to positions in a “bucket” file. For instance, we have 
shown in Fig. 14.9 the word “cat” with a pointer to the bucket file. That 
pointer leads us to the beginning of a list of pointers to all the documents that 
contain the word “cat.” We have shown some of these in the figure. Similarly, 
the word “dog” is shown leading to a list of pointers to all the documents with 
“dog.” □

Pointers in the bucket file can be:

1. Pointers to the document itself.

2. Pointers to an occurrence of the word. In this case, the pointer might 
be a pair consisting of the first block for the document and an integer 
indicating the number of the word in the document.
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Documents

Figure 14.9: An inverted index on documents

When we use “buckets” of pointers to occurrences of each word, we may 
extend the idea to include in the bucket array some information about each 
occurrence. Now, the bucket file itself becomes a collection of records with 
important structure. Early uses of the idea distinguished occurrences of a word 
in the title of a document, the abstract, and the body of text. With the growth 
of documents on the Web, especially documents using HTML, XML, or another 
markup language, we can also indicate the markings associated with words. 
For instance, we can distinguish words appearing in titles, headers, tables, or 
anchors, as well as words appearing in different fonts or sizes.

E xam ple 14 .9 : Figure 14.10 illustrates a bucket file that has been used to 
indicate occurrences of words in HTML documents. The first column indicates 
the type of occurrence, i.e., its marking, if any. The second and third columns 
are together the pointer to the occurrence. The third column indicates the doc
ument, and the second column gives the number of the word in the document.

We can use this data structure to answer various queries about documents 
without having to examine the documents in detail. For instance, suppose we 
want to find documents about dogs that compare them with cats. Without a 
deep understanding of the meaning of the text, we cannot answer this query 
precisely. However, we could get a good hint if we searched for documents that

a) Mention dogs in the title, and
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Type Position

Figure 14.10: Storing more information in the inverted index

Insertion and Deletion From Buckets

We show buckets in figures such as Fig. 14.9 as compacted arrays of appro
priate size. In practice, they are records with a single field (the pointer) 
and are stored in blocks like any other collection of records. Thus, when 
we insert or delete pointers, we may use any of the techniques seen so far, 
such as leaving extra space in blocks for expansion of the file, overflow 
blocks, and possibly moving records within or among blocks. In the latter 
case, we must be careful to change the pointer from the inverted index to 
the bucket file, as we move the records it points to.

b) Mention cats in an anchor — presumably a link to a document about 
cats.

We can answer this query by intersecting pointers. That is, we follow the 
pointer associated with “cat” to find the occurrences of this word. We select 
from the bucket file the pointers to documents associated with occurrences of 
“cat” where the type is “anchor.” We then find the bucket entries for “dog” 
and select from them the document pointers associated with the type “title.” 
If we intersect these two sets of pointers, we have the documents that meet the 
conditions: they mention “dog” in the title and “cat” in an anchor. □

14.1.9 Exercises for Section 14.1
Exercise 14.1.1: Suppose blocks hold either three records, or ten key-pointer 
pairs. As a function of n, the number of records, how many blocks do we need 
to hold a data file and: (a) A dense index (b) A sparse index?
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More About Information Retrieval

There are a number of techniques for improving the effectiveness of re
trieval of documents given keywords. While a complete treatment is be
yond the scope of this book, here are two useful techniques:

1. Stemming. We remove suffixes to find the “stem” of each word, be
fore entering its occurrence into the index. For example, plural nouns 
can be treated as their singular versions. Thus, in Example 14.8, the 
inverted index evidently uses stemming, since the search for word 
“dog” got us not only documents with “dog,” but also a document 
with the word “dogs.”

2. Stop words. The most common words, such as “the” or “and,” are 
called stop words and often are excluded from the inverted index. 
The reason is that the several hundred most common words appear in 
too many documents to make them useful as a way to find documents 
about specific subjects. Eliminating stop words also reduces the size 
of the inverted index significantly.

E xercise  14.1.2: Repeat Exercise 14.1.1 if blocks can hold up to 30 records 
or 200 key-pointer pairs, but neither data- nor index-blocks are allowed to be 
more than 80% full.

! E xercise  14.1.3: Repeat Exercise 14.1.1 if we use as many levels of index as 
is appropriate, until the final level of index has only one block.

! E xercise  14.1.4: Consider a clustered file organization like Fig. 14.6, and 
suppose that ten records, either studio records or movie records, will fit on 
one block. Also assume that the number of movies per studio is uniformly 
distributed between 1 and m. As a function of m, what is the average number 
of disk I /O ’s needed to retrieve a studio and all its movies? What would the 
number be if movies were randomly distributed over a large number of blocks?

E xercise  14.1.5: Suppose that blocks can hold either three records, ten key- 
pointer pairs, or fifty pointers. Using the indirect-buckets scheme of Fig. 14.7:

a) If the average search-key value appears in 10 records, how many blocks 
do we need to hold 3000 records and its secondary index structure? How 
many blocks would be needed if we did not use buckets?

! b) If there are no constraints on the number of records that can have a given 
search-key value, what are the minimum and maximum number of blocks 
needed?
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E xercise 14.1.6: On the assumptions of Exercise 14.1.5(a), what is the av
erage number of disk I /O ’s to find and retrieve the ten records with a given 
search-key value, both with and without the bucket structure? Assume nothing 
is in memory to begin, but it is possible to locate index or bucket blocks without 
incurring additional I /O ’s beyond what is needed to retrieve these blocks into 
memory.

E xercise 14.1.7: Suppose we have a repository of 1000 documents, and we 
wish to build an inverted index with 10,000 words. A block can hold ten 
word-pointer pairs or 50 pointers to either a document or a position within 
a document. The distribution of words is Zipfian (see the box on “The Zipfian 
Distribution” in Section 16.4.3); the number of occurrences of the ith most 
frequent word is 100000/\/i, for i — 1 ,2 ,. ..  , 10000.

a) What is the averge number of words per document?

b) Suppose our inverted index only records for each word all the documents 
that have that word. What is the maximum number of blocks we could 
need to hold the inverted index?

c) Suppose our inverted index holds pointers to each occurrence of each word. 
How many blocks do we need to hold the inverted index?

d) Repeat (b) if the 400 most common words ( “stop” words) are not included 
in the index.

e) Repeat (c) if the 400 most common words are not included in the index.

E xercise 14.1.8: If we use an augmented inverted index, such as in Fig. 14.10, 
we can perform a number of other kinds of searches. Suggest how this index 
could be used to find:

a) Documents in which “cat” and “dog” appeared within five positions of 
each other in the same type of element (e.g., title, text, or anchor).

b) Documents in which “dog” followed “cat” separated by exactly one posi
tion.

c) Documents in which “dog” and “cat” both appear in the title.

14.2 B-Trees
While one or two levels of index are often very helpful in speeding up queries, 
there is a more general structure that is commonly used in commercial systems. 
This family of data structures is called B-trees, and the particular variant that 
is most often used is known as a B+ tree. In essence:
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• B-trees automatically maintain as many levels of index as is appropriate 
for the size of the file being indexed.

• B-trees manage the space on the blocks they use so that every block is 
between half used and completely full.

In the following discussion, we shall talk about “B-trees,” but the details will 
all be for the B+ tree variant. Other types of B-tree are discussed in exercises.

14.2.1 The Structure of B-trees
A B-tree organizes its blocks into a tree that is balanced, meaning that all paths 
from the root to a leaf have the same length. Typically, there are three layers in 
a B-tree: the root, an intermediate layer, and leaves, but any number of layers 
is possible. To help visualize B-trees, you may wish to look ahead at Figs. 14.11 
and 14.12, which show nodes of a B-tree, and Fig. 14.13, which shows an entire 
B-tree.

There is a parameter n  associated with each B-tree index, and this parameter 
determines the layout of all blocks of the B-tree. Each block will have space for 
n search-key values and n  +  1 pointers. In a sense, a B-tree block is similar to 
the index blocks introduced in Section 14.1.2, except that the B-tree block has 
an extra pointer, along with n  key-pointer pairs. We pick n to be as large as 
will allow n -1-1 pointers and n  keys to fit in one block.

E xam ple 14.10: Suppose our blocks are 4096 bytes. Also let keys be integers 
of 4 bytes and let pointers be 8 bytes. If there is no header information kept 
on the blocks, then we want to find the largest integer value of n such that 
4n +  8(n +  1) < 4096. That value is n =  340. □

There are several important rules about what can appear in the blocks of a 
B-tree:

• The keys in leaf nodes are copies of keys from the data file. These keys 
are distributed among the leaves in sorted order, from left to right.

•  At the root, there are at least two used pointers.2 All pointers point to 
B-tree blocks at the level below.

• At a leaf, the last pointer points to the next leaf block to the right, i.e., 
to the block with the next higher keys. Among the other n  pointers in 
a leaf block, at least \{n + 1)/2J of these pointers are used and point to 
data records; unused pointers are null and do not point anywhere. The 
*th pointer, if it is used, points to a record with the ith key.

technically, there is a possibility that the entire B-tree has only one pointer because it is 
an index into a data file with only one record. In this case, the entire tree is a root block that 
is also a leaf, and this block has only one key and one pointer. We shall ignore this trivial 
case in the descriptions that follow.
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• At an interior node, all n  +  1 pointers can be used to point to B-tree 
blocks at the next lower level. At least [(n +  1)/2] of them are actually 
used (but if the node is the root, then we require only that at least 2 be 
used, regardless of how large n  is). If j  pointers are used, then there will 
be j  — 1 keys, say K \ ,K 2 , ■. ■ The first pointer points to a part 
of the B-tree where some of the records with keys less than K i will be 
found. The second pointer goes to that part of the tree where all records 
with keys that are at least K\, but less than will be found, and so 
on. Finally, the j th  pointer gets us to the part of the B-tree where some 
of the records with keys greater than or equal to K j- i  are found. Note 
that some records with keys far below K\ or far above K j-i  may not be 
reachable from this block at all, but will be reached via another block at 
the same level.

• All used pointers and their keys appear at the beginning of the block, 
with the exception of the (n +  l)s t pointer in a leaf, which points to the 
next leaf.

To record To record To record 
with key with key with key 

57 81 95

Figure 14.11: A typical leaf of a B-tree

E xam ple 14.11: Our running example of B-trees will use n = 3. That is, 
blocks have room for three keys and four pointers, which are atypically small 
numbers. Keys are integers. Figure 14.11 shows a leaf that is completely used. 
There are three keys, 57, 81, and 95. The first three pointers go to records with 
these keys. The last pointer, as is always the case with leaves, points to the 
next leaf to the right in the order of keys; it would be null if this leaf were the 
last in sequence.

A leaf is not necessarily full, but in our example with n  =  3, there must 
be at least two key-pointer pairs. That is, the key 95 in Fig. 14.11 might be 
missing, and if so, the third pointer would be null.

Figure 14.12 shows a typical interior node. There are three keys, 14, 52, 
and 78. There are also four pointers in this node. The first points to a part of 
the B-tree from which we can reach only records with keys less than 14 — the 
first of the keys. The second pointer leads to all records with keys between the 
first and second keys of the B-tree block; the third pointer is for those records
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14 52 78
/ \

To keys To keys To keys To keys 
AT <14 14 < K< 52 52 < AT< 78 K >  78

Figure 14.12: A typical interior node of a B-tree

between the second and third keys of the block, and the fourth pointer lets us 
reach some of the records with keys equal to or above the third key of the block.

As with our example leaf, it is not necessarily the case that all slots for keys 
and pointers are occupied. However, with n =  3, at least the first key and the 
first two pointers must be present in an interior node. □

E xam ple  14.12: Figure 14.13 shows an entire three-level B-tree, with n  =  3, 
as in Example 14.11. We have assumed that the data file consists of records 
whose keys are all the primes from 2 to 47. Notice that at the leaves, each of 
these keys appears once, in order. All leaf blocks have two or three key-pointer 
pairs, plus a pointer to the next leaf in sequence. The keys are in sorted order 
as we look across the leaves from left to right.

The root has only two pointers, the minimum possible number, although it 
could have up to four. The one key at the root separates those keys reachable 
via the first pointer from those reachable via the second. That is, keys up to
12 could be found in the first subtree of the root, and keys 13 and up are in the 
second subtree.
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If we look at the first child of the root, with key 7, we again find two pointers, 
one to keys less than 7 and the other to keys 7 and above. Note that the second 
pointer in this node gets us only to keys 7 and 11, not to all keys > 7, such as 
13.

Finally, the second child of the root has all four pointer slots in use. The 
first gets us to some of the keys less than 23, namely 13, 17, and 19. The second 
pointer gets us to all keys K  such that 23 < K  <31; the third pointer lets us 
reach all keys K  such that 31 < K  < 43, and the fourth pointer gets us to some 
of the keys > 43 (in this case, to all of them). □

14.2.2 Applications of B-trees

The B-tree is a powerful tool for building indexes. The sequence of pointers at 
the leaves of a B-tree can play the role of any of the pointer sequences coming 
out of an index file that we learned about in Section 14.1. Here are some 
examples:

1. The search key of the B-tree is the primary key for the data file, and the 
index is dense. That is, there is one key-pointer pair in a leaf for every 
record of the data file. The data file may or may not be sorted by primary 
key.

2. The data file is sorted by its primary key, and the B-tree is a sparse index 
with one key-pointer pair at a leaf for each block of the data file.

3. The data file is sorted by an attribute that is not a key, and this attribute 
is the search key for the B-tree. For each key value K  that appears in the 
data file there is one key-pointer pair at a leaf. That pointer goes to the 
first of the records that have K  as their sort-key value.

There are additional applications of B-tree variants that allow multiple oc
currences of the search key3 at the leaves. Figure 14.14 suggests what such a 
B-tree might look like.

If we do allow duplicate occurrences of a search key, then we need to change 
slightly the definition of what the keys at interior nodes mean, which we dis
cussed in Section 14.2.1. Now, suppose there are keys K \ ,K i , . . .  , K n at an 
interior node. Then Ki will be the smallest new key that appears in the part of 
the subtree accessible from the (i +  l)st pointer. By “new,” we mean that there 
are no occurrences of Ki in the portion of the tree to the left of the (i +  l)st 
subtree, but at least one occurrence of Ki in that subtree. Note that in some 
situations, there will be no such key, in which case Ki can be taken to be null. 
Its associated pointer is still necessary, as it points to a significant portion of 
the tree that happens to have only one key value within it.

3 Remember that a “search key” is not necessarily a “key” in the sense of being unique.



638 CHAPTER 14. INDEX STRUCTURES

17 _
/rk

- 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Figure 14.14: A B-tree with duplicate keys

E xam ple  14.13: Figure 14.14 shows a B-tree similar to Fig. 14.13, but with 
duplicate values. In particular, key 11 has been replaced by 13, and keys 19, 
29, and 31 have all been replaced by 23. As a result, the key at the root is 17, 
not 13. The reason is that, although 13 is the lowest key in the second subtree 
of the root, it is not a new key for that subtree, since it also appears in the first 
subtree.

We also had to make some changes to the second child of the root. The 
second key is changed to 37, since that is the first new key of the third child 
(fifth leaf from the left). Most interestingly, the first key is now null. The reason 
is that the second child (fourth leaf) has no new keys at all. Put another way, 
if we were searching for any key and reached the second child of the root, we 
would never want to start at its second child. If we are searching for 23 or 
anything lower, we want to start at its first child, where we will either find 
what we are looking for (if it is 17), or find the first of what we are looking for 
(if it is 23). Note that:

• We would not reach the second child of the root searching for 13; we would 
be directed at the root to its first child instead.

•  If we are looking for any key between 24 and 36, we are directed to the 
third leaf, but when we don’t  find even one occurrence of what we are 
looking for, we know not to search further right. For example, if there 
were a key 24 among the leaves, it would either be on the 4th leaf, in which 
case the null key in the second child of the root would be 24 instead, or 
it would be in the 5th leaf, in which case the key 37 at the second child 
of the root would be 24.

□
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14.2.3 Lookup in B-Trees
We now revert to our original assumption that there are no duplicate keys at 
the leaves. We also suppose that the B-tree is a dense index, so every search-key 
value that appears in the data file will also appear at a leaf. These assumptions 
make the discussion of B-tree operations simpler, but is not essential for these 
operations. In particular, modifications for sparse indexes are similar to the 
changes we introduced in Section 14.1.3 for indexes on sequential files.

Suppose we have a B-tree index and we want to find a record with search- 
key value K . We search for K  recursively, starting at the root and ending at a 
leaf. The search procedure is:

BASIS: If we are at a leaf, look among the keys there. If the ith key is K , then 
the ith  pointer will take us to the desired record.

INDUCTION: If we are at an interior node with keys K i ,K 2 , . . .  , K n, follow 
the rules given in Section 14.2.1 to decide which of the children of this node 
should next be examined. That is, there is only one child that could lead to a 
leaf with key K . If K  < K \ , then it is the first child, if K \ < K  < K 2 , it is the 
second child, and so on. Recursively apply the search procedure at this child.

E xam ple 14.14: Suppose we have the B-tree of Fig. 14.13, and we want to 
find a record with search key 40. We start at the root, where there is one 
key, 13. Since 13 < 40, we follow the second pointer, which leads us to the 
second-level node with keys 23, 31, and 43.

At that node, we find 31 < 40 < 43, so we follow the third pointer. We are 
thus led to the leaf with keys 31, 37, and 41. If there had been a record in the 
data file with key 40, we would have found key 40 at this leaf. Since we do not 
find 40, we conclude that there is no record with key 40 in the underlying data.

Note that had we been looking for a record with key 37, we would have 
taken exactly the same decisions, but when we got to the leaf we would find 
key 37. Since it is the second key in the leaf, we follow the second pointer, 
which will lead us to the data record with key 37. □

14.2.4 Range Queries
B-trees are useful not only for queries in which a single value of the search key 
is sought, but for queries in which a range of values are asked for. Typically, 
range queries have a term in the WHERE-clause that compares the search key 
with a value or values, using one of the comparison operators other than = or 
<>. Examples of range queries using a search-key attribute k are:

SELECT * FROM R SELECT * FROM R
WHERE R.k > 40; WHERE R.k >= 10 AND R.k <= 25;

If we want to find all keys in the range [a, 6] at the leaves of a B-tree, we do 
a lookup to find the key a. Whether or not it exists, we are led to a leaf where



640 CHAPTER 14. INDEX STRUCTURES

a could be, and we search the leaf for keys that are a or greater. Each such 
key we find has an associated pointer to one of the records whose key is in the 
desired range. As long as we do not find a key greater than b in the current 
block, we follow the pointer to the next leaf and repeat our search for keys in 
the range [a, 6],

The above search algorithm also works if b is infinite; i.e., there is only a 
lower bound and no upper bound. In that case, we search all the leaves from 
the one that would hold key a to the end of the chain of leaves. If a is — oo 
(that is, there is an upper bound on the range but no lower bound), then the 
search for “minus infinity” as a search key will always take us to the first leaf. 
The search then proceeds as above, stopping only when we pass the key b.

E xam ple 14.15: Suppose we have the B-tree of Fig. 14.13, and we Eure given 
the range (10,25) to search for. We look for key 10, which leads us to the second 
leaf. The first key is less than 10, but the second, 11, is at least 10. We follow 
its associated pointer to get the record with key 11.

Since there are no more keys in the second leaf, we follow the chain to the 
third leaf, where we find keys 13, 17, and 19. All are less than or equal to 25, 
so we follow their associated pointers and retrieve the records with these keys. 
Finally, we move to the fourth leaf, where we find key 23. But the next key 
of that leaf, 29, exceeds 25, so we are done with our search. Thus, we have 
retrieved the five records with keys 11 through 23. □

14.2.5 Insertion Into B-Trees
We see some of the advantages of B-trees over simpler multilevel indexes when 
we consider how to insert a new key into a B-tree. The corresponding record 
will be inserted into the file being indexed by the B-tree, using any of the 
methods discussed in Section 14.1; here we consider how the B-tree changes. 
The insertion is, in principle, recursive:

• We try to find a place for the new key in the appropriate leaf, and we put 
it there if there is room.

•  If there is no room in the proper leaf, we split the leaf into two and divide 
the keys between the two new nodes, so each is half full or just over half 
full.

•  The splitting of nodes at one level appears to the level above as if a new 
key-pointer pair needs to be inserted at that higher level. We may thus 
recursively apply this strategy to insert at the next level: if there is room, 
insert it; if not, split the parent node and continue up the tree.

• As an exception, if we try to insert into the root, and there is no room, 
then we split the root into two nodes and create a new root at the next 
higher level; the new root has the two nodes resulting from the split as 
its children. Recall that no matter how large n  (the number of slots for
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keys at a node) is, it is always permissible for the root to have only one 
key and two children.

When we split a node and insert it into its parent, we need to be careful how 
the keys are managed. First, suppose N  is a, leaf whose capacity is n keys. Also 
suppose we are trying to insert an (n + l)s t key and its associated pointer. We 
create a new node M , which will be the sibling of N , immediately to its right. 
The first |"(n +  1)/2] key-pointer pairs, in sorted order of the keys, remain with 
N , while the other key-pointer pairs move to M . Note that both nodes N  and 
M  are left with a sufficient number of key-pointer pairs — at least [(n +  1)/2J 
pairs.

Now, suppose N  is an interior node whose capacity is n  keys and n + 1 
pointers, and N  has just been assigned n + 2  pointers because of a node splitting 
below. We do the following:

1. Create a new node M , which will be the sibling of N , immediately to its 
right.

2. Leave at N  the first |~(n +  2)/2] pointers, in sorted order, and move to 
M  the remaining [(n +  2)/2J pointers.

3. The first fri/2"| keys stay with N , while the last \n/2\ keys move to 
M . Note that there is always one key in the middle left over; it goes with 
neither N  nor M . The leftover key K  indicates the smallest key reachable 
via the first of M ’s children. Although this key doesn’t appear in N  or 
M , it is associated with M , in the sense that it represents the smallest 
key reachable via M . Therefore K  will be inserted into the parent of N  
and M  to divide searches between those two nodes.

E xam ple 14.16: Let us insert key 40 into the B-tree of Fig. 14.13. We find 
the proper leaf for the insertion by the lookup procedure of Section 14.2.3. As 
found in Example 14.14, the insertion goes into the fifth leaf. Since this leaf 
now has four key-pointer pairs — 31, 37, 40, and 41 — we need to split the 
leaf. Our first step is to create a new node and move the highest two keys, 40 
and 41, along with their pointers, to that node. Figure 14.15 shows this split.

Notice that although we now show the nodes on four ranks to save space, 
there are still only three levels to the tree. The seven leaves are linked by their 
last pointers, which still form a chain from left to right.

We must now insert a pointer to the new leaf (the one with keys 40 and 
41) into the node above it (the node with keys 23, 31, and 43). We must also 
associate with this pointer the key 40, which is the least key reachable through 
the new leaf. Unfortunately, the parent of the split node is already full; it has 
no room for another key or pointer. Thus, it too must be split.

We start with pointers to the last five leaves and the list of keys represent
ing the least keys of the last four of these leaves. That is, we have pointers 
Pi, P2 , P3 , Pi, P5 to the leaves whose least keys are 13, 23, 31, 40, and 43, and
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Figure 14.15: Beginning the insertion of key 40

we have the key sequence 23, 31, 40, 43 to separate these pointers. The first 
three pointers and first two keys remain with the split interior node, while the 
last two pointers and last key go to the new node. The remaining key, 40, 
represents the least key accessible via the new node.

Figure 14.16 shows the completion of the insert of key 40. The root now 
has three children; the last two are the split interior node. Notice that the key 
40, which marks the lowest of the keys reachable via the second of the split 
nodes, has been installed in the root to separate the keys of the root’s second 
and third children. □

14.2.6 Deletion From B-Trees
If we are to delete a record with a given key K ,  we must first locate that record 
and its key-pointer pair in a leaf of the B-tree. This part of the deletion process 
is essentially a lookup, as in Section 14.2.3. We then delete the record itself 
from the data file, and we delete the key-pointer pair from the B-tree.

If the B-tree node from which a deletion occurred still has at least the 
minimum number of keys and pointers, then there is nothing more to be done.4 
However, it is possible that the node was right at the minimum occupancy 
before the deletion, so after deletion the constraint on the number of keys is

4If  th e  d a ta  record w ith  th e  least key a t  a  leaf is deleted , th en  we have th e  op tion  of raising  
th e  ap p ro p ria te  key a t  one of th e  ancesto rs of th a t  leaf, b u t th e re  is no requ irem ent th a t  we 
do so; all searches will still go to  th e  ap p ro p ria te  leaf.



14.2. B-TREES  643

violated. We then need to do one of two things for a node N  whose contents 
are subminimum; one case requires a recursive deletion up the tree:

1. If one of the adjacent siblings of node N  has more than the minimum 
number of keys and pointers, then one key-pointer pair can be moved to 
N , keeping the order of keys intact. Possibly, the keys at the parent of N  
must be adjusted to reflect the new situation. For instance, if the right 
sibling of N , say node M , provides an extra key and pointer, then it must 
be the smallest key that is moved from M  to N . At the parent of M  and 
TV, there is a key that represents the smallest key accessible via M ; that 
key must be increased to reflect the new M.

2. The hard case is when neither adjacent sibling can be used to provide 
an extra key for N . However, in that case, we have two adjacent nodes, 
N  and a sibling M ; the latter has the minimum number of keys and the 
former has fewer than the minimum. Therefore, together they have no 
more keys and pointers than are allowed in a single node. We merge these 
two nodes, effectively deleting one of them. We need to adjust the keys at 
the parent, and then delete a key and pointer at the parent. If the parent 
is still full enough, then we are done. If not, then we recursively apply 
the deletion algorithm at the parent.

E xam ple 14.17: Let us begin with the original B-tree of Fig. 14.13, before the 
insertion of key 40. Suppose we delete key 7. This key is found in the second 
leaf. We delete it, its associated pointer, and the record that pointer points to.
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The second leaf now has only one key, and we need at least two in every 
leaf. But we are saved by the sibling to the left, the first leaf, because that 
leaf has an extra key-pointer pair. We may therefore move the highest key, 5, 
and its associated pointer to the second leaf. The resulting B-tree is shown in 
Fig. 14.17. Notice that because the lowest key in the second leaf is now 5, the 
key in the parent of the first two leaves has been changed from 7 to 5.

5 11 13 17 19 23 29 31 37 41

1

43 47

Figure 14.17: Deletion of key 7

Next, suppose we delete key 11. This deletion has the same effect on the 
second leaf; it again reduces the number of its keys below the minimum. This 
time, however, we cannot take a key from the first leaf, because the latter is 
down to the minimum number of keys. Additionally, there is no sibling to the 
right from which to take a key.5 Thus, we need to merge the second leaf with 
a sibling, namely the first leaf.

The three remaining key-pointer pairs from the first two leaves fit in one 
leaf, so we move 5 to the first leaf and delete the second leaf. The pointers 
and keys in the parent are adjusted to reflect the new situation at its children; 
specifically, the two pointers are replaced by one (to the remaining leaf) and 
the key 5 is no longer relevant and is deleted. The situation is now as shown in 
Fig. 14.18.

The deletion of a leaf has adversely affected the parent, which is the left 
child of the root. That node, as we see in Fig. 14.18, now has no keys and only 
one pointer. Thus, we try to obtain an extra key and pointer from an adjacent 
sibling. This time we have the easy case, since the other child of the root can 
afford to give up its smallest key and a pointer.

The change is shown in Fig. 14.19. The pointer to the leaf with keys 13, 17,

BN otice th a t  th e  leaf to  th e  rig h t, w ith  keys 13, 17, an d  19, is n o t a  sibling, because it has 
a  different p aren t. W e could take  a  key from  th a t  node anyway, b u t th e n  th e  a lgo rithm  for 
ad ju s tin g  keys th ro u g h o u t th e  tree  becom es m ore com plex. W e leave th is  enhancem ent as an 
exercise.
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Figure 14.18: Beginning the deletion of key 11

and 19 has been moved from the second child of the root to the first child. We 
have also changed some keys at the interior nodes. The key 13, which used to 
reside at the root and represented the smallest key accessible via the pointer 
that was transferred, is now needed at the first child of the root. On the other 
hand, the key 23, which used to separate the first and second children of the 
second child of the root now represents the smallest key accessible from the 
second child of the root. It therefore is placed at the root itself. □

14.2.7 Efficiency of B-Trees
B-trees allow lookup, insertion, and deletion of records using very few disk I /O ’s 
per file operation. First, we should observe that if n, the number of keys per 
block, is reasonably large, then splitting and merging of blocks will be rare 
events. Further, when such an operation is needed, it almost always is limited 
to the leaves, so only two leaves and their parent are affected. Thus, we can 
essentially neglect the disk-I/O cost of B-tree reorganizations.

However, every search for the record(s) with a given search key requires us 
to go from the root down to a leaf, to find a pointer to the record. Since we 
are only reading B-tree blocks, the number of disk I /O ’s will be the number 
of levels the B-tree has, plus the one (for lookup) or two (for insert or delete) 
disk I /O ’s needed for manipulation of the record itself. We must thus ask: 
how many levels does a B-tree have? For the typical sizes of keys, pointers, 
and blocks, three levels are sufficient for all but the largest databases. Thus, 
we shall generally take 3 as the number of levels of a B-tree. The following 
example illustrates why.

E xam ple 14.18: Recall our analysis in Example 14.10, where we determined 
that 340 key-pointer pairs could fit in one block for our example data. Suppose
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Figure 14.19: Completing the deletion of key 11

that the average block has an occupancy midway between the minimum and 
maximum, i.e., a typical block has 255 pointers. With a root, 255 children, 
and 2552 =  65025 leaves, we shall have among those leaves 2553, or about 16.6 
million pointers to records. That is, files with up to 16.6 million records can be 
accommodated by a 3-level B-tree. □

However, we can use even fewer than three disk I /O ’s per search through the 
B-tree. The root block of a B-tree is an excellent choice to keep permanently 
buffered in main memory. If so, then every search through a 3-level B-tree 
requires only two disk reads. In fact, under some circumstances it may make 
sense to keep second-level nodes of the B-tree buffered in main memory as well, 
reducing the B-tree search to a single disk I/O , plus whatever is necessary to 
manipulate the blocks of the data file itself.

14.2.8 Exercises for Section 14.2
Exercise 14.2.1: Suppose that blocks can hold either ten records or 99 keys 
and 100 pointers. Also assume that the average B-tree node is 70% full; i.e., it 
will have 69 keys and 70 pointers. We can use B-trees as part of several different 
structures. For each structure described below, determine (i ) the total number 
of blocks needed for a 1,000,000-record file, and («) the average number of disk 
I /O ’s to retrieve a record given its search key. You may assume nothing is in 
memory initially, and the search key is the primary key for the records.

a) The data file is a sequential file, sorted on the search key, with 10 records 
per block. The B-tree is a dense index.

b) The same as (a), but the data file consists of records in no particular 
order, packed 10 to a block.
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Should We Delete From B-Trees?

There are B-tree implementations that don’t fix up deletions at all. If a 
leaf has too few keys and pointers, it is allowed to remain as it is. The 
rationale is that most files grow on balance, and while there might be an 
occasional deletion that makes a leaf become subminimum, the leaf will 
probably soon grow again and attain the minimum number of key-pointer 
pairs once again.

Further, if records have pointers from outside the B-tree index, then 
we need to replace the record by a “tombstone,” and we don’t  want to 
delete its pointer from the B-tree anyway. In certain circumstances, when 
it can be guaranteed that all accesses to the deleted record will go through 
the B-tree, we can even leave the tombstone in place of the pointer to the 
record at a leaf of the B-tree. Then, space for the record can be reused.

c) The same as (a), but the B-tree is a sparse index.

! d) Instead of the B-tree leaves having pointers to data records, the B-tree 
leaves hold the records themselves. A block can hold ten records, but 
on average, a leaf block is 70% full; i.e., there are seven records per leaf 
block.

e) The data file is a sequential file, and the B-tree is a sparse index, but each 
primary block of the data file has one overflow block. On average, the 
primary block is full, and the overflow block is half full. However, records 
are in no particular order within a primary block and its overflow block.

E xercise 14.2.2: Repeat Exercise 14.2.1 in the case that the query is a range 
query that is matched by 1000 records.

E xercise 14.2.3: Suppose pointers are 4 bytes long, and keys are 12 bytes 
long. How many keys and pointers will a block of 16,384 bytes have?

Exercise 14.2.4: What are the minimum numbers of keys and pointers in 
B-tree (i) interior nodes and (ii) leaves, when:

a) n  =  10; i.e., a block holds 10 keys and 11 pointers.

b) n =  11; i.e., a block holds 11 keys and 12 pointers.

E xercise 14.2.5: Execute the following operations on Fig. 14.13. Describe 
the changes for operations that modify the tree.

a) Lookup the record with key 41.

b) Lookup the record with key 40.
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c) Lookup all records in the range 20 to 30.

d) Lookup all records with keys less than 30.

e) Lookup all records with keys greater than 30.

f) Insert a record with key 1.

g) Insert records with keys 14 through 16.

h) Delete the record with key 23.

i) Delete all the records with keys 23 and higher.

Exercise 14.2.6: When duplicate keys are allowed in a B-tree, there are some 
necessary modifications to the algorithms for lookup, insertion, and deletion 
that we described in this section. Give the changes for: (a) lookup (b) insertion
(c) deletion.

! E xercise 14.2.7: In Example 14.17 we suggested that it would be possible 
to borrow keys from a nonsibling to the right (or left) if we used a more com
plicated algorithm for maintaining keys at interior nodes. Describe a suitable 
algorithm that rebalances by borrowing from adjacent nodes at a level, regard
less of whether they are siblings of the node that has too many or too few 
key-pointer pairs.

! Exercise 14.2.8: If we use the 3-key, 4-pointer nodes of our examples in this 
section, how many different B-trees are there when the data file has the following 
numbers of records: (a) 6 (b) 10 !! (c) 15.

! Exercise 14.2.9: Suppose we have B-tree nodes with room for three keys and 
four pointers, as in the examples of this section. Suppose also that when we 
split a leaf, we divide the pointers 2 and 2, while when we split an interior node, 
the first 3 pointers go with the first (left) node, and the last 2 pointers go with 
the second (right) node. We start with a leaf containing pointers to records 
with keys 1, 2, and 3. We then add in order, records with keys 4, 5, 6, and so 
on. At the insertion of what key will the B-tree first reach four levels?

14.3 Hash Tables
There are a number of data structures involving a hash table that are useful as 
indexes. We assume the reader has seen the hash table used as a main-memory 
data structure. In such a structure there is a hash function h that takes a search 
key (the hash key) as an argument and computes from it an integer in the range
0 to B  — 1, where B  is the number of buckets. A bucket array, which is an array 
indexed from 0 to B  — 1, holds the headers of B  linked lists, one for each bucket 
of the array. If a record has search key K ,  then we store the record by linking 
it to the bucket list for the bucket numbered h(K).
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14.3.1 Secondary-Storage Hash Tables
A hash table that holds a very large number of records, so many that they must 
be kept mainly in secondary storage, differs from the main-memory version in 
small but important ways. First, the bucket array consists of blocks, rather 
than pointers to the headers of lists. Records that are hashed by the hash 
function h to a certain bucket are put in the block for that bucket. If a bucket 
has too many records, a chain of overflow blocks can be added to the bucket to 
hold more records.

We shall assume that the location of the first block for any bucket i can be 
found given i. For example, there might be a main-memory array of pointers 
to blocks, indexed by the bucket number. Another possibility is to put the first 
block for each bucket in fixed, consecutive disk locations, so we can compute 
the location of bucket i from the integer i.

0 d J

1 e J
c

b J2
a J

3 f

Figure 14.20: A hash table

E xam ple 14.19: Figure 14.20 shows a hash table. To keep our illustrations 
manageable, we assume that a block can hold only two records, and that B  =  4;
i.e., the hash function h returns values from 0 to 3. We show certain records 
populating the hash table. Keys are letters a through /  in Fig. 14.20. We 
assume that h(d) =  0, h(c) - h(e) =  1, h(b) =  2, and h(a) = h (f) — 3. Thus, 
the six records are distributed into blocks as shown. □

Note that we show each block in Fig. 14.20 with a “nub” at the right end. 
This nub represents additional information in the block’s header. We shall use 
it to chain overflow blocks together, and starting in Section 14.3.5, we shall use 
it to keep other critical information about the block.

14.3.2 Insertion Into a Hash Table
When a new record with search key K  must be inserted, we compute h(K ). If 
the bucket numbered h(K ) has space, then we insert the record into the block 
for this bucket, or into one of the overflow blocks on its chain if there is no room
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Choice of Hash Function

The hash function should “hash” the key so the resulting integer is a 
seemingly random function of the key. Thus, buckets will tend to have 
equal numbers of records, which improves the average time to access a 
record, as we shall discuss in Section 14.3.4. Also, the hash function 
should be easy to compute, since we shall compute it many times.

A common choice of hash function when keys are integers is to com
pute the remainder of K /B ,  where K  is the key value and B  is the number 
of buckets. Often, B  is chosen to be a prime, although there are reasons 
to make B  a power of 2, as we discuss starting in Section 14.3.5. For 
character-string search keys, we may treat each character as an integer, 
sum these integers, and take the remainder when the sum is divided by B.

in the first block. If none of the blocks of the chain for bucket h(K ) has room, 
we add a new overflow block to the chain and store the new record there.

E xam ple 14.20: Suppose we add to the hash table of Fig. 14.20 a record with 
key g, and h(g) =  1. Then we must add the new record to the bucket numbered
1. However, the block for that bucket already has two records. Thus, we add a 
new block and chain it to the original block for bucket 1. The record with key 
g goes in that block, as shown in Fig. 14.21. □

0
d J

1
e 4-
c

2
b J

3
a J
f

Figure 14.21: Adding an additional block to a hash-table bucket

14.3.3 Hash-Table Deletion
Deletion of the record (or records) with search key K  follows the same pattern 
as insertion. We go to the bucket numbered h(K ) and search for records with 
that search key. Any that we find are deleted. If we are able to move records
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around among blocks, then after deletion we may optionally consolidate the 
blocks of a bucket into one fewer block.6

E xam ple 14.21: Figure 14.22 shows the result of deleting the record with key 
c from the hash table of Fig. 14.21. Recall h(c) = 1, so we go to the bucket 
numbered 1 (i.e., the second bucket) and search all its blocks to find a record 
(or records if the search key were not the primary key) with key c. We find it 
in the first block of the chain for bucket 1. Since there is now room to move 
the record with key g from the second block of the chain to the first, we can do 
so and remove the second block.

0
d J

1
e J
g
b J

2

3
f J

Figure 14.22: Result of deletions from a hash table

We also show the deletion of the record with key a. For this key, we found 
our way to bucket 3, deleted it, and “consolidated” the remaining record at the 
beginning of the block. □

14.3.4 Efficiency of Hash Table Indexes
Ideally, there are enough buckets that most of them fit on one block. If so, 
then the typical lookup takes only one disk I/O , and insertion or deletion from 
the file takes only two disk I /O ’s. That number is significantly better than 
straightforward sparse or dense indexes, or B-tree indexes (although hash tables 
do not support range queries as B-trees do; see Section 14.2.4).

However, if the file grows, then we shall eventually reach a situation where 
there are many blocks in the chain for a typical bucket. If so, then we need to 
search long lists of blocks, taking at least one disk I/O  per block. Thus, there 
is a good reason to try to keep the number of blocks per bucket low.

The hash tables we have examined so far are called static hash tables, because 
B, the number of buckets, never changes. However, there are several kinds of 
dynamic hash tables, where B  is allowed to vary so it approximates the number

®A risk of consolidating blocks of a chain whenever possible is that an oscillation, where 
we alternately insert and delete records from a bucket, will cause a block to be created or 
destroyed at each step.
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of records divided by the number of records that can fit on a block; i.e., there 
is about one block per bucket. We shall discuss two such methods:

1. Extensible hashing in Section 14.3.5, and

2. Linear hashing in Section 14.3.7.

The first grows B  by doubling it whenever it is deemed too small, and the 
second grows B  by 1 each time statistics of the file suggest some growth is 
needed.

14.3.5 Extensible Hash Tables
Our first approach to dynamic hashing is called extensible hash tables. The 
major additions to the simpler static hash table structure are:

1. There is a level of indirection for the buckets. That is, an array of pointers 
to blocks represents the buckets, instead of the array holding the data 
blocks themselves.

2. The array of pointers can grow. Its length is always a power of 2, so in a 
growing step the number of buckets doubles.

3. However, there does not have to be a data block for each bucket; certain 
buckets can share a block if the total number of records in those buckets 
can fit in the block.

4. The hash function h computes for each key a sequence of k bits for some 
large k, say 32. However, the bucket numbers will at all times use some 
smaller number of bits, say i bits, from the beginning or end of this 
sequence. The bucket array will have 2* entries when * is the number of 
bits used.

E xam ple 14.22: Figure 14.23 shows a small extensible hash table. We sup
pose, for simplicity of the example, that k = 4; i.e., the hash function produces 
a sequence of only four bits. At the moment, only one of these bits is used, 
as indicated by * =  1 in the box above the bucket array. The bucket array 
therefore has only two entries, one for 0 and one for 1.

The bucket array entries point to two blocks. The first holds all the current 
records whose search keys hash to a bit sequence that begins with 0, and the 
second holds all those whose search keys hash to a sequence beginning with 
1. For convenience, we show the keys of records as if they were the entire bit 
sequence to which the hash function converts them. Thus, the first block holds 
a record whose key hashes to 0001, and the second holds records whose keys 
hash to 1001 and 1100. □
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Buckets Data blocks

Figure 14.23: An extensible hash table

We should notice the number 1 appearing in the “nub” of each of the blocks 
in Fig. 14.23. This number, which would actually appear in the block header, 
indicates how many bits of the hash function’s sequence is used to determine 
membership of records in this block. In the situation of Example 14.22, there 
is only one bit considered for all blocks and records, but as we shall see, the 
number of bits considered for various blocks can differ as the hash table grows. 
That is, the bucket array size is determined by the maximum number of bits 
we are now using, but some blocks may use fewer.

14.3.6 Insertion Into Extensible Hash Tables
Insertion into an extensible hash table begins like insertion into a static hash 
table. To insert a record with search key K ,  we compute h(K ), take the first 
i bits of this bit sequence, and go to the entry of the bucket array indexed by 
these i bits. Note that we can determine i because it is kept as part of the data 
structure.

We follow the pointer in this entry of the bucket array and arrive at a 
block B. If there is room to put the new record in block B, we do so and we 
are done. If there is no room, then there are two possibilities, depending on 
the number j ,  which indicates how many bits of the hash value are used to 
determine membership in block B  (recall the value of j  is found in the “nub” 
of each block in figures).

1. If j  < i, then nothing needs to be done to the bucket array. We:

(a) Split block B  into two.
(b) Distribute records in B  to the two blocks, based on the value of their 

(j +  l)st bit — records whose key has 0 in that bit stay in B  and 
those with 1 there go to the new block.

(c) Put j  +  1 in each block’s “nub” (header) to indicate the number of 
bits used to determine membership.

(d) Adjust the pointers in the bucket array so entries that formerly 
pointed to B  now point either to B  or the new block, depending 
on their (j + l)st bit.
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Note that splitting block B  may not solve the problem, since by chance 
all the records of B  may go into one of the two blocks into which it was 
split. If so, we need to repeat the process on the overfull block, using the 
next higher value of j  and the block that is still overfull.

2. If j  — i, then we must first increment i by 1. We double the length of 
the bucket array, so it now has 2t+1 entries. Suppose w is a sequence 
of i bits indexing one of the entries in the previous bucket array. In the 
new bucket array, the entries indexed by both wO and w 1 (i.e., the two 
numbers derived from w by extending it with 0 or 1) each point to the 
same block that the w entry used to point to. That is, the two new entries 
share the block, and the block itself does not change. Membership in the 
block is still determined by whatever number of bits was previously used. 
Finally, we proceed to split block B  as in case 1. Since i is now greater 
than j ,  that case applies.

E xam ple 14.23: Suppose we insert into the table of Fig. 14.23 a record whose 
key hashes to the sequence 1010. Since the first bit is 1, this record belongs in 
the second block. However, that block is already full, so it needs to be split. 
We find that j  =  i =  1 in this case, so we first need to double the bucket array, 
as shown in Fig. 14.24. We have also set i — 2 in this figure.

Figure 14.24: Now, two bits of the hash function are used

Notice that the two entries beginning with 0 each point to the block for 
records whose hashed keys begin with 0, and that block still has the integer 1 
in its “nub” to indicate that only the first bit determines membership in the 
block. However, the block for records beginning with 1 needs to be split, so we 
partition its records into those beginning 10 and those beginning 11. A 2 in 
each of these blocks indicates that two bits are used to determine membership. 
Fortunately, the split is successful; since each of the two new blocks gets at least 
one record, we do not have to split recursively.

Now suppose we insert records whose keys hash to 0000 and 0111. These 
both go in the first block of Fig. 14.24, which then overflows. Since only one bit 
is used to determine membership in this block, while i = 2, we do not have to
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adjust the bucket array. We simply split the block, with 0000 and 0001 staying, 
and 0111 going to the new block. The entry for 01 in the bucket array is made 
to point to the new block. Again, we have been fortunate that the records did 
not all go in one of the new blocks, so we have no need to split recursively.

Figure 14.25: The hash table now uses three bits of the hash function

Now suppose a record whose key hashes to 1000 is inserted. The block for 
10 overflows. Since it already uses two bits to determine membership, it is 
time to split the bucket array again and set * =  3. Figure 14.25 shows the 
data structure at this point. Notice that the block for 10 has been split into 
blocks for 100 and 101, while the other blocks continue to use only two bits to 
determine membership. □

14.3.7 Linear Hash Tables

Extensible hash tables have some important advantages. Most significant is the 
fact that when looking for a record, we never need to search more than one data 
block. We also have to examine an entry of the bucket array, but if the bucket 
array is small enough to be kept in main memory, then there is no disk I/O  
needed to access the bucket array. However, extensible hash tables also suffer 
from some defects:

1. When the bucket array needs to be doubled in size, there is a substantial 
amount of work to be done (when i is large). This work interrupts access 
to the data file, or makes certain insertions appear to take a long time.
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2. When the bucket array is doubled in size, it may no longer fit in main 
memory, or may crowd out other data that we would like to hold in main 
memory. As a result, a system that was performing well might suddenly 
start using many more disk I/O ’s per operation.

3. If the number of records per block is small, then there is likely to be 
one block that needs to be split well in advance of the logical time to 
do so. For instance, if there are two records per block as in our running 
example, there might be one sequence of 20 bits that begins the keys of 
three records, even though the total number of records is much less than 
220. In that case, we would have to use i — 20 and a million-bucket array, 
even though the number of blocks holding records was much smaller than 
a million.

Another strategy, called linear hashing, grows the number of buckets more 
slowly. The principal new elements we find in linear hashing are:

• The number of buckets n  is always chosen so the average number of records 
per bucket is a fixed fraction, say 80%, of the number of records that fill 
one block.

•  Since blocks cannot always be split, overflow blocks are permitted, al
though the average number of overflow blocks per bucket will be much 
less than 1.

• The number of bits used to number the entries of the bucket array is 
["log2 n ] , where n  is the current number of buckets. These bits are always 
taken from the right (low-order) end of the bit sequence that is produced 
by the hash function.

• Suppose i bits of the hash function are being used to number array en
tries, and a record with key K  is intended for bucket aia2 • • ■ a*; that is, 
a\a,2 ■ ■ • at are the last i bits of h(K). Then let a\a2 ■•■ai be m, treated 
as an i-bit binary integer. If m  < n, then the bucket numbered m  exists, 
and we place the record in that bucket. If n < m  < 2®, then the bucket 
m  does not yet exist, so we place the record in bucket m  — 2*-1 , that is, 
the bucket we would get if we changed «i (which must be 1) to 0.

E xam ple 14.24: Figure 14.26 shows a linear hash table with n  =  2. We 
currently are using only one bit of the hash value to determine the buckets 
of records. Following the pattern established in Example 14.22, we assume the 
hash function h produces 4 bits, and we represent records by the value produced 
by h when applied to the search key of the record.

We see in Fig. 14.26 the two buckets, each consisting of one block. The 
buckets are numbered 0 and 1. All records whose hash value ends in 0 go in 
the first bucket, and those whose hash value ends in 1 go in the second.

Also part of the structure are the parameters i (the number of bits of the 
hash function that currently are used), n  (the current number of buckets), and r
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Figure 14.26: A linear hash table

(the current number of records in the hash table). The ratio r /n  will be limited 
so that the typical bucket will need about one disk block. We shall adopt the 
policy of choosing n, the number of buckets, so that there are no more than 
1.7n records in the file; i.e., r  < 1.7n. That is, since blocks hold two records, 
the average occupancy of a bucket does not exceed 85% of the capacity of a 
block. □

14.3.8 Insertion Into Linear Hash Tables
When we insert a new record, we determine its bucket by the algorithm outlined 
in Section 14.3.7. We compute h(K ), where K  is the key of the record, and 
we use the i bits at the end of bit sequence h(K) as the bucket number, m. If 
m < n, we put the record in bucket m, and if m  > n, we put the record in 
bucket m  — 2*-1 . If there is no room in the designated bucket, then we create 
an overflow block, add it to the chain for that bucket, and put the record there.

Each time we insert, we compare the current number of records r with the 
threshold ratio of r /n ,  and if the ratio is too high, we add the next bucket to 
the table. Note that the bucket we add bears no relationship to the bucket 
into which the insertion occurs! If the binary representation of the number of 
the bucket we add is ld2 • • • aj, then we split the bucket numbered O02 ■ ■ ■ di, 
putting records into one or the other bucket, depending on their last i bits. 
Note that all these records will have hash values that end in 02 • ■ - a», and only 
the ith  bit from the right end will vary.

The last important detail is what happens when n  exceeds 2*. Then, i is 
incremented by 1. Technically, all the bucket numbers get an additional 0 in 
front of their bit sequences, but there is no need to make any physical change, 
since these bit sequences, interpreted as integers, remain the same.

E xam ple 14.25: We shall continue with Example 14.24 and consider what 
happens when a record whose key hashes to 0101 is inserted. Since this bit 
sequence ends in 1, the record goes into the second bucket of Fig. 14.26. There 
is room for the record, so no overflow block is created.

However, since there are now 4 records in 2 buckets, we exceed the ratio 
1.7, and we must therefore raise n  to 3. Since |"log2 3] =  2, we should begin to 
think of buckets 0 and 1 as 00 and 01, but no change to the data structure is 
necessary. We add to the table the next bucket, which would have number 10. 
Then, we split the bucket 00, that bucket whose number differs from the added
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bucket only in the first bit. When we do the split, the record whose key hashes 
to 0000 stays in 00, since it ends with 00, while the record whose key hashes to 
1010 goes to 10 because it ends that way. The resulting hash table is shown in 
Fig. 14.27.

n=3

Figure 14.27: Adding a third bucket

Next, let us suppose we add a record whose search key hashes to 0001. 
The last two bits are 01, so we put it in this bucket, which currently exists. 
Unfortunately, the bucket’s block is full, so we add an overflow block. The three 
records are distributed among the two blocks of the bucket; we chose to keep 
them in numerical order of their hashed keys, but order is not important. Since 
the ratio of records to buckets for the table as a whole is 5/3, and this ratio is 
less than 1.7, we do not create a new bucket. The result is seen in Fig. 14.28.

Figure 14.28: Overflow blocks are used if necessary

Finally, consider the insertion of a record whose search key hashes to 0111. 
The last two bits are 11, but bucket 11 does not yet exist. We therefore redirect 
this record to bucket 01, whose number differs by having a 0 in the first bit. 
The new record fits in the overflow block of this bucket.

However, the ratio of the number of records to buckets has exceeded 1.7, so 
we must create a new bucket, numbered 11. Coincidentally, this bucket is the 
one we wanted for the new record. We split the four records in bucket 01, with 
0001 and 0101 remaining, and 0111 and 1111 going to the new bucket. Since 
bucket 01 now has only two records, we can delete the overflow block. The hash 
table is now as shown in Fig. 14.29.

Notice that the next time we insert a record into Fig. 14.29, we shall exceed
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n=4

0000 J

0001 J
0101
1010 J

0111 J
1111

Figure 14.29: Adding a fourth bucket

the 1.7 ratio of records to buckets. Then, we shall raise n  to 5 and i becomes
3. □

Lookup in a linear hash table follows the procedure we described for selecting 
the bucket in which an inserted record belongs. If the record we wish to look 
up is not in that bucket, it cannot be anywhere.

14.3.9 Exercises for Section 14.3
Exercise 14.3.1: Show what happens to the buckets in Fig. 14.20 if the fol
lowing insertions and deletions occur:

i. Records g through j  are inserted into buckets 0 through 3, respectively.

ii. Records a and b are deleted.

Hi. Records k through n  are inserted into buckets 0 through 3, respectively.

iv. Records c and d are deleted.

Exercise 14.3.2: We did not discuss how deletions can be carried out in a 
linear or extensible hash table. The mechanics of locating the record(s) to 
be deleted should be obvious. What method would you suggest for executing 
the deletion? In particular, what are the advantages and disadvantages of 
restructuring the table if its smaller size after deletion allows for compression 
of certain blocks?

! E xercise 14.3.3: The material of this section assumes that search keys are 
unique. However, only small modifications are needed to allow the techniques 
to work for search keys with duplicates. Describe the necessary changes to 
insertion, deletion, and lookup algorithms, and suggest the major problems 
that arise when there are duplicates in each of the following kinds of hash 
tables: (a) simple (b) linear (c) extensible.
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! Exercise 14.3.4: Some hash functions do not work as well as theoretically 
possible. Suppose that we use the hash function on integer keys i defined by 
h(i) =  i2 mod B, where B  is the number of buckets.

a) What is wrong with this hash function if B  — 10?

b) How good is this hash function if B  = 16?

c) Are there values of B  for which this hash function is useful?

Exercise 14.3.5: In an extensible hash table with n  records per block, what 
is the probability that an overflowing block will have to be handled recursively;
i.e., all members of the block will go into the same one of the two blocks created 
in the split?

E xercise 14.3.6: Suppose keys are hashed to four-bit sequences, as in our 
examples of extensible and linear hashing in this section. However, also suppose 
that blocks can hold three records, rather than the two-record blocks of our 
examples. If we start with a hash table with two empty blocks (corresponding 
to 0 and 1), show the organization after we insert records with hashed keys:

a) 0000,0001,... ,1111, and the method of hashing is extensible hashing.

b) 0000,0001,... ,1111, and the method of hashing is linear hashing with a 
capacity threshold of 100%.

c) 1111,1110,..., 0000, and the method of hashing is extensible hashing.

d) 1111,1110,... , 0000, and the method of hashing is linear hashing with a 
capacity threshold of 75%.

Exercise 14.3.7: Suppose we use a linear or extensible hashing scheme, but 
there are pointers to records from outside. These pointers prevent us from mov
ing records between blocks, as is sometimes required by these hashing methods. 
Suggest several ways that we could modify the structure to allow pointers from 
outside.

!! E xercise 14.3.8: A linear-hashing scheme with blocks that hold k records 
uses a threshold constant c, such that the current number of buckets n  and 
the current number of records r are related by r = ckn. For instance, in 
Example 14.24 we used k =  2 and c = 0.85, so there were 1.7 records per 
bucket; i.e., r — 1.7n.

a) Suppose for convenience that each key occurs exactly its expected number 
of times.7 As a function of c, k, and n, how many blocks, including 
overflow blocks, are needed for the structure?

7This assumption does not mean all buckets have the same number of records, because 
some buckets represent twice as many keys as others.
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b) Keys will not generally distribute equally, but rather the number of rec
ords with a given key (or suffix of a key) will be Poisson distributed. That 
is, if A is the expected number of records with a given key suffix, then 
the actual number of such records will be i with probability e~xX /i\.  
Under this assumption, calculate the expected number of blocks used, as 
a function of c, k, and n.

Exercise 14.3.9: Suppose we have a file of 1,000,000 records that we want to 
hash into a table with 1000 buckets. 100 records will fit in a block, and we wish 
to keep blocks as full as possible, but not allow two buckets to share a block. 
What are the minimum and maximum number of blocks that we could need to 
store this hash table?

14.4 M ultidimensional Indexes
All the index structures discussed so far are one dimensional; that is, they 
assume a single search key, and they retrieve records that match a given search- 
key value. Although the search key may involve several attributes, the one
dimensional nature of indexes such as B-trees comes from the fact that values 
must be provided for all attributes of the search key, or the index is useless. So 
far in this chapter, we took advantage of a one-dimensional search-key space in 
several ways:

• Indexes on sequential files and B-trees both take advantage of having a 
single linear order for the keys.

• Hash tables require that the search key be completely known for any 
lookup. If a key consists of several fields, and even one is unknown, we 
cannot apply the hash function, but must instead search all the buckets.

In the balance of this chapter, we shall look at index structures that are suitable 
for multidimensional data. In these structures, any nonempty subset of the 
fields that form the dimensions can be given values, and some speedup will 
result.

14.4.1 Applications of Multidimensional Indexes
There are a number of applications that require us to view data as existing in a 
2-dimensional space, or sometimes in higher dimensions. Some of these appli
cations can be supported by conventional DBMS’s, but there are also some spe
cialized systems designed for multidimensional applications. One way in which 
these specialized systems distinguish themselves is by using data structures that 
support certain kinds of queries that are not common in SQL applications.

One important application of multidimensional indexes involves geographic 
data. A geographic information system stores objects in a (typically) two- 
dimensional space. The objects may be points or shapes. Often, these databases
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are maps, where the stored objects could represent houses, roads, bridges, 
pipelines, and many other physical objects. A suggestion of such a map is 
in Fig. 14.30.
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Figure 14.30: Some objects in 2-dimensional space

However, there are many other uses as well. For instance, an integrated- 
circuit design is a two-dimensional map of regions, often rectangles, composed 
of specific materials, called “layers.” Likewise, we can think of the windows 
and icons on a screen as a collection of objects in two-dimensional space.

The queries asked of geographic information systems are not typical of SQL 
queries, although many can be expressed in SQL with some effort. Examples 
of these types of queries are:

1. Partial match queries. We specify values for one or more dimensions and 
look for all points matching those values in those dimensions.

2. Range queries. We give ranges for one or more of the dimensions, and we 
ask for the set of points within those ranges. If shapes are represented, 
then we may ask for the shapes that are partially or wholly within the 
range. These queries generalize the one-dimensional range queries that 
we considered in Section 14.2.4.

3. Nearest-neighbor queries. We ask for the closest point to a given point. 
For instance, if points represent cities, we might want to find the city of 
over 100,000 population closest to a given small city.

4. Where-am-I queries. We are given a point and we want to know in which 
shape, if any, the point is located. A familiar example is what happens
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when you click your mouse, and the system determines which of the dis
played elements you were clicking.

14.4.2 Executing Range Queries Using Conventional 
Indexes

Now, let us consider to what extent one-dimensional indexes help in answering 
range queries. Suppose for simplicity that there are two dimensions, x  and y. 
We could put a secondary index on each of the dimensions, x  and y. Using a 
B-tree for each would make it especially easy to get a range of values for each 
dimension.

Given ranges in both dimensions, we could begin by using the B-tree for x  
to get pointers to all of the records in the range for x. Next, we use the B-tree 
for y to get pointers to the records for all points whose ^/-coordinate is in the 
range for y. Then, we intersect these pointers, using the idea of Section 14.1.7. 
If the pointers fit in main memory, then the total number of disk I /O ’s is the 
number of leaf nodes of each B-tree that need to be examined, plus a few I/O ’s 
for finding our way down the B-trees (see Section 14.2.7). To this amount we 
must add the disk I /O ’s needed to retrieve all the matching records, however 
many they may be.

E xam ple 14.26: Let us consider a hypothetical set of 1,000,000 points dis
tributed randomly in a space in which both the x- and y-coordinates range from
0 to 1000. Suppose that 100 point records fit on a block, and an average B-tree 
leaf has about 200 key-pointer pairs (recall that not all slots of a B-tree block 
are necessarily occupied, at any given time). We shall assume there are B-tree 
indexes on both x  and y.

Imagine we are given the range query asking for points in the square of 
side 100 surrounding the center of the space, that is, 450 < x  < 550 and 
450 < y <  550. Using the B-tree for x, we can find pointers to all the records 
with x  in the range; there should be about 100,000 pointers, and this number of 
pointers should fit in main memory. Similarly, we use the B-tree for y to get the 
pointers to all the records with y in the desired range; again there are about
100,000 of them. Approximately 10,000 pointers will be in the intersection 
of these two sets, and it is the records reached by the 10,000 pointers in the 
intersection that form our answer.

Now, let us estimate the number of disk I /O ’s needed to answer the range 
query. First, as we pointed out in Section 14.2.7, it is generally feasible to keep 
the root of any B-tree in main memory. Section 14.2.4 showed how to access 
the 100,000 pointers in either dimension by examining one intermediate-level 
node and all the leaves that contain the desired pointers. Since we assumed 
leaves have about 200 key-pointer pairs each, we shall have to look at about 
500 leaf blocks in each of the B-trees. When we add in one intermediate node 
per B-tree, we have a total of 1002 disk I /O ’s.

Finally, we have to retrieve the blocks containing the 10,000 desired records.
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If they are stored randomly, we must expect that they will be on almost 10,000 
different blocks. Since the entire file of a million records is assumed stored over
10,000 blocks, packed 100 to a block, we essentially have to look at every block 
of the data file anyway. Thus, in this example at least, conventional indexes 
have been little if any help in answering the range query. Of course, if the range 
were smaller, then constructing the intersection of the two pointer sets would 
allow us to limit the search to a fraction of the blocks in the data file. □

14.4.3 Executing Nearest-Neighbor Queries Using 
Conventional Indexes

Almost any data structure we use will allow us to answer a nearest-neighbor 
query by picking a range in each dimension, asking the range query, and select
ing the point closest to the target within that range. Unfortunately, there are 
two things that could go wrong:

1. There is no point within the selected range.

2. The closest point within the range might not be the closest point overall, 
as suggested by Fig. 14.31.

Possible 
closer point

Figure 14.31: The point is in the range, but there could be a closer point outside 
the range

The general technique we shall use for answering nearest-neighbor queries is 
to begin by estimating a range in which the nearest point is likely to be found, 
and executing the corresponding range query. If no points are found within that 
range, we repeat with a larger range, until eventually we find at least one point. 
We then consider whether there is the possibility that a closer point exists, but 
that point is outside the range just used, as in Fig. 14.31. If so, we increase the 
range once more and retrieve all points in the larger range, to check.

14.4.4 Overview of M ultidimensional Index Structures
Most data structures for supporting queries on multidimensional data fall into 
one of two categories:
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1. Hash-table-like approaches.

2. Tree-like approaches.

For each of these structures, we give up something that we have in one-dimen
sional index structures. With the hash-based schemes — grid files and parti
tioned hash functions in Section 14.5 — we no longer have the advantage that 
the answer to our query is in exactly one bucket. However, each of these schemes 
limit our search to a subset of the buckets. With the tree-based schemes, we 
give up at least one of these important properties of B-trees:

1. The balance of the tree, where all leaves are at the same level.

2. The correspondence between tree nodes and disk blocks.

3. The speed with which modifications to the data may be performed.

As we shall see in Section 14.6, trees often will be deeper in some parts than in 
others; often the deep parts correspond to regions that have many points. We 
shall also see that it is common that the information corresponding to a tree 
node is considerably smaller than what fits in one block. It is thus necessary to 
group nodes into blocks in some useful way.

14.5 Hash Structures for M ultidimensional Data
In this section we shall consider two data structures that generalize hash tables 
built using a single key. In each case, the bucket for a point is a function, of 
all the attributes or dimensions. One scheme, called the “grid file,” usually 
doesn’t “hash” values along the dimensions, but rather partitions the dimen
sions by sorting the values along that dimension. The other, called “partitioned 
hashing,” does “hash” the various dimensions, with each dimension contribut
ing to the bucket number.

14.5.1 Grid Files
One of the simplest data structures that often outperforms single-dimension 
indexes for queries involving multidimensional data is the grid file. Think of 
the space of points partitioned in a grid. In each dimension, grid lines partition 
the space into stripes. Points that fall on a grid line will be considered to belong 
to the stripe for which that grid line is the lower boundary. The number of grid 
lines in different dimensions may vary, and there may be different spacings 
between adjacent grid lines, even between lines in the same dimension.

E xam ple 14.27: Let us introduce a running example for multidimensional 
indexes: “who buys gold jewelry?” Imagine a database of customers who have 
bought gold jewelry. To make things simple, we assume that the only relevant 
attributes are the customer’s age and salary. Our example database has twelve 
customers, which we can represent by the following age-salary pairs:
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(25,60) (45,60) (50,75) (50,100)
(50,120) (70,110) (85,140) (30,260)
(25,400) (45,350) (50,275) (60,260)

In Fig. 14.32 we see these twelve points located in a 2-dimensional space. We 
have also selected some grid lines in each dimension. For this simple example, we 
have chosen two lines in each dimension, dividing the space into nine rectangular 
regions, but there is no reason why the same number of lines must be used in 
each dimension. In general, a rectangle includes points on its lower and left 
boundaries, but not on its upper and right boundaries. For instance, the central 
rectangle in Fig. 14.32 represents points with 40 < age < 55 and 90 < salary < 
225. □

500K

Salary

225K

90K 

0
0 40 55 100

Age

Figure 14.32: A grid file

14.5.2 Lookup in a Grid File
Each of the regions into which a space is partitioned can be thought of as a 
bucket of a hash table, and each of the points in that region has its record 
placed in a block belonging to that bucket. If needed, overflow blocks can be 
used to increase the size of a bucket.

Instead of a one-dimensional array of buckets, as is found in conventional 
hash tables, the grid file uses an array whose number of dimensions is the same 
as for the data file. To locate the proper bucket for a point, we need to know, 
for each dimension, the list of values at which the grid lines occur. Hashing a 
point is thus somewhat different from applying a hash function to the values of 
its components. Rather, we look at each component of the point and determine 
the position of the point in the grid for that dimension. The positions of the 
point in each of the dimensions together determine the bucket.
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E xam ple 14.28: Figure 14.33 shows the data of Fig. 14.32 placed in buckets. 
Since the grids in both dimensions divide the space into three regions, the 
bucket array is a 3 x 3 matrix. Two of the buckets:

1. Salary between $90K and $225K and age between 0 and 40, and

2. Salary below $90K and age above 55

are empty, and we do not show a block for that bucket. The other buckets are 
shown, with the artificially low maximum of two data points per block. In this 
simple example, no bucket has more than two members, so no overflow blocks 
are needed. □

Figure 14.33: A grid file representing the points of Fig. 14.32

14.5.3 Insertion Into Grid Files
When we insert a record into a grid file, we follow the procedure for lookup 
of the record, and we place the new record in that bucket. If there is room in 
the block for the bucket then there is nothing more to do. The problem occurs 
when there is no room in the bucket. There are two general approaches:

1. Add overflow blocks to the buckets, as needed.
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Accessing Buckets of a Grid File

While finding the proper coordinates for a point in a three-by-three grid 
like Fig. 14.33 is easy, we should remember that the grid file may have a 
very large number of stripes in each dimension. If so, then we must create 
an index for each dimension. The search key for an index is the set of 
partition values in that dimension.

Given a value v in some coordinate, we search for the greatest key 
value w less than or equal to v. Associated with w in that index will be 
the row or column of the matrix into which v falls. Given values in each 
dimension, we can find where in the matrix the pointer to the bucket falls. 
We may then retrieve the block with that pointer directly.

In extreme cases, the matrix is so big, that most of the buckets are 
empty and we cannot afford to store all the empty buckets. Then, we 
must treat the matrix as a relation whose attributes are the corners of 
the nonempty buckets and a final attribute representing the pointer to the 
bucket. Lookup in this relation is itself a multidimensional search, but its 
size is smaller than the size of the data file itself.

2. Reorganize the structure by adding or moving the grid lines. This ap
proach is similar to the dynamic hashing techniques discussed in Sec
tion 14.3, but there are additional problems because the contents of buck
ets are linked across a dimension. That is, adding a grid line splits all the 
buckets along that line. As a result, it may not be possible to select a new 
grid line that does the best for all buckets. For instance, if one bucket is 
too big, we might not be able to choose either a dimension along which 
to split or a point at which to split, without making many empty buckets 
or leaving several very full ones.

E xam ple  14.29: Suppose someone 52 years old with an income of 8200K 
buys gold jewelry. This customer belongs in the central rectangle of Fig. 14.32. 
However, there are now three records in that bucket. We could simply add an 
overflow block. If we want to split the bucket, then we need to choose either 
the age or salary dimension, and we need to choose a new grid line to create 
the division. There are only three ways to introduce a grid line that will split 
the central bucket so two points are on one side and one on the other, which is 
the most even possible split in this case.

1. A vertical line, such as age =  51, that separates the two 50’s from the 
52. This line does nothing to split the buckets above or below, since both 
points of each of the other buckets for age 40-55 are to the left of the line 
age -  51.
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2. A horizontal line that separates the point with salary =  200 from the 
other two points in the central bucket. We may as well choose a number 
like 130, which also splits the bucket to the right (that for age 55-100 and 
salary 90-225).

3. A horizontal line that separates the point with salary =  100 from the 
other two points. Again, we would be advised to pick a number like 115 
that also splits the bucket to the right.

Choice (1) is probably not advised, since it doesn’t  split any other bucket; 
we are left with more empty buckets and have not reduced the size of any 
occupied buckets, except for the one we had to split. Choices (2) and (3) are 
equally good, although we might pick (2) because it puts the horizontal grid 
line at salary =  130, which is closer to midway between the upper and lower 
limits of 90 and 225 than we get with choice (3). The resulting partition into 
buckets is shown in Fig. 14.34. □
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Figure 14.34: Insertion of the point (52,200) followed by splitting of buckets

14.5.4 Performance of Grid Files
Let us consider how many disk I/O ’s a grid file requires on various types of 
queries. We have been focusing on the two-dimensional version of grid files, 
although they can be used for any number of dimensions. One major problem 
in the high-dimensional case is that the number of buckets grows exponentially 
with the number of dimensions. If large portions of a space are empty, then 
there will be many empty buckets. We can envision the problem even in two 
dimensions. Suppose that there were a high correlation between age and salary,
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so all points in Fig. 14.32 lay along the diagonal. Then no m atter where we 
placed the grid lines, the buckets off the diagonal would have to be empty.

However, if the data is well distributed, and the data file itself is not too 
large, then we can choose grid lines so that:

1. There are sufficiently few buckets that we can keep the bucket matrix in 
main memory, thus not incurring disk I/O  to consult it, or to add rows 
or columns to the matrix when we introduce a new grid line.

2. We can also keep in memory indexes on the values of the grid lines in 
each dimension (as per the box “Accessing Buckets of a Grid File”), or 
we can avoid the indexes altogether and use main-memory binary search 
of the values defining the grid lines in each dimension.

3. The typical bucket does not have more than a few overflow blocks, so we 
do not incur too many disk I /O ’s when we search through a bucket.

Under those assumptions, here is how the grid file behaves on some important 
classes of queries.

L ookup o f  Specific P o in ts

We are directed to the proper bucket, so the only disk I/O  is what is necessary 
to read the bucket. If we are inserting or deleting, then an additional disk 
write is needed. Inserts that require the creation of an overflow block cause an 
additional write.

P artia l-M atch  Q ueries

Examples of this query would include “find all customers aged 50,” or “find all 
customers with a salary of $200K.” Now, we need to look at all the buckets in 
a row or column of the bucket matrix. The number of disk I /O ’s can be quite 
high if there are many buckets in a row or column, but only a small fraction of 
all the buckets will be accessed.

R ange Q ueries

A range query defines a rectangular region of the grid, and all points found 
in the buckets that cover that region will be answers to the query, with the 
exception of some of the points in buckets on the border of the search region. 
For example, if we want to find all customers aged 35-45 with a salary of 50-100, 
then we need to look in the four buckets in the lower left of Fig. 14.32. In this 
case, all buckets are on the border, so we may look at a good number of points 
that are not answers to the query. However, if the search region involves a large 
number of buckets, then most of them must be interior, and all their points are 
answers. For range queries, the number of disk 1/O’s may be large, as we may 
be required to examine many buckets. However, since range queries tend to
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produce large answer sets, we typically will examine not too many more blocks 
than the minimum number of blocks on which the answer could be placed by 
any organization whatsoever.

N earest-N eighbor Q ueries

Given a point P, we start by searching the bucket in which that point belongs. 
If we find at least one point there, we have a candidate Q for the nearest 
neighbor. However, it is possible that there are points in adjacent buckets that 
are closer to P  than Q is; the situation is like that suggested in Fig. 14.31. We 
have to consider whether the distance between P  and a border of its bucket is 
less than the distance from P  to Q. If there are such borders, then the adjacent 
buckets on the other side of each such border must be searched also. In fact, 
if buckets are severely rectangular — much longer in one dimension than the 
other — then it may be necessary to search even buckets that are not adjacent 
to the one containing point P.

E xam ple 14.30: Suppose we are looking in Fig. 14.32 for the point nearest 
P  =  (45,200). We find that (50,120) is the closest point in the bucket, at 
a distance of 80.2. No point in the lower three buckets can be this close to 
(45,200), because their salary component is at most 90, so we can omit searching 
them. However, the other five buckets must be searched, and we find that there 
are actually two equally close points: (30,260) and (60,260), at a distance of 
61.8 from P. Generally, the search for a nearest neighbor can be limited to a 
few buckets, and thus a few disk I /O ’s. However, since the buckets nearest the 
point P  may be empty, we cannot easily put an upper bound on how costly the 
search is. □

14.5.5 Partitioned Hash Functions
Hash functions can take a list of values as arguments, although typically there 
is only one argument. For instance, if a is an integer-valued attribute and 6 is a 
character-string-valued attribute, then we could compute h(a, b) by adding the 
value of a to the value of the ASCII code for each character of b, dividing by 
the number of buckets, and taking the remainder.

However, such a hash table could be used only in queries that specified 
values for both a and b. A preferable option is to design the hash function 
so it produces some number of bits, say k. These k bits are divided among n 
attributes, so that we produce ki bits of the hash value from the ith  attribute, 
and Y^i=i ki = k- More precisely, the hash function h is actually a list of hash 
functions (h i ,h i , . . .  , hn), such that hi applies to a value for the ith  attribute 
and produces a sequence of ki bits. The bucket in which to place a tuple with 
values (v i,v 2 ,- .-  ,vn) for the n  attributes is computed by concatenating the bit 
sequences: hi(v i)h 2 (v2) ■ ■ ■ h„(vn).

E xam ple 14.31: If we have a hash table with 10-bit bucket numbers (1024 
buckets), we could devote four bits to attribute a and the remaining six bits to
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attribute 6. Suppose we have a tuple with o-value A  and 6-value B, perhaps 
with other attributes that are not involved in the hash. If ha{A) =  0101 and 
hb(B) — 111000, then this tuple hashes to bucket 0101111000, the concatenation 
of the two bit sequences.

By partitioning the hash function this way, we get some advantage from 
knowing values for any one or more of the attributes that contribute to the 
hash function. For instance, if we are given a value A  for attribute o, and we 
find that ha(A) =  0101, then we know that the only tuples with o-value A 
are in the 64 buckets whose numbers are of the form 0101 • • • , where the • • • 
represents any six bits. Similarly, if we are given the 6-value B  of a tuple, we 
can isolate the possible buckets of the tuple to the 16 buckets whose number 
ends in the six bits ht{B). □

E xam ple 14.32 : Suppose we have the “gold jewelry” data of Example 14.27, 
which we want to store in a partitioned hash table with eight buckets (i.e., three 
bits for bucket numbers). We assume as before that two records are all that can 
fit in one block. We shall devote one bit to the age attribute and the remaining 
two bits to the salary attribute.

Figure 14.35: A partitioned hash table

For the hash function on age, we shall take the age modulo 2; that is, a 
record with an even age will hash into a bucket whose number is of the form 
0xy  for some bits x  and y. A record with an odd age hashes to one of the buckets 
with a number of the form lxy . The hash function for salary will be the salary 
(in thousands) modulo 4. For example, a salary that leaves a remainder of 1 
when divided by 4, such as 57K, will be in a bucket whose number is zOl for 
some bit z.
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In Fig. 14.35 we see the data from Example 14.27 placed in this hash table. 
Notice that, because we have used mostly ages and salaries divisible by 10, the 
hash function does not distribute the points too well. Two of the eight buckets 
have four records each and need overflow blocks, while three other buckets are 
empty. □

14.5.6 Comparison of Grid Files and Partitioned Hashing
The performance of the two data structures discussed in this section are quite 
different. Here are the major points of comparison.

• Partitioned hash tables are actually quite useless for nearest-neighbor 
queries or range queries. The problem is that physical distance between 
points is not reflected by the closeness of bucket numbers. Of course we 
could design the hash function on some attribute a so the smallest values 
were assigned the first bit string (all 0’s), the next values were assigned the 
next bit string (00 ■ • • 01), and so on. If we do so, then we have reinvented 
the grid file.

• A well chosen hash function will randomize the buckets into which points 
fall, and thus buckets will tend to be equally occupied. However, grid 
files, especially when the number of dimensions is large, will tend to leave 
many buckets empty or nearly so. The intuitive reason is that when there 
are many attributes, there is likely to be some correlation among at least 
some of them, so large regions of the space are left empty. For instance, 
we mentioned in Section 14.5.4 that a correlation between age and salary 
would cause most points of Fig. 14.32 to lie near the diagonal, with most of 
the rectangle empty. As a consequence, we can use fewer buckets, and/or 
have fewer overflow blocks in a partitioned hash table than in a grid file.

Thus, if we are required to support only partial match queries, where we 
specify some attributes’ values and leave the other attributes completely un
specified, then the partitioned hash function is likely to outperform the grid 
file. Conversely, if we need to do nearest-neighbor queries or range queries 
frequently, then we would prefer to use a grid file.

14.5.7 Exercises for Section 14.5
Exercise 14.5.1: In Fig. 14.36 are specifications for twelve of the thirteen 
PC’s introduced in Fig. 2.21. Suppose we wish to design an index on speed and 
hard-disk size only.

a) Choose five grid lines (total for the two dimensions), so that there are no 
more than two points in any bucket.

! b) Can you separate the points with at most two per bucket if you use only 
four grid lines? Either show how or argue that it is not possible.
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model speed ram hd
1001 2.66 1024 250
1002 2.10 512 250
1003 1.42 512 80
1004 2.80 1024 250
1005 3.20 512 250
1006 3.20 1024 320
1007 2.20 1024 200
1008 2.20 2048 250
1009 2.00 1024 250
1010 2.80 2048 300
1011 1.86 2048 160
1012 2.80 1024 160

Figure 14.36: Some PC’s and their characteristics

! c) Suggest a partitioned hash function that will partition these points into 
four buckets with at most four points per bucket.

! E xercise 14.5.2: Suppose we wish to place the data of Fig. 14.36 in a three- 
dimensional grid file, based on the speed, ram, and hard-disk attributes. Sug
gest a partition in each dimension that will divide the data well.

Exercise 14.5.3: Choose a partitioned hash function with one bit for each of 
the three attributes speed, ram, and hard-disk that divides the data of Fig. 14.36 
well.

Exercise 14.5.4: Suppose we place the data of Fig. 14.36 in a grid file with 
dimensions for speed and ram only. The partitions are at speeds of 2.00, 2.20, 
and 2.80, and at ram of 1024 and 2048. Suppose also that only two points can 
fit in one bucket. Suggest good splits if we insert a point with speed 2.5 and 
ram 1536.

E xercise 14.5.5: Suppose we store a relation R (x ,y)  in a grid file. Both 
attributes have a range of values from 0 to 1000. The partitions of this grid file 
happen to be uniformly spaced; for x  there are partitions every 20 units, at 20, 
40, 60, and so on, while for y the partitions are every 50 units, at 50, 100, 150, 
and so on.

a) How many buckets do we have to examine to answer the range query 

SELECT * FROM R
WHERE 310 < x AND x < 400 AND 520 < y AND y < 730;
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! b) We wish to perform a nearest-neighbor query for the point (110,205). 
We begin by searching the bucket with lower-left corner at (100,200) and 
upper-right corner at (120,250), and we find that the closest point in this 
bucket is (115,220). What other buckets must be searched to verify that 
this point is the closest?

E xercise 14.5.6: Suppose we have a hash table whose buckets are numbered
0 to 2n — 1; i.e., bucket addresses are n bits long. We wish to store in the table 
a relation with two attributes x  and y. A query will specify either a value for 
x  or y, but never both. With probability p, it is x  whose value is specified.

a) Suppose we partition the hash function so that m bits are devoted to x  
and the remaining n — m  bits to y. As a function of m, n, and p, what 
is the expected number of buckets that must be examined to answer a 
random query?

b) For what value of m  (as a function of n  and p) is the expected number of 
buckets minimized? Do not worry that this m  is unlikely to be an integer.

14.6 Tree Structures for M ultidimensional Data
We shall now consider four more structures that are useful for range queries or 
nearest-neighbor queries on multidimensional data. In order, we shall consider:

1. Multiple-key indexes.

2. kd-trees.

3. Quad trees.

4. R-trees.

The first three are intended for sets of points. The R-tree is commonly used to 
represent sets of regions; it is also useful for points.

14.6.1 M ultiple-Key Indexes
Suppose we have several attributes representing dimensions of our data points, 
and we want to support range queries or nearest-neighbor queries on these 
points. A simple tree scheme for accessing these points is an index of indexes, 
or more generally a tree in which the nodes at each level are indexes for one 
attribute.

The idea is suggested in Fig. 14.37 for the case of two attributes. The 
“root of the tree” is an index for the first of the two attributes. This index 
could be any type of conventional index, such as a B-tree or a hash table. The 
index associates with each of its search-key values — i.e., values for the first 
attribute — a pointer to another index. If V  is a value of the first attribute,
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Index on 
first attribute

Indexes on 
second attribute

Figure 14.37: Using nested indexes on different keys

then the index we reach by following key V  and its pointer is an index into the 
set of points that have V  for their value in the first attribute and any value for 
the second attribute.

E xam ple 14.33: Figure 14.38 shows a multiple-key index for our running 
“gold jewelry” example, where the first attribute is age, and the second attribute 
is salary. The root index, on age, is suggested at the left of Fig. 14.38. At the 
right of Fig. 14.38 are seven indexes that provide access to the points themselves. 
For example, if we follow the pointer associated with age 50 in the root index, 
we get to a smaller index where salary is the key, and the four key values in the 
index are the four salaries associated with points that have age 50: salaries 75, 
100, 120, and 275. □

In a multiple-key index, some of the second- or higher-level indexes may be 
very small. For example, Fig 14.38 has four second-level indexes with but a 
single pair. Thus, it may be appropriate to implement these indexes as simple 
tables that are packed several to a block.

14.6.2 Performance of M ultiple-Key Indexes
Let us consider how a multiple key index performs on various kinds of multidi
mensional queries. We shall concentrate on the case of two attributes, although 
the generalization to more than two attributes is unsurprising.

P a rtia l-M a tc h  Q ueries

If the first attribute is specified, then the access is quite efficient. We use the 
root index to find the one subindex that leads to the points we want. On the
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Figure 14.38: Multiple-key indexes for age/salary data

other hand, if the first attribute does not have a specified value, then we must 
search every subindex, a potentially time-consuming process.

R ange Q ueries

The multiple-key index works quite well for a range query, provided the indi
vidual indexes themselves support range queries on their attribute — B-trees 
or indexed-sequential files, for instance. To answer a range query, we use the 
root index and the range of the first attribute to find all of the subindexes that 
might contain answer points. We then search each of these subindexes, using 
the range specified for the second attribute.

N earest-N eig h b o r Q ueries

These queries can be answered by a series of range queries, as described in 
Section 14.4.3.

14.6.3 kd-Trees
A kd-tree (fc-dimensional search tree) is a main-memory data structure gener
alizing the binary search tree to multidimensional data. We shall present the 
idea and then discuss how the idea has been adapted to the block model of 
storage. A kd-trce is a binary tree in which interior nodes have an associated 
attribute a and a value V  that splits the data points into two parts: those with
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a-value less than V  and those with o-value equal to or greater than V. The 
attributes at different levels of the tree are different, with levels rotating among 
the attributes of all dimensions.

In the classical fcrf-tree, the data points are placed at the nodes, just as in 
a binary search tree. However, we shall make two modifications in our initial 
presentation of the idea to take some limited advantage of the block model of 
storage.

1. Interior nodes will have only an attribute, a dividing value for that at
tribute, and pointers to left and right children.

2. Leaves will be blocks, with space for as many records as a block can hold.

C^Salaiy 8 0 ^ )

50,100 30,260 25,400
50,120 45,350

25,60 45,60
50,75

Figure 14.39: A kd-tree

E xam ple 14.34: In Fig. 14.39 is a kd-tree for the twelve points of our running 
gold-jewelry example. We use blocks that hold only two records for simplicity; 
these blocks and their contents are shown as square leaves. The interior nodes 
are ovals with an attribute — either age or salary — and a value. For instance, 
the root splits by salary, with all records in the left subtree having a salary less 
than $150K, and all records in the right subtree having a salary at least $150K.

At the second level, the split is by age. The left child of the root splits at 
age 60, so everything in its left subtree will have age less than 60 and salary 
less than $150K. Its right subtree will have age at least 60 and salary less than 
$150K. Figure 14.40 suggests how the various interior nodes split the space 
of points into leaf blocks. For example, the horizontal line at salary =  150 
represents the split at the root. The space below that line is split vertically at 
age 60, while the space above is split at age 47, corresponding to the decision 
at the right child of the root. □
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500K

Salary

100
Age

Figure 14.40: The partitions implied by the tree of Fig. 14.39

14.6.4 Operations on kd -Trees
A lookup of a tuple, given values for all dimensions, proceeds as in a binary 
search tree. We make a decision which way to go at each interior node and are 
directed to a single leaf, whose block we search.

To perform an insertion, we proceed as for a lookup. We are eventually 
directed to a leaf, and if its block has room we put the new data point there. 
If there is no room, we split the block into two, and we divide its contents 
according to whatever attribute is appropriate at the level of the leaf being 
split. We create a new interior node whose children are the two new blocks, 
and we install at that interior node a splitting value that is appropriate for the 
split we have just made.8

E xam ple 14.35: Suppose someone 35 years old with a salary of S500K buys 
gold jewelry. Starting at the root, since the salary is at least $150K we go to 
the right. There, we compare the age 35 with the age 47 at the node, which 
directs us to the left. At the third level, we compare salaries again, and our 
salary is greater than the splitting value, $300K. We are thus directed to a leaf 
containing the points (25,400) and (45,350), along with the new point (35,500).

There isn’t room for three records in this block, so we must split it. The 
fourth level splits on age, so we have to pick some age that divides the records 
as evenly as possible. The median value, 35, is a good choice, so we replace the 
leaf by an interior node that splits on age =  35. To the left of this interior node 
is a leaf block with only the record (25,400), while to the right is a leaf block 
with the other two records, as shown in Fig. 14.41. □

8O ne prob lem  th a t  m ight arise  is a  s itu a tio n  w here th e re  a re  so m any  p o in ts w ith  th e  sam e 
value in a  given d im ension  th a t  th e  bucket has only one value in th a t  d im ension an d  canno t 
be sp lit. W e can t r y  sp littin g  along an o th e r  d im ension, o r we can  use an  overflow block.
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Figure 14.41: Tree after insertion of (35,500)

The more complex queries discussed in this chapter are also supported by a 
kd-tree. Here are the key ideas and synopses of the algorithms:

P artia l-M atch  Q ueries

If we are given values for some of the attributes, then we can go one way when 
we are at a level belonging to an attribute whose value we know. When we 
don’t  know the value of the attribute at a node, we must explore both of its 
children. For example, if we ask for all points with age =  50 in the tree of 
Fig. 14.39, we must look at both children of the root, since the root splits on 
salary. However, at the left child of the root, we need go only to the left, and at 
the right child of the root we need only explore its right subtree. For example, 
if the tree is perfectly balanced and the index has two dimensions, one of which 
is specified in the search, then we would have to explore both ways at every 
other level, ultimately reaching about the square root of the total number of 
leaves.

R ange Q ueries

Sometimes, a range will allow us to move to only one child of a node, but if 
the range straddles the splitting value at the node then we must explore both 
children. For example, given the range of ages 35 to 55 and the range of salaries 
from $100K to $200K, we would explore the tree of Fig. 14.39 as follows. The 
salary range straddles the $150K at the root, so we must explore both children. 
At the left child, the range is entirely to the left, so we move to the node with 
salary $80K. Now, the range is entirely to the right, so we reach the leaf with 
records (50,100) and (50,120), both of which meet the range query. Returning 
to the right child of the root, the splitting value age =  47 tells us to look at both
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subtrees. At the node with salary S300K, we can go only to the left, finding 
the point (30,260), which is actually outside the range. At the right child of 
the node for age =  47, we find two other points, both of which are outside the 
range.

14.6.5 Adapting kd-Trees to Secondary Storage
Suppose we store a file in a kd-tree with n  leaves. Then the average length of a 
path from the root to a leaf will be about log2 n, as for any binary tree. If we 
store each node in a block, then as we traverse a path we must do one disk I/O  
per node. For example, if n  =  1000, then we need about 10 disk I/O ’s, much 
more than the 2 or 3 disk I /O ’s that would be typical for a B-tree, even on a 
much larger file. In addition, since interior nodes of a kd-tree have relatively 
little information, most of the block would be wasted space. Two approaches 
to the twin problems of long paths and unused space are:

1. Multiway Branches at Interior Nodes. Interior nodes of a kd-tree could 
look more like B-tree nodes, with many key-pointer pairs. If we had n 
keys at a node, we could split values of an attribute a into n +1 ranges. If 
there were n-1-1 pointers, we could follow the appropriate one to a subtree 
that contained only points with attribute a in that range.

2. Group Interior Nodes Into Blocks. We could pack many interior nodes, 
each with two children, into a single block. To minimize the number of 
blocks that we must read from disk while traveling down one path, we 
are best off including in one block a node and all its descendants for some 
number of levels. That way, once we retrieve the block with this node, 
we are sure to use some additional nodes on the same block, saving disk 
I /O ’s.

14.6.6 Quad Trees
In a quad tree, each interior node corresponds to a square region in two di
mensions, or to a ^-dimensional cube in k dimensions. As with the other data 
structures in this chapter, we shall consider primarily the two-dimensional case. 
If the number of points in a square is no larger than what will fit in a block, 
then we can think of this square as a leaf of the tree, and it is represented by 
the block that holds its points. If there are too many points to fit in one block, 
then we treat the square as an interior node, with children corresponding to its 
four quadrants.

E xam ple 14.36: Figure 14.42 shows the gold-jewelry data points organized 
into regions that correspond to nodes of a quad tree. For ease of calculation, we 
have restricted the usual space so salary ranges between 0 and S400K, rather 
than up to $500K as in other examples of this chapter. We continue to make 
the assumption that only two records can fit in a block.
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400K

Salary

•  •

100
Age

Figure 14.42: Data organized in a quad tree

Figure 14.43 shows the tree explicitly. We use the compass designations for 
the quadrants and for the children of a node (e.g., SW stands for the southwest 
quadrant — the points to the left and below the center). The order of children 
is always as indicated at the root. Each interior node indicates the coordinates 
of the center of its region.

Since the entire space has 12 points, and only two will fit in one block, 
we must split the space into quadrants, which we show by the dashed line in 
Fig. 14.42. Two of the resulting quadrants — the southwest and northeast — 
have only two points. They can be represented by leaves and need not be split 
further.

Figure 14.43: A quad tree

The remaining two quadrants each have more than two points. Both are 
split into subquadrants, as suggested by the dotted lines in Fig. 14.42. Each of 
the resulting quadrants has at most two points, so no more splitting is necessary.
□
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Since interior nodes of a quad tree in k dimensions have 2k children, there 
is a range of k where nodes fit conveniently into blocks. For instance, if 128, or 
27, pointers can fit in a block, then fc =  7 is a convenient number of dimensions. 
However, for the 2-dimensional case, the situation is not much better than for 
fcd-trees; an interior node has four children. Moreover, while we can choose the 
splitting point for a kd-tree node, we are constrained to pick the center of a 
quad-tree region, which may or may not divide the points in that region evenly. 
Especially when the number of dimensions is large, we expect to find many null 
pointers (corresponding to empty quadrants) in interior nodes. Of course we 
can be somewhat clever about how high-dimension nodes are represented, and 
keep only the non-null pointers and a designation of which quadrant the pointer 
represents, thus saving considerable space.

We shall not go into detail regarding the standard operations that we dis
cussed in Section 14.6.4 for kd-trees. The algorithms for quad trees resemble 
those for kd-trees.

14.6.7 R-Trees

An R-tree (region tree) is a data structure that captures some of the spirit of 
a B-tree for multidimensional data. Recall that a B-tree node has a set of keys 
that divide a line into segments. Points along that line belong to only one 
segment, as suggested by Fig. 14.44. The B-tree thus makes it easy for us to 
find points; if we think the point is somewhere along the line represented by 
a B-tree node, we can determine a unique child of that node where the point 
could be found.

Figure 14.44: A B-tree node divides keys along a line into disjoint segments

An R-tree, on the other hand, represents data that consists of 2-dimensional, 
or higher-dimensional regions, which we call data regions. An interior node of 
an R-tree corresponds to some interior region, or just “region,” which is not 
normally a data region. In principle, the region can be of any shape, although 
in practice it is usually a rectangle or other simple shape. The R-tree node 
has, in place of keys, subregions that represent the contents of its children. The 
subregions are allowed to overlap, although it is desirable to keep the overlap 
small.

Figure 14.45 suggests a node of an R-tree that is associated with the large 
solid rectangle. The dotted rectangles represent the subregions associated with 
four of its children. Notice that the subregions do not cover the entire region, 
which is satisfactory as long as each data region that lies within the large region 
is wholly contained within one of the small regions.
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Figure 14.45: The region of an R-tree node and subregions of its children

14.6.8 Operations on R-Trees

A typical query for which an R-tree is useful is a “where-am-I” query, which 
specifies a  point P  and asks for the data region or regions in which the point lies. 
We start at the root, with which the entire region is associated. We examine 
the subregions at the root and determine which children of the root correspond 
to interior regions that contain point P. Note that there may be zero, one, or 
several such regions.

If there are zero regions, then we are done; P  is not in any data region. If 
there is a t least one interior region that contains P, then we must recursively 
search for P  at the child corresponding to each such region. When we reach 
one or more leaves, we shall find the actual data regions, along with either the 
complete record for each data region or a pointer to that record.

When we insert a new region R  into an R-tree, we start at the root and try 
to find a subregion into which R  fits. If there is more than one such region, then 
we pick one, go to its corresponding child, and repeat the process there. If there 
is no subregion that contains R, then we have to expand one of the subregions. 
Which one to pick may be a difficult decision. Intuitively, we want to expand 
regions as little as possible, so we might ask which of the children’s subregions 
would have their area increased as little as possible, change the boundary of 
that region to include R, and recursively insert R  at the corresponding child.

Eventually, we reach a leaf, where we insert the region R. However, if there 
is no room for R  a t that leaf, then we must split the leaf. How we split the 
leaf is subject to some choice. We generally want the two subregions to be as 
small as possible, yet they must, between them, cover all the data regions of 
the original leaf. Having split the leaf, we replace the region and pointer for the 
original leaf at the node above by a pair of regions and pointers corresponding 
to the two new leaves. If there is room at the parent, we are done. Otherwise, 
as in a B-tree, we recursively split nodes going up the tree.

E xam ple  14.37: Let us consider the addition of a new region to the map of 
Fig. 14.30. Suppose that leaves have room for six regions. Further suppose that 
the six regions of Fig. 14.30 are together on one leaf, whose region is represented 
by the outer (solid) rectangle in Fig. 14.46.
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0 100

Figure 14.46: Splitting the set of objects

Now, suppose the local cellular phone company adds a POP (point of pres
ence, or base station) at the position shown in Fig. 14.46. Since the seven data 
regions do not fit on one leaf, we shall split the leaf, with four in one leaf and 
three in the other. Our options are many; we have picked in Fig. 14.46 the 
division (indicated by the inner, dashed rectangles) that minimizes the overlap, 
while splitting the leaves as evenly as possible.

((0,0),(60,50)) ©008£

road l road2 housel school house2 pipeline pop

Figure 14.47: An R-tree

We show in Fig. 14.47 how the two new leaves fit into the R-tree. The parent 
of these nodes has pointers to both leaves, and associated with the pointers are 
the lower-left and upper-right corners of the rectangular regions covered by each 
leaf. □

E xam ple 14.38: Suppose we inserted another house below house2, with lower- 
left coordinates (70,5) and upper-right coordinates (80,15). Since this house is
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100

Figure 14.48: Extending a region to accommodate new data

not wholly contained within either of the leaves’ regions, we must choose which 
region to expand. If we expand the lower subregion, corresponding to the first 
leaf in Fig. 14.47, then we add 1000 square units to the region, since we extend 
it 20 units to the right. If we extend the other subregion by lowering its bottom 
by 15 units, then we add 1200 square units. We prefer the first, and the new 
regions are changed in Fig. 14.48. We also must change the description of the 
region in the top node of Fig. 14.47 from ((0,0), (60,50)) to ((0,0), (80,50)).
□

14.6.9 Exercises for Section 14.6
E xercise 14.6.1: Show a multiple-key index for the data of Fig. 14.36 if the 
indexes are on:

a) Speed, then ram.

b) Ram then hard-disk.

c) Speed, then ram, then hard-disk.

E xercise 14.6.2: Place the data of Fig. 14.36 in a fcd-tree. Assume two records 
can fit in one block. At each level, pick a separating value that divides the data 
as evenly as possible. For an order of the splitting attributes choose:

a) Speed, then ram, alternating.

b) Speed, then ram, then hard-disk, alternating.
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c) Whatever attribute produces the most even split at each node.

Exercise 14.6.3: Suppose we have a relation R (x ,y ,z ) ,  where the pair of 
attributes x  and y together form the key. Attribute x  ranges from 1 to 100, 
and y ranges from 1 to 1000. For each x  there are records with 100 different 
values of y, and for each y there are records with 10 different values of x. Note 
that there are thus 10,000 records in R. We wish to use a multiple-key index 
that will help us to answer queries of the form

SELECT z 
FROM R
WHERE x = C AND y = D;

where C  and D are constants. Assume that blocks can hold ten key-pointer 
pairs, and we wish to create dense indexes at each level, perhaps with sparse 
higher-level indexes above them, so that each index starts from a single block. 
Also assume that initially all index and data blocks are on disk.

a) How many disk I/O ’s are necessary to answer a query of the above form 
if the first index is on x l

b) How many disk I/O ’s are necessary to answer a query of the above form 
if the first index is on y l

! c) Suppose you were allowed to buffer 11 blocks in memory at all times. 
Which blocks would you choose, and would you make x  or y the first 
index, if you wanted to minimize the number of additional disk I /O ’s 
needed?

E xercise 14.6.4: For the structure of Exercise 14.6.3(a), how many disk I /O ’s 
cure required to answer the range query in which 20 < x  < 35 and 200 < y < 350. 
Assume data is distributed uniformly; i.e., the expected number of points will 
be found within any given range.

E xercise 14.6.5: In the tree of Fig. 14.39, what new points would be directed 
to:

a) The block with point (30,260)?

b) The block with points (50,100) and (50,120)?

Exercise 14.6.6: Show a possible evolution of the tree of Fig. 14.41 if we 
insert the points (20,110) and then (40,400).

Exercise 14.6.7: We mentioned that if a kd-tree were perfectly balanced, and 
we execute a partial-match query in which one of two attributes has a value 
specified, then we wind up looking at about n  out of the n  leaves.

a) Explain why.
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b) If the tree split alternately in d dimensions, and we specified values for m  
of those dimensions, what fraction of the leaves would we expect to have 
to search?

c) How does the performance of (b) compare with a partitioned hash table?

E xercise 14.6 .8 : Place the data of Fig. 14.36 in a quad tree with dimensions 
speed and ram. Assume the range for speed is 1.00 to 5.00, and for ram it is 
500 to 3500. No leaf of the quad tree should have more than two points.

E xercise 14.6.9: Repeat Exercise 14.6.8 with the addition of a third dimen
sion, hard-disk, that ranges from 0 to 400.

! E xercise 14.6.10: If we are allowed to put the central point in a quadrant of a 
quad tree wherever we want, can we always divide a quadrant into subquadrants 
with an equal number of points (or as equal as possible, if the number of points 
in the quadrant is not divisible by 4)? Justify your answer.

! E xercise 14.6.11: Suppose we have a database of 1,000,000 regions, which 
may overlap. Nodes (blocks) of an R-tree can hold 100 regions and pointers. 
The region represented by any node has 100 subregions, and the overlap among 
these regions is such that the total area of the 100 subregions is 150% of the 
area of the region. If we perform a “where-am-I” query for a given point, how 
many blocks do we expect to retrieve?

14.7 Bitm ap Indexes
Let us now turn to a type of index that is rather different from those seen so 
far. We begin by imagining that records of a file have permanent numbers, 
1 ,2 ,...  , n. Moreover, there is some data structure for the file that lets us find 
the ith  record easily for any i. A bitmap index for a field F  is a collection of 
bit-vectors of length n, one for each possible value that may appear in the field 
F. The vector for value v has 1 in position i if the ith  record has v in field F, 
and it has 0 there if not.

E xam ple  14.39: Suppose a file consists of records with two fields, F  and G, of 
type integer and string, respectively. The current file has six records, numbered 
1 through 6, with the following values in order: (30, foo), (30, bar), (40, baz), 
(50, foo), (40, bar), (30, baz).

A bitmap index for the first field, F, would have three bit-vectors, each of 
length 6. The first, for value 30, is 110001, because the first, second, and sixth 
records have F  = 30. The other two, for 40 and 50, respectively, are 001010 
and 000100.

A bitmap index for G would also have three bit-vectors, because there are 
three different strings appearing there. The three bit-vectors are:
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Value Vector
foo 100100
bax 010010
baz 001001

In each case, l ’s indicate the records in which the corresponding string appears.
□

14.7.1 Motivation for Bitmap Indexes
It might at first appear that bitmap indexes require much too much space, 
especially when there are many different values for a field, since the total number 
of bits is the product of the number of records and the number of values. For 
example, if the field is a key, and there are n records, then n2 bits are used 
among all the bit-vectors for that field. However, compression can be used to 
make the number of bits closer to n, independent of the number of different 
values, as we shall see in Section 14.7.2.

You might also suspect that there are problems managing the bitmap in
dexes. For example, they depend on the number of a record remaining the same 
throughout time. How do we find the ith record as the file adds and deletes 
records? Similarly, values for a field may appear or disappear. How do we find 
the bitmap for a value efficiently? These and related questions are discussed in 
Section 14.7.4.

The compensating advantage of bitmap indexes is that they allow us to 
answer partial-match queries very efficiently in many situations. In a sense they 
offer the advantages of buckets that we discussed in Example 14.7, where we 
found the Movie tuples with specified values in several attributes without first 
retrieving all the records that matched in each of the attributes. An example 
will illustrate the point.

Example 14.40: Recall Example 14.7, where we queried the Movie relation 
with the query

SELECT title FROM Movie
WHERE studioName = ’Disney’ AND yeax = 2005;

Suppose there are bitmap indexes on both attributes studioName and yeax. 
Then we can intersect the vectors for year = 2005 and studioName = ’ Disney ’; 
that is, we take the bitwise AND of these vectors, which will give us a vector 
with a 1 in position i if and only if the ith  Movie tuple is for a movie made by 
Disney in 2005.

If we can retrieve tuples of Movie given their numbers, then we need to 
read only those blocks containing one or more of these tuples, just as we did in 
Example 14.7. To intersect the bit vectors, we must read them into memory, 
which requires a disk I/O  for each block occupied by one of the two vectors. As 
mentioned, we shall later address both matters: accessing records given their
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numbers in Section 14.7.4 and making sure the bit-vectors do not occupy too 
much space in Section 14.7.2. □

Bitmap indexes can also help answer range queries. We shall consider an 
example next that both illustrates their use for range queries and shows in detail 
with short bit-vectors how the bitwise AND and OR of bit-vectors can be used 
to discover the answer to a query without looking at any records but the ones 
we want.

E xam ple  14.41: Consider the gold-jewelry data first introduced in Exam
ple 14.27. Suppose that the twelve points of that example are records numbered 
from 1 to 12 as follows:

1
5
9

For the first component, age, there are seven different values, so the bitmap 
index for age consists of the following seven vectors:

: (25,60) 2: (45,60) 3: (50,75) 4: (50,100)
: (50,120) 6: (70,110) 7: (85,140) 8: (30,260)
: (25,400) 10: (45,350) 11: (50,275) 12: (60,260)

25
50
85

100000001000 30: 000000010000 45: 010000000100 
001110000010 60: 000000000001 70: 000001000000 
000000100000

For the salary component, there are ten different values, so the salary bitmap 
index has the following ten bit-vectors:

000100000000 
000000100000 
000000000100

60: 110000000000 75: 001000000000 100:
110: 000001000000 120: 000010000000 140:
260: 000000010001 275: 000000000010 350:
400: 000000001000

Suppose we want to find the jewelry buyers with an age in the range 45-55 
and a salary in the range 100-200. We first find the bit-vectors for the age 
values in this range; in this example there are only two: 010000000100 and 
001110000010, for 45 and 50, respectively. If we take their bitwise OR, we have 
a new bit-vector with 1 in position i if and only if the *th record has an age in 
the desired range. This bit-vector is 011110000110.

Next, we find the bit-vectors for the salaries between 100 and 200 thousand. 
There are four, corresponding to salaries 100, 110, 120, and 140; their bitwise 
OR is 000111100000.

The last step is to take the bitwise AND of the two bit-vectors we calculated 
by OR. That is:

011110000110 AND 000111100000 =  000110000000

We thus find that only the fourth and fifth records, which are (50,100) and
(50,120), are in the desired range. □
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Binary Numbers Won’t Serve as a Run-Length 
Encoding

Suppose we represented a run of i 0’s followed by a 1 with the integer i in 
binary. Then the bit-vector 000101 consists of two runs, of lengths 3 and 1, 
respectively. The binary representations of these integers are 11 and 1, so 
the run-length encoding of 000101 is 111. However, a similar calculation 
shows that the bit-vector 010001 is also encoded by 111; bit-vector 010101 
is a third vector encoded by 111. Thus, 111 cannot be decoded uniquely 
into one bit-vector.

14.7.2 Compressed Bitmaps
Suppose we have a bitmap index on field F  of a file with n  records, and there 
are m  different values for field F  that appear in the file. Then the number of 
bits in all the bit-vectors for this index is mn. If, say, blocks are 4096 bytes 
long, then we can fit 32,768 bits in one block, so the number of blocks needed 
is m n /32768. That number can be small compared to the number of blocks 
needed to hold the file itself, but the larger m  is, the more space the bitmap 
index takes.

But if m is large, then l ’s in a bit-vector will be very rare; precisely, the 
probability that any bit is 1 is 1/m. If l ’s are rare, then we have an opportunity 
to encode bit-vectors so that they take much less than n bits on the average. A 
common approach is called run-length encoding, where we represent a run, that 
is, a sequence of i 0’s followed by a 1, by some suitable binary encoding of the 
integer i. We concatenate the codes for each run together, and that sequence 
of bits is the encoding of the entire bit-vector.

We might imagine that we could just represent integer i by expressing i 
as a binary number. However, that simple a scheme will not do, because it 
is not possible to break a sequence of codes apart to determine uniquely the 
lengths of the runs involved (see the box on “Binary Numbers Won’t Serve as a 
Run-Length Encoding”). Thus, the encoding of integers i that represent a run 
length must be more complex than a simple binary representation.

We shall study one of many possible schemes for encoding. There are some 
better, more complex schemes that can improve on the amount of compression 
achieved here, by almost a factor of 2, but only when typical runs are very long. 
In our scheme, we first determine how many bits the binary representation of
i has. This number j ,  which is approximately log2 i, is represented in “unary,” 
by j  — 1 l ’s and a single 0. Then, we can follow with i in binary.9

E xam ple 14.42: If i =  13, then j  =  4; that is, we need 4 bits in the binary

9A ctually , except for th e  case th a t  j  =  1 (i.e., i =  0 or i =  1), we can  be  sure th a t  th e  
b inary  rep resen ta tion  o f i begins w ith  1. T hus, we can  save ab o u t one b it p e r  num ber if we 
om it th is  1 and  use only th e  rem ain ing  j  — 1 b its .
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representation of i. Thus, the encoding for i begins with 1110. We follow with
i in binary, or 1101. Thus, the encoding for 13 is 11101101.

The encoding for i = 1 is 01, and the encoding for i = 0 is 00. In each 
case, j  = 1, so we begin with a single 0 and follow that 0 with the one bit that 
represents i. □

If we concatenate a sequence of integer codes, we can always recover the 
sequence of run lengths and therefore recover the original bit-vector. Suppose 
we have scanned some of the encoded bits, and we are now at the beginning 
of a sequence of bits that encodes some integer i. We scan forward to the first
0, to determine the value of j .  That is, j  equals the number of bits we must 
scan until we get to the first 0 (including that 0 in the count of bits). Once we 
know j ,  we look at the next j  bits; i is the integer represented there in binary. 
Moreover, once we have scanned the bits representing i, we know where the 
next code for an integer begins, so we can repeat the process.

E xam p le 1 4 .4 3 : Let us decode the sequence 11101101001011. Starting at the 
beginning, we find the first 0 at the 4th bit, so j  = 4. The next 4 bits are 1101, 
so we determine that the first integer is 13. We are now left with 001011 to 
decode.

Since the first bit is 0, we know the next bit represents the next integer by 
itself; this integer is 0. Thus, we have decoded the sequence 13, 0, and we must 
decode the remaining sequence 1011.

We find the first 0 in the second position, whereupon we conclude that the 
final two bits represent the last integer, 3. Our entire sequence of run-lengths 
is thus 13, 0, 3. From these numbers, we can reconstruct the actual bit-vector, 
0000000000000110001. □

Technically, every bit-vector so decoded will end in a 1, and any trailing 0’s 
will not be recovered. Since we presumably know the number of records in the 
file, the additional 0’s can be added. However, since 0 in a bit-vector indicates 
the corresponding record is not in the described set, we don’t  even have to know 
the total number of records, and can ignore the trailing 0’s.

E xam p le 1 4 .4 4 : Let us convert some of the bit-vectors from Example 14.42 
to our run-length code. The vectors for the first three ages, 25, 30, and 45, 
are 100000001000, 000000010000, and 010000000100, respectively. The first of 
these has the run-length sequence (0,7). The code for 0 is 00, and the code for 
7 is 110111. Thus, the bit-vector for age 25 becomes 00110111.

Similarly, the bit-vector for age 30 has only one run, with seven 0’s. Thus, 
its code is 110111. The bit-vector for age 45 has two runs, (1,7). Since 1 has 
the code 01, and we determined that 7 has the code 110111, the code for the 
third bit-vector is 01110111. □

The compression in Example 14.44 is not great. However, we cannot see the 
true benefits when n, the number of records, is small. To appreciate the value
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of the encoding, suppose that m  — n, i.e., each value for the field on which the 
bitmap index is constructed, occurs once. Notice that the code for a run of 
length i has about 21og2 i bits. If each bit-vector has a single 1, then it has a 
single run, and the length of that run cannot be longer than n. Thus, 2 log2 n 
bits is an upper bound on the length of a bit-vector’s code in this case.

Since there are n  bit-vectors in the index, the total number of bits to repre
sent the index is at most 2n  log2 n. In comparison, the uncompressed bit-vectors 
for this data would require n 2 bits.

14.7.3 Operating on Run-Length-Encoded Bit-Vectors
When we need to perform bitwise AND or OR on encoded bit-vectors, we 
have little choice but to decode them and operate on the original bit-vectors. 
However, we do not have to do the decoding all at once. The compression 
scheme we have described lets us decode one run at a time, and we can thus 
determine where the next 1 is in each operand bit-vector. If we are taking the 
OR, we can produce a 1 at that position of the output, and if we are taking the 
AND we produce a 1 if and only if both operands have their next 1 at the same 
position. The algorithms involved are complex, but an example may make the 
idea adequately clear.

E xam ple 14.45: Consider the encoded bit-vectors we obtained in Exam
ple 14.44 for ages 25 and 30: 00110111 and 110111, respectively. We can decode 
their first runs easily; we find they are 0 and 7, respectively. That is, the first
1 of the bit-vector for 25 occurs in position 1, while the first 1 in the bit-vector 
for 30 occurs at position 8. We therefore generate 1 in position 1.

Next, we must decode the next run for age 25, since that bit-vector may 
produce another 1 before age 30’s bit-vector produces a 1 at position 8. How
ever, the next run for age 25 is 7, which says that this bit-vector next produces 
a 1 at position 9. We therefore generate six 0’s and the 1 at position 8 that 
comes from the bit-vector for age 30. The 1 at position 9 from age 25’s bit- 
vector is produced. Neither bit-vector produces any more l ’s for the output. 
We conclude that the OR of these bit-vectors is 100000011. Technically, we 
must append 000, since uncompressed bit-vectors are of length twelve in this 
example. □

14.7.4 Managing Bitmap Indexes
We have described operations on bitmap indexes without addressing three im
portant issues:

1. When we want to find the bit-vector for a given value, or the bit-vectors 
corresponding to values in a given range, how do we find these efficiently?

2. When we have selected a set of records that answer our query, how do we 
retrieve those records efficiently?



694 CHAPTER 14. INDEX STRUCTURES

3. When the data file changes by insertion or deletion of records, how do we 
adjust the bitmap index on a given field?

F in d in g  B it-V ectors

Think of each bit-vector as a record whose key is the value corresponding to 
this bit-vector (although the value itself does not appear in this “record”). 
Then any secondary index technique will take us efficiently from values to their 
bit-vectors.

We also need to store the bit-vectors somewhere. It is best to think of them 
as variable-length records, since they will generally grow as more records are 
added to the data file. The techniques of Section 13.7 are useful.

F in d in g  R ecords

Now let us consider the second question: once we have determined that we need 
record k of the data file, how do we find it? Again, techniques we have seen 
already may be adapted. Think of the fcth record as having search-key value 
k (although this key does not actually appear in the record). We may then 
create a secondary index on the data file, whose search key is the number of 
the record.

H an d lin g  M od ification s to  th e  D a ta  F ile

There are two aspects to the problem of reflecting data-file modifications in a 
bitmap index.

1. Record numbers must remain fixed once assigned.

2. Changes to the data file require the bitmap index to  change as well.

The consequence of point (1) is that when we delete record i, it is easiest 
to “retire” its number. Its space is replaced by a “tombstone” in the data file. 
The bitmap index must also be changed, since the bit-vector that had a 1 in 
position i must have that 1 changed to 0. Note that we can find the appropriate 
bit-vector, since we know what value record i had before deletion.

Next consider insertion of a new record. We keep track of the next available 
record number and assign it to the new record. Then, for each bitmap index, 
we must determine the value the new record has in the corresponding field and 
modify the bit-vector for that value by appending a 1 at the end. Technically, 
all the other bit-vectors in this index get a new 0 at the end, but if we are using 
a compression technique such as that of Section 14.7.2, then no change to the 
compressed values is needed.

As a special case, the new record may have a value for the indexed field 
that has not been seen before. In that case, we need a new bit-vector for 
this value, and this bit-vector and its corresponding value need to be inserted
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into the secondary-index structure that is used to find a bit-vector given its 
corresponding value.

Lastly, consider a modification to a record i of the data file that changes 
the value of a field that has a bitmap index, say from value v to value w. We 
must find the bit-vector for v and change the 1 in position i to 0. If there is a 
bit-vector for value w, then we change its 0 in position i to 1. If there is not 
yet a bit-vector for w, then we create it as discussed in the paragraph above for 
the case when an insertion introduces a new value.

14.7.5 Exercises for Section 14.7
Exercise 14.7.1: For the data of Fig. 14.36, show the bitmap indexes for 
the attributes: (a) speed (b) ram (c) hd, both in (?) uncompressed form, and 
(ii) compressed form using the scheme of Section 14.7.2.

Exercise 14.7.2: Using the bitmaps of Example 14.41, find the jewelry buyers 
with an age in the range 20-40 and a salary in the range 0-100.

Exercise 14.7.3: Consider a file of 1,000,000 records, with a field F  that has 
m different values.

a) As a function of m, how many bytes does the bitmap index for F  have?

! b) Suppose that the records numbered from 1 to 1,000,000 are given values 
for the field F  in a round-robin fashion, so each value appears every m  
records. How many bytes would be consumed by a compressed index?

E xercise 14.7.4: We suggested in Section 14.7.2 that it was possible to reduce 
the number of bits taken to encode number i from the 2 log2 i that we used in 
that section until it is close to log2 i. Show how to approach that limit as closely 
as you like, as long as i is large. Hint: We used a unary encoding of the length 
of the binary encoding that we used for i. Can you encode the length of the 
code in binary?

E xercise 14.7.5: Encode, using the scheme of Section 14.7.2, the following 
bitmaps:

a) 0110000000100000100.

b) 10000010000001001101.

c) 0001000000000010000010000.

14.8 Summary of Chapter 14
♦  Sequential Files: Several simple file organizations begin by sorting the 

data file according to some sort key and placing an index on this file.



♦  Dense and Sparse Indexes: Dense indexes have a key-pointer pair for 
every record in the data file, while sparse indexes have one key-pointer 
pair for each block of the data file.

♦  Multilevel Indexes: It is sometimes useful to put an index on the index 
file itself, an index file on that, and so on. Higher levels of index must be 
sparse.

♦  Secondary Indexes: An index on a search key K  can be created even if 
the data file is not sorted by K . Such an index must be dense.

♦  Inverted Indexes: The relation between documents and the words they 
contain is often represented by an index structure with word-pointer pairs. 
The pointer goes to a place in a “bucket” file where is found a list of 
pointers to places where that word occurs.

♦  B-trees: These structures are essentially multilevel indexes, with graceful 
growth capabilities. Blocks with n keys and n + 1 pointers are organized 
in a tree, with the leaves pointing to records. All nonroot blocks are 
between half-full and completely full at all times.

♦  Hash Tables: We can create hash tables out of blocks in secondary mem
ory, much as we can create main-memory hash tables. A hash function 
maps search-key values to buckets, effectively partitioning the records of 
a data file into many small groups (the buckets). Buckets are represented 
by a block and possible overflow blocks.

♦  Extensible Hashing: This method allows the number of buckets to double 
whenever any bucket has too many records. It uses an array of pointers 
to blocks that represent the buckets. To avoid having too many blocks, 
several buckets can be represented by the same block.

♦  Linear Hashing: This method grows the number of buckets by 1 each time 
the ratio of records to buckets exceeds a threshold. Since the population 
of a single bucket cannot cause the table to expand, overflow blocks for 
buckets are needed in some situations.

♦  Queries Needing Multidimensional Indexes: The sorts of queries that 
need to be supported on multidimensional data include partial-match (all 
points with specified values in a subset of the dimensions), range queries 
(all points within a range in each dimension), nearest-neighbor (closest 
point to a given point), and where-am-I (region or regions containing a 
given point).

♦  Executing Nearest-Neighbor Queries: Many data structures allow nearest- 
neighbor queries to be executed by performing a range query around the 
target point, and expanding the range if there is no point in that range. 
We must be careful, because finding a point within a rectangular range 
may not rule out the possibility of a closer point outside that rectangle.
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♦  Grid Files: The grid file slices the space of points in each of the dimen
sions. The grid lines can be spaced differently, and there can be different 
numbers of lines for each dimension. Grid files support range queries, 
partial-match queries, and nearest-neighbor queries well, as long as data 
is fairly uniform in distribution.

♦  Partitioned Hash Tables: A partitioned hash function constructs some 
bits of the bucket number from each dimension. They support partial- 
match queries well, and are not dependent on the data being uniformly 
distributed.

♦  Multiple-Key Indexes: A simple multidimensional structure has a root 
that is an index on one attribute, leading to a collection of indexes on a 
second attribute, which can lead to indexes on a third attribute, and so 
on. They are useful for range and nearest-neighbor queries.

♦  kd- Trees: These trees are like binary search trees, but they branch on 
different attributes at different levels. They support partial-match, range, 
and nearest-neighbor queries well. Some careful packing of tree nodes into 
blocks must be done to make the structure suitable for secondary-storage 
operations.

♦  Quad Trees: The quad tree divides a multidimensional cube into quad
rants, and recursively divides the quadrants the same way if they have too 
many points. They support partial-match, range, and nearest-neighbor 
queries.

♦  R-Trees: This form of tree normally represents a collection of regions by 
grouping them into a hierarchy of larger regions. It helps with where-am-
I queries and, if the atomic regions are actually points, will support the 
other types of queries studied in this chapter, as well.

♦  Bitmap Indexes: Multidimensional queries are supported by a form of 
index that orders the points or records and represents the positions of the 
records with a given value in an attribute by a bit vector. These indexes 
support range, nearest-neighbor, and partial-match queries.

♦  Compressed, Bitmaps: In order to save space, the bitmap indexes, which 
tend to consist of vectors with very few l ’s, are compressed by using a 
run-length encoding.

14.9 References for Chapter 14
The B-tree was the original idea of Bayer and McCreight [2]. Unlike the B+ tree 
described here, this formulation had pointers to records at the interior nodes 
as well as at the leaves. [8] is a survey of B-tree varieties.
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Hashing as a data structure goes back to Peterson [19]. Extensible hashing 
was developed by [9], while linear hashing is from [15]. The book by Knuth 
[14] contains much information on data structures, including techniques for 
selecting hash functions and designing hash tables, as well as a number of ideas 
concerning B-tree variants. The B+ tree formulation (without key values at 
interior nodes) appeared in the 1973 edition of [14].

Secondary indexes and other techniques for retrieval of documents are cov
ered by [23]. Also, [10] and [1] are surveys of index methods for text documents.

The kd-tice is from [4]. Modifications suitable for secondary storage ap
peared in [5] and [21]. Partitioned hashing and its use in partial-match retieval 
is from [20] and [7]. However, the design idea from Exercise 14.5.6 is from [22],

Grid files first appeared in [16] and the quad tree in [11]. The R-tree is from 
[13], and two extensions [24] and [3] are well known.

The bitmap index has an interesting history. There was a company called 
Nucleus, founded by Ted Glaser, that patented the idea and developed a DBMS 
in which the bitmap index was both the index structure and the data repre
sentation. The company failed in the late 1980’s, but the idea has recently 
been incorporated into several major commercial database systems. The first 
published work on the subject was [17]. [18] is a recent expansion of the idea.

There are a number of surveys of multidimensional storage structures. One 
of the earliest is [6]. More recent surveys are found in [25] and [12]. The former 
also includes surveys of several other important database topics.
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Chapter 15 

Query Execution

The broad topic of query processing will be covered in this chapter and Chap
ter 16. The query processor is the group of components of a DBMS that turns 
user queries and data-modification commands into a sequence of database op
erations and executes those operations. Since SQL lets us express queries at a 
very high level, the query processor must supply much detail regarding how the 
query is to be executed. Moreover, a naive execution strategy for a query may 
take far more time than necessary.

Figure 15.1 suggests the division of topics between Chapters 15 and 16. 
In this chapter, we concentrate on query execution, that is, the algorithms 
that manipulate the data of the database. We focus on the operations of the 
extended relational algebra, described in Section 5.2. Because SQL uses a bag 
model, we also assume that relations are bags, and thus use the bag versions of 
the operators from Section 5.1.

We shall cover the principal methods for execution of the operations of rela
tional algebra. These methods differ in their basic strategy; scanning, hashing, 
sorting, and indexing are the major approaches. The methods also differ on 
their assumption as to the amount of available main memory. Some algorithms 
assume that enough main memory is available to hold at least one of the re
lations involved in an operation. Others assume that the arguments of the 
operation are too big to fit in memory, and these algorithms have significantly 
different costs and structures.

P rev iew  o f Q uery C om pilation

To set the context for query execution, we offer a very brief outline of the 
content of the next chapter. Query compilation is divided into the three major 
steps shown in Fig. 15.2.

a) Parsing. A parse tree for the query is constructed.

b) Query Rewrite. The parse tree is converted to an initial query plan, which 
is usually an algebraic representation of the query. This initial plan is then
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query

m etadata

Query 
com pilation 
(Chapter 16)

Query 
execution 

(Chapter 15)

query plan

data

Figure 15.1: The major parts of the query processor

transformed into an equivalent plan that is expected to require less time 
to execute.

c) Physical Plan Generation. The abstract query plan from (b), often called 
a logical query plan, is turned into a physical query plan by selecting 
algorithms to implement each of the operators of the logical plan, and by 
selecting an order of execution for these operators. The physical plan, like 
the result of parsing and the logical plan, is represented by an expression 
tree. The physical plan also includes details such as how the queried 
relations are accessed, and when and if a relation should be sorted.

Parts (b) and (c) are often called the query optimizer, and these are the hard 
parts of query compilation. To select the best query plan we need to decide:

1. Which of the algebraically equivalent forms of a query leads to the most 
efficient algorithm for answering the query?

2. For each operation of the selected form, what algorithm should we use to 
implement that operation?

3. How should the operations pass data from one to the other, e.g., in a 
pipelined fashion, in main-memory buffers, or via the disk?

Each of these choices depends on the metadata about the database. Typical 
metadata that is available to the query optimizer includes: the size of each 
relation; statistics such as the approximate number and frequency of different 
values for an attribute; the existence of certain indexes; and the layout of data 
on disk.
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SQL query

Query
optim ization

Execute plan

Figure 15.2: Outline of query compilation

15.1 Introduction to Physical-Query-Plan  
Operators

Physical query plans are built from operators, each of which implements one 
step of the plan. Often, the physical operators are particular implementations 
for one of the operations of relational algebra. However, we also need physical 
operators for other tasks that do not involve an operation of relational algebra. 
For example, we often need to “scan” a table, that is, bring into main memory 
each tuple of some relation. The relation is typically an operand of some other 
operation.

In this section, we shall introduce the basic building blocks of physical query 
plans. Later sections cover the more complex algorithms that implement op
erators of relational algebra efficiently; these algorithms also form an essential 
part of physical query plans. We also introduce here the “iterator” concept, 
which is an important method by which the operators comprising a physical 
query plan can pass requests for tuples and answers among themselves.

15.1.1 Scanning Tables
Perhaps the most basic thing we can do in a physical query plan is to read the 
entire contents of a relation R. A  variation of this operator involves a simple 
predicate, where we read only those tuples of the relation R  that satisfy the
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predicate. There are two basic approaches to locating the tuples of a relation 
R.

1. In many cases, the relation R  is stored in an area of secondary memory, 
with its tuples arranged in blocks. The blocks containing the tuples of R  
are known to the system, and it is possible to get the blocks one by one. 
This operation is called table-scan.

2. If there is an index on any attribute of R, we may be able to use this index 
to get all the tuples of R. For example, a sparse index on R, as discussed 
in Section 14.1.3, can be used to lead us to all the blocks holding R, even if 
we don’t know otherwise which blocks these are. This operation is called 
index-scan.

We shall take up index-scan again in Section 15.6.2, when we talk about 
implementing selection. However, the important observation for now is that we 
can use the index not only to get all the tuples of the relation it indexes, but 
to get only those tuples that have a particular value (or sometimes a particular 
range of values) in the attribute or attributes that form the search key for the 
index.

15.1.2 Sorting W hile Scanning Tables
There are a number of reasons why we might want to sort a relation as we read 
its tuples. For one, the query could include an ORDER BY clause, requiring that 
a relation be sorted. For another, some approaches to implementing relational- 
algebra operations require one or both arguments to be sorted relations. These 
algorithms appear in Section 15.4 and elsewhere.

The physical-query-plan operator sort-scan takes a relation R  and a speci
fication of the attributes on which the sort is to be made, and produces R  in 
that sorted order. There are several ways that sort-scan can be implemented. 
If relation R  must be sorted by attribute a, and there is a B-tree index on a, 
then a scan of the index allows us to produce R  in the desired order. If R  is 
small enough to fit in main memory, then we can retrieve its tuples using a 
table scan or index scan, and then use a main-memory sorting algorithm. If R  
is too large to fit in main memory, then we can use a multiway merge-sort, as 
will be discussed Section 15.4.1.

15.1.3 The Computation M odel for Physical Operators
A query generally consists of several operations of relational algebra, and the 
corresponding physical query plan is composed of several physical operators. 
Since choosing physical-plan operators wisely is an essential of a good query 
processor, we must be able to estimate the “cost” of each operator we use. We 
shall use the number of disk I /O ’s as our measure of cost for an operation. This 
measure is consistent with our view (see Section 13.3.1) that it takes longer to
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get data from disk than to do anything useful with it once the data is in main 
memory.

When comparing algorithms for the same operations, we shall make an 
assumption that may be surprising at first:

• We assume that the arguments of any operator are found on disk, but the 
result of the operator is left in main memory.

If the operator produces the final answer to a query, and that result is indeed 
written to disk, then the cost of doing so depends only on the size of the answer, 
and not on how the answer was computed. We can simply add the final write
back cost to the total cost of the query. However, in many applications, the 
answer is not stored on disk at all, but printed or passed to some formatting 
program. Then, the disk I/O  cost of the output either is zero or depends upon 
what some unknown application program does with the data. In either case, 
the cost of writing the answer does not influence our choice of algorithm for 
executing the operator.

Similarly, the result of an operator that forms part of a query (rather than 
the whole query) often is not written to disk. In Section 15.1.6 we shall discuss 
“iterators,” where the result of one operator 0 \  is constructed in main memory, 
perhaps a small piece at a time, and passed as an argument to another operator 
0-2- In this situation, we never have to write the result of 0 \  to disk, and 
moreover, we save the cost of reading from disk an argument of O2  ■

15.1.4 Parameters for Measuring Costs
Now, let us introduce the parameters (sometimes called statistics) that we use to 
express the cost of an operator. Estimates of cost are essential if the optimizer 
is to determine which of the many query plans is likely to execute fastest. 
Section 16.5 will show how to exploit these cost estimates.

We need a parameter to represent the portion of main memory that the 
operator uses, and we require other parameters to measure the size of its argu
ment (s). Assume that main memory is divided into buffers, whose size is the 
same as the size of disk blocks. Then M  will denote the number of main-memory 
buffers available to an execution of a particular operator.

Sometimes, we can think of M  as the entire main memory, or most of the 
main memory. However, we shall also see situations where several operations 
share the main memory, so M  could be much smaller than the total main 
memory. In fact, as we shall discuss in Section 15.7, the number of buffers 
available to an operation may not be a predictable constant, but may be decided 
during execution, based on what other processes are executing at the same time. 
If so, M  is really an estimate of the number of buffers available to the operation.

Next, let us consider the parameters that measure the cost of accessing 
argument relations. These parameters, measuring size and distribution of data 
in a relation, are often computed periodically to help the query optimizer choose 
physical operators.
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We shall make the simplifying assumption that data is accessed one block 
at a time from disk. In practice, one of the techniques discussed in Section 13.3 
might be able to speed up the algorithm if we are able to read many blocks of 
the relation at once, and they can be read from consecutive blocks on a track. 
There are three parameter families, B, T, and V :

• When describing the size of a relation R, we most often are concerned 
with the number of blocks that are needed to hold all the tuples of R. 
This number of blocks will be denoted B (R), or just B  if we know that 
relation R  is meant. Usually, we assume that R  is clustered; that is, it is 
stored in B  blocks or in approximately B  blocks.

• Sometimes, we also need to know the number of tuples in R, and we 
denote this quantity by T(R), or just T  if R  is understood. If we need 
the number of tuples of R  that can fit in one block, we can use the ratio 
T /B .

• Finally, we shall sometimes want to refer to the number of distinct values 
that appear in a column of a relation. If R  is a relation, and one of its 
attributes is a, then V (R, a) is the number of distinct values of the column 
for a in R. More generally, if [01, 02, . . .  ,a n] is a list of attributes, then 
V(R, [ai, 02, . . .  , on]) is the number of distinct n-tuples in the columns of 
R  for attributes Oi, 02 , . . .  , an . Put formally, it is the number of tuples in 
< 5 ( ^ 0 1 , 0 2 , . . .  ,a n (-R ) ) -

15.1.5 I/O  Cost for Scan Operators
As a simple application of the parameters that were introduced, we can rep
resent the number of disk I/O ’s needed for each of the table-scan operators 
discussed so far. If relation R  is clustered, then the number of disk I /O ’s for 
the table-scan operator is approximately B. Likewise, if R  fits in main-memory, 
then we can implement sort-scan by reading R  into memory and performing an 
in-memory sort, again requiring only B  disk I/O ’s.

However, if R  is not clustered, then the number of required disk I /O ’s is 
generally much higher. If R  is distributed among tuples of other relations, then 
a table-scan for R  may require reading as many blocks as there are tuples of R; 
that is, the I/O  cost is T. Similarly, if we want to sort R, but R  fits in memory, 
then T  disk I/O ’s are what we need to get all of R  into memory.

Finally, let us consider the cost of an index-scan. Generally, an index on 
a relation R  occupies many fewer than B(R) blocks. Therefore, a scan of the 
entire R, which takes at least B  disk I /O ’s, will require significantly more I/O ’s 
than does examining the entire index. Thus, even though index-scan requires 
examining both the relation and its index,

• We continue to use B  or T, respectively, to estimate the cost of accessing 
a clustered or unclustered relation in its entirety, using an index.
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However, if we only want part of R, we often are able to avoid looking at the 
entire index and the entire R. We shall defer analysis of these uses of indexes 
to Section 15.6.2.

15.1.6 Iterators for Implementation of Physical Operators
Many physical operators can be implemented as an iterator, which is a group 
of three methods that allows a consumer of the result of the physical operator 
to get the result one tuple at a time. The three methods forming the iterator 
for an operation are:

1. 0pen(). This method starts the process of getting tuples, but does not get 
a tuple. It initializes any data structures needed to perform the operation 
and calls 0pen() for any arguments of the operation.

2. GetNext(). This method returns the next tuple in the result and adjusts 
data structures as necessary to allow subsequent tuples to be obtained. 
In getting the next tuple of its result, it typically calls GetNextO one 
or more times on its argument(s). If there are no more tuples to return, 
GetNextO returns a special value NotFound, which we assume cannot be 
mistaken for a tuple.

3. Close (). This method ends the iteration after all tuples, or all tuples that 
the consumer wanted, have been obtained. Typically, it calls Close () on 
any arguments of the operator.

When describing iterators and their methods, we shall assume that there 
is a “class” for each type of iterator (i.e., for each type of physical operator 
implemented as an iterator), and the class defines OpenO, GetNextO, and 
C lose() methods on instances of the class.

E xam ple 15.1: Perhaps the simplest iterator is the one that implements the 
table-scan operator. The iterator is implemented by a class TableScan, and a 
table-scan operator in a query plan is an instance of this class parameterized 
by the relation R  we wish to scan. Let us assume that R  is a relation clustered 
in some list of blocks, which we can access in a convenient way; that is, the 
notion of “get the next block of R ” is implemented by the storage system and 
need not be described in detail. Further, we assume that within a block there 
is a directory of records (tuples), so it is easy to get the next tuple of a block 
or tell that the last tuple has been reached.

Figure 15.3 sketches the three methods for this iterator. We imagine a block 
pointer b and a tuple pointer t  that points to a tuple within block b. We assume 
that both pointers can point “beyond” the last block or last tuple of a block, 
respectively, and that it is possible to identify when these conditions occur. 
Notice that C loseO  in this example does nothing. In practice, a C loseO  
method for an iterator might clean up the internal structure of the DBMS in 
various ways. It might inform the buffer manager that certain buffers are no
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0pen() {
b := th e  f i r s t  block of R; 
t  := th e  f i r s t  tu p le  of block b;

}

GetNextO {
IF ( t  i s  p a s t th e  l a s t  tu p le  on block b) { 

increm ent b to  th e  next block;
IF ( th e re  i s  no next block)

RETURN NotFound;
ELSE /*  b i s  a new block * /

t  := f i r s t  tu p le  on block b;
} /*  now we are  ready to  re tu rn  t  and increment */ 
o ld t := t ;
increm ent t  to  th e  next tu p le  of b;
RETURN o ld t;

>

CloseO  {
>

Figure 15.3: Iterator methods for the table-scan operator over relation R

longer needed, or inform the concurrency manager that the read of a relation 
has completed. □

E xam ple 15.2: Now, let us consider an example where the iterator does most 
of the work in its 0pen() method. The operator is sort-scan, where we read the 
tuples of a relation R  but return them in sorted order. We cannot return even 
the first tuple until we have examined each tuple of R. For simplicity, assume 
that R  is small enough to fit in main memory.

0pen() must read the entire R  into main memory. It might also sort the 
tuples of R, in which case GetNext () needs only to return each tuple in turn, in 
the sorted order. Alternatively, 0pen() could leave R  unsorted, and GetNextO 
could select the first of the remaining tuples, in effect performing one pass of a 
selection sort. □

E xam ple 15.3: Finally, let us consider a simple example of how iterators can 
be combined by calling other iterators. The operation is the bag union R  U S, 
in which we produce first all the tuples of R  and then all the tuples of 5, without 
regard for the existence of duplicates. Let TZ and S  denote the iterators that 
produce relations R  and S, and thus are the “children” of the union operator 
in a query plan for R  U S. Iterators TZ and S  could be table scans applied 
to stored relations R  and S,  or they could be iterators that call a network
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Why Iterators?

We shall see in Section 16.7 how iterators support efficient execution when 
they are composed within query plans. They contrast with a material
ization strategy, where the result of each operator is produced in its en
tirety — and either stored on disk or allowed to take up space in main 
memory. When iterators are used, many operations are active at once. Tu
ples pass between operators as needed, thus reducing the need for storage. 
Of course, as we shall see, not all physical operators support the iteration 
approach, or “pipelining,” in a useful way. In some cases, almost all the 
work would need to be done by the Open() method, which is tantamount 
to materialization.

of other iterators to compute R  and S. Regardless, all that is important is 
that we have available methods R.OpenO, R.GetNextO, and R .C loseO , and 
analogous methods for iterator <S.

The iterator methods for the union are sketched in Fig. 15.4. One subtle 
point is that the methods use a shared variable CurRel that is either R  or S, 
depending on which relation is being read from currently. □

15.2 One-Pass Algorithms
We shall now begin our study of a very important topic in query optimization: 
how should we execute each of the individual steps — for example, a join or 
selection — of a logical query plan? The choice of algorithm for each operator 
is an essential part of the process of transforming a logical query plan into a 
physical query plan. While many algorithms for operators have been proposed, 
they largely fall into three classes:

1. Sorting-based methods (Section 15.4).

2. Hash-based methods (Sections 15.5 and 20.1).

3. Index-based methods (Section 15.6).

In addition, we can divide algorithms for operators into three “degrees” of 
difficulty and cost:

a) Some methods involve reading the data only once from disk. These are 
the one-pass algorithms, and they are the topic of this section. Usually, 
they require at least one of the arguments to fit in main memory, although 
there are exceptions, especially for selection and projection as discussed 
in Section 15.2.1.
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OpenO {
R. OpenO;
CurRel := R;

}

GetNextO {
IF (CurRel = R) {

t  := R.GetNextO ;
IF ( t  <> NotFound) /*  R i s  not exhausted */ 

RETURN t ;
ELSE /*  R i s  exhausted */  {

S.OpenO ;
CurRel := S;

}
>
/*  h e re , we must read  from S * /
RETURN S.G etN extO ;
/*  n o tic e  th a t  i f  S i s  exhausted , S.GetNextO 

w il l  r e tu rn  NotFound, which i s  th e  c o rre c t 
a c tio n  fo r  our GetNext as w ell */

C loseO  {
R .C loseO  ;
S .C lo se O ;

>

Figure 15.4: Building a union iterator from iterators TZ and S

b) Some methods work for data that is too large to fit in available main 
memory but not for the largest imaginable data sets. These two-pass 
algorithms are characterized by reading data a first time from disk, pro
cessing it in some way, writing all, or almost all, of it to disk, and then 
reading it a second time for further processing during the second pass. 
We meet these algorithms in Sections 15.4 and 15.5.

c) Some methods work without a limit on the size of the data. These meth
ods use three or more passes to do their jobs, and are natural, recur
sive generalizations of the two-pass algorithms. We shall study multipass 
methods in Section 15.8.

In this section, we shall concentrate on the one-pass methods. Here and 
subsequently, we shall classify operators into three broad groups:
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1. Tuple-at-a-time, unary operations. These operations — selection and pro
jection — do not require an entire relation, or even a large part of it, in 
memory at once. Thus, we can read a block at a time, use one main- 
memory buffer, and produce our output.

2. Full-relation, unary operations. These one-argument operations require 
seeing all or most of the tuples in memory at once, so one-pass algorithms 
are limited to relations that are approximately of size M  (the number of 
main-memory buffers available) or less. The operations of this class are 
7  (the grouping operator) and 6 (the duplicate-elimination operator).

3. Full-relation, binary operations. All other operations are in this class: 
set and bag versions of union, intersection, difference, joins, and prod
ucts. Except for bag union, each of these operations requires at least one 
argument to be limited to size M,  if we are to use a one-pass algorithm.

15.2.1 One-Pass Algorithms for Tuple-at-a-Time 
Operations

The tuple-at-a-time operations cr(R) and ir(R) have obvious algorithms, regard
less of whether the relation fits in main memory. We read the blocks of R  one 
at a time into an input buffer, perform the operation on each tuple, and move 
the selected tuples or the projected tuples to the output buffer, as suggested 
by Fig. 15.5. Since the output buffer may be an input buffer of some other 
operator, or may be sending data to a user or application, we do not count the 
output buffer as needed space. Thus, we require only that M  > 1 for the input 
buffer, regardless of B.

Input Output
buffer buffer

Figure 15.5: A selection or projection being performed on a relation R

The disk I/O  requirement for this process depends only on how the argument 
relation R  is provided. If R  is initially on disk, then the cost is whatever 
it takes to perform a table-scan or index-scan of R. The cost was discussed 
in Section 15.1.5; typically, the cost is B  if R  is clustered and T  if it is not 
clustered. However, remember the important exception where the operation 
being performed is a selection, and the condition compares a constant to an
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Extra Buffers Can Speed Up Operations

Although tuple-at-a-time operations can get by with only one input buffer 
and one output buffer, as suggested by Fig. 15.5, we can often speed up 
processing if we allocate more input buffers. The idea appeared first in 
Section 13.3.2. If R  is stored on consecutive blocks within cylinders, then 
we can read an entire cylinder into buffers, while paying for the seek time 
and rotational latency for only one block per cylinder. Similarly, if the 
output of the operation can be stored on full cylinders, we waste almost 
no time writing.

attribute that has an index. In that case, we can use the index to retrieve only 
a subset of the blocks holding R,  thus improving performance, often markedly.

15.2.2 One-Pass Algorithms for Unary, Full-Relation 
Operations

Now, let us consider the unary operations that apply to relations as a whole, 
rather than to one tuple at a time: duplicate elimination (S) and grouping (7 ).

D u p licate E lim ination

To eliminate duplicates, we can read each block of R  one at a time, but for each 
tuple we need to make a decision as to whether:

1. It is the first time we have seen this tuple, in which case we copy it to the 
output, or

2. We have seen the tuple before, in which case we must not output this 
tuple.

To support this decision, we need to keep in memory one copy of every tuple 
we have seen, as suggested in Fig. 15.6. One memory buffer holds one block of 
R ’s tuples, and the remaining M  — 1 buffers can be used to hold a single copy 
of every tuple seen so far.

When storing the already-seen tuples, we must be careful about the main- 
memory data structure we use. Naively, we might just list the tuples we have 
seen. When a new tuple from R  is considered, we compare it with all tuples 
seen so far, and if it is not equal to any of these tuples we both copy it to the 
output and add it to the in-memory list of tuples we have seen.

However, if there are n tuples in main memory, each new tuple takes pro
cessor time proportional to n, so the complete operation takes processor time 
proportional to n2. Since n  could be very large, this amount of time calls into 
serious question our assumption that only the disk I/O  time is significant. Thus,
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M- 1 buffers Output
buffer

Figure 15.6: Managing memory for a one-pass duplicate-elimination

we need a main-memory structure that allows each us to add a new tuple and 
to tell whether a given tuple is already there, in time that grows slowly with n.

For example, we could use a hash table with a large number of buckets, or 
some form of balanced binary search tree .1 Each of these structures has some 
space overhead in addition to the space needed to store the tuples; for instance, 
a main-memory hash table needs a bucket array and space for pointers to link 
the tuples in a bucket. However, the overhead tends to be small compared with 
the space needed to store the tuples, and we shall in this chpater neglect this 
overhead.

On this assumption, we may store in the M  — 1 available buffers of main 
memory as many tuples as will fit in M  — 1 blocks of R.  If we want one copy 
of each distinct tuple of R  to fit in main memory, then B(S(R))  must be no 
larger than M  — 1. Since we expect M  to be much larger than 1, a simpler 
approximation to this rule, and the one we shall generally use, is:

•  B(S(R)) < M

Note that we cannot in general compute the size of S(R) without computing 
S(R) itself. Should we underestimate that size, so B(6(R))  is actually larger 
than M,  we shall pay a significant penalty due to thrashing, as the blocks 
holding the distinct tuples of R  must be brought into and out of main memory 
frequently.

1See A ho, A. V ., J . E . H opcroft, an d  J . D . U llm an, D ata S tru c tu res and A lgorithm s, 
Addison-W esley, 1983 for d iscussions o f su itab le  m ain-m em ory  s tru c tu res . In  p articu la r, 
hash ing  takes on  average 0 ( n )  tim e  to  process n  item s, an d  balanced  trees take  O lji  log n)  
tim e; e ith e r is sufficiently close to  linear for o u r purposes.
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G rouping

A grouping operation 7 l  gives us zero or more grouping attributes and presum
ably one or more aggregated attributes. If we create in main memory one entry 
for each group — that is, for each value of the grouping attributes — then we 
can scan the tuples of R,  one block at a time. The entry for a group consists of 
values for the grouping attributes and an accumulated value or values for each 
aggregation, as follows:

• For a MIN (a) or MAX (a) aggregate, record the minimum or maximum 
value, respectively, of attribute a seen for any tuple in the group so far. 
Change this minimum or maximum, if appropriate, each time a tuple of 
the group is seen.

• For any COUNT aggregation, add one for each tuple of the group that is 
seen.

• For SUM (a), add the value of attribute a to the accumulated sum for its 
group, provided a is not NULL.

• AVG (a) is the hard case. We must maintain two accumulations: the count 
of the number of tuples in the group and the sum of the a-values of these 
tuples. Each is computed as we would for a COUNT and SUM aggregation, 
respectively. After all tuples of R  axe seen, we take the quotient of the 
sum and count to obtain the average.

When all tuples of R  have been read into the input buffer and contributed 
to the aggregation(s) for their group, we can produce the output by writing the 
tuple for each group. Note that until the last tuple is seen, we cannot begin to 
create output for a 7  operation. Thus, this algorithm does not fit the iterator 
framework very well; the entire grouping has to be done by the Open method 
before the first tuple can be retrieved by GetNext.

In order that the in-memory processing of each tuple be efficient, we need 
to use a main-memory data structure that lets us find the entry for each group, 
given values for the grouping attributes. As discussed above for the 6 operation, 
common main-memory data structures such as hash tables or balanced trees 
will serve well. We should remember, however, that the search key for this 
structure is the grouping attributes only.

The number of disk I /O ’s needed for this one-pass algorithm is B,  as must 
be the case for any one-pass algorithm for a unary operator. The number of 
required memory buffers M  is not related to B  in any simple way, although 
typically M  will be less than B.  The problem is that the entries for the groups 
could be longer or shorter than tuples of R,  and the number of groups could 
be anything equal to or less than the number of tuples of R.  However, in most 
cases, group entries will be no longer than R ’s tuples, and there will be many 
fewer groups than tuples.
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Operations on Nonclustered Data

All our calculations regarding the number of disk I /O ’s required for an 
operation are predicated on the assumption that the operand relations are 
clustered. In the (typically rare) event that an operand R  is not clustered, 
then it may take us T(R)  disk I /O ’s, rather than B(R)  disk I/O ’s to read 
all the tuples of R. Note, however, that any relation that is the result of 
an operator may always be assumed clustered, since we have no reason to 
store a temporary relation in a nonclustered fashion.

15.2.3 One-Pass Algorithms for Binary Operations
Let us now take up the binary operations: union, intersection, difference, prod
uct, and join. Since in some cases we must distinguish the set- and bag-versions 
of these operators, we shall subscript them with B  or S  for “bag” and “set,” 
respectively; e.g., Ub for bag union or — s  for set difference. To simplify the 
discussion of joins, we shall consider only the natural join. An equijoin can 
be implemented the same way, after attributes are renamed appropriately, and 
theta-joins can be thought of as a product or equijoin followed by a selection 
for those conditions that cannot be expressed in an equijoin.

Bag union can be computed by a very simple one-pass algorithm. To com
pute R  Ub S, we copy each tuple of R  to the output and then copy every tuple 
of 5, as we did in Example 15.3. The number of disk I /O ’s is B(R)  +  B(S),  as 
it must be for a one-pass algorithm on operands R  and S,  while M  =  1 suffices 
regardless of how large R  and S  are.

Other binary operations require reading the smaller of the operands R  and 5  
into main memory and building a suitable data structure so tuples can be both 
inserted quickly and found quickly, as discussed in Section 15.2.2. As before, a 
hash table or balanced tree suffices. Thus, the approximate requirement for a 
binary operation on relations R  and S  to be performed in one pass is:

• m in(B(R),B(S))  < M

More preceisely, one buffer is used to read the blocks of the larger relation, 
while approximately M  buffers are needed to house the entire smaller relation 
and its main-memory data structure.

We shall now give the details of the various operations. In each case, we 
assume R  is the larger of the relations, and we house 5  in main memory.

Set U nion

We read S  into M  — 1 buffers of main memory and build a search structure 
whose search key is the entire tuple. All these tuples are also copied to the 
output. We then read each block of R  into the Mth  buffer, one at a time. For
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each tuple t of R,  we see if t is in S,  and if not, we copy t to the output. If t is 
also in S, we skip t.

S et In tersection

Read S  into M  — 1 buffers and build a search structure with full tuples as the 
search key. Read each block of R,  and for each tuple t of R,  see if t is also in 
5. If so, copy t to the output, and if not, ignore t.

Set D ifference

Since difference is not commutative, we must distinguish between R ~ s S  and 
S  — s  R,  continuing to assume that R  is the larger relation. In each case, read 
S  into M  — 1 buffers and build a search structure with full tuples as the search 
key.

To compute R  — ,s S,  we read each block of R  and examine each tuple t on 
that block. If t is in S,  then ignore t; if it is not in S  then copy t to the output.

To compute S  —s R,  we again read the blocks of R  and examine each tuple 
t in turn. If t is in S,  then we delete t from the copy of 5  in main memory, 
while if t  is not in S  we do nothing. After considering each tuple of R, we copy 
to the output those tuples of S  that remain.

B ag In tersection

We read S  into M  — 1 buffers, but we associate with each distinct tuple a count, 
which initially measures the number of times this tuple occurs in S.  Multiple 
copies of a tuple t are not stored individually. Rather we store one copy of t 
and associate with it a count equal to the number of times t occurs.

This structure could take slightly more space than B(S)  blocks if there were 
few duplicates, although frequently the result is that S  is compacted. Thus, we 
shall continue to assume that B(S)  < M  is sufficient for a one-pass algorithm 
to work, although the condition is only an approximation.

Next, we read each block of R, and for each tuple t of R  we see whether t 
occurs in S. If not we ignore t; it cannot appear in the intersection. However, if 
t appears in S,  and the count associated with t  is still positive, then we output 
t and decrement the count by 1. If t appears in S,  but its count has reached 0, 
then we do not output t; we have already produced as many copies of t in the 
output as there were copies in S.

B ag D ifference

To compute S —b  R,  we read the tuples of 5  into main memory, and count the 
number of occurrences of each distinct tuple, as we did for bag intersection. 
When we read R,  for each tuple t we see whether t occurs in 5, and if so, we 
decrement its associated count. At the end, we copy to the output each tuple
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in main memory whose count is positive, and the number of times we copy it 
equals that count.

To compute R —g S ,  we also read the tuples of S  into main memory and 
count the number of occurrences of distinct tuples. We may think of a tuple t 
with a count of c as c reasons not to copy t  to the output as we read tuples of 
R. That is, when we read a tuple t of R,  we see if t occurs in S.  If not, then we 
copy t to the output. If t does occur in S,  then we look at the current count c 
associated with t. If c =  0, then copy t  to the output. If c > 0, do not copy t 
to the output, but decrement c by 1.

P rod u ct

Read S  into M  — 1 buffers of main memory; no special data structure is needed. 
Then read each block of R,  and for each tuple t of R  concatenate t with each 
tuple of 5  in main memory. Output each concatenated tuple as it is formed.

This algorithm may take a considerable amount of processor time per tuple 
of R , because each such tuple must be matched with M  — 1 blocks full of tuples. 
However, the output size is also large, and the time per output tuple is small.

N atu ral Join

In this and other join algorithms, let us take the convention that R(X,  Y)  is 
being joined with S(Y, Z),  where Y  represents all the attributes that R  and S  
have in common, X  is all attributes of R  that are not in the schema of 5, and 
Z  is all attributes of S  that are not in the schema of R.  We continue to assume 
that S  is the smaller relation. To compute the natural join, do the following:

1. Read all the tuples of S  and form them into a main-memory search struc
ture with the attributes of Y  as the search key. Use M  — 1 blocks of 
memory for this purpose.

2. Read each block of R  into the one remaining main-memory buffer. For 
each tuple t of R,  find the tuples of S  that agree with t  on all attributes 
of Y,  using the search structure. For each matching tuple of 5, form a 
tuple by joining it with t, and move the resulting tuple to the output.

like all the one-pass, binary algorithms, this one takes B ( R ) +  B(S)  disk I /O ’s 
•d read the operands. It works as long as B(S)  < M  — 1, or approximately, 
B(S) <  M.

We shall not discuss joins other than the natural join. Remember that an 
eqnijoin is executed in essentially the same way as a natural join, but we must 
account for the fact that “equal” attributes from the two relations may have 
different names. A theta-join that is not an equijoin can be replaced by an 
equijoin or product followed by a selection.
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15.2.4 Exercises for Section 15.2
E xercise 15.2.1: For each of the operations below, write an iterator that 
uses the algorithm described in this section: (a) projection (b) distinct (J) 
(c) grouping (j l ) (d) set union (e) set intersection (f) set difference (g) bag 
intersection (h) bag difference (i) product (j) natural join.

E xercise 15.2.2: For each of the operators in Exercise 15.2.1, tell whether the 
operator is blocking, by which we mean that the first output cannot be produced 
until all the input has been read. Put another way, a blocking operator is one 
whose only possible iterators have all the important work done by Open.

E xercise 15.2.3: Figure 15.9 summarizes the memory and disk-I/O require
ments of the algorithms of this section and the next. However, it assumes all 
arguments are clustered. How would the entries change if one or both arguments 
were not clustered?

! E xercise 15.2.4: Give one-pass algorithms for each of the following join-like 
operators:

a) R X S ,  assuming R  fits in memory (see Exercise 2.4.8 for a definition of 
the semijoin).

b) R X S ,  assuming S  fits in memory.

c) R  X  S,  assuming R  fits in memory (see Exercise 2.4.9 for a definition 
of the antisemijoin).

d) R  X  S,  assuming S  fits in memory.

e) R  S,  assuming R  fits in memory (see Section 5.2.7 for definitions 
involving outerjoins).

f) R  cSj L S,  assuming S  fits in memory.

g) R  txj R S,  assuming R  fits in memory.

h) R  cSi R S,  assuming S  fits in memory.

i) R  c8i S,  assuming R  fits in memory.

15.3 Nested-Loop Joins
Before proceeding to the more complex algorithms in the next sections, we shall 
turn our attention to a family of algorithms for the join operator called “nested- 
loop” joins. These algorithms are, in a sense, “one-and-a-half” passes, since in 
each variation one of the two arguments has its tuples read only once, while 
the other argument will be read repeatedly. Nested-loop joins can be used for 
relations of any size; it is not necessary that one relation fit in main memory.
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15.3.1 Tuple-Based Nested-Loop Join
The simplest variation of nested-loop join has loops that range over individual 
tuples of the relations involved. In this algorithm, which we call tuple-based, 
nested-loop join, we compute the join R(X,  Y)  ex S(Y, Z) as follows:

FOR each tu p le  s in  S DO
FOR each tu p le  r  in  R DO

IF r  and s jo in  to  make a tu p le  t  THEN 
output t ;

If we are careless about how we buffer the blocks of relations R  and 5, then 
this algorithm could require as many as T(R)T(S)  disk I /O ’s. However, there 
are many situations where this algorithm can be modified to have much lower 
cost. One case is when we can use an index on the join attribute or attributes 
of R  to find the tuples of R  that match a given tuple of S,  without having to 
read the entire relation R. We discuss index-based joins in Section 15.6.3. A 
second improvement looks much more carefully at the way tuples of R  and S  
are divided among blocks, and uses as much of the memory as it can to reduce 
the number of disk I/O ’s as we go through the inner loop. We shall consider 
this block-based version of nested-loop join in Section 15.3.3.

15.3.2 An Iterator for Tuple-Based Nested-Loop Join
One advantage of a nested-loop join is that it fits well into an iterator frame
work, and thus, as we shall see in Section 16.7.3, allows us to avoid storing 
intermediate relations on disk in some situations. The iterator for R  txa S  is 
easy to build from the iterators for R  and 5, which support methods R. OpenO, 
and so on, as in Section 15.1.6. The code for the three iterator methods for 
nested-loop join is in Fig. 15.7. It makes the assumption that neither relation 
R  nor S  is empty.

15.3.3 Block-Based Nested-Loop Join Algorithm
We can improve on the tuple-based nested-loop join of Section 15.3.1 if we 
compute R  tx S  by:

1. Organizing access to both argument relations by blocks, and

2. Using as much main memory as we can to store tuples belonging to the 
relation 5, the relation of the outer loop.

Point (1) makes sure that when we run through the tuples of R  in the inner 
loop, we use as few disk I /O ’s as possible to read R.  Point (2) enables us to join 
each tuple of R  that we read with not just one tuple of S,  but with as many 
tuples of 5  as will fit in memory.
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OpenO {
R .0 p en ();
S .0 p e n () ; 
s := S.GetNextO ;

>

GetNextO {
REPEAT {

r  := R.GetNextO ;
IF ( r  = NotFound) { /*  R i s  exhausted fo r  

th e  cu rren t s */
R .C loseO  ; 
s := S.GetNextO ;
IF (s = NotFound) RETURN NotFound;

/*  both  R and S are  exhausted */ 
R.OpenO ; 
r  := R.GetNextO ;

>
>
UNTIL ( r  and s jo in ) ;
RETURN th e  jo in  of r  and s;

>

C lose() {
R .C loseO  ;
S .C lo se O ;

>

Figure 15.7: Iterator methods for tuple-based nested-loop join of R  and S

As in Section 15.2.3, let us assume B(S) < B(R) ,  but now let us also 
assume that B(S)  > M; i.e., neither relation fits entirely in main memory. We 
repeatedly read M —1 blocks of S  into main-memory buffers. A search structure, 
with search key equal to the common attributes of R  and S,  is created for the 
tuples of S  that are in main memory. Then we go through all the blocks of R, 
reading each one in turn into the last block of memory. Once there, we compare 
all the tuples of R ’s block with all the tuples in all the blocks of S  that are 
currently in main memory. For those that join, we output the joined tuple. 
The nested-loop structure of this algorithm can be seen when we describe the 
algorithm more formally, in Fig. 15.8. The algorithm of Fig. 15.8 is sometimes 
called “nested-block join.” We shall continue to call it simply nested-loop join, 
since it is the variant of the nested-loop idea most commonly implemented in 
practice.
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FOR each chunk of M-l blocks of S DO BEGIN
read  th ese  blocks in to  main-memory b u ffe rs ; 
organize t h e i r  tu p le s  in to  a search  s tru c tu re  whose 

search  key i s  th e  common a t t r ib u te s  of R and S;
FOR each block b of R DO BEGIN 

read  b in to  main memory;
FOR each tu p le  t  of b DO BEGIN

fin d  th e  tu p le s  of S in  main memory th a t  
jo in  w ith t ;

output th e  jo in  of t  w ith each of th ese  tu p le s ;
END;

END;
END;

Figure 15.8: The nested-loop join algorithm

The program of Fig. 15.8 appears to have three nested loops. However, there 
really are only two loops if we look at the code at the right level of abstraction. 
The first, or outer loop, runs through the tuples of S.  The other two loops 
run through the tuples of R. However, we expressed the process as two loops 
to emphasize that the order in which we visit the tuples of R  is not arbitrary. 
Rather, we need to look at these tuples a block at a time (the role of the second 
loop), and within one block, we look at all the tuples of that block before moving 
on to the next block (the role of the third loop).

E xam ple 15.4: Let B(R) = 1000, B(S) = 500, and M  = 101. We shall use
100 blocks of memory to buffer S  in 100-block chunks, so the outer loop of 
Fig. 15.8 iterates five times. At each iteration, we do 100 disk I /O ’s to read the 
chunk of S, and we must read R  entirely in the second loop, using 1000 disk 
I /O ’s. Thus, the total number of disk I /O ’s is 5500.

Notice that if we reversed the roles of R  and S, the algorithm would use 
slightly more disk I /O ’s. We would iterate 10 times through the outer loop and 
do 600 disk I/O ’s at each iteration, for a total of 6000. In general, there is a 
slight advantage to using the smaller relation in the outer loop. □

15.3.4 Analysis of Nested-Loop Join
The analysis of Example 15.4 can be repeated for any B(R),  B(S),  and M.  As
suming S  is the smaller relation, the number of chunks, or iterations of the outer 
loop is B ( S ) / ( M  — 1). At each iteration, we read M  — 1 blocks of S  and B(R)  
blocks of R. The number of disk I /O ’s is thus B(S) (M  — 1 +  B ( R ) ) / (M  — 1), 
or B(S )+{B(S )B {R )) / (M  -  1).

Assuming all of M, B(S),  and B(R)  axe large, but M  is the smallest of 
these, an approximation to the above formula is B(S)B(R )/ M .  That is, the
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cost is proportional to the product of the sizes of the two relations, divided by 
the amount of available main memory. We can do much better than a nested- 
loop join when both relations are large. But for reasonably small examples 
such as Example 15.4, the cost of the nested-loop join is not much greater than 
the cost of a one-pass join, which is 1500 disk I /O ’s for this example. In fact, 
if B(S) < M  — 1, the nested-loop join becomes identical to the one-pass join 
algorithm of Section 15.2.3.

Although nested-loop join is generally not the most efficient join algorithm 
possible, we should note that in some early relational DBMS’s, it was the only 
method available. Even today, it is needed as a subroutine in more efficient 
join algorithms in certain situations, such as when large numbers of tuples from 
each relation share a common value for the join attribute(s). For an example 
where nested-loop join is essential, see Section 15.4.6.

15.3.5 Summary of Algorithms so Far
The main-memory and disk I/O  requirements for the algorithms we have dis
cussed in Sections 15.2 and 15.3 are shown in Fig. 15.9. The memory require
ments for 7  and 6 are actually more complex than shown, and M  — B  is only 
a loose approximation. For 7 , M  depends on the number of groups, and for <5, 
M  depends on the number of distinct tuples.

Operators
Approximate 
M  required Disk I/O Section

( J ,  7T 1 B 15.2.1
7 , s B B 15.2.2
u, n, x, M min (B(R) ,B(S)) B(R)  +  B(S) 15.2.3
X any M  > 2 B (R )B (S ) /M 15.3.3

Figure 15.9: Main memory and disk I/O  requirements for one-pass and nested- 
loop algorithms

15.3.6 Exercises for Section 15.3
E xercise 15.3.1: Give the three iterator methods for the block-based version 
of nested-loop join.

E xercise 15.3.2: Suppose B{R)  =  B(S)  =  10,000, and M  =  1000. Calculate 
the disk I/O  cost of a nested-loop join.

E xercise 15.3.3: For the relations of Exercise 15.3.2, what value of M  would 
we need to compute R x S  using the nested-loop algorithm with no more than
(a) 100,000 ! (b) 25,000 ! (c) 15,000 disk I /O ’s?
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E xercise 15.3.4: If R  and S  are both unclustered, it seems that nested-loop 
join would require about T (R )T (S ) /M  disk I /O ’s.

a) How can you do significantly better than this cost?

b) If only one of R  and S  is unclustered, how would you perform a nested- 
loop join? Consider both the cases that the larger is unclustered and that 
the smaller is unclustered.

E xercise 15.3.5: The iterator of Fig. 15.7 will not work properly if either R  
or 5  is empty. Rewrite the methods so they will work, even if one or both 
relations are empty.

15.4 Two-Pass Algorithms Based on Sorting
We shall now begin the study of multipass algorithms for performing relational- 
algebra operations on relations that are larger than what the one-pass algo
rithms of Section 15.2 can handle. We concentrate on two-pass algorithms, 
where data from the operand relations is read into main memory, processed in 
some way, written out to disk again, and then reread from disk to complete the 
operation. We can naturally extend this idea to any number of passes, where 
the data is read many times into main memory. However, we concentrate on 
two-pass algorithms because:

a) Two passes are usually enough, even for very large relations.

b) Generalizing to more than two passes is not hard; we discuss these exten
sions in Section 15.4.1 and more generally in Section 15.8.

We begin with an implementation of the sorting operator r  that illustrates the 
general approach: divide a relation R  for which B(R) > M  into chucks of size 
M,  sort them, and then process the sorted sublists in some fashion that requires 
only one block of each sorted sublist in main memory at any one time.

15.4.1 Two-Phase, Multiway Merge-Sort
It is possible to sort very large relations in two passes using an algorithm 
called Two-Phase, Multiway Merge-Sort (TPMMS), Suppose we have M  main- 
memory buffers to use for the sort. TPMMS sorts a relation R  as follows:

• Phase 1: Repeatedly fill the M  buffers with new tuples from R  and sort 
them, using any main-memory sorting algorithm. Write out each sorted 
sublist to secondary storage.

• Phase 2: Merge the sorted sublists. For this phase to work, there can be 
at most M  — 1 sorted sublists, which limits the size of R. We allocate 
one input block to each sorted sublist and one block to the output. The
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Input buffers, one for each sorted list

Pointers 
to first 
unchosen 
records

\  Select sm allest 
\  unchosen fo r , 

\  output /

Output

buffer

Figure 15.10: Main-memory organization for multiway merging

use of buffers is suggested by Fig. 15.10. A pointer to each input block 
indicates the first element in the sorted order that has not yet been moved 
to the output. We merge the sorted sublists into one sorted list with all 
the records as follows.

1. Find the smallest key among the first remaining elements of all the 
lists. Since this comparison is done in main memory, a linear search 
is sufficient, taking a number of machine instructions proportional to 
the number of sublists. However, if we wish, there is a method based 
on “priority queues”2 that takes time proportional to the logarithm 
of the number of sublists to find the smallest element.

2. Move the smallest element to the first available position of the output 
block.

3. If the output block is full, write it to disk and reinitialize the same 
buffer in main memory to hold the next output block.

4. If the block from which the smallest element was just taken is now 
exhausted of records, read the next block from the same sorted sub
list into the same buffer that was used for the block just exhausted. 
If no blocks remain, then leave its buffer empty and do not con
sider elements from that list in any further competition for smallest 
remaining elements.

In order for TPMMS to work, there must be no more than M  — 1 sublists. 
Suppose R  fits on B  blocks. Since each sublist consists of M  blocks, the number

2See A ho, A. V. a n d  J .  D . U llm an , F ounda tions o f  C om pu ter Science, C o m p u te r  Science 
P ress , 1992.
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of sublists is J3 /M .  We thus require B / M  < M  — 1, or B  < M ( M  — 1) (or 
about B  < M 2).

The algorithm requires us to read B  blocks in the first pass, and another B  
disk I /O ’s to write the sorted sublists. The sorted sublists are each read again 
in the second pass, resulting in a total of 3 5  disk I /O ’s. If, as is customary, 
we do not count the cost of writing the result to disk (since the result may be 
pipelined and never written to disk), then 2>B is all that the sorting operator r  
requires. However, if we need to store the result on disk, then the requirement 
is 4 B.

E xam ple 15.5: Suppose blocks are 64K bytes, and we have one gigabyte of 
main memory. Then we can afford M  of 16K. Thus, a relation fitting in B  
blocks can be sorted as long as B  is no more than (16K)2 =  228. Since blocks 
are of size 64K =  214, a relation can be sorted as long as its size is no greater 
than 242 bytes, or 4 terabytes. □

Example 15.5 shows that even on a modest machine, 2PMMS is sufficient to 
sort all but an incredibly large relation in two passes. However, if you have an 
even bigger relation, then the same idea can be applied recursively. Divide the 
relation into chunks of size M ( M  — 1), use 2PMMS to sort each one, and then 
treat the resulting sorted lists as sublists for a third pass. The idea extends 
similarly to any number of passes.

15.4.2 Duplicate Elimination Using Sorting

To perform the S(R) operation in two passes, we sort the tuples of R  in sublists 
as in 2PMMS. In the second pass, we use the available main memory to hold 
one block from each sorted sublist and one output block, as we did for 2PMMS. 
However, instead of sorting on the second pass, we reapeatedly select the first 
(in sorted order) unconsidered tuple t among all the sorted sublists. We write 
one copy of t to the output and eliminate from the input blocks all occurrences 
of t. Thus, the output will consist of exactly one copy of any tuple in R; they 
will in fact be produced in sorted order. When an output block is full or an 
input block empty, we manage the buffers exactly as in 2PMMS.

The number of disk I /O ’s performed by this algorithm, as always ignoring 
the handling of the output, is the same as for sorting: 3B(R).  This figure can 
be compared with B(R)  for the single-pass algorithm of Section 15.2.2. On 
the other hand, we can handle much larger files using the two-pass algorithm 
than with the one-pass algorithm. As for 2PMMS, approximately B  < M 2 
is required for the two-pass algorithm to be feasible, compared with B  < M  
for the one-pass algorithm. Put another way, to eliminate duplicates with the 
two-pass algorithm requires only \ /B{R)  blocks of main memory, rather than 
the B{R)  blocks required for a one-pass algorithm.
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15.4.3 Grouping and Aggregation Using Sorting
The two-pass algorithm for 7l (R) is quite similar to the algorithm for 6(R) or 
2PMMS. We summarize it as follows:

1. Read the tuples of R  into memory, M  blocks at a time. Sort the tuples in 
each set of M  blocks, using the grouping attributes of L  as the sort key. 
Write each sorted sublist to disk.

2. Use one main-memory buffer for each sublist, and initially load the first 
block of each sublist into its buffer.

3. Repeatedly find the least value of the sort key (grouping attributes) 
present among the first available tuples in the buffers. This value, v, 
becomes the next group, for which we:

(a) Prepare to compute all the aggregates on list L  for this group. As 
in Section 15.2.2, use a count and sum in place of an average.

(b) Examine each of the tuples with sort key v, and accumulate the 
needed aggregates.

(c) If a buffer becomes empty, replace it with the next block from the 
same sublist.

When there are no more tuples with sort key v available, output a tuple 
consisting of the grouping attributes of L  and the associated values of the 
aggregations we have computed for the group.

As for the S algorithm, this two-pass algorithm for 7  takes 3B(R)  disk I /O ’s, 
and will work as long as B(R)  < M 2.

15.4.4 A Sort-Based Union Algorithm
When bag-union is wanted, the one-pass algorithm of Section 15.2.3, where we 
simply copy both relations, works regardless of the size of the arguments, so 
there is no need to consider a two-pass algorithm for Ub- However, the one- 
pass algorithm for Us only works when at least one relation is smaller than the 
available main memory, so we must consider a two-pass algorithm for set union. 
The methodology we present works for the set and bag versions of intersection 
and difference as well, as we shall see in Section 15.4.5. To compute R  Us 5, 
we modify 2PMMS as follows:

1. In the first phase, create sorted sublists from both R  and S.

2. Use one main-memory buffer for each sublist of R  and S.  Initialize each 
with the first block from the corresponding sublist.
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3. Repeatedly find the first remaining tuple t among all the buffers. Copy 
t to the output, and remove from the buffers all copies of t  (if R  and S  
are sets there should be at most two copies). Manage empty input buffers 
and a full output buffer as for 2PMMS.

We observe that each tuple of R  and S  is read twice into main memory, 
once when the sublists are being created, and the second time as part of one of 
the sublists. The tuple is also written to disk once, as part of a newly formed 
sublist. Thus, the cost in disk I /O ’s is 3 (B(R) + B(S)).

The algorithm works as long as the total number of sublists among the two 
relations does not exceed M  — 1, because we need one buffer for each sublist 
and one for the output Thus, approximately, the sum of the sizes of the two 
relations must not exceed M 2; that is, B(R) + B(S) < M 2.

15.4.5 Sort-Based Intersection and Difference
Whether the set version or the bag version is wanted, the algorithms are es
sentially the same as that of Section 15.4.4, except that the way we handle the 
copies of a tuple t at the fronts of the sorted sublists differs. For each algorithm, 
we repeatedly consider the tuple t  that is least in the sorted order among all 
tuples remaining in the input buffers. We produce output as follows, and then 
remove all copies of t from the input buffers.

• For set intersection, output t  if it appears in both R  and S.

• For bag intersection, output t the minimum of the number of times it 
appears in R  and in S.  Note that t  is not output if either of these counts 
is 0; that is, if t  is missing from one or both of the relations.

• For set difference, R  — s  S,  output t if and only if it appears in R  but not 
in S.

• For bag difference, R ~ b  5, output t  the number of times it appears in R  
minus the number of times it appears in S. Of course, if t appears in S  
at least as many times as it appears in R,  then do not output t  at all.

One subtlely must be remembered for the bag operations. When counting 
occurrences of t, it is possible that all remaining tuples in an input buffer are 
t. If so, there may be more it’s on the next block for that sublist. Thus, when 
a buffer has only t ’s remaining, we must load the next block for that sublist, 
continuing the count of t ’s. This process may continue for several blocks and 
may need to be done for several sublists.

The analysis of this family of algorithms is the same as for the set-union 
algorithm described in Section 15.4.4:

• 3 (B ( R ) + B (S ) )  disk I /O ’s.

• Approximately B(R) + B(S) < M 2 for the algorithm to work.
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15.4.6 A Simple Sort-Based Join Algorithm
There axe several ways that sorting can be used to join large relations. Before 
examining the join algorithms, let us observe one problem that can occur when 
we compute a join but was not an issue for the binary operations considered 
so far. When taking a join, the number of tuples from the two relations that 
share a common value of the join attribute(s), and therefore need to be in main 
memory simultaneously, can exceed what fits in memory. The extreme example 
is when there is only one value of the join attribute (s), and every tuple of one 
relation joins with every tuple of the other relation. In this situation, there is 
really no choice but to take a nested-loop join of the two sets of tuples with a 
common value in the join-attribute(s).

To avoid facing this situation, we can try to reduce main-memory use for 
other aspects of the algorithm, and thus make available a large number of buffers 
to hold the tuples with a given join-attribute value. In this section we shall dis
cuss the algorithm that makes the greatest possible number of buffers available 
for joining tuples with a common value. In Section 15.4.8 we consider another 
sort-based algorithm that uses fewer disk I /O ’s, but can present problems when 
there are large numbers of tuples with a common join-attribute value.

Given relations R(X,  Y)  and S(Y, Z ) to join, and given M  blocks of main 
memory for buffers, we do the following:

1. Sort R,  using 2PMMS, with Y  as the sort key.

2 . Sort S  similarly.

3. Merge the sorted R  and S. We use only two buffers: one for the current 
block of R  and the other for the current block of S.  The following steps 
are done repeatedly:

(a) Find the least value y of the join attributes Y  that is currently at 
the front of the blocks for R  and S.

(b) If y does not appear at the front of the other relation, then remove 
the tuple(s) with sort key y.

(c) Otherwise, identify all the tuples from both relations having sort key 
y. If necessary, read blocks from the sorted R  and/or S,  until we are 
sure there are no more y ’s in either relation. As many as M  buffers 
are available for this purpose.

(d) Output all the tuples that can be formed by joining tuples from R  
and S  that have a common Y -value y.

(e) If either relation has no more unconsidered tuples in main memory, 
reload the buffer for that relation.

E xam ple  15.6: Let us consider the relations R  and S  from Example 15.4. 
Recall these relations occupy 1000 and 500 blocks, respectively, and there are 
M  — 101 main-memory buffers. When we use 2PMMS on a relation and store
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the result on disk, we do four disk I /O ’s per block, two in each of the two 
phases. Thus, we use 4 (B(R) + B(S))  disk I /O ’s to sort R  and S,  or 6000 disk 
I /O ’s.

When we merge the sorted R  and S  to find the joined tuples, we read each 
block of R  and S  a fifth time, using another 1500 disk I /O ’s. In this merge we 
generally need only two of the 101 blocks of memory. However, if necessary, we 
could use all 101 blocks to hold the tuples of R  and S  that share a common 
F-value y. Thus, it is sufficient that for no y do the tuples of R  and S  that 
have Y -value y together occupy more than 101 blocks.

Notice that the total number of disk I/O ’s performed by this algorithm 
is 7500, compared with 5500 for nested-loop join in Example 15.4. However, 
nested-loop join is inherently a quadratic algorithm, taking time proportional 
to B(R)B(S) ,  while sort-join has linear I/O  cost, taking time proportional to 
B(R)  +  B(S).  It is only the constant factors and the small size of the example 
(each relation is only 5 or 10 times larger than a relation that fits entirely in 
the allotted buffers) that make nested-loop join preferable. □

15.4.7 Analysis of Simple Sort-Join
As we noted in Example 15.6, the algorithm of Section 15.4.6 performs five 
disk I /O ’s for every block of the argument relations. We also need to consider 
how big M  needs to be in order for the simple sort-join to work. The primary 
constraint is that we need to be able to perform the two-phase, multiway merge 
sorts on R  and S. As we observed in Section 15.4.1, we need B(R)  < M 2 and 
B(S) < M 2 to perform these sorts. In addition, we require that all the tuples 
with a common Y -value must fit in M  buffers. In summary:

• The simple sort-join uses 5 (B(R) + B(S))  disk I /O ’s.

• It requires B(R)  < M 2 and B(S) < M 2 to work.

• It also requires that the tuples with a common value for the join attributes 
fit in M  blocks.

15.4.8 A More Efficient Sort-Based Join
If we do not have to worry about very large numbers of tuples with a com
mon value for the join attribute(s), then we can save two disk I /O ’s per block 
by combining the second phase of the sorts with the join itself. We call this 
algorithm sort-join; other names by which it is known include “merge-join” 
and “sort-merge-join.” To compute R ( X , Y ) m S(Y ,Z)  using M  main-memory 
buffers:

1. Create sorted sublists of size M,  using Y  as the sort key, for both R  and
5.
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2. Bring the first block of each sublist into a buffer; we assume there are no 
more than M  sublists in all.

3. Repeatedly find the least F-value y among the first available tuples of all 
the sublists. Identify all the tuples of both relations that have F-value 
y , perhaps using some of the M  available buffers to hold them, if there 
are fewer than M  sublists. Output the join of all tuples from R  with all 
tuples from S  that share this common F-value. If the buffer for one of 
the sublists is exhausted, then replenish it from disk.

E xam ple  15.7: Let us again consider the problem of Example 15.4: joining 
relations R  and S  of sizes 1000 and 500 blocks, respectively, using 101 buffers. 
We divide R  into 10 sublists and S  into 5 sublists, each of length 100, and sort 
them .3 We then use 15 buffers to hold the current blocks of each of the sublists. 
If we face a situation in which many tuples have a fixed F-value, we can use 
the remaining 86 buffers to store these tuples.

We perform three disk I /O ’s per block of data. Two of those are to cre
ate the sorted sublists. Then, every block of every sorted sublist is read into 
main memory one more time in the multiway merging process. Thus, the total 
number of disk I /O ’s is 4500. □

This sort-join algorithm is more efficient than the algorithm of Section 15.4.6 
when it can be used. As we observed in Example 15.7, the number of disk I /O ’s 
is 3 (B(R)  +  B(S)).  We can perform the algorithm-on data that is almost as 
large as that of the previous algorithm. The sizes of the sorted sublists are 
M  blocks, and there can be at most M  of them Wnojig the two lists. Thus, 
B(R)  + B(S) < M 2 is sufficient.

15.4.9 Summary of Sort-Based Algorithms

In Fig. 15.11 is a table of the analysis of the algorithms we have discussed in 
Section 15.4. As discussed in Sections 15.4.6 and 15.4.8, the join algorithms 
have limitiations on how many tuples can share a common value of the join 
attribute(s). If this limit is violated, we may have to use a nest-loop join 
instead.

15.4.10 Exercises for Section 15.4

Exercise 15.4.1: For each of the following operations, write an iterator that 
uses the algorithm described in this section: (a) distinct (J) (b) grouping (7^)
(c) set intersection (d) bag difference (e) natural join.

te c h n ic a l ly ,  we could  have a rra n g ed  fo r th e  su b lis ts  to  have len g th  101 blocks each, w ith  
th e  las t sub lis t of R  hav ing  91 blocks an d  th e  las t su b lis t o f  S  having 96 blocks, b u t th e  costs 
w ould tu rn  o u t ex ac tly  th e  sam e.
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Operators
Approximate 
M  required Disk I/O Section

r ,  7 , S V b 3 B 15.4.1, 15.4.2, 
15.4.3

u, n, - y/B(R)  + B(S) 3 (B(R) + B(S)) 15.4.4, 15.4.5

tx ^/max(B(R ) ,B (S )) 5 (B(R) + B{S)) 15.4.6

IXI y/B(R)  +  B{S) 3 (B {R )+ B (S ) ) 15.4.8

Figure 15.11: Main memory and disk I/O  requirements for sort-based algo
rithms

Exercise 15.4.2: If B(R) = B(S)  =  10,000 and M  = 1000, what are the disk 
I/O  requirements of: (a) set union (b) simple sort-join (c) the more efficient 
sort-join of Section 15.4.8.

E xercise 15.4.3: Suppose that the second pass of an algorithm described 
in this section does not need all M  buffers, because there are fewer than M  
sublists. How might we save disk I /O ’s by using the extra buffers?

E xercise 15.4.4: In Example 15.6 we discussed the join of two relations R  
and S, with 1000 and 500 blocks, respectively, and M  — 101. However, we 
need additional additional disk I /O ’s if there are so many tuples with a given 
value that neither relation’s tuples could fit in main memory. Calculate the 
total number of disk I/O ’s needed if:

a) There are only two y-values, each appearing in half the tuples of R  and 
half the tuples of S  (recall Y  is the join attribute or attributes).

b) There are five Y -values, each equally likely in each relation.

c) There are 10 F-values, each equally likely in each relation.

E xercise 15.4.5: Repeat Exercise 15.4.4 for the more efficient sort-join of 
Section 15.4.8.

E xercise 15.4.6: How much memory do we need to use a two-pass, sort-based 
algorithm for relations of 10,000 blocks each, if the operation is: (a) 8 (b) 7
(c) a binary operation such as join or union.

E xercise 15.4.7: Describe a two-pass, sort-based algorithm for each of the 
join-like operators of Exercise 15.2.4.
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! Exercise 15.4.8: Suppose records could be larger than blocks, i.e., we could 
have spanned records. How would the memory requirements of two-pass, sort- 
based algorithms change?

!! Exercise 15.4.9: Sometimes, it is possible to save some disk I /O ’s if we leave 
the last sublist in memory. It may even make sense to use sublists of fewer than 
M  blocks to take advantage of this effect. How many disk I /O ’s can be saved 
this way?

15.5 Two-Pass Algorithm s Based on Hashing
There is a family of hash-based algorithms that attack the same problems as 
in Section 15.4. The essential idea behind all these algorithms is as follows. 
If the data is too big to store in main-memory buffers, hash all the tuples of 
the argument or arguments using an appropriate hash key. For all the common 
operations, there is a way to select the hash key so all the tuples that need to be 
considered together when we perform the operation fall into the same bucket.

We then perform the operation by working on one bucket at a time (or on 
a pair of buckets with the same hash value, in the case of a binary operation). 
In effect, we have reduced the size of the operand(s) by a factor equal to the 
number of buckets, which is roughly M.  Notice that the sort-based algorithms 
of Section 15.4 also gain a factor of M  by preprocessing, although the sorting 
and hashing approaches achieve their similar gains by rather different means.

15.5.1 Partitioning Relations by Hashing
To begin, let us review the way we would take a relation R  and, using M  buffers, 
partition R  into M  — 1 buckets of roughly equal size. We shall assume that 
h is the hash function, and that h takes complete tuples of R  as its argument 
(i.e., all attributes of R  are part of the hash key). We associate one buffer with 
each bucket. The last buffer holds blocks of R , one at a time. Each tuple t  in 
the block is hashed to bucket h(t) and copied to the appropriate buffer. If that 
buffer is full, we write it out to disk, and initialize another block for the same 
bucket. At the end, we write out the last block of each bucket if it is not empty. 
The algorithm is given in more detail in Fig. 15.12.

15.5.2 A Hash-Based Algorithm for Duplicate 
Elimination

We shall now consider the details of hash-based algorithms for the various 
operations of relational algebra that might need two-pass algorithms. First, 
consider duplicate elimination, that is, the operation S(R).  We hash R  to 
M  — 1 buckets, as in Fig. 15.12. Note that two copies of the same tuple t will 
hash to the same bucket. Thus, we can examine one bucket at a time, perform 
<5 on that bucket in isolation, and take as the answer the union of S(Ri), where
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initialize M-l buckets using M-l empty buffers;
FOR each block b of relation R DO BEGIN 

read block b into the Mth buffer;
FOR each tuple t in b DO BEGIN

IF the buffer for bucket h(t) has no room for t THEN 
BEGIN

copy the buffer to disk;
initialize a new empty block in that buffer;

END;
copy t to the buffer for bucket h(t);

END;
END;
FOR each bucket DO

buffer for this bucket is not empty THEN 
ite the buffer to disk;

Figure 15.12: Partitioning a relation R into M  — 1 buckets

Ri is the portion of R that hashes to the ith bucket. The one-pass algorithm 
of Section 15.2.2 can be used to eliminate duplicates from each Ri in turn and 
write out the resulting unique tuples.

This method will work as long as the individual R i ’s are sufficiently small 
to fit in main memory and thus allow a one-pass algorithm. Since we may 
assume the hash function h partitions R into equal-sized buckets, each Ri will 
be approximately B(R)/(M — 1) blocks in size. If that number of blocks is no 
larger than M, i.e., B(R) < M(M — 1), then the two-pass, hash-based algorithm 
will work. In fact, as we discussed in Section 15.2.2, it is only necessary that the 
number of distinct tuples in one bucket fit in M  buffers. Thus, a conservative 
estimate (assuming M  and M — 1 are essentially the same) is B(R) < M 2, 
exactly as for the sort-based, two-pass algorithm for 6.

The number of disk I /O ’s is also similar to that of the sort-based algorithm. 
We read each block of R once as we hash its tuples, and we write each block 
of each bucket to disk. We then read each block of each bucket again in the 
one-pass algorithm that focuses on that bucket. Thus, the total number of disk 
I /O ’s is 3B(R).

15.5.3 Hash-Based Grouping and Aggregation
To perform the 7 l (R )  operation, we again start by hashing all the tuples of 
R to M — 1 buckets. However, in order to make sure that all tuples of the 
same group wind up in the same bucket, we must choose a hash function that 
depends only on the grouping attributes of the list L.

Having partitioned R into buckets, we can then use the one-pass algorithm 
for 7  from Section 15.2.2 to process each bucket in turn. As we discussed
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for S in Section 15.5.2, we can process each bucket in main memory provided 
B{R) < M 2.

However, on the second pass, we need only one record per group as we 
process each bucket. Thus, even if the size of a bucket is larger than M,  we 
can handle the bucket in one pass provided the records for all the groups in the 
bucket take no more than M  buffers. As a consequence, if groups are large, then 
we may actually be able to handle much larger relations R than is indicated by 
the B(R) < M 2 rule. On the other hand, if M  exceeds the number of groups, 
then we cannot fill all buckets. Thus, the actual limitation on the size of R as a 
function of M  is complex, but B(R) < M 2 is a conservative estimate. Finally, 
we observe that the number of disk I /O ’s for 7 , as for 8, is 3B(R).

15.5.4 Hash-Based Union, Intersection, and Difference

When the operation is binary, we must make sure that we use the same hash 
function to hash tuples of both arguments. For example, to compute R  Us 5, 
we hash both R  and S to M  — 1 buckets each, say i? i, -R2, - - • , R m -  1 and 
S i,5 2, • • • , S m -  1. We then take the set-union of Ri with Si for all i, and 
output the result. Notice that if a tuple t  appears in both R and S, then for 
some i we shall find t in both Ri and Si. Thus, when we take the union of these 
two buckets, we shall output only one copy of t , and there is no possibility of 
introducing duplicates into the result. For Ub,  the simple bag-union algorithm 
of Section 15.2.3 is preferable to any other approach for that operation.

To take the intersection or difference of R and S, we create the 2(M — 1) 
buckets exactly as for set-union and apply the appropriate one-pass algorithm 
to each pair of corresponding buckets. Notice that all these one-pass algorithms 
require B(R) -I- B(S) disk I /O ’s. To this quantity w em yst add the two disk 
I /O ’s per block that are necessary to hash the tuples of tne two relations and 
store the buckets on disk, for a total of 3 (B{R) +  5 (5 ))  disk I /O ’s.

In order for the algorithms to work, we must be able to take the one-pass 
union, intersection, or difference of Ri and Si, whose sizes will be approxi
mately B(R)/(M -  1) and B(S)/(M -  1), respectively. Recall that the one- 
pass algorithms for these operations require that the smaller operand occupies 
at most M  — 1 blocks. Thus, the two-pass, hash-based algorithms require that 
min(B(R),B(S)) < M 2, approximately.

15.5.5 The Hash-Join Algorithm

To compute R{X, Y) tx S(Y, Z) using a two-pass, hash-based algorithm, we 
act almost as for the other binary operations discussed in Section 15.5.4. The 
only difference is that we must use as the hash key just the join attributes, 
Y. Then we can be sure that if tuples of R and S join, they will wind up in 
corresponding buckets Ri  and Si for some i. A one-pass join of all pairs of
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corresponding buckets completes this algorithm, which we call hash-join.4

E xam ple 15.8: Let us renew our discussion of the two relations R  and S  from 
Example 15.4, whose sizes were 1000 and 500 blocks, respectively, and for which
101 main-memory buffers are made available. We may hash each relation to 
100 buckets, so the average size of a bucket is 10 blocks for R  and 5 blocks 
for S. Since the smaller number, 5, is much less than the number of available 
buffers, we expect to have no trouble performing a one-pass join on each pair 
of buckets.

The number of disk I /O ’s is 1500 to read each of R  and S  while hashing 
into buckets, another 15O0 to write all the buckets to disk, and a third 1500 to 
read each pair of buckets into main memory again while taking the one-pass 
join of corresponding buckets. Thus, the number of disk I /O ’s required is 4500, 
just as for the efficient sort-join of Section 15.4.8. □

We may generalize Example 15.8 to conclude that:

• Hash join requires 3 (B(R)  +  B(S))  disk I /O ’s to perform its task.

• The two-pass hash-join algorithm will work as long as approximately 
min(B(R) ,B(S))  < M 2.

The argument for the latter point is the same as for the other binary operations: 
one of each pair of buckets must fit in M  — 1 buffers.

15.5.6 Saving Some Disk I /O ’s
If there is more memory available on the first pass than we need to hold one 
block per bucket, then we have some opportunities to save disk I /O ’s. One 
option is to use several blocks for each bucket, and write them out as a group, 
in consecutive blocks of disk. Strictly speaking, this technique doesn’t save disk 
I/O ’s, but it makes the I /O ’s go faster, since we save seek time and rotational 
latency when we write.

However, there are several tricks that have been used to avoid writing some 
of the buckets to disk and then reading them again. The most effective of them, 
called hybrid hash-join, works as follows. In general, suppose we decide that to 
join R t x  S,  with S  the smaller relation, we need to create k buckets, where k 
is much less than M,  the available memory. When we hash S,  we can choose 
to keep m  of the k buckets entirely in main memory, while keeping only one 
block for each of the other k — m  buckets. We can manage to do so provided 
the expected size of the buckets in memory, plus one block for each of the other 
buckets, does not exceed M ; that is:

m B ( S ) / k  + k — m  < M  (15.1)

4Som etim es, th e  te rm  “hash-jo in” is reserved for th e  varian t o f th e  one-pass jo in  a lgo rithm  
of Section 15.2.3 in w hich a  hash  tab le  is used as th e  m ain-m em ory  search  s tru c tu re . T hen , 
th e  tw o-pass hash-jo in  a lgo rithm  described  here is called “p a r titio n  hash-jo in .”
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In explanation, the expected size of a bucket is B ( S )/k,  and there are m  buckets 
in memory.

Now, when we read the tuples of the other relation, R,  to hash that relation 
into buckets, we keep in memory:

1. The rn buckets of 5  that were never written to disk, and

2. One block for each of the k — m  buckets of R  whose corresponding buckets 
of 5  were written to disk.

If a tuple t of R  hashes to one of the first m  buckets, then we immediately 
join it with all the tuples of the corresponding 5-bucket, as if this were a one- 
pass, hash-join. It is necessary to organize each of the in-memory buckets of 5  
into an efficient search structure to facilitate this join, just as for the one-pass 
hash-join. If t hashes to one of the buckets whose corresponding 5-bucket is on 
disk, then t is sent to the main-memory block for that bucket, and eventually 
migrates to disk, as for a two-pass, hash-based join.

On the second pass, we join the corresponding buckets of R  and 5  as usual. 
However, there is no need to join the pairs of buckets for which the 5-bucket 
was left in memory; these buckets have already been joined and their result 
output.

The savings in disk I /O ’s is equal to two for every block of the buckets of 5  
that remain in memory, and their corresponding ft-buckets. Since m / k  of the 
buckets are in memory, the savings is 2(m/k)(B(R)  +  B(S)) .  We must thus 
ask how to maximize m/k ,  subject to the constraint of Equation (15.1). The 
surprising answer is: pick m  — 1, and then make k as small as possible.

The intuitive justification is that all but k — m  of the main-memory buffers 
can be used to hold tuples of 5  in main memory, and the more of these tuples, 
the fewer the disk I /O ’s. Thus, we want to minimize k, the total number of 
buckets. We do so by making each bucket about'as big as can fit in main 
memory; that is, buckets are of size M,  and therefore k = B (S ) /M .  If that is 
the case, then there is only room for one bucket in the extra main memory; i.e., 
m  — 1.

In fact, we really need to make the buckets slightly smaller than B(S) /M ,  
or else we shall not quite have room for one full bucket and one block for the 
other k — 1 buckets in memory at the same time. Assuming, for simplicity, that 
k is about B ( S ) / M  and m  = 1, the savings in disk I/O ’s is

2 M ( B ( R ) + B { S ) ) / B { S )  

and the total cost is (3 — 2M /B (S ) )  (B (R ) +  B(S)).

E xam ple 15.9: Consider the problem of Example 15.4, where we had to join 
relations R  and 5 , of 1000 and 500 blocks, respectively, using M  =  101. If we 
use a hybrid hash-join, then we want k, the number of buckets, to be about 
500/101. Suppose we pick k = 5. Then the average bucket will have 100 blocks
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of S ’s tuples. If we try to fit one of these buckets and four extra blocks for the 
other four buckets, we need 104 blocks of main memory, and we cannot take 
the chance that the in-memory bucket will overflow memory.

Thus, we are advised to choose k =  6 . Now, when hashing S on the first 
pass, we have five buffers for five of the buckets, and we have up to 96 buffers 
for the in-memory bucket, whose expected size is 500/6 or 83. The number 
of disk I/O ’s we use for S on the first pass is thus 500 to read all of S, and 
500 — 83 =  417 to write five buckets to disk. When we process R  on the first 
pass, we need to read alJ,of R  (1000 disk I /O ’s) and write 5 of its 6 buckets 
(833 disk I /O ’s). (

On the second pass, V e read all the buckets written to disk, or 417 +  833 =  
1250 additional disk I /O ’s. T m  total number of disk I /O ’s is thus 1500 to read 
R  and S, 1250 to write 5/6 of these relations, and another 1250 to read those 
tuples again, or 4000 disk I /O ’s. This figure compares with the 4500 disk I /O ’s 
needed for the straightforward hash-join or sort-join. □

15.5.7 Summary of Hash-Based Algorithms
Figure 15.13 gives the memory requirements and disk I /O ’s needed by each of 
the algorithms discussed in this section. As with other types of algorithms, we 
should observe that the estimates for 7  and S may be conservative, since they 
really depend on the number of duplicates and groups, respectively, rather than 
on the number of tuples in the argument relation.

Operators
Approximate 
M  required Disk I/O Section

7 , <5 V b W 15.5.2, 15.5.3

u, n, - V B ( S ) 3 (B(R) + B(S)) 15.5.4

CXI V B ( S ) 3 ( B { R )+ B (S ) ) 15.5.5

IX V B ( S ) ( 3 - 2  M /B (S ) ) (B ( R )  + B(S)) 15.5.6

Figure 15.13: Main memory and disk I/O  requirements for hash-based algo
rithms; for binary operations, assume B(S) < B(R)

Notice that the requirements for sort-based and the corresponding hash- 
based algorithms are almost the same. The significant differences between the 
two approaches are:

1. Hash-based algorithms for binary operations have a size requirement that 
depends only on the smaller of two arguments rather than on the sum of 
the argument sizes, that sort-based algorithms require.
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2. Sort-based algorithms sometimes allow us to produce a result in sorted 
order and take advantage of that sort later. The result might be used in 
another sort-based algorithm for a subsequent operator, or it could be the 
answer to a query that is required to be produced in sorted order.

3. Hash-based algorithms depend on the buckets being of equal size. Since 
there is generally at least a small variation in size, it is not possible to 
use buckets that, on average, occupy M  blocks; we must limit them to a 
slightly smaller figure. This effect is especially prominent if the number 
of different hash keys is small, e.g., performing a group-by on a relation 
with few groups or a join with very few values for the join attributes.

4. In sort-based algorithms, the sorted sublists may be written to consecutive 
blocks of the disk if we organize the disk properly. Thus, one of the three 
disk I /O ’s per block may require little rotational latency or seek time 
and therefore may be much faster than the I/O ’s needed for hash-based 
algorithms.

5. Moreover, if M  is much larger than the number of sorted sublists, then 
we may read in several consecutive blocks at a time from a sorted sublist, 
again saving some latency and seek time.

6 . On the other hand, if we can choose the number of buckets to be less than 
M  in a hash-based algorithm, then we can write out several blocks of a 
bucket at once. We thus obtain the same benefit on the write step for 
hashing that the sort-based algorithms have for the second read, as we 
observed in (5). Similarly, we may be able to organize the disk so that a 
bucket eventually winds up on consecutive blocks of tracks. If so, buckets 
can be read with little latency or seek time, just as sorted sublists were 
observed in (4) to be writable efficiently.

15.5.8 Exercises for Section 15.5
E xercise 15.5.1: The hybrid-hash-join jdeS^storing one bucket in main mem
ory, can also be applied to other operations. Show how to save the cost of stor
ing and reading one bucket from each relation when implementing a two-pass, 
hash-based algorithm for: (a) 8 (b) 7  (c) C\pf (d) —5 .

E xercise 15.5.2: If B(S)  =  B(R) = 10,000 and M  =  1000, what is the 
number of disk I /O ’s required for a hybrid hash join?

E xercise 15.5.3: Write iterators that implement the two-pass, hash-based 
algorithms for (a) S (b) 7  (c) C]B (d) ~ s  (e) tx.

Exercise 15.5.4: Suppose we are performing a two-pass, hash-based grouping 
operation on a relation R  of the appropriate size; i.e., B(R) < M 2. However, 
there are so few groups, that some groups are larger than M; i.e., they will not
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fit in main memory at once. What modifications, if any, need to be made to 
the algorithm given here?

! E xercise 15.5.5: Suppose that we are using a disk where the time to move 
the head to a block is 100 milliseconds, and it takes 1 /2  millisecond to read 
one block. Therefore, it takes k/2  milliseconds to read k consecutive blocks, 
once the head is positioned^ Suppose we want to compute a two-pass hash-join 
R  tx S,  where B(R) = 1000, B(S)  =  500, and M  =  101. To speed up the join, 
we want to use as few buosets as possible (assuming tuples distribute evenly 
among buckets), and read and write as many blocks as we can to consecutive 
positions on disk. Counting 100.5 milliseconds for a random disk I/O  and 
100 + k/2  milliseconds for reading or writing k consecutive blocks from or to 
disk:

a) How much time does the disk I/O  take?

b) How much time does the disk I/O  take if we use a hybrid hash-join as 
described in Example 15.9?

c) How much time does a sort-based join take under the same conditions, 
assuming we write sorted sublists to consecutive blocks of disk?

15.6 Index-Based Algorithms
The existence of an index on one or more attributes of a relation makes available 
some algorithms that would not be feasible without the index. Index-based 
algorithms are especially useful for the selection operator, but algorithms for 
join and other binary operators also use indexes to very good advantage. In 
this section, we shall introduce these algorithms. We also continue with the 
discussion of the index-scan operator for accessing a stored table with an index 
that we began in Section 15.1.1. To appreciate many of the issues, we first need 
to digress and consider “clustering” indexes.

15.6.1 Clustering and Nonclustering Indexes
Recall from Section 15.1.3 that a relation is “clustered” if its tuples axe packed 
into roughly as few blocks as can possibly hold those tuples. All the analyses 
we have done so far assume that relations are clustered.

We may also speak of clustering indexes, which are indexes on an attribute 
or attributes such that all the tuples with a fixed value for the search key of this 
index appear on roughly as few blocks as can hold them. Note that a relation 
that isn’t clustered cannot have a clustering index,5 but even a clustered relation

t e c h n ic a l ly ,  if th e  index is on a  key for th e  re la tion , so only one tu p le  w ith  a  given value 
in th e  index key exists, th en  th e  index is alw ays “c luste ring ,” even if  th e  re la tion  is not 
c lustered . However, if th e re  is only one tu p le  p er index-key value, th en  th e re  is no advantage 
from  clustering , an d  th e  perform ance m easure for such an  index is th e  sam e as if  it  were 
considered nonclustering .
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can have nonclustering indexes.

E xam ple 15.10: A relation R(a, b) that is sorted on attribute a and stored in 
that order, packed into blocks, is surely clustered. An index on a is a clustering 
index, since for a given a-value a\, all the tuples with that value for a are 
consecutive. They thus appear packed into blocks, except possibly for the first 
and last blocks that contain a-value oi, as suggested in Fig. 15.14. However, an 
index on b is unlikely to be clustering, since the tuples with a fixed 6-value will 
be spread all over the file unless the values of a and b are very closely correlated.
□

al al al a\ a\ a\ dj tZj £Zj al

All the flj tuples

Figure 15.14: A clustering index has all tuples with a fixed value packed into 
(close to) the minimum possible number of blocks

15.6.2 Index-Based Selection
In Section 15.1.1 we discussed implementing a selection ac(R)  by reading all 
the tuples of relation R,  seeing which meet the condition C,  and outputting 
those that do. If there are no indexes on R,  then that is the best we can do; 
the number of disk I /O ’s used by the operation is B(R),  or even T(R),  the 
number of tuples of R,  should R  not be a clustered relation.6 However, suppose 
that the condition C  is of the form a =  v, where a is an attribute for which 
an index exists, and v is a value. Then one can search the index with value v 
and get pointers to exactly those tuples of R  that have a-value v. These tuples 
constitute the result of aa=v(R), so all we have to do is retrieve them.

If the index on R.a is a clustering Index, then the number of disk I /O ’s to 
retrieve the set aa=v(R) will average B(Rj)/V(R, a). The actual number may 
be somewhat higher for several reasons: /

1. Often, the index is not kept entirely in main memory, and some disk I /O ’s 
are needed to support the index lookup.

2. Even though all the tuples with a — v might fit in b blocks, they could 
be spread over b + 1 blocks because they don’t  start at the beginning of 
a block.

6R.ecall from  Section 15.1.3 th e  n o ta tio n  we developed: T (R )  for th e  num ber of tu p les in 
R , B (R )  for th e  num ber o f blocks in w hich R  fits, an d  V ( R ,L ) for th e  num ber o f d istinc t 
tu p le s in 7r/,(/?).
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3. Even though the tuples of R  may be clustered, they may not be packed 
as tightly as possible into blocks. For example, there could be extra space 
for tuples to be inserted into R  later, or R  could be in a clustered file, as 
discussed in Section 14.1.6.

Moreover, we of course must rpurtJ up if the ratio B(R ) /V (R ,a )  is not an 
integer. Most significant is that should a be a key for R,  then V(R,  a) =  T ( R ), 
which is presumably much bigger than B(R),  yet we surely require one disk 
I/O  to retrieve the tuple with Kgy value v, plus whatever disk I /O ’s are needed 
to access the index.

Now, let us consider what happens when the index on R.a is nonclustering. 
To a first approximation, each tuple we retrieve will be on a different block, 
and we must access T(R )/ V (R ,a )  tuples. Thus, T(R)/ V(R ,a )  is an estimate 
of the number of disk I /O ’s we need. The number could be higher because we 
may also need to read some index blocks from disk; it could be lower because 
fortuitously some retrieved tuples appear on the same block, and that block 
remains buffered in memory.

E xam ple 15.11: Suppose B(R)  =  1000, and T(R) — 20,000. That is, R  has 
20,000 tuples, packed at most 20 to a block. Let a be one of the attributes of 
R, suppose there is an index on a, and consider the operation era=o(R). Here 
are some possible situations and the worst-case number of disk I /O ’s required. 
We shall ignore the cost of accessing the index blocks in all cases.

1. If R  is clustered, but we do not use the index, then the cost is 1000 disk 
I /O ’s. That is, we must retrieve every block of R.

2. If R  is not clustered and we do not use the index, then the cost is 20,000 
disk I /O ’s.

3. If V(R,  a) — 100 and the index is clustering, then the index-based algo
rithm uses 1000/100 =  10 disk I /O ’s, plus whatever is needed to access 
the index.

4. If V(R,a)  =  10 and the index is nonclustering, then the index-based 
algorithm uses 20,000/10 =  2000 disk I /O ’s. Notice that this cost is 
higher than scanning the entire relation R,  if R  is clustered but the index 
is not.

5. If V(R,  a) — 20,000, i.e., a is a key, then the index-based algorithm takes 1 
disk I/O  plus whatever is needed to access the index, regardless of whether 
the index is clustering or not.

□

Index-scan as an access method can help in several other kinds of selection 
operations.
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a) An index such as a B-tree lets us access the search-key values in a given 
range efficiently. If such an index on attribute a of relation R  exists, then 
we can use the index to retrieve just the tuples of R  in the desired range 
for selections such as aa>io(R), or even cra>io and o<20(R)-

b) A selection with a complex condition C  can sometimes be implemented by 
an index-scan followed by another selection on only those tuples retrieved 
by the index-scan. If C  is of the form a — v AND C', where C'  is any 
condition, then we can split the selection into a cascade of two selections, 
the first checking only for a =  v, and the second checking condition C'. 
The first is a candidate for use of the index-scan operator. This splitting 
of a selection operation is one of many improvements that a query op
timizer may make to a logical query plan; it is discussed particularly in 
Section 16.7.1.

15.6.3 Joining by Using an Index

All the binary operations we have considered, and the unary full-relation op
erations of 7  and 6 as well, can use certain indexes profitably. We shall leave 
most of these algorithms as exercises, while we focus on the m atter of joins. In 
particular, let us examine the natural join R ( X , Y )  m S(Y,Z);  recall that X ,  
Y,  and Z  can stand for sets of attributes, although it is sufficient to think of 
them as single attributes.

For our first index-based join algorithm, suppose that S  has an index on the 
attribute(s) Y.  Then one way to compute the join is to examine each block of 
R,  and within each block consider each tuple t .  Let t y  be the component or 
components of t  corresponding to the attribute(s) Y.  Use the index to find all 
those tuples of 5  that have t y  in their F-component(s). These are exactly the 
tuples of S  that join with tuple t  of R,  so we output the join of each of these 
tuples with t .

The number of disk I /O ’s depends on several factors. First, assuming R  is 
clustered, we shall have to read B(R)  blocks to get all the tuples of R. If R  is 
not clustered, then up to T(R)  disk I /O ’s may be required.

For each tuple t of R  we must read an average of T ( S ) / V ( S , Y )  tuples 
of S.  If S  has a nonclustered index on K, then the number of disk I /O ’s 
required to read 5  is T ( R ) T (S ) /V ( S ,Y ) ,  put if the index is clustered, then 
only T ( R ) B ( S ) / V ( S , Y ) disk I /O ’s suffice/ In either case, we may have to add 
a few disk I /O ’s per Y -value, to account for the reading of the index itself.

Regardless of whether or not R  is clustered, the cost of accessing tuples of 
S  dominates. Ignoring the cost of reading R,  we shall take T ( R ) T ( S ) /V ( S ,Y )  
or T (R ) (m a x ( l ,B (S ) /V (S ,Y ) ) )  as the cost of this join method, for the cases 
of nonclustered and clustered indexes on S,  respectively.

7B u t rem em b er th a t  B ( S ) / V ( S , Y )  m u st be  rep laced  by  1 if  i t  is less, a s  discussed  in 
Section 15.6.2.
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E xam ple 15.12: Let us consider our running example, relations R ( X , Y )  and 
S(Y, Z)  covering 1000 and 500 blocks, respectively. Assume ten tuples of either 
relation fit on one block, so T(R)  =  10,000 and T(S)  =  5000. Also, assume 
V (S ,Y )  = 100; i.e., there are 100 different values of Y  among the tuples of S.

Suppose that R  is clustered, and th^re is a clustering index on Y  for 5. Then 
the approximate number of disk I /O s , excluding what is needed to access the 
index itself, is 1000 to read the blocks of R  plus 10,000 x 500 /  100 =  50,000 
disk I /O ’s. This number is consideraBlyjibove the cost of other methods for the 
same data discussed previously. If either R  or the index on S  is not clustered, 
then the cost is even higher. □

While Example 15.12 makes it look as if an index-join is a very bad idea, 
there are other situations where the join R  m 5  by this method makes much 
more sense. Most common is the case where R  is very small compared with S, 
and V(S, Y)  is large. We discuss in Exercise 15.6.5 a typical query in which 
selection before a join makes R  tiny. In that case, most of S  will never be 
examined by this algorithm, since most Y-values don’t appear in R  at all. 
However, both sort- and hash-based join methods will examine every tuple of 
S  at least once.

15.6.4 Joins Using a Sorted Index
When the index is a B-tree, or any other structure from which we easily can 
extract the tuples of a relation in sorted order, we have a number of other op
portunities to use the index. Perhaps the simplest is when we want to compute 
R ( X , Y )  tx S(Y,Z) ,  and we have such an index on Y  for either R  or S.  We 
can then perform an ordinary sort-join, but we do not have to perform the 
intermediate step of sorting one of the relations on Y.

As an extreme case, if we have sorting indexes on Y  for both R  and S, 
then we need to perform only the final step of the simple sort-based join of 
Section 15.4.6. This method is sometimes called zig-zag join, because we jump 
back and forth between the indexes finding Y -values that they share in common. 
Notice that tuples from R  with a Y -value that does not appear in S  need never 
be retrieved, and similarly, tuples of 5  whose Y-value does not appear in R  
need not be retrieved.

E xam ple 15.13: Suppose that we have relations R ( X , Y )  and S(Y,Z )  with 
indexes on Y  for both relations. In a tiny example, let the search keys (Y- 
values) for the tuples of R  be in order 1 ,3 ,4 ,4 ,4 ,5 ,6 , and let the search key 
values for S  be 2 ,2 ,4 ,4 ,6 ,7 . We start with the first keys of R  and S,  which are 
1 and 2, respectively. Since 1 < 2, we skip the first key of R  and look at the 
second key, 3. Now, the current key of S  is less than the current key of R, so 
we skip the two 2’s of S  to reach 4.

At this point, the key 3 of R  is less than the key of S,  so we skip the key 
of R.  Now, both current keys are 4. We follow the pointers associated with 
all the keys 4 from both relations, retrieve the corresponding tuples, and join
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them. Notice that until we met the common key 4, no tuples of the relation 
were retrieved.

Having dispensed with the 4’s, we go to key 5 of R  and key 6 of S. Since 
5 < 6, we skip to the next key of R. Now the keys are both 6, so we retrieve 
the corresponding tuples and join them. Since R  is now exhausted, we know 
there are no more pairs of tuples from the two relations that join. □

If the indexes are B-trees, then we can scan the leaves of the two B-trees in 
order from the left, using the pointers from leaf to leaf that are built into the 
structure, as suggested in Fig. 15.15. If R  and S  are clustered, then retrieval of 
all the tuples with a given key will result in a number of disk I /O ’s proportional 
to the fractions of these two relations read. Note that in extreme cases, where 
there are so many tuples from R  and S  that neither fits in the available main 
memory, we shall have to use a fixup like that discussed in Section 15.4.6. 
However, in typical cases, the step of joining all tuples with a common Y-  value 
can be carried out with only as many disk I /O ’s as it takes to read them.

E xam ple 15.14: Let us continue with Example 15.12, to see how joins using 
a combination of sorting and indexing would typically perform on this data. 
First, assume that there is an index on Y  for S  that allows us to retrieve the 
tuples of S  sorted by Y.  We shall, in this example, also assume both relations 
and the index are clustered. Fo jment, we assume there is no index on

Assuming 101 available bloc] in memory, we may use them to create
10 sorted sublists for the 1000-! __  ation R. The number of disk I /O ’s is
2000 to read and write all of R.  We next use 11 blocks of memory — 10 for 
the sublists of R  and one for a block of S ’s tuples, retrieved via the index. We 
neglect disk I/O ’s and memory buffers needed to manipulate the index, but if 
the index is a B-tree, these numbers will be small anyway. In this second pass, 
we read all the tuples of R  and S,  using a total of 1500 disk I /O ’s, plus the small 
amount needed for reading the index blocks once each. We thus estimate the

Figure 15.15: A zig-zag join using two indexes

R.
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total number of disk I /O ’s at 3500, which is less than that for other methods 
considered so far.

Now, assume that both R  and »S have indexes on Y . Then there is no need 
to sort either relation. We use ju k  lSQj) disk I /O ’s to read the blocks of R  
and S  through their indexes. In fact, if we determine from the indexes alone 
that a large fraction of R  or S  cannot match tuples of the other relation, then 
the total cost could be considerably less than 1500 disk I /O ’s. However, in any 
event we should add the small number of disk I /O ’s needed to read the indexes 
themselves. □

15.6.5 Exercises for Section 15.6
E xercise 15.6.1: Suppose there is an index on attribute R.a. Describe how 
this index could be used to improve the execution of the following operations. 
Under what circumstances would the index-based algorithm be more efficient 
than sort- or hash-based algorithms?

a) R  Us S  (assume that R  and S  have no duplicates, although they may 
have tuples in common).

b) RC\s S  (again, with R  and S  sets).

c) 6{R).

E xercise 15.6.2: Suppose B(R) — 10,000 and T(R) — 500,000. Let there 
be an index on R.a , and let V  (R, a) = k for some number k. Give the cost 
of cra=o(R), as a function of k, under the following circumstances. You may 
neglect disk I /O ’s needed to access the index itself.

a) The index is clustering.

b) The index is not clustering.

c) R  is clustered, and the index is not used.

E xercise 15.6.3: Repeat Exercise 15.6.2 if the operation is the range query 
ac<a and a<v{R). You may assume that C  and D  are constants such that k / 10 
of the values are in the range.

E xercise 15.6.4: If R  is clustered, but the index on R.a is not clustering, then 
depending on k we may prefer to implement a query by performing a table-scan 
of R  or using the index. For what values of k would we prefer to use the index 
if the relation and query are as in (a) Exercise 15.6.2 (b) Exercise 15.6.3.

E xercise 15.6.5: Consider the SQL query:

SELECT b ir th d a te  FROM S ta rs ln , MovieStar
WHERE m ovieT itle = ’King Kong’ AND starName = name;
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This query uses the “movie” relations:

S ta rs ln (m o v ieT itle , movieYear, starName)
M ovieStar (name, ad d ress , gender, b ir th d a te )

If we translate it to relational algebra, the heart is an equijoin between

and MovieStar, which can be implemented much as a natural join R  tx S. 
Since there were only three movies named “King Kong,” T(R)  is very small. 
Suppose that 5, the relation MovieStar, has an index on name. Compare the 
cost of an index-join for this R  tx 5  with the cost of a sort- or hash-based join.

! Exercise 15.6 .6 : In Example 15.14 we discussed the disk-I/O cost of a join 
R  tx 5  in which one or both of R  and S  had sorting indexes on the join 
attribute(s). However, the methods described in that example can fail if there 
are too many tuples with the same value in the join attribute(s). W hat are 
the limits (in number of blocks occupied by tuples with the same value) under 
which the methods described will not need to do additional disk I /O ’s?

15.7 Buffer Management
We have assumed that operators on relations have available some number M  
of main-memory buffers that they can use to store needed data. In practice, 
these buffers are rarely allocated in advance to the operator, and the value 
of M  may vary depending on system conditions. The central task of making 
main-memory buffers available to processes, such as queries, that act on the 
database is given to the buffer manager. It is the responsibility of the buffer 
manager to allow processes to get the memory they need, while minimizing the 
delay and unsatisfiable requests. The role of the buffer manager is illustrated 
in Fig. 15.16.

15.7.1 Buffer Management Architecture
There are two broad architectures for a buffer manager:

1. The buffer manager control emory directly, as in many relational

2. The buffer manager allocat in virtual memory, allowing the op
erating system to decide which buffers are actually in main memory at 
any time and which are in the “swap space” on disk that the operating 
system manages. Many “main-memory” DBMS’s and “object-oriented” 
DBMS’s operate this way.

&m o vieT itle=  ’King Kong’ (Starsln)

DBMS’s, or
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Figure 15.16: The buffer manager responds to requests for main-memory access 
to disk blocks

Whichever approach a DBMS uses, the same problem arises: the buffer 
manager should limit the number of buffers in use so they fit in the available 
main memory. When the buffer manager controls main memory directly, and 
requests exceed available space, it has to select a buffer to empty, by returning 
its contents to disk. If the buffered block has not been changed, then it may 
simply be erased from main memory, but if the block has changed it must be 
written back to its place on the disk. When the buffer manager allocates space 
in virtual memory, it has the option to allocate more buffers than can fit in 
main memory. However, if all these buffers are really in use, then there will 
be “thrashing,” a common operating-system problem, where many blocks are 
moved in and out of the disk’s swap space. In this situation, the system spends 
most of its time swapping blocks, while very little useful work gets done.

Normally, the number of buffers is a parameter set when the DBMS is 
initialized. We would expect that this number is set so that the buffers occupy 
the available main memory, regardless of whether the buffers are allocated in 
main or virtual memory. In what follows, we shall not concern ourselves with 
which mode of buffering is used, and simply assume that there is a fixed-size 
buffer pool, a set of buffers available to queries and other database actions.

15.7.2 Buffer Management Strategies

The critical choice that the buffer manager must make is what block to throw 
out of the buffer pool when a buffer is needed for a newly requested block. The 
buffer-replacement strategies in common use may be familiar to you from other 
applications of scheduling policies, such as in operating systems. These include:
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Memory Management for Query Processing

We are assuming that the buffer manager allocates to an operator M  
main-memory buffers, where the value for M  depends on system condi
tions (including other operators and queries underway), and may vary 
dynamically. Once an operator has M  buffers, it may use some of them 
for bringing in disk pages, others for index pages, and still others for sort 
runs or hash tables. In some DBMS’s, memory is not allocated from a sin
gle pool, but rather there are separate pools of memory — with separate 
buffer managers — for different purposes. For example, an operator might 
be allocated D  buffers from a pool to hold pages brought in from disk and 
H  buffers to build a hash table. This approach offers more opportunities 
for system configuration and “tuning,” but may not make the best global 
use of memory.

L east-R ecen tly  U sed  (LR U )

The LRU rule is to throw out the block that has not been read or written for the 
longest time. This method requires that the buffer manager maintain a table 
indicating the last time the block in each buffer was accessed. It also requires 
that each database access make an entry in this table, so there is significant 
effort in maintaining this information. However, LRU is an effective strategy; 
intuitively, buffers that have not been used for a long time are less likely to be 
accessed sooner than those that have been accessed recently.

F irst-In -F irst-O u t (FIFO )

When a buffer is needed, under the FIFO policy the buffer that has been oc
cupied the longest by the same block is emptied and used for the new block. 
In this approach, the buffer manager needs to know only the time at which the 
block currently occupying a buffer was loaded into that buffer. An entry into a 
table can thus be made when the block is read from disk, and there is no need 
to modify the table when the block is accessed. FIFO requires less maintenance 
than LRU, but it can make more mistakes. A block that is used repeatedly, say 
the root block of a B-tree index, will eventually become the oldest block in a 
buffer. It will be written back to disk, only to be reread shortly thereafter into 
another buffer.

T he “C lock” A lgorith m  ( “S econ d  C hance” )

This algorithm is a commonly implemented, efficient approximation to LRU. 
Think of the buffers as arranged in la circle, as suggested by Fig. 15.17. A 
“hand” points to one of the buffers, and will rotate clockwise if it needs to find 
a buffer in which to place a disk block. Each buffer has an associated “flag,”
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which is either 0 or 1. Buffers with a 0 flag are vulnerable to having their 
contents sent back to disk; buffers with a 1 are not. When a block is read into 
a buffer, its flag is set to 1. Likewise, when the contents of a buffer is accessed, 
its flag is set to 1.

Figure 15.17: The clock algorithm visits buffers in a round-robin fashion and 
replaces 01 • • • 1 with 10 • • ■ 0

When the buffer manager needs a buffer for a new block, it looks for the 
first 0 it can find, rotating clockwise. If it passes l ’s, it sets them to 0. Thus, 
a block is only thrown out of its buffer if it remains unaccessed for the time it 
takes the hand to make a complete rotation to set its flag to 0 and then make 
another complete rotation to find the buffer with its 0 unchanged. For instance, 
in Fig. 15.17, the hand will set to 0 the 1 in the buffer to its left, and then move 
clockwise to find the buffer with 0, whose block it will replace and whose flag 
it will set to 1.

S ystem  C ontrol

The query processor or other components of a DBMS can give advice to the 
buffer manager in order to avoid some of the mistakes that would occur with 
a strict policy such as LRU, FIFO, or Clock. Recall from Section 13.6.5 that 
there are sometimes technical reasons why a block in main memory can not 
be moved to disk without first modifying certain other blocks that point to it. 
These blocks are called “pinned,” and any buffer manager has to modify its 
buffer-replacement strategy to avoid expelling pinned blocks. This fact gives us 
the opportunity to force other blocks to remain in main memory by declaring 
them “pinned,” even if there is no technical reason why they could not be 
written to disk. For example, a cure for the problem with FIFO mentioned 
above regarding the root of a B-tree is to “pin” the root, forcing it to remain in 
memory at all times. Similarly, for an algorithm like a one-pass hash-join, the 
query processor may “pin” the blocks of the smaller relation in order to assure 
that it will remain in main memory during the entire time.

0
0
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More Tricks Using the Clock Algorithm

The “clock” algorithm for choosing buffers to free is not limited to the 
scheme described in Section 15.7.2, where flags had values 0 and 1. For 
instance, one can start an important page with a number higher than 1 
as its flag, and decrement the flag by 1 each time the “hand” passes that 
page. In fact, one can incorporate the concept of pinning blocks by giving 
the pinned block an infinite value for its flag, and then having the system 
release the pin at the appropriate time by setting the flag to 0 .

15.7.3 The Relationship Between Physical Operator 
Selection and Buffer Management

The query optimizer will eventually select a set of physical operators that will 
be used to execute a given query. This selection of operators may assume that a 
certain number of buffers M  is available for execution of each of these operators. 
However, as we have seen, the buffer manager may not be willing or able to 
guarantee the availability of these M  buffers when the query is executed. There 
are thus two related questions to ask about the physical operators:

1. Can the algorithm adapt to changes in the value of M,  the number of 
main-memory buffers available?

2. When the expected M  buffers axe not available, and some blocks that axe 
expected to be in memory have actually been moved to disk by the buffer 
manager, how does the buffer-replacement strategy used by the buffer 
manager impact the number of additional I /O ’s that must be performed?

E xam ple 15.15: As an example of the issues, let us consider the block-based 
nested-loop join of Fig. 15.8. The basic algorithm does not really depend on 
the value of M,  although its performance depends on M.  Thus, it is sufficient 
to find out what M  is just before execution begins.

It is even possible that M  will change at different iterations of the outer 
loop. That is, each time we load main memory with a portion of the relation S  
(the relation of the outer loop), we can use all but one of the buffers available at 
that time; the remaining buffer is reserved for a block of R,  the relation of the 
inner loop. Thus, the number of times we go around the outer loop depends on 
the average number of buffers available at each iteration. However, as long as 
M  buffers are available on average, then the cost analysis of Section 15.3.4 will 
hold. In the extreme, we might have the good fortune to find that at the first 
iteration, enough buffers axe available to hold all of S,  in which case nested-loop 
join gracefully becomes the one-pass join of Section 15.2.3.

As another example of how nested-loop join interacts with buffering, sup
pose that we use an LRU buffer-replacement strategy, and there are k buffers
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available to hold blocks of R.  As we read each block of R,  in order, the blocks 
that remain in buffers at the end of this iteration of the outer loop will be the 
last k blocks of R. We next reload the M  — 1 buffers for S  with new blocks 
of S  and start reading the blocks of R  again, in the next iteration of the outer 
loop. However, if we start from the beginning of R  again, then the k buffers for 
R  will need to be replaced, and we do not save disk I /O ’s just because k > 1.

A better implementation of nested-loop join, when an LRU buffer-replace- 
ment strategy is used, visits the blocks of R  in an order that alternates: first- 
to-last and then last-to-first (called rocking). In that way, if there are k  buffers 
available to R,  we save k disk I /O ’s on each iteration of the outer loop except 
the first. That is, the second and subsequent iterations require only B(R)  — k 
disk I /O ’s for R.  Notice that even if k = 1 (i.e., no extra buffers are available 
to R),  we save one disk I/O  per iteration. □

Other algorithms also are impacted by the fact that M  can vary and by the 
buffer-replacement strategy used by the buffer manager. Here are some useful 
observations.

• If we use a sort-based algorithm for some operator, then it is possible to 
adapt to changes in M. If M shrinks, we can change the size of a sublist, 
since the sort-based algorithms we discussed do not depend on the sublists 
being the same size. The major limitation is that as M shrinks, we could 
be forced to create so many sublists that we cannot then allocate a buffer 
for each sublist in the merging process.

• If the algorithm is hash-based, we can reduce the number of buckets if M  
shrinks, as long as the buckets do not then become so large that they do 
not fit in allotted main memory. However, unlike sort-based algorithms, 
we cannot respond to changes in M  while the algorithm runs. Rather, 
once the number of buckets is chosen, it remains fixed throughout the first 
pass, and if buffers become unavailable, the blocks belonging to some of 
the buckets will have to be swapped out.

15.7.4 Exercises for Section 15.7
Exercise 15.7.1: Suppose that we wish to execute a join R x S ,  and the 
available memory will vary between M and M /2 . In terms of M, B(R) ,  and 
B(S),  give the conditions under which we can guarantee that the following 
algorithms can be executed:

a) A one-pass join.

b) A two-pass, hash-based join.

c) A two-pass, sort-based join.
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! Exercise 15.7.2: How would the number of disk I /O ’s taken by a nested-loop 
join improve if extra buffers became available and the buffer-replacement policy 
were:

a) First-in-first-out.

b) The clock algorithm.

!! E xercise 15.7.3: In Example 15.15, we suggested that it was possible to take 
advantage of extra buffers becoming available during the join by keeping more 
than one block of R buffered and visiting the blocks of R in reverse order on 
even-numbered iterations of the outer loop. However, we could also maintain 
only one buffer for R and increase the number of buffers used for S. Which 
strategy yields the fewest disk I /O ’s?

15.8 Algorithms Using More Than Two Passes
While two passes are enough for operations on all but the largest relations, we 
should observe that the principal techniques discussed in Sections 15.4 and 15.5 
generalize to algorithms that, by using as many passes as necessary, can process 
relations of arbitrary size. In this section we shall consider the generalization 
of both sort- and hash-based approaches.

15.8.1 Multipass Sort-Based Algorithms
In Section 15.4.1 we alluded to how 2PMMS could be extended to a three-pass 
algorithm. In fact, there is a simple recursive approach to sorting that will 
allow us to sort a relation, however large, completely, or if we prefer, to create 
n  sorted sublists for any desired n.

Suppose we have M  main-memory buffers available to sort a relation R, 
which we shall assume is stored clustered. Then do the following:

BASIS: If R  fits in M  blocks (i.e., B(R)  < M ), then read R  into main memory, 
sort it using any main-memory sorting algorithm, and write the sorted relation 
to disk.

INDUCTION: If R does not fit into main memory, partition the blocks holding 
R into M  groups, which we shall call Ri,R2,...  , Rm• Recursively sort Ri for 
each * =  1 ,2 ,...  ,M.  Then, merge the M  sorted sublists, as in Section 15.4.1.

If we are not merely sorting R, but performing a unary operation such as 7  
or S on R, then we modify the above so that at the final merge we perform the 
operation on the tuples at the front of the sorted sublists. That is,

• For a 6, output one copy of each distinct tuple, and skip over copies of 
the tuple.
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• For a 7 , sort on the grouping attributes only, and combine the tuples with 
a given value of these grouping attributes in the appropriate manner, as 
discussed in Section 15.4.3.

When we want to perform a binary operation, such as intersection or join, we 
use essentially the same idea, except that the two relations are first divided into 
a total of M  sublists. Then, each sublist is sorted by the recursive algorithm 
above. Finally, we read each of the M  sublists, each into one buffer, and we 
perform the operation in the manner described by the appropriate subsection 
of Section 15.4.

We can divide the M  buffers between relations R  and S  as we wish. However, 
to minimize the total number of passes, we would normally divide the buffers 
in proportion to the number of blocks taken by the relations. That is, R  gets 
M  x B(R) / (B(R)  +  B(S))  of the buffers, and S  gets the rest.

15.8.2 Performance of Multipass, Sort-Based Algorithms
Now, let us explore the relationship between the number of disk I /O ’s required, 
the size of the relation(s) operated upon, and the size of main memory. Let 
s(M, k) be the maximum size of a relation that we can sort using M  buffers 
and k passes. Then we can compute s{M, k) as follows:

BASIS: If k =  1, i.e., one pass is allowed, then we must have B(R) < M.  Put 
another way, s(M,  1) =  M.

INDUCTION: Suppose k > 1. Then we partition R  into M  pieces, each of 
which must be sortable in k — 1 passes. If B(R) = s(M,k) ,  then s(M, k) /M,  
which is the size of each of the M  pieces of R, cannot exceed s(M, k — 1). That 
is: s(M, k) =  Ms(M,  k — 1).
If we expand the above recursion, we find

s(M, k ) =  Ms(M,  k -  1) =  M 2s(M, k -  2) =  • • • =  1)

Since s(M,  1) =  M,  we conclude that s(M,k) = M k. That is, using k passes, 
we can sort a relation R  if B(R)  < M k. Put another way, if we want to sort R  
in k passes, then the minimum number of buffers we can use is M  = (B(R)) 1̂ .

Each pass of a sorting algorithm reads all the data from disk and writes it 
out again. Thus, a fc-pass sorting algorithm requires 2kB(R)  disk I /O ’s.

Now, let us consider the cost of a multipass join R ( X , Y )  x  S(Y,Z) ,  as 
representative of a binary operation on relations. Let j  (M, k) be the largest 
number of blocks such that in k passes, using M  buffers, we can join relations 
of j (M ,  k) or fewer total blocks. That is, the join can be accomplished provided 
B ( R ) + B { S ) < j ( M , k ) .

On the final pass, we merge M  sorted sublists from the two relations. 
Each of the sublists is sorted using k — 1 passes, so they can be no longer 
than s (M ,k  — 1) =  M k_1 each, or a total of M s ( M ,k  — 1) =  M k. That is,
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B(R)  + B(S) < M k. Reversing the role of the parameters, we can also state 
that to compute the join in k passes requires (B(R) + B (S ) ) 1̂  buffers.

To calculate the number of disk I/O ’s needed in the multipass algorithms, 
we should remember that, unlike for sorting, we do not count the cost of writing 
the final result to disk for joins or other relational operations. Thus, we use 
2(k — l ) (B(R)  + B(S))  disk I /O ’s to sort the sublists, and another B (R ) + B (S )  
disk I /O ’s to read the sorted sublists in the final pass. The result is a total of 
(2k -  1 ){B(R) + B(S))  disk I /O ’s.

15.8.3 Multipass Hash-Based Algorithms
There is a corresponding recursive approach to using hashing for operations on 
large relations. We hash the relation or relations into M  — 1 buckets, where M  
is the number of available memory buffers. We then apply the operation to each 
bucket individually, in the case of a unary operation. If the operation is binary, 
such as a join, we apply the operation to each pair of corresponding buckets, as 
if they were the entire relations. We can describe this approach recursively as:

BASIS: For a unary operation, if the relation fits in M  buffers, read it into 
memory and perform the operation. For a binary operation, if either relation 
fits in M  — 1 buffers, perform the operation by reading this relation into main 
memory and then read the second relation, one block at a time, into the M th 
buffer.

INDUCTION: If no relation fits in main memory, then hash each relation into 
M — 1 buckets, as discussed in Section 15.5.1. Recursively perform the operation 
on each bucket or corresponding pair of buckets, and accumulate the output 
from each bucket or pair.

15.8.4 Performance of Multipass Hash-Based Algorithms
In what follows, we shall make the assumption that when we hash a relation, 
the tuples divide as evenly as possible among the buckets. In practice, this as
sumption will be met approximately if we choose a truly random hash function, 
but there will always be some unevenness in the distribution of tuples among 
buckets.

First, consider a unary operation, like 7  or 5 on a relation R  using M  buffers. 
Let u(M, k) be the number of blocks in the largest relation that a fc-pass hashing 
algorithm can handle. We can define u recursively by:

BASIS: u(M,  1) =  M,  since the relation R  must fit in M  buffers; i.e., B(R)  < 
M.

INDUCTION: We assume that the first step divides the relation R  into M  — 1 
buckets of equal size. Thus, we can compute u(M, k) as follows. The buckets 
for the next pass must be sufficiently small that they can be handled in k — 1
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passes; that is, the buckets are of size u(M, k — 1). Since R  is divided into M  — 1 
buckets, we must have u(M, k ) =  (M  — 1 )u(M, k — 1).

If we expand the recurrence above, we find that u(M,k)  =  M ( M  — l ) fc_1, 
or approximately, assuming M  is large, u(M,k)  — M k. Equivalently, we can 
perform one of the unary relational operations on relation R  in k passes with 
M  buffers, provided M  > (B(R)) l^k.

We may perform a similar analysis for binary operations. As in Section 
15.8.2, let us consider the join. Let j (M ,  k) be an upper bound on the size of 
the smaller of the two relations R  and 5  involved in R{X,  Y)  ix S(Y, Z).  Here, 
as before, M  is the number of available buffers and k is the number of passes 
we can use.

BASIS: j (M ,  1) =  M  — 1; that is, if we use the one-pass algorithm to join, then 
either R  or S  must fit in M  — 1 blocks, as we discussed in Section 15.2.3.

INDUCTION: j ( M ,k )  =  ( M  — 1 ) j (M ,k  — 1); that is, on the first of k  passes, 
we can divide each relation into M  — 1 buckets, and we may expect each bucket 
to be 1 / ( M  — 1) of its entire relation, but we must then be able to join each 
pair of corresponding buckets in M  — 1 passes.
By expanding the recurrence for j (M ,  k), we conclude that j (M ,  k ) =  (M — 1)*. 
Again assuming M  is large, we can say approximately j ( M ,k )  = M k. That 
is, we can join R ( X , Y )  ix S(Y ,Z )  using k passes and M  buffers provided 
min(B{R) ,B(S))  < M k.

15.8.5 Exercises for Section 15.8

Exercise 15.8.1: Suppose B(R)  = 20,000, B(S) — 50,000, and M  =  101. 
Describe the behavior of the following algorithms to compute R t x  S:

a) A three-pass, sort-based algorithm.

b) A three-pass, hash-based algorithm.

Exercise 15.8.2: There are several “tricks” we have discussed for improving 
the performance of two-pass algorithms. For the following, tell whether the 
trick could be used in a multipass algorithm, and if so, how?

a) The hybrid-hash-join trick of Section 15.5.6.

b) Improving a sort-based algorithm by storing blocks consecutively on disk 
(Section 15.5.7).

c) Improving a hash-based algorithm by storing blocks consecutively on disk 
(Section 15.5.7).
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15.9 Summary of Chapter 15
♦  Query Processing: Queries are compiled, which involves extensive op

timization, and then executed. The study of query execution involves 
knowing methods for executing operations of relational algebra with some 
extensions to match the capabilities of SQL.

♦  Query Plans: Queries are compiled first into logical query plans, which are 
often like expressions of relational algebra, and then converted to a physi
cal query plan by selecting an implementation for each operator, ordering 
joins and making other decisions, as will be discussed in Chapter 16.

♦  Table Scanning: To access the tuples of a relation, there are several pos
sible physical operators. The table-scan operator simply reads each block 
holding tuples of the relation. Index-scan uses an index to find tuples, 
and sort-scan produces the tuples in sorted order.

♦  Cost Measures for Physical Operators: Commonly, the number of disk 
I/O ’s taken to execute an operation is the dominant component of the 
time. In our model, we count only disk I/O  time, and we charge for the 
time and space needed to read arguments, but not to write the result.

♦  Iterators: Several operations involved in the execution of a query can be 
meshed conveniently if we think of their execution as performed by an 
iterator. This mechanism consists of three methods, to open the con
struction of a relation, to produce the next tuple of the relation, and to 
close the construction.

♦  One-Pass Algorithms: As long as one of the arguments of a relational- 
algebra operator can fit in main memory, we can execute the operator by 
reading the smaller relation to memory, and reading the other argument 
one block at a time.

♦  Nested-Loop Join: This simple join algorithm works even when neither 
argument fits in main memory. It reads as much as it can of the smaller 
relation into memory, and compares that with the entire other argument; 
this process is repeated until all of the smaller relation has had its turn 
in memory.

♦  Two-Pass Algorithms: Except for nested-loop join, most algorithms for 
arguments that are too large to fit into memory are either sort-based, 
hash-based, or index-based.

♦  Sort-Based Algorithms: These partition their argument(s) into main- 
memory-sized, sorted sublists. The sorted sublists are then merged ap
propriately to produce the desired result. For instance, if we merge the 
tuples of all sublists in sorted order, then we have the important two- 
phase-multiway-merge sort.
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♦  Hash-Based Algorithms: These use a hash function to partition the ar
gument^) into buckets. The operation is then applied to the buckets 
individually (for a unary operation) or in pairs (for a binary operation).

♦  Hashing Versus Sorting: Hash-based algorithms are often superior to sort- 
based algorithms, since they require only one of their arguments to be 
“small.” Sort-based algorithms, on the other hand, work well when there 
is another reason to keep some of the data sorted.

♦  Index-Based Algorithms: The use of an index is an excellent way to speed 
up a selection whose condition equates the indexed attribute to a constant. 
Index-based joins are also excellent when one of the relations is small, and 
the other has an index on the join attribute(s).

♦  The Buffer Manager: The availability of blocks of memory is controlled 
by the buffer manager. When a new buffer is needed in memory, the 
buffer manager uses one of the familiar replacement policies, such as least- 
recently-used, to decide which buffer is returned to disk.

♦  Coping With Variable Numbers of Buffers: Often, the number of main- 
memory buffers available to an operation cannot be predicted in advance. 
If so, the algorithm used to implement an operation needs to degrade 
gracefully as the number of available buffers shrinks.

♦  Multipass Algorithms: The two-pass algorithms based on sorting or hash
ing have natural recursive analogs that take three or more passes and will 
work for larger amounts of data.

15.10 References for Chapter 15
Two surveys of query optimization are [6] and [2]. [8] is a survey of distributed 
query optimization.

An early study of join methods is in [5]. Buffer-pool management was ana
lyzed, surveyed, and improved by [3].

The use of sort-based techniques was pioneered by [1], The advantage of 
tiash-based algorithms for join was expressed by [7] and [4]; the latter is the 
Drigin of the hybrid hash-join.
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Chapter 16

The Query Compiler

We shall now take up the architecture of the query compiler and its optimizer. 
As we noted in Fig. 15.2, there axe three broad steps that the query processor 
must take:

1. The query, written in a language like SQL, is parsed, that is, turned into 
a paxse tree representing the structure of the query in a useful way.

2. The paxse tree is transformed into an expression tree of relational algebra 
(or a similar notation), which we term a logical query plan.

3. The logical query plan must be turned into a physical query plan, which 
indicates not only the operations performed, but the order in which they 
are performed, the algorithm used to perform each step, and the ways in 
which stored data is obtained and data is passed from one operation to 
another.

The first step, parsing, is the subject of Section 16.1. The result of this 
step is a parse tree for the query. The other two steps involve a number of 
choices. In picking a logical query plan, we have opportunities to apply many 
different algebraic operations, with the goal of producing the best logical query 
plan. Section 16.2 discusses the algebraic laws for relational algebra in the 
abstract. Then, Section 16.3 discusses the conversion of parse trees to initial 
logical query plans and shows how the algebraic laws from Section 16.2 can be 
used in strategies to improve the initial logical plan.

When producing a physical query plan from a logical plan, we must evaluate 
the predicted cost of each possible option. Cost estimation is a science of its 
own, which we discuss in Section 16.4. We show how to use cost estimates to 
evaluate plans in Section 16.5, and the special problems that come up when 
we order the joins of several relations are the subject of Section 16.6. Finally, 
Section 16.7 covers additional issues and strategies for selecting the physical 
query plan: algorithm choice, and pipelining versus materialization.

759
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16.1 Parsing and Preprocessing
The first stages of query compilation are illustrated in Fig. 16.1. The four boxes 
in that figure correspond to the first two stages of Fig. 15.2.

Query

Section 16.1

Section 16.3

Preferred logical 
query plan

Figure 16.1: From a query to a logical query plan

In this section, we discuss parsing of SQL and give rudiments of a grammar 
that can be used for that language. We also discuss how to handle a query that 
involves a virtual view and other steps of preprocessing.

16.1.1 Syntax Analysis and Parse Trees
The job of the parser is to take text written in a language such as SQL and 
convert it to a parse tree, which is a tree whose nodes correspond to either:

1. Atoms, which are lexical elements such as keywords (e.g., SELECT), names 
of attributes or relations, constants, parentheses, operators such as +  or 
<, and other schema elements, or

2. Syntactic categories, which are names for families of query subparts that 
all play a similar role in a query. We shall represent syntactic categories 
by triangular brackets around a descriptive name. For example, <Query> 
will be used to represent some queries in the common select-from-where 
form, and <Condition> will represent any expression that is a condition;
i.e., it can follow WHERE in SQL.

If a node is an atom, then it has no children. However, if the node is a 
syntactic category, then its children are described by one of the rules of the 
grammar for the language. We shall present these ideas by example. The 
details of how one designs grammars for a language, and how one “parses,” i.e.,
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turns a program or query into the correct parse tree, is properly the subject of 
a course on compiling.1

16.1.2 A Grammar for a Simple Subset of SQL
We shall illustrate the parsing process by giving some rules that describe a small 
subset of SQL queries.

Q ueries

The syntactic category <Query> is intended to represent (some of the) queries 
of SQL. We give it only one rule:

<Query> ::=  SELECT <SelList>  FROM <FromList> WHERE <Condition>

Symbol : := means “can be expressed as.” The syntactic categories <SelList> 
and <FromList> represent lists that can follow SELECT and FROM, respectively. 
We shall describe limited forms of such lists shortly. The syntactic category 
<Condition> represents SQL conditions (expressions that are either true or 
false); we shall give some simplified rules for this category later.

Note this rule does not provide for the various optional clauses such as 
GROUP BY, HAVING, or ORDER BY, nor for options such as DISTINCT after SELECT, 
nor for query expressions using UNION, JOIN, or other binary operators.

Select-L ists

<SelList>  ::=  < A ttribute>  , <SelList>
<SelList> ::=  <A ttribute>

These two rules say that a select-list can be any comma-separated list of a t
tributes: either a single attribute or an attribute, a comma, and any list of one 
or more attributes. Note that in a full SQL grammar we would also need provi
sion for expressions and aggregation functions in the select-list and for aliasing 
of attributes and expressions.

From -Lists

<FromList> ::=  <Relation> , <FromList>
<FromList> ::=  <Relation>

Here, a from-list is defined to be any comma-separated list of relations. For 
simplification, we omit the possibility that elements of a from-list can be ex- 
pressionsa, such as joins or subqueries. Likewise, a full SQL grammar would 
have to allow tuple variables for relations.

1T hose  un fam ilia r w ith  th e  su b je c t m ay w ish to  exam ine A . V. A ho, M. L am , R . S eth i, and 
J .  D . U llm an , Com pilers: P rincip les, Techniques, and Tools, Addison-W esley, 2007, a lthough  
th e  exam ples o f Section 16.1.2 should  be  sufficient to  place parsing  in th e  con tex t o f th e  query 
processor.
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C onditions

The rules we shall use are:

<Condition> ::=  <Condition> AND <Condition> 
<Condition> ::=  <A ttribute>  IN ( <Query> ) 
<Condition> ::=  <A ttribu te>  = <A ttribute>  
<Condition> ::=  <A ttribute>  LIKE <Pattern>

Although we have listed more rules for conditions than for other categories, 
these rules only scratch the surface of the forms of conditions. We have omit
ted rules introducing operators OR, NOT, and EXISTS, comparisons other than 
equality and LIKE, constant operands, and a number of other structures that 
are needed in a full SQL grammar.

B ase S yn tactic  C ategories

Syntactic categories <Attribute>, <Relation>, and <Pattern>  are special, 
in that they are not defined by grammatical rules, but by rules about the 
atoms for which they can stand. For example, in a parse tree, the one child 
of <Attribute> can be any string of characters that identifies an attribute of 
the current database schema. Similarly, <Relation> can be replaced by any 
string of characters that makes sense as a relation in the current schema, and 
<Pattern>  can be replaced by any quoted string that is a legal SQL pattern.

E xam ple 16.1: Recall two relations from the running movies example:

S ta rs ln (m o v ieT itle , movieYear, starName)
MovieStar(name, add ress, gender, b ir th d a te )

Our study of parsing and query rewriting will center around two versions of the 
query “find the titles of movies that have at least one star born in 1960.” We 
identify stars born in 1960 by asking if their birthdate (a SQL string) ends in 
’ 1960 ’ , using the LIKE operator.

One way to ask this query is to construct the set of names of those stars 
born in 1960 as a subquery, and ask about each S ta rs ln  tuple whether the 
starName in that tuple is a member of the set returned by this subquery. The 
SQL for this variation of the query is shown in Fig. 16.2.

The parse tree for the query of Fig. 16.2, according to the grammar we have 
sketched, is shown in Fig. 16.3. At the root is the syntactic category <Query>, 
as must be the case for any parse tree of a query. Working down the tree, we 
see that this query is a select-from-where form; the select-list consists of only 
the attribute m ovieT itle, and the from-list is only the one relation S ta rs ln .

The condition in the outer WHERE-clause is more complex. It has the form 
of attribute-IN-parenthesized-query. The subquery has its own singleton select- 
and from-lists and a simple condition involving a LIKE operator. □
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SELECT m ovieT itle 
FROM S ta rs ln  
WHERE starName IN (

SELECT name
FROM MovieStar
WHERE b ir th d a te  LIKE 17.1960’

Figure 16.2: Find the movies with stars born in 1960

SELECT <SelList>  FROM <From List> WHERE <Condition>

SELECT <SelList> FROM <From List> WHERE <Condition>

E xam ple 16.2: Now, let us consider another version of the query of Fig. 16.2, 
this time without using a subquery. We may instead equijoin the relations 
S ta rs ln  and MovieStar, using the condition starName = name, to require that 
the star mentioned in both relations be the same. Note that starName is an 
attribute of relation S ta rs ln , while name is an attribute of MovieStar. This 
form of the query of Fig. 16.2 is shown in Fig. 16.4.2

The parse tree for Fig. 16.4 is seen in Fig. 16.5. Many of the rules used in 
this parse tree are the same as in Fig. 16.3. However, notice a from-list with 
more than one relation and two conditions connected by AND. □

) ;

<Query>

<Attribute> <RelIN

m ovieTitle S t a r s l n  s t a r N a m e  <Query>

<Attribute> <RelNam e> <A ttribute> L IK E  <Pattem >

n am e M o v i e S t a r  b i r t h d a t e '%1960'

Figure 16.3: The parse tree for Fig. 16.2

2T h ere  is a  sm all difference betw een th e  two queries in th a t  F ig . 16.4 can  p roduce  dup lica tes 
if a  m ovie has m ore th a n  one s ta r  bo rn  in 1960. S tric tly  speak ing , we should  ad d  DISTINCT 
to  Fig. 16.4, b u t o u r exam ple g ram m ar was sim plified to  th e  ex ten t o f o m ittin g  th a t  option .
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SELECT m ovieT itle 
FROM S ta rs ln , MovieStar 
WHERE starName = name AND 

b ir th d a te  LIKE ’*/.1960’ ;

Figure 16.4: Another way to ask for the movies with stars born in 1960

<Query>

SELECT <SelList>  FROM <From List> WHERE <Condition>

<A ttribute> = <A ttribute> <A ttribute> L IK E  <Pattem >

s t a r N a m e  n a m e  b i r t h d a t e  ' % 1 9 6 0 '

Figure 16.5: The parse tree for Fig. 16.4

16.1.3 The Preprocessor
The preprocessor has several important functions. If a relation used in the query 
is actually a virtual view, then each use of this relation in the from-list must 
be replaced by a parse tree that describes the view. This parse tree is obtained 
from the definition of the view, which is essentially a query. We discuss the 
preprocessing of view references in Section 16.1.4.

The preprocessor is also responsible for semantic checking. Even if the query 
is valid syntactically, it actually may violate one or more semantic rules on the 
use of names. For instance, the preprocessor must:

1. Check relation uses. Every relation mentioned in a FROM-clause must be 
a relation or view in the current schema.

2. Check and resolve attribute uses. Every attribute that is mentioned in 
the SELECT- or WHERE-clause must be an attribute of some relation in 
the current scope. For instance, attribute m ovieT itle in the first select- 
list of Fig. 16.3 is in the scope of only relation S ta rs ln . Fortunately,
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m ovieT itle is an attribute of S ta rs ln , so the preprocessor validates this 
use of m ovieT itle. The typical query processor would at this point resolve 
each attribute by attaching to it the relation to which it refers, if that rela
tion was not attached explicitly in the query (e.g., S ta rs ln .m o v ieT itle ). 
It would also check ambiguity, signaling an error if the attribute is in the 
scope of two or more relations with that attribute.

3. Check types. All attributes must be of a type appropriate to their uses. 
For instance, b ir th d a te  in Fig. 16.3 is used in a LIKE comparison, which 
requires that b ir th d a te  be a string or a type that can be coerced to 
a string. Since b ir th d a te  is a date, and dates in SQL normally can be 
treated as strings, this use of an attribute is validated. Likewise, operators 
are checked to see that they apply to values of appropriate and compatible 
types.

16.1.4 Preprocessing Queries Involving Views
When an operand in a query is a virtual view, the preprocessor needs to replace 
the operand by a piece of parse tree that represents how the view is constructed 
from base tables. The idea is illustrated in Fig. 16.6. A query Q is represented 
by its expression tree in relational algebra, and that tree may have some leaves 
that are views. We have suggested two such leaves, the views V  and W . To 
interpret Q in terms of base tables, we find the definition of the views V  and 
W.  These definitions are also queries, so they can be expressed in relational 
algebra or as parse trees.

Figure 16.6: Substituting view definitions for view references

To form the query over base tables, we substitute, for each leaf in the tree 
for Q that is a view, the root of a copy of the tree that defines that view. 
Thus, in Fig. 16.6 we have shown the leaves labeled V  and W  replaced by the 
definitions of these views. The resulting tree is a query over base tables that is 
equivalent to the original query about views.

E xam ple 16.3: Let us consider the view definition and query of Example 8.3. 
Recall the definition of view ParamountMovies is:

CREATE VIEW ParamountMovies AS 
SELECT t i t l e ,  year
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FROM Movies
WHERE studioName = ’Paramount’ ;

The tree in Fig. 16.7 is a relational-algebra expression for the query; we use 
relational algebra here because it is more succinct than the parse trees we have 
been using.

11 title, year

°  studioName = ' P a ra m o u n t '

M o v ie s

Figure 16.7: Expression tree for view ParamountMovies

The query of Example 8.3 is

SELECT t i t l e
FROM ParamountMovies
WHERE year = 1979;

asking for the Paramount movies made in 1979. This query has the expression 
tree shown in Fig. 16.8. Note that the one leaf of this tree represents the view 
ParamountMovies.

71 title

P a r a m o u n tM o v ie s  

Figure 16.8: Expression tree for the query

We substitute the tree of Fig. 16.7 for the leaf ParamountMovies in Fig. 16.8. 
The resulting tree is shown in Fig. 16.9.

This tree, while the formal result of the view preprocessing, is not a very 
good way to express the query. In Section 16.2 we shall discuss ways to improve 
expression trees such as Fig. 16.9. In particular, we can push selections and 
projections down the tree, and combine them in many cases. Figure 16.10 is 
an improved representation that we can obtain by standard query-processing 
techniques. □
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n  title

°  year  = 1979

TZ ■ , title, year

® studioName =  ' P a r a m o u n t '

Movies

Figure 16.9: Expressing the query in terms of base tables

71 title

® ye a r  = 1979 AND studioName =  'P a r a m o u n t '

Movies

Figure 16.10: Simplifying the query over base tables

16.1.5 Exercises for Section 16.1
Exercise 16.1.1: Add to or modify the rules for <Query> to include simple 
versions of the following features of SQL select-from-where expressions:

a) The ability to produce a set with the DISTINCT keyword.

b) A GROUP BY clause and a HAVING clause.

c) Sorted output with the ORDER BY clause.

d) A query with no where-clause.

Exercise 16.1.2: Add to the rules for <Condition> to allow the following 
features of SQL conditionals:

a) Logical operators OR and NOT.

b) Comparisons other than =.
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c) Parenthesized conditions.

d) EXISTS expressions.

E xercise 16.1.3: Using the simple SQL grammar exhibited in this section, 
give parse trees for the following queries about relations R(a,b) and S(b,c):

a) SELECT a , c FROM R, S WHERE R.b = S.b;

b) SELECT a FROM R WHERE b IN
(SELECT a FROM R, S WHERE R.b = S.b) ;

16.2 Algebraic Laws for Improving Query Plans
We resume our discussion of the query compiler in Section 16.3, where we shall 
transform the parse tree into an expression of the extended relational algebra. 
Also in Section 16.3, we shall see how to apply heuristics that we hope will 
improve the algebraic expression of the query, using some of the many algebraic 
laws that hold for relational algebra. As a preliminary, this section catalogs 
algebraic laws that turn one expression tree into an equivalent expression tree 
that may have a more efficient physical query plan. The result of applying 
these algebraic transformations is the logical query plan that is the output of 
the query-rewrite phase.

16.2.1 Commutative and Associative Laws
A commutative law about an operator says that it does not matter in which 
order you present the arguments of the operator; the result will be the same. 
For instance, +  and x are commutative operators of arithmetic. More precisely, 
x  + y =  y +  x  and x  x y =  y x x  for any numbers x  and y. On the other hand, 
— is not a commutative arithmetic operator: x  — y ^  y — x.

An associative law about an operator says that we may group two uses of the 
operator either from the left or the right. For instance, +  and x are associative 
arithmetic operators, meaning that (x +  y) + z  =  x + (y +  z) and (x x y) x 2 = 
x  x (y x z). On the other hand, — is not associative: (x — y) — z ^  x  — (y — z). 
When an operator is both associative and commutative, then any number of 
operands connected by this operator can be grouped and ordered as we wish 
without changing the result. For example, ((w + x) +  y) +  z = (y + x) + (z + w).

Several of the operators of relational algebra are both associative and com
mutative. Particularly:

•  R  x 5  =  S  x R-, (R x S) x T  =  R  x (S  x T).

•  R  ix S  =  S  tx R; (R tx S) tx T  =  R  m (5 ix T).

• R  U  S  = S  U  R-, {R U  S) U  T  =  R  U  (S  U T ) .
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• r  n s  = s  n R; (R n S) n t  = R  n ( s n T).

Note that these laws hold for both sets and bags. We shall not prove each of 
these laws, although we give one example of a proof, below.

E xam ple 16.4: Let us verify the commutative law for tx : R  tx S  = S  tx R. 
First, suppose a tuple t is in the result of R  txi S,  the expression on the left. 
Then there must be a tuple r in R  and a tuple s in S  that agree with t on every 
attribute that each shares with t. Thus, when we evaluate the expression on 
the right, S  tx R,  the tuples s and r  will again combine to form t.

We might imagine that the order of components of t will be different on the 
left and right, but formally, tuples in relational algebra have no fixed order of 
attributes. Rather, we are free to reorder components, as long as we carry the 
proper attributes along in the column headers, as was discussed in Section 2.2.5.

We are not done yet with the proof. Since our relational algebra is an algebra 
of bags, not sets, we must also verify that if t  appears n times on the left, then 
it appears n  times on the right, and vice-versa. Suppose t  appears n  times on 
the left. Then it must be that the tuple r from R  that agrees with t appears 
some number of times Ur , and the tuple s from S  that agrees with t appears 
some ns  times, where urus  =  n. Then when we evaluate the expression S  ixj R  
on the right, we find that s appears ns  times, and r appears nR times, so we 
get nsnR  copies of t, or n  copies.

We are still not done. We have finished the half of the proof that says 
everything on the left appears on the right, but we must show that everything 
on the right appears on the left. Because of the obvious symmetry, the argument 
is essentially the same, and we shall not go through the details here. □

We did not include the theta-join among the associative-commutative oper
ators. True, this operator is commutative:

• Rt><cS = St><cR-

Moreover, if the conditions involved make sense where they are positioned, then 
the theta-join is associative. However, there are examples, such as the following, 
where we cannot apply the associative law because the conditions do not apply 
to attributes of the relations being joined.

E xam ple 16.5: Suppose we have three relations R(a,b), S(b,c), and T(c,d). 
The expression

(R  ixi R . t> s .b  S) ix a<d T  
is transformed by a hypothetical associative law into:

R  IX R.b>S.b (S IX a<d T)

However, we cannot join S  and T  using the condition a < d, because a is an 
attribute of neither S  nor T.  Thus, the associative law for theta-join cannot be 
applied arbitrarily. □



770 CHAPTER 16. THE QUERY COMPILER

Laws for Bags and Sets Can Differ

Be careful about applying familiar laws about sets to relations that are 
bags. For instance, you may have learned set-theoretic laws such as 
A  n s  (B Us C) =  (A fls B)  Us {A fls C),  which is formally the “distribu
tive law of intersection over union.” This law holds for sets, but not for 
bags.

As an example, suppose bags A, B,  and C  were each {a;}. Then 
A  flb  (B  Us C) =  {a;} fl^ {a;, a;} =  {x}. But (A f ls  B)  Ub  (-4 fls  C) =  
{a;} Ub  {^} =  {%, x},  which differs from the left-hand-side, {x}.

16.2.2 Laws Involving Selection
Since selections tend to reduce the size of relations markedly, one of the most 
important rules of efficient query processing is to move the selections down the 
tree as far as they will go without changing what the expression does. Indeed 
early query optimizers used variants of this transformation as their primary 
strategy for selecting good logical query plans. As we shall see shortly, the 
transformation of “push selections down the tree” is not quite general enough, 
but the idea of “pushing selections” is still a major tool for the query optimizer.

To start, when the condition of a selection is complex (i.e., it involves con
ditions connected by AND or OR), it helps to break the condition into its con
stituent parts. The motivation is that one part, involving fewer attributes than 
the whole condition, may be moved to a convenient place where the entire con
dition cannot be evaluated. Thus, our first two laws for a  are the splitting 
laws:

• o'Ci AND Ci(R) = crc\ (ac2(i?)).

•  OR C2{R) = (ctCj (R)) Us (<JC2(R))-

However, the second law, for OR, works only if the relation R  is a set. No
tice that if R  were a bag, the set-union would have the effect of eliminating 
duplicates incorrectly.

Notice that the order of Ci and C2 is flexible. For example, we could just as 
well have written the first law above with C2 applied after Ci,  as ac2 (crci (R))- 
In fact, more generally, we can swap the order of any sequence of a operators:

• oCl(oCl(R)) = °C2 {(TCl{R))-

E xam ple  16.6: Let R(a, b, c) be a relation. Then 0(a=i or o=3) and b<c(R) can 
be split as aa=i or a=3 {&b<c(R)) ■ We can then split this expression at the OR 
into <ra=i {&b<c(R)) U <ra=3 (at,<c(R)) . In this case, because it is impossible for 
a tuple to satisfy both a — 1 and a =  3, this transformation holds regardless
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of whether or not R is a set, as long as Ub is used for the union. However, in 
general the splitting of an OR requires that the argument be a set and that Us 
be used.

Alternatively, we could have started to split by making at,<c the outer op
eration, as <7(,<c((r0=i OR 0=3(R))- When we then split the OR, we would get 
&b<c{&a=i(R) U cra=3 (R)), an expression that is equivalent to, but somewhat 
different from the first expression we derived. □

The next family of laws involving a allow us to push selections through the 
binary operators: product, union, intersection, difference, and join. There are 
three types of laws, depending on whether it is optional or required to push the 
selection to each of the arguments:

1. For a union, the selection must be pushed to both arguments.

2. For a difference, the selection must be pushed to the first argument and 
optionally may be pushed to the second.

3. For the other operators it is only required that the selection be pushed 
to one argument. For joins and products, it may not make sense to push 
the selection to both arguments, since an argument may or may not have 
the attributes that the selection requires. When it is possible to push to 
both, it may or may not improve the plan to do so; see Exercise 16.2.1.

Thus, the law for union is:

•  ac(R US) =  <?c(R) U crc(S).

Here, it is mandatory to move the selection down both branches of the tree. 
For difference, one version of the law is:

•  ac(R -  S) = <j c {R) ~ S.

However, it is also permissible to push the selection to both arguments, as:

• crc(R ~  S) — ac{R)  -  crc(S).

The next laws allow the selection to be pushed to one or both arguments. 
If the selection is ac, then we can only push this selection to a relation that 
has all the attributes mentioned in C, if there is one. We shall show the laws 
below assuming that the relation R has all the attributes mentioned in C.

•  ac{R x S )  =  crc(R) x  S.

•  ac{R ixi S) — ac(R) tx  S.

•  ac(R ix  d S) = ac{R) tx  d S.

• ac(R  n  5) =  ac(R)  fl S.
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If C  has only attributes of S,  then we can instead write:

• a c ( R  x S) = R x  crc(S).

and similarly for the other three operators tx, ex £>, and fl. Should relations R  
and S  both happen to have all attributes of C, then we can use laws such as:

• ac{R  tx 5) =  ac(R)  >3 &c(S)-

Note that it is impossible for this variant to apply if the operator is x or txi D, 
since in those cases R  and S  have no shared attributes. On the other hand, for 
fl this form of law always applies, since the schemas of R  and S  must then be 
the same.

E xam ple  16.7: Consider relations R(a,b) and S(b,c) and the expression

cr(a=1 OR o=3) AND b<c(R ^  S)

The condition b < c applies only to to S,  and the condition a = 1 OR a = 3 
applies only to R.  We thus begin by splitting the AND of the two conditions as 
we did in the first alternative of Example 16.6:

°o=l OR a=z{?b<c(R ^

Next, we can push the selection Cb<c to S,  giving us the expression:

°a=l OR a=3 (R  ^  <76<c(“S'))

Finally, push the first condition to R,  yielding: (Ja=i or a=3 {R) M &b<c(S). □

16.2.3 Pushing Selections
As was illustrated in Example 16.3, pushing a selection down an expression 
tree — that is, replacing the left side of one of the rules in Section 16.2.2 by its 
right side — is one of the most powerful tools of the query optimizer. However, 
when queries involve virtual views, it is sometimes necessary first to move a 
selection as far up the tree as it can go, and then push the selections down 
all possible branches. An example will illustrate the proper selection-pushing 
approach.

E xam ple 16.8: Suppose we have the relations 

S t a r s l n ( t i t l e ,  y ea r, starName)
M o v ie s ( ti t le , y ea r, le n g th , genre, studioName, producerC#)

Note that we have altered the first two attributes of S ta r s ln  from the usual 
m ovieT itle and movieYear to make this example simpler to follow. Define 
view MoviesOf 1996 by:
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Some Trivial Laws

We are not going to state every true law for the relational algebra. The 
reader should be alert, in particular, for laws about extreme cases: a 
relation that is empty, a selection or theta-join whose condition is always 
true or always false, or a projection onto the list of all attributes, for 
example. A few of the many possible special-case laws:

• Any selection on an empty relation is empty.

• If C  is an always-true condition (e.g., x  > 10 OR x  < 10 on a relation 
that forbids x  =  NULL), then ac(R)  =  R-

• If R  is empty, then R  U S  =  S.

CREATE VIEW Movies0fl996 AS 
SELECT *
FROM Movies 
WHERE year = 1996;

We can ask the query “which stars worked for which studios in 1996?” by the 
SQL query:

SELECT starName, studioName
FROM MoviesOf1996 NATURAL JOIN S ta rs ln ;

The view MoviesOf 1996 is defined by the relational-algebra expression

& y e a r= 1996 (Movies)

Thus, the query, which is the natural join of this expression with S ta rs ln , 
followed by a projection onto attributes starName and studioName, has the 
expression shown in Fig. 16.11.

Here, the selection is already as far down the tree as it will go, so there 
is no way to “push selections down the tree.” However, the rule ctc{R x  
S) =  ac(R)  t*3 S  can be applied “backwards,” to bring the selection (Ty ea r = i 996 

above the join in Fig. 16.11. Then, since year is an attribute of both Movies 
and S ta rs ln , we may push the selection down to both children of the join node. 
The resulting logical query plan is shown in Fig. 16.12. It is likely to be an 
improvement, since we reduce the size of the relation S ta rs ln  before we join it 
with the movies of 1996. □
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71 starName, studioName

[X]

® year = 1996 Starsln

Movies

Figure 16.11: Logical query plan constructed from definition of a query and 
view

71 starName, studioName

CXI

® year= 1996 ^  year= 1996

Movies Starsln

Figure 16.12: Improving the query plan by moving selections up and down the 
tree

16.2.4 Laws Involving Projection
Projections, like selections, can be “pushed down” through many other opera
tors. Pushing projections differs from pushing selections in that when we push 
projections, it is quite usual for the projection also to remain where it is. Put 
another way, “pushing” projections really involves introducing a new projection 
somewhere below an existing projection.

Pushing projections is useful, but generally less so than pushing selections. 
The reason is that while selections often reduce the size of a relation by a large 
factor, projection keeps the number of tuples the same and only reduces the 
length of tuples. In fact, the extended projection operator of Section 5.2.5 can 
actually increase the length of tuples.

To describe the transformations of extended projection, we need to introduce 
some terminology. Consider a term £ - > i o n  the list for a projection, where 
E  is an attribute or an expression involving attributes and constants. We say 
all attributes mentioned in E  are input attributes of the projection, and x  is 
an output attribute. If a term is a single attribute, then it is both an input 
and output attribute. If a projection list consists only of attributes, with no 
renaming or expressions other than a single attribute, then we say the projection 
is simple.

E xam ple 16.9: Projection ira,b,c(R) is simple; a, b, and c are both its input
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attributes and its output attributes. On the other hand, 7ra+/,->x, c(R) is not 
simple. It has input attributes a, b, and c, and its output attributes are x  and 
c. □

The principle behind laws for projection is that:

• We may introduce a projection anywhere in an expression tree, as long as 
it eliminates only attributes that are neither used by an operator above 
nor are in the result of the entire expression.

In the most basic form of these laws, the introduced projections are always 
simple, although the pre-existing projections, such as L  below, need not be.

•  t t l (R  ixi S) —  717, (ttm(R) cxi 7rjv(S)), where M  and N  are the join at
tributes and the input attributes if L  that are found among the attributes 
of R  and S, respectively.

• 7tl(R t x c  S) = til(k m (R) txia nrv(S) ) , where M  and N  are the join 
attributes (i.e., those mentioned in condition C) and the input attributes 
of L  that are found among the attributes of R  and S  respectively.

• 7rl {R x S) =  ttl(k m (R) x 7r/v(S)), where M  and N  are the lists of all 
attributes of R  and S,  respectively, that are input attributes of L.

E xam ple 16 .10: Let R(a,b,c) and S{c,d,e)  be two relations. Consider the 
expression ira+e->.x, b->y{R x  S). The input attributes of the projection are a, 
b, and e, and c is the only join attribute. We may apply the law for pushing 
projections below joins to get the equivalent expression:

7*"a+e—tx, b—ty{^a,byc(R) 1̂ ^ ^ (S ) )

Notice that the projection ira,b,c{R) is trivial; it projects onto all the at
tributes of R. We may thus eliminate this projection and get a third equivalent 
expression: Tra+e->Xi b->y(R 1x1 7rCie(S)). That is, the only change from the 
original is that we remove the attribute d from S  before the join. □

We can perform a projection entirely before a bag union. That is:

• 7tl (R Ub  S) =  7tl(R) Us nl (S).

On the other hand, projections cannot be pushed below set unions or either the 
set or bag versions of intersection or difference at all.

E xam ple 16 .11: Let R(a,b) consist of the one tuple {(1 ,2)} and S(a,b) 
consist of the one tuple {(1 ,3)}. Then TTa(R f~l S) = na(0) = 0. However, 
TTa(R) n 7rB(S) =  {(l)} n {(1)} =  {(1)}. □
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If the projection involves some computations, and the input attributes of 
a term on the projection list belong entirely to one of the arguments of a join 
or product below the projection, then we have the option, although not the 
obligation, to perform the computation directly on that argument. An example 
should help illustrate the point.

E xam ple  16.12: Again let R(a,b,c) and S(c,d,e)  be relations, and consider 
the join and projection na+i,^Xt d+e-sy { R M S). We can move the sum a + b 
and its renaming to x  directly onto the relation R,  and move the sum d + e to
S  similarly. The resulting equivalent expression is

^ x , y (tTo+6—\ x ,  c ( R ) ̂ ̂d+e—fy, c(5))
One special case to handle is if x  or y were c. Then, we could not rename 

a sum to c, because a relation cannot have two attributes named c. Thus, 
we would have to invent a temporary name and do another renaming in the 
projection above the join. For example, 7r0+j_>Ci a+e->y(R x  S)  could become 
TTz—»c, y  ( j ta+b—tz ,  c ( R )  ^  ^ d + e —yy, c(5)). ^

It is also possible to push a projection below a selection.

•  (o c{R)) =  kl ( o ' c , where M  is the list of all attributes that 
are either input attributes of L  or mentioned in condition C.

As in Example 16.12, we have the option of performing computations on the 
list L  in the list M  instead, provided the condition C  does not need the input 
attributes of L  that are involved in a computation.

16.2.5 Laws About Joins and Products
We saw in Section 16.2.1 many of the important laws involving joins and prod
ucts: their commutative and associative laws. However, there are a few addi
tional laws that follow directly from the definition of the join, as was mentioned 
in Section 2.4.12.

• R  tx c  & — ac  (R  x S).

• R  x  S  = ttl(<7c (R x S)), where C is the condition that equates each 
pair of attributes from R  and S  with the same name, and L  is a list that 
includes one attribute from each equated pair and all the other attributes 
of R  and S.

In practice, we usually want to apply these rules from right to left. That is, we 
identify a product followed by a selection as a join of some kind. The reason for 
doing so is that the algorithms for computing joins are generally much faster 
than algorithms that compute a product followed by a selection on the (very 
large) result of the product.
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16.2.6 Laws Involving Duplicate Elimination
The operator S, which eliminates duplicates from a bag, can be pushed through 
many, but not all operators. In general, moving a 6 down the tree reduces the 
size of intermediate relations and may therefore be beneficial. Moreover, we 
can sometimes move the S to a position where it can be eliminated altogether, 
because it is applied to a relation that is known not to possess duplicates:

• 5(R) = R  if R  has no duplicates. Important cases of such a relation R  
include

a) A stored relation with a declared primary key, and
b) The result of a 7  operation, since grouping creates a relation with 

no duplicates.
c) The result of a set union, intersection, or difference.

Several laws that “push” S through other operators are:

• S(R x S )  = S(R) x S(S).

• S ( R t x S )  = 6(R) \x6(S).

• 5 ( R x c  S) = 5(R)*3C d{S).

.  S{ac (R)) =<tc {6(R)).

We can also move the S to either or both of the arguments of an intersection:

• 5{R n B S) = S(R) n B S  = R n B 6{S) = S(R) n B <5(5).

On the other hand, 6 generally cannot be pushed through the operators Ub, 
- b ,  or 7r.

E xam ple 16.13: Let R  have two copies of the tuple t and 5  have one copy of 
t. Then S(R UB 5) has one copy of t, while 5(R) Ub S(S) has two copies of t. 
Also, S ( R —b  5) has one copy of t, while S(R) —B S(S) has no copy of t.

Now, consider relation T(a,b) with one copy each of the tuples (1,2) and 
(1,3), and no other tuples. Then <5(7r0(T)) has one copy of the tuple (1), while 
ira(d(T)) has two copies of (1). □

16.2.7 Laws Involving Grouping and Aggregation
When we consider the operator 7 , we find that the applicability of many trans
formations depends on the details of the aggregate operators used. Thus, we 
cannot state laws in the generality that we used for the other operators. One 
exception is the law, mentioned in Section 16.2.6, that a 7  absorbs a S. Pre
cisely:
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• % l(-R )) = i l (R)-

Another general rule is that we may project useless attributes from the ar
gument should we wish, prior to applying the 7  operation. This law can be 
written:

• 7l (R) =  7 l  (k m (R)) if M  is a list containing at least all those attributes 
of R  that are mentioned in L.

The reason that other transformations depend on the aggregation (s) in
volved in a 7  is that some aggregations — MIN and MAX in particular — are not 
affected by the presence or absence of duplicates. The other aggregations — 
SUM, COUNT, and AVG — generally produce different values if duplicates are elim
inated prior to application of the aggregation.

Thus, let us call an operator 7^ duplicate-impervious if the only aggregations 
in L  are MIN and/or MAX. Then:

• 7l (R) =  7 l  (<5(i?)) provided 7 1  is duplicate-impervious.

E xam ple  16.14: Suppose we have the relations

MovieStar(name, addr, gender, b ir th d a te )
S ta rs ln (m o v ieT itle , movieYear, starName)

and we want to know for each year the birthdate of the youngest star to appear 
in a movie that year. We can express this query as

SELECT movieYear, MAX(birthdate)
FROM M ovieStar, S ta rs ln  
WHERE name = starName 
GROUP BY movieYear;

^ movieYear, MAX ( birthdate )

°  name -  starName

X

MovieStar Starsln 

Figure 16.13: Initial logical query plan for the query of Example 16.14

An initial logical query plan constructed directly from the query is shown 
in Fig. 16.13. The FROM list is expressed by a product, and the WHERE clause 
by a selection above it. The grouping and aggregation are expressed by the 7  
operator above those. Some transformations that we could apply to Fig. 16.13 
if we wished are:
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1. Combine the selection and product into an equijoin.

2. Generate a 6 below the 7 , since the 7  is duplicate-impervious.

3. Generate a n between the 7  and the introduced S to project onto movie
Year and b ir th d a te , the only attributes relevant to the 7 .

The resulting plan is shown in Fig. 16.14.

^ movieYear, MAX ( birthdate )

^  movieYear, birthdate

s

XI
name = starName

MovieStar Starsln 

Figure 16.14: Another query plan for the query of Example 16.14

We can now push the <5 below the x  and introduce 7r’s below that if we wish. 
This new query plan is shown in Fig. 16.15. If name is a key for MovieStar, the
6 can be eliminated along the branch leading to that relation. □

^  movieYear, MAX ( birthdate )

71 movieYear, birthdate

M
name = starName

8 8

K Itbirthdate, name movieYear, starName

MovieStar Starsln 

Figure 16.15: A third query plan for Example 16.14
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16.2.8 Exercises for Section 16.2
Exercise 16.2.1: When it is possible to push a selection to both arguments 
of a binary operator, we need to decide whether or not to do so. How would 
the existence of indexes on one of the arguments affect our choice? Consider, 
for instance, an expression a c ( R  fl 5), where there is an index on S.

E xercise 16.2.2: Give examples to show that:

a) Projection cannot be pushed below set union.

b) Projection cannot be pushed below set or bag difference.

c) Duplicate elimination ((5) cannot be pushed below projection.

d) Duplicate elimination cannot be pushed below bag union or difference.

! Exercise 16.2 .3 : Prove that we can always push a projection below both 
branches of a bag union.

! E xercise 16.2 .4 : Some laws that hold for sets hold for bags; others do not. 
For each of the laws below that are true for sets, tell whether or not it is true 
for bags. Either give a proof the law for bags is true, or give a counterexample.

a) R  U  R  = R  (the idempotent law for union).

b) R  fl R  = R  (the idempotent law for intersection).

c) R  — R  = 0.

d) R  U  (S fl T) = (R U  S)  fl (R U  T) (distribution of union over intersec
tion).

! Exercise 16.2.5: We can define C for bags by: R C  S  if and only if for every 
element x, the number of times x  appears in R  is less than or equal to the 
number of times it appears in S.  Tell whether the following statements (which 
are all true for sets) are true for bags; give either a proof or a counterexample:

a) If R  C  S, then R  U  5  =  S.

b) If R  C S,  then R  n  5  =  R.

c) If R  C S  and S C R ,  then R =  S.

E xercise 16.2.6: Starting with an expression 7vi[R(a,b,c)  tx S(b,c,d,e)),  
push the projection down as far as it can go if L  is:

a) b + c - > x ,  c + d - ^ y .

b) a, b, a + d -» z.
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! E xercise 16.2.7: We mentioned in Example 16.14 that none of the plans we 
showed is necessarily the best plan. Can you think of a better plan?

! E xercise 16.2.8: The following are possible equalities involving operations on 
a relation R(a,b).  Tell whether or not they are true; give either a proof or a 
counterexample.

a) lMIN(a)->y, x(la, SUM(b)-+x(R)) = ly,SUM(b)^yx{lMIN(a)^y, b(R)) ■

b) rYMIN(a)—>y, x{la, MAX(b)^x{R)) =  Jy,MAX(b)~tx {lMIN(a)^y, b(R)) ■

!! Exercise 16.2.9: The join-like operators of Exercise 15.2.4 obey some of the 
familiar laws, and others do not. Tell whether each of the following is or is not 
true. Give either a proof that the law holds or a counterexample.

a) <tc(R X S )  = crc(R) ■><S.

b) ac ( R &  S) = ac {R )& S.

c) crciR&L S) = crc{R) S,  where C  involves only attributes of R.

d) a c ( R  & l  S) = R  &c(S), where C involves only attributes of S.

e) itl{R X  S) =  ni(R)  X  5.

f) (R & S) cSi T  =  R  dSi (S  m T).

g) R  & S  = S  tS R.

h) R & L S  = S & L R-

i) R X S  = S X R .

!! E xercise 16.2.10: While it is not precisely an algebraic law, because it in
volves an indeterminate number of operands, it is generally true that

SUM(ai,a2, . . .  ,a„) = ai + a2 -\------ 1- a„

SQL has both a SUM operator and addition for integers and reals. Considering 
the possibility that one or more of the a*’s could be NULL, rather than an integer 
or real, does this “law” hold in SQL?

16.3 From Parse Trees to Logical Query Plans
We now resume our discussion of the query compiler. Having constructed a 
parse tree for a query in Section 16.1, we next need to turn the parse tree 
into the preferred logical query plan. There are two steps, as was suggested in 
Fig. 16.1.
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The first step is to replace the nodes and structures of the parse tree, in 
appropriate groups, by an operator or operators of relational algebra. We shall 
suggest some of these rules and leave some others for exercises. The second step 
is to take the relational-algebra expression produced by the first step and to 
turn it into an expression that we expect can be converted to the most efficient 
physical query plan.

16.3.1 Conversion to Relational Algebra
We shall now describe informally some rules for transforming SQL parse trees to 
algebraic logical query plans. The first rule, perhaps the most important, allows 
us to convert all “simple” select-from-where constructs to relational algebra 
directly. Its informal statement:

• If we have a <Query> with a <Condition> that has no subqueries, then 
we may replace the entire construct — the select-list, from-list, and con
dition — by a relational-algebra expression consisting, from bottom to 
top, of:

1. The product of all the relations mentioned in the <FromList>, which 
is the argument of:

2. A selection ac,  where C  is the <Condition> expression in the con
struct being replaced, which in turn is the argument of:

3. A projection ttl, where L  is the list of attributes in the <SelList>.

E xam ple 16.15: Let us consider the parse tree of Fig. 16.5. The select- 
from-where transformation applies to the entire tree of Fig. 16.5. We take the 
product of the two relations S ta rs ln  and MovieStar of the from-list, select for 
the condition in the subtree rooted at <Condition>, and project onto the select- 
list, m ovieT itle. The resulting relational-algebra expression is Fig. 16.16.

^  movieTitle

I
® starName = name AND birthdate LIK E '% 1 9 6 0 '

X

Starsln MovieStar

Figure 16.16: Translation of a parse tree to an algebraic expression tree

The same transformation does not apply to the outer query of Fig. 16.3. 
The reason is that the condition involves a subquery, a m atter we defer to 
Section 16.3.2. However, we can apply the transformation to the subquery in
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Limitations on Selection Conditions

One might wonder why we do not allow C, in a selection operator ac,  to 
involve a subquery. It is conventional in relational algebra for the argu
ments of an operator — the elements that do not appear in subscripts — 
to be expressions that yield relations. On the other hand, parameters — 
the elements that appear in subscripts — have a type other than rela
tions. For instance, parameter C in ac  is a boolean-valued condition, and 
parameter L  in 7tl is a list of attributes or formulas.

If we follow this convention, then whatever calculation is implied by a 
parameter can be applied to each tuple of the relation argument(s). That 
limitation on the use of parameters simplifies query optimization. Suppose, 
in contrast, that we allowed an operator like ac(R),  where C  involves a 
subquery. Then the application of C to each tuple of R  involves computing 
the subquery. Do we compute it anew for every tuple of R I  That would 
be unnecessarily expensive, unless the subquery were correlated, i.e., its 
value depends on something defined outside the query, as the subquery of 
Fig. 16.3 depends on the value of starName. Even correlated subqueries 
can be evaluated without recomputation for each tuple, in most cases, 
provided we organize the computation correctly.

Fig. 16.3. The expression of relational algebra that we get from the subquery 
is ITname {^birthdate LIKE ’y.1960’ (MovieStar)) . O

16.3.2 Removing Subqueries From Conditions
For parse trees with a <Condition> that has a subquery, we shall introduce 
an intermediate form of operator, between the syntactic categories of the parse 
tree and the relational-algebra operators that apply to relations. This operator 
is often called two-argument selection. We shall represent a two-argument selec
tion in a transformed parse tree by a node labeled a, with no parameter. Below 
this node is a left child that represents the relation R  upon which the selection 
is being performed, and a right child that is an expression for the condition 
applied to each tuple of R. Both arguments may be represented as parse trees, 
as expression trees, or as a mixture of the two.

E xam ple 16.16: In Fig. 16.17 is a rewriting of the parse tree of Fig. 16.3 
that uses a two-argument selection. Several transformations have been made 
to construct Fig. 16.17 from Fig. 16.3:

1. The subquery in Fig. 16.3 has been replaced by an expression of relational 
algebra, as discussed at the end of Example 16.15.
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i t m ovieTitle

a

Starsln <Condition>

\
<Attribute> IN 7tname

starName °  birthdate L IK E ' % 1960 '

MovieStar

Figure 16.17: An expression using a two-argument a, midway between a parse 
tree and relational algebra

2. The outer query has also been replaced, using the rule for select-from- 
where expressions from Section 16.3.1. However, we have expressed the 
necessary selection as a two-argument selection, rather than by the con
ventional a  operator of relational algebra. As a result, the upper node of 
the parse tree labeled <Condition> has not been replaced, but remains as 
an argument of the selection, with its parentheses and <Query> replaced 
by relational algebra, per point (1).

This tree needs further transformation, which we discuss next. □

We need rules that allow us to replace a two-argument selection by a one- 
argument selection and other operators of relational algebra. Each form of 
condition may require its own rule. In common situations, it is possible to  re
move the two-argument selection and reach an expression that is pure relational 
algebra. However, in extreme cases, the two-argument selection can be left in 
place and considered part of the logical query plan.

We shall give, as an example, the rule that lets us deal with the condition in 
Fig. 16.17 involving the IN operator. Note that the subquery in this condition is 
uncorrelated; that is, the subquery’s relation can be computed once and for all, 
independent of the tuple being tested. The rule for eliminating such a condition 
is stated informally as follows:

•  Suppose we have a two-argument selection in which the first argument 
represents some relation R  and the second argument is a <Condition> of 
the form t IN S, where expression 5  is an uncorrelated subquery, and t 
is a tuple composed of (some) attributes of R. We transform the tree as 
follows:

a) Replace the <Condition> by the tree that is the expression for S.  If 
S  may have duplicates, then it is necessary to include a 6 operation
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at the root of the expression for S,  so the expression being formed 
does not produce more copies of tuples than the original query does.

b) Replace the two-argument selection by a one-argument selection ac,  
where C is the condition that equates each component of the tuple 
t to the corresponding attribute of the relation S.

c) Give ac  an argument that is the product of R  and S.

Figure 16.18 illustrates this transformation.

Figure 16.18: This rule handles a two-argument selection with a condition in
volving IN

E xam ple 16.17: Consider the tree of Fig. 16.17, to which we shall apply the 
rule for IN conditions described above. In this figure, relation R  is S ta rs ln , 
and relation S  is the result of the relational-algebra expression consisting of 
the subtree rooted at 7rname. The tuple t has one component, the attribute 
starName.

The two-argument selection is replaced by <Js ta r N a m e = n a m e ', its condition C 
equates the one component of tuple t to the attribute of the result of query 
S. The child of the a node is a x node, and the arguments of the x node 
are the node labeled S ta rs ln  and the root of the expression for S. Notice 
that, because name is the key for MovieStar, there is no need to introduce a 
duplicate-eliminating <5 in the expression for S. The new expression is shown 
in Fig. 16.19. It is completely in relational algebra, and is equivalent to the 
expression of Fig. 16.16, although its structure is quite different. □

The strategy for translating subqueries to relational algebra is more com
plex when the subquery is correlated. Since correlated subqueries involve un
known values defined outside themselves, they cannot be translated in isolation. 
Rather, we need to translate the subquery so that it produces a relation in which 
certain extra attributes appear — the attributes that must later be compared 
with the externally defined attributes. The conditions that relate attributes 
from the subquery to attributes outside are then applied to this relation, and
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x
starName -  name

°  birthdate L IK E  ' % 19 6 0 '

MovieStar

Figure 16.19: Applying the rule for IN conditions

the extra attributes that are no longer necessary can then be projected out. 
During this process, we must avoid introducing duplicate tuples, if the query 
does not eliminate duplicates at the end. The following example illustrates this 
technique.

SELECT DISTINCT m l.m ovieT itle , ml.movieYear
FROM S ta rs ln  ml
WHERE ml.movieYear -  40 <= (

SELECT AVG(birthdate)
FROM S ta rs ln  m2, MovieStar s 
WHERE m2.starName = s .name AND

m l.m ovieT itle  = m2.m ovieT itle  AND 
ml.movieYear = m2.movieYear

) ;

Figure 16.20: Finding movies with high average star age

E xam ple  16.18: Figure 16.20 is a SQL rendition of the query: “find the 
movies where the average age of the stars was at most 40 when the movie was 
made.” To simplify, we treat b ir th d a te  as a birth year, so we can take its 
average and get a value that can be compared with the movieYear attribute of 
S ta rs ln . We have also written the query so that each of the three references 
to relations has its own tuple variable, in order to help remind us where the 
various attributes come from.

Fig. 16.21 shows the result of parsing the query and performing a partial 
translation to relational algebra. During this initial translation, we split the 
WHERE-clause of the subquery in two, and used part of it to convert the product 
of relations to an equijoin. We have retained the aliases ml, m2 , and s in 
the nodes of this tree, in order to make clearer the origin of each attribute.
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G

Starsln ml <Condition>

Starsln m2 MovieStar s

Figure 16.21: Partially transformed parse tree for Fig. 16.20

Alternatively, we could have used projections to rename attributes and thus 
avoid conflicting attribute names, but the result would be harder to follow.

In order to remove the <Condition> node and eliminate the two-argument 
<r, we need to create an expression that describes the relation in the right 
branch of the <Condition>. However, because the subquery is correlated, there 
is no way to obtain the attributes ml .m ovieT itle or ml.movieYear from the 
relations mentioned in the subquery, which are S ta rs ln  (with alias m2) and 
MovieStar. Thus, we need to defer the selection

&m 2 .m o v ie T i t le ~ m l .m o v ie T i t le AND m2,m o v ie Y e a r = m l .m o v ie Y e a r

until after the relation from the subquery is combined with the copy of S ta rs ln  
from the outer query (the copy aliased ml). To transform the logical query plan 
in this way, we need to modify the 7  to group by the attributes m2 .m ovieT itle 
and m2.movieYear, so these attributes will be available when needed by the 
selection. The net effect is that we compute for the subquery a relation con
sisting of movies, each represented by its title and year, and the average star 
birth year for that movie.

The modified group-by operator appears in Fig. 16.22; in addition to the 
two grouping attributes, we need to rename the average abd (average birthdate) 
so we can refer to it later. Figure 16.22 also shows the complete translation to 
relational algebra. Above the 7 , the S ta rs ln  from the outer query is joined with 
the result of the subquery. The selection from the subquery is then applied to 
the product of S ta rs ln  and the result of the subquery; we show this selection as
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IT
m l .movieTitle, m l.m ovieYear 

® m l.m ovieY ear-40  < abd

I "
M

m2.movieTitle =  m l.m ovieTitle AND m2.movieYear = m l.m ovieYear  

Starsln ml ^  m2.movieTitle, m l.m ovieYear, A V G (s .b ir thda te )— ^  abd

X I
m2.starName = s. name

Starsln m2 MovieStar s

Figure 16.22: Translation of Fig. 16.21 to a logical query plan

a theta-join, which it would become after normal application of algebraic laws. 
Above the theta-join is another selection, this one corresponding to the selection 
of the outer query, in which we compare the movie’s year to the average birth 
year of its stars. The algebraic expression finishes at the top like the expression 
of Fig. 16.21, with the projection onto the desired attributes and the elimination 
of duplicates.

As we shall see in Section 16.3.3, there is much more that a query opti
mizer can do to improve the query plan. This particular example satisfies three 
conditions that let us improve the plan considerably. The conditions are:

1. Duplicates are eliminated at the end,

2. Star names from S ta rs ln  ml axe projected out, and

3. The join between S ta rs ln  ml and the rest of the expression equates the 
title and year attributes from S ta rs ln  ml and S ta rs ln  m2.

Because these conditions hold, we can replace all uses of m l.m ovieT itle and 
ml .movieYear by m2.m ovieT itle and m2.movieYear, respectively. Thus, the 
upper join in Fig. 16.22 is unnecessary, as is the argument S ta rs ln  ml. This 
logical query plan is shown in Fig. 16.23. □

16.3.3 Improving the Logical Query Plan
When we convert our query to relational algebra we obtain one possible logical 
query plan. The next step is to rewrite the plan using the algebraic laws outlined
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71 m2.movieTitle, m2.movieYear 

® m 2.m ovieYear-40 < abd

m2.movieTitle, m2.movieYear, A V G (s.b irthda te) — abd

M
m2.starName = s.name

Starsln m2 MovieStar s

Figure 16.23: Simplification of Fig. 16.22

in Section 16.2. Alternatively, we could generate more than one logical plan, 
representing different orders or combinations of operators. But in this book we 
shall assume that the query rewriter chooses a single logical query plan that it 
believes is “best,” meaning that it is likely to result ultimately in the cheapest 
physical plan.

We do, however, leave open the matter of what is known as “join ordering,” 
so a logical query plan that involves joining relations can be thought of as a 
family of plans, corresponding to the different ways a join could be ordered 
and grouped. We discuss choosing a join order in Section 16.6. Similarly, a 
query plan involving three or more relations that are arguments to the other 
associative and commutative operators, such as union, should be assumed to 
allow reordering and regrouping as we convert the logical plan to a physical plan. 
We begin discussing the issues regarding ordering and physical plan selection 
in Section 16.4.

There are a number of algebraic laws from Section 16.2 that tend to improve 
logical query plans. The following are most commonly used in optimizers:

• Selections can be pushed down the expression tree as far as they can go. If 
a selection condition is the AND of several conditions, then we can split the 
condition and push each piece down the tree separately. This strategy is 
probably the most effective improvement technique, but we should recall 
the discussion in Section 16.2.3, where we saw that in some circumstances 
it was necessary to push the selection up the tree first.

• Similarly, projections can be pushed down the tree, or new projections 
can be added. As with selections, the pushing of projections should be 
done with care, as discussed in Section 16.2.4.

• Duplicate eliminations can sometimes be removed, or moved to a more
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convenient position in the tree, as discussed in Section 16.2.6.

• Certain selections can be combined with a product below to turn the pair 
of operations into an equijoin, which is generally much more efficient to 
evaluate than are the two operations separately. We discussed these laws 
in Section 16.2.5.

E xam ple 16.19: Let us consider the query of Fig. 16.16. First, we may split 
the two parts of the selection into OstarNavne=name and ^birthdate LIKE ’ y»1960 ’ ■ 
The latter can be pushed down the tree, since the only attribute involved, 
b ir th d a te , is from the relation MovieStar. The first condition involves at
tributes from both sides of the product, but they are equated, so the product 
and selection is really an equijoin. The effect of these transformations is shown 
in Fig. 16.24. □

movieTitle

t x
starName =  name

MovieStar

Figure 16.24: The effect of query rewriting

16.3.4 Grouping Associative/Comm utative Operators
An operator that is associative and commutative operators may be thought of 
as having any number of operands. Thinking of an operator such as join as 
having any number of operands lets us reorder those operands so that when 
the multiway join is executed as a sequence of binary joins, they take less time 
than if we had executed the joins in the order implied by the parse tree. We 
discuss ordering multiway joins in Section 16.6.

Thus, we shall perform a last step before producing the final logical query 
plan: for each portion of the subtree that consists of nodes with the same 
associative and commutative operator, we group the nodes with these oper
ators into a single node with many children. Recall that the usual associa
tive/commutative operators are natural join, union, and intersection. Natural 
joins and theta-joins can also be combined with each other under certain cir
cumstances:

1. We must replace the natural joins with theta-joins that equate the at
tributes of the same name.



2. We must add a projection to eliminate duplicate copies of attributes in
volved in a natural join that has become a theta-join.

3. The theta-join conditions must be associative. Recall there are cases, as 
discussed in Section 16.2.1, where theta-joins are not associative.

In addition, products can be considered as a special case of natural join and 
combined with joins if they are adjacent in the tree. Figure 16.25 illustrates 
this transformation in a situation where the logical query plan has a cluster of 
two union operators and a cluster of three natural join operators. Note that 
the letters R  through W  stand for any expressions, not necessarily for stored 
relations.
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Figure 16.25: Final step in producing the logical query plan: group the asso
ciative and commutative operators

16.3.5 Exercises for Section 16.3
E xercise 16.3.1: Replace the natural joins in the following expressions by 
equivalent theta-joins and projections. Tell whether the resulting theta-joins 
form a commutative and associative group.

a) (R(a,b) tx S(b,c)) x 5c>T.c T(c,d).

b) (fl(a, b) cx S{b, c)) m ( T ( c , d) tx U(d, e)).

c) (R(a , b) ix 5(6, c)) ex (T(c, d) tx U(a, d)).

E xercise 16.3.2: Convert to relational algebra your parse trees from Exer
cise 16.1.3(a) and (b). For (b), show both the form with a two-argument selec
tion and its eventual conversion to a one-argument (conventional ac)  selection.

! E xercise 16.3.3: Give a rule for converting each of the following forms of 
<Condition> to relational algebra. All conditions may be assumed to be ap
plied (by a two-argument selection) to a relation R.  You may assume that the
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subquery is not correlated with R.  Be careful that you do not introduce or 
eliminate duplicates in opposition to the formal definition of SQL.

a) A condition of the form EXISTS(<Query>).

b) A condition of the form a — ANY <Query>, where a is an attribute of R.

c) A condition of the form a — ALL <Query>, where a is an attribute of R.

!! E xercise 16.3.4: Repeat Exercise 16.3.3, but allow the subquery to be corol- 
lated with R.  For simplicity, you may assume that the subquery has the simple 
form of select-from-where expression described in this section, with no further 
subqueries.

!! E xercise 16.3.5: From how many different expression trees could the grouped 
tree on the right of Fig. 16.25 have come? Remember that the order of chil
dren after grouping is not necessarily reflective of the ordering in the original 
expression tree.

16.4 Estim ating the Cost of Operations
Having parsed a query and transformed it into a logical query plan, we must 
next turn the logical plan into a physical plan. We normally do so by con
sidering many different physical plans that are derived from the logical plan, 
and evaluating or estimating the cost of each. After this evaluation, often called 
cost-based enumeration, we pick the physical query plan with the least estimated 
cost; that plan is the one passed to the query-execution engine. When enumer
ating possible physical plans derivable from a given logical plan, we select for 
each physical plan:

1. An order and grouping for associative-and-commutative operations like 
joins, unions, and intersections.

2. An algorithm for each operator in the logical plan, for instance, deciding 
whether a nested-loop join or a hash-join should be used.

3. Additional operators — scanning, sorting, and so on — that are needed 
for the physical plan but that were not present explicitly in the logical 
plan.

4. The way in which arguments are passed from one operator to the next, for 
instance, by storing the intermediate result on disk or by using iterators 
and passing an argument one tuple or one main-memory buffer at a time.

To make each of these choices, we need to understand what the costs of 
the various physical plans are. We cannot know these costs exactly without 
executing the plan. But almost always, the cost of executing a query plan is
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Review of Notation

Recall from Section 15.1.3 the following size parameters:

• B(R)  is the number of blocks needed to hold relation R.

• T(R)  is the number of tuples of relation R.

• V(R,  a) is the value count for attribute a of relation R,  that is, 
the number of distinct values relation R  has in attribute a. Also, 
V(R,  [a i,a2, . . .  , an]) is the number of distinct values R  has when 
all of attributes 01, 02,••• , an are considered together, that is, the 
number of tuples in (R))-

significantly greater than all the work done by the query compiler in selecting 
a plan. Thus, we do not want to execute more than one plan for one query, and 
we are forced to estimate the cost of any plan without executing it.

Therefore, our first problem is how to estimate costs of plans accurately. 
Such estimates are based on parameters of the data (see the box on “Review of 
Notation”) that must be either computed exactly from the data or estimated 
by a process of “statistics gathering” that we discuss in Section 16.5.1. Given 
values for these parameters, we may make a number of reasonable estimates of 
relation sizes that can be used to predict the cost of a complete physical plan.

16.4.1 Estimating Sizes of Intermediate Relations
The physical plan is selected to minimize the estimated cost of evaluating the 
query. No matter what method is used for executing query plans, and no matter 
how costs of query plans are estimated, the sizes of intermediate relations of the 
plan have a profound influence on costs. Ideally, we want rules for estimating 
the number of tuples in an intermediate relation so that the rules:

1. Give accurate estimates.

2. Are easy to compute.

3. Are logically consistent; that is, the size estimate for an intermediate re
lation should not depend on how that relation is computed. For instance, 
the size estimate for a join of several relations should not depend on the 
order in which we join the relations.

There is no universally agreed-upon way to meet these three conditions. We 
shall give some simple rules that serve in most situations. Fortunately, the goal 
of size estimation is not to predict the exact size; it is to help select a physical
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query plan. Even an inaccurate size-estimation method will serve that purpose 
well if it errs consistently, that is, if the size estimator assigns the least cost to 
the best physical query plan, even if the actual cost of that plan turns out to 
be different from what was predicted.

16.4.2 Estimating the Size of a Projection
The extended projection of Section 5.2.5 is a bag projection and does not elim
inate duplicates. We shall treat a clasical, duplicate-eliminating projection as a 
bag-projection followed by a 6. The extended projection of bags is different from 
the other operators, in that the size of the result is computable exactly. Nor
mally, tuples shrink during a projection, as some components are eliminated. 
However, the extended projection allows the creation of new components that 
are combinations of attributes, and so there are situations where a tt operator 
actually increases the size of the relation.

E xam ple 16.20: Suppose R(a,b,c) is a relation, where a and b are integers 
of four bytes each, and c is a string of 100 bytes. Let tuple headers require 12 
bytes. Then each tuple of R  requires 120 bytes. Let blocks be 1024 bytes long, 
with block headers of 24 bytes. We can thus fit 8 tuples in one block. Suppose 
T(R)  = 10,000; i.e., there are 10,000 tuples in R.  Then B(R) = 1250.

Consider S  — na+f,^x,c(R)', that is, we replace a and b by their sum. Tuples 
of S  require 116 bytes: 12 for header, 4 for the sum, and 100 for the string. 
Although tuples of S  are slightly smaller than tuples of R,  we can still fit only 
8 tuples in a block. Thus, T(S)  = 10,000 and B(S)  =  1250.

Now consider U — tta,b(R), where we eliminate the string component. Tuples 
of U are only 20 bytes long. T(U)  is still 10,000. However, we can now pack 
50 tuples of U into one block, so B(U) = 200. This projection thus shrinks the 
relation by a factor slightly more than 6. □

16.4.3 Estimating the Size of a Selection
When we perform a selection, we generally reduce the number of tuples, al
though the sizes of tuples remain the same. In the simplest kind of selection, 
where an attribute is equated to a constant, there is an easy way to estimate the 
size of the result, provided we know, or can estimate, the number of different 
values the attribute has. Let S  =  oa=c{R), where A  is an attribute of R  and c 
is a constant. Then we recommend as an estimate:

• T(S) = T (R ) /V (R ,A )

This rule surely holds if the value of A  is chosen randomly from among all the 
possible values.

The size estimate is more problematic when the selection involves an in
equality comparison, for instance, 5  = <ra<io(R)- One might think that on the 
average, half the tuples would satisfy the comparison and half not, so T(R)/2
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The Zipflan Distribution

In estimating the size of a selection <ta=c it is not necessary to assume 
that values of A  appear equally often. In fact, many attributes have val
ues whose occurrences follow a Zipfian distribution, where the frequencies 
of the *th most common values are in proportion to 1 / \ / i .  For example, if 
the most common value appears 1000 times, then the second most common 
value would be expected to appear about 1000/\/2 times, or 707 times, 
and the third most common value would appear about 1000/^3 times, 
or 577 times. Originally postulated as a way to describe the relative fre
quencies of words in English sentences, this distribution has been found 
to appear in many sorts of data. For example, in the US, state popula
tions follow an approximate Zipfian distribution. The three most populous 
states, California, Texas, and New York, have populations in ratio approx
imately 1:0.62:0.56, compared with the Zipfian ideal of 1:0.71:0.58. Thus, 
if s ta te  were an attribute of a relation describing US people, say a list of 
magazine subscribers, we would expect the values of s ta te  to distribute 
in the Zipfian, rather than uniform manner.

As long as the constant in the selection condition is chosen randomly, 
it doesn’t m atter whether the values of the attribute involved have a uni
form, Zipfian, or other distribution; the average size of the matching set 
will still be T(R )/V(R ,  a). However, if the constants are also chosen with a 
Zipfian distribution, then we would expect the average size of the selected 
set to be somewhat larger than T(R)/V(R ,a) .

would estimate the size of S. However, there is an intuition that queries involv
ing an inequality tend to retrieve a small fraction of the possible tuples.3 Thus, 
we propose a rule that acknowledges this tendency, and assumes the typical 
inequality will return about one third of the tuples, rather than half the tuples. 
If S  =  <70<c(i?), then our estimate for T(S)  is:

• T(S) = T ( R ) /3

The case of a “not equals” comparison is rare. However, should we encounter 
a selection like S  =  Oa^io(-R), we recommend assuming that essentially all 
tuples will satisfy the condition. That is, take T(S) = T(R)  as an estimate. 
Alternatively, we may use T(S) = T(R) (V(R, a) — l ) /V (R ,  a), which is slightly 
less, as an estimate, acknowledging that about fraction l /V (R ,a )  tuples of R  
will fail to meet the condition because their a-value does equal the constant.

When the selection condition C  is the AND of several equalities and inequal
ities, we can treat the selection ac(R)  as a cascade of simple selections, each of

3For instance, if  you h ad  d a ta  ab o u t facu lty  sa laries, would you be  m ore likely to  query 
for those  facu lty  w ho m ade less th a n  $200,000 o r  m ore  th a n  $200,000?
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which checks for one of the conditions. Note that the order in which we place 
these selections doesn’t matter. The effect will be that the size estimate for the 
result is the size of the original relation multiplied by the selectivity factor for 
each condition. That factor is 1/3 for any inequality, 1 for / ,  and 1/V(R ,A)  
for any attribute A  that is compared to a constant in the condition C.

E xam ple  16.21: Let R(a, b, c) be a relation, and 5  =  cra=io and 6<2o(^)- Also, 
let T{R) — 10,000, and V (it!, a) — 50. Then our best estimate of T(S)  is 
T (ii)/(50  x 3), or 67. That is, l/50 th  of the tuples of R  will survive the a =  10 
filter, and 1/3 of those will survive the b < 20 filter.

An interesting special case where our analysis breaks down is when the 
condition is contradictory. For instance, consider S  = cra=io and a> 2 0  (R)- Ac
cording to our rule, T(S) — T(R) /3V(R,  a), or 67 tuples. However, it should 
be clear that no tuple can have both a =  10 and a > 20, so the correct answer is 
T ( S ) =  0. When rewriting the logical query plan, the query optimizer can look 
for instances of many special-case rules. In the above instance, the optimizer 
can apply a rule that finds the selection condition logically equivalent to FALSE 
and replaces the expression for 5  by the empty set. □

When a selection involves an OR of conditions, say S  = o c x or c 2(R), then 
we have less certainty about the size of the result. One simple assumption 
is that no tuple will satisfy both conditions, so the size of the result is the 
sum of the number of tuples that satisfy each. That measure is generally an 
overestimate, and in fact can sometimes lead us to the absurd conclusion that 
there are more tuples in S  than in the original relation R.

A less simple, but possibly more accurate estimate of the size of

S —  O Cr OR C2 {R)

is to assume that Ci and C2 are independent. Then, if R  has n  tuples, mi of 
which satisfy C\ and m 2 of which satisfy C2, we would estimate the number of 
tuples in S  as n ( l  — (1 — m i/n ) ( l  — m 2/n)) .  In explanation, 1 — m i / n  is the 
fraction of tuples that do not satisfy Ci, and 1 — m 2/ n  is the fraction that do 
not satisfy C2. The product of these numbers is the fraction of R  s tuples that 
are not in 5 , and 1 minus this product is the fraction that are in S.

E xam ple  16.22: Suppose R(a,b) has T(R)  = 10,000 tuples, and

S =  <Ta = 10 or b < 2 o ( R )

Let V(R,  a) =  50. Then the number of tuples that satisfy a =  10 we estimate at 
200, i.e., T(R) /V(R ,a ) .  The number of tuples that satisfy 6 < 20 we estimate 
at T ( R ) / 3, or 3333.

The simplest estimate for the size of S  is the sum of these numbers, or 3533. 
The more complex estimate based on independence of the conditions a =  10 
and b < 20 gives 10000(1 -  (1 -  200/10000)(l -  3333/10000)), or 3466. In this 
case, there is little difference between the two estimates, and it is very unlikely
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that choosing one over the other would change our estimate of the best physical 
query plan. □

The final operator that could appear in a selection condition is NOT. The 
estimated number of tuples of R  that satisfy condition NOT C  is T(R)  minus 
the estimated number that satisfy C.

16.4.4 Estimating the Size of a Join
We shall consider here only the natural join. Other joins can be handled ac
cording to the following outline:

1. The number of tuples in the result of an equijoin can be computed exactly 
as for a natural join, after accounting for the change in variable names. 
Example 16.24 will illustrate this point.

2. Other theta-joins can be estimated as if they were a selection following a 
product. Note that the number of tuples in a product is the product of 
the number of tuples in the relations involved.

We shall begin our study with the assumption that the natural join of two 
relations involves only the equality of two attributes. That is, we study the 
join R ( X , Y )  ix S(Y,Z) ,  but initially we assume that Y  is a single attribute 
although X  and Z  can represent any set of attributes.

The problem is that we don’t know how the Y -values in R  and S  relate. For 
instance:

1. The two relations could have disjoint sets of Y-values, in which case the 
join is empty and T ( R  ix S) = 0 .

2. Y  might be the key of S  and the corresponding foreign key of R, so each 
tuple of R  joins with exactly one tuple of S,  and T ( R  tx S) =  T(R).

3. Almost all the tuples of R  and S  could have the same Y -value, in which 
case T ( R  tx S ) is about T(R)T(S) .

To focus on the most common situations, we shall make two simplifying 
assumptions:

• Containment of Value Sets. If Y  is an attribute appearing in several rela
tions, then each relation chooses its values from the front of a fixed list of 
values j/i, 2/2 , 2/3, • • • and has all the values in that prefix. As a consequence, 
if R  and 5  are two relations with an attribute Y,  and V  (R, Y )  < V  (5, Y),  
then every Y-value of R  will be a Y - value of S.

• Preservation of Value Sets. If we join a relation R  with another relation, 
then an attribute A  that is not a join attribute (i.e., not present in both re
lations) does not lose values from its set of possible values. More precisely, 
if A  is an attribute of R  but not of S,  then V (R  ix 5, A)  =  V(R,  A).
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Assumption (1), containment of value sets, clearly might be violated, but it is 
satisfied when Y  is a key in S  and the corresponding foreign key in R.  It also is 
approximately true in many other cases, since we would intuitively expect that 
if S  has many Y-values, then a given Y-value that appears in R  has a good 
chance of appearing in S.

Assumption (2), preservation of value sets, also might be violated, but it is 
true when the join attribute(s) of R  m S  are a key for S  and the corresponding 
foreign key of R.  In fact, (2) can only be violated when there are “dangling 
tuples” in R,  that is, tuples of R  that join with no tuple of 5; and even if there 
are dangling tuples in R,  the assumption might still hold.

Under these assumptions, we can estimate the size of R(X ,  Y)  tx S(Y, Z)  as 
follows. Suppose r  is a tuple in R,  and S  is a tuple in S.  W hat is the probability 
that r  and s agree on attribute Y? Suppose that V(R,  Y) > V(S ,Y ) .  Then the 
Y-value of s is surely one of the Y values that appear in R,  by the containment- 
of-value-sets assumption. Hence, the chance that r has the same Y-value as s 
is 1 /V (R ,Y) .  Similarly, if V ( R , Y )  < V (S ,Y ) ,  then the value of Y in r will 
appear in S,  and the probability is 1/V(S,  Y)  that r and s will share the same 
Y-value. In general, we see that the probability of agreement on the Y value is 
1/ m ax(V (R, Y), V(S,  Y)) . Thus:

•  T ( R  tx S) = T (R )T (S ) / m ax (V {R ,  Y), V(S,  Y))

That is, the estimated number of tuples in T ( R  tx 5) is the number of pairs of 
tuples — one from R  and one from S,  times the probability that such a pair 
shares a common Y value.

E xam ple  16.23: Let us consider the following three relations and their im
portant statistics:

R(a,b) S(b,c) U(c,d) 
T(R)  = 1000 T(S)  =  2000 T(U)  =  5000 
V  (R, b) =  20 V (S ,b )=  50 

V  (S, c) = 100 V (U, c) — 500

Suppose we want to compute the natural join R  tx S  cx U. One way is 
to group R  and S  first, as (R  cx 5) ix U. Our estimate for T ( R  cx S ) is 
T(R)T(S ) /m ax (V(R ,b ) ,  V(S,b)),  which is 1000 x 2000/50, or 40,000.

We then need to join R  tx S  with U. Our estimate for the size of the 
result is T ( R  tx S)T(U)/  max(V(R  cx 5, c), V(U, c)). By our assumption that 
value sets are preserved, V (R  tx S, c) is the same as V(S,c),  or 100; that is 
no values of attribute c disappeared when we performed the join. In that case, 
we get as our estimate for the number of tuples in R  tx S  tx U the value
40,000 x 5000/max(100,500), or 400,000.

We could also start by joining S  and U. If we do, then we get the estimate 
T ( S  ix U) =  T(S)T(U)/max(V{S,c) ,V{U,c))  = 2000 x 5000/500 =  20,000.
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By our assumption that value sets are preserved, V (5 cx U, 6) =  V (S , b) =  50, 
so the estimated size of the result is

T(R )T (S  cx U ) / max(V(R,  b), V (S  m U, b))

which is 1000 x 20,000/50, or 400,000. □

16.4.5 Natural Joins W ith Multiple Join Attributes
When the set of attributes Y  in the join R ( X , Y )  cx S(Y ,Z )  consists of more 
than one attribute, the same argument as we used for a single attribute Y  
applies to each attribute in Y.  That is:

• The estimate of the size of R  x  S  is computed by multiplying T(R)  by 
T(5) and dividing by the larger of V (R, y) and V  (S , y) for each attribute 
y that is common to R  and S.

E xam ple 16.24: The following example uses the rule above. It also illustrates 
that the analysis we have been doing for natural joins applies to any equijoin. 
Consider the join

R(a,b,c) tX R .b = s .d  and R .c = s .e  S(d ,e , f )

Suppose we have the following size parameters:

R(a,b,c) S (d ,e , f )
T(R)  =  1000 T(S)  =  2000
V(R,b) = 20 V ( S , d ) =  50
V(R,c) — 100 V  (5, e) =  50

We can think of this join as a natural join if we regard R.b and S.d as the 
same attribute and also regard R.c and S.e as the same attribute. Then the 
rule given above tells us the estimate for the size of R  cx S  is the product 
1000 x 2000 divided by the larger of 20 and 50 and also divided by the larger of 
100 and 50. Thus, the size estimate for the join is 1000 x 2000/(50 x 100) =  400 
tuples. □

E xam ple 16.25: Let us reconsider Example 16.23, but consider the third 
possible order for the joins, where we first take R(a,b) cx U(c,d). This join 
is actually a product, and the number of tuples in the result is T(R)T(U) — 
1000 x 5000 =  5,000,000. Note that the number of different 6’s in the product 
is V (R, b) = 20, and the number of different c’s is V(U, c) =  500.

When we join this product with 5(6, c), we multiply the numbers of tu
ples and divide by both max(V(.R, 6), V(S,  b)) and max(V^(U,c) ,V(5, c)). This 
quantity is 2000 x 5,000,000/(50 x 500) =  400,000. Note that this third way 
of joining gives the same estimate for the size of the result that we found in 
Example 16.23. □
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16.4.6 Joins o f M any R elations
Finally, let us consider the general case of a natural join:

S  = R i  IX i ?2 >xi • • • x  R n

Suppose tha t attribu te A  appears in k  of the Ri  s, and the numbers of its 
sets of values in these k  relations — th a t is, the various values of V(Ri ,  A)  for 
i =  1 , 2 , . . .  , k  — are v\  <  v2  <  • ■ • <  Vk, in order from smallest to largest. 
Suppose we pick a tuple from each relation. W hat is the probability th a t all 
tuples selected agree on attribu te A l

In answer, consider the tuple t\  chosen from the relation th a t has the small
est number of ^4-values, v\ . By the containment-of-value-sets assumption, each 
of these Vi values is among the A-values found in the other relations th a t have 
attribu te A.  Consider the relation tha t has Vi values in attribu te A.  Its selected 
tuple ti has probability 1/vi of agreeing with t\  on A.  Since this claim is true 
for a l i i  =  2 , 3 , . . .  , k,  the probability th a t all k  tuples agree on A  is the product 
1 /  V2 V3  •••Vk- This analysis gives us the rule for estimating the size of any join.

•  S tart with the product of the number of tuples in each relation. Then, 
for each attribu te A  appearing at least twice, divide by all but the least 
of the V(R ,  A ) ’s.

Likewise, we can estimate the number of values tha t will remain for attribute 
A  after the join. By the preservation-of-value-sets assumption, it is the least of 
these V ( R , A ) ’s.

E x am p le  16 .26 : Consider the join R(a,b ,c ) cx S(b,c,d)  tx U(b,e),  and sup
pose the im portant statistics are as given in Fig. 16.26. To estimate the size 
of this join, we begin by multiplying the relation sizes; 1000 x 2000 x 5000. 
Next, we look a t the attributes th a t appear more than once; these are b, which 
appears three times, and c, which appears twice. We divide by the two largest 
of V(R ,  b), V (S , b), and V(U,  6); these are 50 and 200. Finally, we divide by the 
larger of V(R,c)  and V(S,c) ,  which is 200. The resulting estimate is

1000 x 2000 x 5000/(50 x 200 x 200) =  5000

We can also estimate the number of values for each of the attributes in the 
join. Each estimate is the least value count for the attribu te among all the 
relations in which it appears. These numbers are, for a, b, c, d, e respectively: 
100, 20, 100, 400, and 500. □

Based on the two assumptions we have made — containment and preser
vation of value sets — we have a surprising and convenient property of the 
estimating rule given above.

• No m atter how we group and order the terms in a natural join of n  
relations, the estimation rules, applied to  each join individually, yield the
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R(a,b,c) S(b,c,d) U(b,e)
T(R) = 1000 
V(R,  a) = 100 
V(R, b) =  20 
V ( R ,c ) =  200

Figure 16.26:

T(S) = 2000

V  (S, b) — 50 
V{S,c) = 100 
V(S,d)  =400

T(U) = 5000

V  (U, b) =  200

V(U,e) = 500

Parameters for Example 16.26

same estimate for the size of the result. Moreover, this estimate is the 
same that we get if we apply the rule for the join of all n relations as a 
whole.

Examples 16.23 and 16.25 form an illustration of this rule for the three groupings 
of a three-relation join, including the grouping where one of the “joins” is 
actually a product.

16.4.7 Estimating Sizes for Other Operations
We have seen two operations — selection and join — with reasonable estimating 
techniques. In addition, projections do not change the number of tuples in a 
relation, and products multiply the numbers of tuples in the argument relations. 
However, for the remaining operations, the size of the result is not easy to 
determine. We shall review the other relational-algebra operators and give 
some suggestions as to how this estimation could be done.

U nion

If the bag union is taken, then the size is exactly the sum of the sizes of the 
arguments. A set union can be as large as the sum of the sizes or as small as 
the larger of the two arguments. We suggest that something in the middle be 
chosen, e.g., the larger plus half the smaller.

In tersection

The result can have as few as 0 tuples or as many as the smaller of the two 
arguments, regardless of whether set- or bag-intersection is taken. One approach 
is to take the average of the extremes, which is half the smaller.

D ifference

When we compute R  — S,  the result can have between T(R)  and T(R)  — T(S)  
tuples. We suggest the average as an estimate: T(R)  — T(S)/2.
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D uplicate  E lim ination

If R(ai,a.2 , ■ ■ ■ ,an) is a relation, then V(R,  [01, 02, . . .  ,a n]) is the size of S(R). 
However, often we shall not have this statistic available, so it must be approxi
mated. In the extremes, the size of S(R) could be the same as the size of R  (no 
duplicates) or as small as 1 (all tuples in R  are the same).4 Another upper limit 
on the number of tuples in S(R) is the maximum number of distinct tuples that 
could exist: the product of V(R,a,i) for i — 1 ,2, . . .  ,n.  That number could be 
smaller than other estimates of T(S(R)).  There are several rules that could be 
used to estimate T(6(R)).  One reasonable one is to take the smaller of T(R)/2  
and the product of all the V(R,a,i)’s.

G roup ing  an d  A ggregation

Suppose we have an expression 'Jl (R), the size of whose result we need to 
estimate. If the statistic V(R,  [gi, <72> • • • , 9k]), where the gi s are the grouping 
attributes in L, is available, then that is our answer. However, that statistic 
may well not be obtainable, so we need another way to estimate the size of 
7l (R)- The number of tuples in 7i (R )  is the same as the number of groups. 
There could be as few as one group in the result or as many groups as there 
are tuples in R.  As with 6, we can also upper-bound the number of groups 
by a product of V  (R, A)’s, but here attribute A  ranges over only the grouping 
attributes of L. We again suggest an estimate that is the smaller of T(R)/2  
and this product.

16.4.8 Exercises for Section 16.4

E xercise 16.4.1: Below are the vital statistics for four relations, W, X ,  Y,  
and Z:

W  (a, b) X  (6, c) Y(c ,d) Z(d,e)
T(W)  =  100 T (X )  = 200 T{Y)  =  300 T(Z)  =  400 
V(W, a) =  20 V(X,  b) = 50 V(Y, c) = 50 V(Z,  d) = 40 
V{W, b) = 60 F(X , c) =  100 V(Y,  d) =  50 V{Z, e) =  100

Estimate the sizes of relations that are the results of the following expressions:

(a) W x X x Y x Z  (b) cra=io(W) (c) ac=20(Y)
(d) ctc=20( Y ) x Z  (e) W x Y  (f) ad>10(Z)
(g) 00=1 AND 6=2 (W0 (h) <7a=l AND b>2 (W) (i) X l X X.c<r.c ^  

E xercise 16.4.2: Here are the statistics for four relations E,  F, G, and H:

4S tric tly  speaking , if R  is em p ty  th e re  are  no tu p les in e ith e r  R  o r S(R ), so th e  lower 
b o u n d  is 0. However, we are  rare ly  in te rested  in  th is  special case.



E(a,b,c) F(a,b,d) G(a,c,d) H(b,c,d)
T(E) = 1000 T(F)  =  2000 T(G) = 3000 T(H) = 4000
V(E,  a) = 1000 V  (F, a) = 50 V{G, a) =  50 V{H, b) = 40
V(E,  b) = 50 V(F, b) = 100 V(G, c) =  300 V (if, c) =  100
V(E, c) =  20 V(F, d) =  200 V(G, d) = 500 V(H,  d) =  400

How many tuples does the join of these tuples have, using the techniques for 
estimation from this section?

! Exercise 16.4.3: How would you estimate the size of a semijoin?

!! Exercise 16.4.4: Suppose we compute R(a,b) tx S(a,c), where R  and 5  each 
have 1000 tuples. The a attribute of each relation has 100 different values, and 
they are the same 100 values. If the distribution of values was uniform; i.e., 
each a-value appeared in exactly 10 tuples of each relation, then there would be
10,000 tuples in the join. Suppose instead that the 100 o-values have the same 
Zipfian distribution in each relation. Precisely, let the values be a i , a2, . ■ ■ , aioo- 
Then the number of tuples of both R  and 5  that have a-value a* is proportional 
to 1 /y/l. Under these circumstances, how many tuples does the join have? You 
should ignore the fact that the number of tuples with a given a-value may not 
be an integer.
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16.5 Introduction to Cost-Based Plan Selection
Whether selecting a logical query plan or constructing a physical query plan 
from a logical plan, the query optimizer needs to estimate the cost of evaluating 
certain expressions. We study the issues involved in cost-based plan selection 
here, and in Section 16.6 we consider in detail one of the most important and 
difficult problems in cost-based plan selection: the selection of a join order for 
several relations.

As before, we shall assume that the “cost” of evaluating an expression is 
approximated well by the number of disk I /O ’s performed. The number of disk 
I/O ’s, in turn, is influenced by:

1. The particular logical operators chosen to implement the query, a matter 
decided when we choose the logical query plan.

2. The sizes of intermediate results, whose estimation we discussed in Sec
tion 16.4.

3. The physical operators used to implement logical operators, e.g., the 
choice of a one-pass or two-pass join, or the choice to sort or not sort 
a given relation; this m atter is discussed in Section 16.7.

4. The ordering of similar operations, especially joins as discussed in Sec
tion 16.6.
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5. The method of passing arguments from one physical operator to the next, 
which is also discussed in Section 16.7.

Many issues need to be resolved in order to perform effective cost-based 
plan selection. In this section, we first consider how the size parameters, which 
were so essential for estimating relation sizes in Section 16.4, can be obtained 
from the database efficiently. We then revisit the algebraic laws we introduced 
to find the preferred logical query plan. Cost-based analysis justifies the use 
of many of the common heuristics for transforming logical query plans, such as 
pushing selections down the tree. Finally, we consider the various approaches to 
enumerating all the physical query plans that can be derived from the selected 
logical plan. Especially important are methods for reducing the number of plans 
that need to be evaluated, while making it likely that the least-cost plan is still 
considered.

16.5.1 Obtaining Estimates for Size Parameters
The formulas of Section 16.4 were predicated on knowing certain important 
parameters, especially T(R),  the number of tuples in a relation R,  and V(R,  a), 
the number of different values in the column of relation R  for attribute a. A 
modern DBMS generally allows the user or administrator explicitly to request 
the gathering of statistics, such as T(R)  and V(R,a).  These statistics are 
then used in query optimization, unchanged until the next command to gather 
statistics.

By scanning an entire relation R, it is straightforward to count the number of 
tuples T(R)  and also to discover the number of different values V  (R, a) for each 
attribute a. The number of blocks in which R  can fit, B(R),  can be estimated 
either by counting the actual number of blocks used (if R  is clustered), or by 
dividing T(R)  by the number of R ’s tuples that can fit in one block.

In addition, a DBMS may compute a histogram of the values for a given 
attribute. If V(R,  A) is not too large, then the histogram may consist of the 
number (or fraction) of the tuples having each of the values of attribute A. If 
there are many values of this attribute, then only the most frequent values may 
be recorded individually, while other values are counted in groups. The most 
common types of histograms are:

1. Equal-width. A width w is chosen, along with a constant vq. Counts are 
provided of the number of tuples with values v in the ranges Vo < v < 
Vo +  w, Vo + w < v < vo + 2w, and so on. The value vq may be the lowest 
possible value or a lower bound on values seen so far. In the latter case, 
should a new, lower value be seen, we can lower the value of vo by w and 
add a new count to the histogram.

2. Equal-height. These are the common “percentiles.” We pick some fraction 
p, and list the lowest value, the value that is fraction p  from the lowest, 
the fraction 2p  from the lowest, and so on, up to the highest value.
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3. Most-frequent-values. We may list the most common values and their 
numbers of occurrences. This information may be provided along with a 
count of occurrences for all the other values as a group, or we may record 
frequent values in addition to an equal-width or equal-height histogram 
for the other values.

One advantage of keeping a histogram is that the sizes of joins can be es
timated more accurately than by the simplified methods of Section 16.4. In 
particular, if a value of the join attribute appears explicitly in the histograms 
of both relations being joined, then we know exactly how many tuples of the 
result will have this value. For those values of the join attribute that do not ap
pear explicitly in the histogram of one or both relations, we estimate their effect 
on the join as in Section 16.4. However, if we use an equal-width histogram, 
with the same bands for the join attributes of both relations, then we can es
timate the size of the joins of corresponding bands, and sum those estimates. 
The result will be a good estimate, because only tuples in corresponding bands 
can join. The following examples will suggest how to carry out histogram-based 
estimation; we shall not use histograms in estimates subsequently.

E xam ple 16.27: Consider histograms that mention the three most frequent 
values and their counts, and group the remaining values. Suppose we want to 
compute the join R(a , 6) tx S(b, c). Let the histogram for R.b be:

1: 200, 0: 150, 5: 100, others: 550

That is, of the 1000 tuples in R,  200 of them have 6-value 1, 150 have 6-value
0, and 100 have 6-value 5. In addition, 550 tuples have 6-values other than 0,
1, or 5, and none of these other values appears more than 100 times.

Let the histogram for S.b be:

0: 100, 1: 80, 2: 70, others: 250

Suppose also that V  {R, b) =  14 and V  (S, 6) =  13. That is, the 550 tuples of R  
with unknown 6-values are divided among eleven values, for an average of 50 
tuples each, and the 250 tuples of S  with unknown 6-values are divided among 
ten values, each with an average of 25 tuples each.

Values 0 and 1 appear explicitly in both histograms, so we can calculate 
that the 150 tuples of R  with 6 =  0 join with the 100 tuples of S  having the 
same 6-value, to yield 15,000 tuples in the result. Likewise, the 200 tuples of R  
with 6 = 1  join with the 80 tuples of S  having 6 =  1 to yield 16,000 more tuples 
in the result.

The estimate of the effect of the remaining tuples is more complex. We shall 
continue to make the assumption that every value appearing in the relation with 
the smaller set of values (S in this case) will also appear in the set of values of 
the other relation. Thus, among the eleven remaining 6-values of S,  we know 
one of those values is 2, and we shall assume another of the values is 5, since



806 CHAPTER 16. THE QUERY COMPILER

that is one of the most frequent values in R.  We estimate that 2 appears 50 
times in R,  and 5 appears 25 times in S.  These estimates are each obtained by 
assuming that the value is one of the “other” values for its relation’s histogram. 
The number of additional tuples from 6-value 2 is thus 70 x 50 =  3500, and the 
number of additional tuples from fo-value 5 is 100 x 25 =  2500.

Finally, there are nine other 6-values that appear in both relations, and we 
estimate that each of them appears in 50 tuples of R  and 25 tuples of S.  Each 
of the nine values thus contributes 50 x 25 =  1250 tuples to the result. The 
estimate of the output size is thus:

15000 +  16000 +  3500 +  2500 +  9 x 1250

or 48,250 tuples. Note that the simpler estimate from Section 16.4 would be 
1000 x 500/14, or 35,714, based on the assumptions of equal numbers of occur
rences of each value in each relation. □

E xam ple  16.28: In this example, we shall assume an equal-width histogram, 
and we shall demonstrate how knowing that values of two relations are almost 
disjoint can impact the estimate of a join size. Our relations are:

Jan(day, temp)
July(day, temp)

and the query is:

SELECT Jan.day, July.day
FROM Jan, July
WHERE Jan.temp = July.temp;

That is, find pairs of days in January and July that had the same temperature. 
The query plan is to equijoin Jan and Ju ly  on the temperature, and project 
onto the two day attributes.

Suppose the histogram of temperatures for the relations Jan and Ju ly  are 
as given in the table of Fig. 16.27.5 In general, if both join attributes have 
equal-width histograms with the same set of bands, then we can estimate the 
size of the join by considering each pair of corresponding bands and summing.

If two corresponding bands have Ti and T2 tuples, respectively, and the 
number of values in a band is V,  then the estimate for the number of tuples 
in the join of those bands is T1 T2 / V ,  following the principles laid out in Sec
tion 16.4.4. For the histograms of Fig. 16.27, many of these products are 0, 
because one or the other of T\ and T% is 0. The only bands for which neither is
0 are 40-49 and 50-59. Since V  =  10 is the width of a band, the 40-49 band 
contributes 10 x 5/10 =  5 tuples, and the 50-59 band contributes 5 x 20/10 =  10 
tuples.

5O u r friends so u th  o f  th e  eq u a to r shou ld  reverse th e  colum ns for Ja n u a ry  an d  Ju ly , and  
convert to  cen tig rade  as well.
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Range Jan Ju ly
0-9 40 0

10-19 60 0
20-29 80 0
30-39 50 0
40-49 10 5
50-59 5 20
60-69 0 50
70-79 0 100
80-89 0 60
90-99 0 10

Figure 16.27: Histograms of temperature

Thus our estimate for the size of this join is 5 +  10 =  15 tuples. If we 
had no histogram, and knew only that each relation had 245 tuples distributed 
among 100 values from 0 to 99, then our estimate of the join size would be 
245 x 245/100 =  600 tuples. □

16.5.2 Computation of Statistics
Statistics normally are computed only periodically, for several reasons. First, 
statistics tend not to change radically in a short time. Second, even somewhat 
inaccurate statistics are useful as long as they are applied consistently to all 
the plans. Third, the alternative of keeping statistics up-to-date can make the 
statistics themselves into a “hot-spot” in the database; because statistics are 
read frequently, we prefer not to update them frequently too.

The recomputation of statistics might be triggered automatically after some 
period of time, or after some number of updates. However, a database admin
istrator, noticing that poor-performing query plans are being selected by the 
query optimizer on a regular basis, might request the recomputation of statistics 
in an attempt to rectify the problem.

Computing statistics for an entire relation R  can be very expensive, partic
ularly if we compute V  (R, a) for each attribute a in the relation (or even worse, 
compute histograms for each a). One common approach is to compute approx
imate statistics by sampling only a fraction of the data. For example, let us 
suppose we want to sample a small fraction of the tuples to obtain an estimate 
for V(R,a).  A statistically reliable calculation can be complex, depending on a 
number of assumptions, such as whether values for a are distributed uniformly, 
according to a Zipfian distribution, or according to some other distribution. 
However, the intuition is as follows. If we look at a small sample of R,  say 1% 
of its tuples, and we find that most of the a-values we see are different, then 
it is likely that V (R ,a ) is close to T(R).  If we find that the sample has very 
few different values of a, then it is likely that we have seen most of the a-values
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that exist in the current relation.

16.5.3 Heuristics for Reducing the Cost of Logical Query 
Plans

One important use of cost estimates for queries or subqueries is in the appli
cation of heuristic transformations of the query. We already have observed 
in Section 16.3.3 how certain heuristics, such as pushing selections down the 
tree, can be expected almost certainly to improve the cost of a logical query 
plan, regardless of relation sizes. However, there axe other points in the query 
optimization process where estimating the cost both before and after a trans
formation will allow us to apply a transformation where it appears to reduce 
cost and avoid the transformation otherwise. In particular, when the preferred 
logical query plan is being generated, we may consider a number of optional 
transformations and the costs before and after.

Because we are estimating the cost of a logical query plan, and so we have 
not yet made decisions about the physical operators that will be used to imple
ment the operators of relational algebra, our cost estimate cannot be based on 
disk I /O ’s. Rather, we estimate the sizes of all intermediate results using the 
techniques of Section 16.4, and their sum is our heuristic estimate for the cost 
of the entire logical plan. One example will serve to illustrate the issues and 
process.

8

°  a  = 1 0

X]

R S

Figure 16.28: Logical query plan for Example 16.29

E xam ple  16.29: Consider the initial logical query plan of Fig. 16.28, and let 
the statistics for the relations R  and S  be as follows:

R(a,b) S(b,c)
T(R)  = 5000 T{S)  =  2000 
V(R,a) = 50
V(i?,6) =  100 V(S,b) = 200 

V(S,c) = 100

To generate a final logical query plan from Fig. 16.28, we shall insist that the 
selection be pushed down as far as possible. However, we are not sure whether
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it makes sense to push the 6 below the join or not. Thus, we generate from 
Fig. 16.28 the two query plans shown in Fig. 16.29; they differ in whether we 
have chosen to eliminate duplicates before or after the join. Notice that in 
plan (a) the 6 is pushed down both branches of the tree. If R  and/or S  is 
known to have no duplicates, then the 6 along its branch could be eliminated.

250
X

50

100 ° a =10

5000

1000

500
5

X
1000

5
2000

100 ° a = 1 0  5

I 2000
5000 R

fa) fb)

Figure 16.29: Two candidates for the best logical query plan

We know how to estimate the size of the result of the selections, from Sec
tion 16.4.3; we divide T(R)  by V(R,a) — 50. We also know how to estimate 
the size of the joins; we multiply the sizes of the arguments and divide by 
max(F(jR, b), V(S,  6)), which is 200. What we don’t  know is how to estimate 
the size of the relations with duplicates eliminated.

First, consider the size estimate for 6((ra=io(R))- Since <ra=io(R) has only 
one value for a and up to 100 values for b, and there are an estimated 100 tuples 
in this relation, the rule from Section 16.4.7 tells us that the product of the value 
counts for each of the attributes is not a limiting factor. Thus, we estimate the 
size of the result of S as half the tuples in aa=io(R), and Fig. 16.29(a) shows 
an estimate of 50 tuples for S(cra=io(R)) ■

Now, consider the estimate of the result of the S in Fig. 16.29(b). The join 
has one value for a, an estimated min(V (R, b), V (S , b)) = 100 values for 6, and 
an estimated V(S, c) =  100 values for c. Thus again the product of the value 
counts does not limit how big the result of the 5 can be. We estimate this result 
as 500 tuples, or half the number of tuples in the join.

To compare the two plans of Fig. 16.29, we add the estimated sizes for all the 
nodes except the root and the leaves. We exclude the root and leaves, because 
these sizes are not dependent on the plan chosen. For plan (a) this cost, the 
sum of the estimated sizes of the interior nodes, is 100 +  50 +  1000 =  1150, 
while for plan (b) the sum is 100 +  1000 =  1100. Thus, by a small margin we 
conclude that deferring the duplicate elimination to the end is a better plan. 
We would come to the opposite conclusion if, say, R  or S  had fewer 6-values. 
Then the join size would be greater, making the cost of plan (b) greater. □
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Estim ates for Result Sizes Need Not Be the Same

Notice that in Fig. 16.29 the estimates at the roots of the two trees are 
different: 250 in one case and 500 in the other. Because estimation is 
an inexact science, these sorts of anomalies will occur. In fact, it is the 
exception when we can offer a guarantee of consistency, as we did in Section 
16.4.6.

Intuitively, the estimate for plan (b) is higher because if there are 
duplicates in both R  and 5, these duplicates will be multiplied in the join; 
e.g., for tuples that appear 3 times in R  and twice in S,  their join will 
appear six times in R  tx S. Our simple formula for estimating the size of 
the result of a <5 does not take into account the possibility that the effect 
of duplicates has been amplified by previous operations.

16.5.4 Approaches to Enumerating Physical Plans
Now, let us consider the use of cost estimates in the conversion of a logical 
query plan to a physical query plan. The baseline approach, called exhaustive, 
is to consider all combinations of choices for each of the issues outlined at the 
beginning of Section 16.4 (order of joins, physical implementation of operators, 
and so on). Each possible physical plan is assigned an estimated cost, and the 
one with the smallest cost is selected.

However, there are a number of other approaches to selection of a physical 
plan. In this section, we shall outline various approaches that have been used, 
while Section 16.6 focuses on selecting a join order. Before proceeding, let us 
comment that there are two broad approaches to exploring the space of possible 
physical plans:

• Top-down: Here, we work down the tree of the logical query plan from 
the root. For each possible implementation of the operation at the root, 
we consider each possible way to evaluate its argument (s), and compute 
the cost of each combination, taking the best.6

• Bottom-up: For each subexpression of the logical-query-plan tree, we com
pute the costs of all possible ways to compute that subexpression. The 
possibilities and costs for a subexpression E  are computed by consider
ing the options for the subexpressions of E,  and combining them in all 
possible ways with implementations for the root operator of E.

There is actually not much difference between the two approaches in their 
broadest interpretations, since either way, all possible combinations of ways to

6R em em ber from  Section  16.3.4 th a t  a  single node of th e  logical-query-p lan  tree  m ay 
rep resen t m an y  uses o f a  single com m u ta tiv e  an d  associative o p e ra to r, such as jo in . T hus, 
th e  co nsidera tion  o f all possib le p lan s for a  single node m ay  itse lf  involve enu m era tio n  o f very 
m any  choices.
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implement each operator in the query tree are considered. We shall concentrate 
on bottom-up methods in what follows.

You may, in fact, have noticed that there is an apparent simplification of the 
bottom-up method, where we consider only the best plan for each subexpression 
when we compute the plans for a larger subexpression. This approach, called 
dynamic programming in the list of methods below, is not guaranteed to yield 
the best overall plan, although often it does. The approach called Selinger-style 
(or System-R-style) optimization, also listed below, exploits additional proper
ties that some of the plans for a subexpression may have, in order to produce 
optimal overall plans from plans that are not optimal for certain subexpressions.

H euristic  S election

One option is to use the same approach to selecting a physical plan that is 
generally used for selecting a logical plan: make a sequence of choices based 
on heuristics. In Section 16.6.6, we shall discuss a “greedy” heuristic for join 
ordering, where we start by joining the pair of relations whose result has the 
smallest estimated size, then repeat the process for the result of that join and 
the other relations in the set to be joined. There are many other heuristics that 
may be applied; here are some of the most commonly used ones:

1. If the logical plan calls for a selection cta=c(R), and stored relation R  has 
an index on attribute A, then perform an index-scan (as in Section 15.1.1) 
to obtain only the tuples of R  with ^4-value equal to c.

2. More generally, if the selection involves one condition like A = c above, 
and other conditions as well, we can implement the selection by an index- 
scan followed by a further selection on the tuples, which we shall represent 
by the physical operator filter. This m atter is discussed further in Sec
tion 16.7.1.

3. If an argument of a join has an index on the join attribute(s), then use 
an index-join with that relation in the inner loop.

4. If one argument of a join is sorted on the join attribute(s), then prefer a 
sort-join to a hash-join, although not necessarily to an index-join if one is 
possible.

5. When computing the union or intersection of three or more relations, 
group the smallest relations first.

B ranch-and-B ound P lan  E num eration

This approach, often used in practice, begins by using heuristics to find a good 
physical plan for the entire logical query plan. Let the cost of this plan be C. 
Then as we consider other plans for subqueries, we can eliminate any plan for 
a subquery that has a cost greater than C, since that plan for the subquery



812 CHAPTER 16. THE QUERY COMPILER

could not possibly participate in a plan for the complete query that is better 
than what we already know. Likewise, if we construct a plan for the complete 
query that has cost less than C,  we replace C  by the cost of this better plan in 
subsequent exploration of the space of physical query plans.

An important advantage of this approach is that we can choose when to cut 
off the search and take the best plan found so far. For instance, if the cost C 
is small, then even if there are much better plans to be found, the time spent 
finding them may exceed C, so it does not make sense to continue the search. 
However, if C  is large, then investing time in the hope of finding a faster plan 
is wise.

H ill C lim bing

This approach, in which we really search for a “valley” in the space of physical 
plans and their costs, starts with a heuristically selected physical plan. We can 
then make small changes to the plan, e.g., replacing one method for executing 
an operator by another, or reordering joins by using the associative and/or 
commutative laws, to find “nearby” plans that have lower cost. When we find 
a plan such that no small modification yields a plan of lower cost, we make that 
plan our chosen physical query plan.

D yn am ic P rogram m ing

In this variation of the general bottom-up strategy, we keep for each subexpres
sion only the plan of least cost. As we work up the tree, we consider possible 
implementations of each node, assuming the best plan for each subexpression 
is also used. We examine this approach extensively in Section 16.6.

S elin ger-S ty le  O ptim ization

This approach improves upon the dynamic-programming approach by keeping 
for each subexpression not only the plan of least cost, but certain other plans 
that have higher cost, yet produce a result that is sorted in an order that may 
be useful higher up in the expression tree. Examples of such interesting orders 
are when the result of the subexpression is sorted on one of:

1. The attribute(s) specified in a sort (r) operator at the root.

2. The grouping attribute(s) of a later group-by (7 ) operator.

3. The join attribute(s) of a later join.

If we take the cost of a plan to be the sum of the sizes of the intermediate 
relations, then there appears to be no advantage to having an argument sorted. 
However, if we use the more accurate measure, disk I /O ’s, as the cost, then the 
advantage of having an argument sorted becomes clear if we can use one of the 
sort-based algorithms of Section 15.4, and save the work of the first pass for 
the argument that is sorted already.
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16.5.5 Exercises for Section 16.5
E xercise 16.5.1: Estimate the size of the join R(a,b) txi 5(6, e) using his
tograms for R.b and S.b. Assume V(R,b) — V{S,b) =  20, and the histograms 
for both attributes give the frequency of the four most common values, as tab
ulated below:

0 1 2 3 4 others 
~RJ> 5 6 4 5 32

S.b 10 8 5 7 48

How does this estimate compare with the simpler estimate, assuming that all 
20 values are equally likely to occur, with T(R) — 52 and T(S) — 78?

E xercise 16.5.2: Estimate the size of the join R(a, b) xi 5(6, c) if we have the 
following histogram information:

6 < 0

OII 6 > 0
R 500 100 400
S 300 200 500

! Exercise 16.5.3: In Example 16.29 we suggested that reducing the number 
of values that either attribute named 6 had could make plan (a) better than 
plan (b) of Fig. 16.29. For what values of:

a) V{R,b)

b) V{S,b)

will plan (a) have a lower estimated cost than plan (b)?

! E xercise 16.5.4: Consider four relations R,  5, T,  and V.  Respectively, they 
have 200, 300, 400, and 500 tuples, chosen randomly and independently from 
the same pool of 1000 tuples (e.g., the probabilities of a given tuple being in R  
is 1/5, in 5  is 3/10, and in both is 3/50).

a) What is the expected size of R  U 5  U T  U VI

b) What is the expected size of R  fl 5  fl T  fl V?

c) What order of unions gives the least cost (estimated sum of the sizes of 
the intermediate relations)?

d) What order of intersections gives the least cost (estimated sum of the sizes 
of the intermediate relations)?

! E xercise 16.5.5: Repeat Exercise 16.5.4 if all four relations have 500 of the 
1000 tuples, at random.
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!! Exercise 16.5.6: Suppose we wish to compute the expression

Tb (R ( a ,  b) x  5  (b, c)  x  T  ( c ,  d))

That is, we join the three relations and produce the result sorted on attribute 
b. Let us make the simplifying assumptions:

i. We shall not “join” R  and T  first, because that is a product.

ii. Any other join can be performed with a two-pass sort-join or hash-join, 
but in no other way.

iii. Any relation, or the result of any expression, can be sorted by a two-phase, 
multiway merge-sort, but in no other way.

iv. The result of the first join will be passed as an argument to the last join 
one block at a time and not stored temporarily on disk.

v. Each relation occupies 1000 blocks, and the result of either join of two 
relations occupies 5000 blocks.

Answer the following based on these assumptions:

a) What are all the subexpressions and orders that a Selinger-style optimiza
tion would consider?

b) Which query plan uses the fewest disk I /O ’s?7

!! Exercise 16.5.7: Give an example of a logical query plan of the form E  x  F,  
for some expressions E  and F  (which you may choose), where using the best 
plans to evaluate E  and F  does not allow any choice of algorithm for the final 
join that minimizes the total cost of evaluating the entire expression. Make 
whatever assumptions you wish about the number of available main-memory 
buffers and the sizes of relations mentioned in E  and F.

16.6 Choosing an Order for Joins
In this section we focus on a critical problem in cost-based optimization: se
lecting an order for the (natural) join of three or more relations. Similar ideas 
can be applied to other binary operations like union or intersection, but these 
operations are less important in practice, because they typically take less time 
to execute than joins, and they more rarely appear in clusters of three or more.

7N otice th a t ,  because we have m ad e  som e very specific assum ptions ab o u t th e  jo in  m eth o d s 
to  be  used , we can  e s tim a te  d isk  I / O ’s, in stead  of rely ing  on th e  sim pler, b u t less accu ra te , 
counts o f tu p les  as o u r cost m easure.
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16.6.1 Significance of Left and Right Join Arguments
When ordering a join, we should remember that many of the join methods 
discussed in Chapter 15 are asymmetric. That is, the roles played by the two 
argument relations are different, and the cost of the join depends on which 
relation plays which role. Perhaps most important, the one-pass join of Sec
tion 15.2.3 reads one relation — preferably the smaller — into main memory, 
creating a structure such as a hash table to facilitate matching of tuples from 
the other relation. It then reads the other relation, one block at a time, to join 
its tuples with the tuples stored in memory.

For instance, suppose that when we select a physical plan we decide to use 
a one-pass join. Then we shall assume the left argument of the join is the 
smaller relation and store it in a main-memory data structure. This relation 
is called the build relation. The right argument of the join, called the probe 
relation, is read a block at a time and its tuples are matched in main memory 
with those of the build relation. Other join algorithms that distinguish between 
their arguments include:

1. Nested-loop join, where we assume the left argument is the relation of the 
outer loop.

2. Index-join, where we assume the right argument has the index.

16.6.2 Join Trees
When we have the join of two relations, we need to order the arguments. We 
shall conventionally select the one whose estimated size is the smaller as the 
left argument. It is quite common for there to be a significant and discernible 
difference in the sizes of arguments, because a query involving joins often also 
involves a selection on at least one attribute, and that selection reduces the 
estimated size of one of the relations greatly.

E xam ple 16.30: Recall the query

SELECT movieTitle 
FROM Starsln, MovieStar 
WHERE starName = name AND 

birthdate LIKE ’*/.1960’;

from Fig. 16.4, which leads to the preferred logical query plan of Fig. 16.24, in 
which we take the join of relation S ta rs ln  and the result of a selection on rela
tion MovieStar. We have not given estimates for the sizes of relations S ta rs ln  
or MovieStar, but we can assume that selecting for stars born in a single year 
will produce about l/50 th  of the tuples in MovieStar. Since there are generally 
several stars per movie, we expect S ta rs ln  to be larger than MovieStar to begin 
with, so the second argument of the join, obiTthdate LIKE .^geo' (MovieStar), is 
much smaller than the first argument S ta rs ln . We conclude that the order of
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arguments in Fig. 16.24 should be reversed, so that the selection on MovieStar 
is the left argument. □

There are only two choices for a join tree when there are two relations — 
take either of the two relations to be the left argument. When the join involves 
more than two relations, the number of possible join trees grows rapidly. For 
example, Fig. 16.30 shows three of the five shapes of trees in which four relations 
R, S, T,  and U, are joined. However, each of these trees has the four relations 
in alphabetical order from the left. Since order of arguments matters, and there 
are n! ways to order n  things, each tree represents 4! =  24 different trees when 
the possible labelings of the leaves are considered.

M M X
/ \ /  \  / \

M u M M R M
/ \ / \ / \ / \

M r  r  s t  u s M
/  \

(a) fb) fc)

Figure 16.30: Ways to join four relations

16.6.3 Left-Deep Join Trees
Figure 16.30(a) is an example of what is called a left-deep tree. In general, 
a binary tree is left-deep if all right children are leaves. Similarly, a tree like 
Fig. 16.30(c), all of whose left children are leaves, is called a right-deep tree. 
A tree such as Fig. 16.30(b), that is neither left-deep nor right-deep, is called 
bushy. We shall argue below that there is a two-fold advantage to considering 
only left-deep trees as possible join orders.

1. The number of possible left-deep trees with a given number of leaves is 
large, but not nearly as large as the number of all trees. Thus, searches 
for query plans can be used for larger queries if we limit the search to 
left-deep trees.

2. Left-deep trees for joins interact well with common join algorithms — 
nested-loop joins and one-pass joins in particular. Query plans based 
on left-deep trees plus these join implementations will tend to be more 
efficient than the same algorithms used with non-left-deep trees.

The “leaves” in a left- or right-deep join tree can actually be interior nodes, 
with operators other than a join. Thus, for instance, Fig. 16.24 is technically a
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left-deep join tree with one join operator. The fact that a selection is applied 
to the right operand of the join does not take the tree out of the left-deep join 
class.

The number of left-deep trees does not grow nearly as fast as the number of 
all trees for the multiway join of a given number of relations. For n  relations, 
there is only one left-deep tree shape, to which we may assign the relations in n! 
ways. There are the same number of right-deep trees for n  relations. However, 
the total number of tree shapes T (n ) for n  relations is given by the recurrence:

r ( i )  =  1
T(n) = E  £ T ( i ) T ( n - i )

The explanation for the second equation is that we may pick any number i 
between 1 and n  — 1 to be the number of leaves in the left subtree of the root, 
and those leaves may be arranged in any of the T(i) ways that trees with i leaves 
can be arranged. Similarly, the remaining n — i leaves in the right subtree can 
be arranged in any of T(n  — i) ways.

The first few values of T(n) are:

n 1 2 3 4 5 6
T(n) 1 1 2 5 14 42

To get the total number of trees once relations are assigned to the leaves, we 
multiply T(n ) by n\. Thus, for instance, the number of leaf-labeled trees of 6 
leaves is 42 x 6! or 30,240, of which 6!, or 720, are left-deep trees and another 
720 are right-deep trees.

Now, let us consider the second advantage mentioned for left-deep join trees: 
their tendency to produce efficient plans. We shall give two examples:

1. If one-pass joins are used, and the build relation is on the left, then the 
amount of memory needed at any one time tends to be smaller than if we 
used a right-deep tree or a bushy tree for the same relations.

2. If we use nested-loop joins, with the relation of the outer loop on the left, 
then we avoid constructing any intermediate relation more than once.

E xam ple 16.31: Consider the left-deep tree in Fig. 16.30(a), and suppose 
that we use a simple one-pass join for each of the three tx operators. As always, 
the left argument is the build relation; i.e., it will be held in main memory. 
To compute R  tx S,  we need to keep R  in main memory, and as we compute 
R  tx S  we need to keep the result in main memory as well. Thus, we need 
B(R) + B (R  ix S) main-memory buffers. If we pick R  to be the smallest of the 
relations, and a selection has made R  be rather small, then there is likely to be 
no problem making this number of buffers available.

Having computed R  ix S,  we must join this relation with T.  However, the 
buffers used for R  are no longer needed and can be reused to hold (some of) 
the result of (R ix S) tx T.  Similarly, when we join this relation with U, the
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Role of the Buffer Manager

The reader may notice a difference between our approach in the series of 
examples such as Example 15.4 and 15.6, where we assumed that there 
was a fixed limit on the number of main-memory buffers available for a 
join, and the more flexible assumption taken here, where we assume that 
as many buffers as necessary are available, but we try not to use “too 
many.” Recall from Section 15.7 that the buffer manager has significant 
flexibility to allocate buffers to operations. However, if too many buffers 
are allocated at once, there will be thrashing, thus degrading the assumed 
performance of the algorithm being used.

relation R  xi S  is no longer needed, and its buffers can be reused for the result 
of the final join. In general, a left-deep join tree that is computed by one-pass 
joins requires main-memory space for at most two of the temporary relations 
any time.

Now, let us consider a similar implementation of the right-deep tree of Fig. 
16.30(c). The first thing we need to do is load R  into main-memory buffers, 
since left arguments are always the build relation. Then, we need to construct 
S  xi (T cx U) and use that as the probe relation for the join at the root. To 
compute S  xi (T ix U) we need to bring S  into buffers and then compute 
T  x] U as the probe relation for S.  But T  xi U requires that we first bring 
T  into buffers. Now we have all three of R, S,  and T  in memory at the same 
time. In general, if we try  to compute a right-deep join tree with n  leaves, we 
shall have to bring n  — 1 relations into memory simultaneously.

Of course it is possible that the total size B(R) + B(S) + B(T)  is less 
than the amount of space we need at either of the two intermediate stages 
of the computation of the left-deep tree, which are B(R)  + B (R  xi S)  and 
B ( R  xi S) + B[ (R  cx  S) i x  T) ,  respectively. However, as we pointed out in 
Example 16.30, queries with several joins often will have a small relation with 
which we can start as the leftmost argument in a left-deep tree. If R  is small, 
we might expect R  ix S  to be significantly smaller than S  and (R ex S) cx T  to 
be smaller than T, further justifying the use of a left-deep tree. □

E xam ple 16.32: Now, let us suppose we are going to implement the four
way join of Fig. 16.30 by nested-loop joins, and that we use an iterator (as in 
Section 15.1.6) for each of the three joins involved. Also, assume for simplicity 
that each of the relations R, S, T,  and U are stored relations, rather than 
expressions. If we use the left-deep tree of Fig. 16.30(a), then the iterator at 
the root gets a main-memory-sized chunk of its left argument (R xi S)  xi T. It 
then joins the chunk with all of U, but as long as U is a stored relation, it is 
only necessary to scan U, not to construct it. When the next chunk of the left 
argument is obtained and put in memory, U will be read again, but nested-loop
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join requires that repetition, which cannot be avoided if both arguments are 
large.

Similarly, to get a chunk of (R xi S)  xi T,  we get a chunk of R  xi S  into 
memory and scan T.  Several scans of T  may eventually be necessary, but cannot 
be avoided. Finally, to get a chunk of R  xi S  requires reading a chunk of R  and 
comparing it with S,  perhaps several times. However, in all this action, only 
stored relations are read multiple times, and this repeated reading is an artifact 
of the way nested-loop join works when the main memory is insufficient to hold 
an entire relation.

Now, compare the behavior of iterators on the left-deep tree with the be
havior of iterators on the right-deep tree of Fig. 16.30(c). The iterator at the 
root starts by reading a chunk of R. It must then construct the entire rela
tion 5  xi (T xi U) and compare it with that chunk of R. When we read the 
next chunk of R  into memory, S  xi (T  x> U) must be constructed again. Each 
subsequent chunk of R  likewise requires constructing this same relation.

Of course, we could construct S  xi (T xi U) once and store it, either in 
memory or on disk. If we store it on disk, we are using extra disk I /O ’s compared 
with the left-deep tree’s plan, and if we store it in memory, then we run into 
the same problem with overuse of memory that we discussed in Example 16.31. 
□

16.6.4 Dynamic Programming to Select a Join Order and 
Grouping

To pick an order for the join of many relations we have three choices:

1. Consider them all.

2. Consider a subset.

3. Use a heuristic to pick one.

We shall here consider a sensible approach to enumeration called dynamic pro
gramming. It can be used either to consider all orders, or to consider certain 
subsets only, such as orders restricted to left-deep trees. In Section 16.6.6 we 
consider a heuristic for selecting a single ordering. Dynamic programming is 
a common algorithmic paradigm.8 The idea behind dynamic programming is 
that we fill in a table of costs, remembering only the minimum information we 
need to proceed to a conclusion.

Suppose we want to join Ri  xi R 2 xi • • • xi R n. In a dynamic programming 
algorithm, we construct a table with an entry for each subset of one or more of 
the n relations. In that table we put:

1. The estimated size of the join of these relations. For this quantity we may 
use the formula of Section 16.4.6.

8See A ho, H opcroft an d  U llm an , D ata S tru c tu res and A lgorithm s, A ddison-W esley, 1983, 
for a  general tre a tm e n t o f dynam ic  program m ing .



820 CHAPTER 16. THE QUERY COMPILER

2. The least cost of computing the join of these relations. We shall use in our 
examples the sum of the sizes of the intermediate relations (not including 
the R i ’s themselves or the join of the full set of relations associated with 
this table entry).

3. The expression that yields the least cost. This expression joins the set 
of relations in question, with some grouping. We can optionally restrict 
ourselves to left-deep expressions, in which case the expression is just an 
ordering of the relations.

The construction of this table is an induction on the subset size. There are two 
variations, depending on whether we wish to consider all possible tree shapes 
or only left-deep trees. We explain the difference when we discuss the inductive 
step of table construction.

BASIS: The entry for a single relation R consists of the size of R, a cost of 0, 
and an expression that is just R itself. The entry for a pair of relations {Ri, Rj} 
is also easy to compute. The cost is 0, since there are no intermediate relations 
involved, and the size estimate is given by the rule of Section 16.4.6; it is the 
product of the sizes of Ri and Rj divided by the larger value-set size for each 
attribute shared by Ri and Rj, if any. The expression is either Ri tx Rj or 
Rj tx Rt. Following the idea introduced in Section 16.6.1, we pick the smaller 
of Ri and Rj as the left argument.

IN D U C TIO N : Now, we can build the table, computing entries for all subsets 
of size 3, 4, and so on, until we get an entry for the one subset of size n. That 
entry tells us the best way to compute the join of all the relations; it also gives 
us the estimated cost of that method, which is needed as we compute later 
entries. We need to see how to compute the entry for a set of k  relations TZ.

If we wish to consider only left-deep trees, then for each of the k relations 
R in TZ we consider the possibility that we compute the join for TZ by first 
computing the join of TZ — {i?} and then joining it with R. The cost of the 
join for TZ is the cost of TZ — {R} plus the size of the result for TZ — {i?}. We 
pick whichever R yields the least cost. The expression for TZ has the best join 
expression for TZ — {-R} as the left argument of a final join, and R as the right 
argument. The size for TZ is whatever the formula from Section 16.4.6 gives.

If we wish to consider all trees, then computing the entry for a set of relations 
TZ is somewhat more complex. We need to consider all ways to partition TZ into 
disjoint sets TZi and TZ2. For each such subset, we consider the sum of:

1. The best costs of TZi and TZ2.

2. The sizes of the results for TZ\ and TZ2.

For whichever partition gives the best cost, we use this sum as the cost for TZ, 
and the expression for TZ is the join of the best join orders for TZi and TZ2.
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E xam ple 16.33: Consider the join of four relations R,  S, T,  and U. For 
simplicity, we shall assume they each have 1000 tuples. Their attributes and the 
estimated sizes of values sets for the attributes in each relation are summarized 
in Fig. 16.31.

R(a,b) S(b,c) T(c,d) U(d,a) 
V (R, a) =  100 V  (U, a) — 50 
V(R,b) = 200 V(S,b)  =  100

V  (5, c) =  500 V  (T, c) =  20
V (T, d) — 50 V(U,d) = 1000

Figure 16.31: Parameters for Example 16.33

For the singleton sets, the sizes, costs, and best plans are as in the table of 
Fig. 16.32. That is, for each single relation, the size is as given, 1000 for each, 
the cost is 0 since there are no intermediate relations needed, and the best (and 
only) expression is the relation itself.

{R} {5} {T} {U}
Size 1000 1000 1000 1000
Cost 0 0 0 0
Best plan R s T u

Figure 16.32: The table for singleton sets

Now, consider the pairs of relations. The cost for each is 0, since there are 
still no intermediate relations in a join of two. There are two possible plans, 
since either of the two relations can be the left argument, but since the sizes 
happen to be the same for each relation we have no basis on which to choose 
between the plans. We shall take the first, in alphabetical order, to be the left 
argument in each case. The sizes of the resulting relations are computed by the 
usual formula. The results are summarized in Fig. 16.33.

{R ,S } { R ,T} {R,U} {S , T } {S ,U } {T,U}
Size 5000 1,000,000 10,000 2000 1,000,000 1000
Cost 0 0 0 0 0 0
Best plan R x S R x T R x U S x T S x U T x U

Figure 16.33: The table for pairs of relations

Now, consider the table for joins of three out of the four relations. The only 
way to compute a join of three relations is to pick two to join first. The size 
estimate for the result is computed by the standard formula, and we omit the
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details of this calculation; remember that we’ll get the same size regardless of 
which way we compute the join.

The cost estimate for each triple of relations is the size of the one interme
diate relation — the join of the first two chosen. Since we want this cost to be 
as small as possible, we consider each pair of two out of the three relations and 
take the pair with the smallest size.

For the expression, we group the two chosen relations first, but these could 
be either the left or right argument. Let us suppose that we are only interested 
in left-deep trees, so we always use the join of the first two relations as the left 
argument. Since in all cases the estimated size for the join of two of our relations 
is at least 1000 (the size of each individual relation), were we to allow non-left- 
deep trees we would always select the single relation as the left argument in 
this example. The summary table for the triples is shown in Fig. 16.34.

{R ,S ,T } {R ,S ,U} {R,T,U} {S,T,U}
Size 10,000 50,000 10,000 2,000
Cost 2,000 5,000 1,000 1,000
Best plan (S tx T)  m R (R  tx S)  tx U (T tx U) tx R (T tx U) tx S

Figure 16.34: The table for triples of relations

Let us consider {R, S, T}  as an example of the calculation. We must consider 
each of the three pairs in turn. If we start with R  xa S,  then the cost is the 
size of this relation, which is 5000 (see Fig. 16.33). Starting with R  tx T gives 
us a cost of 1,000,000 for the intermediate relation, and starting with S  xi T  
has a cost of 2000. Since the latter is the smallest cost of the three options, 
we choose that plan. The choice is reflected not only in the cost entry of the 
{/?, S ,T}  column, but in the best-plan row, where the plan that groups S  and 
T first appears.

Now, we must consider the situation for the join of all four relations. There 
are two general ways we can compute the join of all four:

1. Pick three to join in the best possible way, and then join in the fourth.

2. Divide the four relations into two pairs of two, join the pairs and then 
join the results.

Of course, if we consider only left-deep trees then the second type of plan is 
excluded, because it yields bushy trees. The table of Fig. 16.35 summarizes the 
seven possible ways to group the joins, based on the preferred groupings from 
Figs. 16.33 and 16.34.

For instance, consider the first expression in Fig. 16.35. It represents joining 
R, S,  and T  first, and then joining that result with U. From Fig. 16.34, we 
know that the best way to join R, S,  and T  is to join S  and T  first. We have 
used the left-deep form of this expression, and joined U on the right to continue
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Grouping Cost
US 1x3 T) tx R) tx U 
\ (R tx: S) txi U) tx T

12,000
55.000
11.000
3.000
6.000

i (T  cx £/) tx fl) tx S 
((T cx U) tx S) txi R  
(T tx U) cx (R tx S) 
(R tx T)  tx (5 tx U) 
(S ix T)  tx (R tx U)

2,000,000
12,000

Figure 16.35: Join groupings and their costs

the left-deep form. If we consider only left-deep trees, then this expression and 
relation order is the only option. If we allowed bushy trees, we would join U 
on the left, since it is smaller than the join of the other three. The cost of this 
join is 12,000, which is the sum of the cost and size of (S tx T)  ix R,  which are 
2000 and 10,000, respectively.

The last three expressions in Fig. 16.35 represent additional options if we 
include bushy trees. These are formed by joining relations first in two pairs. 
For example, the last line represents the strategy of joining R t x U  and S  sxT,  
and then joining the result. The cost of this expression is the sum of the sizes 
and costs of the two pairs. The costs are 0, as must be the case for any pair, and 
the sizes are 10,000 and 2000, respectively. Since we generally select the smaller 
relation to be the left argument, we show the expression as (S tx T)  cx (R tx U).

In this example, we see that the least of all costs is associated with the 
fourth expression: ((T tx TJ) ix S) tx R. This expression is the one we select 
for computing the join; its cost is 3000. Since it is a left-deep tree, it is the 
selected logical query plan regardless of whether our dynamic-programming 
strategy considers all plans or just left-deep plans. □

16.6.5 Dynamic Programming W ith More Detailed Cost 
Functions

Using relation sizes as the cost estimate simplifies the calculations in a dynamic- 
programming algorithm. However, a disadvantage of this simplification is that 
it does not involve the actual costs of the joins in the calculation. As an extreme 
example, if one possible join R(a,b) ix S(b,c) involves a relation R  with one 
tuple and another relation S  that has an index on the join attribute 6, then the 
join takes almost no time. On the other hand, if S  has no index, then we must 
scan it, taking B(S)  disk I /O ’s, even when R  is a singleton. A cost measure 
that only involved the sizes of R, S,  and R  tx S  cannot distinguish these two 
cases, so the cost of using R  tx S  in the grouping will be either overestimated 
or underestimated.

However, modifying the dynamic programming algorithm to take join algo
rithms into account is not hard. First, the cost measure we use becomes disk
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I /O ’s. When computing the cost of TZi tx IZ2 , we sum the cost of Hi,  the cost 
of 72-2) and the least cost of joining these two relations using the best available 
algorithm. Since the latter cost usually depends on the sizes of Hi  and 1Z-2, we 
must also compute estimates for these sizes as we did in Example 16.33.

An even more powerful version of dynamic programming is based on the 
Selinger-style optimization mentioned in Section 16.5.4. Now, for each set of 
relations that might be joined, we keep not only one cost, but several costs. 
Recall that Selinger-style optimization considers not only the least cost of pro
ducing the result of the join, but also the least cost of producing that relation 
sorted in any of a number of “interesting” orders. These interesting sorts in
clude any that might be used to advantage in a later sort-join or that could be 
used to produce the output of the entire query in the sorted order desired by 
the user. When sorted relations must be produced, the use of sort-join, either 
one-pass or multipass, must be considered as an option, while without consid
ering the value of sorting a result, hash-joins are always at least as good as the 
corresponding sort-join.

16.6.6 A Greedy Algorithm for Selecting a Join Order
As Example 16.33 suggests, even the carefully limited search of dynamic pro
gramming leads to a number of calculations that is exponential in the number 
of relations joined. It is reasonable to use an exhaustive method like dynamic 
programming or branch-and-bound search to find optimal join orders of five or 
six relations. However, when the number of joins grows beyond that, or if we 
choose not to invest the time necessary for an exhaustive search, then we can 
use a join-order heuristic in our query optimizer.

The most common choice of heuristic is a greedy algorithm, where we make 
one decision at a time about the order of joins and never backtrack or reconsider 
decisions once made. We shall consider a greedy algorithm that only selects a 
left-deep tree. The “greediness” is based on the idea that we want to keep the 
intermediate relations as small as possible at each level of the tree.

BASIS: Start with the pair of relations whose estimated join size is smallest. 
The join of these relations becomes the current tree.

INDUCTIO N: Find, among all those relations not yet included in the current 
tree, the relation that, when joined with the current tree, yields the relation of 
smallest estimated size. The new current tree has the old current tree as its left 
argument and the selected relation as its right argument.

E xam ple 16.34: Let us apply the greedy algorithm to the relations of Exam
ple 16.33. The basis step is to find the pair of relations that have the smallest 
join. Consulting Fig. 16.33, we see that this honor goes to the join T  ix U, with 
a cost of 1000. Thus, T  cx U is the “current tree.”

We now consider whether to join R  or 5  into the tree next. Thus we compare 
the sizes of (T tx U) ix R  and (T  cx U) cx S.  Figure 16.34 tells us that the
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Join Selectivity

A useful way to view heuristics such as the greedy algorithm for selecting 
a left-deep join tree is that each relation R,  when joined with the current 
tree, has a selectivity, which is the ratio of the size of the join result to size 
of the current tree’s result. Since we usually do not have the exact sizes 
of either relation, we estimate these sizes as we have done previously. A 
greedy approach to join ordering is to pick that relation with the smallest 
selectivity.

For example, if a join attribute is a key for R,  then the selectivity 
is at most 1, which is usually a favorable situation. Notice that, judging 
from the statistics of Fig. 16.31, attribute d is a key for U, and there are 
no keys for other relations, which suggests why joining T  with U is the 
best way to start the join.

latter, with a size of 2000 is better than the former, with a size of 10,000. Thus, 
we pick as the new current tree (T tx U) tx S.

Now there is no choice; we must join R  at the last step, leaving us with 
a total cost of 3000, the sum of the sizes of the two intermediate relations. 
Note that the tree resulting from the greedy algorithm is the same as that 
selected by the dynamic-programming algorithm in Example 16.33. However, 
there are examples where the greedy algorithm fails to find the best solution, 
while the dynamic-programming algorithm guarantees to find the best; see Ex
ercise 16.6.4. □

16.6.7 Exercises for Section 16.6
Exercise 16.6.1: For the relations of Exercise 16.4.1, give the dynamic-pro- 
gramming table entries that evaluates all possible join orders allowing: a) All 
trees b) Left-deep trees only. What is the best choice in each case?

Exercise 16.6.2: Repeat Exercise 16.6.1 with the following modifications:

i. The schema for Z  is changed to Z(d,a).

ii. V{Z,a) = 100.

E xercise 16.6.3: Repeat Exercise 16.6.1 with the relations of Exercise 16.4.2.

E xercise 16.6.4: Consider the join of relations R(a,b), S(b,c), T(c,d),  and 
U(a,d), where R  and U each have 1000 tuples, while S  and T  each have 100 
tuples. Further, there are 100 values of all attributes of all relations, except for 
attribute c, where V(S,c) = V{T,c) — 10.

a) What is the order selected by the greedy algorithm? What is its cost?



826 CHAPTER 16. THE QUERY COMPILER

b) What is the optimum join ordering and its cost?

E xercise 16.6.5: How many trees are there for the join of (a) seven (b) eight 
relations? How many of these are neither left-deep nor right-deep?

! E xercise 16.6.6: Suppose we wish to join the relations R, S, T,  and U in 
one of the tree structures of Fig. 16.30, and we want to keep all intermedi
ate relations in memory until they are no longer needed. Following our usual 
assumption, the result of the join of all four will be consumed by some other 
process as it is generated, so no memory is needed for that relation. In terms 
of the number of blocks required for the stored relations and the intermediate 
relations [e.g., B(R)  or B (R  tx 5)], give a lower bound on M,  the number of 
blocks of memory needed, for each of the trees in Fig. 16.30? What assumptions 
let us conclude that one tree is certain to use less memory than another?

! E xercise 16.6.7: If we use dynamic programming to select an order for the 
join of k relations, how many entries of the table do we have to fill?

16.7 Completing the Physical-Query-Plan
We have parsed the query, converted it to an initial logical query plan, and 
improved that logical query plan with transformations described in Section 16.3. 
Part of the process of selecting the physical query plan is enumeration and cost- 
estimation for all of our options, which we discussed in Section 16.5. Section 16.6 
focused on the question of enumeration, cost estimation, and ordering for joins 
of several relations. By extension, we can use similar techniques to order groups 
of unions, intersections, or any associative/commutative operation.

There are still several steps needed to turn the logical plan into a complete 
physical query plan. The principal issues that we must yet cover are:

1. Selection of algorithms to implement the operations of the query plan, 
when algorithm-selection was not done as part of some earlier step such 
as selection of a join order by dynamic programming.

2. Decisions regarding when intermediate results will be materialized (cre
ated whole and stored on disk), and when they will be pipelined (created 
only in main memory, and not necessarily kept in their entirety at any 
one time).

3. Notation for physical-query-plan operators, which must include details 
regarding access methods for stored relations and algorithms for imple
mentation of relational-algebra operators.

We shall not discuss the subject of selection of algorithms for operators 
in its entirety. Rather, we sample the issues by discussing two of the most 
important operators: selection in Section 16.7.1 and joins in Section 16.7.2.
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Then, we consider the choice between pipelining and materialization in Sec
tions 16.7.3 through 16.7.5. A notation for physical query plans is presented in 
Section 16.7.6.

16.7.1 Choosing a Selection M ethod
One of the important steps in choosing a physical query plan is to pick algo
rithms for each selection operator. In Section 15.2.1 we mentioned the obvious 
implementation of a ac  (R ) operator, where we access the entire relation R  and 
see which tuples satisfy condition C. Then in Section 15.6.2 we considered the 
possibility that C  was of the form “attribute equals constant,” and we had an 
index on that attribute. If so, then we can find the tuples that satisfy condition 
C  without looking at all of R.  Now, let us consider the generalization of this 
problem, where we have a selection condition that is the AND of several condi
tions. Assume at least one condition is of the form AOc, where A  is an attribute 
with an index, c is a constant, and 6 is a comparison operator such as =  or <.

Each physical plan uses some number of attributes that each:

a) Have an index, and

b) Are compared to a constant in one of the terms of the selection.

We then use these indexes to identify the sets of tuples that satisfy each of the 
conditions. Sections 14.1.7 and 14.4.3 discussed how we could use pointers ob
tained from these indexes to find only the tuples that satisfied all the conditions 
before we read these tuples from disk.

For simplicity, we shall not consider the use of several indexes in this way. 
Rather, we limit our discussion to physical plans that:

1. Retrieve all tuples that satisfy a comparison for which an index exists, 
using the index-scan physical operator discussed in Section 15.1.1.

2. Consider each tuple selected in (1) to decide whether it satisfies the rest 
of the selection condition. The physical operator that performs this step 
is callled F i l te r .

In addition to physical plans of this form, we must also consider the plan that 
uses no index but reads the entire relation (using the table-scan physical oper
ator) and passes each tuple to the F i l t e r  operator to check for satisfaction of 
the selection condition.

We decide among the possible physical plans for a selection by estimating 
the cost of reading data with each plan. To compare costs of alternative plans 
we cannot continue using the simplified cost estimate of intermediate-relation 
size. The reason is that we are now considering implementations of a single 
step of the logical query plan, and intermediate relations are independent of 
implementation.
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Thus, we shall refocus our attention and resume counting disk I /O ’s, as we 
did when we discussed algorithms and their costs in Chapter 15. To simplify 
as before, we shall count only the cost of accessing the data blocks, not the 
index blocks. Recall that the number of index blocks needed is generally much 
smaller than the number of data blocks needed, so this approximation to disk 
I/O  cost is usually accurate enough.

The following is an outline of how costs for the various plans are estimated. 
We assume that the operation is <t c ( R ), where condition C  is the AND of one or 
more terms.

1. The cost of the table-scan algorithm coupled with a filter step is:

(a) B(R)  if R  is clustered, and
(b) T(R)  if R  is not clustered.

2. The cost of a plan that picks an equality term such as a = 10 for which an 
index on attribute a exists, uses index-scan to find the matching tuples, 
and then filters the retrieved tuples to see if they satisfy the full condition 
C  is:

(a) B(R) /V (R ,a )  if the index is clustering, and
(b) T(R )/ V(R ,a )  if the index is not clustering.

3. The cost of a plan that picks an inequality term such as b < 20 for which 
an index on attribute b exists, uses index-scan to retrieve the matching 
tuples, and then filters the retrieved tuples to see if they satisfy the full 
condition C is:

(a) B ( R ) /3 if the index is clustering,9 and
(b) T ( R ) /3 if the index is not clustering.

E xam ple 16.35: Consider selection ax=i and y = 2  and z<b(R), where R(x, y, z) 
has the following parameters: T(R) = 5000, B{R)  =  200, V(R,x)  =  100, and 
V(R,  y) — 500. Further, suppose R  is clustered, and there are indexes on all of 
x, y, and z, but only the index on z is clustering. The following are the options 
for implementing this selection:

1. Table-scan followed by filter. The cost is B(R),  or 200 disk I /O ’s, since 
R  is clustered.

2. Use the index on x  and the index-scan operator to find those tuples with 
x  = 1, then use the filter operator to check that y = 2 and z  < 5. Since 
there are about T (R ) /V (R , x )  — 50 tuples with x — 1, and the index is 
not clustering, we require about 50 disk I /O ’s.

9Recall th a t  we assum e th e  typ ica l inequality  retrieves only  1 /3  th e  tu p les, for reasons 
discussed in Section 16.4.3.
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3. Use the index on y and index-scan to find those tuples with y — 2, then 
filter these tuples to see that x  =  1 and z < 5. The cost for using this 
nonclustering index is about T(R )/V (R ,y ) ,  or 10 disk I /O ’s.

4. Use the clustering index on z and index-scan to find those tuples with 
z < 5, then filter these tuples to see that x  =  1 and y = 2. The number 
of disk I /O ’s is about B ( R ) / 3 =  67.

We see that the least cost plan is the third, with an estimated cost of 10 disk 
I /O ’s. Thus, the preferred physical plan for this selection retrieves all tuples 
with y = 2 and then filters for the other two conditions. □

16.7.2 Choosing a Join Method
We saw in Chapter 15 the costs associated with the various join algorithms. On 
the assumption that we know (or can estimate) how many buffers are available 
to perform the join, we can apply the formulas in Section 15.4.9 for sort-joins, 
Section 15.5.7 for hash-joins, and Sections 15.6.3 and 15.6.4 for indexed joins.

However, if we axe not sure of, or cannot know, the number of buffers that 
will be available during the execution of this query (because we do not know 
what else the DBMS is doing at the same time), or if we do not have estimates 
of important size parameters such as the V(R,  a )’s, then there are still some 
principles we can apply to choosing a join method. Similar ideas apply to other 
binary operations such as unions, and to the full-relation, unary operators, 7  
and S.

• One approach is to call for the one-pass join, hoping that the buffer man
ager can devote enough buffers to the join, or that the buffer manager 
can come close, so thrashing is not a major cost. An alternative (for joins 
only, not for other binary operators) is to choose a nested-loop join, hop
ing that if the left argument cannot be granted enough buffers to fit in 
memory at once, then that argument will not have to be divided into too 
many pieces, and the resulting join will still be reasonably efficient.

• A sort-join is a good choice when either:

1. One or both arguments are already sorted on their join attribute(s), 
or

2. There are two or more joins on the same attribute, such as

(R(a, b) xi S(a, c)) ix T(a, d)

where sorting R  and S  on a will cause the result of R  x  5  to be 
sorted on a and used directly in a second sort-join.

• If there is an index opportunity such as a join R(a, b) tx S(b, c), where R  
is expected to be small (perhaps the result of a selection on a key that 
must yield only one tuple), and there is an index on the join attribute
S.b, then we should choose an index-join.
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• If there is no opportunity to use already-sorted relations or indexes, and 
a multipass join is needed, then hashing is probably the best choice, be
cause the number of passes it requires depends on the size of the smaller 
argument rather than on both arguments.

16.7.3 Pipelining Versus Materialization
The last major issue we shall discuss in connection with choice of a physical 
query plan is pipelining of results. The naive way to execute a query plan is 
to order the operations appropriately (so an operation is not performed until 
the argument(s) below it have been performed), and store the result of each 
operation on disk until it is needed by another operation. This strategy is 
called materialization, since each intermediate relation is materialized on disk.

A more subtle, and generally more efficient, way to execute a query plan 
is to interleave the execution of several operations. The tuples produced by 
one operation are passed directly to the operation that uses it, without ever 
storing the intermediate tuples on disk. This approach is called pipelining, and 
it typically is implemented by a network of iterators (see Section 15.1.6), whose 
methods call each other at appropriate times. Since it saves disk I /O ’s, there 
is an obvious advantage to pipelining, but there is a corresponding disadvan
tage. Since several operations must share main memory at any time, there is a 
chance that algorithms with higher disk-I/O requirements must be chosen, or 
thrashing will occur, thus giving back all the disk-I/O savings that were gained 
by pipelining, and possibly more.

16.7.4 Pipelining Unary Operations
Unary operations — selection and projection — are excellent candidates for 
pipelining. Since these operations are tuple-at-a-time, we never need to have 
more than one block for input, and one block for the output. This mode of 
operation was suggested by Fig. 15.5.

We may implement a pipelined unary operation by iterators, as discussed in 
Section 15.1.6. The consumer of the pipelined result calls GetNextO each time 
another tuple is needed. In the case of a projection, it is only necessary to call 
GetNextO once on the source of tuples, project that tuple appropriately, and 
return the result to the consumer. For a selection a c  (technically, the physical 
operator Filter(C)),  it may be necessary to call GetNextO several times at 
the source, until one tuple that satisfies condition C  is found. Figure 16.36 
illustrates this process.

16.7.5 Pipelining Binary Operations
The results of binary operations can also be pipelined. We use one buffer to 
pass the result to its consumer, one block at a time. However, the number of 
other buffers needed to compute the result and to consume the result varies,
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Consum er

GetNext Tuple that 
satisfies C

Test for C
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repeated

R

Figure 16.36: Execution of a pipelined selection using iterators

Materialization in Memory

One might imagine that there is an intermediate approach, between 
pipelining and materialization, where the entire result of one operation 
is stored in main-memory buffers (not on disk) before being passed to 
the consuming operation. We regard this possible mode of operation as 
pipelining, where the first thing that the consuming operation does is or
ganize the entire relation, or a large portion of it, in memory. An example 
of this sort of behavior is a selection whose result becomes the left (build) 
argument to one of several join algorithms, including the simple one-pass 
join, multipass hash-join, or sort-join.

depending on the size of the result and the sizes of the arguments. We shall 
use an extended example to illustrate the tradeoffs and opportunities.

E xam ple 16.36: Let us consider physical query plans for the expression

We make the following assumptions:

1. R  occupies 5000 blocks; S  and U each occupy 10,000 blocks.

2. The intermediate result R  tx 5  occupies k blocks for some k.

3. Both joins will be implemented as hash-joins, either one-pass or two-pass, 
depending on k.

4. There are 101 buffers available. This number, as usual, is set artificially

(R(w, x) tx S(x, y)) tx U (y , z)

low.
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XI
k blocks \
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Figure 16.37: Logical query plan and parameters for Example 16.36

A sketch of the expression with key parameters is in Fig. 16.37.
First, consider the join R  tx S. Neither relation fits in main memory, so 

we need a two-pass hash-join. If the smaller relation R  is partitioned into 
the maximum-possible 100 buckets on the first pass, then each bucket for R  
occupies 50 blocks.10 If R ’s buckets have 50 blocks, then the second pass of the 
hash-join R  tx S  uses 51 buffers, leaving 50 buffers to use for the join of the 
result of R  tx 5  with U.

Now, suppose that k < 49; that is, the result of jR cx S occupies at most 49 
blocks. Then we can pipeline the result of R  tx S  into 49 buffers, organize them 
for lookup as a hash table, and we have one buffer left to read each block of 
U in turn. We may thus execute the second join as a one-pass join. The total 
number of disk I/O ’s is:

a) 45,000 to perform the two-pass hash join of R  and 5.

b) 10,000 to read U in the one-pass hash-join of (R  tx S) tx U.

The total is 55,000 disk I /O ’s.
Now, suppose k > 49, but k < 5000. We can still pipeline the result of 

R  tx S, but we need to use another strategy, in which this relation is joined 
with U in a 50-bucket, two-pass hash-join.

1. Before we start on R  cx S, we hash U into 50 buckets of 200 blocks each.

2. Next, we perform a two-pass hash join of R  and S  using 51 buckets as 
before, but as each tuple of R  ix 5  is generated, we place it in one of the
50 remaining buffers that is used to help form the 50 buckets for the join 
of R  tx S  with U. These buffers are written to disk when they get full, as 
is normal for a two-pass hash-join.

3. Finally, we join R  cx S  with U bucket by bucket. Since k < 5000, the 
buckets of R  tx S  will be of size at most 100 blocks, so this join is feasible. 
The fact that buckets of U are of size 200 blocks is not a problem, since

— in---------- -̂-------------10We shall assiime for convenience that all buckets wind up with exactly their fair share of
tuples.
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we are using buckets of R  m S  as the build relation and buckets of U as 
the probe relation in the one-pass joins of buckets.

The number of disk I /O ’s for this pipelined join is:

a) 20,000 to read U and write its tuples into buckets.

b) 45,000 to perform the two-pass hash-join R  cx S.

c) k to write out the buckets of R  ix S.

d) k +  10,000 to read the buckets of R  tx 5  and U in the final join.

The total cost is thus 75,000 +  2k. Note that there is an apparent discontinuity 
as k grows from 49 to 50, since we had to change the final join from one-pass 
to two-pass. In practice, the cost would not change so precipitously, since we 
could use the one-pass join even if there were not enough buffers and a small 
amount of thrashing occurred.

Last, let us consider what happens when k > 5000. Now, we cannot perform 
a two-pass join in the 50 buffers available if the result of R  tx S  is pipelined. 
We could use a three-pass join, but that would require an extra 2 disk I /O ’s per 
block of either argument, or 20,000 +  2k more disk I /O ’s. We can do better if 
we instead decline to pipeline R  ix S. Now, an outline of the computation of 
the joins is:

1. Compute R  tx S  using a two-pass hash join and store the result on disk.

2. Join R  tx S  with U, also using a two-pass hash-join. Note that since 
B(U) =  10,000, we can perform a two-pass hash-join using 100 buckets, 
regardless of how large k is. Technically, U should appear as the left 
argument of its join in Fig. 16.37 if we decide to make U the build relation 
for the hash join.

The number of disk I /O ’s for this plan is:

a) 45,000 for the two-pass join of R  and S.

b) k to store R  tx S  on disk.

c) 30,000 -I- 3k for the two-pass hash-join of U with R  tx 5.

The total cost is thus 75,000 +  4k, which is less than the cost of going to a 
three-pass join at the final step. The three complete plans are summarized in 
the table of Fig. 16.38. □
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Range 
of k

Pipeline or 
Materialize

Algorithm for 
final join

Total Disk 
I /O ’s

k < 49 Pipeline one-pass 55,000
50 < k < 5000 Pipeline 50-bucket,

two-pass
75,000 +  2k

5000 < k Materialize 100-bucket,
two-pass

75,000 +  4k

Figure 16.38: Costs of physical plans as a function of the size of R  m S

16.7.6 Notation for Physical Query Plans
We have seen many examples of the operators that can be used to form a physi
cal query plan. In general, each operator of the logical plan becomes one or more 
operators of the physical plan, and leaves (stored relations) of the logical plan 
become, in the physical plan, one of the scan operators applied to that relation. 
In addition, materialization would be indicated by a S to re  operator applied to 
the intermediate result that is to be materialized, followed by a suitable scan op
erator (usually TableScan, since there is no index on the intermediate relation 
unless one is constructed explicitly) when the materialized result is accessed by 
its consumer. However, for simplicity, in our physical-query-plan trees we shall 
indicate that a certain intermediate relation is materialized by a double line 
crossing the edge between that relation and its consumer. All other edges are 
assumed to represent pipelining between the supplier and consumer of tuples.

We shall now catalog the various operators that are typically found in physi
cal query plans. Unlike the relational algebra, whose notation is fairly standard, 
each DBMS will use its own internal notation for physical query plans.

O perators for Leaves

Each relation R  that is a leaf operand of the logical-query-plan tree will be 
replaced by a scan operator. The options are:

1. TableScan (R): All blocks holding tuples of R  are read in arbitrary order.

2. SortScan(R ,L): Tuples of R  are read in order, sorted according to the 
attribute(s) on list L.

3. IndexScan(R,C): Here, C  is a condition of the form .40c, where A  is an 
attribute of R, 0 is a comparison such as =  or <, and c is a constant. Tu
ples of R  are accessed through an index on attribute A. If the comparison 
6  is not then the index must be one, such as a B-tree, that supports 
range queries.

4. IndexScan(R, A): Here A  is an attribute of R. The entire relation R  is 
retrieved via an index on R.A. This operator behaves like TableScan,
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but may be more efficient if R  is not clustered.

P h ysica l O perators for S election

A logical operator crc(R) is often combined, or partially combined, with the 
access method for relation R, when R  is a stored relation. Other selections, 
where the argument is not a stored relation or an appropriate index is not 
available, will be replaced by the corresponding physical operator we have called 
Filter. Recall the strategy for choosing a selection implementation, which we 
discussed in Section 16.7.1. The notation we shall use for the various selection 
implementations are:

1. We may simply replace ac(R ) by the operator F il te r (C ) . This choice 
makes sense if there is no index on R, or no index on an attribute that 
condition C  mentions. If R, the argument of the selection, is actually an 
intermediate relation being pipelined to the selection, then no other op
erator besides F i l t e r  is needed. If R  is a stored or materialized relation, 
then we must use an operator, TableScan or SortScan(R,L), to access 
R. We prefer sort-scan if the result of ac(R ) will later be passed to an 
operator that requires its argument sorted.

2. If condition C can be expressed as AOc AND D  for some other condition 
D, and there is an index on R.A, then we may:

(a) Use the operator IndexScan(R, kdc) to access R, and

(b) Use F ilte r (D ) in place of the selection ac(R)-

P h ysica l Sort O perators

Sorting of a relation can occur at any point in the physical query plan. We have 
already introduced the SortScan(R,L) operator, which reads a stored relation 
R  and produces it sorted according to the list of attributes L. When we apply a 
sort-based algorithm for operations such as join or grouping, there is an initial 
phase in which we sort the argument according to some list of attributes. It is 
common to use an explicit physical operator Sort(L) to perform this sort on 
an operand relation that is not stored. This operator can also be used at the 
top of the physical-query-plan tree if the result needs to be sorted because of 
an ORDER BY clause in the original query, thus playing the same role as the r  
operator of Section 5.2.6.

O ther R ela tional-A lgebra  O perations

All other operations are replaced by a suitable physical operator. These oper
ators can be given designations that indicate:

1. The operation being performed, e.g., join or grouping.
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2. Necessary parameters, e.g., the condition in a theta-join or the list of 
elements in a grouping.

3. A general strategy for the algorithm: sort-based, hash-based, or index- 
based, e.g.

4. A decision about the number of passes to be used: one-pass, two-pass, or 
multipass (recursive, using as many passes as necessary for the data at 
hand). Alternatively, this choice may be left until run-time.

5. An anticipated number of buffers the operation will require.

E xam ple 16.37: Figure 16.39 shows the physical plan developed in Exam
ple 16.36 for the case k > 5000. In this plan, we access each of the three 
relations by a table-scan. We use a two-pass hash-join for the first join, mate
rialize it, and use a two-pass hash-join for the second join. By implication of 
the double-line symbol for materialization, the left argument of the top join is 
also obtained by a table-scan, and the result of the first join is stored using the 
S to re  operator.

In contrast, if k < 49, then the physical plan developed in Example 16.36 is 
that shown in Fig. 16.40. Notice that the second join uses a different number 
of passes, a different number of buffers, and a left argument that is pipelined, 
not materialized. □

E xam ple 16.38: Consider the selection operation in Example 16.35, where we 
decided that the best of options was to use the index on y to find those tuples 
with y — 2, then check these tuples for the other conditions x — 1 and z < 5. 
Figure 16.41 shows the physical query plan. The leaf indicates that R  will be 
accessed through its index on y, retrieving only those tuples with y =  2. The 
filter operator says that we complete the selection by further selecting those of 
the retrieved tuples that have both x  =  1 and z <5. □

two-pass 
hash-join 
101 buffers

hash-join 
101 buffers

TableScanfftl TableScanfS 1

Figure 16.39: A physical plan from Example 16.36
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one-pass 
hash-join 
50 buffers

two-pass 
hash-join 
101 buffers

TableScan(t/)

TableScanf/J ■)

Figure 16.40: Another physical plan for the case where R x  S  is expected to 
be very small

Filter(x=l AND z<5)

IndexScan(R, y=2)

Figure 16.41: Annotating a selection to use the most appropriate index

16.7.7 Ordering of Physical Operations
Our final topic regarding physical query plans is the m atter of order of oper
ations. The physical query plan is generally represented as a tree, and trees 
imply something about order of operations, since data must flow up the tree. 
However, since bushy trees may have interior nodes that axe neither ancestors 
nor descendants of one another, the order of evaluation of interior nodes may 
not always be clear. Moreover, since iterators can be used to implement opera
tions in a pipelined manner, it is possible that the times of execution for various 
nodes overlap, and the notion of “ordering” nodes makes no sense.

If materialization is implemented in the obvious store-and-later-retrieve way, 
and pipelining is implemented by iterators, then we may establish a fixed se
quence of events whereby each operation of a physical query plan is executed. 
The following rules summarize the ordering of events implicit in a physical- 
query-plan tree:

1. Break the tree into subtrees at each edge that represents materialization. 
The subtrees will be executed one-at-a-time.

2. Order the execution of the subtrees in a bottom-up, left-to-right manner. 
To be precise, perform a preorder traversal of the entire tree. Order 
the subtrees in the order in which the preorder traversal exits from the 
subtrees.
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3. Execute all nodes of each subtree using a network of iterators. Thus, all 
the nodes in one subtree are executed simultaneously, with GetNext calls 
among their operators determining the exact order of events.

Following this strategy, the query optimizer can now generate executable code, 
perhaps a sequence of function calls, for the query.

16.7.8 Exercises for Section 16.7
E xercise 16.7.1: Consider a relation R(a,b,c,d) that has a clustering index 
on a and nonclustering indexes on each of the other attributes. The relevant 
parameters are: B(R) =  1000, T(R) -  5000, V (R ,a) = 20, V(R,b) =  1000, 
V(R,c) =  5000, and V(R ,d) =  500. Give the best query plan (index-scan 
or table-scan followed by a filter step) and the disk-I/O cost for each of the 
following selections:

a) Oa=l AND 6=2 AND d=s{R)-

b )  <Ta=l AND 6=2 AND c > 3 (R )-

c) cra= l  AND 6<2 AND c>3(R)-

! Exercise 16.7.2: In terms of B(R), T(R), V (R ,x ), and V (R ,y), express the 
following conditions about the cost of implementing a selection on R:

a) It is better to use index-scan with a nonclustering index on x  and a term 
that equates a; to a constant than a nonclustering index on y and a term 
that equates y to a constant.

b) It is better to use index-scan with a nonclustering index on x  and a term 
that equates a; to a constant than a clustering index on y  and a term that 
equates y to a constant.

c) It is better to use index-scan with a nonclustering index on x  and a term 
that equates x  to a constant than a clustering index on y and a term of 
the form y > C  for some constant C.

E xercise 16.7.3: How would the conclusions about when to pipeline in Ex
ample 16.36 change if the size of relation R  were not 5000 blocks, but: (a) 2000 
blocks ! (b) 10,000 blocks ! (c) 100 blocks?

! Exercise 16.7.4: Suppose we want to compute (R(a,b) tx S(a,c)) tx T(a,d) 
in the order indicated. We have M  — 101 main-memory buffers, and B(R) =  
B (S) =  2000. Because the join attribute a is the same for both joins, we decide 
to implement the first join R  tx 5  by a two-pass sort-join, and we shall use 
the appropriate number of passes for the second join, first dividing T  into some 
number of sublists sorted on a, and merging them with the sorted and pipelined 
stream of tuples from the join R  tx S. For what values of B (T) should we choose 
for the join of T  with R  ix S:
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a) A one-pass join; i.e., we read T  into memory, and compare its tuples with 
the tuples of R  cx 5  as they are generated.

b) A two-pass join; i.e., we create sorted sublists for T  and keep one buffer 
in memory for each sorted sublist, while we generate tuples of R  tx S.

16.8 Summary of Chapter 16
♦  Compilation of Queries: Compilation turns a query into a physical query 

plan, which is a sequence of operations that can be implemented by the 
query-execution engine. The principal steps of query compilation are 
parsing, semantic checking, selection of the preferred logical query plan 
(algebraic expression), and generation from that of the best physical plan.

♦  The Parser: The first step in processing a SQL query is to parse it, as 
one would for code in any programming language. The result of parsing 
is a parse tree with nodes corresponding to SQL constructs.

♦  View Expansion: Queries that refer to virtual views must have these 
references in the parse tree replaced by the tree for the expression that 
defines the view. This expansion often introduces several opportunities 
to optimize the complete query.

♦  Semantic Checking: A preprocessor examines the parse tree, checks that 
the attributes, relation names, and types make sense, and resolves at
tribute references.

♦  Conversion to a Logical Query Plan: The query processor must convert 
the semantically checked parse tree to an algebraic expression. Much 
of the conversion to relational algebra is straightforward, but subqueries 
present a problem. One approach is to introduce a two-argument selection 
that puts the subquery in the condition of the selection, and then apply 
appropriate transformations for the common special cases.

♦  Algebraic Transformations: There are many ways that a logical query plan 
can be transformed to a better plan by using algebraic transformations. 
Section 16.2 enumerates the principal ones.

♦  Choosing a Logical Query Plan: The query processor must select that 
query plan that is most likely to lead to an efficient physical plan. In 
addition to applying algebraic transformations, it is useful to group asso
ciative and commutative operators, especially joins, so the physical query 
plan can choose the best order and grouping for these operations.

♦  Estimating Sizes of Relations: When selecting the best logical plan, or 
when ordering joins or other associative-commutative operations, we use 
the estimated size of intermediate relations as a surrogate for the true
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running time. Knowing, or estimating, both the size (number of tuples) 
of relations and the number of distinct values for each attribute of each 
relation helps us get good estimates of the sizes of intermediate relations.

♦  Histograms: Some systems keep histograms of the values for a given 
attribute. This information can be used to obtain better estimates of 
intermediate-relation sizes than the simple methods stressed here.

♦  Cost-Based Optimization: When selecting the best physical plan, we need 
to estimate the cost of each possible plan. Various strategies axe used to 
generate all or some of the possible physical plans that implement a given 
logical plan.

♦  Plan-Enumeration Strategies: The common approaches to searching the 
space of physical plans for the best include dynamic programming (tab- 
ularizing the best plan for each subexpression of the given logical plan), 
Selinger-style dynamic programming (which includes the sort-order of re
sults as part of the table, giving best plans for each sort-order and for an 
unsorted result), greedy approaches (making a series of locally optimal 
decisions, given the choices for the physical plan that have been made so 
far), and branch-and-bound (enumerating only plans that are not imme
diately known to be worse than the best plan found so far).

♦  Left-Deep Join Trees: When picking a grouping and order for the join 
of several relations, it is common to restrict the search to left-deep trees, 
which axe binaxy trees with a single spine down the left edge, with only 
leaves as right children. This form of join expression tends to yield efficient 
plans and also limits significantly the number of physical plans that need 
to be considered.

♦  Physical Plans for Selection: If possible, a selection should be broken into 
an index-scan of the relation to which the selection is applied (typically 
using a condition in which the indexed attribute is equated to a constant), 
followed by a filter operation. The filter examines the tuples retrieved by 
the index-scan and passes through only those that meet the portions of 
the selection condition other than that on which the index scan is based.

♦  Pipelining Versus Materialization: Ideally, the result of each physical op
erator is consumed by another operator, with the result being passed be
tween the two in main memory (“pipelining”), perhaps using an iterator to 
control the flow of data from one to the other. However, sometimes there 
is an advantage to storing (“materializing”) the result of one operator 
to save space in main memory for other operators. Thus, the physical- 
query-plan generator should consider both pipelining and materialization 
of intermediates.
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Chapter 17

Coping W ith System  
Failures

Starting with this chapter, we focus our attention on those parts of a DBMS 
that control access to data. There are two major issues to address:

1. Data must be protected in the face of a system failure. This chapter deals 
with techniques for supporting the goal of resilience, that is, integrity of 
the data when the system fails in some way.

2. Data must not be corrupted simply because several error-free queries or 
database modifications are being done at once. This matter is addressed 
in Chapters 18 and 19.

The principal technique for supporting resilience is a log, which records 
securely the history of database changes. We shall discuss three different styles 
of logging, called “undo,” “redo,” and “undo/redo.” We also discuss recovery, 
the process whereby the log is used to reconstruct what has happened to the 
database when there has been a failure. An important aspect of logging and 
recovery is avoidance of the situation where the log must be examined into 
the distant past. Thus, we shall learn about “checkpointing,” which limits the 
length of log that must be examined during recovery.

In a final section, we discuss “archiving,” which allows the database to 
survive not only temporary system failures, but situations where the entire 
database is lost. Then, we must rely on a recent copy of the database (the 
archive) plus whatever log information survives, to reconstruct the database as 
it existed at some point in the recent past.

17.1 Issues and M odels for Resilient Operation
We begin our discussion of coping with failures by reviewing the kinds of things 
that can go wrong, and what a DBMS can and should do about them. We

843
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initially focus on “system failures” or “crashes,” the kinds of errors that the 
logging and recovery methods are designed to fix. We also introduce in Sec
tion 17.1.4 the model for buffer management that underlies all discussions of 
recovery from system errors. The same model is needed in the next chapter as 
we discuss concurrent access to the database by several transactions.

17.1.1 Failure Modes
There are many things that can go wrong as a database is queried and modified. 
Problems range from the keyboard entry of incorrect data to an explosion in the 
room where the database is stored on disk. The following items are a catalog 
of the most important failure modes and what the DBMS can do about them.

E rroneous D a ta  E ntry

Some data errors are impossible to detect. For example, if a clerk mistypes one 
digit of your phone number, the data will still look like a phone number that 
could be yours. On the other hand, if the clerk omits a digit from your phone 
number, then the data is evidently in error, since it does not have the form of 
a phone number. The principal technique for addressing data-entry errors is to 
write constraints and triggers that detect data believed to be erroneous.

M ed ia  Failures

A local failure of a disk, one that changes only a  bit or a few bits, can nor
mally be detected by parity checks associated with the sectors of the disk, as 
we discussed in Section 13.4.2. Head crashes, where the entire disk becomes 
unreadable, are generally handled by one or both of the following approaches:

1. Use one of the RAID schemes discussed in Section 13.4, so the lost disk 
can be restored.

2. Maintain an archive, a copy of the database on a medium such as tape 
or optical disk. The archive is periodically created, either fully or incre
mentally, and stored at a safe distance from the database itself. We shall 
discuss archiving in Section 17.5.

3. Instead of an archive, one could keep redundant copies of the database 
on-line, distributed among several sites. These copies are kept consistent 
by mechanisms we shall discuss in Section 20.6.

C atastrophic Failure

In this category are a number of situations in which the media holding the 
database is completely destroyed. Examples include explosions, fires, or van
dalism at the site of the database. RAID will not help, since all the data disks 
and their parity check disks become useless simultaneously. However, the other



17.1. ISSUES AND MODELS FOR RESILIENT OPERATION 845

approaches that can be used to protect against media failure — archiving and 
redundant, distributed copies — will also protect against a catastrophic failure.

S ystem  Failures

The processes that query and modify the database are called transactions. A 
transaction, like any program, executes a number of steps in sequence; often, 
several of these steps will modify the database. Each transaction has a state, 
which represents what has happened so far in the transaction. The state in
cludes the current place in the transaction’s code being executed and the values 
of any local variables of the transaction that will be needed later on.

System failures are problems that cause the state of a transaction to be lost. 
Typical system failures are power loss and software errors. Since main mem
ory is “volatile,” as we discussed in Section 13.1.3, a power failure will cause 
the contents of main memory to disappear, along with the result of any trans
action step that was kept only in main memory, rather than on (nonvolatile) 
disk. Similarly, a software error may overwrite part of main memory, possibly 
including values that were part of the state of the program.

When main memory is lost, the transaction state is lost; that is, we can no 
longer tell what parts of the transaction, including its database modifications, 
were made. Running the transaction again may not fix the problem. For 
example, if the transaction must add 1 to a value in the database, we do not 
know whether to repeat the addition of 1 or not. The principal remedy for the 
problems that arise due to a system error is logging of all database changes in 
a separate, nonvolatile log, coupled with recovery when necessary. However, 
the mechanisms whereby such logging can be done in a fail-safe manner are 
surprisingly intricate, as we shall see starting in Section 17.2.

17.1.2 More About Transactions

We introduced the idea of transactions from the point of view of the SQL pro
grammer in Section 6.6. Before proceeding to our study of database resilience 
and recovery from failures, we need to discuss the fundamental notion of a 
transaction in more detail.

The transaction is the unit of execution of database operations. For example, 
if we are issuing ad-hoc commands to a SQL system, then each query or database 
modification statement (plus any resulting trigger actions) is a transaction. 
When using an embedded SQL interface, the programmer controls the extent 
of a transaction, which may include several queries or modifications, as well 
as operations performed in the host language. In the typical embedded SQL 
system, transactions begin as soon as operations on the database are executed 
and end with an explicit COMMIT or ROLLBACK (“abort”) command.

As we shall discuss in Section 17.1.3, a transaction must execute atomically, 
that is, all-or-nothing and as if it were executed at an instant in time. Assuring
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that transactions are executed correctly is the job of a transaction manager, a 
subsystem that performs several functions, including:

1. Issuing signals to the log manager (described below) so that necessary 
information in the form of “log records” can be stored on the log.

2. Assuring that concurrently executing transactions do not interfere with 
each other in ways that introduce errors (“scheduling” ; see Section 18.1).

Figure 17.1: The log manager and transaction manager

The transaction manager and its interactions are suggested by Fig. 17.1. 
The transaction manager will send messages about actions of transactions to 
the log manager, to the buffer manager about when it is possible or necessary to 
copy the buffer back to disk, and to the query processor to execute the queries 
and other database operations that comprise the transaction.

The log manager maintains the log. It must deal with the buffer manager, 
since space for the log initially appears in main-memory buffers, and at certain 
times these buffers must be copied to disk. The log, as well as the data, occupies 
space on the disk, as we suggest in Fig. 17.1.

Finally, we show a recovery manager in Fig. 17.1. When there is a crash, 
the recovery manager is activated. It examines the log and uses it to repair the 
data, if necessary. As always, access to the disk is through the buffer manager.

17.1.3 Correct Execution of Transactions
Before we can deal with correcting system errors, we need to understand what 
it means for a transaction to be executed “correctly.” To begin, we assume that 
the database is composed of “elements.” We shall not specify precisely what 
an “element” is, except to say it has a value and can be accessed or modified 
by transactions. Different database systems use different notions of elements, 
but they are usually chosen from one or more of the following:
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1. Relations.

2. Disk blocks or pages.

3. Individual tuples or objects.

In examples to follow, one can imagine that database elements are tuples, 
or in many examples, simply integers. However, there are several good reasons 
in practice to use choice (2) — disk blocks or pages — as the database element. 
In this way, buffer-contents become single elements, allowing us to avoid some 
serious problems with logging and transactions that we shall explore periodically 
as we learn various techniques. Avoiding database elements that are bigger than 
disk blocks also prevents a situation where part but not all of an element has 
been placed in nonvolatile storage when a crash occurs.

A database has a state, which is a value for each of its elements.1 Intuitively, 
we regard certain states as consistent, and others as inconsistent. Consistent 
states satisfy all constraints of the database schema, such as key constraints 
and constraints on values. However, consistent states must also satisfy implicit 
constraints that are in the mind of the database designer. The implicit con
straints may be maintained by triggers that are part of the database schema, 
but they might also be maintained only by policy statements concerning the 
database, or warnings associated with the user interface through which updates 
are made.

A fundamental assumption about transactions is:

• The Correctness Principle: If a transaction executes in the absence of any 
other transactions or system errors, and it starts with the database in a 
consistent state, then the database is also in a consistent state when the 
transaction ends.

There is a converse to the correctness principle that forms the motivation 
for both the logging techniques discussed in this chapter and the concurrency 
control mechanisms discussed in Chapter 18. This converse involves two points:

1. A transaction is atomic-, that is, it must be executed as a whole or not 
at all. If only part of a transaction executes, then the resulting database 
state may not be consistent.

2. Transactions that execute simultaneously are likely to lead to an incon
sistent state unless we take steps to control their interactions, as we shall 
in Chapter 18.

1 We shou ld  n o t confuse th e  d a tab ase  s ta te  w ith  th e  s ta te  o f a  tran sac tio n ; th e  la t te r  is 
values for th e  tra n sa c tio n ’s local variables, no t d a tab ase  elem ents.
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Is the Correctness Principle Believable?

Given that a database transaction could be an ad-hoc modification com
mand issued at a terminal, perhaps by someone who doesn’t understand 
the implicit constraints in the mind of the database designer, is it plausible 
to assume all transactions take the database from a consistent state to an
other consistent state? Explicit constraints are enforced by the database, 
so any transaction that violates them will be rejected by the system and 
not change the database at all. As for implicit constraints, one cannot 
characterize them exactly under any circumstances. Our position, justi
fying the correctness principle, is that if someone is given authority to 
modify the database, then they also have the authority to judge what the 
implicit constraints are.

17.1.4 The Prim itive Operations of Transactions
Let us now consider in detail how transactions interact with the database. There 
are three address spaces that interact in important ways:

1. The space of disk blocks holding the database elements.

2. The virtual or main memory address space that is managed by the buffer 
manager.

3. The local address space of the transaction.

For a transaction to read a database element, that element must first be 
brought to a main-memory buffer or buffers, if it is not already there. Then, 
the contents of the buffer(s) can be read by the transaction into its own address 
space. Writing a new value for a database element by a transaction follows the 
reverse route. The new value is first created by the transaction in its own space. 
Then, this value is copied to the appropriate buffer(s).

The buffer may or may not be copied to disk immediately; that decision is 
the responsibility of the buffer manager in general. As we shall soon see, one of 
the principal tools for assuring resilience is forcing the buffer manager to write 
the block in a buffer back to disk at appropriate times. However, in order to 
reduce the number of disk I/O ’s, database systems can and will allow a change 
to exist only in volatile main-memory storage, at least for certain periods of 
time and under the proper set of conditions.

In order to study the details of logging algorithms and other transaction- 
management algorithms, we need a notation that describes all the operations 
that move data between address spaces. The primitives we shall use are:

1. INPUT(X): Copy the disk block containing database element X  to a mem
ory buffer.
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Buffers in Query Processing and in Transactions

If you got used to the analysis of buffer utilization in the chapters on 
query processing, you may notice a change in viewpoint here. In Chapters 
15 and 16 we were interested in buffers principally as they were used 
to compute temporary relations during the evaluation of a query. That 
is one important use of buffers, but there is never a need to preserve 
a temporary value, so these buffers do not generally have their values 
logged. On the other hand, those buffers that hold data retrieved from 
the database do need to have those values preserved, especially when the 
transaction updates them.

2. READ(X,t): Copy the database element X  to the transaction’s local vari
able t. More precisely, if the block containing database element X  is not 
in a memory buffer then first execute INPUT (X). Next, assign the value of 
X  to local variable t.

3. WRITE(X.t): Copy the value of local variable t to database element X  in 
a memory buffer. More precisely, if the block containing database element 
X  is not in a memory buffer then execute INPUT(X). Next, copy the value 
of t  to X  in the buffer.

4. OUTPUT (X): Copy the block containing X  from its buffer to disk.

The above operations make sense as long as database elements reside within 
a single disk block, and therefore within a single buffer. If a database element 
occupies several blocks, we shall imagine that each block-sized portion of the 
element is an element by itself. The logging mechanism to be used will assure 
that the transaction cannot complete without the write of X  being atomic; i.e., 
either all blocks of X  are written to disk, or none are. Thus, we shall assume 
for the entire discussion of logging that

•  A database element is no larger than a single block.

Different DBMS components issue the various commands we just intro
duced. READ and WRITE are issued by transactions. INPUT and OUTPUT are 
normally issued by the buffer manager. OUTPUT can also be initiated by the log 
manager under certain conditions, as we shall see.

E xam ple 17.1: To see how the above primitive operations relate to what a 
transaction might do, let us consider a database that has two elements, A  and 
B, with the constraint that they must be equal in all consistent states.2

Transaction T  consists logically of the following two steps:

2 O ne reasonab ly  m igh t ask  w hy we shou ld  b o th e r  to  have tw o different e lem ents th a t  are 
co nstra ined  to  be  equal, ra th e r  th a n  m ain ta in ing  only one elem ent. However, th is  sim ple



850 CHAPTER 17. COPING WITH SYSTEM  FAILURES

A := A*2;
B := B*2;

If T  starts in a consistent state (i.e., A = B) and completes its activities without 
interference from another transaction or system error, then the final state must 
also be consistent. That is, T  doubles two equal elements to get new, equal 
elements.

Execution of T  involves reading A  and B  from disk, performing arithmetic 
in the local address space of T, and writing the new values of A  and B  to their 
buffers. The relevant steps of T  are thus:

READ(A,t); t  := t*2 ; WRITE(A.t); READ(B.t); t  := t* 2 ; WRITE(B,t);

In addition, the buffer manager will eventually execute the OUTPUT steps to 
write these buffers back to disk. Figure 17.2 shows the primitive steps of T, 
followed by the two OUTPUT commands from the buffer manager. We assume 
that initially A — B  — 8 . The values of the memory and disk copies of A  and 
B  and the local variable t in the address space of transaction T  are indicated 
for each step.

Action t Mem A Mem B Disk A Disk B
READ(A,t) 8 8 8 8
t  := t *2 16 8 8 8
WRITE(A ,t) 16 16 8 8
READ(B,t) 8 16 8 8 8
t  := t *2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

Figure 17.2: Steps of a transaction and its effect on memory and disk

At the first step, T  reads A, which generates an INPUT (A) command for the 
buffer manager if A’s block is not already in a buffer. The value of A  is also 
copied by the READ command into local variable t of T ’s address space. The 
second step doubles t ; it has no affect on A, either in a buffer or on disk. The 
third step writes t into A  of the buffer; it does not affect A  on disk. The next 
three steps do the same for B, and the last two steps copy A  and B  to disk.

Observe that as long as all these steps execute, consistency of the database 
is preserved. If a system error occurs before OUTPUT (A) is executed, then there 
is no effect to the database stored on disk; it is as if T  never ran, and consistency 
is preserved. However, if there is a system error after OUTPUT (A) but before

num erical co n s tra in t c ap tu re s  th e  sp irit o f m an y  m ore rea listic  co n s tra in ts , e.g ., th e  num ber 
of sea ts  sold on a  flight m u st n o t exceed th e  n u m b er o f sea ts  on th e  p lane  by  m ore th a n  10%, 
o r  th e  sum  of th e  loan  balances a t  a  ban k  m u st equal th e  to ta l  d eb t o f th e  bank.
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OUTPUT (B), then the database is left in an inconsistent state. We cannot prevent 
this situation from ever occurring, but we can arrange that when it does occur, 
the problem can be repaired — either both A  and B  will be reset to 8 , or both 
will be advanced to 16. □

17.1.5 Exercises for Section 17.1
E xercise 17.1.1: Suppose that the consistency constraint on the database is
0 < A < B. Tell whether each of the following transactions preserves consis
tency.

a) A := A+B; B := A+B

b) B := A+B; A := A+B

c) A := B+l; B := A+l

E xercise 17.1.2: For each of the transactions of Exercise 17.1.1, add the 
read- and write-actions to the computation and show the effect of the steps on 
main memory and disk. Assume that initially A — 5 and B  =  10. Also, tell 
whether it is possible, with the appropriate order of OUTPUT actions, to assure 
that consistency is preserved even if there is a crash while the transaction is 
executing.

17.2 Undo Logging
A log is a file of log records, each telling something about what some transaction 
has done. If log records appear in nonvolatile storage, we can use them to 
restore the database to a consistent state after a system crash. Our first style 
of logging — undo logging — makes repairs to the database state by undoing 
the effects of transactions that may not have completed before the crash.

Additionally, in this section we introduce the basic idea of log records, in
cluding the commit (successful completion of a transaction) action and its effect 
on the database state and log. We shall also consider how the log itself is cre
ated in main memory and copied to disk by a “flush-log” operation. Finally, 
we examine the undo log specifically, and learn how to use it in recovery from 
a crash. In order to avoid having to examine the entire log during recovery, we 
introduce the idea of “checkpointing,” which allows old portions of the log to 
be thrown away.

17.2.1 Log Records
Imagine the log as a file opened for appending only. As transactions execute, 
the log manager has the job of recording in the log each important event. One 
block of the log at a time is filled with log records, each representing one of 
these events. Log blocks are initially created in main memory and are allocated
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Why Might a Transaction Abort?

One might wonder why a transaction would abort rather than commit. 
There are actually several reasons. The simplest is when there is some 
error condition in the code of the transaction itself, e.g., an attempted 
division by zero. The DBMS may also abort a transaction for one of 
several reasons. For instance, a transaction may be involved in a deadlock, 
where it and one or more other transactions each hold some resource that 
the other needs. Then, one or more transactions must be forced by the 
system to abort (see Section 19.2).

by the buffer manager like any other blocks that the DBMS needs. The log 
blocks are written to nonvolatile storage on disk as soon as is feasible; we shall 
have more to say about this matter in Section 17.2.2.

There are several forms of log record that are used with each of the types 
of logging we discuss in this chapter. These are:

1. <START T>: This record indicates that transaction T  has begun.

2. CCOMMIT T>: Transaction T  has completed successfully and will make no 
more changes to database elements. Any changes to the database made by 
T should appear on disk. However, because we cannot control when the 
buffer manager chooses to copy blocks from memory to disk, we cannot 
in general be sure that the changes are already on disk when we see the 
<C0MMIT T>  log record. If we insist that the changes already be on disk, 
this requirement must be enforced by the log manager (as is the case for 
undo logging).

3. < ABORT T>: Transaction T  could not complete successfully. If transac
tion T  aborts, no changes it made can have been copied to disk, and it is 
the job of the transaction manager to make sure that such changes never 
appear on disk, or that their effect on disk is cancelled if they do. We 
shall discuss the matter of repairing the effect of aborted transactions in 
Section 19.1.1.

For an undo log, the only other kind of log record we need is an update 
record, which is a triple < T ,X ,v> . The meaning of this record is: transaction 
T  has changed database element X ,  and its former value was v. The change 
reflected by an update record normally occurs in memory, not disk; i.e., the log 
record is a response to a WRITE action into memory, not an OUTPUT action to 
disk. Notice also that an undo log does not record the new value of a database 
element, only the old value. As we shall see, should recovery be necessary in 
a system using undo logging, the only thing the recovery manager will do is 
cancel the possible effect of a transaction on disk by restoring the old value.
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Preview of Other Logging Methods

In “redo logging” (Section 17.3), on recovery we redo any transaction that 
has a COMMIT record, and we ignore all others. Rules for redo logging assure 
that we may ignore transactions whose COMMIT records never reached the 
log on disk. “Undo/redo logging” (Section 17.4) will, on recovery, undo 
any transaction that has not committed, and will redo those transactions 
that have committed. Again, log-management and buffering rules will 
assure that these steps successfully repair any damage to the database.

17.2.2 The Undo-Logging Rules
An undo log is sufficient to allow recovery from a system failure, provided 
transactions and the buffer manager obey two rules:

U\: If transaction T  modifies database element X ,  then the log record of the 
form < T ,X ,v>  must be written to disk before the new value of X  is 
written to disk.

C/2: If a transaction commits, then its COMMIT log record must be written to 
disk only after all database elements changed by the transaction have 
been written to disk, but as soon thereafter as possible.

To summarize rules Ui and U2, material associated with one transaction must 
be written to disk in the following order:

a) The log records indicating changed database elements.

b) The changed database elements themselves.

c) The COMMIT log record.

However, the order of (a) and (b) applies to each database element individually, 
not to the group of update records for a transaction as a whole.

In order to force log records to disk, the log manager needs a fiush-log 
command that tells the buffer manager to copy to disk any log blocks that have 
not previously been copied to disk or that have been changed since they were 
last copied. In sequences of actions, we shall show FLUSH LOG explicitly. The 
transaction manager also needs to have a way to tell the buffer manager to 
perform an OUTPUT action on a database element. We shall continue to show 
the OUTPUT action in sequences of transaction steps.

E xam ple 17.2: Let us reconsider the transaction of Example 17.1 in the light 
of undo logging. Figure 17.3 expands on Fig. 17.2 to show the log entries and 
fiush-log actions that have to take place along with the actions of the transaction
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Step Action t M-A M-J5 D -A D-B Log
1) <START T>
2) READ(A,t) 8 8 8 8
3) t  := t*2 16 8 8 8
4) WRITE(A,t) 16 16 8 8 < T,A , 8>
5) READ(B,t) 8 16 8 8 8
6) t  := t*2 16 16 8 8 8
7) WRITE(B,t) 16 16 16 8 8 <T, B, 8>
8) FLUSH LOG
9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16
11) CCOMMIT T>
12) FLUSH LOG

Figure 17.3: Actions and their log entries

T. Note we have shortened the headers to M-A for “the copy of A  in a memory 
buffer” or D-B  for “the copy of B  on disk,” and so on.

In line (1) of Fig. 17.3, transaction T  begins. The first thing that happens is 
that the <START T>  record is written to the log. Line (2) represents the read 
of A  by T. Line (3) is the local change to t, which affects neither the database 
stored on disk nor any portion of the database in a memory buffer. Neither 
lines (2) nor (3) require any log entry, since they have no affect on the database.

Line (4) is the write of the new value of A  to the buffer. This modification 
to A  is reflected by the log entry <T, A, 8> which says that A  was changed by 
T  and its former value was 8 . Note that the new value, 16, is not mentioned in 
an undo log.

Lines (5) through (7) perform the same three steps with B  instead of A. 
At this point, T has completed and must commit. The changed A  and B  must 
migrate to disk, but in order to follow the two rules for undo logging, there is 
a fixed sequence of events that must happen.

First, A  and B  cannot be copied to disk until the log records for the changes 
are on disk. Thus, at step (8) the log is flushed, assuring that these records 
appear on disk. Then, steps (9) and (10) copy A  and B  to disk. The transaction 
manager requests these steps from the buffer manager in order to commit T.

Now, it is possible to commit T, and the <C0MMIT T>  record is written to 
the log, which is step (11). Finally, we must flush the log again at step (12) 
to make sure that the <C0MMIT T>  record of the log appears on disk. Notice 
that without writing this record to disk, we could have a situation where a 
transaction has committed, but for a long time a review of the log does not 
tell us that it has committed. That situation could cause strange behavior if 
there were a crash, because, as we shall see in Section 17.2.3, a transaction that 
appeared to the user to have completed long ago would then be undone and 
effectively aborted. □
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Background Activity Affects the Log and Buffers

As we look at a sequence of actions and log entries like Fig. 17.3, it is tempt
ing to imagine that these actions occur in isolation. However, the DBMS 
may be processing many transactions simultaneously. Thus, the four log 
records for transaction T  may be interleaved on the log with records for 
other transactions. Moreover, if one of these transactions flushes the log, 
then the log records from T  may appear on disk earlier than is implied by 
the flush-log actions of Fig. 17.3. There is no harm if log records reflecting 
a database modification appear earlier than necessary. The essential pol
icy for undo logging is that we don’t  write the <C0MMIT T>  record until 
the OUTPUT actions for T  are completed.

A trickier situation occurs if two database elements A  and B  share a 
block. Then, writing one of them to disk writes the other as well. In the 
worst case, we can violate rule Ui by writing one of these elements pre
maturely. It may be necessary to adopt additional constraints on transac
tions in order to make undo logging work. For instance, we might use a 
locking scheme where database elements are disk blocks, as described in 
Section 18.3, to prevent two transactions from accessing the same block 
at the same time. This and other problems that appear when database 
elements are fractions of a block motivate our suggestion that blocks be 
the database elements.

17.2.3 Recovery Using Undo Logging

Suppose now that a system failure occurs. It is possible that certain database 
changes made by a given transaction were written to disk, while other changes 
made by the same transaction never reached the disk. If so, the transaction was 
not executed atomically, and there may be an inconsistent database state. The 
recovery manager must use the log to restore the database to some consistent 
state.

In this section we consider only the simplest form of recovery manager, one 
that looks at the entire log, no matter how long, and makes database changes 
as a result of its examination. In Section 17.2.4 we consider a more sensible 
approach, where the log is periodically “checkpointed,” to limit the distance 
back in history that the recovery manager must go.

The first task of the recovery manager is to divide the transactions into 
committed and uncommitted transactions. If there is a log record <C0MMIT T>, 
then by undo rule U2  all changes made by transaction T  were previously written 
to disk. Thus, T  by itself could not have left the database in an inconsistent 
state when the system failure occurred.

However, suppose that we find a <START T>  record on the log but no 
<C0MMIT T>  record. Then there could have been some changes to the database
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made by T that were written to disk before the crash, while other changes by T  
either were not made, or were made in the main-memory buffers but not copied 
to disk. In this case, T  is an incomplete transaction and must be undone. That 
is, whatever changes T  made must be reset to their previous value. Fortunately, 
rule Ui assures us that if T changed X  on disk before the crash, then there will 
be a < T ,X ,v>  record on the log, and that record will have been copied to 
disk before the crash. Thus, during the recovery, we must write the value v 
for database element X .  Note that this rule begs the question whether X  had 
value v in the database anyway; we don’t even bother to check.

Since there may be several uncommitted transactions in the log, and there 
may even be several uncommitted transactions that modified X ,  we have to 
be systematic about the order in which we restore values. Thus, the recovery 
manager must scan the log from the end (i.e., from the most recently written 
record to the earliest written). As it travels, it remembers all those transactions 
T  for which it has seen a <C0MMIT T>  record or an <AB0RT T>  record. Also 
as it travels backward, if it sees a record < T ,X ,v> , then:

1. If T  is a transaction whose COMMIT record has been seen, then do nothing. 
T  is committed and must not be undone.

2. Otherwise, T  is an incomplete transaction, or an aborted transaction. 
The recovery manager must change the value of X  in the database to v, 
in case X  had been altered just before the crash.

After making these changes, the recovery manager must write a log record 
<AB0RT T>  for each incomplete transaction T  that was not previously aborted, 
and then flush the log. Now, normal operation of the database may resume, 
and new transactions may begin executing.

E xam ple 17.3: Let us consider the sequence of actions from Fig. 17.3 and 
Example 17.2. There are several different times that the system crash could 
have occurred; let us consider each significantly different one.

1. The crash occurs after step (12). Then the <C0MMIT T>  record reached 
disk before the crash. When we recover, we do not undo the results of T, 
and all log records concerning T  are ignored by the recovery manager.

2. The crash occurs between steps (11) and (12). It is possible that the 
log record containing the COMMIT got flushed to disk; for instance, the 
buffer manager may have needed the buffer containing the end of the log 
for another transaction, or some other transaction may have asked for 
a log flush. If so, then the recovery is the same as in case (1) as far 
as T  is concerned. However, if the COMMIT record never reached disk, 
then the recovery manager considers T  incomplete. When it scans the log 
backward, it comes first to the record < T,B , 8>. It therefore stores 8 as 
the value of B  on disk. It then comes to the record <T, A, 8> and makes 
A  have value 8 on disk. Finally, the record < ABORT T>  is written to the 
log, and the log is flushed.
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Crashes During Recovery

Suppose the system again crashes while we axe recovering from a previous 
crash. Because of the way undo-log records axe designed, giving the old 
value rather than, say, the change in the value of a database element, the 
recovery steps are idempotent, that is, repeating them many times has 
exactly the same effect as performing them once. We already observed 
that if we find a record < T ,X ,v> , it does not matter whether the value 
of X  is already v — we may write v for X  regardless. Similarly, if we 
repeat the recovery process, it does not matter whether the first recovery 
attempt restored some old values; we simply restore them again. The same 
reasoning holds for the other logging methods we discuss in this chapter. 
Since the recovery operations are idempotent, we can recover a second 
time without worrying about changes made the first time.

3. The crash occurs between steps (10) and (11). Now, the COMMIT record 
surely was not written, so T  is incomplete and is undone as in case (2).

4. The crash occurs between steps (8) and (10). Again, T  is undone. In this 
case the change to A  and/or B  may not have reached disk. Nevertheless, 
the proper value, 8 , is restored for each of these database elements.

5. The crash occurs prior to step (8). Now, it is not certain whether any of 
the log records concerning T  have reached disk. However, we know by rule 
Ui that if the change to A  and/or B  reached disk, then the corresponding 
log record reached disk. Therefore if there were changes to A  and/or 
B  made on disk by T, then the corresponding log record will cause the 
recovery manager to undo those changes.

17.2.4 Checkpointing
As we observed, recovery requires that the entire log be examined, in principle. 
When logging follows the undo style, once a transaction has its COMMIT log 
record written to disk, the log records of that transaction are no longer needed 
during recovery. We might imagine that we could delete the log prior to a 
COMMIT, but sometimes we cannot. The reason is that often many transactions 
execute at once. If we truncated the log after one transaction committed, log 
records pertaining to some other active transaction T  might be lost and could 
not be used to undo T  if recovery were necessary.

The simplest way to untangle potential problems is to checkpoint the log 
periodically. In a simple checkpoint, we:
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1. Stop accepting new transactions.

2. Wait until all currently active transactions commit or abort and have 
written a COMMIT or ABORT record on the log.

3. Flush the log to disk.

4. Write a log record <CKPT>, and flush the log again.

5. Resume accepting transactions.

Any transaction that executed prior to the checkpoint will have finished, 
and by rule U2  its changes will have reached the disk. Thus, there will be no 
need to undo any of these transactions during recovery. During a recovery, 
we scan the log backwards from the end, identifying incomplete transactions 
as in Section 17.2.3. However, when we find a <CKPT> record, we know that 
we have seen all the incomplete transactions. Since no transactions may begin 
until the checkpoint ends, we must have seen every log record pertaining to the 
incomplete transactions already. Thus, there is no need to scan prior to the 
<CKPT>, and in fact the log before that point can be deleted or overwritten 
safely.

E xam ple  17.4: Suppose the log begins:

< START Ti>
< Ti,A ,5>
<START T2>
<T2 ,B ,10>

At this time, we decide to do a checkpoint. Since Ti and T2  are the active 
(incomplete) transactions, we shall have to wait until they complete before 
writing the <CKPT> record on the log.

A possible extension of the log is shown in Fig. 17.4. Suppose a crash 
occurs at this point. Scanning the log from the end, we identify T3 as the only 
incomplete transaction, and restore E  and F  to their former values 25 and 30, 
respectively. When we reach the <CKPT> record, we know there is no need to 
examine prior log records and the restoration of the database state is complete.
□

17.2.5 Nonquiescent Checkpointing
A problem with the checkpointing technique described in Section 17.2.4 is that 
effectively we must shut down the system while the checkpoint is being made. 
Since the active transactions may take a long time to commit or abort, the 
system may appear to users to be stalled. Thus, a more complex technique 
known as nonquiescent checkpointing, which allows new transactions to enter the 
system during the checkpoint, is usually preferred. The steps in a nonquiescent 
checkpoint are:
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< START Ti>
< Ti,A ,5>
< START T2>
<T2 ,B ,  10>
< t 2, c , i5>
<Ti,D , 20>
<COMMITTi>
<COMMIT r 2>
<CKPT>
<START T3>
<T3, E, 25>
<T3,F , 30>

Figure 17.4: An undo log

1. Write a log record <START CKPT (7 \ , . . .  , T*)> and flush the log. Here, 
T i , . . .  ,7*. are the names or identifiers for all the active transactions (i.e., 
transactions that have not yet committed and written their changes to 
disk).

2. Wait until all of T i, . . .  , T* commit or abort, but do not prohibit other 
transactions from starting.

3. When all of T i , . . .  , T* have completed, write a log record <END CKPT> 
and flush the log.

With a log of this type, we can recover from a system crash as follows. As 
usual, we scan the log from the end, finding all incomplete transactions as we go, 
and restoring old values for database elements changed by these transactions. 
There are two cases, depending on whether, scanning backwards, we first meet 
an <END CKPT> record or a < START CKPT (Ti, . . .  , Tk)> record.

• If we first meet an <END CKPT> record, then we know that all incomplete 
transactions began after the previous <START CKPT (T i,. . .  ,T*)> record. 
We may thus scan backwards as far as the next START CKPT, and then 
stop; previous log is useless and may as well have been discarded.

• If we first meet a record < START CKPT (T i,. . .  , T^)>, then the crash oc
curred during the checkpoint. However, the only incomplete transactions 
are those we met scanning backwards before we reached the START CKPT 
and those of T i , . . .  , T* that did not complete before the crash. Thus, we 
need scan no further back than the start of the earliest of these incom
plete transactions. The previous START CKPT record is certainly prior to 
any of these transaction starts, but often we shall find the starts of the
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Finding the Last Log Record

It is common to recycle blocks of the log file on disk, since checkpoints 
allow us to drop old portions of the log. However, if we overwrite old log 
records, then we need to keep a serial number, which may only increase, 
as suggested by:

4 5 6 7 8
9 10 11

Then, we can find the record whose serial number is greater than that of 
the next record; the latter record will be the current end of the log, and 
the entire log is found by ordering the current records by their present 
serial numbers.

In practice, a large log may be composed of many files, with a “top” 
file whose records indicate the files that comprise the log. Then, to recover, 
we find the last record of the top file, go to the file indicated, and find the 
last record there.

incomplete transactions long before we reach the previous checkpoint.3 
Moreover, if we use pointers to chain together the log records that belong 
to the same transaction, then we need not search the whole log for records 
belonging to active transactions; we just follow their chains back through 
the log.

As a general rule, once an <END CKPT> record has been written to disk, we can 
delete the log prior to the previous START CKPT record.

E xam ple  17.5: Suppose that, as in Example 17.4, the log begins:

< START Tx>
< Ti,A , 5>
<STARTT2>
< t 2 ,b ,  10>

Now, we decide to do a nonquiescent checkpoint. Since Ti and T2  are the active 
(incomplete) transactions at this time, we write a log record

< START CKPT (T1 :T2)>

Suppose that while waiting for T\ and T2  to complete, another transaction, T3, 
initiates. A possible continuation of the log is shown in Fig. 17.5.

Suppose that at this point there is a system crash. Examining the log from 
the end, we find that T3 is an incomplete transaction and must be undone.

3N otice, how ever, th a t  because th e  checkpoint is nonquiescen t, one o f th e  incom plete  
tra n sa c tio n s  could have begun  betw een th e  s ta r t  an d  end  of th e  p rev ious checkpoint.
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< START Ti>
< T U A ,5 >
< START T2>
< t 2,b , io >
<START CKPT (TU T2)>  
<T2,C,  15>
< START Ta>
< T i , D ,  20> 
<CDMMITTi>
<Ta,E,  25> 
< com m itt2>
<END CKPT>
<T3,F, 30>

Figure 17.5: An undo log using nonquiescent checkpointing

The final log record tells us to restore database element F  to the value 30. 
When we find the <END CKPT> record, we know that all incomplete transactions 
began after the previous START CKPT. Scanning further back, we find the record 
<T3,E ,2 5> ,  which tells us to restore E  to value 25. Between that record, and 
the START CKPT there are no other transactions that started but did not commit, 
so no further changes to the database are made.

<STARTTi>
<T i ,A ,  5>
< START T2>
<T2,B ,  10>
< START CKPT (TU T2)>
<T2,C,15>
< START T3>
< T i , £ > , 2 0 >
<C0MMIT T\>
<T3,E,  25>

Figure 17.6: Undo log with a system crash during checkpointing

Now suppose the crash occurs during the checkpoint, and the end of the 
log after the crash is as shown in Fig. 17.6. Scanning backwards, we identify 
T3 and then T2 as incomplete transactions and undo changes they have made. 
When we find the <START CKPT (Ti,T2)> record, we know that the only other 
possible incomplete transaction is Ti. However, we have already scanned the 
<C0MMIT Ti > record, so we know that Ti is not incomplete. Also, we have 
already seen the <START T3>  record. Thus, we need only to continue backwards 
until we meet the START record for T2, restoring database element B  to value
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10 as we go. □

17.2.6 Exercises for Section 17.2
Exercise 17.2.1: Show the undo-log records for each of the transactions (call 
each T) of Exercise 17.1.1, assuming that initially A  =  5 and B  =  10.

Exercise 17.2.2: For each of the sequences of log records representing the 
actions of one transaction T, tell all the sequences of events that are legal 
according to the rules of undo logging, where the events of interest are the 
writing to disk of the blocks containing database elements, and the blocks of 
the log containing the update and commit records. You may assume that log 
records are written to disk in the order shown; i.e., it is not possible to write 
one log record to disk while a previous record is not written to disk.

a) < START T>; < T ,A , 10>; <T ,B ,20> ; <C0MMIT T>;

b) < START 2 > ; < T,A , 10>; < T ,B , 20>; <T, C, 30XC0MMIT T>;

Exercise 17.2.3: The pattern introduced in Exercise 17.2.2 can be extended 
to a transaction that writes new values for n  database elements. How many 
legal sequences of events are there for such a transaction, if the undo-logging 
rules are obeyed?

Exercise 17.2.4: The following is a sequence of undo-log records written by 
two transactions T and U : < START T>; <T, A, 10>; < START U>; <U, B, 20>; 
<T, C, 30>; <U, D, 40>; <C0MMIT U>; < T ,E , 50>; <C0MMIT T>. Describe 
the action of the recovery manager, including changes to both disk and the log, 
if there is a crash and the last log record to appear on disk is:

(a) < START U> (b) <C0MMIT U> (c) < T ,E , 50> (d) <C0MMIT T>.

E xercise 17.2.5: For each of the situations described in Exercise 17.2.4, what 
values written by T  and U must appear on disk? Which values might appear 
on disk?

E xercise 17.2.6: Suppose that the transaction U in Exercise 17.2.4 is changed 
so that the record <17, D ,40> becomes <U, A, 40>. What is the effect on the 
disk value of A  if there is a crash at some point during the sequence of events? 
What does this example say about the ability of logging by itself to preserve 
atomicity of transactions?

Exercise 17.2.7: Consider the following sequence of log records: <START S>; 
<S,A ,60>; <C0MMIT S>; <START T>; < T ,A , 10>; < START U>; <U,B, 20>; 
<T,C, 30>; <START V >; <U,D, 40>; <V,F,70>; <C0MMIT J7>; < T ,E , 50>; 
<C0MMIT T>; < V,B , 80>; <C0MMIT V>. Suppose that we begin a nonquies
cent checkpoint immediately after one of the following log records has been 
written (in memory):
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(a) <S, j4, 60> (b) <T, A, 10> (c) <U,B,20>
(d) <U,D, 40> (e) < T,E , 50>

For each, tell:

i. When the <END CKPT> record is written, and

ii. For each possible point at which a crash could occur, how far back in the 
log we must look to find all possible incomplete transactions.

17.3 Redo Logging
Undo logging has a potential problem that we cannot commit a transaction 
without first writing all its changed data to disk. Sometimes, we can save disk 
I /O ’s if we let changes to the database reside only in main memory for a while. 
As long as there is a log to fix things up in the event of a crash, it is safe to do 
so.

The requirement for immediate backup of database elements to disk can 
be avoided if we use a logging mechanism called redo logging. The principal 
differences between redo and undo logging are:

1. While undo logging cancels the effect of incomplete transactions and ig
nores committed ones during recovery, redo logging ignores incomplete 
transactions and repeats the changes made by committed transactions.

2. While undo logging requires us to write changed database elements to 
disk before the COMMIT log record reaches disk, redo logging requires that 
the COMMIT record appear on disk before any changed values reach disk.

3. While the old values of changed database elements are exactly what we 
need to recover when the undo rules U\ and U2  are followed, to recover 
using redo logging, we need the new values instead.

17.3.1 The Redo-Logging Rule
In redo logging the meaning of a log record <T, X , v> is “transaction T  wrote 
new value v for database element X .” There is no indication of the old value 
of X  in this record. Every time a transaction T  modifies a database element 
X ,  a record of the form < T ,X ,v>  must be written to the log.

For redo logging, the order in which data and log entries reach disk can be 
described by a single “redo rule,” called the write-ahead logging rule.

R\: Before modifying any database element X  on disk, it is necessary that 
all log records pertaining to this modification of X ,  including both the 
update record < T ,X ,v>  and the <C0MMIT T>  record, must appear on 
disk.
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The COMMIT record for a transaction can only be written to the log when the 
transaction completes, so the commit record must follow all the update log 
records. Thus, when redo logging is in use, the order in which material associ
ated with one transaction gets written to disk is:

1. The log records indicating changed database elements.

2. The COMMIT log record.

3. The changed database elements themselves.

E xam ple  17.6: Let us consider the same transaction T  as in Example 17.2. 
Figure 17.7 shows a possible sequence of events for this transaction.

Step Action t M-A M-B D -A D-B Log
1) < START T>
2) READ(A,t) 8 8 8 8
3) t  := t*2 16 8 8 8
4) WRITE(A,t) 16 16 8 8 <T, A, 16>
5) READ(B,t) 8 16 8 8 8
6) t  := t*2 16 16 8 8 8
7) WRITE(B,t) 16 16 16 8 8 < T ,B , 16>
8) <C0MMIT T>
9) FLUSH LOG

10) OUTPUT (A) 16 16 16 16 8
11) OUTPUT(B) 16 16 16 16 16

Figure 17.7: Actions and their log entries using redo logging

The major differences between Figs. 17.7 and 17.3 are as follows. First, we 
note in lines (4) and (7) of Fig. 17.7 that the log records reflecting the changes 
have the new values of A  and B, rather than the old values. Second, we see 
that the <C0MMIT T>  record comes earlier, at step (8). Then, the log is flushed, 
so all log records involving the changes of transaction T  appear on disk. Only 
then can the new values of A  and B  be written to disk. We show these values 
written immediately, at steps (10) and (11), although in practice they might 
occur later. □

17.3.2 Recovery W ith Redo Logging
An important consequence of the redo rule R i is that unless the log has a 
<C0MMIT T>  record, we know that no changes to the database made by trans
action T  have been written to disk. Thus, incomplete transactions may be 
treated during recovery as if they had never occurred. However, the committed 
transactions present a problem, since we do not know which of their database 
changes have been written to disk. Fortunately, the redo log has exactly the
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Order of Redo Matters

Since several committed transactions may have written new values for the 
same database element X ,  we have required that during a redo recovery, 
we scan the log from earliest to latest. Thus, the final value of X  in the 
database will be the one written last, as it should be. Similarly, when 
describing undo recovery, we required that the log be scanned from latest 
to earliest. Thus, the final value of X  will be the value that it had before 
any of the incomplete transactions changed it.

However, if the DBMS enforces atomicity, then we would not expect 
to find, in an undo log, two uncommitted transactions, each of which had 
written the same database element. In contrast, with redo logging we 
focus on the committed transactions, as these need to be redone. It is 
quite normal for there to be two committed transactions, each of which 
changed the same database element at different times. Thus, order of redo 
is always important, while order of undo might not be if the right kind of 
concurrency control were in effect.

information we need: the new values, which we may write to disk regardless of 
whether they were already there. To recover, using a redo log, after a system 
crash, we do the following.

1. Identify the committed transactions.

2. Scan the log forward from the beginning. For each log record <T, X , v> 
encountered:

(a) If T  is not a committed transaction, do nothing.
(b) If T  is committed, write value v for database element X .

3. For each incomplete transaction T , write an <AB0RT T>  record to the log 
and flush the log.

E xam ple 17.7: Let us consider the log written in Fig. 17.7 and see how 
recovery would be performed if the crash occurred after different steps in that 
sequence of actions.

1. If the crash occurs any time after step (9), then the CCOMMIT T>  record 
has been flushed to disk. The recovery system identifies T  as a committed 
transaction. When scanning the log forward, the log records <T, A, 16> 
and <T, B , 16> cause the recovery manager to write values 16 for A  and 
B . Notice that if the crash occurred between steps (10) and (11), then 
the write of A  is redundant, but the write of B  had not occurred and



866 CHAPTER 17. COPING W ITH SYSTEM  FAILURES

changing B  to 16 is essential to restore the database state to consistency. 
If the crash occurred after step (11), then both writes are redundant but 
harmless.

2. If the crash occurs between steps (8) and (9), then although the record
< COMMIT T>  was written to the log, it may not have gotten to disk (de
pending on whether the log was flushed for some other reason). If it did 
get to disk, then the recovery proceeds as in case (1), and if it did not get 
to disk, then recovery is as in case (3), below.

3. If the crash occurs prior to step (8), then <C0MMIT T>  surely has not 
reached disk. Thus, T  is treated as an incomplete transaction. No changes 
to A  or B  on disk are made on behalf of T , and eventually an <AB0RT T>  
record is written to the log.

□

17.3.3 Checkpointing a Redo Log
Redo logs present a checkpointing problem that we do not see with undo logs. 
Since the database changes made by a committed transaction can be copied to 
disk much later than the time at which the transaction commits, we cannot limit 
our concern to transactions that are active at the time we decide to create a 
checkpoint. Regardless of whether the checkpoint is quiescent or nonquiescent, 
between the start and end of the checkpoint we must write to disk all database 
elements that have been modified by committed transactions. To do so requires 
that the buffer manager keep track of which buffers are dirty, that is, they 
have been changed but not written to disk. It is also required to know which 
transactions modified which buffers.

On the other hand, we can complete the checkpoint without waiting for 
the active transactions to commit or abort, since they are not allowed to write 
their pages to disk at that time anyway. The steps to perform a nonquiescent 
checkpoint of a redo log are as follows:

1. Write a log record <START CKPT (T i,.. .  ,Tk)>, where T \ , . . .  ,Tk are all 
the active (uncommitted) transactions, and flush the log.

2. Write to disk all database elements that were written to buffers but not yet 
to disk by transactions that had already committed when the START CKPT 
record was written to the log.

3. Write an <END CKPT> record to the log and flush the log.

E xam ple  17.8: Figure 17.8 shows a possible redo log, in the middle of which 
a checkpoint occurs. When we start the checkpoint, only T2  is active, but the 
value of A  written by T\ may have reached disk. If not, then we must copy A
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< START Ti>
<Tu A,b>
< START T2>
<COMMIT T\>
<T2 ,B , 10>
< START CKPT (T2)>
<T2 ,C, 15>
< START T3>
<T3 ,D , 20>
<END CKPT>
<C0MMITT2>
< committ3>

Figure 17.8: A redo log

to disk before the checkpoint can end. We suggest the end of the checkpoint 
occurring after several other events have occurred: T2 wrote a value for database 
element C , and a new transaction T3 started and wrote a value of D. After the 
end of the checkpoint, the only things that happen are that T2 and T3  commit.
□

17.3.4 Recovery W ith a Checkpointed Redo Log

As for an undo log, the insertion of records to mark the start and end of a 
checkpoint helps us limit our examination of the log when a recovery is neces
sary. Also as with undo logging, there are two cases, depending on whether the 
last checkpoint record is START or END.

Suppose first that the last checkpoint record on the log before a crash is 
<END CKPT>. Now, we know that every value written by a transaction that 
committed before the corresponding <START CKPT (T i,.. .  ,T*)> has had its 
changes written to disk, so we need not concern ourselves with recovering the 
effects of these transactions. However, any transaction that is either among the 
T is or that started after the beginning of the checkpoint can still have changes 
it made not yet migrated to disk, even though the transaction has committed. 
Thus, we must perform recovery as described in Section 17.3.2, but may limit 
our attention to the transactions that are either one of the TVs mentioned in the 
last < START CKPT (T i,. . .  ,T k)> or that started after that log record appeared 
in the log. In searching the log, we do not have to look further back than the 
earliest of the <START T*> records. Notice, however, that these START records 
could appear prior to any number of checkpoints. Linking backwards all the 
log records for a given transaction helps us to find the necessary records, as it 
did for undo logging.

Now, suppose the last checkpoint record on the log is
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<START CKPT (Tu  . . .  ,T k)>

We cannot be sure that committed transactions prior to the start of this check
point had their changes written to disk. Thus, we must search back to the 
previous <END CKPT> record, find its matching <START CKPT (S i , . . .  ,Sm)> 
record,4 and redo all those committed transactions that either started after that 
START CKPT or are among the Si’s.

E xam ple 17.9: Consider again the log of Fig. 17.8. If a crash occurs at the 
end, we search backwards, finding the <END CKPT> record. We thus know that 
it is sufficient to consider as candidates to redo all those transactions that either 
started after the <START CKPT (T2)> record was written or that are on its list 
(i.e., T-i). Thus, our candidate set is {T2, T3}. We find the records <C0MMIT T2> 
and CCOMMIT T3>, so we know that each must be redone. We search the log as 
far back as the <START T2> record, and find the update records <T2,B,  10>, 
<T2,C, 15>, and <T3, D, 20> for the committed transactions. Since we don’t 
know whether these changes reached disk, we rewrite the values 10, 15, and 20 
for B, C, and D, respectively.

Now, suppose the crash occurred between the records <C0MMIT T2> and 
<C0MMIT X3>. The recovery is similar to the above, except that T3  is no longer 
a committed transaction. Thus, its change <T3 ,D , 20> must not be redone, 
and no change is made to D during recovery, even though that log record is in 
the range of records that is examined. Also, we write an < ABORT T3> record 
to the log after recovery.

Finally, suppose that the crash occurs just prior to the <END CKPT> record. 
In principal, we must search back to the next-to-last START CKPT record and 
get its list of active transactions. However, in this case there is no previous 
checkpoint, and we must go all the way to the beginning of the log. Thus, we 
identify Ti as the only committed transaction, redo its action <Ti,A,  5>, and 
write records <AB0RT T2> and <AB0RT T3> to the log after recovery. □

Since transactions may be active during several checkpoints, it is convenient 
to include in the < START CKPT (Ti, . . .  ,Tk)> records not only the names of the 
active transactions, but pointers to the place on the log where they started. By 
doing so, we know when it is safe to delete early portions of the log. When we 
write an <END CKPT>, we know that we shall never need to look back further 
than the earliest of the < START Ti> records for the active transactions Tj. Thus, 
anything prior to that START record may be deleted.

17.3.5 Exercises for Section 17.3
E xercise 17.3.1: Show the redo-log records for each of the transactions (call 
each T) of Exercise 17.1.1, assuming that initially A — 5 and B = 10.

4T h ere  is a  sm all techn ica lity  th a t  th e re  could be  a  START CKPT record  th a t ,  because of a 
prev ious crash , has no m atch in g  <END CKPT> record . T herefore, we m u st look n o t ju s t  for 
th e  prev ious START CKPT, b u t first fo r an  <END CKPT> an d  th e n  th e  prev ious START CKPT.
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E xercise 17.3.2: Repeat Exercise 17.2.2 for redo logging.

E xercise 17.3.3: Repeat Exercise 17.2.4 for redo logging.

E xercise 17.3.4: Repeat Exercise 17.2.5 for redo logging.

E xercise 17.3.5: Using the data of Exercise 17.2.7, answer for each of the 
positions (a) through (e) of that exercise:

i. At what points could the <END CKPT> record be written, and

it. For each possible point at which a crash could occur, how far back in the 
log we must look to find all possible incomplete transactions. Consider 
both the case that the <END CKPT> record was or was not written prior 
to the crash.

17.4 U ndo/R edo Logging

We have seen two different approaches to logging, differentiated by whether the 
log holds old values or new values when a database element is updated. Each 
has certain drawbacks:

• Undo logging requires that data be written to disk immediately after a 
transaction finishes, perhaps increasing the number of disk I /O ’s that 
need to be performed.

• On the other hand, redo logging requires us to keep all modified blocks 
in buffers until the transaction commits and the log records have been 
flushed, perhaps increasing the average number of buffers required by 
transactions.

•  Both undo and redo logs may put contradictory requirements on how 
buffers are handled during a checkpoint, unless the database elements are 
complete blocks or sets of blocks. For instance, if a buffer contains one 
database element A that was changed by a committed transaction and 
another database element B  that was changed in the same buffer by a 
transaction that has not yet had its COMMIT record written to disk, then 
we are required to copy the buffer to disk because of A but also forbidden 
to do so, because rule Ri applies to B.

We shall now see a kind of logging called undo/redo logging, that provides 
increased flexibility to order actions, at the expense of maintaining more infor
mation on the log.
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17.4.1 The U ndo/R edo Rules
An undo/redo log has the same sorts of log records as the other kinds of log, 
with one exception. The update log record that we write when a database 
element changes value has four components. Record < T ,X ,v ,w >  means that 
transaction T  changed the value of database element X; its former value was 
v, and its new value is w. The constraints that an undo/redo logging system 
must follow are summarized by the following rule:

URi Before modifying any database element X  on disk because of changes 
made by some transaction T , it is necessary that the update record 
<T, X , v, w> appear on disk.

Rule URi for undo/redo logging thus enforces only the constraints enforced 
by both undo logging and redo logging. In particular, the <C0MMIT T>  log 
record can precede or follow any of the changes to the database elements on 
disk.

E xam ple  17.10 : Figure 17.9 is a variation in the order of the actions associ
ated with the transaction T that we last saw in Example 17.6. Notice that the 
log records for updates now have both the old and the new values of A  and B. 
In this sequence, we have written the <C0MMIT T>  log record in the middle of 
the output of database elements A  and B  to disk. Step (10) could also have 
appeared before step (8) or step (9), or after step (11). □

Step Action t M-A M-B D -A D-B Log
1) < START T>
2) READ(A,t) 8 8 8 8
3) t  := t *2 16 8 8 8
4) WRITE(A,t) 16 16 8 8 <T,A,&, 16>
5) READ(B,t) 8 16 8 8 8
6) t  := t *2 16 16 8 8 8
7) WRITE(B,t) 16 16 16 8 8 < T ,B , 8 ,16>
8) FLUSH LOG
9) OUTPUT(A) 16 16 16 16 8

10) CCOMMIT T>
11) OUTPUT(B) 16 16 16 16 16

Figure 17.9: A possible sequence of actions and their log entries using undo/redo 
logging

17.4.2 Recovery W ith U ndo/R edo Logging
When we need to recover using an undo/redo log, we have the information in 
the update records either to undo a transaction T  by restoring the old values of
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A Problem W ith Delayed Commitment

Like undo logging, a system using undo/redo logging can exhibit a behavior 
where a transaction appears to the user to have been completed (e.g., they 
booked an airline seat over the Web and disconnected), and yet because 
the <C0MMIT T>  record was not flushed to disk, a subsequent crash causes 
the transaction to be undone rather than redone. If this possibility is a 
problem, we suggest the use of an additional rule for undo/redo logging:

UR2 A <C0MMIT T>  record must be flushed to disk as soon as it appears 
in the log.

For instance, we would add FLUSH LOG after step (10) of Fig. 17.9.

the database elements that T  changed, or to redo T  by repeating the changes 
it has made. The undo/redo recovery policy is:

1. Redo all the committed transactions in the order earliest-first, and

2. Undo all the incomplete transactions in the order latest-first.

Notice that it is necessary for us to do both. Because of the flexibility allowed 
by undo/redo logging regarding the relative order in which COMMIT log records 
and the database changes themselves are copied to disk, we could have either 
a committed transaction with some or all of its changes not on disk, or an 
uncommitted transaction with some or all of its changes on disk.

E xam ple 17.11: Consider the sequence of actions in Fig. 17.9. Here are the 
different ways that recovery would take place on the assumption that there is 
a crash at various points in the sequence.

1. Suppose the crash occurs after the <C0MMIT T>  record is flushed to disk. 
Then T  is identified as a committed transaction. We write the value 16 
for both A  and B  to the disk. Because of the actual order of events, A  
already has the value 16, but B  may not, depending on whether the crash 
occurred before or after step (11).

2. If the crash occurs prior to the <C0MMIT T>  record reaching disk, then 
T  is treated as an incomplete transaction. The previous values of A  and 
B , 8 in each case, are written to disk. If the crash occurs between steps 
(9) and (10), then the value of A  was 16 on disk, and the restoration to 
value 8 is necessary. In this example, the value of B  does not need to 
be undone, and if the crash occurs before step (9) then neither does the 
value of A. However, in general we cannot be sure whether restoration is 
necessary, so we always perform the undo operation.

□
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Strange Behavior of Transactions During Recovery

You may have noticed that we did not specify whether undo’s or redo’s 
are done first during recovery using an undo/redo log. In fact, whether we 
perform the redo’s or undo’s first, we are open to the following situation: 
a transaction T  has committed and is redone. However, T  read a value 
X  written by some transaction U that has not committed and is undone. 
The problem is not whether we redo first, and leave X  with its value prior 
to U, or we undo first and leave X  with its value written by T. The 
situation makes no sense either way, because the final database state does 
not correspond to the effect of any sequence of atomic transactions.

In reality, the DBMS must do more than log changes. It must assure 
that such situations do not occur at all. In Chapter 18, there is a discussion 
about the means to isolate transactions like T  and U, so the interaction 
between them through database element X  cannot occur. In Section 19.1, 
we explicitly address means for preventing this situation where T  reads a 
“dirty” value of X  — one that has not been committed.

17.4.3 Checkpointing an U ndo/R edo Log
A nonquiescent checkpoint is somewhat simpler for undo/redo logging than for 
the other logging methods. We have only to do the following:

1. Write a <START CKPT (7 \, . . .  , Tk)> record to the log, where T i , . . .  , T* 
are all the active transactions, and flush the log.

2. Write to disk all the buffers that are dirty; i.e., they contain one or more 
changed database elements. Unlike redo logging, we flush all dirty buffers, 
not just those written by committed transactions.

3. Write an <END CKPT> record to the log, and flush the log.

Notice in connection with point (2) that, because of the flexibility undo/redo 
logging offers regarding when data reaches disk, we can tolerate the writing to 
disk of data written by incomplete transactions. Therefore we can tolerate 
database elements that are smaller than complete blocks and thus may share 
buffers. The only requirement we must make on transactions is:

• A transaction must not write any values (even to memory buffers) until 
it is certain not to abort.

As we shall see in Section 19.1, this constraint is almost certainly needed any
way, in order to avoid inconsistent interactions between transactions. Notice 
that under redo logging, the above condition is not sufficient, since even if 
the transaction that wrote B  is certain to commit, rule R i requires that the 
transaction’s COMMIT record be written to disk before B  is written to disk.



17.4. UNDO/REDO LOGGING 873

E xam ple 17.12: Figure 17.10 shows an undo/redo log analogous to the redo 
log of Fig. 17.8. We have changed only the update records, giving them an old 
value as well as a new value. For simplicity, we have assumed that in each case 
the old value is one less than the new value.

< START Ti>
<TU A,4,5>
<START T2>
<C0MMITTi>
<T2 ,B ,9 ,10>
< START CKPT (T2)>
< 72 ,(7 , 14, 15>
<START T3>
<T3 ,D , 19,20>
<END CKPT>
<C0MMIT T2>
<C0MMIT T3>

Figure 17.10: An undo/redo log

As in Example 17.8, T2 is identified as the only active transaction when the 
checkpoint begins. Since this log is an undo/redo log, it is possible that T2’s new 
23-value 10 has been written to disk, which was not possible under redo logging. 
However, it is irrelevant whether or not that disk write has occurred. During 
the checkpoint, we shall surely flush B  to disk if it is not already there, since 
we flush all dirty buffers. Likewise, we shall flush A, written by the committed 
transaction Ti, if it is not already on disk.

If the crash occurs at the end of this sequence of events, then T2 and T3  are 
identified as committed transactions. Transaction Ti is prior to the checkpoint. 
Since we find the <END CKPT> record on the log, T\ is correctly assumed to 
have both completed and had its changes written to disk. We therefore redo 
both T2 and T3, as in Example 17.8, and ignore Ti. However, when we redo a 
transaction such as T2, we do not need to look prior to the <START CKPT (T2)> 
record, even though T2 was active at that time, because we know that T2’s 
changes prior to the start of the checkpoint were flushed to disk during the 
checkpoint.

For another instance, suppose the crash occurs just before the <C0MMIT T3> 
record is written to disk. Then we identify T2 as committed but T3  as incom
plete. We redo T2 by setting C  to 15 on disk; it is not necessary to set B  to 
10 since we know that change reached disk before the <END CKPT>. However, 
unlike the situation with a redo log, we also undo T3; that is, we set D to 19 on 
disk. If T3 had been active at the start of the checkpoint, we would have had 
to look prior to the START-CKPT record to find if there were more actions by T3 
that may have reached disk and need to be undone. □
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17.4.4 Exercises for Section 17.4
E xercise 17.4.1: Show the undo/redo-log records for each of the transactions 
(call each T) of Exercise 17.1.1, assuming that initially A  — 5 and B  — 10.

E xercise 17.4 .2 : For each of the sequences of log records representing the 
actions of one transaction T, tell all the sequences of events that are legal 
according to the rules of undo/redo logging, where the events of interest are the 
writing to disk of the blocks containing database elements, and the blocks of 
the log containing the update and commit records. You may assume that log 
records are written to disk in the order shown; i.e., it is not possible to write 
one log record to disk while a previous record is not written to disk.

a) <START T>; <T ,A ,10,11>; <T, B, 20,21>; <C0MMIT T>;

b) < START T>; < T ,A , 10,21>; <T, B, 20,21>; <T,C , 30,31>;
<C0MMIT T>;

E xercise 17.4 .3 : The following is a sequence of undo/redo-log records writ
ten by two transactions T  and U: <START T>; <T, A, 10 ,11>; <START U>; 
<U, B , 20,21 >; <T, (7,30,31>; <U,D, 40,41>; <C0MMIT U>; < T ,E , 50,51>; 
<C0MMIT T>. Describe the action of the recovery manager, including changes 
to both disk and the log, if there is a crash and the last log record to appear 
on disk is:

(a) <START U> (b) <C0MMIT U> (c) < T ,E , 50,51> (d) <C0MMIT T>.

E xercise 17.4 .4 : For each of the situations described in Exercise 17.4.3, what 
values written by T  and U must appear on disk? Which values might appear 
on disk?

E xercise 17.4 .5 : Consider the following sequence of log records: < START S>; 
<5, A, 60,61>; <C0MMIT5>; <START T>; < T ,A , 61,62>; < START f/> ; 
<U ,B, 20,21>; <T ,C , 30,31>; < START V>; <U,D, 40,41>; <V,F, 70,71>; 
<C0MMIT U>; <T, E, 50,51>; <C0MMIT T>; < V,B , 21,22>; <C0MMIT V>. 
Suppose that we begin a nonquiescent checkpoint immediately after one of the 
following log records has been written (in memory):

(a) <5, A, 60,61> (b) <T, A, 61,62> (c) <U, B , 20,21>
(d) <£/,£>, 40,41> (e) < T ,E , 50,51 >

For each, tell:

i. At what points could the <END CKPT> record be written, and

ii. For each possible point at which a crash could occur, how far back in the 
log we must look to find all possible incomplete transactions. Consider 
both the case that the <END CKPT> record was or was not written prior 
to the crash.
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17.5 Protecting Against M edia Failures
The log can protect us against system failures, where nothing is lost from disk, 
but temporary data in main memory is lost. However, as we discussed in 
Section 17.1.1, more serious failures involve the loss of one or more disks. An 
archiving system, which we cover next, is needed to enable a database to survive 
losses involving disk-resident data.

17.5.1 The Archive
To protect against media failures, we are thus led to a solution involving archiv
ing — maintaining a copy of the database separate from the database itself. If 
it were possible to shut down the database for a while, we could make a backup 
copy on some storage medium such as tape or optical disk, and store the copy 
remote from the database, in some secure location. The backup would preserve 
the database state as it existed at the time of the backup, and if there were a 
media failure, the database could be restored to this state.

To advance to a more recent state, we could use the log, provided the log 
had been preserved since the archive copy was made, and the log itself survived 
the failure. In order to protect against losing the log, we could transmit a copy 
of the log, almost as soon as it is created, to the same remote site as the archive. 
Then, if the log as well as the data is lost, we can use the archive plus remotely 
stored log to recover, at least up to the point that the log was last transmitted 
to the remote site.

Since writing an archive is a lengthy process, we try to avoid copying the 
entire database at each archiving step. Thus, we distinguish between two levels 
of archiving:

1. A full dump, in which the entire database is copied.

2. An incremental dump, in which only those database elements changed 
since the previous full or incremental dump are copied.

It is also possible to have several levels of dump, with a full dump thought of as 
a “level 0” dump, and a “level i” dump copying everything changed since the 
last dump at a level less than or equal to i.

We can restore the database from a full dump and its subsequent incremental 
dumps, in a process much like the way a redo or undo/redo log can be used 
to repair damage due to a system failure. We copy the full dump back to the 
database, and then in an earliest-first order, make the changes recorded by the 
later incremental dumps.

17.5.2 Nonquiescent Archiving
The problem with the simple view of archiving in Section 17.5.1 is that most 
databases cannot be shut down for the period of time (possibly hours) needed



876 CHAPTER 17. COPING W ITH SYSTE M  FAILURES

W hy Not Just Back Up the Log?

We might question the need for an archive, since we have to back up the log 
in a secure place anyway if we are not to be stuck at the state the database 
was in when the previous archive was made. While it may not be obvious, 
the answer lies in the typical rate of change of a large database. While 
only a small fraction of the database may change in a day, the changes, 
each of which must be logged, will over the course of a year become much 
larger than the database itself. If we never archived, then the log could 
never be truncated, and the cost of storing the log would soon exceed the 
cost of storing a copy of the database.

to make a backup copy. We thus need to consider nonquiescent archiving, 
which is analogous to nonquiescent checkpointing. Recall that a nonquiescent 
checkpoint attempts to make a copy on the disk of the (approximate) database 
state that existed when the checkpoint started. We can rely on a small portion 
of the log around the time of the checkpoint to fix up any deviations from that 
database state, due to the fact that during the checkpoint, new transactions 
may have started and written to disk.

Similarly, a nonquiescent dump tries to make a copy of the database that 
existed when the dump began, but database activity may change many database 
elements on disk during the minutes or hours that the dump takes. If it is 
necessary to restore the database from the archive, the log entries made during 
the dump can be used to sort things out and get the database to a consistent 
state. The analogy is suggested by Fig. 17.11.

C heckpoint gets data 
from  m em ory to disk; 
log allows recovery from  
system  failure

D um p gets data from  
disk to archive; 
archive plus log allows 
recovery from  m edia failure

Archive

Figure 17.11: The analogy between checkpoints and dumps
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A nonquiescent dump copies the database elements in some fixed order, 
possibly while those elements are being changed by executing transactions. As 
a result, the value of a database element that is copied to the archive may or 
may not be the value that existed when the dump began. As long as the log 
for the duration of the dump is preserved, the discrepancies can be corrected 
from the log.

E xam ple 17.13 : For a very simple example, suppose that our database con
sists of four elements, A, B , C, and D, which have the values 1 through 4, 
respectively, when the dump begins. During the dump, A  is changed to 5, C 
is changed to 6, and B  is changed to 7. However, the database elements are 
copied in order, and the sequence of events shown in Fig. 17.12 occurs. Then 
although the database at the beginning of the dump has values (1,2,3,4), and 
the database at the end of the dump has values (5,7,6,4), the copy of the 
database in the archive has values (1,2,6,4), a database state that existed at 
no time during the dump. □

Disk Archive
Copy A

A := 5
Copy B

C := 6
Copy C

B := 7
Copy D

Figure 17.12: Events during a nonquiescent dump

In more detail, the process of making an archive can be broken into the 
following steps. We assume that the logging method is either redo or undo/redo; 
an undo log is not suitable for use with archiving.

1. Write a log record <START DUMP>.

2. Perform a checkpoint appropriate for whichever logging method is being 
used.

3. Perform a full or incremental dump of the data disk(s), as desired, making 
sure that the copy of the data has reached the secure, remote site.

4. Make sure that enough of the log has been copied to the secure, remote 
site that at least the prefix of the log up to and including the checkpoint 
in item (2) will survive a media failure of the database.

5. Write a log record <END DUMP>.
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At the completion of the dump, it is safe to throw away log prior to the beginning 
of the checkpoint previous to the one performed in item (2) above.

E xam ple  17.14: Suppose that the changes to the simple database in Exam
ple 17.13 were caused by two transactions T\ (which writes A  and B) and T2 
(which writes C) that were active when the dump began. Figure 17.13 shows 
a possible undo/redo log of the events during the dump.

< START DUMP>
< START CKPT (Ti ,T2)>
< T i,A , 1,5>
<T2,C ,3 ,6 >
<C0MMIT T2>
<T i ,B ,2 ,7 >
<END CKPT>
Dump completes 
<END DUMP>

Figure 17.13: Log taken during a dump

Notice that we did not show 7\ committing. It would be unusual that a 
transaction remained active during the entire time a full dump was in progress, 
but that possibility doesn’t  affect the correctness of the recovery method that 
we discuss next. □

17.5.3 Recovery Using an Archive and Log
Suppose that a media failure occurs, and we must reconstruct the database 
from the most recent archive and whatever prefix of the log has reached the 
remote site and has not been lost in the crash. We perform the following steps:

1. Restore the database from the archive.

(a) Find the most recent full dump and reconstruct the database from 
it (i.e., copy the archive into the database).

(b) If there axe later incremental dumps, modify the database according 
to each, earliest first.

2. Modify the database using the surviving log. Use the method of recovery 
appropriate to the log method being used.

E xam ple  17.15: Suppose there is a media failure after the dump of Exam
ple 17.14 completes, and the log shown in Fig. 17.13 survives. Assume, to make 
the process interesting, that the surviving portion of the log does not include a 
<C0MMIT T\>  record, although it does include the CCOMMIT T2> record shown
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in that figure. The database is first restored to the values in the archive, which 
is, for database elements A, B , C, and D, respectively, (1,2,6,4).

Now, we must look at the log. Since T2  has completed, we redo the step 
that sets C  to 6. In this example, C  already had the value 6, but it might be 
that:

a) The archive for C  was made before T2  changed C, or

b) The archive actually captured a later value of C, which may or may not 
have been written by a transaction whose commit record survived. Later 
in the recovery, C will be restored to the value found in the archive if  the 
transaction was committed.

Since Ti does not have a COMMIT record, we must undo T i. We use the log 
records for T\ to determine that A  must be restored to value 1 and B  to 2. It 
happens that they had these values in the archive, but the actual archive value 
could have been different because the modified A  and/or B  had been included 
in the archive. □

17.5.4 Exercises for Section 17.5
E xercise 17.5.1: If a redo log, rather than an undo/redo log, were used in 
Examples 17.14 and 17.15:

a) What would the log look like?

! b) If we had to recover using the archive and this log, what would be the 
consequence of Tj not having committed?

c) What would be the state of the database after recovery?

17.6 Summary of Chapter 17
♦  Transaction Management: The two principal tasks of the transaction 

manager are assuring recoverability of database actions through logging, 
and assuring correct, concurrent behavior of transactions through the 
scheduler (discussed in the next chapter).

♦  Database Elements: The database is divided into elements, which are typ
ically disk blocks, but could be tuples or relations, for instance. Database 
elements are the units for both logging and scheduling.

♦  Logging: A record of every important action of a transaction — beginning, 
changing a database element, committing, or aborting — is stored on a 
log. The log must be backed up on disk at a time that is related to 
when the corresponding database changes migrate to disk, but that time 
depends on the particular logging method used.
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♦  Recovery: When a system crash occurs, the log is used to repair the 
database, restoring it to a consistent state.

♦  Logging Methods: The three principal methods for logging are undo, redo, 
and undo/redo, named for the way(s) that they are allowed to fix the 
database during recovery.

♦  Undo Logging: This method logs the old value, each time a database 
element is changed. With undo logging, a new value of a database element 
can be written to disk only after the log record for the change has reached 
disk, but before the commit record for the transaction performing the 
change reaches disk. Recovery is done by restoring the old value for every 
uncommitted transaction.

♦  Redo Logging: Here, only the new value of database elements is logged. 
With this form of logging, values of a database element can be written to 
disk only after both the log record of its change and the commit record 
for its transaction have reached disk. Recovery involves rewriting the new 
value for every committed transaction.

4- Undo/Redo Logging In this method, both old and new values are logged. 
Undo/redo logging is more flexible than the other methods, since it re
quires only that the log record of a change appear on the disk before 
the change itself does. There is no requirement about when the commit 
record appears. Recovery is effected by redoing committed transactions 
and undoing the uncommitted transactions.

4- Checkpointing: Since all recovery methods require, in principle, looking 
at the entire log, the DBMS must occasionally checkpoint the log, to 
assure that no log records prior to the checkpoint will be needed during a 
recovery. Thus, old log records can eventually be thrown away and their 
disk space reused.

4  Nonquiescent Checkpointing: To avoid shutting down the system while a 
checkpoint is made, techniques associated with each logging method allow 
the checkpoint to be made while the system is in operation and database 
changes are occurring. The only cost is that some log records prior to the 
nonquiescent checkpoint may need to be examined during recovery.

4  Archiving: While logging protects against system failures involving only 
the loss of main memory, archiving is necessary to protect against failures 
where the contents of disk are lost. Archives are copies of the database 
stored in a safe place.

4  Incremental Backups: Instead of copying the entire database to an archive 
periodically, a single complete backup can be followed by several incre
mental backups, where only the changed data is copied to the archive.
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♦  Nonquiescent Archiving: We can create a backup of the data while the 
database is in operation. The necessary techniques involve making log 
records of the beginning and end of the archiving, as well as performing 
a checkpoint for the log during the archiving.

♦  Recovery From Media Failures: When a disk is lost, it may be restored by 
starting with a full backup of the database, modifying it according to any 
later incremental backups, and finally recovering to a consistent database 
state by using an archived copy of the log.

17.7 References for Chapter 17
The major textbook on all aspects of transaction processing, including logging 
and recovery, is by Gray and Reuter [5]. This book was partially fed by some 
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[2] is an earlier, more concise description of transaction-processing technol
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that we followed here.
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Chapter 18

Concurrency Control

Interactions among concurrently executing transactions can cause the database 
state to become inconsistent, even when the transactions individually preserve 
correctness of the state, and there is no system failure. Thus, the timing of 
individual steps of different transactions needs to be regulated in some manner. 
This regulation is the job of the scheduler component of the DBMS, and the 
general process of assuring that transactions preserve consistency when execut
ing simultaneously is called concurrency control. The role of the scheduler is 
suggested by Fig. 18.1.

Buffers

Read/W rite
requests

Reads and 
writes

Figure 18.1: The scheduler takes read/write requests from transactions and 
either executes them in buffers or delays them

As transactions request reads and writes of database elements, these requests 
are passed to the scheduler. In most situations, the scheduler will execute the 
reads and writes directly, first calling on the buffer manager if the desired 
database element is not in a buffer. However, in some situations, it is not 
safe for the request to be executed immediately. The scheduler must delay the 
request; in some concurrency-control techniques, the scheduler may even abort 
the transaction that issued the request.

883
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We begin by studying how to assure that concurrently executing trans
actions preserve correctness of the database state. The abstract requirement 
is called serializability, and there is an important, stronger condition called 
conflict-serializability that most schedulers actually enforce. We consider the 
most important techniques for implementing schedulers: locking, timestamp- 
ing, and validation. Our study of lock-based schedulers includes the important 
concept of “two-phase locking,” which is a requirement widely used to assure 
serializability of schedules.

18.1 Serial and Serializable Schedules
Recall the “correctness principle” from Section 17.1.3: every transaction, if ex
ecuted in isolation (without any other transactions running concurrently), will 
transform any consistent state to another consistent state. In practice, transac
tions often run concurrently with other transactions, so the correctness principle 
doesn’t apply directly. This section introduces the notion of “schedules,” the se
quence of actions performed by transactions and “serializable schedules,” which 
produce the same result as if the transactions executed one-at-a-time.

18.1.1 Schedules
A schedule is a sequence of the important actions taken by one or more trans
actions. When studying concurrency control, the important read and write ac
tions take place in the main-memory buffers, not the disk. That is, a database 
element A  that is brought to a buffer by some transaction T  may be read or 
written in that buffer not only by T  but by other transactions that access A.

Ti
READ(A,t) 
t := t+100 
WRITE(A,t) 
READ(B,t) 
t := t+100 
WRITE(B,t)

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s)

Figure 18.2: Two transactions

E xam ple 18.1: Let us consider two transactions and the effect on the data
base when their actions are executed in certain orders. The important actions 
of the transactions Ti and T2 are shown in Fig. 18.2. The variables t  and s are 
local variables of Ti and T2, respectively; they are not database elements.

We shall assume that the only consistency constraint on the database state 
is that A  = B. Since Ti adds 100 to both A  and B , and T2 multiplies both
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A  and B  by 2, we know that each transaction, run in isolation, will preserve 
consistency. □

18.1.2 Serial Schedules
A schedule is serial if its actions consist of all the actions of one transaction, 
then all the actions of another transaction, and so on. No mixing of the actions 
is allowed.

Ti r 2 A B
25 25

READ(A,t)
t := t+100
WRITE(A,t) 125
READ(B,t)
t := t+100
WRITE(B,t) 125

READ(A,s)
s := s*2
WRITE(A,s) 250
READ(B,s)
s := s*2
WRITE(B,s) 250

Figure 18.3: Serial schedule in which T\ precedes T2

E xam ple 18.2: For the transactions of Fig. 18.2, there are two serial sched
ules, one in which 7\ precedes T2  and the other in which T2  precedes 7 \. Fig
ure 18.3 shows the sequence of events when T\ precedes T2, and the initial state 
is A = B  = 25. We shall take the convention that when displayed vertically, 
time proceeds down the page. Also, the values of A  and B  shown refer to their 
values in main-memory buffers, not necessarily to their values on disk.

Figure 18.4 shows another serial schedule in which T2  precedes Ti; the initial 
state is again assumed to be A = B  = 25. Notice that the final values of A and 
B  are different for the two schedules; they both have value 250 when T\ goes 
first and 150 when T2  goes first. In general, we would not expect the final state 
of a database to be independent of the order of transactions. □

We can represent a serial schedule as in Fig. 18.3 or Fig. 18.4, listing each 
of the actions in the order they occur. However, since the order of actions in 
a serial schedule depends only on the order of the transactions themselves, we 
shall sometimes represent a serial schedule by the list of transactions. Thus, the 
schedule of Fig. 18.3 is represented (T i,T2), and that of Fig. 18.4 is (T2 ,Ti).
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Ti T2 A B
25 25

READ(A.s)
s := s*2
WRITE(A,s) 50
READ(B,s)
s := s*2
WRITE(B,s) 50

READ(A,t)
t := t+100
WRITE(A,t) 150
READ(B,t)
t := t+100
WRITE(B.t) 150

Figure 18.4: Serial schedule in which T2 precedes Ti

18.1.3 Serializable Schedules

The correctness principle for transactions tells us that every serial schedule will 
preserve consistency of the database state. But are there any other schedules 
that also are guaranteed to preserve consistency? There are, as the following 
example shows. In general, we say a schedule S  is serializable if there is a serial 
schedule S' such that for every initial database state, the effects of S  and S' 
are the same.

Ti T2 A B
25 25

READ(A,t)
t := t+100
WRITE(A,t) 125

READ(A,s)
s := s*2
WRITE(A,s) 250

READ(B,t)
t := t+100
WRITE(B,t) 125

READ(B,s)
s := s*2
WRITE(B,s) 250

Figure 18.5: A serializable, but not serial, schedule
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E xam ple 18.3: Figure 18.5 shows a schedule of the transactions from Ex
ample 18.1 that is serializable but not serial. In this schedule, Ta acts on A 
after T\ does, but before Ti acts on B. However, we see that the effect of the 
two transactions scheduled in this manner is the same as for the serial schedule 
(Ti,T2) from Fig. 18.3. To convince ourselves of the truth of this statement, 
we must consider not only the effect from the database state A  =  B  =  25, 
which we show in Fig. 18.5, but from any consistent database state. Since all 
consistent database states have A — B  =  c for some constant c, it is not hard 
to deduce that in the schedule of Fig. 18.5, both A  and B  will be left with the 
value 2 (c +  100), and thus consistency is preserved from any consistent state.

T i T 2 A B
25 25

READ(A,t)
t := t+100
WRITE(A,t) 125

READ(A,s)
s := s *2
WRITE(A,s) 250
READ(B,s)
s := s *2
WRITE(B,s) 50

READ(B,t)
t := t+100
WRITE(B,t) 150

Figure 18.6: A nonserializable schedule

On the other hand, consider the schedule of Fig. 18.6, which is not seri
alizable. The reason we can be sure it is not serializable is that it takes the 
consistent state A  =  B  = 25 and leaves the database in an inconsistent state, 
where A = 250 and B  =  150. Notice that in this order of actions, where Ti op
erates on A  first, but T2 operates on B  first, we have in effect applied different 
computations to A  and B, that is A  := 2(A + 100) versus B  := 2B  + 100. 
The schedule of Fig. 18.6 is the sort of behavior that concurrency control mech
anisms must avoid. □

18.1.4 The Effect of Transaction Semantics

In our study of serializability so far, we have considered in detail the opera
tions performed by the transactions, to determine whether or not a schedule is 
serializable. The details of the transactions do matter, as we can see from the 
following example.
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Ti T2 A  B
25 25

READ(A,t)
t := t+100
WRITE(A,t) 125

READ(A,s)
s := s+200
WRITE(A,s) 325
READ(B,s)
s := s+200
WRITE(B,s) 225

READ(B,t)
t := t+100
WRITE(B,t) 325

Figure 18.7: A schedule that is serializable only because of the detailed behavior 
of the transactions

E xam ple 18.4: Consider the schedule of Fig. 18.7, which differs from Fig. 18.6 
only in the computation that T2 performs. That is, instead of multiplying A 
and B  by 2, T2 adds 200 to each. One can easily check that regardless of the 
consistent initial state, the final state is the one that results from the serial 
schedule (Ti,T2). Coincidentally, it also results from the other serial schedule,
(r2,Ti). □

Unfortunately, it is not realistic for the scheduler to concern itself with the 
details of computation undertaken by transactions. Since transactions often 
involve code written in a general-purpose programming language as well as 
SQL or other high-level-language statements, it is impossible to say for certain 
what a transaction is doing. However, the scheduler does get to see the read and 
write requests from the transactions, so it can know what database elements 
each transaction reads, and what elements it might change. To simplify the job 
of the scheduler, it is conventional to assume that:

• Any database element A  that a transaction T  writes is given a value 
that depends on the database state in such a way that no arithmetic 
coincidences occur.

An example of a “coincidence” is that in Example 18.4, where A  +100 +  200 = 
B  + 200 +100 whenever A = B, even though the two operations are carried out 
in different orders on the two variables. Put another way, if there is something 
that T  could do to a database element to make the database state inconsistent, 
then T  will do that.
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18.1.5 A Notation for Transactions and Schedules
If we assume “no coincidences,” then only the reads and writes performed by 
the transaction matter, not the actual values involved. Thus, we shall represent 
transactions and schedules by a shorthand notation, in which the actions are 
rx (X )  and w t (X ), meaning that transaction T  reads, or respectively writes, 
database element X .  Moreover, since we shall usually name our transactions 
Tu T2, . . .  , we adopt the convention that ri(X )  and Wi(X) are synonyms for 
rTi(X) and WTi(X), respectively.

E xam ple 18.5 : The transactions of Fig. 18.2 can be written:

Tn n (A )\  tui(^); n (B ); w ^B );
T2: r2 (A); w2 (A); r2 (B); w2 (B);

As another example,

ri(A); wi{A); r2 (A); w2 {A); r x(S); w i(B ); r2 (B ); w2 {B); 

is the serializable schedule from Fig. 18.5. □

To make the notation precise:

1. An action is an expression of the form ri(X ) or Wi(X), meaning that 
transaction T, reads or writes, respectively, the database element X .

2. A transaction Ti is a sequence of actions with subscript i.

3. A schedule S  of a set of transactions T  is a sequence of actions, in which 
for each transaction Ti in T , the actions of Ti appear in S  in the same 
order that they appear in the definition of Tj itself. We say that S  is an 
interleaving of the actions of the transactions of which it is composed.

For instance, the schedule of Example 18.5 has all the actions with subscript
1 appearing in the same order that they have in the definition of I \ ,  and the 
actions with subscript 2 appear in the same order that they appear in the 
definition of T2.

18.1.6 Exercises for Section 18.1
Exercise 18.1.1: A transaction Ti, executed by an airline-reservation system, 
performs the following steps:

i. The customer is queried for a desired flight time and cities. Information 
about the desired flights is located in database elements (perhaps disk 
blocks) A  and B, which the system retrieves from disk.

ii. The customer is told about the options, and selects a flight whose data, 
including the number of reservations for that flight is in B. A  reservation 
on that flight is made for the customer.
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Hi. The customer selects a seat for the flight; seat data for the flight is in 
database element C.

iv. The system gets the customer’s credit-card number and appends the bill 
for the flight to a list of bills in database element D.

v. The customer’s phone and flight data is added to another list on database 
element E  for a fax to be sent confirming the flight.

Express transaction Ti as a sequence of r  and w actions.

! E xercise 18.1.2: If two transactions consist of 4 and 6 actions, respectively, 
how many interleavings of these transactions are there?

18.2 Conflict-Serializability
Schedulers in commercial systems generally enforce a condition, called “conflict- 
serializability,” that is stronger than the general notion of serializability intro
duced in Section 18.1.3. It is based on the idea of a conflict: a pair of consecutive 
actions in a schedule such that, if their order is interchanged, then the behavior 
of at least one of the transactions involved can change.

18.2.1 Conflicts
To begin, let us observe that most pairs of actions do not conflict. In what 
follows, we assume that T, and Tj are different transactions; i.e., i ^  j .

1 . ri(X)\ rj(Y) is never a conflict, even if X  — Y. The reason is that neither 
of these steps change the value of any database element.

2. ri(X); Wj(Y) is not a conflict provided X  ^  Y. The reason is that should 
Tj write Y  before Ti reads X,  the value of X  is not changed. Also, the 
read of X  by T* has no effect on Tj, so it does not affect the value Tj 
writes for Y.

3. Wi(X); rj(Y) is not a conflict if X  /  Y, for the same reason as (2).

4. Similarly, Wi{X); Wj(Y) is not a conflict as long as X  ^  Y.

On the other hand, there are three situations where we may not swap the order 
of actions:

a) Two actions of the same transaction, e.g., ri(X); Wi(Y), always conflict. 
The reason is that the order of actions of a single transaction are fixed 
and may not be reordered.
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b) Two writes of the same database element by different transactions conflict. 
That is, Wi(X); Wj(X) is a conflict. The reason is that as written, the 
value of X  remains afterward as whatever Tj computed it to be. If we swap 
the order, as Wj(X); Wi(X), then we leave X  with the value computed by 
T,. Our assumption of “no coincidences” tells us that the values written by 
Ti and Tj will be different, at least for some initial states of the database.

c) A read and a write of the same database element by different transactions 
also conflict. That is, r,(X ); Wj(X) is a conflict, and so is Wi(X); rj(X). 
If we move Wj(X) ahead of ri(X), then the value of X  read by Ti will 
be that written by Tj, which we assume is not necessarily the same as 
the previous value of X.  Thus, swapping the order of ri(X) and Wj(X) 
affects the value T* reads for X  and could therefore affect what Ti does.

The conclusion we draw is that any two actions of different transactions may 
be swapped unless:

1. They involve the same database element, and

2 . At least one is a write.

Extending this idea, we may take any schedule and make as many nonconflicting 
swaps as we wish, with the goal of turning the schedule into a serial schedule. 
If we can do so, then the original schedule is serializable, because its effect on 
the database state remains the same as we perform each of the nonconflicting 
swaps.

We say that two schedules are conflict-equivalent if they can be turned one 
into the other by a sequence of nonconflicting swaps of adjacent actions. We 
shall call a schedule conflict-serializable if it is conflict-equivalent to a serial 
schedule. Note that conflict-serializability is a sufficient condition for serializ
ability; i.e., a conflict-serializable schedule is a serializable schedule. Conflict- 
serializability is not required for a schedule to be serializable, but it is the 
condition that the schedulers in commercial systems generally use when they 
need to guarantee serializability.

E xam ple 18.6: Consider the schedule

n ( ^ ) ;  w j ( A ) ;  r2(A); w2(A); n ( S ) ;  wi(B); r2(B); w2(B);

from Example 18.5. We claim this schedule is conflict-serializable. Figure 18.8 
shows the sequence of swaps in which this schedule is converted to the serial 
schedule (T\,T2), where all of T i’s actions precede all those of T2. We have 
underlined the pair of adjacent actions about to be swapped at each step. □
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n (A );  u>i(A); r2 (A); w2 (A); n (B )\ w ^B ); r2 {B); w2 {B); 
n (A ); wi(A); r 2 (A); n ( B ) ; w2 (A); w ^B ); r2 (B); w2 (B); 
rx(A); wi(A); ri(B); r2 (A); w2 {A); Wi(B); r2 (B)-, w2 (B ); 
ri(A); wx(A); ri(B); r2 (A ); w ^ B ) ; w2 (A); r2 (B); w2 (B); 
n (A ); wi (A); rx{B); w ^B ); r2 {A); w2 (A)\ r2 (B ); w2 (B);

Figure 18.8: Converting a conflict-serializable schedule to a serial schedule by 
swaps of adjacent actions

18.2.2 Precedence Graphs and a Test for 
Conflict-Serializability

It is relatively simple to examine a schedule S  and decide whether or not it is 
conflict-serializable. When a pair of conflicting actions appears anywhere in 5, 
the transactions performing those actions must appear in the same order in any 
conflict-equivalent serial schedule as the actions appear in S. Thus, conflicting 
pairs of actions put constraints on the order of transactions in the hypothetical, 
conflict-equivalent serial schedule. If these constraints are not contradictory, 
we can find a conflict-equivalent serial schedule. If they are contradictory, we 
know that no such serial schedule exists.

Given a schedule S, involving transactions Ti and T2, perhaps among other 
transactions, we say that T\ takes precedence overT2, written Ti <s T2, if there 
are actions A i of Ti and A 2  of T2, such that:

1. Ai is ahead of A 2  in S,

2. Both A \ and A 2  involve the same database element, and

3. At least one of A\ and A 2  is a write action.

Notice that these are exactly the conditions under which we cannot swap the 
order of A i and A2. Thus, A \ will appear before A 2  in any schedule that is 
conflict-equivalent to 5. As a result, a conflict-equivalent serial schedule must 
have T\ before T2.

We can summarize these precedences in a precedence graph. The nodes of the 
precedence graph are the transactions of a schedule S. When the transactions 
are Ti for various i, we shall label the node for Tj by only the integer i. There 
is an arc from node i to node j  if Tj < 5  Tj.

E xam ple  18.7: The following schedule 5  involves three transactions, Ti, T2, 
and T3.

5: r 2 (A); r^ B );  w2 (A); r 3(A); Wi(5); w3(A); r2(B ); w2 (B)]

If we look at the actions involving A, we find several reasons why T2  <s T3. 
For example, r 2 (A) comes ahead of W3 (A) in S, and w2 (A) comes ahead of both
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W hy Conflict-Serializability is not Necessary for 
Serializability

Consider three transactions Ti, T2, and T3 that each write a value for X .  
Ti and T2  also write values for Y  before they write values for X .  One 
possible schedule, which happens to be serial, is

Si leaves X  with the value written by T3 and Y  with the value written by 
T2. However, so does the schedule

Intuitively, the values of X  written by Ti and T2  have no effect, since T3 
overwrites their values. Thus, X  has the same value after either Si or 
S2, and likewise Y  has the same value after either Si or S2. Since Si is 
serial, and S 2  has the same effect as Si on any database state, we know 
that S 2  is serializable. However, since we cannot swap w \(Y ) with w2 (Y), 
and we cannot swap w i(X )  with w2 (X ), therefore we cannot convert S2  to 
any serial schedule by swaps. That is, S 2 is serializable, but not conflict- 
serializable.

Figure 18.9: The precedence graph for the schedule S  of Example 18.7

rs(A) and W3 (A). Any one of these three observations is sufficient to justify the 
arc in the precedence graph of Fig. 18.9 from 2 to 3.

Similarly, if we look at the actions involving B, we find that there are several 
reasons why Ti <s T2. For instance, the action r\(B )  comes before w2 (B). 
Thus, the precedence graph for S  also has an arc from 1 to 2. However, these 
are the only arcs we can justify from the order of actions in schedule S. □

To tell whether a schedule S  is conflict-serializable, construct the precedence 
graph for S  and ask if there are any cycles. If so, then S  is not conflict- 
serializable. But if the graph is acyclic, then 5  is conflict-serializable, and 
moreover, any topological order of the nodes1 is a conflict-equivalent serial 
order.

1A  topological order of an acyclic g raph  is any  o rder of th e  nodes such th a t  for every arc 
a —> b, node a p recedes node b in th e  topological o rder. W e can find a  topological o rder 
for any  acyclic g raph  by rep ea ted ly  rem oving nodes th a t  have no predecessors am ong th e  
rem ain ing  nodes.

Si'. Wi(Y); wi(X); w2(Y); w2(X)-, w^X);

S2: w i(Y); w2 (Y); w2 (X); Wi(X); w3 (X)-,
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E xam ple 18.8: Figure 18.9 is acyclic, so the schedule S of Example 18.7 
is conflict-serializable. There is only one order of the nodes or transactions 
consistent with the arcs of that graph: (Ti,T 2 ,T3). Notice that it is indeed 
possible to convert S into the schedule in which all actions of each of the three 
transactions occur in this order; this serial schedule is:

S': ri(B); Wi(B)\ r2 (A); w2 (A); r2 {B); w2(B ); r3 (A); w3 {A);

To see that we can get from S  to S' by swaps of adjacent elements, first notice 
we can move r \(B)  ahead of r2 (A) without conflict. Then, by three swaps 
we can move wi(B)  just after r\{B), because each of the intervening actions 
involves A  and not B.  We can then move r2 (B) and w2 (B) to a position just 
after w2 (A), moving through only actions involving A; the result is S'. □

E xam ple 18.9: Consider the schedule

Si: r2 (A); ri(B); w2 (A); r2 (B); r3 (A); Wx(B); w3 (A); w2 (B);

which differs from S  only in that action r2 (B) has been moved forward three 
positions. Examination of the actions involving A  still give us only the prece
dence T2  <Sj T3. However, when we examine B  we get not only Ti <Sj T2  

[because ri(B)  and wx(B) appear before w2 (B)\, but also T2 < sx Ti [because 
r2 (B) appears before Wi (£?)]. Thus, we have the precedence graph of Fig. 18.10 
for schedule Si.

(i5— —Kl)-- KD
Figure 18.10: A cyclic precedence graph; its schedule is not conflict-serializable

This graph evidently has a cycle. We conclude that Si is not conflict- 
serializable. Intuitively, any conflict-equivalent serial schedule would have to 
have Ti both ahead of and behind T2, so therefore no such schedule exists. □

18.2.3 W hy the Precedence-Graph Test Works
If there is a cycle involving n  transactions Ti —» T2  -¥ . . .  —> Tn —> T i, then in 
the hypothetical serial order, the actions of Ti must precede those of T2, which 
precede those of T3, and so on, up to T„. But the actions of Tn, which therefore 
come after those of Ti, are also required to precede those of Ti because of the 
arc Tn -» T i . Thus, if there is a cycle in the precedence graph, then the schedule 
is not conflict-serializable.

The converse is a bit harder. We must show that if the precedence graph 
has no cycles, then we can reorder the schedule’s actions using legal swaps of 
adjacent actions, until the schedule becomes a serial schedule. If we can do so, 
then we have our proof that every schedule with an acyclic precedence graph is 
conflict-serializable. The proof is an induction on the number of transactions 
involved in the schedule.
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BASIS: If n  =  1, i.e., there is only one transaction in the schedule, then the 
schedule is already serial, and therefore surely conflict-serializable.

IN DU CTIO N: Let the schedule S  consist of the actions of n  transactions

Ti,T2,... ,Tn

We suppose that S  has an acyclic precedence graph. If a finite graph is acyclic, 
then there is at least one node that has no arcs in; let the node i corresponding 
to transaction T* be such a node. Since there are no arcs into node i, there can 
be no action A  in S  that:

1. Involves any transaction Tj other than T*,

2. Precedes some action of Ti, and

3. Conflicts with that action.

For if there were, we should have put an arc from node j  to node i in the 
precedence graph.

It is thus possible to swap all the actions of Ti, keeping them in order, but 
moving them to the front of S. The schedule has now taken the form

(Actions of Ti) (Actions of the other n — 1 transactions)

Let us now consider the tail of S  — the actions of all transactions other than 
Ti. Since these actions maintain the same relative order that they did in 5 , the 
precedence graph for the tail is the same as the precedence graph for S, except 
that the node for Ti and any arcs out of that node are missing.

Since the original precedence graph was acyclic, and deleting nodes and arcs 
cannot make it cyclic, we conclude that the tail’s precedence graph is acyclic. 
Moreover, since the tail involves n — 1 transactions, the inductive hypothesis 
applies to it. Thus, we know we can reorder the actions of the tail using 
legal swaps of adjacent actions to turn it into a serial schedule. Now, 5  itself 
has been turned into a serial schedule, with the actions of Tj first and the 
actions of the other transactions following in some serial order. The induction 
is complete, and we conclude that every schedule with an acyclic precedence 
graph is conflict-serializable.

18.2.4 Exercises for Section 18.2
Exercise 18.2.1: Below are two transactions, described in terms of their effect 
on two database elements A  and B,  which we may assume are integers.

Ti: READ(A,t); t := t+ 2 ; WRITE(A , t ) ; READ(B,t); t := t* 3 ; WRITE(B,t); 
T2: READ(B,s); s:=s*2; WRITE(B,s); READ(A,s); s:=s+3; WRITE(A.s);
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We assume that, whatever consistency constraints there are on the database, 
these transactions preserve them in isolation. Note that A  = B  is not the 
consistency constraint.

a) It turns out that both serial orders have the same effect on the database; 
that is, (Ti ,T2) and (T2,T i) are equivalent. Demonstrate this fact by 
showing the effect of the two transactions on an arbitrary initial database 
state.

b) Give examples of a serializable schedule and a nonserializable schedule of 
the 12 actions above.

c) How many serial schedules of the 12 actions are there?

!! d) How many serializable schedules of the 12 actions are there?

Exercise 18.2.2: The two transactions of Exercise 18.2.1 can be written in 
our notation that shows read- and write-actions only, as:

Tn r i ( 4 ) ;  Wi{A); n(B); Wx(B); 
T2: r2(B); w2(B); r2(A); w2(A);

Answer the following:

! a) Among the possible schedules of the eight actions above, how many are 
conflict-equivalent to the serial order (2\ ,T 2)?

b) How many schedules of the eight actions are equivalent to the serial order 
(la , TO?

!! c) How many schedules of the eight actions are equivalent (not necessarily 
conflict-equivalent) to the serial schedule (Ti,T2), assuming the transac
tions have the effect on the database described in Exercise 18.2.1?

! d) Why are the answers to (c) above and Exercise 18.2.1(d) different?

Exercise 18.2.3: Suppose the transactions of Exercise 18.2.2 are changed to 
be:

Tn n{A)\ w\(A)\ r\(B); wi(B); 
T2: r2(A); w2(A); r2(S); w2(B);

That is, the transactions retain their semantics from Exercise 18.2.1, but T2 
has been changed so A is processed before B. Give:

a) The number of conflict-serializable schedules.

b) The number of serializable schedules, assuming the transactions have the 
same effect on the database state as in Exercise 18.2.1.
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E xercise 18.2.4: For each of the following schedules:

a) ri{A); r2 (A); r3 (B); u>i(A); r 2 (C); r2 (B); w2 (B); Wx(C);

b) n{A); Wi(B); r2{B): w2 (C); r3 (C)\ w3 (A);

c) w3 (A)-, r i (A); tti(S ); r2 (B): w2 (C); r3 (C);

d) ri(A); r2 (A); wx(B); w2 (B); n (B )]  r2(S); w2 (C); wx{D)\

e) n(A ); r2 (A); n (B ) \  r 2(S); r3(A); r4 (B); wx{A); w2 (B);

Answer the following questions:

i. What is the precedence graph for the schedule?

ii. Is the schedule conflict-serializable? If so, what are all the equivalent 
serial schedules?

! Hi. Are there any serial schedules that must be equivalent (regardless of what 
the transactions do to the data), but are not conflict-equivalent?

!! E xercise 18.2 .5 : Say that a transaction T  precedes a transaction U in a sched
ule S  if every action of T  precedes every action of U in S. Note that if T  and U 
are the only transactions in S, then saying T  precedes U is the same as saying 
that S  is the serial schedule (T ,U ). However, if S  involves transactions other 
than T  and U, then S  might not be serializable, and in fact, because of the 
effect of other transactions, S  might not even be conflict-serializable. Give an 
example of a schedule S  such that:

i. In S, T\ precedes T2, and

ii. S  is conflict-serializable, but

Hi. In every serial schedule conflict-equivalent to S, T2  precedes Ti.

! E xercise 18.2.6: Explain how, for any n > 1, one can find a schedule whose 
precedence graph has a cycle of length n, but no smaller cycle.

18.3 Enforcing Serializability by Locks
In this section we consider the most common architecture for a scheduler, one 
in which “locks” are maintained on database elements to prevent unserializable 
behavior. Intuitively, a transaction obtains locks on the database elements it 
accesses to prevent other transactions from accessing these elements at roughly 
the same time and thereby incurring the risk of unserializability.

In this section, we introduce the concept of locking with an (overly) simple 
locking scheme. In this scheme, there is only one kind of lock, which transac
tions must obtain on a database element if they want to perform any operation 
whatsoever on that element. In Section 18.4, we shall learn more realistic lock
ing schemes, with several kinds of lock, including the common shared/exclusive 
locks that correspond to the privileges of reading and writing, respectively.
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18.3.1 Locks
In Fig. 18.11 we see a scheduler that uses a lock table to help perform its job. 
Recall from the chapter introduction that the responsibility of the scheduler 
is to take requests from transactions and either allow them to operate on the 
database or block the transaction until such time as it is safe to allow it to 
continue. A lock table will be used to guide this decision in a manner that we 
shall discuss at length.

requests from  
transactions

lock
table

Scheduler

I Serial! 
< ± > 1  <

Serializable schedule 
o f  actions

Figure 18.11: A scheduler that uses a lock table to guide decisions

Ideally, a scheduler would forward a request if and only if its execution can
not possibly lead to an inconsistent database state after all active transactions 
commit or abort. A locking scheduler, like most types of scheduler, instead en
forces conflict-serializability, which as we learned is a more stringent condition 
than correctness, or even than serializability.

When a scheduler uses locks, transactions must request and release locks, 
in addition to reading and writing database elements. The use of locks must 
be proper in two senses, one applying to the structure of transactions, and the 
other to the structure of schedules.

• Consistency of Transactions: Actions and locks must relate in the ex
pected ways:

1. A transaction can only read or write an element if it previously was 
granted a lock on that element and hasn’t  yet released the lock.

2. If a transaction locks an element, it must later unlock that element.

• Legality of Schedules: Locks must have their intended meaning: no two 
transactions may have locked the same element without one having first 
released the lock.

We shall extend our notation for actions to include locking and unlocking 
actions:

h(X):  Transaction Ti requests a lock on database element X .
Ui(X): Transaction Ti releases (“unlocks”) its lock on database element X.
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Thus, the consistency condition for transactions can be stated as: “Whenever 
a transaction T, has an action ri(X) or Wi(X), then there is a previous action 
li(X) with no intervening action Ui(X), and there is a subsequent Ui(X).” The 
legality of schedules is stated: “If there are actions h (X )  followed by Ij(X) 
in a schedule, then somewhere between these actions there must be an action

E xam ple 18.10: Let us consider the two transactions Ti and T? that we 
introduced in Example 18.1. Recall that T\ adds 100 to database elements A  
and B,  while doubles them. Here are specifications for these transactions, 
in which we have included lock actions as well as arithmetic actions to help us 
remember what the transactions are doing.2

Ti: h(A); n (A ); A := A+100; wx(A); ui(A); h(B)-, n (B ) \  B := B+100; 
Wi(B); Ui(B);

T2: h{A); r2 (A)\ A := A*2; w2 (A); u2 {A)\ h{B); r2 {B); B := B*2; w2 (B); 
u 2 {B)\

Each of these transactions is consistent. They each release the locks on A  and 
B  that they take. Moreover, they each operate on A  and B  only at steps where 
they have previously requested a lock on that element and have not yet released 
the lock.

Ti T2 A B
25 25

h(A); n(AY,
A := A+100;
Wi(A); Ui(A); 125

h(A); r2 (A);
A := A*2;
w 2(A); u 2(A); 250
h{B)', r 2 (B);
B := B*2;
w2(B ); u 2 (B); 50

h(B);  n (S ) ;
B := B+100;
toi(.B); ux(B); 150

Figure 18.12: A legal schedule of consistent transactions; unfortunately it is not 
serializable

Figure 18.12 shows one legal schedule of these two transactions. To save 
space we have put several actions on one line. The schedule is legal because

2 R em em ber th a t  th e  a c tu a l co m p u ta tio n s o f th e  tran sac tio n  usua lly  are  n o t represen ted  in 
ou r cu rre n t n o ta tio n , since th e y  are  n o t considered  by th e  schedu ler w hen decid ing w hether 
to  g ran t o r deny tran sac tio n  requests.



900 CHAPTER 18. CONCURRENCY CONTROL

the two transactions never hold a lock on A  at the same time, and likewise for 
B. Specifically, T2  does not execute l2 (A) until after Ti executes ui(A), and T\ 
does not execute h (B )  until after T2  executes u2 (B). As we see from the trace 
of the values computed, the schedule, although legal, is not serializable. We 
shall see in Section 18.3.3 the additional condition, “two-phase locking,” that 
we need to assure that legal schedules are conflict-serializable. □

18.3.2 The Locking Scheduler
It is the job of a scheduler based on locking to grant requests if and only if the 
request will result in a legal schedule. If a request is not granted, the requesting 
transaction is delayed; it waits until the scheduler grants its request at a later 
time. To aid its decisions, the scheduler has a lock table that tells, for every 
database element, the transaction (if any) that currently holds a lock on that 
element. We shall discuss the structure of a lock table in more detail in Sec
tion 18.5.2. However, when there is only one kind of lock, as we have assumed so 
fax, the table may be thought of as a relation Locks (elem ent, t r a n s a c t io n ) , 
consisting of pairs (X , T ) such that transaction T  currently has a lock on 
database element X .  The scheduler has only to query and modify this rela
tion.

E xam ple  18.11: The schedule of Fig. 18.12 is legal, as we mentioned, so 
the locking scheduler would grant every request in the order of arrival shown. 
However, sometimes it is not possible to grant requests. Here are T\ and T2  

from Example 18.10, with simple but important changes, in which Ti and T2  

each lock B  before releasing the lock on A.

Ti: h{A); ri(A); A := A+100; Wi(A); h{B)-, Ui(A); r i (B); B := B+100; 
wi(B); ui(B);

T2: 12 {A)\ r2 (A); A := A*2; w2 (A)-, l2 (B); u 2 (A); r2 (B); B := B*2; w2 (B); 
u 2 {B);

In Fig. 18.13, when T2  requests a lock on B,  the scheduler must deny the 
lock, because T\ still holds a lock on B.  Thus, T2  is delayed, and the next 
actions are from Ti. Eventually, Ti executes u\(B),  which unlocks B.  Now, T2  

can get its lock on B,  which is executed at the next step. Notice that because 
T2  was forced to wait, it wound up multiplying B  by 2 after T\ added 100, 
resulting in a consistent database state. □

18.3.3 Two-Phase Locking
There is a surprising condition, called two-phase locking (or 2PL) under which 
we can guarantee that a legal schedule of consistent transactions is conflict- 
serializable:

• In every transaction, all lock actions precede all unlock actions.
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Ti T2 A  B
25 25

h(A); ri(A)-,
A := A+100;
wi(A); h(B); uxiA); 125

hiA); r2 (A);
A := A*2;
w2 (A); 250
l2 (B) D enied

n (B ); B := B+100;
wi(B); ui(B); 125

1 2 (B); u 2 (A); t 2 (B);
B := B*2;
w2 (B); u2 (B); 250

Figure 18.13: The locking scheduler delays requests that would result in an 
illegal schedule

The “two phases” referred to by 2PL are thus the first phase, where locks 
are obtained, and the second phase, where locks are relinquished. Two-phase 
locking is a condition, like consistency, on the order of actions in a transaction. 
A transaction that obeys the 2PL condition is said to be a two-phase-locked 
transaction, or 2PL transaction.

E xam ple 18.12: In Example 18.10, the transactions do not obey the two- 
phase locking rule. For instance, Ti unlocks A  before it locks B. However, 
the versions of the transactions found in Example 18.11 do obey the 2PL con
dition. Notice that T\ locks both A  and B  within the first five actions and 
unlocks them within the next five actions; T2  behaves similarly. If we com
pare Figs. 18.12 and 18.13, we see how the 2PL transactions interact properly 
with the scheduler to assure consistency, while the non-2PL transactions allow 
non-conflict-serializable behavior. □

18.3.4 W hy Two-Phase Locking Works
Intuitively, each two-phase-locked transaction may be thought to execute in 
its entirety at the instant it issues its first unlock request, as suggested by 
Fig. 18.14. Thus, there is always at least one conflict-equivalent serial schedule 
for a schedule S  of 2PL transactions: the one in which the transactions appear 
in the same order as their first unlocks.

We shall show how to convert any legal schedule S  of consistent, two-phase- 
locked transactions to a conflict-equivalent serial schedule. The conversion is 
best described as an induction on n, the number of transactions in 5. In what 
follows, it is important to remember that the issue of conflict-equivalence refers
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Instantaneously 
executes now

t
locks

acquired

time —

Figure 18.14: Every two-phase-locked transaction has a point at which it may 
be thought to execute instantaneously

to the read and write actions only. As we swap the order of reads and writes, 
we ignore the lock and unlock actions. Once we have the read and write actions 
ordered serially, we can place the lock and unlock actions around them as the 
various transactions require. Since each transaction releases all locks before its 
end, we know that the serial schedule is legal.

BASIS: If n =  1, there is nothing to do; 5  is already a serial schedule.

IN DU CTIO N: Suppose S  involves n transactions Ti,T2, . . .  , Tn, and let Ti be 
the transaction with the first unlock action in the entire schedule S, say U i { X ) .  
We claim it is possible to move all the read and write actions of Ti forward to 
the beginning of the schedule without passing any conflicting reads or writes.

Consider some action of T j, say Wi(Y).  Could it be preceded in S  by some 
conflicting action, say wj(Y)?  If so, then in schedule 5 , actions uj(Y)  and k(Y )  
must intervene, in a sequence of actions

Since Ti is the first to unlock, Ui(X) precedes uj (Y)  in S; that is, S  might look 
like:

or Ui(X) could even appear before Wj(Y).  In any case, Ui(X) appears before 
h{Y), which means that Tj is not two-phase-locked, as we assumed. While 
we have only argued the nonexistence of conflicting pairs of writes, the same 
argument applies to any pair of potentially conflicting actions, one from Tj and 
the other from another Tj.

We conclude that it is indeed possible to move all the actions of Tj forward 
to the beginning of S, using swaps of nonconflicting read and write actions, 
followed by restoration of the lock and unlock actions of Tj. That is, S  can be 
written in the form

• • • ; Wj{Y)-• • • ; U i ( X ) ;  • - • ; Uj(Y ); • • • ; h (Y ) - • • • ; Wi(Y); ■ ■ ■

(Actions of Tj)(Actions of the other n — 1 transactions)

The tail of n — 1 transactions is still a legal schedule of consistent, 2PL trans
actions, so the inductive hypothesis applies to it. We convert the tail to a
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A Risk of Deadlock

One problem that is not solved by two-phase locking is the potential for 
deadlocks, where several transactions are forced by the scheduler to wait 
forever for a lock held by another transaction. For instance, consider the 
2PL transactions from Example 18.11, but with T2 changed to work on B  
first:

Tf. h(A); n(A);  A := A+100; u>i(^4); h(B); iii(A); r\(B); B := B+100; 
« i(5 );

T2: l2 (B); r2 (B)\ B := B*2; w2 (B); l2 (A); u 2 (B); r2 {A)\ A := A*2; 
w2 (A); u 2 (A);

A possible interleaving of the actions of these transactions is:

Ti T2 A B
25 25

h(A);  n(A);
l2(B); r2(B );

A := A+100;
B := B*2;

125
w2(B)\ 50

l \ (B)  D en ied  l2(A) D en ied

Now, neither transaction can proceed, and they wait forever. In Sec
tion 19.2, we shall discuss methods to remedy this situation. However, 
observe that it is not possible to allow both transactions to proceed, since 
if we do so the final database state cannot possibly have A =  B.

conflict-equivalent serial schedule, and now all of S  has been shown conflict- 
serializable.

18.3.5 Exercises for Section 18.3

E xercise 18.3.1: Below are two transactions, with lock requests and the se
mantics of the transactions indicated. Recall from Exercise 18.2.1 that these 
transactions have the unusual property that they can be scheduled in ways that 
are not conflict-serializable, but, because of the semantics, are serializable.

Ti: h(A);  ri(A); A := A+2; wi(A);  wi(4); li(B); rj(B); B := B*3; w i(£); 
Ui(B);
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T2: l2 (B); r 2 {B); B := B*2; w2 {B); u 2 (B); /2(A); r2 (A); A := A+3; w2 (A); 
u 2 (A);

In the questions below, consider only schedules of the read and write actions, 
not the lock, unlock, or assignment steps.

a) Give an example of a schedule that is prohibited by the locks.

! b) Of the (*) =  70 orders of the eight read and write actions, how many are 
legal schedules (i.e., they are permitted by the locks)?

! c) Of the legal schedules, how many are serializable (according to the se
mantics of the transactions given)?

! d) Of those schedules that are legal and serializable, how many are conflict- 
serializable?

!! e) Since Ti and T2  are not two-phase-locked, we would expect that some 
nonserializable behaviors would occur. Are there any legal schedules that 
are unserializable? If so, give an example, and if not, explain why.

! Exercise 18.3.2 : Here are the transactions of Exercise 18.3.1, with all unlocks 
moved to the end so they are two-phase-locked.

Ti: h(A); ri(A ); A := A+2; w>i(A); h(B);  n (B ); B := B*3; Wi(B); Ui(A); 
ui(B);

T2: l2 (B); r2(B ); B := B*2; w2 (B); 12{A); r 2 (A); A := A+3; w2(A); u 2 {B); 
u2(A);

How many legal schedules of all the read and write actions of these transactions 
are there?

E xercise 18.3 .3 : For each of the schedules of Exercise 18.2.4, assume that 
each transaction takes a lock on each database element immediately before it 
reads or writes the element, and that each transaction releases its locks immedi
ately after the last time it accesses an element. Tell what the locking scheduler 
would do with each of these schedules; i.e., what requests would get delayed, 
and when would they be allowed to resume?

! E xercise 18.3 .4 : For each of the transactions described below, suppose that 
we insert one lock and one unlock action for each database element that is 
accessed.

a) ri (A); wx(B );

b) r2(A); w2 (A)-, w2 (B);

Tell how many orders of the lock, unlock, read, and write actions are:
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i. Consistent and two-phase locked.

ii. Consistent, but not two-phase locked.

Hi.  Inconsistent, but two-phase locked.

iv. Neither consistent nor two-phase locked.

18.4 Locking System s W ith Several Lock M odes
The locking scheme of Section 18.3 illustrates the important ideas behind lock
ing, but it is too simple to be a practical scheme. The main problem is that a 
transaction T  must take a lock on a database element X  even if it only wants 
to read X  and not write it. We cannot avoid taking the lock, because if we 
didn’t, then another transaction might write a new value for X  while T  was 
active and cause unserializable behavior. On the other hand, there is no reason 
why several transactions could not read X  at the same time, as long as none is 
allowed to write X .

We are thus motivated to introduce the most common locking scheme, where 
there are two different kinds of locks, one for reading (called a “shared lock” or 
“read lock”), and one for writing (called an “exclusive lock” or “write lock”). 
We then examine an improved scheme where transactions are allowed to take 
a shared lock and “upgrade” it to an exclusive lock later. We also consider 
“increment locks,” which treat specially write actions that increment a database 
element; the important distinction is that increment operations commute, while 
general writes do not. These examples lead us to the general notion of a lock 
scheme described by a “compatibility matrix” that indicates what locks on a 
database element may be granted when other locks are held.

18.4.1 Shared and Exclusive Locks
The lock we need for writing is “stronger” than the lock we need to read, 
since it must prevent both reads and writes. Let us therefore consider a locking 
scheduler that uses two different kinds of locks: shared locks and exclusive locks. 
For any database element X  there can be either one exclusive lock on X,  or no 
exclusive locks but any number of shared locks. If we want to write X ,  we need 
to have an exclusive lock on X,  but if we wish only to read X  we may have 
either a shared or exclusive lock on X.  If we want to read X  but not write it, 
it is better to take only a shared lock.

We shall use sli(X) to mean “transaction T j requests a shared lock on 
database element X ” and xli(X) for “T j requests an exclusive lock on X.” We 
continue to use Ui(X) to mean that Ti unlocks X; i.e., it relinquishes whatever 
lock(s) it has on X .

The three kinds of requirements — consistency and 2PL for transactions, 
and legality for schedules — each have their counterpart for a shared/exclusive 
lock system. We summarize these requirements here:
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1. Consistency of transactions: A transaction may not write without holding 
an exclusive lock, and you may not read without holding some lock. More 
precisely, in any transaction Ti,

(a) A read action ri(X)  must be preceded by sli(X) or xk (X ) ,  with no 
intervening U i ( X ) .

(b) A write action Wi(X) must be preceded by xli(X),  with no interven
ing Ui{X).

All locks must be followed by an unlock of the same element.

2. Two-phase locking of transactions: Locking must precede unlocking. To 
be more precise, in any two-phase locked transaction T*, no action sli(X) 
or xli(X)  can be preceded by an action Ui(Y), for any Y.

3. Legality of schedules: An element may either be locked exclusively by one 
transaction or by several in shared mode, but not both. More precisely:

(a) If xli(X) appears in a schedule, then there cannot be a following 
x lj(X )  or slj(X),  for some j  other than i, without an intervening 
Ui(X).

(b) If sli(X) appears in a schedule, then there cannot be a following 
x lj(X),  for j  /  i, without an intervening Ui(X).

Note that we do allow one transaction to request and hold both shared 
and exclusive locks on the same element, provided its doing so does not 
conflict with the lock(s) of other transactions. If transactions know in 
advance their needs for locks, then only the exclusive lock would have to 
be requested, but if lock needs are unpredictable, then it is possible that 
one transaction would request both shared and exclusive locks at different 
times.

E xam ple 18.13: Let us examine a possible schedule of the following two 
transactions, using shared and exclusive locks:

Ti: sli(A); ri{A); xli(B); n (B );  Wi(B); «i(A); iti(B);
T2: sl2 (A); r2 (A.)-, sl2 (B)-, r2 (B); u 2 (A); u2 (B);

Both Ti and T2  read A  and B, but only T\ writes B. Neither writes A.
In Fig. 18.15 is an interleaving of the actions of Ti and T2  in which Ti begins 

by getting a shared lock on A. Then, T2  follows by getting shared locks on both 
A  and B.  Now, Ti needs an exclusive lock on B, since it will both read and 
write B.  However, it cannot get the exclusive lock because T2  already has a 
shared lock on B. Thus, the scheduler forces T% to wait. Eventually, T2  releases 
the lock on B. At that time, Ti may complete. □
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T\ 2~2
sh(Ay, n (A)-,

sl2 {A); r2 (A);
sl2 (B); r2 (B);

xl\{B) D enied
u 2( A) ;  u 2( B )

xh(B)\  r i (B); wi_(B)\ 
ui(A)\ ui{B);

Figure 18.15: A schedule using shared and exclusive locks

Notice that the resulting schedule in Fig 18.15 is conflict-serializable. The 
conflict-equivalent serial order is (T2,Xi), even though T% started first. The 
argument we gave in Section 18.3.4 to show that legal schedules of consistent, 
2PL transactions are conflict-serializable applies to systems with shared and 
exclusive locks as well. In Fig. 18.15, T2 unlocks before Ti, so we would expect 
T2  to precede Ti in the serial order.

18.4.2 Compatibility Matrices
If we use several lock modes, then the scheduler needs a policy about when it 
can grant a lock request, given the other locks that may already be held on the 
same database element. A compatibility matrix is a convenient way to describe 
lock-management policies. It has a row and column for each lock mode. The 
rows correspond to a lock that is already held on an element X  by another 
transaction, and the columns correspond to the mode of a lock on X  that is 
requested. The rule for using a compatibility matrix for lock-granting decisions 
is:

• We can grant the lock on X  in mode C if and only if for every row R  such 
that there is already a lock on X  in mode R  by some other transaction, 
there is a “Yes” in column C.

Lock requested
S X

Lock held S Yes No
in mode X No No

Figure 18.16: The compatibility matrix for shared and exclusive locks

E xam ple 18.14: Figure 18.16 is the compatibility matrix for shared (S) and 
exclusive (X) locks. The column for S  says that we can grant a shared lock on
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an element if the only locks held on that element currently are shared locks. 
The column for X  says that we can grant an exclusive lock only if there are no 
other locks held currently. □

18.4.3 Upgrading Locks
A transaction T  that takes a shared lock on X  is being “friendly” toward other 
transactions, since they are allowed to read X  at the same time T is. Thus, 
we might wonder whether it would be friendlier still if a transaction T  that 
wants to read and write a new value of X  were first to take a shared lock 
on X ,  and only later, when T  was ready to write the new value, upgrade the 
lock to exclusive (i.e., request an exclusive lock on X  in addition to its already 
held shared lock on X ).  There is nothing that prevents a transaction from 
issuing requests for locks on the same database element in different modes. We 
adopt the convention that Ui(X) releases all locks on X  held by transaction Tj, 
although we could introduce mode-specific unlock actions if there were a use 
for them.

E xam ple 18.15: In the following example, transaction Ti is able to perform 
its computation concurrently with T2, which would not be possible had T\ taken 
an exclusive lock on B  initially. The two transactions are:

Ti: sh(A)\ n (A ); s h (B ); n{B ); xh(B); w ^B );  ui(A); « i(£ );
T2: sl2 (A)\ r 2 (A); sl2 (B); r 2 (B); u2 (A); u2 (B);

Here, T\ reads A  and B  and performs some (possibly lengthy) calculation with 
them, eventually using the result to write a new value of B.  Notice that Ti 
takes a shared lock on B  first, and later, after its calculation involving A  and B  
is finished, requests an exclusive lock on B. Transaction T2  only reads A  and 
B, and does not write.

Xi T2
sli(A); ri(A);

sl2 (A); r2 (A); 
sl2 {B)\ r2 (B)-,

sli(B); r\(B)] 
xli(B)  D enied

u 2( A) ;  u 2( B )
xli(B); w i{B ); 
ui(A); u 2 (B)\

Figure 18.17: Upgrading locks allows more concurrent operation

Figure 18.17 shows a possible schedule of actions. T2 gets a shared lock on 
B  before Ti does, but on the fourth line, Ti is also able to lock B  in shared



18.4. LOCKING SYSTEM S WITH SEVERAL LOCK MODES 909

mode. Thus, 7\ has both A  and B  and can perform its computation using their 
values. It is not until Ti tries to upgrade its lock on B  to exclusive that the 
scheduler must deny the request and force Ti to wait until T 2 releases its lock 
on B.  At that time, T j gets its exclusive lock on B,  writes B, and finishes.

Notice that had Ti asked for an exclusive lock on B  initially, before reading 
B,  then the request would have been denied, because T 2 already had a shared 
lock on B. Ti could not perform its computation without reading B,  and so 
Ti would have more to do after T 2 releases its locks. As a result, T\ finishes 
later using only an exclusive lock on B  than it would if it used the upgrading 
strategy. □

E xam ple 18.16: Unfortunately, indiscriminate use of upgrading introduces a 
new and potentially serious source of deadlocks. Suppose, that Ti and T2  each 
read database element A  and write a new value for A. If both transactions use 
an upgrading approach, first getting a shared lock on A  and then upgrading it to 
exclusive, the sequence of events suggested in Fig. 18.18 will happen whenever
I i  and T2  initiate at approximately the same time.

Ti T2
sh(A)  

sl2 (A)
xli (A) D enied

x l 2 (A) D enied

Figure 18.18: Upgrading by two transactions can cause a deadlock

Ti and T2  are both able to get shared locks on A. Then, they each try to 
upgrade to exclusive, but the scheduler forces each to wait because the other 
has a shared lock on A. Thus, neither can make progress, and they will each 
wait forever, or until the system discovers that there is a deadlock, aborts one 
of the two transactions, and gives the other the exclusive lock on A. □

18.4.4 Update Locks
We can avoid the deadlock problem of Example 18.16 with a third lock mode, 
called update locks. An update lock uli(X)  gives transaction T j only the privi
lege to read X ,  not to write X .  However, only the update lock can be upgraded 
to a write lock later; a read lock cannot be upgraded. We can grant an update 
lock on X  when there are already shared locks on X ,  but once there is an up
date lock on X  we prevent additional locks of any kind — shared, update, or 
exclusive — from being taken on X .  The reason is that if we don’t deny such 
locks, then the updater might never get a chance to upgrade to exclusive, since 
there would always be other locks on X .

This rule leads to an asymmetric compatibility matrix, because the update 
(U) lock looks like a shared lock when we are requesting it and looks like an
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exclusive lock when we already have it. Thus, the columns for U and S locks 
are the same, and the rows for U and X locks are the same. The matrix is 
shown in Fig. 18.19.3

s X U
s Yes No Yes
X No No No
u No No No

Figure 18.19: Compatibility matrix for shared, exclusive, and update locks

E xam ple  18.17: The use of update locks would have no effect on Exam
ple 18.15. As its third action, Tj would take an update lock on B,  rather than 
a shared lock. But the update lock would be granted, since only shared locks 
are held on B,  and the same sequence of actions shown in Fig. 18.17 would 
occur.

However, update locks fix the problem shown in Example 18.16. Now, both 
Xi and T2 first request update locks on A  and only later take exclusive locks. 
Possible descriptions of Ti and T2 are:

Ti: uli{A); n (A );  xh{A)-, Wi(A); iti(A);
T2: ul2 (A); r2 (A); xl2 (A); w2 (A); u 2 (A);

The sequence of events corresponding to Fig. 18.18 is shown in Fig. 18.20. Now, 
T2, the second to request an update lock on A, is denied. I i  is allowed to finish, 
and then T2  may proceed. The lock system has effectively prevented concurrent 
execution of Ti and T2, but in this example, any significant amount of concur
rent execution will result in either a deadlock or an inconsistent database state.
□

Ti____________________n ________________
uh {A );n {A );

ul2 (A) D enied
xli(A); Wi(A); ux{A);

ul2 (A); r2 (A); 
xl2 (A); w2 (A); u 2 (A);

Figure 18.20: Correct execution using update locks

3Remember, however, that there is an additional condition regarding legality of schedules 
that is not reflected by this matrix: a transaction holding a shared lock but not an update 
lock on an element X  cannot be given an exclusive lock on X,  even though we do not in 
general prohibit a transaction from holding multiple locks on an element.
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18.4.5 Increment Locks
Another interesting kind of lock that is useful in some situations is an “incre
ment lock.” Many transactions operate on the database only by incrementing or 
decrementing stored values. For example, consider a transaction that transfers 
money from one bank account to another.

The useful property of increment actions is that they commute with each 
other, since if two transactions add constants to the same database element, it 
does not m atter which goes first, as the diagram of database state transitions in 
Fig. 18.21 suggests. On the other hand, incrementation commutes with neither 
reading nor writing; If you read A  before or after it is incremented, you leave 
different values, and if you increment A  before or after some other transaction 
writes a new value for A, you get different values of A  in the database.

Figure 18.21: Two increment actions commute, since the final database state 
does not depend on which went first

Let us introduce as a possible action in transactions the increment action, 
written INC(A,c). Informally, this action adds constant c to database element 
A, which we assume is a single number. Note that c could be negative, in 
which case we are really decrementing A. In practice, we might apply INC to a 
component of a tuple, while the tuple itself, rather than one of its components, 
is the lockable element. More formally, we use INC(A,c) to stand for the atomic 
execution of the following steps: READ(A,t); t  := t+ c ; WRITE(A,t) ;.

Corresponding to the increment action, we need an increment lock. We 
shall denote the action of Tj requesting an increment lock on X  by ili(X).  We 
also use shorthand mCj(X) for the action in which transaction Ti increments 
database element X  by some constant; the exact constant doesn’t matter.

The existence of increment actions and locks requires us to make several 
modifications to our definitions of consistent transactions, conflicts, and legal 
schedules. These changes are:

a) A consistent transaction can only have an increment action on X  if it 
holds an increment lock on X  at the time. An increment lock does not 
enable either read or write actions, however.

b) In a legal schedule, any number of transactions can hold an increment 
lock on X  at any time. However, if an increment lock on X  is held by 
some transaction, then no other transaction can hold either a shared or 
exclusive lock on X  at the same time. These requirements axe expressed
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by the compatibility matrix of Fig. 18.22, where I  represents a lock in 
increment mode.

c) The action inCi(X) conflicts with both r j(X )  and Wj(X), for j  /  i, but 
does not conflict with incj(X).

s X I
s Yes No No
X No No No
I No No Yes

Figure 18.22: Compatibility matrix for shared, exclusive, and increment locks

E xam ple  18.18: Consider two transactions, each of which read database ele
ment A  and then increment B.

Ti: sh(A); n (A );  ili(B)-, inci(B); tti(A); «i(B); 
T2: sl2 (A); r 2(A); il2 (B); inc2 {B); u 2 (A); u2 (B );

Notice that the transactions are consistent, since they only perform an incre
mentation while they have an increment lock, and they only read while they 
have a shared lock. Figure 18.23 shows a possible interleaving of and T2. Ti 
reads A  first, but then T2  both reads A  and increments B. However, Ti is then 
allowed to get its increment lock on B  and proceed.

Ti______________ Th___________
sh(A); n{A);  

sl2 {A); r2 (A); 
il2 (B); inc2 (B ); 

ili(B); inci(B);
u 2{A)-, u 2{ B) \

mi (A); Mi {B)\

Figure 18.23: A schedule of transactions with increment actions and locks

Notice that the scheduler did not have to delay any requests in Fig. 18.23. 
Suppose, for instance, that Ti increments B  by A,  and T2  increments B  by 2A. 
They can execute in either order, since the value of A  does not change, and the 
incrementations may also be performed in either order.

Put another way, we may look at the sequence of non-lock actions in the 
schedule of Fig. 18.23; they are:

S: ri(A); r 2 (A); inc2 (B); m ci(B);
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We may move the last action, inci(B), to the second position, since it does 
not conflict with another increment of the same element, and surely does not 
conflict with a read of a different element. This sequence of swaps shows that 
S  is conflict-equivalent to the serial schedule ri(A); inci(B); r2 (A); inc2 (B)\. 
Similarly, we can move the first action, r\(A) to the third position by swaps, 
giving a serial schedule in which T2 precedes T i. □

18.4.6 Exercises for Section 18.4
Exercise 18.4.1: For each of the schedules of transactions Ti, T2, and T3  

below:

a) n(A ); r2 (B); r 3(C); w2 (C); w3(D);

b) ri(A); r2 (B)\ r3 (C); wi(B); w2 (C); w3 {A);

c) ri(A); r2(S); r 3 (C); n (B );  r 2(C); r3 {D); tui(C); w2(D); w3 (E);

d) n(A); r2 (B); r3(C); n (B );  r2 (C); r3 (D); w ^A); w2 (B); w3 (C);

e) ri(A); r2(B ); r3 (C); n (B); r2 (C); r3 (A); w 1 (A); w2 {B)-, w3 (C)\ 

do each of the following:

i. Insert shared and exclusive locks, and insert unlock actions. Place a 
shared lock immediately in front of each read action that is not followed 
by a write action of the same element by the same transaction. Place 
an exclusive lock in front of every other read or write action. Place the 
necessary unlocks at the end of every transaction.

ii. Tell what happens when each schedule is run by a scheduler that supports 
shared and exclusive locks.

iii. Insert shared and exclusive locks in a way that allows upgrading. Place 
a shared lock in front of every read, an exclusive lock in front of every 
write, and place the necessary unlocks at the ends of the transactions.

iv. Tell what happens when each schedule from (iii) is run by a scheduler 
that supports shared locks, exclusive locks, and upgrading.

v. Insert shared, exclusive, and update locks, along with unlock actions. 
Place a shared lock in front of every read action that is not going to be 
upgraded, place an update lock in front of every read action that will be 
upgraded, and place an exclusive lock in front of every write action. Place 
unlocks at the ends of transactions, as usual.

vi. Tell what happens when each schedule from (v) is run by a scheduler that 
supports shared, exclusive, and update locks.
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! E xercise 18.4.2: Consider the two transactions:

Tx\ n (A ); n{B); inci(A); mci(J5);
T2: r2 (A); r2 (B); inc2 (A)\ inc2 (B);

Answer the following:

a) How many interleavings of these transactions are serializable?

b) If the order of incrementation in T2  were reversed [i.e., inc2 (B) followed 
by inc2 {A)], how many serializable interleavings would there be?

E xercise 18.4.3: For each of the following schedules, insert appropriate locks 
(read, write, or increment) before each action, and unlocks at the ends of trans
actions. Then tell what happens when the schedule is run by a scheduler that 
supports these three types of locks.

a) ri (A); r2(S); inci(B); inc2 (C)\ wi{C); w2 (D);

b) n(A ); r2(£); inci(B); inc2(A); Wi(C); w2 (D);

c) inci(A); inc2 (B); inci(B); inc2(C); Wi(C'); w2 {D)\

Exercise 18.4.4: In Exercise 18.1.1, we discussed a hypothetical transaction 
involving an airline reservation. If the transaction manager had available to it 
shared, exclusive, update, and increment locks, what lock would you recommend 
for each of the steps of the transaction?

E xercise 18.4.5: The action of multiplication by a constant factor can be 
modeled by an action of its own. Suppose MC(X,c) stands for an atomic execu
tion of the steps READ(X,t) ; t  := c * t ; WRITE(X.t);. We can also introduce 
a lock mode that allows only multiplication by a constant factor.

a) Show the compatibility matrix for read, write, and multiplication-by-a- 
constant locks.

! b) Show the compatibility matrix for read, write, incrementation, and mult- 
iplication-by-a-constant locks.

! Exercise 18.4.6: Suppose for sake of argument that database elements are 
two-dimensional vectors. There are four operations we can perform on vectors, 
and each will have its own type of lock.

i. Change the value along the x-axis (an X-lock).

ii. Change the value along the y-axis (a F-lock).

Hi. Change the angle of the vector (an A-lock).

iv. Change the magnitude of the vector (an M-lock).
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Answer the following questions.

a) Which pairs of operations commute? For example, if we rotate the vector 
so its angle is 120° and then change the ^-coordinate to be 10, is that 
the same as first changing the x-coordinate to 10 and then changing the 
angle to 120°?

b) Based on your answer to (a), what is the compatibility matrix for the four 
types of locks?

!! c) Suppose we changed the four operations so that instead of giving new 
values for a measure, the operations incremented the measure (e.g., “add 
10 to the ^-coordinate,” or “rotate the vector 30° clockwise”). What 
would the compatibility matrix then be?

E xercise 18.4.7: Here is a schedule with one action missing:

n ( A ) ; r 2(B); ???; Wl(C); w2 (A);

Your problem is to figure out what actions of certain types could replace the 
??? and make the schedule not be serializable. Tell all possible nonserializable 
replacements for each of the following types of action: (a) Read (b) Write
(c) Update (d) Increment.

18.5 An Architecture for a Locking Scheduler
Having seen a number of different locking schemes, we next consider how a 
scheduler that uses one of these schemes operates. We shall consider here only 
a simple scheduler architecture based on several principles:

1. The transactions themselves do not request locks, or cannot be relied 
upon to do so. It is the job of the scheduler to insert lock actions into the 
stream of reads, writes, and other actions that access data.

2. Transactions do not release locks. Rather, the scheduler releases the locks 
when the transaction manager tells it that the transaction will commit or 
abort.

18.5.1 A Scheduler That Inserts Lock Actions
Figure 18.24 shows a two-part scheduler that accepts requests such as read, 
write, commit, and abort, from transactions. The scheduler maintains a lock 
table, which, although it is shown as secondary-storage data, may be partially 
or completely in main memory. Normally, the main memory used by the lock 
table is not part of the buffer pool that is used for query execution and logging. 
Rather, the lock table is just another component of the DBMS, and will be
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From  transactions

Figure 18.24: A scheduler that inserts lock requests into the transactions’ re
quest stream

allocated space by the operating system like other code and internal data of the 
DBMS.

Actions requested by a transaction are generally transmitted through the 
scheduler and executed on the database. However, under some circumstances 
a transaction is delayed, waiting for a lock, and its requests are not (yet) trans
mitted to the database. The two parts of the scheduler perform the following 
actions:

1. Part I takes the stream of requests generated by the transactions and 
inserts appropriate lock actions ahead of all database-access operations, 
such as read, write, increment, or update. The database access actions 
are then transmitted to Part II. Part I of the scheduler must select an 
appropriate lock mode from whatever set of lock modes the scheduler is 
using.

2. Part II takes the sequence of lock and database-access actions passed 
to it by Part I, and executes each appropriately. If a lock or database- 
access request is received by Part II, it determines whether the issuing 
transaction T is already delayed, because a lock has not been granted. 
If so, then the action is itself delayed and added to a list of actions that 
must eventually be performed for transaction T. If T  is not delayed (i.e., 
all locks it previously requested have been granted already), then

(a) If the action is a database access, it is transmitted to the database 
and executed.

(b) If a lock action is received by Part II, it examines the lock table to 
see if the lock can be granted.

i. If so, the lock table is modified to include the lock just granted.
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ii. If not, then an entry must be made in the lock table to indicate 
that the lock has been requested. Part II of the scheduler then 
delays transaction T  until such time as the lock is granted.

3. When a transaction T commits or aborts, Part I is notified by the trans
action manager, and releases all locks held by T.  If any transactions are 
waiting for any of these locks, Part I notifies Part II.

4. When Part II is notified that a lock on some database element X  is avail
able, it determines the next transaction or transactions that can now be 
given a lock on X .  The transaction(s) that receive a lock are allowed to 
execute as many of their delayed actions as can execute, until they either 
complete or reach another lock request that cannot be granted.

E xam ple 18.19: If there is only one kind of lock, as in Section 18.3, then the 
task of Part I of the scheduler is simple. If it sees any action on database element 
X ,  and it has not already inserted a lock request on X  for that transaction, 
then it inserts the request. When a transaction commits or aborts, Part I can 
forget about that transaction after releasing its locks, so the memory required 
for Part I does not grow indefinitely.

When there are several kinds of locks, the scheduler may require advance 
notice of what future actions on the same database element will occur. Let us 
reconsider the case of shared-exclusive-update locks, using the transactions of 
Example 18.15, which we now write without any locks at all:

Ti: ri(A); n (B );  Wi(B);
Tf. r2 (A); r 2(S);

The messages sent to Part I of the scheduler must include not only the read 
or write request, but an indication of future actions on the same element. In 
particular, when ri(B)  is sent, the scheduler needs to know that there will be 
a later wi(B)  action (or might be such an action). There are several ways 
the information might be made available. For example, if the transaction is a 
query, we know it will not write anything. If the transaction is a SQL database 
modification command, then the query processor can determine in advance the 
database elements that might be both read and written. If the transaction is 
a program with embedded SQL, then the compiler has access to all the SQL 
statements (which are the only ones that can access the database) and can 
determine the potential database elements written.

In our example, suppose that events occur in the order suggested by Fig. 
18.17. Then Ti first issues rj (A). Since there will be no future upgrading of 
this lock, the scheduler inserts sh(A)  ahead of r\(A). Next, the requests from 
T2 — r2(A) and r2  (B) — arrive at the scheduler. Again there is no future 
upgrade, so the sequence of actions sl2 (A); r 2(A); .s/2(B); r2(B) are issued by 
Part I.

Then, the action r i (B) arrives at the scheduler, along with a warning that 
this lock may be upgraded. The scheduler Part I thus emits uli(B); r i(B )  to
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Part II. The latter consults the lock table and finds that it can grant the update 
lock on B  to Ti, because there are only shared locks on B.

When the action wi(B)  arrives at the scheduler, Part I emits xl\{B)\ wi(B). 
However, Part II cannot grant the xli(B )  request, because there is a shared lock 
on B  for T2. This and any subsequent actions from Ti are delayed, stored by 
Part II for future execution. Eventually, TV-commits, and Part I releases the 
locks on A  and B  that T2 held. At that time, it is found that Ti is waiting for 
a lock on B.  Part II of the scheduler is notified, and it finds the lock xl\{B)  
is now available. It enters this lock into the lock table and proceeds to execute 
stored actions from Ti to the extent possible. In this case, T\ completes. □

Lock inform ation fo r A

Figure 18.25: A lock table is a mapping from database elements to their lock 
information

18.5.2 The Lock Table
Abstractly, the lock table is a relation that associates database elements with 
locking information about that element, as suggested by Fig. 18.25. The table 
might, for instance, be implemented with a hash table, using (addresses of) 
database elements as the hash key. Any element that is not locked does not 
appear in the table, so the size is proportional to the number of locked elements 
only, not to the size of the entire database.

In Fig. 18.26 is an example of the sort of information we would find in a lock- 
table entry. This example structure assumes that the shared-exclusive-update 
lock scheme of Section 18.4.4 is used by the scheduler. The entry shown for a 
typical database element A  is a tuple with the following components:

1. The group mode is a summary of the most stringent conditions that a 
transaction requesting a new lock on A  faces. Rather than comparing 
the lock request with every lock held by another transaction on the same 
element, we can simplify the grant/deny decision by comparing the request 
with only the group mode.4 For the shared-exclusive-update (S X U ) lock 
scheme, the rule is simple: the group mode:

4T h e  lock m an ag er m u st, however, deal w ith  th e  p o ssib ility  th a t  th e  requesting  tran sac tio n  
already  has a  lock in an o th e r  m ode on th e  sam e elem ent. For in stan ce , in th e  S X U  lock 
sys tem  discussed , th e  lock m an ag er m ay  be  able  to  g ran t an  Jf-lock  request if  th e  requesting
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Figure 18.26: Structure of lock-table entries

(a) S  means that only shared locks are held.
(b) U means that there is one update lock and perhaps one or more 

shared locks.
(c) X  means there is one exclusive lock and no other locks.

For other lock schemes, there is usually an appropriate system of sum
maries by a group mode; we leave examples as exercises.

2. The waiting bit tells that there is at least one transaction waiting for a 
lock on A.

3. A list describing all those transactions that either currently hold locks on 
A or are waiting for a lock on A. Useful information that each list entry 
has might include:

(a) The name of the transaction holding or waiting for a lock.

(b) The mode of this lock.
(c) Whether the transaction is holding or waiting for the lock.

We also show in Fig. 18.26 two links for each entry. One links the entries 
themselves, and the other links all entries for a particular transaction 
(Tnext in the figure). The latter link would be used when a transaction 
commits or aborts, so that we can easily find all the locks that must be 
released.

tran sac tio n  is th e  one th a t  holds a  U  lock on th e  sam e elem ent. For system s th a t  do not 
su p p o rt m u ltip le  locks held by one tran sac tio n  on one elem ent, th e  g roup m ode alw ays tells 
w h a t th e  lock m anager needs to  know.
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H an d lin g  Lock R eq u ests

Suppose transaction T  requests a lock on A. If there is no lock-table entry for 
A,  then surely there are no locks on A,  so the entry is created and the request 
is granted. If the lock-table entry for A  exists, we use it to guide the decision 
about the lock request. We find the group mode, which in Fig. 18.26 is U, 
or “update.” Once there is an update lock on an element, no other lock can 
be granted (except in the case that T  itself TTolds the U lock and other locks 
are compatible with T ’s request). Thus, this request by T  is denied, and an 
entry will be placed on the list saying T  requests a lock (in whatever mode was 
requested), and Wait? = ’y e s ’ .

If the group mode had been X  (exclusive), then the same thing would hap
pen, but if the group mode were S  (shared), then another shared or update 
lock could be granted. In that case, the entry for T  on the list would have 
Wait? = ’no ’, and the group mode would be changed to U if the new lock 
were an update lock; otherwise, the group mode would remain S. Whether or 
not the lock is granted, the new list entry is linked properly, through its Tnext 
and Next fields. Notice that whether or not the lock is granted, the entry in the 
lock table tells the scheduler what it needs to know without having to examine 
the list of locks.

H andling  U nlocks

Now suppose transaction T  unlocks A. T ’s entry on the list for A  is deleted. If 
the lock held by T  is not the same as the group mode (e.g., T  held an S  lock, 
while the group mode was U), then there is no reason to change the group mode. 
On the other hand, if T ’s lock is in the group mode, we may have to examine the 
entire list to find the new group mode. In the example of Fig. 18.26, we know 
there can be only one U lock on an element, so if that lock is released, the new 
group mode could be only S  (if there are shared locks remaining) or nothing 
(if no other locks are currently held).5 If the group mode is X ,  we know there 
are no other locks, and if the group mode is S,  we need to determine whether 
there are other shared locks.

If the value of W aiting is ’y e s ’ , then we need to grant one or more locks 
from the list of requested locks. There are several different approaches, each 
with its advantages:

1. First-come-first-served: Grant the lock request that has been waiting the 
longest. This strategy guarantees no starvation, the situation where a 
transaction can wait forever for a lock.

2. Priority to shared locks: First grant all the shared locks waiting. Then, 
grant one update lock, if there are any waiting. Only grant an exclusive 
lock if no others are waiting. This strategy can allow starvation, if a 
transaction is waiting for a U or X  lock.

5W e w ould never a c tu a lly  see a  g roup  m ode of “n o th in g ,” since if  th e re  are  no locks and  
no lock requests on an  elem en t, th en  th e re  is no lock -tab le  e n try  fo r th a t  elem ent.
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3. Priority to upgrading-. If there is a transaction with a U lock waiting to 
upgrade it to an X  lock, grant that first. Otherwise, follow one of the 
other strategies mentioned.

18.5.3 Exercises for Section 18.5
E xercise 18.5.1: What are suitable group modes for a lock table if the lock 
modes used are:

a) Shared and exclusive locks.

! b) Shared, exclusive, and increment locks.

!! c) The lock modes of Exercise 18.4.6.

Exercise 18.5.2: For each of the schedules of Exercise 18.2.4, tell the steps 
that the locking scheduler described in this section would execute.

18.6 Hierarchies of Database Elements
Let us now return to the exploration of different locking schemes that we began 
in Section 18.4. In particular, we shall focus on two problems that come up 
when there is a tree structure to our data.

1. The first kind of tree structure we encounter is a hierarchy of lockable 
elements. We shall discuss in this section how to allow locks on both large 
elements, e.g., relations, and smaller elements contained within these, such 
as blocks holding several tuples of the relation, or individual tuples.

2. The second kind of hierarchy that is important in concurrency-control 
systems is data that is itself organized in a tree. A major example is 
B-tree indexes. We may view nodes of the B-tree as database elements, 
but if we do, then as we shall see in Section 18.7, the locking schemes 
studied so far perform poorly, and we need to use a new approach.

18.6.1 Locks W ith M ultiple Granularity
Recall that the term “database element” was purposely left undefined, because 
different systems use different sizes of database elements to lock, such as tuples, 
pages or blocks, and relations. Some applications benefit from small database 
elements, such as tuples, while others are best off with large elements.

E xam ple 18.20: Consider a database for a bank. If we treated relations as 
database elements, and therefore had only one lock for an entire relation such 
as the one giving account balances, then the system would allow very little 
concurrency. Since most transactions will change an account balance either 
positively or negatively, most transactions would need an exclusive lock on the
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accounts relation. Thus, only one deposit or withdrawal could take place at 
any time, no m atter how many processors we had available to execute these 
transactions. A better approach is to lock individual pages or data blocks. 
Thus, two accounts whose tuples are on different blocks can be updated at the 
same time, offering almost all the concurrency that is possible in the system. 
The extreme would be to provide a lock for every tuple, so any set of accounts 
whatsoever could be updated at once, but this fine a grain of locks is probably 
not worth the extra effort.

In contrast, consider a database of documents. These documents may be 
edited from time to time, but most transactions will retrieve whole documents. 
The sensible choice of database element is a complete document. Since most 
transactions are read-only (i.e., they do not perform any write actions), locking 
is only necessary to avoid the reading of a document that is in the middle of 
being edited. Were we to use smaller-granularity locks, such as paragraphs, 
sentences, or words, there would be essentially no benefit but added expense. 
The only activity a smaller-granularity lock would support is the ability for two 
people to edit different parts of a document simultaneously. □

Some applications could use both large- and small-grained locks. For in
stance, the bank database discussed in Example 18.20 clearly needs block- or 
tuple-level locking, but might also at some time need a lock on the entire ac
counts relation in order to audit accounts (e.g., check that the sum of the 
accounts is correct). However, permitting a shared lock on the accounts rela
tion, in order to compute some aggregation on the relation, while at the same 
time there are exclusive locks on individual account tuples, can lead easily to 
unserializable behavior. The reason is that the relation is actually changing 
while a supposedly frozen copy of it is being read by the aggregation query.

18.6.2 Warning Locks
The solution to the problem of managing locks at different granularities involves 
a new kind of lock called a “warning.” These locks are useful when the database 
elements form a nested or hierarchical structure, as suggested in Fig. 18.27. 
There, we see three levels of database elements:

1. Relations are the largest lockable elements.

2. Each relation is composed of one or more block or pages, on which its 
tuples are stored.

3. Each block contains one or more tuples.

The rules for managing locks on a hierarchy of database elements constitute 
the warning protocol, which involves both “ordinary” locks and “warning” locks. 
We shall describe the lock scheme where the ordinary locks are 5  and X  (shared 
and exclusive). The warning locks will be denoted by prefixing I  (for “intention



18.6. HIERARCHIES OF DATABASE ELEMENTS 923

Figure 18.27: Database elements organized in a hierarchy

to”) to the ordinary locks; for example I S  represents the intention to obtain a 
shared lock on a subelement. The rules of the warning protocol are:

1. To place an ordinary S  or X  lock on any element, we must begin at the 
root of the hierarchy.

2. If we are at the element that we want to lock, we need look no farther. 
We request an S  or X  lock on that element.

3. If the element we wish to lock is further down the hierarchy, then we 
place a warning at this node; that is, if we want to get a shared lock on a 
subelement we request an I S  lock at this node, and if we want an exclusive 
lock on a subelement, we request an I X  lock on this node. When the lock 
on the current node is granted, we proceed to the appropriate child (the 
one whose subtree contains the node we wish to lock). We then repeat 
step (2) or step (3), as appropriate, until we reach the desired node.

IS IX S X
IS Yes Yes Yes No
IX Yes Yes No No
s Yes No Yes No

_x No No No No

Figure 18.28: Compatibility matrix for shared, exclusive, and intention locks

In order to decide whether or not one of these locks can be granted, we use 
the compatibility matrix of Fig. 18.28. To see why this matrix makes sense, 
consider first the I S  column. When we request an I S  lock on a node N , we 
intend to read a descendant of N.  The only time this intent could create a 
problem is if some other transaction has already claimed the right to write a 
new copy of the entire database element represented by N; thus we see “No” 
in the row for X .  Notice that if some other transaction plans to write only a 
subelement, indicated by an I X  lock at N ,  then we can afford to grant the I S
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Group Modes for Intention Locks

The compatibility matrix of Fig. 18.28 exhibits a situation we have not seen 
before regarding the power of lock modes. In prior lock schemes, whenever 
it was possible for a database element to be locked in both modes M  and 
N  at the same time, one of these modes dominates the other, in the sense 
that its row and column each has “No” in whatever positions the other 
mode’s row or column, respectively, has “No.” For example, in Fig. 18.19 
we see that U dominates S, and X  dominates both S  and U. An advantage 
of knowing that there is always one dominant lock on an element is that we 
can summarize the effect of many locks with a “group mode,” as discussed 
in Section 18.5.2.

As we see from Fig. 18.28, neither of modes S  and I X  dominate the 
other. Moreover, it is possible for an element to be locked in both modes 
S  and I X  at the same time, provided the locks are requested by the 
same transaction (recall that the “No” entries in a compatibility matrix 
only apply to locks held by some other transaction). A transaction might 
request both locks if it wanted to read an entire element and then write 
a few of its subelements. If a transaction has both S  and I X  locks on an 
element, then it restricts other transactions to the extent that either lock 
does. That is, we can imagine another lock mode S I X ,  whose row and 
column have “No” everywhere except in the entry for IS .  The lock mode 
S I X  serves as the group mode if there is a transaction with locks in S  and 
I X  modes, but not X  mode.

Incidentally, we might imagine that the same situation occurs in the 
matrix of Fig 18.22 for increment locks. That is, one transaction could 
hold locks in both S  and I  modes. However, this situation is equivalent to 
holding a lock in X  mode, so we could use X  as the group mode in that 
situation.

lock at N ,  and allow the conflict to be resolved at a lower level, if indeed the 
intent to write and the intent to read happen to involve a common element.

Now consider the column for I X .  If we intend to write a subelement of 
node N ,  then we must prevent either reading or writing of the entire element 
represented by N.  Thus, we see “No” in the entries for lock modes S  and X .  
However, per our discussion of the I S  column, another transaction that reads 
or writes a subelement can have potential conflicts dealt with at that level, so
I X  does not conflict with another I X  at N  or with an I S  at N.

Next, consider the column for S. Reading the element corresponding to 
node N  cannot conflict with either another read lock on iV or a read lock on 
some subelement of N ,  represented by I S  at N.  Thus, we see “Yes” in the rows 
for both 5  and IS .  However, either an X  or an I X  means that some other 
transaction will write at least a part of the element represented by N .  Thus,
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we cannot grant the right to read all of N ,  which explains the “No” entries in 
the column for S.

Finally, the column for X  has only “No” entries. We cannot allow writing 
of all of node N  if any other transaction already has the right to read or write 
N ,  or to acquire that right on a subelement.

E xam ple 18.21: Consider the relation

Movie(title, year, length, studioName)

Let us postulate a lock on the entire relation and locks on individual tuples. 
Then transaction T i, which consists of the query

SELECT *
FROM Movie
WHERE title = ’King Kong’;

starts by getting an I S  lock on the entire relation. It then moves to the in
dividual tuples (there are three movies with the title King Kong), and gets S  
locks on each of them.

Now, suppose that while we are executing the first query, transaction T%, 
which changes the year component of a tuple, begins:

UPDATE Movie 
SET year = 1939
WHERE title = ’Gone With the Wind’;

T2 needs an I X  lock on the relation, since it plans to write a new value for one 
of the tuples. T i’s I S  lock on the relation is compatible, so the lock is granted. 
When T2 goes to the tuple for Gone With the Wind, it finds no lock there, and 
so gets its X  lock and rewrites the tuple. Had T2 tried to write a new value in 
the tuple for one of the King Kong movies, it would have had to wait until T\ 
released it£ S  lock, since S  and X  are not compatible. The collection of locks 
is suggested by Fig. 18.29. □

7]-IS
T f  IX Movies

King Kong King K ong King Kong  

T .-S  Z - S  T .-S

Gone With the Wind

Figure 18.29: Locks granted to two transactions accessing Movie tuples



926 CHAPTER 18. CONCURRENCY CONTROL

18.6.3 Phantoms and Handling Insertions Correctly
When transactions create new subelements of a lockable element, there are some 
opportunities to go wrong. The problem is that we can only lock existing items; 
there is no easy way to lock database elements that do not exist but might later 
be inserted. The following example illustrates the point.

E xam ple 18.22: Suppose we have the same Movie relation as in Exam
ple 18.21, and the first transaction to execute is T3, which is the query

SELECT SUM(length)
FROM Movie
WHERE studioName = ’Disney’;

T3 needs to read the tuples of all the Disney movies, so it might start by getting 
an I S  lock on the Movie relation and S  locks on each of the tuples for Disney 
movies.6

Now, a transaction T4  comes along and inserts a new Disney movie. It 
seems that T4 needs no locks, but it has made the result of T3 incorrect. That 
fact by itself is not a concurrency problem, since the serial order (T3, X4 ) is 
equivalent to what actually happened. However, there could also be some other 
element X  that both T3 and T4 write, with T4 writing first, so there could be 
an unserializable behavior of more complex transactions.

To be more precise, suppose that D\ and are pre-existing Disney movies, 
and Dz is the new Disney movie inserted by T4. Let L be the sum of the lengths 
of the Disney movies computed by T3, and assume the consistency constraint 
on the database is that L should be equal to the sum of all the lengths of the 
Disney movies that existed the last time L was computed. Then the following 
is a sequence of events that is legal under the warning protocol:

»*3 (-D i); r3(D2y, w4{D3)\ Wi(X); w3(L); w3(X);

Here, we have used w<i(Dz) to represent the creation of D 3  by transaction X4. 
The schedule above is not serializable. In particular, the value of L is not the 
sum of the lengths of D\, D2, and D 3, which are the current Disney movies. 
Moreover, the fact that X  has the value written by T3 and not X4 rules out the 
possibility that T3 was ahead of T4 in a supposed equivalent serial order. □

The problem in Example 18.22 is that the new Disney movie has a phantom 
tuple, one that should have been locked but wasn’t, because it didn’t exist 
at the time the locks were taken. There is, however, a simple way to avoid 
the occurrence of phantoms. We must regard the insertion or deletion of a 
tuple as a write operation on the relation as a whole. Thus, transaction T4  

in Example 18.22 must obtain an X  lock on the relation Movie. Since T3 has 
already locked this relation in mode IS ,  and that mode is not compatible witk 
mode X,  T4 would have to wait until after T3 completes.

6However, if  th e re  w ere m an y  D isney m ovies, it  m igh t be  m ore efficient ju s t  to  get an S  
lock on  th e  en tire  re la tion .



18.7. THE TREE PROTOCOL 927

18.6.4 Exercises for Section 18.6
E xercise 18.6.1: Consider, for variety, an object-oriented database. The ob
jects of class C  are stored on two blocks, B\ and B2 - Block Bi contains objects 
Oi and O2 , while block B2 contains objects O3 , O4 , and 0 5. The entire set of 
objects of class C, the blocks, and the individual objects form a hierarchy of 
lockable database elements. Tell the sequence of lock requests and the response 
of a warning-protocol-based scheduler to the following sequences of requests. 
You may assume all requests occur just before they axe needed, and all unlocks 
occur at the end of the transaction.

a) n (O i); w2 {0 2); r2 (0 3); wx(0 4);

b) n ( 0 6); w2 (0 5 ); r2(0 3); w i(0 4);

c) ri(O i); r i ( 0 3); r 2(Oi); w2(0 4); w2 (0 5);

d) ri(O i); r 2(0 2); r3(Oi); w i(0 3); w2(0 4); w3 (0 5); io i(02);

E xercise 18.6.2: Change the sequence of actions in Example 18.22 so that the 
u>4(£>3) action becomes a write by T4  of the entire relation Movie. Then, show 
the action of a warning-protocol-based scheduler on this sequence of requests.

E xercise 18.6.3: Show how to add increment locks to a warning-protocol- 
based scheduler.

18.7 The Tree Protocol
Like Section 18.6, this section deals with data in the form of a tree. However, 
here, the nodes of the tree do not form a hierarchy based on containment. 
Rather, cjatabase elements are disjoint pieces of data, but the only way to get 
to a node is through its parent; B-trees are an important example of this sort of 
data. Knowing that we must traverse a particular path to an element gives us 
some important freedom to manage locks differently from the two-phase locking 
approaches we have seen so far.

18.7.1 M otivation for Tree-Based Locking
Let us consider a B-tree index in a system that treats individual nodes (i.e., 
blocks) as lockable database elements. The node is the right level of lock granu
larity, because treating smaller pieces as elements offers no benefit, and treating 
the entire B-tree as one database element prevents the sort of concurrent use 
of the index that can be achieved via the mechanisms that form the subject of 
this section.

If we use a standard set of lock modes, like shared, exclusive, and update 
locks, and we use two-phase locking, then concurrent use of the B-tree is almost 
impossible. The reason is that every transaction using the index must begin by
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locking the root node of the B-tree. If the transaction is 2PL, then it cannot 
unlock the root until it has acquired all the locks it needs, both on B-tree nodes 
and other database elements.7 Moreover, since in principle any transaction that 
inserts or deletes could wind up rewriting the root of the B-tree, the transaction 
needs at least an update lock on the root node, or an exclusive lock if update 
mode is not available. Thus, only one transaction that is not read-only can 
access the B-tree at any time.

However, in most situations, we can deduce almost immediately that a B- 
tree node will not be rewritten, even if the transaction inserts or deletes a tuple. 
For example, if the transaction inserts a tuple, but the child of the root that 
we visit is not completely full, then we know the insertion cannot propagate up 
to the root. Similarly, if the transaction deletes a single tuple, and the child 
of the root we visit has more than the minimum number of keys and pointers, 
then we can be sure the root will not change.

Thus, as soon as a transaction moves to a child of the root and observes 
the (quite usual) situation that rules out a rewrite of the root, we would like to 
release the lock on the root. The same observation applies to the lock on any 
interior node of the B-tree. Unfortunately, releasing the lock on the root early 
will violate 2PL, so we cannot be sure that the schedule of several transactions 
accessing the B-tree will be serializable. The solution is a specialized protocol 
for transactions that access tree-structured data such as B-trees. The protocol 
violates 2PL, but uses the fact that accesses to elements must proceed down 
the tree to assure serializability.

18.7.2 Rules for Access to Tree-Structured Data
The following restrictions on locks form the tree protocol. We assume that 
there is only one kind of lock, represented by lock requests of the form li(X), 
but the idea generalizes to any set of lock modes. We assume that transactions 
are consistent, and schedules must be legal (i.e., the scheduler will enforce the 
expected restrictions by granting locks on a node only when they do not conflict 
with locks already on that node), but there is no two-phase locking requirement 
on transactions.

1. A transaction’s first lock may be at any node of the tree .8

2. Subsequent locks may only be acquired if the transaction currently has a 
lock on the parent node.

3. Nodes may be unlocked at any time.

4. A transaction may not relock a node on which it has released a lock, even 
if it still holds a lock on the node’s parent.

7A dditionally , th e re  are  good reasons w hy a  tra n sa c tio n  w ill hold  all its  locks un til it  is 
read y  to  com m it; see Section 19.1.

8In  th e  B -tree  exam ple of Section 18.7.1, th e  firs t lock w ould alw ays be  a t  th e  roo t.
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Figure 18.30: A tree of lockable elements

E xam ple 18.23: Figure 18.30 shows a hierarchy of nodes, and Fig. 18.31 
indicates the action of three transactions on this data. T\ starts at the root A, 
and proceeds downward to B, C, and D. T2 starts at B  and tries to move to 
E, but its move is initially denied because of the lock by Tz on E. Transaction 
T3 starts at E  and moves to F  and G. Notice that Ti is not a 2PL transaction, 
because the lock on A  is relinquished before the lock on D is acquired. Similarly, 
Tz is not a 2PL transaction, although T2 happens to be 2PL. □

18.7.3 W hy the Tree Protocol Works
The tree protocol implies a serial order on the transactions involved in a sched
ule. We can define an order of precedence as follows. Say that T, <s Tj if in 
schedule S, the transactions T* and Tj lock a node in common, and T, locks the 
node first.

E xam ple 18.24: In the schedule S  of Fig 18.31, we find T\ and T2 lock B  in 
common, and Ti locks it first. Thus, Ti <s  T2. We also find that T2 and T3 
lock E/ in common, and T3  locks it first; thus Tz <s T2. However, there is no 
precedence between Ti and Tz, because they lock no node in common. Thus, 
the precedence graph derived from these precedence relations is as shown in 
Fig. 18.32. □

If the precedence graph drawn from the precedence relations that we defined 
above has no cycles, then we claim that any topological order of the transactions 
is an equivalent serial schedule. For example, either (Ti,T3,T2) or (T3,T i,T 2) 
is an equivalent serial schedule for Fig. 18.31. The reason is that in such a serial 
schedule, all nodes are touched in the same order as they are in the original 
schedule.

To understand why the precedence graph described above must always be 
acyclic if the tree protocol is obeyed, observe the following:

• If two transactions lock several elements in common, then they are all 
locked in the same order.
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Ti T2 T3
h(A); n(A);

Zi(C -); n ( C ) ;
Wi(A); Ui(A); 

hiD); n(D );
W].(B); tti(B);

J2 ( B ) ;  r a ( B ) ;
/3(F); r3 (E);

W! (£»); «i(£>);
u*(C);

12(E) D en ied
J3(F); r3(F); 
W3(F); u3(F); 
13(G); r3 (G) 
w3 (E); u3 (E);

h ( E y  ra(E);
w 3( G) ;  u 3( G)

w2 (B); u 2( B )■ 
w2 (E); 1 1 2(E);

Figure 18.31: Three transactions following the tree protocol

To see why, consider some transactions T  and U, which lock two or more items 
in common. First, notice that each transaction locks a set of elements that form 
a tree, and the intersection of two trees is itself a tree. Thus, there is some one 
highest element X  that both T  and U lock. Suppose that T  locks X  first, but 
that there is some other element Y  that U locks before T. Then there is a path 
in the tree of elements from X  to Y ,  and both T  and U must lock each element 
along the path, because neither can lock a node without having a lock on its 
parent.

Consider the first element along this path, say Z, that U locks first, as 
suggested by Fig. 18.33. Then T  locks the parent P  of Z  before U does. But 
then T  is still holding the lock on P  when it locks Z , so U has not yet locked

Figure 18.32: Precedence graph derived from the schedule of Fig. 18.31
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Figure 18.33: A path of elements locked by two transactions

P  when it locks Z. It cannot be that Z  is the first element U locks in common 
with T, since they both lock ancestor X  (which could also be P, but not Z). 
Thus, U cannot lock Z  until after it has acquired a lock on P, which is after T  
locks Z. We conclude that T  precedes U at every node they lock in common.

Now, consider an arbitrary set of transactions 7 \, T2, . . .  , Tn that obey the 
tree protocol and lock some of the nodes of a tree according to schedule S. 
First, among those that lock the root, they do so in some order, and by the rule 
just observed:

• If Ti locks the root before Tj, then Tj locks every node in common with 
Tj before Tj does. That is, Tj <s Tj, but not Tj <s Ti.

We can show by induction on the number of nodes of the tree that there is some 
serial order equivalent to S  for the complete set of transactions.

BASIS: If there is only one node, the root, then as we just observed, the order 
in which the transactions lock the root serves.

INDUCTIO N: If there is more than one node in the tree, consider for each 
subtree of the root the set of transactions that lock one or more nodes in that 
subtree. Note that transactions locking the root may belong to more than one 
subtree, but a transaction that does not lock the root will belong to only one 
subtree. For instance, among the transactions of Fig. 18.31, only Ti locks the 
root, and it belongs to both subtrees — the tree rooted at B  and the tree rooted 
at C. However, T2  and T3 belong only to the tree rooted at B.

By the inductive hypothesis, there is a serial order for all the transactions 
that lock nodes in any one subtree. We have only to blend the serial orders 
for the various subtrees. Since the only transactions these lists of transactions 
have in common are the transactions that lock the root, and we established 
that these transactions lock every node in common in the same order that they 
lock the root, it is not possible that two transactions locking the root appear in 
different orders in two of the sublists. Specifically, if Tj and Tj appear on the 
list for some child C of the root, then they lock C  in the same order as they lock
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the root and therefore appear on the list in that order. Thus, we can build a 
serial order for the full set of transactions by starting with the transactions that 
lock the root, in their appropriate order, and interspersing those transactions 
that do not lock the root in any order consistent with the serial order of their 
subtrees.

E xam ple  18.25: Suppose there are 10 transactions Ti,T2, . . .  ,T i0, and of 
these, Ti, T2, and T3 lock the root in that order. Suppose also that there 
are two children of the root, the first locked by Ti through T7 and the second 
locked by T2, T3, Tg, T9, and Tio- Hypothetically, let the serial order for the 
first subtree be (T4, Ti, T5, T2, T6, T3, TV); note that this order must include T1; 
T2, and T3 in that order. Also, let the serial order for the second subtree be 
(T8,T2,T9)Tio,T3). As must be the case, the transactions T2 and T3, which 
locked the root, appear in this sequence in the order in which they locked the 
root.

Figure 18.34: Combining serial orders for the subtrees into a serial order for all 
transactions

The constraints imposed on the serial order of these transactions are as 
shown in Fig. 18.34. Solid lines represent constraints due to the order at the 
first child of the root, while dashed lines represent the order at the second child. 
(T4, Tg, Ti, T5, T2, Tg, Tg, Tio, T3, T7) is one of the many topological sorts of this 
graph. □

18.7.4 Exercises for Section 18.7
E xercise 18.7.1: Suppose we perform the following actions on the B-tree of 
Fig. 14.13. If we use the tree protocol, when can we release a write-lock on each 
of the nodes searched?

(a) Insert 10 (b) Insert 20 (c) Delete 5 (d) Delete 23.

! Exercise 18.7.2: Consider the following transactions that operate on the tree 
of Fig. 18.30.

Ti: ri(j4); ri(B); ri(E); 
T2: r2(A); r2 (C); r2 (B ); 
T3: r 3(S); r3 (E); r3 (F);
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If schedules follow the tree protocol, in how many ways can we interleave:
(a) Ti and T2  (b) Ti and T3 !! (c) all three?

! E xercise 18.7.3: Suppose there are eight transactions Ti, T2, . . .  , Tg, of which 
the odd-numbered transactions, Ti, Ta, T-a, and TV, lock the root of a tree, in 
that order. There are three children of the root, the first locked by Ti, T2, T3, 
and T4 in that order. The second child is locked by T3, Tq, and T5, in that 
order, and the third child is locked by Tg and TV, in that order. How many 
serial orders of the transactions are consistent with these statements?

!! E xercise 18.7.4: Suppose we use the tree protocol with shared and exclusive 
locks for reading and writing, respectively. Rule (2), which requires a lock on 
the parent to get a lock on a node, must be changed to prevent unserializable 
behavior. What is the proper rule (2) for shared and exclusive locks? Hint: 
Does the lock on the parent have to be of the same type as the lock on the 
child?

18.8 Concurrency Control by Timestamps
Next, we shall consider two methods other than locking that are used in some 
systems to assure serializability of transactions:

1. Timestamping. Assign a “timestamp” to each transaction. Record the 
timestamps of the transactions that last read and write each database 
element, and compare these values with the transactions timestamps, to 
assure that the serial schedule according to the transactions’ timestamps 
is equivalent to the actual schedule of the transactions. This approach is 
the subject of the present section.

2. Validation. Examine timestamps of the transaction and the database 
elements when a transaction is about to commit; this process is called 
“validation” of the transaction. The serial schedule that orders transac
tions according to their validation time must be equivalent to the actual 
schedule. The validation approach is discussed in Section 18.9.

Both these approaches are optimistic, in the sense that they assume that no 
unserializable behavior will occur and only fix things up when a violation is 
apparent. In contrast, all locking methods assume that things will go wrong 
unless transactions are prevented in advance from engaging in nonserializable 
behavior. The optimistic approaches differ from locking in that the only rem
edy when something does go wrong is to abort and restart a transaction that 
tries to engage in unserializable behavior. In contrast, locking schedulers de
lay transactions, but do not abort them .9 Generally, optimistic schedulers are

® That is n o t to  say th a t  a  system  using a  locking scheduler will never a b o rt a  transaction ; 
for instance , Section 19.2 discusses ab o rtin g  tran sac tio n s to  fix deadlocks. However, a  locking 
scheduler never uses a  tran sac tio n  a b o r t sim ply  as a  response to  a  lock request th a t  it canno t 
g ran t.
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better than locking when many of the transactions are read-only, since those 
transactions can never, by themselves, cause unserializable behavior.

18.8.1 Timestamps
To use timestamping as a concurrency-control method, the scheduler needs to 
assign to each transaction T  a unique number, its timestamp TS (T). Time
stamps must be issued in ascending order, at the time that a transaction first 
notifies the scheduler that it is beginning. Two approaches to generating time
stamps are:

a) We can use the system clock as the timestamp, provided the scheduler 
does not operate so fast that it could assign timestamps to two transac
tions on one tick of the clock.

b) The scheduler can maintain a counter. Each time a transaction starts, the 
counter is incremented by 1, and the new value becomes the timestamp 
of the transaction. In this approach, timestamps have nothing to do 
with “time,” but they have the important property that we need for any 
timestamp-generating system: a transaction that starts later has a higher 
timestamp than a transaction that starts earlier.

Whatever method of generating timestamps is used, the scheduler must main
tain a table of currently active transactions and their timestamps.

To use timestamps as a concurrency-control method, we need to associate 
with each database element X  two timestamps and an additional bit:

/
1. R T ( X ) ,  the read time of X ,  which is the highest timestamp of a transaction 

that has read X .

2. WT(X), the write time of X ,  which is the highest timestamp of a trans
action that has written X .

3. C(X), the commit bit for X ,  which is true if and only if the most recent 
transaction to write X  has already committed. The purpose of this bit 
is to avoid a situation where one transaction T  reads data written by 
another transaction U, and U then aborts. This problem, where T  makes 
a “dirty read” of uncommitted data, certainly can cause the database 
state to become inconsistent, and any scheduler needs a mechanism to 
prevent dirty reads.10

18.8.2 Physically Unrealizable Behaviors
In order to understand the architecture and rules of a timestamp scheduler, we 
need to remember that the scheduler assumes the timestamp order of trans
actions is also the serial order in which they must appear to execute. Thus,

10A lthough  com m ercial sy s tem s generally  give th e  user an  op tion  to  allow  d ir ty  read s, as 
suggested  by th e  SQ L iso la tion  level READ UNCOMMITTED in  Section 6.6.5.
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the job of the scheduler, in addition to assigning timestamps and updating RT, 
W T ,  and C  for the database elements, is to check that whenever a read or write 
occurs, what happens in real time could have happened if each transaction had 
executed instantaneously at the moment of its timestamp. If not, we say the 
behavior is physically unrealizable. There are two kinds of problems that can 
occur:

1. Read too late: Transaction T  tries to read database element X ,  but the 
write time of X  indicates that the current value of X  was written after T  
theoretically executed; that is, T S (T) < W T ( X ) .  Figure 18.35 illustrates 
the problem. The horizontal axis represents the real time at which events 
occur. Dotted lines link the actual events to the times at which they 
theoretically occur — the timestamp of the transaction that performs the 
event. Thus, we see a transaction U that started after transaction T, but 
wrote a value for X  before T  reads X .  T  should not be able to read 
the value written by U, because theoretically, U executed after T  did. 
However, t  has no choice, because C/’s value of X  is the one that T  now 
sees. The solution is to abort T  when the problem is encountered.

U  writes X
T  reads X

T  start U  start 

Figure 18.35: Transaction T  tries to read too late

2. Write too late: Transaction T  tries to write database element X .  How
ever, the read time of X  indicates that some other transaction should have 
read the value written by T, but read some other value instead. That is, 
W T ( X )  <  T S (T) < R T ( X ) .  The problem is shown in Fig. 18.36. There 
we see a transaction U that started after T, but read X  before T  got a 
chance to write X .  When T tries to write X ,  we find RT(.X ’) >  T S (T), 
meaning that X  has already been read by a transaction U that theoreti
cally executed later than T. We also find W T ( X )  < ts (T ), which means 
that no other transaction wrote into X  a value that would have overwrit
ten T ’s value, thus, negating T ’s responsibility to get its value into X  so 
transaction U could read it.

18.8.3 Problems W ith Dirty Data
There is a class of problems that the commit bit is designed to solve. One of 
these problems, a “dirty read,” is suggested in Fig. 18.37. There, transaction
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U  reads X
T  w rites X

1  1  *  J

T  start U  start

Figure 18.36: Transaction T tries to write too late

T  reads X ,  and X  was last written by U. The timestamp of U is less than that 
of T, and the read by T  occurs after the write by U in real time, so the event 
seems to be physically realizable. However, it is possible that after T  reads the 
value of X  written by U, transaction U will abort; perhaps U encounters an 
error condition in its own data, such as a division by 0, or as we shall see in 
Section 18.8.4, the scheduler forces U to abort because it tries to  do something 
physically unrealizable. Thus, although there is nothing physically unrealizable 
about T  reading X ,  it is better to delay T ’s read until U commits or aborts. 
We can tell that U is not committed because the commit bit C ( X )  will be false.

U  w rites X

T  reads X

p—r
U  start T  start U  aborts

Figure 18.37: T  could perform a dirty read if it reads X  when shown

A second potential problem is suggested by Fig. /18.38. Here, U, a trans
action with a later timestamp than T, has written X  first. When T  tries to 
write, the appropriate action is to do nothing. Evidently no other transaction 
V  that should have read T ’s value of X  got f /’s value instead, because if V  
tried to read X  it would have aborted because of a too-late read. Future reads 
of X  will want U’s value or a later value of X ,  not T ’s value. This idea, that 
writes can be skipped when a write with a later write-time is already in place, 
is called the Thomas write rule.

There is a potential problem with the Thomas write rule, however. If U later 
aborts, as is suggested in Fig. 18.38, then its value of X  should be removed and 
the previous value and write-time restored. Since T is committed, it would 
seem that the value of X  should be the one written by T  for future reading. 
However, we already skipped the write by T  and it is too late to repair the 
damage.

While there are many ways to deal with the problems just described, we
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U  writes X
T  w rites X

i  V  ~ S— r
T  start U  start T  com m its U  aborts

Figure 18.38: A write is cancelled because of a write with a later timestamp, 
but the writer then aborts

shall adopt a relatively simple policy based on the following assumed capability 
of the timestamp-based scheduler.

• When a transaction T  writes a database element X ,  the write is “tenta
tive” and may be undone if T  aborts. The commit bit C (X)  is set to false, 
and the scheduler makes a copy of the old value of X  and its previous 
W T ( X ) .

18.8.4 The Rules for Timestamp-Based Scheduling
We can now summarize the rules that a scheduler using timestamps must follow 
to make sure that nothing physically unrealizable may occur. The scheduler, 
in response to a read or write request from a transaction T  has the choice of:

a) Granting the request,

b) Aborting T (if T  would violate physical reality) and restarting T  with a 
new timestamp (abort followed by restart is often called rollback), or

c) Delaying T  and later deciding whether to abort T or to grant the request 
(if the request is a read, and the read might be dirty, as in Section 18.8.3).

The rules are as follows:

1. Suppose the scheduler receives a request rr (X ).

(a) If T S (T) > W T ( X ) ,  the read is physically realizable.
i. If c (X )  is true, grant the request. If T S (T) > R T ( X ) ,  set 

R T ( X )  := T S (T); otherwise do not change R T ( X ) .

ii. If C(X) is false, delay T  until C(X) becomes true, or the trans
action that wrote X  aborts.

(b) If T S (T) < W T ( X ) ,  the read is physically unrealizable. Rollback T; 
that is, abort T  and restart it with a new, larger timestamp.

2. Suppose the scheduler receives a request w t ( X ) .
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(a) If TS(T) > RT(X) and TS(T) > WT(X), the write is physically 
realizable and must be performed.

i. Write the new value for X ,
ii. Set WT(X) := TS(T), and

iii. Set C(X) := f a l s e .

(b) If TS(T) > RT(X), but TS(T) < WT(X), then the write is physically 
realizable, but there is already a later value in X . If C(X) is true, 
then the previous writer of X  is committed, and we simply ignore 
the write by T; we allow T  to proceed and make no change to the 
database. However, if C (X)  is false, then we must delay T  as in 
point l(a)ii.

(c) If TS(T) < RT(X), then the write is physically unrealizable, and T  
must be rolled back.

3. Suppose the scheduler receives a request to commit T. It must find (using 
a list the scheduler maintains) all the database elements X  written by T, 
and set c (X )  := tru e . If any transactions are waiting for X  to be com
mitted (found from another scheduler-maintained list), these transactions 
are allowed to proceed.

4. Suppose the scheduler receives a request to abort T  or decides to rollback 
T  as in lb  or 2c. Then any transaction that was waiting on an element X  
that T wrote must repeat its attempt to read or write, and see whether 
the action is now legal after T ’s writes are cancelled.

E xam ple 18.26: Figure 18.39 shows a schedule of three transactions, Ti, T2, 
and T3 that access three database elements, A, B, and C. The real time at 
which events occur increases down the page, as usual. We have also indicated 
the timestamps of the transactions and the read and write times of the elements. 
At the beginning, each of the database elements has both a read and write time 
of 0. The timestamps of the transactions are acquired when they notify the 
scheduler that they are beginning. Notice that even though Ti executes the 
first data access, it does not have the least timestamp. Presumably T2 was the 
first to notify the scheduler of its start, and T3 did so next, with Ti last to start.

In the first action, Ti reads B. Since the \yrite time of B  is less than the 
timestamp of T i, this read is physically realizable and allowed to happen. The 
read time of B  is set to 200, the timestamp of Ti. The second and third read 
actions similarly are legal and result in the read time of each database element 
being set to the timestamp of the transaction that read it.

At the fourth step, Ti writes B. Since the read time of B  is not bigger than 
the timestamp of T \ , the write is physically realizable. Since the write time of 
B  is no larger than the timestamp of Ti, we must actually perform the write. 
When we do, the write time of B  is raised to 200, the timestamp of the writing 
transaction T \ .
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Ti Ti Tz A B C
200 150 175 RT=0

W T=0
RT=0
W T=0

RT=0
WT=0

n( B) ;
r2 (A); RT=150

n 11 to 0 0

wi (B);
rz{<py,

WT=200
RT=175

u>i(A);
w2 (C); 
A bort;

wz{A)\

WT=200

Figure 18.39: Three transactions executing under a timestamp-based scheduler

Next, Ti tries to write C. However, C was already read by transaction T3, 
which theoretically executed at time 175, while T% would have written its value 
at time 150. Thus, T2  is trying to do something that s physically unrealizable, 
and Ti must be rolled back.

The last step is the write of A  by T3. Since the read time of A, 150, is less 
than the timestamp of T3, 175, the write is legal. However, there is already a 
later value of A  stored in that database element, namely the value written by 
Xi, theoretically at time 200. Thus, T3 is not rolled back, but neither does it 
write its value. □

18.8.5 Multiversion Timestamps
An important variation of timestamping maintains old versions of database 
elements in addition to the current version that is stored in the database itself. 
The purpose is to allow reads r?{X)  that otherwise would cause transaction 
T  to abort (because the current version of X  was written in T ’s future) to 
proceed by reading the version of X  that is appropriate for a transaction with 
T ’s timestamp. The method is especially useful if database elements are disk 
blocks or pages, since then all that must be done is for the buffer manager to 
keep in memory certain blocks that might be useful for some currently active 
transaction.

E xam ple 18.27: Consider the set of transactions accessing database element 
A  shown in Fig. 18.40. These transactions are operating under an ordinary 
timestamp-based scheduler, and when T3 tries to read A,  it finds WT(A) to 
be greater than its own timestamp, and must abort. However, there is an old 
value of A  written by Ti and overwritten by Ti that would have been suitable 
for T3 to read; this version of A  had a write time of 150, which is less than T3’s 
timestamp of 175. If this old value of A  were available, T3 could be allowed to 
read it, even though it is not the “current” value of A. □
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Tx T2  T3  T4 A
150 200 175 225 RT=0

WT=0
ri (A) RT=150
wi(A) WT=150

r2 (A) 3 II to o o

w2 (A) WT=200
r3 (A)
A b o rt

u (A ) RT=225

Figure 18.40: T3  must abort because it cannot access an old value of A

A multiversion-timestamp scheduler differs from the scheduler described in 
Section 18.8.4 in the following ways:

1. When a new write w t {X) occurs, if it is legal, then a new version of 
database element X  is created. Its write time is TS(T), and we shall refer 
to it as X t, where t =  TS(T).

2. When a read rr{X )  occurs, the scheduler finds the version X t of X  such 
that t  < TS(T), but there is no other version X f  with t < t' < TS(T). 
That is, the version of X  written immediately before T  theoretically ex
ecuted is the version that T  reads.

3. Write times axe associated with versions of an element, and they never 
change.

4. Read times axe also associated with versions. They are used to reject 
certain writes, namely one whose time is less than the read time of the 
previous version. Figure 18.41 suggests the problem, where X  has versions 
X 5o and .Xioo, the former was read by a transaction with timestamp 80, 
and a new write by a transaction T  whose timestamp is 60 occurs. This 
write must cause T to abort, because its value of X  should have been read 
by the transaction with timestamp 80, had T  been allowed to execute.

5. When a version X t  has a write time t such that no active transaction has 
a timestamp less than t, then we may delete any version of X  previous to
X t .

E xam ple 18.28: Let us reconsider the actions of Fig. 18.40 if multiversion 
timestamping is used. First, there are three versions of A: Aq, which exists 
before these transactions staxt, A150, written by Ti, and -A2oo; written by T2. 
Figure 18.42 shows the sequence of events, when the versions are created, and 
when they are read. Notice in particular that T3  does not have to abort, because 
it can read an earlier version of A. □
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RT =  80

It ! t
X 50 '  X 100

A ttem pt to
w rite by transaction

with tim estam p 60

Figure 18.41: A transaction tries to write a version of X  that would make events 
physically unrealizable

Tx t 2 t 3 Ti A q -*4-150 ^200
150 200 175 225
r i (A) 
wi(A)

r 2 (A)
w2 (A)

r3^4)
r4 (A)

Read
Create
Read

Read
Create

Read

Figure 18.42: Execution of transactions using multiversion concurrency control

18.8.6 Timestamps Versus Locking
Generally, timestamping is superior in situations where either most transactions 
are read-only, or it is rare that concurrent transactions will try to read and 
write the same element. In high-conflict situations, locking performs better. 
The argument for this rule-of-thumb is:

• Locking will frequently delay transactions as they wait for locks.

• But if concurrent transactions frequently read and write elements in com
mon, then rollbacks will be frequent in a timestamp scheduler, introducing 
even more delay than a locking system.

There is an interesting compromise used in several commercial systems. The 
scheduler divides the transactions into read-only transactions and read/write 
transactions. Read/write transactions are executed using two-phase locking, to 
keep all transactions from accessing the elements they lock.

Read-only transactions are executed using multiversion timestamping. As 
the read/write transactions create new versions of a database element, those 
versions are managed as in Section 18.8.5. A read-only transaction is allowed to 
read whatever version of a database element is appropriate for its timestamp. A 
read-only transaction thus never has to abort, and will only rarely be delayed.
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18.8.7 Exercises for Section 18.8
E xercise 18.8.1: Below are several sequences of events, including start events, 
where sti means that transaction Tj starts. These sequences represent real time, 
and the timestamp scheduler will allocate timestamps to transactions in the 
order of their starts. Tell what happens as each executes.

a) sti; st2; n(A)-, r2 (B); w2 (A); Wi(B);

b) sti; ri(A); st2; w2 (B ); r2 (A); wi(B);

c) sti; st2; st3; n (A ) \  r2 (B); wj(C'); r 3 (B); r3 (C); w2 (B); w3 (A);

d) st3; st2; n(A ); r2 {B); Wi(C); r3 (B); r3 (C); w2 [B); w3 (A);

E xercise 18.8.2: Tell what happens during the following sequences of events 
if a multiversion, timestamp scheduler is used. What happens instead, if the 
scheduler does not maintain multiple versions?

a) sti; st2; st3; st4; wi(-A); w2 (A); w3(A); r 2 {A); r4 (A);

b) sti; st2; st3; st4; wi(A); w3 (A); r4 (A); r2 (A);

c) sti; st2; st3; st4; wi(A); w4 (A); r3 {A); w2 (A);

!! Exercise 18.8.3: We observed in our study of lock-based schedulers that there 
are several reasons why transactions that obtain locks could deadlock. Can a 
timestamp scheduler using the commit bit C (X)  have a deadlock?

18.9 Concurrency Control by Validation
Validation is another type of optimistic concurrency control, where we allow 
transactions to access data without locks, and at the appropriate time we check 
that the transaction has behaved in a serializable manner. Validation differs 
from timestamping principally in that the scheduler maintains a record of what 
active transactions are doing, rather than keeping read and write times for all 
database elements. Just before a transaction starts to write values of database 
elements, it goes through a “validation phase,” where the sets of elements it has 
read and will write are compared with the write sets of other active transactions. 
Should there be a risk of physically unrealizable behavior, the transaction is 
rolled back.

18.9.1 Architecture of a Validation-Based Scheduler
When validation is used as the concurrency-control mechanism, the scheduler 
must be told for each transaction T the sets of database elements T  reads and 
writes, the read set, RS(T), and the write set, WS(T), respectively. Transactions 
are executed in three phases:
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1. Read. In the first phase, the transaction reads from the database all the 
elements in its read set. The transaction also computes in its local address 
space all the results it is going to write.

2. Validate. In the second phase, the scheduler validates the transaction by 
comparing its read and write sets with those of other transactions. We 
shall describe the validation process in Section 18.9.2. If validation fails, 
then the transaction is rolled back; otherwise it proceeds to the third 
phase.

3. Write. In the third phase, the transaction writes to the database its values 
for the elements in its write set.

Intuitively, we may think of each transaction that successfully validates as ex
ecuting at the moment that it validates. Thus, the validation-based scheduler 
has an assumed serial order of the transactions to work with, and it bases its 
decision to validate or not on whether the transactions’ behaviors are consistent 
with this serial order.

To support the decision whether to validate a transaction, the scheduler 
maintains three sets:

1. START, the set of transactions that have started, but not yet completed 
validation. For each transaction T  in this set, the scheduler maintains 
STA R T (T), the time at which T  started.

2. VAL, the set of transactions that have been validated but not yet finished 
the writing of phase 3. For each transaction T  in this set, the scheduler 
maintains both START(T) and VAL(T), the time at which T  validated. 
Note that VAL(T) is also the time at which T  is imagined to execute in 
the hypothetical serial order of execution.

3. FIN, the set of transactions that have completed phase 3. For these 
transactions T, the scheduler records START(r), VAL(T), and f in (T ) , the 
time at which T  finished. In principle this set grows, but as we shall see, 
we do not have to remember transaction T  if f in (T )  <  START(C/) for any 
active transaction U (i.e., for any U in START  or VAL). The scheduler 
may thus periodically purge the FIN  set to keep its size from growing 
beyond bounds.

18.9.2 The Validation Rules
The information of Section 18.9.1 is enough for the scheduler to detect any 
potential violation of the assumed serial order of the transactions — the order 
in which the transactions validate. To understand the rules, let us first consider 
what can be wrong when we try to validate a transaction T.

1. Suppose there is a transaction U such that:
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T  reads X

U  w rites X

t t 1 l :L i
U  start T  start U  validated T  validating

Figure 18.43: T cannot validate if an earlier transaction is now writing some
thing that T  should have read

(a) U is in VAL or FIN; that is, U has validated.
(b) F l N ( t / )  > S T A R T (T ); that is, U did not finish before T  started.11
(c) RS(T) n  WS(C/) is not empty; in particular, let it contain database 

element X .

Then it is possible that U wrote X  after T  read X .  In fact, U may not 
even have written X  yet. A situation where U wrote X ,  but not in time 
is shown in Fig. 18.43. To interpret the figure, note that the dotted lines 
connect the events in real time with the time at which they would have 
occurred had transactions been executed at the moment they validated. 
Since we don’t  know whether or not T  got to read f / ’s value, we must 
rollback T  to avoid a risk that the actions of T  and U will not be consistent 
with the assumed serial order.

2. Suppose there is a transaction U such that:

(a) U is in VAL; i.e., U has successfully validated.
(b) F I N ( [ / )  >  VAL(T); that is, U did not finish before T  entered its 

validation phase.
(c) WS(T) fl WS(U) /  0; in particular, let X  be in both write sets.

Then the potential problem is as shown in Fig. 18.44. T  and U must both 
write values of X ,  and if we let T validate, it is possible that it will write
X  before U does. Since we cannot be sure, we rollback T  to make sure it 
does not violate the assumed serial order in which it follows U.

The two problems described above are the only situations in which a write 
by T  could be physically unrealizable. In Fig. 18.43, if U finished before T 
started, then surely T  would read the value of X  that either U or some later 
transaction wrote. In Fig. 18.44, if U finished before T  validated, then surely

11N ote  th a t  if U  is in V A L, th e n  U  h a s  n o t ye t finished w hen T  va lidates . In  th a t  case, 
FIN (E/) is techn ically  undefined. However, we know  it m u st be  la rg er th a n  ST A R T (T ) in  th is  
case.
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T writes X
U writes X

U validated T validating U finish

Figure 18.44: T  cannot validate if it could then write something ahead of an 
earlier transaction

U wrote X  before T  did. We may thus summarize these observations with the 
following rule for validating a transaction T:

• Check that RS(T) n  WS(J7) — 0 for any previously validated U that did 
not finish before T  started, i.e., if FIN(C/) > START(T).

• Check that WS (T) D WS({7) =  0 for any previously validated U that did 
not finish before T  validated, i.e., if fin({7) > VAL(T).

E xam ple 18.29: Figure 18.45 shows a time line during which four transactions 
T, U, V, and W  attempt to execute and validate. The read and write sets for 
each transaction are indicated on the diagram. T  starts first, although U is the 
first to validate.

RS = {B } 
WS = { D }

U

RS = [A, D } 
WS = { A, C }

W

I = start 

X  = validate 

O  = finishT V

RS = {A, B } RS = {B }
WS = [ A, C } WS = { D, E }

Figure 18.45: Four transactions and their validation

1. Validation of U: When U validates there are no other validated transac
tions, so there is nothing to check. U validates successfully and writes a 
value for database element D.
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2. Validation of T : When T  validates, U is validated but not finished. Thus, 
we must check that neither the read nor write set of T has anything 
in common with ws([7) =  {£>}. Since RS(T) -  {A, B},  and ws(T) = 
{A, C}, both checks are successful, and T  validates.

3. Validation of V : When V validates, U is validated and finished, and T  
is validated but not finished. Also, V started before U finished. Thus, 
we must compare both RS(V) and WS(V) against WS(T), but only RS(V) 
needs to be compared against WS(U). we find:

• rs(V ) n  ws(T) = {5} n  {A ,C } =  0.
• ws(V) n ws(T) = { D, E} n {A, C} = 0.
•  rs(V ) n ws(t7) =  {B}  n {D}  = 0.

Thus, V also validates successfully.

4. Validation of W : When W  validates, we find that U finished before W  
started, so no comparison between W  and U is performed. T  is finished 
before W  validates but did not finish before W  started, so we compare 
only RS(W) with WS(T). V is validated but not finished, so we need to 
compare both RS(W/) and WS(W/ ) with WS(V). These tests are:

• rs(W ) D WS(T) =  {A, D} n {A,C} =  {A}.
• rs (v f)  n ws(V) =  {A, d } n {d , e } =  {D}.
• ws(W) n ws(F) - { A, C} n { D, E}  = 0.

Since the intersections are not all empty, W  is not validated. Rather, W  
is rolled back and does not write values for A or C.

□

18.9.3 Comparison of Three Concurrency-Control 
Mechanisms

The three approaches to serializability that we have considered — locks, times
tamps, and validation — each have their advantages. First, they can be com
pared for their storage utilization:

• Locks: Space in the lock table is proportional to the number of database 
elements locked.

• Timestamps: In a naive implementation, space is needed for read- and 
write-times with every database element, whether or not it is currently 
accessed. However, a more careful implementation will treat all time
stamps that are prior to the earliest active transaction as “minus infinity” 
and not record them. In that case, we can store read- and write-times in 
a table analogous to a lock table, in which only those database elements 
that have been accessed recently are mentioned at all.
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Just a Moment

You may have been concerned with a tacit notion that validation takes 
place in a moment, or indivisible instant of time. For example, we imagine 
that we can decide whether a transaction U has already validated before 
we start to validate transaction T. Could U perhaps finish validating while 
we are validating T?

If we are running on a uniprocessor system, and there is only one 
scheduler process, we can indeed think of validation and other actions of 
the scheduler as taking place in an instant of time. The reason is that if 
the scheduler is validating T, then it cannot also be validating U, so all 
during the validation of T,  the validation status of U cannot change.

If we are running on a multiprocessor, and there are several sched
uler processes, then it might be that one is validating T  while the other 
is validating U. If so, then we need to rely on whatever synchroniza
tion mechanism the multiprocessor system provides to make validation an 
atomic action.

• Validation: Space is used for timestamps and read/write sets for each 
currently active transaction, plus a few more transactions that finished 
after some currently active transaction began.

Thus, the amounts of space used by each approach is approximately propor
tional to the sum over all active transactions of the number of database elements 
the transaction accesses. Timestamping and validation may use slightly more 
space because they keep track of certain accesses by recently committed trans
actions that a lock table would not record. A potential problem with validation 
is that the write set for a transaction must be known before the writes occur 
(but after the transaction’s local computation has been completed).

We can also compare the methods for their effect on the ability of transac
tions to complete without delay. The performance of the three methods depends 
on whether interaction among transactions (the likelihood that a transaction 
will access an element that is also being accessed by a concurrent transaction) 
is high or low.

• Locking delays transactions but avoids rollbacks, even when interaction 
is high. Timestamps and validation do not delay transactions, but can 
cause them to rollback, which is a more serious form of delay and also 
wastes resources.

• If interference is low, then neither timestamps nor validation will cause 
many rollbacks, and may be preferable to locking because they generally 
have lower overhead than a locking scheduler.
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• When a rollback is necessary, timestamps catch some problems earlier 
than validation, which always lets a transaction do all its internal work 
before considering whether the transaction must rollback.

18.9.4 Exercises for Section 18.9
E x e r c i s e  1 8 . 9 .1 :  In the following sequences of events, we use Ri(X) to mean 
“transaction Tj starts, and its read set is the list of database elements X.” Also, 
Vj means “Ti attempts to validate,” and Wi(X) means that “Tj finishes, and 
its write set was X.” Tell what happens when each sequence is processed by a 
validation-based scheduler.

a) R M , B ) ;  R2(B,C)-, Vi; R3(C,D); l/3; W^A); V2; W2(A); W3(B);

b) Ri(A,B); R2{B,Cy, Vi; R3(C,D); V3; W1(A); V2 ; W2(A); W3{D);

c) i?i(A,£0; R2(B,C); Fi; R3(C,D)-, F3; WX{C)-, V2 ; Wa(A); W3(D);

d) R i i A B ) ;  R2(B,C); R3(C); Vi; V2 ; F3; Wi(A); W2(B)-, W3{C);

e) Ri(A,B)-, R2(B,C); Vi; V2; V3; W^C); W2(B); W3{A\,

f) Ri(A,B); R2(B,C)-, R3(C)-, Vl5 V2; V3; W\(A)\ W2(C); W3(S);

18.10 Summary of Chapter 18
♦  Consistent Database States: Database states that obey whatever implied 

or declared constraints the designers intended are called consistent. It 
is essential that operations on the database preserve consistency, that is, 
they turn one consistent database state into another.

♦  Consistency of Concurrent Transactions: It is normal for several trans
actions to have access to a database at the same time. Transactions, run 
in isolation, are assumed to preserve consistency of the database. It is the 
job of the scheduler to assure that concurrently operating transactions 
also preserve the consistency of the database.

♦  Schedules: Transactions are broken into actions, mainly reading and writ
ing from the database. A sequence of these actions from one or more 
transactions is called a schedule.

♦  Serial Schedules: If transactions execute one at a time, the schedule is 
said to be serial.

♦  Serializable Schedules: A  schedule that is equivalent in its effect on the 
database to some serial schedule is said to be serializable. Interleaving of 
actions from several transactions is possible in a serializable schedule that 
is not itself serial, but we must be very careful what sequences of actions
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we allow, or an interleaving will leave the database in an inconsistent 
state.

♦  Conflict-Serializability: A simple-to-test, sufficient condition for serializ
ability is that the schedule can be made serial by a sequence of swaps 
of adjacent actions without conflicts. Such a schedule is called conflict- 
serializable. A conflict occurs if we try to swap two actions of the same 
transaction, or to swap two actions that access the same database element, 
at least one of which actions is a write.

♦  Precedence Graphs: An easy test for conflict-serializability is to construct 
a precedence graph for the schedule. Nodes correspond to transactions, 
and there is an arc T  -¥ U if some action of T  in the schedule conflicts 
with a later action of U. A schedule is conflict-serializable if and only if 
the precedence graph is acyclic.

♦  Locking: The most common approach to assuring serializable schedules is 
to lock database elements before accessing them, and to release the lock 
after finishing access to the element. Locks on an element prevent other 
transactions from accessing the element.

4  Two-Phase Locking: Locking by itself does not assure serializability. How
ever, two-phase locking, in which all transactions first enter a phase where 
they only acquire locks, and then enter a phase where they only release 
locks, will guarantee serializability.

4- Lock Modes: To avoid locking out transactions unnecessarily, systems 
usually use several lock modes, with different rules for each mode about 
when a lock can be granted. Most common is the system with shared 
locks for read-only access and exclusive locks for accesses that include 
writing.

4  Compatibility Matrices: A compatibility matrix is a useful summary of 
when it is legal to grant a lock in a certain lock mode, given that there 
may be other locks, in the same or other modes, on the same element.

4  Update Locks: A scheduler can allow a transaction that plans to read and 
then write an element first to take an update lock, and later to upgrade 
the lock to exclusive. Update locks can be granted when there are already 
shared locks on the element, but once there, an update lock prevents other 
locks from being granted on that element.

4  Increment Locks: For the common case where a transaction wants only to 
add or subtract a constant from an element, an increment lock is suitable. 
Increment locks on the same element do not conflict with each other, 
although they conflict with shared and exclusive locks.
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♦  Locking Elements With a Granularity Hierarchy: When both large and 
small elements — relations, disk blocks, and tuples, perhaps — may need 
to be locked, a warning system of locks enforces serializability. Transac
tions place intention locks on large elements to warn other transactions 
that they plan to access one or more of its subelements.

♦  Locking Elements Arranged in a Tree: If database elements are only ac
cessed by moving down a tree, as in a B-tree index, then a non-two-phase 
locking strategy can enforce serializability. The rules require a lock to be 
held on the parent while obtaining a lock on the child, although the lock 
on the parent can then be released and additional locks taken later.

♦  Optimistic Concurrency Control: Instead of locking, a scheduler can as
sume transactions will be serializable, and abort a transaction if some 
potentially nonserializable behavior is seen. This approach, called opti
mistic, is divided into timestamp-based, and validation-based scheduling.

♦  Timestamp-Based Schedulers: This type of scheduler assigns timestamps 
to transactions as they begin. Database elements have associated read- 
and write-times, which are the timestamps of the transactions that most 
recently performed those actions. If an impossible situation, such as a 
read by one transaction of a value that was written in that transaction’s 
future is detected, the violating transaction is rolled back, i.e., aborted 
and restarted.

♦  Multiversion Timestamps: A common technique in practice is for read
only transactions to be scheduled by timestamps, but with multiple ver
sions, where a write of an element does not overwrite earlier values of that 
element until all transactions that could possibly need the earlier value 
have finished. Writing transactions are scheduled by conventional locks.

♦  Validation-Based Schedulers: These schedulers validate transactions after 
they have read everything they need, but before they write. Transactions 
that have read, or will write, an element that some other transaction is in 
the process of writing, will have an ambiguous result, so the transaction 
is not validated. A transaction that fails to validate is rolled back.

18.11 References for Chapter 18
The book [6] is an important source for material on scheduling, as well as 
locking. [3] is another important source. Two recent surveys of concurrency 
control are [12] and [11].

Probably the most significant paper in the field of transaction processing is 
[4] on two-phase locking. The warning protocol for hierarchies of granularity 
is from [5]. Non-two-phase locking for trees is from [10]. The compatibility 
matrix was introduced to study behavior of lock modes in [7].
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Chapter 19

More About Transaction 
Management

In this chapter we cover several issues about transaction management that 
were not addressed in Chapters 17 or 18. We begin by reconciling the points of 
view of these two chapters: how do the needs to recover from errors, to allow 
transactions to abort, and to maintain serializability interact? Then, we discuss 
the management of deadlocks among transactions, which typically result from 
several transactions each having to wait for a resource, such as a lock, that is 
held by another transaction.

Finally, we consider the problems that arise due to “long transactions.” 
There are applications, such as CAD systems or “workflow” systems, in which 
human and computer processes interact, perhaps over a period of days. These 
systems, like short-transaction systems such as banking or airline reservations, 
need to preserve consistency of the database state. However, the concurrency- 
control methods discussed in Chapter 18 do not work reasonably when locks 
are held for days, or human decisions are part of a “transaction.”

19.1 Serializability and Recoverability
In Chapter 17 we discussed the creation of a log and its use to recover the 
database state when a system crash occurs. We introduced the view of database 
computation in which values move between nonvolatile disk, volatile main- 
memory, and the local address space of transactions. The guarantee the various 
logging methods give is that, should a crash occur, it will be able to reconstruct 
the actions of the committed transactions on the disk copy of the database. 
A logging system makes no attempt to support serializability; it will blindly 
reconstruct a database state, even if it is the result of a nonserializable sched
ule of actions. In fact, commercial database systems do not always insist on 
serializability, and in some systems, serializability is enforced only on explicit

953
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request of the user.
On the other hand, Chapter 18 talked about serializability only. Schedulers 

designed according to the principles of that chapter may do things that the log 
manager cannot tolerate. For instance, there is nothing in the serializability 
definition that forbids a transaction with a lock on an element A  from writing 
a new value of A  into the database before committing, and thus violating a rule 
of the logging policy. Worse, a transaction might write into the database and 
then abort without undoing the write, which could easily result in an incon
sistent database state, even though there is no system crash and the scheduler 
theoretically maintains serializability.

19.1.1 The Dirty-Data Problem

Recall from Section 6.6.5 that data is “dirty” if it has been written by a trans
action that is not yet committed. The dirty data could appear either in the 
buffers, or on disk, or both; either can cause trouble.

Ti T2 A B
25 25

h(A); n (A );
A := A+100;
wi(A); Zi(B); «i(A); 125

l2 (A); r 2 (A);
A := A*2;
w2 (A); 250
l2 (B) D enied

n(B y ,
A b o rt; ui(B);

h(B); u 2 (A); r2 (B);
B := B*2;
w2 (B); u 2 (B); 50

Figure 19.1: Ti writes dirty data and then aborts

E xam ple 19.1: Let us reconsider the serializable schedule from Fig. 18.13, 
but suppose that after reading B, Ti has to abort for some reason. Then the 
sequence of events is as in Fig. 19.1. After Ti aborts, the scheduler releases the 
lock on B  that Ti obtained; that step is essential, or else the lock on B  would 
be unavailable to any other transaction, forever.

However, T2  has now read data that does not represent a consistent state 
of the database. That is, Ta read the value of A  that Ti changed, but read 
the value of B  that existed prior to T\ ’s actions. It doesn’t matter in this case 
whether or not the value 125 for A  that Ti created was written to disk or not; T2
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gets that value from a buffer, regardless. Because it read an inconsistent state,
I 2 leaves the database (on disk) with an inconsistent state, where A ^  B.

The problem in Fig. 19.1 is that A  written by Ti is dirty data, whether 
it is in a buffer or on disk. The fact that Ti read A  and used it in its own 
calculation makes TVs actions questionable. As we shall see in Section 19.1.2, 
it is necessary, if such a situation is allowed to occur, to abort and roll back T2 
as well as Ti. □

Ti t 2 Tz A B C
200 150 175 RT=0

W T=0
RT=0
W T=0

RT=0
WT=0

w2 (B); WT=150
n(B );

rz(A)-, RT=150

M c y ,
A bort;

r s ^ ) ;

w3(A); WT=175
W T=0

RT=175

Figure 19.2: Ti has read dirty data from T2 and must abort when T2 does

E xam ple 19.2 : Now, consider Fig. 19.2, which shows a sequence of actions un
der a timestamp-based scheduler as in Section 18.8. However, we imagine that 
this scheduler does not use the commit bit that was introduced in Section 18.8.1. 
Recall that the purpose of this bit is to prevent a value that was written by 
an uncommitted transaction to be read by another transaction. Thus, when Ti 
reads B  at the second step, there is no commit-bit check to tell Ti to delay. 
Ti can proceed and could even write to disk and commit; we have not shown 
further details of what T\ does.

Eventually, T2 tries to write C in a physically unrealizable way, and T2 
aborts. The effect of T2’s prior write of B  is cancelled; the value and write-time 
of B  is reset to what it was before T2 wrote. Yet T\ has been allowed to use this 
cancelled value of B  and can do anything with it, such as using it to compute 
new values of A, B,  and/or C  and writing them to disk. Thus, Ti, having read 
a dirty value of B,  can cause an inconsistent database state. Note that, had 
the commit bit been recorded and used, the read rL (B ) at step (2) would have 
been delayed, and not allowed to occur until after T2 aborted and the value of 
B  had been restored to its previous (presumably committed) value. □

19.1.2 Cascading Rollback
As we see from the examples above, if dirty data is available to transactions, 
then we sometimes have to perform a cascading rollback. That is, when a



956 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEMENT

transaction T  aborts, we must determine which transactions have read data 
written by T, abort them, and recursively abort any transactions that have 
read data written by an aborted transaction. To cancel the effect of an aborted 
transaction, we can use the log, if it is one of the types (undo or undo/redo) 
that provides former values. We may also be able to restore the data from the 
disk copy of the database, if the effect of the dirty data has not migrated to 
disk.

As we have noted, a timestamp-based scheduler with a commit bit pre
vents a transaction that may have read dirty data from proceeding, so there is 
no possibility of cascading rollback with such a scheduler. A validation-based 
scheduler avoids cascading rollback, because writing to the database (even in 
buffers) occurs only after it is determined that the transaction will commit.

19.1.3 Recoverable Schedules
For any of the logging methods we have discussed in Chapter 17 to allow re
covery, the set of transactions that are regarded as committed after recovery 
must be consistent. That is, if a transaction T\ is, after recovery, regarded 
as committed, and Ti used a value written by T2, then T2 must also remain 
committed, after recovery. Thus, we define:

• A schedule is recoverable if each transaction commits only after each trans
action from which it has read has committed.

E xam ple 19.3: In this and several subsequent examples of schedules with 
read- and write-actions, we shall use c* for the action “transaction Ti commits.” 
Here is an example of a recoverable schedule:

Si: Wi{A)\ w i (£ ); w2(A); r2(B); ci\ c2;

Note that T2 reads a value (B) written by Ti, so T2  must commit after Ti for 
the schedule to be recoverable.

Schedule Si above is evidently serial (and therefore serializable) as well as 
recoverable, but the two concepts are orthogonal. For instance, the following 
variation on Si is still recoverable, but not serializable.

S2: w2{A)\ w\{B)\  w1(A); r2(B ); c i; c2;

In schedule S2, T2  must precede Ti in a serial order because of the writing of 
A,  but Ti must precede T2 because of the writing and reading of B.

Finally, observe the following variation on S i, which is serializable but not 
recoverable:

S3: wx(A); wi(B);  10 2(A); r2(B); c2; Ci;

In schedule S3, Ti precedes T2, but their commitments occur in the wrong order. 
If before a crash, the commit record for T2  reached disk, but the commit record 
for Ti did not, then regardless of whether undo, redo, or undo/redo logging 
were used, T2  would be committed after recovery, but T\ would not. □
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In order for recoverable schedules to be truly recoverable under any of the 
three logging methods, there is one additional assumption we must make re
garding schedules:

• The log’s commit records reach disk in the order in which they are written.

As we observed in Example 19.3 concerning schedule S 3 , should it be possible for 
commit records to reach disk in the wrong order, then consistent recovery might 
be impossible. We shall return to and exploit this principle in Section 19.1.6.

19.1.4 Schedules That Avoid Cascading Rollback
Recoverable schedules sometimes require cascading rollback. For instance, if 
after the first four steps of schedule Si in Example 19.3 Ti had to roll back, 
it would be necessary to roll back T2  as well. To guarantee the absence of 
cascading rollback, we need a stronger condition than recoverability. We say 
that:

• A schedule avoids cascading rollback (or “is an ACR schedule?’) if trans
actions may read only values written by committed transactions.

Put another way, an ACR schedule forbids the reading of dirty data. As for re
coverable schedules, we assume that “committed” means that the log’s commit 
record has reached disk.

E xam ple 19.4: The schedules of Example 19.3 are not ACR. In each case, T2 
reads B  from the uncommitted transaction T \ . However, consider:

Si'. wi(A); w i (B); w2 (A); a ;  r2 (B); c2;

Now, T2 reads B only after I i ,  the transaction that last wrote B, has commit
ted, and its log record written to disk. Thus, schedule S4  is ACR, as well as 
recoverable. □

Notice that should a transaction such as T2 read a value written by Tj after 
T\ commits, then surely T2 either commits or aborts after Ti commits. Thus:

• Every ACR schedule is recoverable.

19.1.5 Managing Rollbacks Using Locking
Our prior discussion applies to schedules that are generated by any kind of 
scheduler. In the common case that the scheduler is lock-based, there is a simple 
and commonly used way to guarantee that there are no cascading rollbacks:

• Strict Locking: A transaction must not release any exclusive locks (or 
other locks, such as increment locks that allow values to be changed) 
until the transaction has either committed or aborted, and the commit or 
abort log record has been flushed to disk.
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A schedule of transactions that follow the strict-locking rule is called a strict 
schedule. Two important properties of these schedules are:

1. Every strict schedule is ACR. The reason is that a transaction T? cannot 
read a value of element X  written by Ti until T\ releases any exclusive 
lock (or similar lock that allows X  to be changed). Under strict locking, 
the release does not occur until after commit.

2. Every strict schedule is serializable. To see why, observe that a strict 
schedule is equivalent to the serial schedule in which each transaction 
runs instantaneously at the time it commits.

With these observations, we can now picture the relationships among the dif
ferent kinds of schedules we have seen so far. The containments are suggested 
in Fig. 19.3.

Figure 19.3: Containments and noncontainments among classes of schedules

Clearly, in a strict schedule, it is not possible for a transaction to read dirty 
data, since data written to a buffer by an uncommitted transaction remains 
locked until the transaction commits. However, we still have the problem of 
fixing the data in buffers when a transaction aborts, since these changes must 
have their effects cancelled. How difficult it is to fix buffered data depends on 
whether database elements are blocks or something smaller. We shall consider 
each.

R ollback for B locks

If the lockable database elements are blocks, then there is a simple rollback 
method that never requires us to use the log. Suppose that a transaction T  has 
obtained an exclusive lock on block A, written a new value for A  in a buffer, 
and then had to abort. Since A  has been locked since T  wrote its value, no 
other transaction has read A. It is easy to restore the old value of A  provided 
the following rule is followed:
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• Blocks written by uncommitted transactions are pinned in main memory; 
that is, their buffers are not allowed to be written to disk.

In this case, we “roll back” T when it aborts by telling the buffer manager to 
ignore the value of A. That is, the buffer occupied by A  is not written anywhere, 
and its buffer is added to the pool of available buffers. We can be sure that the 
value of A  on disk is the most recent value written by a committed transaction, 
which is exactly the value we want A  to have.

There is also a simple rollback method if we are using a multiversion system 
as in Sections 18.8.5 and 18.8.6. We must again assume that blocks written by 
uncommitted transactions are pinned in memory. Then, we simply remove the 
value of A that was written by T from the list of available values of .4. Note 
that because T  was a writing transaction, its value of A  was locked from the 
time the value was written to the time it aborted (assuming the timestamp/lock 
scheme of Section 18.8.6 is used).

R ollback for Sm all D atabase E lem ents

When lockable database elements are fractions of a block (e.g., tuples or ob
jects), then the simple approach to restoring buffers that have been modified by 
aborted transactions will not work. The problem is that a buffer may contain 
data changed by two or more transactions; if one of them aborts, we still must 
preserve the changes made by the other. We have several choices when we must 
restore the old value of a small database element A  that was written by the 
transaction that has aborted:

1. We can read the original value of A  from the database stored on disk and 
modify the buffer contents appropriately.

2. If the log is an undo or undo/redo log, then we can obtain the former 
value from the log itself. The same code used to recover from crashes 
may be used for “voluntary” rollbacks as well.

3. We can keep a separate main-memory log of the changes made by each 
transaction, preserved for only the time that transaction is active. The 
old value can be found from this “log.”

None of these approaches is ideal. The first surely involves a disk access. 
The second (examining the log) might not involve a disk access, if the relevant 
portion of the log is still in a buffer. However, it could also involve extensive 
examination of portions of the log on disk, searching for the update record that 
tells the correct former value. The last approach does not require disk accesses, 
but may consume a large fraction of memory for the main-memory “logs.”

19.1.6 Group Commit
Under some circumstances, we can avoid reading dirty data even if we do not 
flush every commit record on the log to disk immediately. As long as we flush
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log records in the order that they are written, we can release locks as soon as 
the commit record is written to the log in a buffer.

E xam p le 19.5: Suppose transaction 7\ writes X ,  finishes, writes its COMMIT 
record on the log, but the log record remains in a buffer. Even though Ti 
has not committed in the sense that its commit record can survive a crash, 
we shall release T i’s locks. Then T2 reads X  and “commits,” but its commit 
record, which follows that of T \ , also remains in a buffer. Since we are flushing 
log records in the order written, T2 cannot be perceived as committed by a 
recovery manager (because its commit record reached disk) unless Ti is also 
perceived as committed. Thus, the recovery manager will find either one of two 
things:

1. T\ is committed on disk. Then regardless of whether or not T2 is commit
ted on disk, we know T2 did not read X  from an uncommitted transaction.

2. Ti is not committed on disk. Then neither is T2, and both are aborted 
by the recovery manager. In this case, the fact that T2 read X  from an 
uncommitted transaction has no effect on the database.

On the other hand, suppose that the buffer containing T2’s commit record 
got flushed to disk (say because the buffer manager decided to use the buffer 
for something else), but the buffer containing T i’s commit record did not. If 
there is a crash at that point, it will look to the recovery manager that T\ did 
not commit, but T2 did. The effect of Ta will be permanently reflected in the 
database, but this effect was based on the dirty read of X  by T2. □

Our conclusion from Example 19.5 is that we can release locks earlier than 
the time that the transaction’s commit record is flushed to disk. This policy, 
often called group commit, is:

•  Do not release locks until the transaction finishes, and the commit log 
record at least appears in a buffer.

• Flush log blocks in the order that they were created.

Group commit, like the policy of requiring “recoverable schedules” as discussed 
in Section 19.1.3, guarantees that there is never a read of dirty data.

19.1.7 Logical Logging
We saw in Section 19.1.5 that dirty reads are easier to fix up when the unit of 
locking is the block or page. However, there are at least two problems presented 
when database elements are blocks.

1. All logging methods require either the old or new value of a database 
element, or both, to be recorded in the log. When the change to a block



19.1. SERIALIZABILITY AND REC O VERABILITY 961

W hen is a Transaction Really Committed?

The subtlety of group commit reminds us that a completed transaction can 
be in several different states between when it finishes its work and when it 
is truly “committed,” in the sense that under no circumstances, including 
the occurrence of a system failure, will the effect of that transaction be 
lost. As we noted in Chapter 17, it is possible for a transaction to finish 
its work and even write its COMMIT record to the log in a main-memory 
buffer, yet have the effect of that transaction lost if there is a system crash 
and the COMMIT record has not yet reached disk. Moreover, we saw in 
Section 17.5 that even if the COMMIT record is on disk but not yet backed 
up in the archive, a media failure can cause the transaction to be undone 
and its effect to be lost.

In the absence of failure, all these states are equivalent, in the sense 
that each transaction will surely advance from being finished to having its 
effects survive even a media failure. However, when we need to take failures 
and recovery into account, it is important to recognize the differences 
among these states, which otherwise could all be referred to informally as 
“committed.”

is small, e.g., a rewritten attribute of one tuple, or an inserted or deleted 
tuple, then there is a great deal of redundant information written on the 
log.

2. The requirement that the schedule be recoverable, releasing its locks only 
after commit, can inhibit concurrency severely. For example, recall our 
discussion in Section 18.7.1 of the advantage of early lock release as we 
access data through a B-tree index. If we require that locks be held until 
commit, then this advantage cannot be obtained, and we effectively allow 
only one writing transaction to access a B-tree at any time.

Both these concerns motivate the use of logical logging, where only the 
changes to the blocks are described. There are several degrees of complexity, 
depending on the nature of the change.

1. A small number of bytes of the database element are changed, e.g., the 
update of a fixed-length field. This situation can be handled in a straight
forward way, where we record only the changed bytes and their positions. 
Example 19.6 will show this situation and an appropriate form of update 
record.

2. The change to the database element is simply described, and easily re
stored, but it has the effect of changing most or all of the bytes in the 
database element. One common situation, discussed in Example 19.7, is



962 CHAPTER 19. MORE ABO U T TRANSACTION M ANAGEM ENT

when a variable-length field is changed and much of its record, and even 
other records, must slide within the block. The new and old values of the 
block look very different unless we realize and indicate the simple cause 
of the change.

3. The change affects many bytes of a database element, and further changes 
can prevent this change from ever being undone. This situation is true 
“logical” logging, since we cannot even see the undo/redo process as occur
ring on the database elements themselves, but rather on some higher-level 
“logical” structure that the database elements represent. We shall, in Ex
ample 19.8, take up the m atter of B-trees, a logical structure represented 
by database elements that are disk blocks, to illustrate this complex form 
of logical logging.

E xam ple  19.6: Suppose database elements are blocks that each contain a set 
of tuples from some relation. We can express the update of an attribute by a 
log record that says something like “tuple t had its attribute a changed from 
value vi to V2 ” An insertion of a new tuple into empty space on the block can 
be expressed as “a tuple t  with value (a i,a 2, . . .  , a*) was inserted beginning 
at offset position p.” Unless the attribute changed or the tuple inserted are 
comparable in size to a block, the amount of space taken by these records will 
be much smaller than the entire block. Moreover, they serve for both undo and 
redo operations.

Notice that both these operations are idempotent; if you perform them sev
eral times on a block, the result is the same as performing them once. Likewise, 
their implied inverses, where the value of i[a] is restored from v2  back to v\,  or 
the tuple t is removed, are also idempotent. Thus, records of these types can 
be used for recovery in exactly the same way that update log records were used 
throughout Chapter 17. □

E xam ple  19.7: Again assume database elements are blocks holding tuples, 
but the tuples have some variable-length fields. If a change to a field such as 
was described in Example 19.6 occurs, we may have to slide large portions of 
the block to make room for a longer field, or to preserve space if a field becomes 
smaller. In extreme cases, we could have to create an overflow block (recall 
Section 13.8) to hold part of the contents of the original block, or we could 
remove an overflow block if a shorter field allows us to combine the contents of 
two blocks into one.

As long as the block and its overflow block(s) are considered part of one 
database element, then it is straightforward to use the old and/or new value of 
the changed field to undo or redo the change. However, the block-plus-overflow- 
block(s) must be thought of as holding certain tuples at a “logical” level. We 
may not even be able to restore the bytes of these blocks to their original state 
after an undo or redo, because there may have been reorganization of the blocks 
due to other changes that varied the length of other fields. Yet if we think of a 
database element as being a collection of blocks that together represent certain
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tuples, then a redo or undo can indeed restore the logical “state” of the element.
□

However, it may not be possible, as we suggested in Example 19.7, to treat 
blocks as expandable through the mechanism of overflow blocks. We may thus 
be able to undo or redo actions only at a level higher than blocks. The next 
example discusses the important case of B-tree indexes, where the management 
of blocks does not permit overflow blocks, and we must think of undo and redo 
as occurring at the “logical” level of the B-tree itself, rather than the blocks.

E xam ple  19.8: Let us consider the problem of logical logging for B-tree nodes. 
Instead of writing the old and/or new value of an entire node (block) on the 
log, we write a short record that describes the change. These changes include:

1. Insertion or deletion of a key/pointer pair for a child.

2. Change of the key associated with a pointer.

3. Splitting or merging of nodes.

Each of these changes can be indicated with a short log record. Even the 
splitting operation requires only telling where the split occurs, and where the 
new nodes are. Likewise, merging requires only a reference to the nodes in
volved, since the manner of merging is determined by the B-tree management 
algorithms used.

Using logical update records of these types allows us to release locks earlier 
than would otherwise be required for a recoverable schedule. The reason is 
that dirty reads of B-tree blocks are never a problem for the transaction that 
reads them, provided its only purpose is to use the B-tree to locate the data 
the transaction needs to access.

For instance, suppose that transaction T  reads a leaf node N ,  but the trans
action U that last wrote N  later aborts, and some change made to N  (e.g., the 
insertion of a new key/pointer pair into N  due to an insertion of a tuple by U) 
needs to be undone. If T has also inserted a key/pointer pair into N ,  then it is 
not possible to restore N  to the way it was before U modified it. However, the 
effect oiU  on N  can be undone; in this example we would delete the key/pointer 
pair that U had inserted. The resulting N  is not the same as that which ex
isted before U operated; it has the insertion made by T.  However, there is no 
database inconsistency, since the B-tree as a whole continues to reflect only the 
changes made by committed transactions. That is, we have restored the B-tree 
at a logical level, but not at the physical level. □

19.1.8 Recovery From Logical Logs
If the logical actions are idempotent — i.e., they can be repeated any number 
of times without harm — then we can recover easily using a logical log. For
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instance, we discussed in Example 19.6 how a tuple insertion could be repre
sented in the logical log by the tuple and the place within a block where the 
tuple was placed. If we write that tuple in the same place two or more times, 
then it is as if we had written it once. Thus, when recovering, should we need 
to redo a transaction that inserted a tuple, we can repeat the insertion into 
the proper block at the proper place, without worrying whether we had already 
inserted that tuple.

In contrast, consider a situation where tuples can move around within blocks 
or between blocks, as in Examples 19.7 and 19.8. Now, we cannot associate a 
particular place into which a tuple is to be inserted; the best we can do is place 
in the log an action such as “the tuple t  was inserted somewhere on block B.” 
If we need to redo the insertion of t  during recovery, we may wind up with two 
copies of t in block B.  Worse, we may not know whether the block B  with the 
first copy of t made it to disk. Another transaction writing to another database 
element on block B  may have caused a copy of B  to be written to disk, for 
example.

To disambiguate situations such as this when we recover using a logical log, 
a technique called log sequence numbers has been developed.

• Each log record is given a number one greater than that of the previous 
log record.1 Thus, a typical logical log record has the form <L, T, A, B>, 
where:

-  L  is the log sequence number, an integer.
— T  is the transaction involved.
-  A  is the action performed by T, e.g., “insert of tuple t.”
— B  is the block on which the action was performed.

• For each action, there is a compensating action that logically undoes the 
action. As discussed in Example 19.8, the compensating action may not 
restore the database to exactly the same state 5  it would have been in 
had the action never occurred, but it restores the database to a state that 
is logically equivalent to S. For instance, the compensating action for 
“insert tuple t” is “delete tuple t.”

• If a transaction T  aborts, then for each action performed on the database 
by T,  the compensating action is performed, and the fact that this action 
was performed is also recorded in the log.

• Each block maintains, in its header, the log sequence number of the last 
action that affected that block.

Suppose now that we need to use the logical log to recover after a crash. 
Here is an outline of the steps to take.

E v e n tu a l ly  th e  log sequence num bers m u st r e s ta r t  a t  0, b u t th e  tim e  betw een re s ta r ts  of 
th e  sequence is so large th a t  no am bigu ity  can  occur.
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1. Our first step is to reconstruct the state of the database at the time of the 
crash, including blocks whose current values were in buffers and therefore 
got lost. To do so:

(a) Find the most recent checkpoint on the log, and determine from it 
the set of transactions that were active at that time.

(b) For each log entry <L,T, A, B>, compare the log sequence number 
N  on block B  with the log sequence number L  for this log record. 
If N  < L, then redo action A; that action was never performed on 
block B. However, if N  > L, then do nothing; the effect of A  was 
already felt by B.

(c) For each log entry that informs us that a transaction T  started, com
mitted, or aborted, adjust the set of active transactions accordingly.

2. The set of transactions that remain active when we reach the end of the 
log must be aborted. To do so:

(a) Scan the log again, this time from the end back to the previous check
point. Each time we encounter a record < L ,T ,A ,B >  for a transac
tion T  that must be aborted, perform the compensating action for 
A on block B  and record in the log the fact that that compensating 
action was performed.

(b) If we must abort a transaction that began prior to the most recent 
checkpoint (i.e., that transaction was on the active list for the check
point), then continue back in the log until the start-records for all 
such transactions have been found.

(c) Write abort-records in the log for each of the transactions we had to 
abort.

19.1.9 Exercises for Section 19.1
Exercise 19.1.1: What are all the ways to insert locks (of a single type only, 
as in Section 18.3) into the sequence of actions

ri{A); n (B );  wx(A); wx(B); 

so that the transaction Ti is:

a) Two-phase locked, and strict.

b) Two-phase locked, but not strict.

Exercise 19.1.2: Suppose that each of the sequences of actions below is fol
lowed by an abort action for transaction T \ . Tell which transactions need to be 
rolled back.

a) ri(A); r2 (B); Wi{B); w2 (C); r3 {B); r3 (C); w3 (D)-,
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b) n(A); Wi(B); r2 (B); w2 (C); r3 (C)\ w3 {D);

c) r2 (A); r3 (A); n (A );  w i(5); r2{B); r3 (B); w2 (C); r 3(C);

d) r2 {A); r3 (A); ri(A); wi(B); r3 (B); w2 {C)\ r 3((7);

E xercise 1 9 .1 .3 : Consider each of the sequences of actions in Exercise 19.1.2, 
but now suppose that all three transactions commit and write their commit 
record on the log immediately after their last action. However, a crash occurs, 
and a tail of the log was not written to disk before the crash and is therefore 
lost. Tell, depending on where the lost tail of the log begins:

i. What transactions could be considered uncommitted?

ii. Are any dirty reads created during the recovery process? If so, what 
transactions need to be rolled back?

Hi. What additional dirty reads could have been created if the portion of the 
log lost was not a tail, but rather some portions in the middle?

! E xercise 19 .1 .4 : Consider the following two transactions:

I i :  Wi(A); Wi{B); n(C );  Ci;
T2: w2 (A); r 2 (B); w2 (C); c 2 ;

a) How many schedules of 7\ and T2  are recoverable?

b) Of these, how many are ACR schedules?

c) How many are both recoverable and serializable?

d) How many are both ACR and serializable?

E xercise 19 .1 .5 : Give an example of an ACR schedule with shared and ex
clusive locks that is not strict.

19.2 Deadlocks
Several times we have observed that concurrently executing transactions can 
compete for resources and thereby reach a state where there is a deadlock: each 
of several transactions is waiting for a resource held by one of the others, and 
none can make progress.

•  In Section 18.3.4 we saw how ordinary operation of two-phase-locked 
transactions can still lead to a deadlock, because each has locked some
thing that another transaction also needs to lock.

• In Section 18.4.3 we saw how the ability to upgrade locks from shared to 
exclusive can cause a deadlock because each transaction holds a shared 
lock on the same element and wants to upgrade the lock.
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There are two broad approaches to dealing with deadlock. We can detect 
deadlocks and fix them, or we can manage transactions in such a way that 
deadlocks are never able to form.

19.2.1 Deadlock Detection by Timeout
When a deadlock exists, it is generally impossible to repair the situation so that 
all transactions involved can proceed. Thus, at least one of the transactions will 
have to be aborted and restarted.

The simplest way to detect and resolve deadlocks is with a timeout. Put a 
limit on how long a transaction may be active, and if a transaction exceeds this 
time, roll it back. For example, in a simple transaction system, where typical 
transactions execute in milliseconds, a timeout of one minute would affect only 
transactions that are caught in a deadlock.

Notice that when one deadlocked transaction times out and rolls back, it 
releases its locks or other resources. Thus, there is a chance that the other 
transactions involved in the deadlock will complete before reaching their timeout 
limits. However, since transactions involved in a deadlock are likely to have 
started at approximately the same time (or else, one would have completed 
before another started), it is also possible that spurious timeouts of transactions 
that are no longer involved in a deadlock will occur.

19.2.2 The Waits-For Graph
Deadlocks that are caused by transactions waiting for locks held by another 
can be detected by a waits-for graph, indicating which transactions are waiting 
for locks held by another transaction. This graph can be used either to detect 
deadlocks after they have formed or to prevent deadlocks from ever forming. 
We shall assume the latter, which requires us to maintain the waits-for graph 
at all times, refusing to allow an action that creates a cycle in the graph.

Recall from Section 18.5.2 that a lock table maintains for each database 
element X  a list of the transactions that are waiting for locks on X ,  as well as 
transactions that currently hold locks on X .  The waits-for graph has a node for 
each transaction that currently holds any lock or is waiting for one. There is 
an arc from node (transaction) T  to node U if there is some database element 
A  such that:

1. U holds a lock on A,

2. T  is waiting for a lock on A, and

3. T  cannot get a lock on A  in its desired mode unless U first releases its 
lock on A ?

2 In com m on s itu a tio n s , such as shared  an d  exclusive locks, every w aiting  tran sac tio n  will 
have to  w ait un til all cu rren t lock ho lders release th e ir  locks, b u t th e re  are  exam ples o f system s 
of lock m odes w here a  tran sac tio n  can  get its  lock a fte r  only  som e of th e  cu rren t locks are 
released; see E xercise 19.2.6.
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If there are no cycles in the waits-for graph, then each transaction can 
complete eventually. There will be at least one transaction waiting for no other 
transaction, and this transaction surely can complete. At that time, there will 
be at least one other transaction that is not waiting, which can complete, and 
so on.

However, if there is a cycle, then no transaction in the cycle can ever make 
progress, so there is a deadlock. Thus, a strategy for deadlock avoidance is to 
roll back any transaction that makes a request that would cause a cycle in the 
waits-for graph.

E xam ple  19.9: Suppose we have the following four transactions, each of which 
reads one element and writes another:

Ti: h{A); n (A );  h{B); Wi(B)-, ui(A); ui(B);

Tr. h(cy , r 2 ( C ) ;  l2 (A); w2(A); u2(C); u2(A)-,

T3: i3(B); r 3(B); l3(C); w3(C); u„(B); u3(C);
T4: h{D); r4(D); h{A); w4(A)\ u4(D); u4(A);

Ti_____________ la_____________ Tz_____________ Ti_________
1) h(A); n(A );
2) i2(cy, r2(cy
3) lz(B); r s (B);
4) l4 (D); r4 (D);
5) fa (A); D en ied
6) hiC);  D en ied
7) h{A);  D en ied
8) h(B);  D en ied

Figure 19.4: Beginning of a schedule with a deadlock

We use a simple locking system with only one lock mode, although the same 
effect would be noted if we were to use a shared/exclusive system. In Fig. 19.4 
is the beginning of a schedule of these four transactions. In the first four steps, 
each transaction obtains a lock on the element it wants to read. At step (5), 
T2  tries to lock A, but the request is denied because already has a lock on
A. Thus, T2  waits for Ti, and we draw an arc from the node for T2  to the node 
for I i .

Similarly, at step (6) I 3 is denied a lock on C  because of T2, and at step (7), 
T4 is denied a lock on A  because of I i . The waits-for graph at this point is as 
shown in Fig. 19.5. There is no cycle in this graph.

At step (8), Ti must wait for the lock on B  held by Tz- If we allow Ti to 
wait, there is a cycle in the waits-for graph involving T\, T2 , and Tz, as seen
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©

©---KD---kJ)
Figure 19.5: Waits-for graph after step (7) of Fig. 19.4

©

Figure 19.6: Waits-for graph with a cycle caused by step (8) of Fig. 19.4

in Fig. 19.6. Since each of these transactions is waiting for another to finish, 
none can make progress, and therefore there is a deadlock involving these three 
transactions. Incidentally, X4 can not finish either, although it is not in the 
cycle, because TVs progress depends on making progress.

Since we roll back any transaction that causes a cycle, Ti must be rolled 
back, yielding the waits-for graph of Fig. 19.7. Tj relinquishes its lock on A, 
which may be given to either T2  or T4. Suppose it is given to T2. Then T2  can 
complete, whereupon it relinquishes its locks on A  and C. Now T3, which needs 
a lock on C, and I 4, which needs a lock on A, can both complete. At some 
time, Ti is restarted, but it cannot get locks on A  and B  until T2, T3 , and T4 
have completed. □

Figure 19.7: Waits-for graph after 7i is rolled back
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19.2.3 Deadlock Prevention by Ordering Elements
Now, let us consider several more methods for deadlock prevention. The first 
requires us to order database elements in some arbitrary but fixed order. For 
instance, if database elements are blocks, we could order them lexicographically 
by their physical address.

If every transaction is required to request locks on elements in order, then 
there can be no deadlock due to transactions waiting for locks. For suppose T2 
is waiting for a lock on A\  held by I i ;  T3 is waiting for a lock on A 2  held by
I 2, and so on, while Tn is waiting for a lock on A n- 1 held by Tn_i, and Ti is 
waiting for a lock on A n held by Tn. Since T2 has a lock on A 2  but is waiting 
for A \ , it must be that A 2 < Ai in the order of elements. Similarly, Ai < Ai- 1 
for i =  3 ,4 ,. . .  , n. But since I i  has a lock on Ai while it is waiting for A„, it 
also follows that A\ < A n. We now have A\ < A n < A n- 1 < • • • < A 2  < A \ l 
which is impossible, since it implies A\ < Ai.

E xam ple 19.10: Let us suppose elements are ordered alphabetically. Then if 
the four transactions of Examplel9.9 are to lock elements in alphabetical order, 
I 2 and I 4 must be rewritten to lock elements in the opposite order. Thus, the 
four transactions are now:

I i :  h(A)-, r i (A); h{B)- Wl(B); Ul{A)- Ul(B);

T2: l2 (A); l2 (C)-, r2 (C); w2 (A); u 2 (C)-, «2(A);

T3: l3 (B); r3 (B ); /3(C); «*(£?); u3(S); «s(C);

T4: k{A)\ I a (D); n iD );  wi{A)\ Ui(D); u4(A);

Figure 19.8 shows what happens if the transactions execute with the same 
timing as Fig. 19.4. Ti begins and gets a lock on A. T2  tries to begin next by 
getting a lock on A, but must wait for I i .  Then, T3 begins by getting a lock 
on B,  but Ta is unable to begin because it too needs a lock on A , for which it 
must wait.

Since T2  is stalled, it cannot proceed, and following the order of events in 
Fig. 19.4, T3  gets a turn next. It is able to get its lock on C, whereupon it 
completes at step (6). Now, with T3  s locks on B  and C  released, Ti is able 
to complete, which it does at step (8). At this point, the lock on A  becomes 
available, and we suppose that it is given on a first-come-first-served basis to T2. 
Then, T2  can get both locks that it needs and completes at step (11). Finally, 
Ti can get its locks and completes. □

19.2.4 D etecting Deadlocks by Timestamps
We can detect deadlocks by maintaining the waits-for graph, as we discussed 
in Section 19.2.2. However, this graph can be large, and analyzing it for cy
cles each time a transaction has to wait for a lock can be time-consuming. An
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Ti T2 T3 Ti
1) hiA); niA);
2) h(A); D en ied
3) k ( B ) ;  rs (B);
4) h{A)\ D en ied
5) l3 (C); w3 (C)-,
6) u3(B)\ u3(C);
7) h(B);  Wi(B);
8) «i(A); ui(B);
9) h{A)-, i2(cy,

10) r2(C); w2 {A);
11) u 2 (A); u 2 (C);
12) h{A)\ u{py
13) r4 (D); w4 (A);
14) 114(A); U i ( D y

Figure 19.8: Locking elements in alphabetical order prevents deadlock

alternative to maintaining the waits-for graph is to associate with each trans
action a timestamp. This timestamp is for deadlock detection only; it is not 
the same as the timestamp used for concurrency control in Section 18.8, even 
if timestamp-based concurrency control is in use. In particular, if a transac
tion is rolled back, it restarts with a new, later concurrency timestamp, but its 
timestamp for deadlock detection never changes.

The timestamp is used when a transaction T has to wait for a lock that 
is held by another transaction U. Two different things happen, depending on 
whether T  or U is older (has the earlier timestamp). There are two different 
policies that can be used to manage transactions and detect deadlocks.

1. The Wait-Die Scheme:

(a) If T  is older than U (i.e., the timestamp of T  is smaller than C/’s 
timestamp), then T  is allowed to wait for the lock(s) held by U.

(b) If U is older than T,  then T  “dies” ; it is rolled back.

2. The Wound-Wait Scheme:

(a) If T  is older than U, it “wounds” U. Usually, the “wound” is fatal: 
U must roll back and relinquish to T  the lock(s) that T  needs from 
U. There is an exception if, by the time the “wound” takes effect, U 
has already finished and released its locks. In that case, U survives 
and need not be rolled back.

(b) If U is older than T, then T  waits for the lock(s) held by U.
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E xam ple 19.11: Let us consider the wait-die scheme, using the transactions 
of Example 19.10. We shall assume that Ti, T2, T3, X4 is the order of times; i.e., 
Ti is the oldest transaction. We also assume that when a transaction rolls back, 
it does not restart soon enough to become active before the other transactions 
finish.

Figure 19.9 shows a possible sequence of events under the wait-die scheme. 
Ti gets the lock on A  first. When T2 asks for a lock on A, it dies, because Ti 
is older than Ta. In step (3), T3 gets a lock on B, but in step (4), T4 asks for 
a lock on A  and dies because Ti, the holder of the lock on A, is older than T4. 
Next, T3 gets its lock on C  and completes. When Ti continues, it finds the lock 
on B  available and also completes at step (8).

Now, the two transactions that rolled back — T2 and T4 — start again. 
Their timestamps, as far as deadlock is concerned, do not change; T2 is still 
older than T4. However, we assume that T4 restarts first, at step (9), and when 
the older transaction T2 requests a lock on A  at step (10), it is forced to wait, 
but does not abort. T4 completes at step (12), and then T2 is allowed to run to 
completion, as shown in the last three steps. □

E xam ple 19.12: Next, let us consider the same transactions running under 
the wound-wait policy, as shown in Fig. 19.10. As in Fig. 19.9, Ti begins by 
locking A. When Ta requests a lock on A  at step (2), it waits, since T\ is older 
than T2. After T3 gets its lock on B  at step (3), T4 is also made to wait for the 
lock on A.

Then, suppose that Ti continues at step (5) with its request for the lock on
B. That lock is already held by T3, but Ti is older than T3. Thus, Ti “wounds” 
T3. Since I 3 is not yet finished, the wound is fatal: T3 relinquishes its lock and 
rolls back. Thus, I \  is able to complete.

When Ti makes the lock on A  available, suppose it is given to T2, which 
is then able to proceed. After T2, the lock is given to T4, which proceeds to 
completion. Finally, T3 restarts and completes without interference. □

19.2.5 Comparison of Deadlock-Management Methods
In both the wait-die and wound-wait schemes, older transactions kill off newer 
transactions. Since transactions restart with their old timestamp, eventually 
each transaction becomes the oldest in the system and is sure to complete. This 
guarantee, that every transaction eventually completes, is called no starvation. 
Notice that other schemes described in this section do not necessarily prevent 
starvation; if extra measures are not taken, a transaction could repeatedly start, 
get involved in a deadlock, and be rolled back, (see Exercise 19.2.7).

There is, however, a subtle difference in the way wait-die and wound-wait be
have. In wound-wait, a newer transaction is killed whenever an old transaction 
asks for a lock held by the newer transaction. If we assume that transactions 
take their locks near the time that they begin, it will be rare that an old trans
action was beaten to a lock by a new transaction. Thus, we expect rollback to 
be rare in wound-wait.
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1) h{A)\n{A)\
2) MA); D ies
3) ^(B); r3(S);
4) /4(A); D ies
5) l3(C)-, w3(C);
6) U3 (B); u 3 (C);
7) !!(£ );« ;!(£ );
8) «i(A); wi(B);
9) k (A); /4(£>);

10) /2(A); W aits
11) r-4(-0); w4(A);
12) «4(A); u4{Dy,
13) h{A)\  l2(C);
14) r2 (C); w2(A);
15) «2(A); ^ (C );

Ti T2 T3 T4

Figure 19.9: Actions of transactions detecting deadlock under the wait-die 
scheme

______ Ti____________ T2____________ n ____________ T\_______
1) IX(A); n (A );
2) h(A); W aits
3) h(B); r3 (B);
4) /4(A); W aits
5) h(B); wi(B); W ounded
6) «i(A); ui{B);
7) h{Ay i2(cy
8) r2( c y  Iy2(A);
9) u 2 (A); u2 {C);

10) Z4(A); h ( D y
11) r4 (D); w4 (A);
12) «4(A); u4 (D);
13) h(B); r3 (B);
14) l3 (C); w3 (C);
15) u 3  (B); u3 (C);

Figure 19.10: Actions of transactions detecting deadlock under the wound-wait 
scheme
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Why Timestamp-Based Deadlock Detection Works

We claim that in either the wait-die or wound-wait scheme, there can be 
no cycle in the waits-for graph, and hence no deadlock. Suppose there is 
a cycle such as Ti -> Ta —> T3  —¥ T \ . One of the transactions is the oldest, 
say T2.

In the wait-die scheme, you can only wait for younger transactions. 
Thus, it is not possible that Ti is waiting for T2, since T2 is surely older 
than Ti. In the wound-wait scheme, you can only wait for older transac
tions. Thus, there is no way T2 could be waiting for the younger T3. We 
conclude that the cycle cannot exist, and therefore there is no deadlock.

On the other hand, when a rollback does occur, wait-die rolls back a trans
action that is still in the stage of gathering locks, presumably the earliest phase 
of the transaction. Thus, although wait-die may roll back more transactions 
than wound-wait, these transactions tend to have done little work. In contrast, 
when wound-wait does roll back a transaction, it is likely to have acquired its 
locks and for substantial processor time to have been invested in its activity. 
Thus, either scheme may turn out to cause more wasted work, depending on 
the population of transactions processed.

We should also consider the advantages and disadvantages of both wound- 
wait and wait-die when compared with a straightforward construction and use 
of the waits-for graph. The important points are:

• Both wound-wait and wait-die are easier to implement than a system that 
maintains or periodically constructs the waits-for graph.

• Using the waits-for graph minimizes the number of times we must abort 
a transaction because of deadlock. If we abort a transaction, there really 
is a deadlock. On the other hand, either wound-wait or wait-die will 
sometimes roll back a transaction when there really is no deadlock.

19.2.6 Exercises for Section 19.2
E xercise 19.2.1: For each of the sequences of actions below, assume that 
shared locks are requested immediately before each read action, and exclusive 
locks are requested immediately before every write action. Also, unlocks occur 
immediately after the final action that a transaction executes. Tell what actions 
are denied, and whether deadlock occurs. Also tell how the waits-for graph 
evolves during the execution of the actions. If there are deadlocks, pick a 
transaction to abort, and show how the sequence of actions continues.

a) ri(A); r 2(B); Wi(C); r3 (D); r4 (E); w3 (B); w2 (C); w4 (A); wi(D);
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b) n(A); r2(B ); r3 (C); w2 (C); w3 (D);

c) ri(A); r2(£); r3 (C); wi(-B); tw2 (C); w3 (A);
d) n(A); r2 {B); u>i(C); w2(£>); r 3(C); wi(B); w4(£>); ^ 2(^)5

E xercise 19.2.2: For each of the action sequences in Exercise 19.2.1, tell what 
happens under the wound-wait deadlock avoidance system. Assume the order of 
deadlock-timestamps is the same as the order of subscripts for the transactions, 
that is, Ti,T 2 ,T 3 ,T4. Also assume that transactions that need to restart do so 
in the order that they were rolled back.

Exercise 19.2.3: For each of the action sequences in Exercise 19.2.1, tell 
what happens under the wait-die deadlock avoidance system. Make the same 
assumptions as in Exercise 19.2.2.

! Exercise 19.2.4: Can one have a waits-for graph with a cycle of length n, but 
no smaller cycle, for any integer n  > 1? What about n =  1, i.e., a loop on a 
node?

!! Exercise 19.2.5: One approach to avoiding deadlocks is to require each trans
action to announce all the locks it wants at the beginning, and to either grant 
all those locks or deny them all and make the transaction wait. Does this ap
proach avoid deadlocks due to locking? Either explain why, or give an example 
of a deadlock that can arise.

! E xercise 19.2.6: Consider the intention-locking system of Section 18.6. De
scribe how to construct the waits-for graph for this system of lock modes. Espe
cially, consider the possibility that a database element A  is locked by different 
transactions in modes I S  and also either S  or I X .  If a request for a lock on A 
has to wait, what arcs do we draw?

! E xercise 19.2.7: In Section 19.2.5 we pointed out that deadlock-detection 
methods other than wound-wait and wait-die do not necessarily prevent star
vation, where a transaction is repeatedly rolled back and never gets to finish. 
Give an example of how using the policy of rolling back any transaction that 
would cause a cycle can lead to starvation. Does requiring that transactions 
request locks on elements in a fixed order necessarily prevent starvation? What 
about timeouts as a deadlock-resolution mechanism?

19.3 Long-Duration Transactions
There is a family of applications for which a database system is suitable for 
maintaining data, but the model of many short transactions on which database 
concurrency-control mechanisms are predicated, is inappropriate. In this sec
tion we shall examine some examples of these applications and the problems 
that arise. We then discuss a solution based on “compensating transactions” 
that negate the effects of transactions that were committed, but shouldn’t have 
been.
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19.3.1 Problems of Long Transactions
Roughly, a long transaction is one that takes too long to be allowed to hold locks 
that another transaction needs. Depending on the environment, “too long” 
could mean seconds, minutes, or hours. Three broad classes of applications 
that involve long transactions are:

1. Conventional DBMS Applications. While common database applications 
run mostly short transactions, many applications require occasional long 
transactions. For example, one transaction might examine all of a bank’s 
accounts to verify that the total balance is correct. Another application 
may require that an index be reconstructed occasionally to keep perfor
mance at its peak.

2. Design Systems. Whether the thing being designed is mechanical like 
an automobile, electronic like a microprocessor, or a software system, the 
common element of design systems is that the design is broken into a set of 
components (e.g., files of a software project), and different designers work 
on different components simultaneously. We do not want two designers 
taking a copy of a file, editing it to make design changes, and then writing 
the new file versions back, because then one set of changes would overwrite 
the other. Thus, a check-out-check-in system allows a designer to “check 
out” a file and check it in when the changes are finished, perhaps hours or 
days later. Even if the first designer is changing the file, another designer 
might want to look at the file to learn something about its contents. If 
the check-out operation were tantamount to an exclusive lock, then some 
reasonable and sensible actions would be delayed, possibly for days.

3. Workflow Systems. These systems involve collections of processes, some 
executed by software alone, some involving human interaction, and per
haps some involving human action alone. We shall give shortly an example 
of office paperwork involving the payment of a bill. Such applications may 
take days to perform, and during that entire time, some database elements 
may be subject to change. Were the system to grant an exclusive lock on 
data involved in a transaction, other transactions could be locked out for 
days.

E xam ple 19.13: Consider the problem of an employee vouchering travel ex
penses. The intent of the traveler is to be reimbursed from account A123, and 
the process whereby the payment is made is shown in Fig. 19.11. The process 
begins with action Ai,  where the traveler’s secretary fills out an on-line form 
describing the travel, the account to be charged, and the amount. We assume 
in this example that the account is A123, and the amount is $1000.

The traveler’s receipts are sent physically to the departmental authorization 
office, while the form is sent on-line to an automated action A2. This process 
checks that there is enough money in the charged account (A123) and reserves 
the money for expenditure; i.e., it tentatively deducts $1000 from the account
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Figure 19.11: Workflow for a traveler requesting expense reimbursement

but does not issue a check for that amount. If there is not enough money in 
the account, the transaction aborts, and presumably it will restart when either 
enough money is in the account or after changing the account to be charged.

Action A 3  is performed by the departmental administrator, who examines 
the receipts and the on-line form. This action might take place the next day. 
If everything is in order, the form is approved and sent to the corporate ad
ministrator, along with the physical receipts. If not, the transaction is aborted. 
Presumably the traveler will be required to modify the request in some way and 
resubmit the form.

In action A 4 , which may take place several days later, the corporate admin
istrator either approves or denies the request, or passes the form to an assistant, 
who will then make the decision in action A$. If the form is denied, the trans
action again aborts and the form must be resubmitted. If the form is approved, 
then at action A$ the check is written, and the deduction of $1000 from account 
A123 is finalized.

However, suppose that the only way we could implement this workflow is 
by conventional locking. In particular, since the balance of account A123 may 
be changed by the complete transaction, it has to be locked exclusively at 
action A 2  and not unlocked until either the transaction aborts or action Ag 
completes. This lock may have to be held for days, while the people charged 
with authorizing the payment get a chance to look at the matter. If so, then 
there can be no other charges made to account A123, even tentatively. On
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the other hand, if there are no controls at all over how account A123 can be 
accessed, then it is possible that several transactions will reserve or deduct 
money from the account simultaneously, leading to an overdraft. Thus, some 
compromise between rigid, long-term locks on one hand, and anarchy on the 
other, is required. □

19.3.2 Sagas
A saga is a collection of actions, such as those of Example 19.13, that together 
form a long-duration “transaction.” That is, a saga consists of:

1. A collection of actions.

2. A directed graph whose nodes are either actions or the terminal nodes 
Abort and Complete. No arcs leave the terminal nodes.

3. An indication of the node at which the action starts, called the start node.

The paths through the graph, from the start node to either of the terminal 
nodes, represent possible sequences of actions. Those paths that lead to the 
Abort node represent sequences of actions that cause the overall transaction 
to be rolled back, and these sequences of actions should leave the database 
unchanged. Paths to the Complete node represent successful sequences of ac
tions, and all the changes to the database system that these actions perform 
will remain in the database.

E xam ple 19.14: The paths in the graph of Fig. 19.11 that lead to the Abort 
node are: A \A 2, A iA 2 A 3, A iA 2 A 3 A 4 , and A1A2A3A4A5. The paths that lead 
to the Complete node are A iA 2 A 3 A 4 A§, and A iA 2 A 3 AiA^A^.  Notice that in 
this case the graph has no cycles, so there are a finite number of paths leading 
to a terminal node. However, in general, a graph can have cycles and an infinite 
number of paths. □

Concurrency control for sagas is managed by two facilities:

1. Each action may be considered itself a (short) transaction, that when exe
cuted uses a conventional concurrency-control mechanism, such as locking. 
For instance, A 2  may be implemented to (briefly) obtain a lock on account 
A123, decrement the amount indicated on the travel voucher, and release 
the lock. This locking prevents two transactions from trying to write new 
values of the account balance at the same time, thereby losing the effect 
of the first to write and making money “appear by magic.”

2. The overall transaction, which can be any of the paths to a terminal 
node, is managed through the mechanism of “compensating transactions,” 
which are inverses to the transactions at the nodes of the saga. Their job is 
to roll back the effect of a committed action in a way that does not depend 
on what has happened to the database between the time the action was 
executed and the time the compensating transaction is executed.
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When are Database States “The Same”?

When discussing compensating transactions, we should be careful about 
what it means to return the database to “the same” state that it had 
before. We had a taste of the problem when we discussed logical logging 
for B-trees in Example 19.8. There we saw that if we “undid” an oper
ation, the state of the B-tree might not be identical to the state before 
the operation, but would be equivalent to it as far as access operations 
on the B-tree were concerned. More generally, executing an action and 
its compensating transaction might not restore the database to a state 
literally identical to what existed before, but the differences must not be 
detectable by whatever application programs the database supports.

19.3.3 Compensating Transactions
In a saga, each action A  has a compensating transaction, which we denote A -1 . 
Intuitively, if we execute A, and later execute A ~ 1, then the resulting database 
state is the same as if neither A  nor A ~ 1 had executed. More formally:

• If D is any database state, and B \B 2  ■ ■ ■ B n is any sequence of actions 
and compensating transactions (whether from the saga in question or any 
other saga or transaction that may legally execute on the database) then 
the same database states result from running the sequences B \B 2  -Bn 
and A B 1 B 2  ■ • ■ B nA ~ l starting in database state D.

If a saga execution leads to the Abort node, then we roll back the saga 
by executing the compensating transactions for each executed action, in the 
reverse order of those actions. By the property of compensating transactions 
stated above, the effect of the saga is negated, and the database state is the same 
as if it had never happened. An explanation of why the effect is guaranteed to 
be negated is given in Section 19.3.4

E xam ple 19.15: Let us consider the actions in Fig. 19.11 and see what the 
compensating transactions for Ai through A 6  might be. First, A\ creates an on
line document. If the document is stored in the database, then Aj"1 must remove 
it from the database. Notice that this compensation obeys the fundamental 
property for compensating transactions: If we create the document, do any 
sequence of actions a  (including deletion of the document if we wish), then the 
effect of AiccA^ 1 is the same as the effect of a.

A i  must be implemented carefully. We “reserve” the money by deducting 
it from the account. The money will stay removed unless restored by the com
pensating transaction AJ 1. We claim that this A ^ 1 is a correct compensating 
transaction if the usual rules for how accounts may be managed Eire followed. 
To appreciate the point, it is useful to consider a similar transaction where the
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obvious compensation will not work; we consider such a case in Example 19.16, 
next.

The actions A%, A 4 , and Ag each involve adding an approval to a form. 
Thus, their compensating transactions can remove that approval.3

Finally, A 5 , which writes the check, does not have an obvious compensating 
transaction. In practice none is needed, because once A 5  is executed, this saga 
cannot be rolled back. However, technically A 5 does not affect the database 
anyway, since the money for the check was deducted by A2. Should we need 
to consider the “database” as the larger world, where effects such as cashing a 
check affected the database, then we would have to design A ^ 1 to first try to 
cancel the check, next write a letter to the payee demanding the money back, 
and if all remedies failed, restoring the money to the account by declaring a 
loss due to a bad debt. □

Next, let us take up the example, alluded to in Example 19.15, where a 
change to an account cannot be compensated by an inverse change. The prob
lem is that accounts normally are not allowed to go negative.

E xam ple 19.16: Suppose B  is a transaction that adds $1000 to an account 
that has $2000 in it initially, and B -1 is the compensating transaction that 
removes the same amount of money. Also, it is reasonable to assume that 
transactions may fail if they try to delete money from an account and the 
balance would thereby become negative. Let C  be a transaction that deletes 
$2500 from the same account. Then B C B -1 ^  C. The reason is that C by 
itself fails, and leaves the account with $2000, while if we execute B  then C, 
the account is left with $500, whereupon B ~ x fails.

Our conclusion that a saga with arbitrary transfers among accounts and a 
rule about accounts never being allowed to go negative cannot be supported 
simply by compensating transactions. Some modification to the system must 
be done, e.g., allowing negative balances in accounts. □

19.3.4 W hy Compensating Transactions Work
Let us say that two sequences of actions are equivalent (=) if they take any 
database state D to the same state. The fundamental assumption about com
pensating transactions can be stated:

• If A  is any action and a  is any sequence of legal actions and compensating 
transactions, then A a A -1 =  a.

Now, we need to show that if a saga execution Ai A 2  ■ ■ ■ An is followed by its 
compensating transactions in reverse order, A ~ [ ■ ■ ■ A 2 l A ^ 1, with any inter
vening actions whatsoever, then the effect is as if neither the actions nor the 
compensating transactions executed. The proof is an induction on n.

3In the saga of Fig. 19.11, the only time these actions are compensated is when we are 
going to delete the form anyway, but the definition of compensating transactions require that 
they work in isolation, regardless of whether some other compensating transaction was going 
to make their changes irrelevant.
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BASIS: If n =  1, then the sequence of all actions between Ai  and its compen
sating transaction A f 1 looks like A ia A ^ 1. By the fundamental assumption 
about compensating transactions, A^aA ^ 1 =  a.

INDUCTION: Assume the statement for paths of up to n — 1 actions, and 
consider a path of n  actions, followed by its compensating transactions in reverse 
order, with any other transactions intervening. The sequence looks like

AiOiA 2 a 2  ■ ■ ■ a n-.1 A„j3A~1 'Yn- i  ■ ■ ■ ̂ A ^ j i A ^ 1 (19.1)

where all Greek letters represent sequences of zero or more actions. By the 
definition of compensating transaction, A nfiA~l = /?. Thus, (19.1) is equivalent 
to

A \a \A 2 a 2  ■ ■ ■ A n- 1 a n- i ^ n^ 1 A ~ l 1 'yn - 2  ■ ■ - ^ A ^ ^ A ^ 1 (19.2)

By the inductive hypothesis, expression (19.2) is equivalent to

ot\a2 ■ ■ ■ a n- i/?7„_i • ■ • 7271

since there are only n — 1 actions in (19.2). That is, the saga and its compen
sation leave the database state the same as if the saga had never occurred.

19.3.5 Exercises for Section 19.3
! Exercise 19.3.1: The process of “uninstalling” software can be thought of as 

a compensating transaction for the action of installing the same software. In a 
simple model of installing and uninstalling, suppose that an action consists of 
loading one or more files from the source (e.g., a CD-ROM) onto the hard disk 
of the machine. To load a file / ,  we copy /  from CD-ROM. If there was a file 
/ '  with the same path name, we back up / '  before replacement. To distinguish 
files with the same path name, we may assume each file has a timestamp.

a) What is the compensating transaction for the action that loads file /?  
Consider both the case where no file with that path name existed, and 
where there was a file / '  with the same path name.

b) Explain why your answer to (a) is guaranteed to compensate. Hint : Con
sider carefully the case where after replacing / '  by / ,  a later action re
places /  by another file with the same path name.

! Exercise 19.3.2: Describe the process of booking an airline seat as a saga. 
Consider the possibility that the customer will query about a seat but not book 
it. The customer may book the seat, but cancel it, or not pay for the seat 
within the required time limit. The customer may or may not show up for the 
flight. For each action, describe the corresponding compensating transaction.
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19.4 Summary of Chapter 19
♦  Dirty Data: Data that has been written, either into main-memory buffers 

or on disk, by a transaction that has not yet committed is called “dirty.”

♦  Cascading Rollback: A combination of logging and concurrency control 
that allows a transaction to read dirty data may have to roll back trans
actions that read such data from a transaction that later aborts.

♦  Strict Locking: The strict locking policy requires transactions to hold 
their locks (except for shared-locks) until not only have they committed, 
but the commit record on the log has been flushed to disk. Strict locking 
guarantees that no transaction can read dirty data, even retrospectively 
after a crash and recovery.

♦  Group Commit: We can relax the strict-locking condition that requires 
commit records to reach disk if we assure that log records are written to 
disk in the order that they are written. There is still then a guarantee of 
no dirty reads, even if a crash and recovery occurs.

♦  Restoring Database State After an Abort: Tf a transaction aborts but has 
written values to buffers, then we can restore old values either from the 
log or from the disk copy of the database. If the new values have reached 
disk, then the log may still be used to restore the old value.

♦  Logical Logging: For large database elements such as disk blocks, it saves 
much space if we record old and new values on the log incrementally, that 
is, by indicating only the changes. In some cases, recording changes logi
cally, that is, in terms of an abstraction of what blocks contain, allows us 
to restore state logically after a transaction abort, even if it is impossible 
to restore the state literally.

♦  Deadlocks: These occur when each of a set of transactions is waiting for a 
resource, such as a lock, currently held by another transaction in the set.

♦  Waits-For Graphs: Create a node for each waiting transaction, with an 
arc to the transaction it is waiting for. The existence of a deadlock is 
the same as the existence of one or more cycles in the waits-for graph. 
We can avoid deadlocks if we maintain the waits-for graph and abort any 
transaction whose waiting would cause a cycle.

♦  Deadlock Avoidance by Ordering Resources: Requiring transactions to 
acquire resources according to some lexicographic order of the resources 
will prevent a deadlock from arising.

♦  Timestamp-Based Deadlock Avoidance: Other schemes maintain a time
stamp and base their abort/wait decision on whether the requesting trans
action is newer or older than the one with the resource it wants. In the
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wait-die scheme, an older requesting transaction waits, and a newer one 
is rolled back with the same timestamp. In the wound-wait scheme, a 
newer transaction waits and an older one forces the transaction with the 
resource to roll back and give up the resource.

♦  Sagas: When transactions involve long-duration steps that may take 
hours or days, conventional locking mechanisms may limit concurrency 
too much. A saga consists of a network of actions, each of which may 
lead to one or more other actions, to the completion of the entire saga, or 
to a requirement that the saga abort.

♦  Compensating Transactions: For a saga to make sense, each action must 
have a compensating action that will undo the effects of the first action on 
the database state, while leaving intact any other actions that have been 
made by other sagas that have completed or are currently in operation. 
If a saga aborts, the appropriate sequence of compensating actions is 
executed.

19.5 References for Chapter 19
Some useful general sources for topics covered here are [2], [1], and [7]. The
material on logical logging follows [6].

Deadlock prevention was surveyed in [5]; the waits-for graph is from there.
The wait-die and wound-wait schemes are from [8].

Long transactions were introduced by [4]. Sagas were described in [3].
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Chapter 20

Parallel and Distributed  
Databases

While many databases sit at a single machine, a database can also be distributed 
over many machines. There are other databases that reside at a single highly 
parallel machine. When computation is either parallel or distributed, there axe 
many database-implementation issues that need to be reconsidered.

In this chapter, we first look at the different kinds of parallel architectures 
that have been used. On a parallel machine it is important that the most 
expensive operations take advantage of parallelism, and for databases, these 
operations are the full-relation operations such as join. We then discuss the 
map-reduce paradigm for expressing large-scale computations. This formula
tion of algorithms is especially amenable to execution on large-scale parallel 
machines, and it is simple to express important database processes in this man
ner.

We then turn to distributed architectures. These include grids and networks 
of workstations, as well as corporate databases that are distributed around the 
world. Now, we must worry not only about exploiting the many available 
processors for query execution, but some database operations become much 
harder to perform correctly in a distributed environment. Notable among these 
are distributed commitment of transactions and distributed locking.

The extreme case of a distributed architecture is a collection of independent 
machines, often called “peer-to-peer” networks, In these networks, even data 
lookup becomes problematic. We shall therefore discuss distributed hash tables 
and distributed search in peer-to-peer networks.

20.1 Parallel Algorithms on Relations
Database operations, frequently being time-consuming and involving a lot of 
data, can generally profit from parallel processing. In this section, we shall
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review the principal architectures for parallel machines. We then concentrate on 
the “shared-nothing” architecture, which appears to be the most cost effective 
for database operations, although it may not be superior for other parallel 
applications. There are simple modifications of the standard algorithms for 
most relational operations that will exploit parallelism almost perfectly. That 
is, the time to complete an operation on a p-processor machine is about l / p  of 
the time it takes to complete the operation on a uniprocessor.

20.1.1 Models of Parallelism
At the heart of all parallel machines is a collection of processors. Often the 
number of processors p  is large, in the hundreds or thousands. We shall assume 
that each processor has its own local cache, which we do not show explicitly 
in our diagrams. In most organizations, each processor also has local memory, 
which we do show. Of great importance to database processing is the fact that 
along with these processors are many disks, perhaps one or more per processor, 
or in some architectures a large collection of disks accessible to all processors 
directly.

Additionally, parallel computers all have some communications facility for 
passing information among processors. In our diagrams, we show the com
munication as if there were a shared bus for all the elements of the machine. 
However, in practice a bus cannot interconnect as many processors or other 
elements as are found in the largest machines, so the interconnection system 
in many architectures is a powerful switch, perhaps augmented by busses that 
connect subsets of the processors in local clusters. For example, the processors 
in a single rack are typically connected.

Figure 20.1: A shared-memory machine

We can classify parallel architectures into three broad groups. The most 
tightly coupled architectures share their main memory. A less tightly coupled
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architecture shares disk but not memory. Architectures that are often used for 
databases do not even share disk; these are called “shared nothing” architec
tures, although the processors are in fact interconnected and share data through 
message passing.

Shared-M em ory M achines

In this architecture, illustrated in Fig. 20.1, each processor has access to all the 
memory of all the processors. That is, there is a single physical address space 
for the entire machine, rather than one address space for each processor. The 
diagram of Fig. 20.1 is actually too extreme, suggesting that processors have 
no private memory at all. Rather, each processor has some local main memory, 
which it typically uses whenever it can. However, it has direct access to the 
memory of other processors when it needs to. Large machines of this class are of 
the NUMA (nonuniform memory access) type, meaning that it takes somewhat 
more time for a processor to access data in a memory that “belongs” to some 
other processor than it does to access its “own” memory, or the memory of 
processors in its local cluster. However, the difference in memory-access times 
are not great in current architectures. Rather, all memory accesses, no matter 
where the data is, take much more time than a cache access, so the critical issue 
is whether or not the data a processor needs is in its own cache.

Figure 20.2: A shared-disk machine

Shared-D isk  M achines

In this architecture, suggested by Fig. 20.2, every processor has its own memory, 
which is not accessible directly from other processors. However, the disks jure 
accessible from any of the processors through the communication network. Disk 
controllers manage the potentially competing requests from different processors.
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The number of disks and processors need not be identical, as it might appear 
from Fig. 20.2.

This architecture today appears in two forms, depending on the units of 
transfer between the disks and processors. Disk farms called network attached 
storage (NAS) store and transfer files. The alternative, storage area networks 
(SAN) transfer disk blocks to and from the processors.

S h ared -N oth in g  M achines

Here, all processors have their own memory and their own disk or disks, as in 
Fig. 20.3. All communication is via the network, from processor to processor. 
For example, if one processor P  wants to read tuples from the disk of another 
processor Q, then processor P  sends a message to Q asking for the data. Q 
obtains the tuples from its disk and ships them over the network in another 
message, which is received by P.

Figure 20.3: A shared-nothing machine

As we mentioned, the shared-nothing architecture is the most commonly 
used architecture for database systems. Shared-nothing machines are relatively 
inexpensive to build; one buys racks of commodity machines and connects them 
with the network connection that is typically built into the rack. Multiple racks 
can be connected by an external network.

But when we design algorithms for these machines we must be aware that 
it is costly to send data from one processor to another. Normally, data must 
be sent between processors in a message, which has considerable overhead as
sociated with it. Both processors must execute a program that supports the 
message transfer, and there may be contention or delays associated with the 
communication network as well. Typically, the cost of a message can be broken 
into a large fixed overhead plus a small amount of time per byte transmitted. 
Thus, there is a significant advantage to designing a parallel algorithm so that 
communications between processors involve large amounts of data sent at once. 
For instance, we might buffer several blocks of data at processor P, all bound 
for processor Q. If Q does not need the data immediately, it may be much 
more efficient to wait until we have a long message at P  and then send it to
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Q. Fortunately, the best known parallel algorithms for database operations can 
use long messages effectively.

20.1.2 Tuple-at-a-Time Operations in Parallel
Let us begin our discussion of parallel algorithms for a shared-nothing machine 
by considering the selection operator. First, we must consider how data is best 
stored. As first suggested by Section 13.3.3, it is useful to distribute our data 
across as many disks as possible. For convenience, we shall assume there is one 
disk per processor. Then if there are p  processors, divide any relation R ’s tuples 
evenly among the p  processor’s disks.

To compute ac(R),  we may use each processor to examine the tuples of R  
on its own disk. For each, it finds those tuples satisfying condition C and copies 
those to the output. To avoid communication among processors, we store those 
tuples t  in crc(R) at the same processor that has t on its disk. Thus, the result 
relation crc{R) is divided among the processors, just like R  is.

Since ac(R)  may be the input relation to another operation, and since we 
want to minimize the elapsed time and keep all the processors busy all the 
time, we would like crc{R) to be divided evenly among the processors. If we 
were doing a projection, rather than a selection, then the number of tuples in 
7xl{R) at each processor would be the same as the number of tuples of R  at 
that processor. Thus, if R  is distributed evenly, so would be its projection. 
However, a selection could radically change the distribution of tuples in the 
result, compared to the distribution of R.

E xam ple 20.1: Suppose the selection is <Ta=io(R), that is, find all the tuples 
of R  whose value in the attribute a is 10. Suppose also that we have divided R  
according to the value of the attribute a. Then all the tuples of R  with a =  10 
are at one processor, and the entire relation ffa=io(R) is at one processor. □

To avoid the problem suggested by Example 20.1, we need to think carefully 
about the policy for partitioning our stored relations among the processors. 
Probably the best we can do is to use a hash function h that involves all the 
components of a tuple in such a way that changing one component of a tuple 
t can change h(t) to be any possible bucket number. For example, if we want 
B  buckets, we might convert each component somehow to an integer between 
0 and B  — 1, add the integers for each component, divide the result by B,  and 
take the remainder as the bucket number. If B  is also the number of processors, 
then we can associate each processor with a bucket and give that processor the 
contents of its bucket.

20.1.3 Parallel Algorithms for Full-Relation Operations
First, let us consider the operation S(R). If we use a hash function to distribute 
the tuples of R  as in Section 20.1.2, then we shall place duplicate tuples of R  at 
the same processor. We can produce S(R) in parallel by applying a standard,



990 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

uniprocessor algorithm (as in Section 15.4.2 or 15.5.2, e.g.) to the portion of R  
at each processor. Likewise, if we use the same hash function to distribute the 
tuples of both R  and S,  then we can take the union, intersection, or difference 
of R  and S  by working in parallel on the portions of R  and S  at each processor.

However, suppose that R  and S  are not distributed using the same hash 
function, and we wish to take their union.1 In this case, we first must make 
copies of all the tuples of R  and S  and distribute them according to a single 
hash function h?

In parallel, we hash the tuples of R  and 5  at each processor, using hash 
function h. The hashing proceeds as described in Section 15.5.1, but when the 
buffer corresponding to a bucket i at one processor j  is filled, instead of moving 
it to the disk at j ,  we ship the contents of the buffer to processor i. If we have 
room for several blocks per bucket in main memory, then we may wait to fill 
several buffers with tuples of bucket i before shipping them to processor i.

Thus, processor i receives all the tuples of R  and S  that belong in bucket i. 
In the second stage, each processor performs the union of the tuples from R  and 
S  belonging to its bucket. As a result, the relation R  U 5  will be distributed 
over all the processors. If hash function h truly randomizes the placement of 
tuples in buckets, then we expect approximately the same number of tuples of 
R  U S  to be at each processor.

The operations of intersection and difference may be performed just like 
a union; it does not m atter whether these are set or bag versions of these 
operations. Moreover:

• To take a join R (X ,Y )  tx S (Y ,Z ),  we hash the tuples of R  and S  to 
a number of buckets equal to the number of processors. However, the 
hash function h we use must depend only on the attributes of Y ,  not all 
the attributes, so that joining tuples are always sent to the same bucket. 
As with union, we ship tuples of bucket i to processor i. We may then 
perform the join at each processor using any uniprocessor join algorithm.

• To perform grouping and aggregation 7l (R), we distribute the tuples of 
R  using a hash function h that depends only on the grouping attributes 
in list L. If each processor has all the tuples corresponding to one of the 
buckets of h, then we can perform the 7 l operation on these tuples locally, 
using any uniprocessor 7  algorithm.

20.1.4 Performance of Parallel Algorithms
Now, let us consider how the running time of a parallel algorithm on a p- 
processor machine compares with the time to execute an algorithm for the

1In  princip le , th is  un ion  could be  e ith e r  a  set- o r bag-un ion . B u t th e  sim ple bag-union 
techn ique from  Section 15.2.3 o f copying all th e  tu p le s  from  b o th  a rg u m en ts  w orks in  paralle l, 
so we p ro b ab ly  w ould n o t w ant to  use th e  a lg o rith m  described  here fo r a  bag-union.

2 If  th e  h ash  function  used  to  d is tr ib u te  tu p les  o f R  o r  S  is know n, we can  use th a t  hash  
function  for th e  o th e r a n d  n o t d is tr ib u te  b o th  re la tions.
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same operation on the same data, using a uniprocessor. The total work — disk 
I /O ’s and processor cycles — cannot be smaller for a parallel machine than 
for a uniprocessor. However, because there axe p processors working with p 
disks, we can expect the elapsed, or wall-clock, time to be much smaller for the 
multiprocessor than for the uniprocessor.

A unary operation such as crc(R) can be completed in 1/p th  of the time it 
would take to perform the operation at a single processor, provided relation R  
is distributed evenly, as was supposed in Section 20.1.2. The number of disk 
I /O ’s is essentially the same as for a uniprocessor selection. The only difference 
is that there will, on average, be p  half-full blocks of R,  one at each processor, 
rather than a single half-full block of R  had we stored all of R  on one processor’s 
disk.

Now, consider a binary operation, such as join. We use a hash function on 
the join attributes that sends each tuple to one of p  buckets, where p  is the 
number of processors. To distribute the tuples belonging to one processor, we 
must read each tuple from disk to memory, compute the hash function, and 
ship all tuples except the one out of p  tuples that happens to belong to the 
bucket at its own processor.

If we are computing R(X , Y)  x  S(Y, Z), then we need to do B(R) + B(S)  
disk I /O ’s to read all the tuples of R  and S  and determine their buckets. We 
then must ship ((p — 1 )/p) (B (R ) +  B(S))  blocks of data across the machine’s 
internal interconnection network to their proper processors; only the (l/p )th  
of the tuples already at the right processor need not be shipped. The cost of 
shipment can be greater or less than the cost of the same number of disk I /O ’s, 
depending on the architecture of the machine. However, we shall assume that 
shipment across the internal network is significantly cheaper than movement 
of data between disk and memory, because no physical motion is involved in 
shipment among processors, while it is for disk I/O .

In principle, we might suppose that the receiving processor has to store the 
data on its own disk, then execute a local join on the tuples received. For 
example, if we used a two-pass sort-join at each processor, a naive parallel 
algorithm would use 3(B(R) + B (S )) /p  disk I/O ’s at each processor, since 
the sizes of the relations in each bucket would be approximately B (R )/p  and 
B(S) /p, and this type of join takes three disk I /O ’s per block occupied by each of 
the argument relations. To this cost we would add another 2 (B(R) + B (S )) /p  
disk I /O ’s per processor, to account for the first read of each tuple and the 
storing away of each tuple by the processor receiving the tuple during the hash 
and distribution of tuples. We should also add the cost of shipping the data, 
but we have elected to consider that cost negligible compared with the cost of 
disk I/O  for the same data.

The above comparison demonstrates the value of the multiprocessor. While 
we do more disk I/O  in total — five disk I /O ’s per block of data, rather than 
three — the elapsed time, as measured by the number of disk I/O ’s performed 
at each processor has gone down from 3 (B(R) +  B(S))  to 5 (B(R) +  B(S)) /p, 
a significant win for large p.
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Biiig Mistake

When using hash-based algorithms to distribute relations among proces
sors and to execute operations, as in Example 20.2, we must be careful 
not to overuse one hash function. For instance, suppose we used a hash 
function h to hash the tuples of relations R  and S  among processors, in 
order to take their join. We might be tempted to use h to hash the tu 
ples of S  locally into buckets as we perform a one-pass hash-join at each 
processor. But if we do so, all those tuples will go to the same bucket, 
and the main-memory join suggested in Example 20.2 will be extremely 
inefficient.

Moreover, there are ways to improve the speed of the parallel algorithm so 
that the total number of disk I /O ’s is not greater than what is required for a 
uniprocessor algorithm. In fact, since we operate on smaller relations at each 
processor, we may be able to use a local join algorithm that uses fewer disk 
I /O ’s per block of data. For instance, even if R  and S  were so large that we 
need a two-pass algorithm on a uniprocessor, we may be able to use a one-pass 
algorithm on (l/p )th  of the data.

We can avoid two disk I /O ’s per block if, when we ship a block to the 
processor of its bucket, that processor can use the block immediately as part 
of its join algorithm. Many algorithms known for join and the other relational 
operators allow this use, in which case the parallel algorithm looks just like 
a multipass algorithm in which the first pass uses the hashing technique of 
Section 15.8.3.

E xam ple  20 .2 : Consider our running example from Chapter 15 of the join 
R (X ,Y )  ix S (Y ,Z ) ,  where R  and S  occupy 1000 and 500 blocks, respectively. 
Now, let there be 101 buffers at each processor of a 10-processor machine. Also, 
assume that R  and S  are distributed uniformly among these 10 processors.

We begin by hashing each tuple of R  and S  to one of 10 “buckets,” us
ing a hash function h that depends only on the join attributes Y.  These 10 
“buckets” represent the 10 processors, and tuples are shipped to the processor 
corresponding to their “bucket.” The total number of disk I /O ’s needed to read 
the tuples of R  and S  is 1500, or 150 per processor. Each processor will have 
about 15 blocks worth of data for each other processor, so it ships 135 blocks 
to the other nine processors. The total communication is thus 1350 blocks.

We shall arrange that the processors ship the tuples of S  before the tuples 
of R.  Since each processor receives about 50 blocks of tuples from S, it can 
store those tuples in a main-memory data structure, using 50 of its 101 buffers. 
Then, when processors start sending i?-tuples, each one is compared with the 
local S'-tuples, and any resulting joined tuples are output.

In this way, the only cost of the join is 1500 disk I /O ’s. Moreover, the
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elapsed time is primarily the 150 disk I /O ’s performed at each processor, plus 
the time to ship tuples between processors and perform the main-memory com
putations. Note that 150 disk I /O ’s is less than l/10 th  of the time to perform 
the same algorithm on a uniprocessor; we have not only gained because we had
10 processors working for us, but the fact that there are a total of 1010 buffers 
among those 10 processors gives us additional efficiency. □

20.1.5 Exercises for Section 20.1
Exercise 2 0 .1 .1 : Suppose that a disk I/O  takes 100 milliseconds. Let B(R) = 
100, so the disk I /O ’s for computing <rc(R) on a uniprocessor machine will take 
about 10 seconds. What is the speedup if this selection is executed on a parallel 
machine with p  processors, where: (a) p  =  8 (b) p = 100 (c) p  =  1000.

! Exercise 20 .1 .2 : In Example 20.2 we described an algorithm that computed 
the join R  txi S  in parallel by first hash-distributing the tuples among the 
processors and then performing a one-pass join at the processors. In terms of 
B(R) and B(S),  the sizes of the relations involved, p  (the number of processors), 
and M  (the number of blocks of main memory at each processor), give the 
condition under which this algorithm can be executed successfully.

20.2 The M ap-Reduce Parallelism Framework
Map-reduce is a high-level programming system that allows many important 
database processes to be written simply. The user writes code for two functions, 
map and reduce. A master controller divides the input data into chunks, and 
assigns different processors to execute the map function on each chunk. Other 
processors, perhaps the same ones, are then assigned to perform the reduce 
function on pieces of the output from the map function.

20.2.1 The Storage Model
For the map-reduce framework to make sense, we should assume a massively 
parallel machine, most likely shared-nothing. Typically, the processors are com
modity computers, mounted in racks with a simple communication network 
among the processors on a rank. If there is more than one rack, the racks Eire 
also connected by a simple network.

Data is assumed stored in files. Typically, the files are very large compared 
with the files found in conventional systems. For example, one file might be all 
the tuples of a very large relation. Or, the file might be a terabyte of “market- 
baskets,” as discussed in Section 22.1.4. For another example of a single file, 
we shall talk in Section 23.2.2 of the “transition matrix of the Web,” which is 
a representation of the graph with all Web pages as nodes and hyperlinks as 
edges.
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Files are divided into chunks, which might be complete cylinders of a disk, 
and are typically many megabytes. For resiliency, each chunk is replicated 
several times, so it will not be lost if the disk holding it crashes.

Map Reduce

Input 
Key-Value 

Pairs

Output
Lists

Sort Intermediate 
Key-Value 

Pairs by Key

Figure 20.4: Execution of map and reduce functions

2 0 .2.2 The Map Function
The outline of what user-defined map and reduce functions do is suggested 
in Fig. 20.4. The input is generally thought of as a set of key-value records, 
although in fact the input could be objects of any type.3 The function map is 
executed by one or more processes, located at any number of processors. Each 
map process is given a chunk of the entire input data on which to work.

The map function is designed to take one key-value pair as input and to 
produce a list of key-value pairs as output. However:

•  The types of keys and values for the output of the map function need not 
be the same as the types of input keys and values.

•  The “keys” that are output from the map function are not true keys in 
the database sense. That is, there can be many pairs with the same key 
value. However, the key field of output pairs plays a special role in the 
reduce process to be explained next.

The result of executing all the map processes is a collection of key-value pairs 
called the intermediate result. These key-value pairs are the outputs of the map 
function applied to every input pair. Each pair appears at the processor that 
generated it. Remember that there may be many map processes executing the 
same algorithm on a different part of the input file at different processors.

3 A s  we shall see, th e  o u tp u t of a  m ap-reduce  a lg o rith m  is alw ays a  se t o f  key-value pairs. 
Since it  is useful in  som e app lica tio n s to  com pose tw o o r m ore m ap-reduce  opera tio n s, it  is 
conventional to  assum e th a t  b o th  in p u t an d  o u tp u t are  se ts  o f key-value pairs.
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E xam ple 20 .3 : We shall consider as an example, constructing an inverted 
index for words in documents, as was discussed in Section 14.1.8. That is, our 
input is a collection of documents, and we desire to construct as the final output 
(not as the output of map) a list for each word of the documents that contain 
that word at least once. The input is a set of pairs each of whose keys are 
document ID’s and whose values are the corresponding documents.

The map function takes a pair consisting of a document ID i and a document 
d. This function scans d character by character, and for each word w it finds, 
it emits the pair (w, i). Notice that in the output, the word is the key and 
the document ID is the associated value. The output of map for a single ID- 
document pair is a list of word-ID pairs. It is not necessary to catch duplicate 
words in the document; the elimination of duplicates can be done later, at the 
reduce phase. The intermediate result is the collection of all word-ID pairs 
created from all the documents in the input database. □

20.2.3 The Reduce Function
The second user-defined function, reduce, is also executed by one or more pro
cesses, located at any number of processors. The input to reduce is a single 
key value from the intermediate result, together with the list of all values that 
appear with this key in the intermediate result. Duplicate values are not elim
inated.

In Fig. 20.4, we suggest that the output of map at each of four processors 
is distributed to four processors, each of which will execute reduce for a subset 
of the intermediate keys. However, there are a number of ways in which this 
distribution could be managed. For example, Each map process could leave its 
output on its local disk, and a reduce process could retrieve the portion of the 
intermediate result that it needed, over whatever network or bus interconnects 
the processors.

The reduce function itself combines the list of values associated with a given 
key k. The result is k paired with a value of some type. In many simple cases, 
the reduce function is associative and commutative, and the entire list of values 
is reduced to a single value of the same type as the list elements. For instance, 
if reduce is addition, the result is the some of a list of numbers.

When reduce is associative and commutative, it is possible to speed up the 
execution of reduce by starting to apply its operation to the pairs produced by 
the map processes, even before they finish. Moreover, if a given map process 
produces more than one intermediate pair with the same key, then the reduce 
operation can be applied on the spot to combine the pairs, without waiting for 
them to be passed to the reduce process for that key.

E xam ple 20.4: Let us consider the reduce function that lets us complete 
Example 20.3 to produce inverted indexes. The intermediate result consists of 
pairs of the form (w , [*i,*2 , • • • ,*«]), where the i ’s are a list of document ID’s, 
one for each occurrence of word w. The reduce function we need takes a list of 
ID’s, eliminates duplicates, and sorts the list of unique ID’s.
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Notice how this organization of the computation makes excellent use of 
whatever parallelism is available. The map function works on a single document, 
so we could have as many processes and processors as there are documents in 
the database. The reduce function works on a single word, so we could have as 
many processes and processors as there are words in the database. Of course, 
it is unlikely that we would use so many processors in practice. □

E xam ple 20.5: Suppose rather than constructing an inverted index, we want 
to construct a word count. That is, for each word w that appears at least 
once in our database of documents, we want our output to have the pair (w, c), 
where c is the number of times w appears among all the documents. The map 
function takes an input document, goes through the document character by 
character, and each time it encounters another word w, it emits the pair (w , 1). 
The intermediate result is a list of pairs {w\, 1), (w2 , 1),__

In this example, the reduce function is addition of integers. That is, the 
input to reduce is a pair (w, [1 ,1 ,... ,1]), with a 1 for each occurrence of the 
word w. The reduce function sums the l ’s, producing the count. □

E xam ple 20.6: It is a little trickier to express the join of relations in the 
map-reduce framework. In this simple special case, we shall take the natural 
join of relations R (A ,B )  and S(B ,C ).  First, the input to the map function is 
key-value pairs (x, t), where x  is either R  or S, and t is a tuple of the relation 
named by x. The output is a single pair consisting of the join value B  taken 
from the tuple t and a pair consisting of x  (to let us remember which relation 
this tuple came from) and the other component of t, either A  (if x = R) or 
C  (if x = S). All these records of the form (b,(R,a)) or (b,(S,c)) form the 
intermediate result.

The reduce function takes a -B-value b, the key, together with a list that 
consists of pairs of the form (R ,a ) or (5, c). The result of the join will have 
as many tuples with B-value 6 as we can form by pairing an a from an (R, a) 
element on the list with a c from an (S,c ) element on the list. Thus, reduce 
must extract from the list all the ^4-values associated with R  and the list of all 
C-values associated with S. These are paired in all possible ways, with the b 
in the middle to form a tuple of the result. □

20.2.4 Exercises for Section 20.2

Exercise 20.2 .1 : Modify Example 20.5 to count the number of documents in 
which each word w appears.

Exercise 20.2.2: Express, in the map-reduce framework, the following oper
ations on relations: (a) ac  (b) t t l (c) R  cx c  S  (d) R  U 5  (e) R  n  S.
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20.3 Distributed Databases
We shall now consider the elements of distributed database systems. In a dis
tributed system, there are many, relatively autonomous processors that may 
participate in database operations. The difference between a distributed sys
tem and a shared-nothing parallel system is in the assumption about the cost 
of communication. Shared-nothing parallel systems usually have a message- 
passing cost that is small compared with disk accesses and other costs. In a 
distributed system, the processors are typically physically distant, rather than 
in the same room. The network connecting processors may have much less 
capacity than the network in a shared-nothing system.

Distributed databases offer significant advantages. Like parallel systems, a 
distributed system can use many processors and thereby accelerate the response 
to queries. Further, since the processors are widely separated, we can increase 
resilience in the face of failures by replicating data at several sites.

On the other hand, distributed processing increases the complexity of every 
aspect of a database system, so we need to rethink how even the most basic 
components of a DBMS are designed. Since the cost of communicating may 
dominate the cost of processing in main memory, a critical issue is how many 
messages are sent between sites. In this section we shall introduce the principal 
issues, while the next sections concentrate on solutions to two important prob
lems that come up in distributed databases: distributed commit and distributed 
locking.

20.3.1 Distribution of Data
One important reason to distribute data is that the organization is itself dis
tributed among many sites, and the sites each have data that is germane pri
marily to that site. Some examples are:

1. A bank may have many branches. Each branch (or the group of branches 
in a given city) will keep a database of accounts maintained at that branch 
(or city). Customers can choose to bank at any branch, but will normally 
bank at “their” branch, where their account data is stored. The bank 
may also have data that is kept in the central office, such as employee 
records and policies such as current interest rates. Of course, a backup of 
the records at each branch is also stored, probably in a site that is neither 
a branch office nor the central office.

2. A chain of department stores may have many individual stores. Each 
store (or a group of stores in one city) has a database of sales at that 
store and inventory at that store. There may also be a central office 
with data about employees, a chain-wide inventory, data about credit- 
card customers, and information about suppliers such as unfilled orders, 
and what each is owed. In addition, there may be a copy of all the stores’
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sales data in a data warehouse that is used to analyze and predict sales 
through ad-hoc queries issued by analysts.

3. A digital library may consist of a consortium of universities that each hold 
on-line books and other documents. Search at any site will examine the 
catalog of documents available at all sites and deliver an electronic copy 
of the document to the user if any site holds it.

In some cases, what we might think of logically as a single relation has 
been partitioned among many sites. For example, the chain of stores might be 
imagined to have a single sales relation, such as

Sales(item, date, price, purchaser)

However, this relation does not exist physically. Rather, it is the union of a 
number of relations with the same schema, one at each of the stores in the 
chain. These local relations are called fragments, and the partitioning of a 
logical relation into physical fragments is called horizontal decomposition of 
the relation S ales. We regard the partition as “horizontal” because we may 
visualize a single S ales relation with its tuples separated, by horizontal lines, 
into the sets of tuples at each store.

In other situations, a distributed database appears to have partitioned a 
relation “vertically,” by decomposing what might be one logical relation into 
two or more, each with a subset of the attributes, and with each relation at a 
different site. For instance, if we want to find out which sales at the Boston store 
were made to customers who are more than 90 days in arrears on their credit- 
card payments, it would be useful to have a relation (or view) that included the 
item, date, and purchaser information from Sales, along with the date of the 
last credit-card payment by that purchaser. However, in the scenario we are 
describing, this relation is decomposed vertically, and we would have to join the 
credit-card-customer relation at the central headquarters with the fragment of 
S ales at the Boston store.

20.3.2 Distributed Transactions
A consequence of the distribution of data is that a transaction may involve pro
cesses at several sites. Thus, our model of what a transaction is must change. 
No longer is a transaction a piece of code executed by a single processor com
municating with a single scheduler and a single log manager at a single site. 
Rather, a transaction consists of communicating transaction components, each 
at a different site and communicating with the local scheduler and logger. Two 
important issues that must thus be looked at anew are:

1. How do we manage the commit/abort decision when a transaction is dis
tributed? What happens if one component of the transaction wants to 
abort the whole transaction, while others encountered no problem and
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want to commit? We discuss a technique called “two-phase commit” in 
Section 20.5; it allows the decision to be made properly and also frequently 
allows sites that are up to operate even if some other site(s) have failed.

2. How do we assure serializability of transactions that involve components 
at several sites? We look at locking in particular, in Section 20.6 and 
see how local lock tables can be used to support global locks on database 
elements and thus support serializability of transactions in a distributed 
environment.

20.3.3 Data Replication
One important advantage of a distributed system is the ability to replicate data, 
that is, to make copies of the data at different sites. One motivation is that if a 
site fails, there may be other sites that can provide the same data that was at 
the failed site. A second use is in improving the speed of query answering by 
making a copy of needed data available at the sites where queries are initiated. 
For example:

1. A bank may make copies of current interest-rate policy available at each 
branch, so a query about rates does not have to be sent to the central 
office.

2. A chain store may keep copies of information about suppliers at each 
store, so local requests for information about suppliers (e.g., the manager 
needs the phone number of a supplier to check on a shipment) can be 
handled without sending messages to the central office.

3. A digital library may temporarily cache a copy of a popular document at 
a school where students have been assigned to read the document.

However, there are several problems that must be faced when data is repli
cated.

a) How do we keep copies identical? In essence, an update to a replicated 
data element becomes a distributed transaction that updates all copies.

b) How do we decide where and how many copies to keep? The more copies, 
the more effort is required to update, but the easier queries become. For 
example, a relation that is rarely updated might have copies everywhere 
for maximum efficiency, while a frequently updated relation might have 
only one copy and a backup.

c) What happens when there is a communication failure in the network, and 
different copies of the same data have the opportunity to evolve separately 
and must then be reconciled when the network reconnects?
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20.3.4 Exercises for Section 20.3
!! E xercise 20 .3 .1 : The following exercise will allow you to address some of 

the problems that come up when deciding on a replication strategy for data. 
Suppose there is a relation R  that is accessed from n  sites. The ith  site issues 
qi queries about R  and Ui updates to R  per second, for i =  1 ,2 , . . . ,  n. The 
cost of executing a query if there is a copy of R  at the site issuing the query is 
c, while if there is no copy there, and the query must be sent to some remote 
site, then the cost is 10c. The cost of executing an update is d for the copy of 
R  at the issuing site and lOd for every copy of R  that is not at the issuing site. 
As a function of these parameters, how would you choose, for large n, a set of 
sites at which to replicate R.

20.4 D istributed Query Processing
We now turn to optimizing queries on a network of distributed machines. When 
communication among processors is a significant cost, there are some query 
plans that can be more efficient than the ones we developed in Section 20.1 for 
processors that could communicate locally. Our principal objective is a new 
way of computing joins, using the semijoin operator that was introduced in 
Exercise 2.4.8.

20.4.1 The Distributed Join Problem
Suppose we want to compute R (A ,B )  txi S(B ,C ).  However, R  and S  reside at 
different nodes of a network, as suggested in Fig. 20.5. There are two obvious 
ways to compute the join.

T ' —

R (A,B) S(B,C)

Figure 20.5: Joining relations at different nodes of a network

1. Send a copy of R  to the site of S, and compute the join there.

2. Send a copy of S  to the site of R  and compute the join there.

In many situations, either of these methods is fine. However, problems can 
arise, such as:

a) What happens if the channel between the sites has low-capacity, e.g., a 
phone line or wireless link? Then, the cost of the join is primarily the 
time it takes to copy one of the relations, so we need to design our query 
plan to minimize communication.
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b) Even if communication is fast, there may be a better query plan if the 
shared attribute B  has values that are much smaller than the values of 
A  and C. For example, B  could be an identifier for documents or videos, 
while A  and C  are the documents or videos themselves.

20.4.2 Semijoin Reductions
Both these problems can be dealt with using the same type of query plan, in 
which only the relevant part of each relation is shipped to the site of the other. 
Recall that the semijoin of relations R (X , Y)  and S(Y, Z),  where X ,  Y ,  and Z  
are sets of attributes, is R  X  S  = R  tx (7Ty (5)). That is, we project S  onto the 
common attributes, and then take the natural join of that projection with R. 
tty(S) is a set-projection, so duplicates are eliminated. It is unusual to take a 
natural join where the attributes of one argument are a subset of the attributes 
of the other, but the definition of the join covers this case. The effect is that 
R  X  S  contains all those tuples of R  that join with at least one tuple of S. Put 
another way, the semijoin R X S  eliminates the dangling tuples of R.

Having sent 7ry(5) to the site of R, we can compute R X S  there. We 
know those tuples of R  that are not in R X S  cannot participate in R  ix S. 
Therefore it is sufficient to send R X S ,  rather than all of R, to the site of 
S  and to compute the join there. This plan is suggested by Fig. 20.6 for the 
relations R (A ,B )  and S(B, C). Of course there is a symmetric plan where the 
roles of R  and S  are interchanged.

^ ---  Jtj'(S)

R \ X S

Figure 20.6: Exploiting the semijoin to minimize communication

Whether this semijoin plan, or the plan with R  and S  interchanged is more 
efficient than one of the obvious plans depends on several factors. First, if the 
projection of S  onto Y  results in a relation much smaller than 5, then it is 
cheaper to send tty(S) to the site of R, rather than S  itself. tty(S) will be 
small compared with S  if either or both of the following hold:

1. There are many duplicates to be eliminated; i.e., many tuples of S  share 
Y -values.

2. The components for the attributes of Z  are large compared with the 
components of Y; e.g., Z  includes attributes whose values are audios, 
videos, or documents.

In order for the semijoin plan to be superior, we also need to know that the size 
of R  X  S  is smaller than R. That is, R  must contain many dangling tuples in 
its join with S.
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20.4.3 Joins of Many Relations
When we want to take the natural join of two relations, only one semijoin is 
useful. The same holds for an equijoin, since we can act as if the equated pairs of 
attributes had the same name and treat the equijoin as if it were a natural join. 
However, when we take the natural join or equijoin of three or more relations 
at different sites, several surprising things happen.

• We may need several semijoins to eliminate all the dangling tuples from 
the relations before shipping them to other sites for joining.

• There are sets of relation schemas such that no finite sequence of semijoins 
eliminates all dangling tuples.

• It is possible to identify those sets of relation schemas such that there is 
a finite way to eliminate dangling tuples by semijoins.

E xam ple  20 .7 : To see what can go wrong when we take the natural join of 
more than two relations, consider R(A ,B ),  S (B ,C ),  and T(C,A).  Suppose R  
and S  have exactly the same n  tuples: {(1,1), (2 ,2 ),... , (n, n)}. T  has n  — 1 
tuples: {(1,2), (2 ,3 ),... , (n — 1, n)}. The relations are shown in Fig. 20.7.

A  B  B  C C A
1 1  1 1  1 2  
2 2 2 2 2 3

n n n n  n  — 1 
R  S  T

Figure 20.7: Three relations for which elimination of dangling tuples by semi
joins is very slow

Notice that while R  and S  join to produce the n  tuples

{(1,1,1),  (2 ,2 ,2) , . . .  , ( n ,n ,n) }

none of these tuples can join with any tuple of T. The reason is that all tuples 
of R  cxi S  agree in their A  and C  components, while the tuples of T  disagree 
in their A  and C  components. That is, R  txi 5  x  T  is empty, and all tuples of 
each relation are dangling.

However, no one semijoin can eliminate more than one tuple from any re
lation. For example, S  X T  eliminates only (n ,n ) from S,  because ttc(T ) =  
{ 1 ,2 ,... ,n — 1}. Similarly, R  X T  eliminates only (1,1) from R, because 
tta(T ) =  { 2 ,3 ,... ,n}. We can then continue, say, with R X S ,  which elim
inates (n ,n) from R, and T  X R , which eliminates (n — 1 ,n) from T. Now
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we can compute S  X T  again and eliminate (n — l ,n  — 1) from S, and so on. 
While we shall not prove it, we in fact need 3n — 1 semijoins to make all three 
relations empty. □

Since n in Example 20.7 is arbitrary, we see that for the particular relations 
discussed there, no fixed, finite sequence of semijoins is guaranteed to eliminate 
all dangling tuples, regardless of the data currently held in the relations. On 
the other hand, as we shall see, many typical joins of three or more relations 
do have fixed, finite sequences of semijoins that are guaranteed to eliminate all 
the dangling tuples. We call such a sequence of semijoins a full reducer for the 
relations in question.

20.4.4 Acyclic Hypergraphs
Let us assume that we are taking a natural join of several relations, although 
as mentioned, we can also handle equijoins by pretending the names of equated 
attributes from different relations are the same, and renaming attributes to 
make that pretense a reality. If we do, then we can draw a useful picture of 
every natural join as a hypergraph, that is a set of nodes with hyperedges that are 
sets of nodes. A traditional graph is then a hypergraph all of whose hyperedges 
are sets of size two.

The hypergraph for a natural join is formed by creating one node for each 
attribute name. Each relation is represented by a hyperedge containing all of 
its attributes.

Figure 20.8: The hypergraph for Example 20.7

E xam ple 20.8: Figure 20.8 is the hypergraph for the three relations from 
Example 20.7. The relation R(A, B) is represented by the hyperedge {̂ 4, B } m, S  
is represented by the hyperedge {B, C}, and T  is the hyperedge {A, C }. Notice 
that this hypergraph is actually a graph, since the hyperedges are each pairs of 
nodes. Also observe that the three hyperedges form a cycle in the graph. As 
we shall see, it is this cyclicity that causes there to be no full reducer.

However, the question of when a hypergraph is cyclic has a somewhat unin
tuitive answer. In Fig. 20.9 is another hypergraph, which could be used, for in
stance, to represent the join of the relations R(A, E, F), S(A, B, C), T(C, D, E),
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and U(A, C, E). This hypergraph is a true hypergraph, since it has hyperedges 
with more than two nodes. It also happens to be an “acyclic” hypergraph, even 
though it appears to have cycles. □

Figure 20.9: An acyclic hypergraph

To define acyclic hypergraphs correctly, and thus get the condition under 
which a full reducer exists, we first need the notion of an “ear” in a hyper
graph. A hyperedge i f  is an ear if there is some other hyperedge G in the same 
hypergraph such that every node of H  is either:

1. Found only in H,  or

2. Also found in G.

We shall say that G consumes H, for a reason that will become apparent when 
we discuss reduction of the hypergraph.

E xam ple  20 .9 : In Fig. 20.9, hyperedge H  = { A ,E ,F }  is an ear. The role 
of G is played by {A, C, E}.  Node F  is unique to H; it appears in no other 
hyperedge. The other two nodes of H  (A  and E) are also members of G. □

A hypergraph is acyclic if it can be reduced to a single hyperedge by a 
sequence of ear reductions. An ear reduction is simply the elimination of one 
ear from the hypergraph, along with any nodes that appear only in that ear. 
Note that an ear, if not eliminated at one step, remains an ear after another 
ear is eliminated. However, it is possible that a hyperedge that was not an ear, 
becomes an ear after another hyperedge is eliminated.

E xam ple  20.10: Figure 20.8 is not acyclic. No hyperedge is an ear, so we 
cannot get started with any ear reduction. For example, {A, B } is not an ear 
because neither A  nor B  is unique to this hyperedge, and no other hyperedge 
contains both A  and B.

On the other hand, Fig. 20.9 is acyclic. As we mentioned in Example 20.9, 
{A, E, F}  is an ear; so are {A, B, C] and {C, D, E}. We can therefore eliminate 
hyperedge {A, E, F}  from the hypergraph. When we eliminate this ear, node F



20.4. DISTRIBUTED QUERY PROCESSING  1005

Figure 20.10: After one ear reduction

disappears, but the other five nodes and three hyperedges remain, as suggested 
in Fig. 20.10.

Since {A, B, C} is an ear in Fig. 20.10, we may eliminate it and node B  in 
a second ear reduction. Now, we are left with only hyperedges {A, C, E}  and 
{C, D, E}. Each is now an ear; notice that {A, C, E \  was not an ear until now. 
We can eliminate either, leaving a single hyperedge and proving that Fig. 20.9 
is an acyclic hypergraph. □

20.4.5 Full Reducers for Acyclic Hypergraphs
We can construct a full reducer for any acyclic hypergraph by following the 
sequence of ear reductions. We construct the sequence of semijoins as follows, 
by induction on the number of hyperedges in an acyclic hypergraph.

BASIS: If there is only one hyperedge, do nothing. The “join” of one relation 
is the relation itself, and there are surely no dangling tuples.

IN DU CTIO N: If the acyclic hypergraph has more than one hyperedge, then it 
must have at least one ear. Pick one, say H, and suppose it is consumed by 
hyperedge G.

1. Execute the semijoin G G X i7 ;  that is, eliminate from G any of its 
tuples that do not join with H . 4

2. Recursively, find a semijoin sequence for the hypergraph with ear H  elim
inated.

3. Execute the semijoin H  := H  X  G.

E xam ple 20.11: Let us construct the full reducer for the relations R(A, E, F), 
S(A, B, C), T(C, D, E),  and U (A , C, E),  whose hypergraph we saw in Fig. 20.9.

4W e are  identify ing  hyperedges w ith  th e  re la tions th a t  th ey  represen t for convenience in 
n o ta tio n . M oreover, if th e  se ts o f tup les  corresponding  to  a  hyperedge a re  s to red  tab le s ,ra th e r  
th a n  te m p o ra ry  re la tions, we do n o t ac tually  replace a  re lation  by a  sem ijoin, as w ould be 
suggested  by a  s tep  like G  :=  G  IX  H ,  b u t instead  we sto re  th e  resu lt in a  new  tem porary , 
G'.
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We shall use the sequence of ears R, then S,  then U, as in Example 20.10. Since 
U consumes R,  we begin with the semijoin U := U X R .

Recursively, we reduce the remaining three hyperedges. That reduction 
starts with U consuming S, so the next step is U U X S .  Another level of 
recursion has T  consuming U, so we add the step T  := T  X U .  With only T 
remaining, we have the basis case and do nothing.

Finally, we complete the elimination of ear U by adding U : = U X T .  Then, 
we complete the elimination of S  by adding S  := S  X U ,  and we complete the 
elimination of R  with R  := R X U . The entire sequence of semijoins that forms 
a full reducer for Fig. 20.9 is shown in Fig. 20.11. □

U : = U X R  
U : = U X S  
T  := T  X U  
U : =U X T  
S  : = S X U  
R : =  R X U

Figure 20.11: A full reducer for Fig. 20.9

Once we have executed all the semijoins in the full reducer, we can copy all 
the reduced relations to the site of one of them, knowing that the relations to 
be shipped contain no dangling tuples and therefore are as small as can be. In 
fact, if we know at which site the join will be performed, then we do not have 
to eliminate all dangling tuples for relations at that site. We can stop applying 
semijoins to a relation as soon as that relation will no longer be used to reduce 
other relations.

E xam ple 20.12: If the full reducer of Fig. 20.11 will be followed by a join at 
the site of S,  then we do not have to do the step S  S X U .  However, if the 
join is to be conducted at the site of T,  then we still have to do the reduction 
T  T  X U ,  because T  is used to reduce other relations at later steps. □

20.4.6 W hy the Full-Reducer Algorithm Works
We can show that the algorithm produces a full reducer for any acyclic hyper
graph by induction on the number of hyperedges.

BASIS: One hyperedge. There are no dangling tuples, so nothing needs to be 
done.

IN DU CTIO N: When we eliminate the ear H,  we eliminate, from the hyperedge 
G that consumes H,  all tuples that will not join with at least one tuple of
H.  Thus, whatever further reductions are done, the join of the relations for 
all the hyperedges besides H  cannot contain a tuple that will not join with H.
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Note that this statement is true because G is the only link between H  and the 
remaining relations.

By induction, all tuples that are dangling in the join of the remaining rela
tions are eliminated. When we do the final semijoin H  H  X  G to eliminate 
dangling tuples from H,  we know that no relation has dangling tuples.

20.4.7 Exercises for Section 20.4
! E xercise 20.4.1: Suppose we want to take the natural join of R (A ,B )  and 

S(B , C), where R  and S  are at different sites, and the size of the data commu
nicated is the dominant cost of the join. Suppose the sizes of R  and S  are sr 
and ss, respectively. Suppose that the size of 7Tb (R) is fraction pu  of the size of 
R  and itb (S ) is fraction ps  of the size of S. Finally, suppose that fractions d,R 
and ds of relations R  and 5, respectively, are dangling. Write expressions, in 
terms of these six parameters, for the costs of the four strategies for evaluating 
R  txi S, and determine the conditions under which each is the best strategy. 
The four strategies are:

i) Ship R  to the site of S.

ii) Ship 5  to the site of R.

iii) Ship 7tb (S) to the site of R, and then R X S  to the site of S.

iv) Ship nB{R) to the site of S, and then S X f i t o  the site of R.

E xercise 20.4.2: Determine which of the following hypergraphs are acyclic. 
Each hypergraph is represented by a list of its hyperedges.

a) {A ,B } ,  {.B ,C ,D }, { B ,E ,F } ,  {F ,G ,H }, {G ,I},

b) {A ,B } , {B ,C ,D }, { B ,E ,F } ,  {F ,G ,H }, {G ,I} ,  {B ,H }.

c) {A ,B ,C ,D }, {A ,B ,E } ,  {B ,D ,F } ,  {C ,D,G}, {A ,C ,H }.

Exercise 20.4.3: For those hypergraphs of Exercise 20.4.2 that are acyclic, 
construct a full reducer.

! Exercise 20.4.4: Besides the full reducer of Example 20.11, how many other 
full reducers of six steps can be constructed for the hypergraph of Fig. 20.9 by 
choosing other orders for the elimination of ears?

! Exercise 20.4.5: A well known property of acyclic graphs is that if you delete 
an edge from an acyclic graph it remains acyclic. Is the analogous statement 
true for hypergraphs? That is, if you eliminate a hyperedge from an acyclic 
hypergraph, is the remaining hypergraph always acyclic? Hint: consider the 
acyclic hypergraph of Fig. 20.9.
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!! Exercise 20.4 .6 : Not all binary operations on relations located at different 
nodes of a network can have their execution time reduced by preliminary op
erations like the semijoin. Is it possible to improve on the obvious algorithm 
(ship one of the relations to the other site) when the operation is (a) union
(b) intersection (c) difference?

20.5 Distributed Commit
In this section, we shall address the problem of how a distributed transaction 
that has components at several sites can execute atomically. The next section 
discusses another important property of distributed transactions: executing 
them serializably.

20.5.1 Supporting Distributed Atomicity
We shall begin with an example that illustrates the problems that might arise.

E xam ple  20.13: Consider our example of a chain of stores mentioned in Sec
tion 20.3. Suppose a manager of the chain wants to query all the stores, find the 
inventory of toothbrushes at each, and issue instructions to move toothbrushes 
from store to store in order to balance the inventory. The operation is done 
by a single global transaction T  that has component Ti at the ith  store and 
a component T0  at the office where the manager is located. The sequence of 
activities performed by T  are summarized below:

1. Component To is created at the site of the manager.

2. To sends messages to all the stores instructing them to create components 
Ti.

3. Each Ti executes a query at store i to discover the number of toothbrushes 
in inventory and reports this number to To.

4. To takes these numbers and determines, by some algorithm we do not 
need to discuss, what shipments of toothbrushes axe desired. To then 
sends messages such as “store 10 should ship 500 toothbrushes to store 
7” to the appropriate stores (stores 7 and 10 in this instance).

5. Stores receiving instructions update their inventory and perform the ship
ments.

□

There axe a number of things that could go wrong in Example 20.13, and 
many of these result in violations of the atomicity of T. That is, some of the 
actions comprising T  get executed, but others do not. Mechanisms such as 
logging and recovery, which we assume are present at each site, will assure that 
each Tj is executed atomically, but do not assure that T itself is atomic.
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E xam ple 20.14: Suppose a bug in the algorithm to redistribute toothbrushes 
might cause store 10 to be instructed to ship more toothbrushes than it has. T10 
will therefore abort, and no toothbrushes will be shipped from store 10; neither 
will the inventory at store 10 be changed. However, TV detects no problems 
and commits at store 7, updating its inventory to reflect the supposedly shipped 
toothbrushes. Now, not only has T  failed to execute atomically (since Tio never 
completes), but it has left the distributed database in an inconsistent state. □

Another source of problems is the possibility that a site will fail or be dis
connected from the network while the distributed transaction is running.

E xam ple 20.15: Suppose Tw replies to T0’s first message by telling its inven
tory of toothbrushes. However, the machine at store 10 then crashes, and the 
instructions from To are never received by Ti0. Can distributed transaction T 
ever commit? What should Tio do when its site recovers? □

20.5.2 Two-Phase Commit
In order to avoid the problems suggested in Section 20.5.1, distributed DBMS’s 
use a complex protocol for deciding whether or not to commit a distributed 
transaction. In this section, we shall describe the basic idea behind these pro
tocols, called two-phase commit. 5 By making a global decision about commit
ting, each component of the transaction will commit, or none will. As usual, 
we assume that the atomicity mechanisms at each site assure that either the 
local component commits or it has no effect on the database state at that site;
i.e., components of the transaction are atomic. Thus, by enforcing the rule 
that either all components of a distributed transaction commit or none does, 
we make the distributed transaction itself atomic.

Several salient points about the two-phase commit protocol follow:

• In a two-phase commit, we assume that each site logs actions at that site, 
but there is no global log.

• We also assume that one site, called the coordinator, plays a special role 
in deciding whether or not the distributed transaction can commit. For 
example, the coordinator might be the site at which the transaction orig
inates, such as the site of To in the examples of Section 20.5.1.

• The two-phase commit protocol involves sending certain messages be
tween the coordinator and the other sites. As each message is sent, it is 
logged at the sending site, to aid in recovery should it be necessary.

With these points in mind, we can describe the two phases in terms of the 
messages sent between sites.

5 Do no t confuse tw o-phase com m it w ith  tw o-phase locking. T hey  are  independent ideas, 
designed to  solve different problem s.
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P h ase  I

In phase 1 of the two-phase commit, the coordinator for a distributed trans
action T decides when to attempt to commit T. Presumably the attem pt to 
commit occurs after the component of T  at the coordinator site is ready to 
commit, but in principle the steps must be carried out even if the coordina
to r’s component wants to abort (but with obvious simplifications as we shall 
see). The coordinator polls the sites of all components of the transaction T to 
determine their wishes regarding the commit/abort decision, as follows:

1. The coordinator places a log record <Prepare T>  on the log at its site.

2. The coordinator sends to each component’s site (in principle including 
itself) the message p repare  T.

3. Each site receiving the message p repare  T  decides whether to commit or 
abort its component of T. The site can delay if the component has not 
yet completed its activity, but must eventually send a response.

4. If a site wants to commit its component, it must enter a state called 
precommitted. Once in the precommitted state, the site cannot abort its 
component of T  without a directive to do so from the coordinator. The 
following steps are done to become precommitted:

(a) Perform whatever steps are necessary to be sure the local component 
of T  will not have to abort, even if there is a system failure followed 
by recovery at the site. Thus, not only must all actions associated 
with the local T  be performed, but the appropriate actions regarding 
the log must be taken so that T  will be redone rather than undone 
in a recovery. The actions depend on the logging method, but surely 
the log records associated with actions of the local T  must be flushed 
to disk.

(b) Place the record <Ready T>  on the local log and flush the log to 
disk.

(c) Send to the coordinator the message ready T.

However, the site does not commit its component of T  at this time; it 
must wait for phase 2.

5. If, instead, the site wants to abort its component of T, then it logs the 
record <Don’t  commit T>  and sends the message don’t  commit T to 
the coordinator. It is safe to abort the component at this time, since T  
will surely abort if even one component wants to abort.

The messages of phase 1 are summarized in Fig. 20.12.
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Figure 20.12: Messages in phase 1 of two-phase commit

P h ase II

The second phase begins when responses ready or don ’ t  commit are received 
from each site by the coordinator. However, it is possible that some site fails to 
respond; it may be down, or it has been disconnected by the network. In that 
case, after a suitable timeout period, the coordinator will treat the site as if it 
had sent don’t  commit.

1. If the coordinator has received ready T  from all components of T,  then 
it decides to commit T. The coordinator logs <Commit T>  at its site and 
then sends message commit T to all sites involved in T.

2. However, if the coordinator has received don’t  commit T  from one or 
more sites, it logs <Abort T>  at its site and then sends ab o rt T  mes
sages to all sites involved in T.

3. If a site receives a commit T  message, it commits the component of T  at 
that site, logging <Commit T>  as it does.

4. If a site receives the message abort T, it aborts T and writes the log 
record < Abort T>.

The messages of phase 2 are summarized in Fig. 20.13.

Figure 20.13: Messages in phase 2 of two-phase commit

20.5.3 Recovery of Distributed Transactions
At any time during the two-phase commit process, a site may fail. We need 
to make sure that what happens when the site recovers is consistent with the
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global decision that was made about a distributed transaction T. There are 
several cases to consider, depending on the last log entry for T.

1. If the last log record for T  was <Coimnit T>,  then T  must have been 
committed by the coordinator. Depending on the log method used, it 
may be necessary to redo the component of T  at the recovering site.

2. If the last log record is < Abort T > , then similarly we know that the 
global decision was to abort T. If the log method requires it, we undo the 
component of T  at the recovering site.

3. If the last log record is <Don’t  commit T>,  then the site knows that the 
global decision must have been to abort T. If necessary, effects of T  on 
the local database are undone.

4. The hard case is when the last log record for T  is <Ready T>.  Now, the 
recovering site does not know whether the global decision was to commit 
or abort T. This site must communicate with at least one other site to 
find out the global decision for T. If the coordinator is up, the site can 
ask the coordinator. If the coordinator is not up at this time, some other 
site may be asked to consult its log to find out what happened to T. In 
the worst case, no other site can be contacted, and the local component 
of T  must be kept active until the commit/abort decision is determined.

5. It may also be the case that the local log has no records about T  that 
come from the actions of the two-phase commit protocol. If so, then the 
recovering site may unilaterally decide to abort its component of T, which 
is consistent with all logging methods. It is possible that the coordinator 
already detected a timeout from the failed site and decided to abort T. If 
the failure was brief, T may still be active at other sites, but it will never 
be inconsistent if the recovering site decides to abort its component of T 
and responds with don’t  commit T if later polled in phase 1.

The above analysis assumes that the failed site is not the coordinator. When 
the coordinator fails during a two-phase commit, new problems arise. First, the 
surviving participant sites must either wait for the coordinator to recover or 
elect a new coordinator. Since the coordinator could be down for an indefinite 
period, there is good motivation to elect a new leader, at least after a brief 
waiting period to see if the coordinator comes back up.

The m atter of leader election is in its own right a complex problem of dis
tributed systems, beyond the scope of this book. However, a simple method 
will work in most situations. For instance, we may assume that all participant 
sites have unique identifying numbers, e.g., IP addresses. Each participant 
sends messages announcing its availability as leader to all the other sites, giv
ing its identifying number. After a suitable length of time, each participant 
acknowledges as the new coordinator the lowest-numbered site from which it 
has heard, and sends messages to that effect to all the other sites. If all sites
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receive consistent messages, then there is a unique choice for new coordinator, 
and everyone knows about it. If there is inconsistency, or a surviving site has 
failed to respond, that too will be universally known, and the election starts 
over.

Now, the new leader polls the sites for information about each distributed 
transaction T. Each site reports the last record on its log concerning T,  if there 
is one. The possible cases are:

1. Some site has <Commit T>  on its log. Then the original coordinator 
must have wanted to send commit T  messages everywhere, and it is safe 
to commit T.

2. Similarly, if some site has < Abort T>  on its log, then the original coordi
nator must have decided to abort T, and it is safe for the new coordinator 
to order that action.

3. Suppose now that no site has <Coimnit T>  or <Abort T>  on its log, but 
at least one site does not have <Ready T>  on its log. Then since actions 
are logged before the corresponding messages are sent, we know that the 
old coordinator never received ready T  from this site and therefore could 
not have decided to commit. It is safe for the new coordinator to decide 
to abort T.

4. The most problematic situation is when there is no <Commit T>  or 
< Abort T >  to be found, but every surviving site has <Ready T>.  Now, 
we cannot be sure whether the old coordinator found some reason to abort 
T  or not; it could have decided to do so because of actions at its own site, 
or because of a don’t  commit T  message from another failed site, for 
example. Or the old coordinator may have decided to commit T  and al
ready committed its local component of T. Thus, the new coordinator is 
not able to decide whether to commit or abort T  and must wait until the 
original coordinator recovers. In real systems, the database administrator 
has the ability to intervene and manually force the waiting transaction 
components to finish. The result is a possible loss of atomicity, but the 
person executing the blocked transaction will be notified to take some 
appropriate compensating action.

20.5.4 Exercises for Section 20.5
! Exercise 20.5.1: Consider a transaction T  initiated at a home computer that 

asks bank B  to transfer $10,000 from an account at B  to an account at another 
bank C.

a) What are the components of distributed transaction T? What should the 
components at B  and C do?

b) What can go wrong if there is not $10,000 in the account at B ?
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c) What can go wrong if one or both banks’ computers crash, or if the 
network is disconnected?

d) If one of the problems suggested in (c) occurs, how could the transaction 
resume correctly when the computers and network resume operation?

E xercise 20.5 .2 : In this exercise, we need a notation for describing sequences 
of messages that can take place during a two-phase commit. Let (i,j, M ) mean 
that site i sends the message M  to site j ,  where the value of M  and its meaning 
can be P  (prepare), R  (ready), D (don’t  commit), C  (commit), or A  (abort). 
We shall discuss a simple situation in which site 0 is the coordinator, but not 
otherwise part of the transaction, and sites 1 and 2 are the components. For 
instance, the following is one possible sequence of messages that could take 
place during a successful commit of the transaction:

(0 ,1 ,P), (0 ,2 ,P),  (2 ,0 ,R),  (1,0 ,R),  (0 ,2 ,C), (0,1, C)

a) Give an example of a sequence of messages that could occur if site 1 wants 
to commit and site 2 wants to abort.

! b) How many possible sequences of messages such as the above are there, if 
the transaction successfully commits?

! c) If site 1 wants to commit, but site 2 does not, how many sequences of 
messages are there, assuming no failures occur?

! d) If site 1 wants to commit, but site 2 is down and does not respond to 
messages, how many sequences are there?

!! Exercise 20.5 .3 : Using the notation of Exercise 20.5.2, suppose the sites are 
a coordinator and n other sites that are the transaction components. As a 
function of n, how many sequences of messages are there if the transaction 
successfully commits?

20.6 Distributed Locking
In this section we shall see how to extend a locking scheduler to an environment 
where transactions are distributed and consist of components at several sites. 
We assume that lock tables are managed by individual sites, and that the 
component of a transaction at a site can request locks on the data elements 
only at that site.

When data is replicated, we must arrange that the copies of a single ele
ment X  are changed in the same way by each transaction. This requirement 
introduces a distinction between locking the logical database element X  and 
locking one or more of the copies of X .  In this section, we shall offer a cost 
model for distributed locking algorithms that applies to both replicated and 
nonreplicated data. However, before introducing the model, let us consider an 
obvious (and sometimes adequate) solution to the problem of maintaining locks 
in a distributed database — centralized locking.
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20.6.1 Centralized Lock Systems
Perhaps the simplest approach is to designate one site, the lock site, to maintain 
a lock table for logical elements, whether or not they have copies at that site. 
When a transaction wants a lock on logical element X ,  it sends a request to 
the lock site, which grants or denies the lock, as appropriate. Since obtaining a 
global lock on X  is the same as obtaining a local lock on X  at the lock site, we 
can be sure that global locks behave correctly as long as the lock site administers 
locks conventionally. The usual cost is three messages per lock (request, grant, 
and release), unless the transaction happens to be running at the lock site.

The use of a single lock site can be adequate in some situations, but if there 
are many sites and many simultaneous transactions, the lock site could become 
a bottleneck. Further, if the lock site crashes, no transaction at any site can 
obtain locks. Because of these problems with centralized locking, there are a 
number of other approaches to maintaining distributed locks, which we shall 
introduce after discussing how to estimate the cost of locking.

20.6.2 A Cost Model for Distributed Locking Algorithms
Suppose that each data element exists at exactly one site (i.e., there is no 
data replication) and that the lock manager at each site stores locks and lock 
requests for the elements at its site. Transactions may be distributed, and each 
transaction consists of components at one or more sites.

While there are several costs associated with managing locks, many of them 
are fixed, independent of the way transactions request locks over a network. 
The one cost factor over which we have control is the number of messages 
sent between sites when a transaction obtains and releases its locks. We shall 
thus count the number of messages required for various locking schemes on the 
assumption that all locks are granted when requested. Of course, a lock request 
may be denied, resulting in an additional message to deny the request and a 
later message when the lock is granted. However, since we cannot predict the 
rate of lock denials, and this rate is not something we can control anyway, we 
shall ignore this additional requirement for messages in our comparisons.

E xam ple 20.16: As we mentioned in Section 20.6.1, in the central locking 
method, the typical lock request uses three messages, one to request the lock, 
one from the central site to grant the lock, and a third to release the lock. The 
exceptions are:

1. The messages are unnecessary when the requesting site is the central lock 
site, and

2. Additional messages must be sent when the initial request cannot be 
granted.

However, we assume that both these situations are relatively rare; i.e., most lock 
requests are from sites other than the central lock site, and most lock requests
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can be granted. Thus, three messages per lock is a good estimate of the cost of 
the centralized lock method. □

Now, consider a situation more flexible than central locking, where there is 
no replication, but each database element X  can maintain its locks at its own 
site. It might seem that, since a transaction wanting to lock X  will have a 
component at the site of X ,  there are no messages between sites needed. The 
local component simply negotiates with the lock manager at that site for the 
lock on X .  However, if the distributed transaction needs locks on several ele
ments, say X ,  Y ,  and Z, then the transaction cannot complete its computation 
until it has locks on all three elements. If X ,  Y ,  and Z  are at different sites, 
then the components of the transactions at those sites must at least exchange 
synchronization messages to prevent the transaction from proceeding before it 
has all the locks it needs.

Rather than deal with all the possible variations, we shall take a simple 
model of how transactions gather locks. We assume that one component of each 
transaction, the lock coordinator for that transaction, has the responsibility to 
gather all the locks that all components of the transaction require. The lock 
coordinator locks elements at its own site without messages, but locking an 
element X  at any other site requires three messages:

1. A message to the site of X  requesting the lock.

2. A reply message granting the lock (recall we assume all locks are granted 
immediately; if not, a denial message followed by a granting message later 
will be sent).

3. A message to the site of X  releasing the lock.

If we pick as the lock coordinator the site where the most locks are needed by 
the transaction, then we minimize the requirement for messages. The number 
of messages required is three times the number of database elements at the 
other sites.

20.6.3 Locking Replicated Elements
When an element X  has replicas at several sites, we must be careful how we 
interpret the locking of X .

E xam ple 20.17: Suppose there are two copies, X i  and X 2, of a database 
element X .  Suppose also that a transaction T  gets a shared lock on the copy 
Xi at the site of that copy, while transaction U gets an exclusive lock on the 
copy X 2 at its site. Now, U can change X 2 but cannot change X i , resulting in 
the two copies of the element X  becoming different. Moreover, since T  and U 
may lock other elements as well, and the order in which they read and write 
X  is not forced by the locks they hold on the copies of X ,  there is also an 
opportunity for T  and U to engage in unserializable behavior. □
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The problem illustrated by Example 20.17 is that when data is replicated, 
we must distinguish between getting a shared or exclusive lock on the logical 
element X  and getting a local lock on a copy of X .  That is, in order to 
assure serializability, we need for transactions to take global locks on the logical 
elements. But the logical elements don’t exist physically — only their copies 
do — and there is no global lock table. Thus, the only way that a transaction 
can obtain a global lock on X  is to obtain local locks on one or more copies 
of X  at the site(s) of those copies. We shall now consider methods for turning 
local locks into global locks that have the required property:

• A logical element X  can have either one exclusive lock and no shared lock, 
or any number of shared locks and no exclusive locks.

20.6.4 Primary-Copy Locking
An improvement on the centralized locking approach, one which also allows 
replicated data, is to distribute the function of the lock site, but still maintain 
the principle that each logical element has a single site responsible for its global 
lock. This distributed-lock method, called primary copy, avoids the possibility 
that the central lock site will become a bottleneck, while still maintaining the 
simplicity of the centralized method.

In the primary copy lock method, each logical element X  has one of its 
copies designated the “primary copy.” In order to get a lock on logical element 
X ,  a transaction sends a request to the site of the primary copy of X .  The site 
of the primary copy maintains an entry for X  in its lock table and grants or 
denies the request as appropriate. Again, global (logical) locks will be adminis
tered correctly as long as each site administers the locks for the primary copies 
correctly.

Also as with a centralized lock site, most lock requests require three mes
sages, except for those where the transaction and the primary copy are at the 
same site. However, if we choose primary copies wisely, then we expect that 
these sites will frequently be the same.

E xam ple 20.18: In the chain-of-stores example, we should make each store’s 
sales data have its primary copy at the store. Other copies of this data, such 
as at the central office or at a data warehouse used by sales analysts, are not 
primary copies. Probably, the typical transaction is executed at a store and 
updates only sales data for that store. No messages are needed when this type 
of transaction takes its locks. Only if the transaction examined or modified 
data at another store would lock-related messages be sent. □

20.6.5 Global Locks From Local Locks
Another approach is to synthesize global locks from collections of local locks. In 
these schemes, no copy of a database element X  is “primary”; rather they are 
symmetric, and local shared or exclusive locks can be requested on any of these
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Distributed Deadlocks

There are many opportunities for transactions to get deadlocked as they 
try to acquire global locks on replicated data. There are also many ways to 
construct a global waits-for graph and thus detect deadlocks. However, in 
a distributed environment, it is often simplest and also most effective to use 
a timeout. Any transaction that has not completed after an appropriate 
amount of time is assumed to have gotten deadlocked and is rolled back.

copies. The key to a successful global locking scheme is to require transactions 
to obtain a certain number of local locks on copies of X  before the transaction 
can assume it has a global lock on X .

Suppose database element A  has n copies. We pick two numbers:

1. s is the number of copies of A  that must be locked in shared mode in 
order for a transaction to have a global shared lock on A.

2. x  is the number of copies of A  that must be locked in exclusive mode in 
order for a transaction to have an exclusive lock on A.

As long as 2x > n  and s + x > n, we have the desired properties: there 
can be only one global exclusive lock on A, and there cannot be both a global 
shared and global exclusive lock on A. The explanation is as follows. Since 
2x > n, if two transactions had global exclusive locks on A, there would be at 
least one copy that had granted local exclusive locks to both (because there are 
more local exclusive locks granted than there are copies of A). However, then 
the local locking method would be incorrect. Similarly, since s + x > n, if one 
transaction had a global shared lock on A  and another had a global exclusive 
lock on A, then some copy granted both local shared and exclusive locks at the 
same time.

In general, the number of messages needed to obtain a global shared lock is 
3s, and the number to obtain a global exclusive lock is 3a;. That number seems 
excessive, compared with centralized methods that require 3 or fewer messages 
per lock on the average. However, there are compensating arguments, as the 
following two examples of specific (s, x ) choices shows.

R ead-L ocks-O ne; W rite-L ocks-A ll

Here, s =  1 and x  =  n. Obtaining a global exclusive lock is very expensive, 
but a global shared lock requires three messages at the most. Moreover, this 
scheme has an advantage over the primary-copy method: while the latter allows 
us to avoid messages when we read the primary copy, the read-locks-one scheme 
allows us to avoid messages whenever the transaction is at the site of any copy 
of the database element we desire to read. Thus, this scheme can be superior
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when most transactions are read-only, but transactions to read an element X  
initiate at different sites. An example would be a distributed digital library 
that caches copies of documents where they are most frequently read.

M ajo rity  Locking

Here, s = x = \(n +  l)/2 ]. It seems that this system requires many messages 
no matter where the transaction is. However, there are several other factors 
that may make this scheme acceptable. First, many network systems support 
broadcast, where it is possible for a transaction to send out one general request 
for local locks on an element X ,  which will be received by all sites. Similarly, 
the release of locks may be achieved by a single message.

Moreover, this selection of s and x  provides an advantage others do not: 
it allows partial operation even when the network is disconnected. As long as 
there is one component of the network that contains a majority of the sites with 
copies of X ,  then it is possible for a transaction to obtain a lock on X .  Even if 
other sites are active while disconnected, we know that they cannot even get a 
shared lock on X ,  and thus there is no risk that transactions running in different 
components of the network will engage in behavior that is not serializable.

20.6.6 Exercises for Section 20.6
! E xercise 20.6.1: We showed how to create global shared and exclusive locks 

from local locks of that type. How would you create:

a) Global shared, exclusive, and increment locks

b) Global shared, exclusive, and update locks

!! c) Global shared, exclusive, and intention locks for each type 

from local locks of the same types?

E xercise 20.6.2: Suppose there are five sites, each with a copy of a database 
element X .  One of these sites P  is the dominant site for X  and will be used 
as I ’s primary site in a primary-copy distributed-lock system. The statistics 
regarding accesses to X  are:

i. 50% of all accesses are read-only accesses originating at P.

ii. Each of the other four sites originates 10% of the accesses, and these are 
read-only.

Hi. The remaining 10% of accesses require exclusive access and may originate 
at any of the five sites with equal probability (i.e., 2% originate at each).

For each of the lock methods below, give the average number of messages needed 
to obtain a lock. Assume that all requests are granted, so no denial messages 
are needed.



1020 CHAPTER 20. PARALLEL AND DISTRIBUTED DATABASES

Grid Computing

Grid computing is a term that means almost the same as peer-to-peer 
computing. However, the applications of grids usually involve sharing of 
computing resources rather than data, and there is often a master node 
that controls what the others do. Popular examples include SETI, which 
attempts to distribute the analysis of signals for signs of extraterrestrial 
intelligence among participating nodes, and Folding-at-Home, which at
tempts to do the same for protein-folding.

a) Read-locks-one; write-locks-all.

b) Majority locking.

c) Primary-copy locking, with the primary copy at P.

20.7 Peer-to-Peer Distributed Search
In this section, we examine peer-to-peer distributed systems. When these sys
tems are used to store and deliver data, the problem of search becomes surpris
ingly hard. That is, each node in the peer-to-peer network has a subset of the 
data elements, but there is no centralized index that says where something is 
located. The method called “distributed hashing” allows peer-to-peer networks 
to grow and shrink, yet allows us to find available data much more efficiently 
than sending messages to every node.

20.7.1 Peer-to-Peer Networks
A peer-to-peer network is a collection of nodes or peers (participating machines) 
that:

1. Are autonomous: participants do not respect any central control and can 
join or leave the network at will.

2 . Are loosely coupled; they communicate over a general-purpose network 
such as the Internet, rather than being hard-wired together like the pro
cessors in a parallel machine.

3. Are equal in functionality; there is no leader or controlling node.

4. Share resources with one another.

Peer-to-peer networks initially received a bad name, because their first pop
ular use was in sharing copyrighted files such as music. However, they have
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Copyright Issues in Digital Libraries

In order for a distributed world-wide digital library to become a reality, 
there will have to be some resolution of the severe copyright issues that 
arise. Current, small-scale versions of this network have partial solutions. 
For example, on-line university libraries often pass accesses to the ACM 
digital library only from IP addresses in the university’s domain. Other 
arrangements are based on the idea that only one user at a time can 
access a particular copyrighted document. The digital library can “loan” 
the right to another library, but then users of the first library cannot access 
the document. The world awaits a solution that is easily implementable 
and fair to all interests.

many legitimate uses. For example, as libraries replace books by digital im
ages, it becomes feasible for all the world’s libraries to share what they have. 
It should not be necessary for each library to store a copy of every book or 
document in the world. But then, when you request a book from your local 
library, that library’s node needs to find a peer library that does have a copy 
of what you want.

As another example, we might imagine a peer-to-peer network for the shar
ing of personal collections of photographs or videos, that is, a peer-to-peer 
version of Flickr or YouTube. The images are housed on participants’ personal 
computers, so they will be turned on and off periodically. There can be millions 
of participants, and each has only a small fraction of the resources of the entire 
network.

20.7.2 The Distributed-Hashing Problem
Early peer-to-peer networks such as Napster used a centralized table that told 
where data elements could be found. Later systems distributed the function 
of locating elements, either by replication or division of the task among the 
peers. When the database is truly large, such as a shared worldwide library or 
photo-sharing network, there is no choice but to share the task in some way.

We shall abstract the problem to one of lookup of records in a (very large) 
set of key-value pairs. Associated with each key K  is a value V. For example, 
K  might be the identifier of a document. V  could be the document itself, or it 
could be the set of nodes at which the document can be found.

If the size of the key-value data is small, there are several simple solutions. 
We could use a central node that holds the entire key-value table. All nodes 
would query the central node when they wanted the value V  associated with a 
given key K .  In that case, a pair of query-response messages would answer any 
lookup question for any node. Alternatively, we could replicate the entire table 
at each node, so there would be no messages needed at all.
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The problem becomes more interesting when the key-value table is too large 
to be handled by a single node. We shall consider this problem, using the 
following constraints:

1. At any time, only one node among the peers knows the value associated 
with any given key K.

2. The key-value pairs are distributed roughly equally among the peers.

3. Any node can ask the peers for the value V  associated with a chosen key 
K.  The value of V  should be obtained in a way such that the number of 
messages sent among the peers grows much more slowly than the number 
of peers.

4. The amount of routing information needed at each node to help locate 
keys must also grow much more slowly than the number of nodes.

20.7.3 Centralized Solutions for Distributed Hashing
If the set of participants in the network is fixed once and for all, or the set 
of participants changes slowly, then there are straightforward ways to manage 
lookup of keys. For example, we could use a hash function h that hashes keys 
into node numbers. We place the key-value pair (K , V) at the node h(K).

In fact, Google and similar search engines effectively maintain a centralized 
index of the entire Web and manage huge numbers of requests. They do so by 
behaving logically as if there were a centralized index, when in fact the index 
is replicated at a very large number of nodes. Each node consists of many 
machines that together share the index of the Web.

However, machines at Google are not really “peers.” They cannot decide 
to leave the network, and they each have a specific function to perform. While 
machines can fail, their load is simply assumed by a node of similar machines 
until the failed machine is replaced. In the balance of this section, we shall 
consider the more complex solution that is needed when the data is maintained 
by a true collection of peer nodes.

20.7.4 Chord Circles
We shall now describe one of several possible algorithms for distributed hashing, 
an algorithm with the desirable property that it uses a number of messages that 
is logarithmic in the number of peers. In addition, the amount of information 
other than key-value peers needed at each node grows logarithmically in the 
number of nodes.

In this algorithm, we arrange the peers in a “chord circle.” Each node 
knows its predecessor and successor around the circle, and nodes also have 
links to nodes located at an exponentially growing set of distances around the 
circle (these links are the “chords”). Figure 20.14 suggests what the chord circle 
looks like.
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Figure 20.14: A chord circle

To place a node in the circle, we hash its ID i, and place it at position 
h(i). We shall henceforth refer to this node as N ^ .  Thus, for example, in 
Fig. 20.14, AT2i is a node whose ID i has h(i) = 21. The successor of each node 
is the next higher one clockwise around the circle. For example, the successor 
of N 2 1  is N 3 2 , and Ni is the successor of -/V56. Likewise, N2i is the predecessor 
of N 3 2 , and IV56 is the predecessor of N i .

The nodes are located around the circle using a hash function h that is capa
ble of mapping both keys and node ID’s (e.g., IP-addresses) to m-bit numbers, 
for some m. In Fig. 20.14, we suppose that m  = 6 , so there are 64 different 
possible locations for nodes around the circle. In a real application, m  would 
be much larger.

Key-value pairs are also distributed around the circle using the hash function 
h. If (K, V) is a key-value pair, then we compute h(K)  and place (K, V) at the 
lowest numbered node Nj such that h(K) < j .  As a special case, if h(K)  is 
above the highest-numbered node, then it is assigned to the lowest-numbered 
node. That is, key K  goes to the first node at or clockwise of the position h(K) 
in the circle.

E xam ple 20.19: In Fig. 20.14, any (K ,V )  pair such that 42 < h{K) < 48 
would be stored at N ^ .  If h{K) is any of 57 ,58 ,... , 63,0,1, then (K , V") would 
be placed at N\.  □
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20.7.5 Links in Chord Circles
Each node around the circle stores links to its predecessor and successor. Thus, 
for example, in Fig. 20.14, Ni has successor Ns and predecessor iV56. These 
links are sufficient to send messages around the circle to look up the value 
associated with any key. For instance, if Ns wants to find the value associated 
with a key K  such that h(K)  =  54, it can send the request forward around 
the circle until a node Nj is found such that j  > 54; it would be node N 5 6  in 
Fig. 20.14.

However, linear search is much too inefficient if the circle is large. To speed 
up the search, each node has a finger table that gives the first nodes found at 
distances around the circle that are a power of two. That is, suppose that the 
hash function h produces m-bit numbers. Node Ni has entries in its finger table 
for distances 1 ,2 ,4 ,8 , . . .  , 2m_1. The entry for 2̂  is the first node we meet after 
going distance 2J clockwise around the circle. Notice that some entries may be 
the same node, and there are only m  — 1 entries, even though the number of 
nodes could be as high as 2m.

Distance 1 2 4 8 16 32
Node iVl4 N u N u  N 2 1 N 3 2 N 4 2

Figure 20.15: Finger table for Ng

E xam ple 20.20: Referring to Fig. 20.14, let us construct the finger table for 
Ng; this table is shown in Fig. 20.15. For distance 1, we ask what is the lowest 
numbered node whose number is at least 8 +  1 =  9. That node is N 1 4 , since 
there are no nodes numbered 9 ,1 0 ,... , 13. For distance 2, we ask for the lowest 
node that is at least 8 +  2 =  10; the answer is N 1 4  again. Likewise, for distance
4, N 1 4  is is lowest-numbered node that is at least 8 +  4 = 1 2 .

For distance 8 , we look for the lowest-numbered node that is at least 8 +  8 =  
16. Now, N 1 4  is too low. The lowest-numbered node that is at least 16 is N 2 i , 
so that is the entry in the finger table for 8 . For 16, we need a node numbered 
at least 24, so the entry for 16 is N 32. For 32, we need a node numbered at 
least 40, and the proper entry is N 4 2 . Figure 20.16 shows the four links that 
are in the finger table for N 8. □

20.7.6 Search Using Finger Tables
Suppose we are at node Ni and we want to find the key-value pair (K , V) where 
h(K) — j .  We know that (K , V ), if it exists, will be at the lowest-numbered 
node that is a t least j . 6 We can use the finger table and knowledge of successors

6 A s alw ays, “low est” m u st be  tak en  in th e  circu lar sense, as th e  first node you m eet 
traveling  clockwise a ro u n d  th e  circle, a f te r  reach ing  th e  po in t j .
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Figure 20.16: Links in the finger table for Ns

to find (K , V), if it exists, using at most m-1-1 messages, where m is the number 
of bits in the hash values produced by hash function h. Note that messages do 
not have to follow the entries of the finger table, which is needed only to help 
each node find out what other nodes exist.

A lgorithm  20.21: Lookup in a Chord Circle.

IN PU T : An initial request by a node N, for the value associated with key value 
K ,  where h(K) =  j .

O U TPU T: A sequence of messages sent by various nodes, resulting in a message 
to Ni with either the value of V  in the key-value pair (K, V), or a statement 
that such a pair does not exist.

METHOD: The steps of the algorithm are actually executed by different nodes. 
At any time, activity is at some “current” node N c, and initially N c is Ni. Steps 
(1) and (2) below are done repeatedly. Note that Ni is a part of each request 
message, so the current node always knows that Ni is the node to which the 
answer must be sent.

1. End the search if c < j  < s, where N s is the successor of Nc, around the 
circle. Then, N c sends a message to N s asking for (K, V) and informing 
N s that the originator of the request is Ni. N s will send a message to Ni 
with either the value V  or a statement that (K , V) does not exist.

2 . Otherwise, N c consults its finger table to find the highest-numbered node 
Nh that is less than j .  N c sends Nh a message asking it to search for
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( K ,V )  on behalf of Ni. Nh becomes the current node N c, and steps (1) 
and (2) are repeated with the new N c.

□

E xam ple 20.22: Suppose Ns wants to find the value V  for key K ,  where 
h(K)  =  54. Since the successor of N s is N u ,  and 54 is not in the range 
9 ,1 0 ,... , 14, Ns knows (K , V) is not at N u .  N% thus examines its finger table, 
and finds that all the entries are below 54. Thus it takes the largest, Ar42, and 
sends a message to 7V42 asking it to look for key K  and have the result sent to 
Ns.

N 4 2  finds that 54 is not in the range 43 ,4 4 ,... ,48 between iV42 and its 
successor jV48. Thus, 7V42 examines its own finger table, which is:

Distance 1 2 4 8 16 32
Node iV48 N i8 £ 00 n 51 Ni 7V14

The last node (in the circular sense) that is less than 54 is N 5i , so N 4 2  sends a 
message to 7V51, asking it to search for (K , V) on behalf of N&.

N$i finds that 54 is no greater than its successor, N 56. Thus, if (K, V) exists, 
it is at N 5q. N 51 sends a request to A756, which replies to N%. The sequence of 
messages is shown in Fig. 20.17. □

Figure 20.17: Message sequence in the search for (K , V)

In general, this recursive algorithm sends no more than m  request messages. 
The reason is that whenever a node N c has to consult its finger table, it messages
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Dealing with Hash Collisions

Occasionally, when we insert a node, the hash value of its ID will be the 
same as that of some node already in the circle. The actual position of a 
particular node doesn’t matter, as long as it knows its position and acts 
as if that position was the hash value of its ID. Thus, we can adjust the 
position of the new node up or down, until we find a position around the 
circle that is unoccupied.

a node that is no more than half the distance (measured clockwise around the 
circle) from the node holding (K , V) as N c is. One response message is sent in 
all cases.

20.7.7 Adding New Nodes
Suppose a new node Ni (i.e., a node whose ID hashes to i) wants to join the 
network of peers. If Ni does not know how to communicate with any peer, it 
is not possible for Ni to join. However, if Ni knows even one peer, Ni can ask 
that peer what node would be N i’s successor around the circle. To answer, the 
known peer performs Algorithm 20.21 as if it were looking for a key that hashed 
to i. The node at which this hypothetical key would reside is the successor of 
Ni. Suppose that the successor of JV< is Nj.

We need to do two things:

1. Change predecessor and successor links, so JV* is properly linked into the 
circle.

2. Rearrange data so TV, gets all the data at Nj  that belongs to Ni, that is, 
key-value pairs whose key hashes to something i or less.

We could link N  into the circle at once, although it is difficult to do so correctly, 
because of concurrency problems. That is, several nodes whose successor would 
be Nj may be adding themselves at once. To avoid concurrency problems, we 
proceed in two steps. The first step is to set the successor of N  to Nj and its 
predecessor to nil. N  has no data at this time, and it has an empty finger table.

E xam ple 20.23: Suppose we add to the circle of Fig. 20.14 a node N 2 e, i.e., 
a node whose ID hashes to 26. Whatever peer N 26 contacted will be told that 
N 2$’s successor is N 32. N2e sets its successor to N 32 and its predecessor to 
nil. The predecessor of N 32 remains N 2i for the moment. The situation is 
suggested by Fig. 20.18. There, solid lines are successor links and dashed lines 
are predecessor links. □
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The second step is done automatically by all nodes, and is not a direct 
response to the insertion of iVj. All nodes must periodically perform a stabi
lization check, during which time predecessors and successors are updated, and 
if necessary, data is shared between a new node and its successor. Surely, N2§ 
in Fig. 20.18 will have to perform a stabilization to get N 3 2  to accept N2% as 
its predecessor, but N 2\ also needs to perform a stabilization in order to re
alize that N 26 is its new successor. Note that N 2\ has not been informed of 
the existence of N 2q, and will not be informed until N 2i discovers this fact for 
itself during its own stabilization. The stabilization process at any node N  is 
as follows.

1. Let S  be the successor of N. N  sends a message to S  asking for P, the 
predecessor of 5, and S  replies. In normal cases, P  =  N ,  and if so, skip 
to step (4).

2. If P  lies strictly between N  and S, then N  records that P  is its successor.

3. Let S'  be the current successor of N; S' could be either S  or P, depending 
on what step (2) decided. If the predecessor of S' is nil or N  lies strictly 
between S' and its predecessor, then N  sends a message to S' telling S' 
that N  is the predecessor of S'. S' sets its predecessor to N.

4. S ' shares its data with N .  That is, all (K ,V )  pairs at S' such that 
h(K) < N  are moved to N.

E xam ple 20.24: Following the events of Example 20.23, with the predecessor 
and successor links in the state of Fig. 20.18, node N 2 6  will perform a stabiliza
tion. For this stabilization, N  =  N 2 e, S  =  N 32, and P  = N 2±. Since P  does not 
lie between N  and S, step (2) makes no change, so S' =  S  =  N 3 2  at step (3). 
Since N  =  N 2q lies strictly between S' — N 32 and its predecessor N2i, we make 
N 2q the predecessor of N32. The state of the links is shown in Fig. 20.19. At 
step (4), all key-value pairs whose keys hash to 22 through 26 are moved from 
N 3 2  to N 2§.
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The circle has still not stabilized, since A^i and many other nodes do not 
know about N 2 6 - Searches for keys in the 22-26 range will still wind up at N32. 
However, iV32 knows that it no longer has keys in this range. 7V32, which is N c 
in Algorithm 20.21, simply continues the search according to this algorithm, 
which in effect causes the search to go around the circle again, possibly several 
times.

Eventually, iV21 runs the stabilization operation, which it, like all nodes, 
does periodically. Now, N  = N2i, S  = N 3 2 , and P  =  N 2<j. The test of step (2) 
is satisfied, so N2q becomes the successor of N 2i . At step (3), S' — AT26. Since 
the predecessor of N 2 6  is nil, we make N 2\ the predecessor of iV26- No data is 
shared at step (4), since all data at N2q belongs there. The final state of the 
predecessor and successor links is shown in Fig. 20.20.

At this time, the search for a key in the range 22-26 will reach N2a and 
be answered properly. It is possible, under rare circumstances, that insertion 
of many new nodes will keep the network from becoming completely stable 
for a long time. In that case, the search for a key in the range 22-26 could 
continue running until the network finally does stabilize. However, as soon as 
the network does stablize, the search comes to an end. □

There is still more to do, however. In terms of the running example, the 
finger table for iV26 needs to be constructed, and other finger tables may now 
be wrong because they will link to N 3 2  in some cases when they should link 
to iV26. Thus, it is necessary that every node N  periodically checks its finger 
table. For each i =  1 ,2 ,4 ,8 , . . . ,  node N  must execute Algorithm 20.21 with 
j  = N  + i mod 2m. When it gets back the node at which the network thinks 
such a key would be located, N  sets its finger-table entry for distance i to that 
value.

Notice that a new node, such as N 2 6  in our running example, can construct 
its initial finger table this way, since the construction of any entry requires only 
entries that have already been constructed. That is, the entry for distance 1 is 
always the successor. For distance 2i, either the successor is the correct entry, or 
we can find the correct entry by calling upon whatever node is the finger-table
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entry for distance i.

20.7.8 When a Peer Leaves the Network
A central tenet of peer-to-peer systems is that a node cannot be compelled to 
participate. Thus, a node can leave the circle at any time. The simple case is 
when a node leaves “gracefully,” that is, cooperating with other nodes to keep 
the data available. To leave gracefully, a node:

1. Notifies its predecessor and successor that it is leaving, so they can become 
each other’s predecessor and successor.

2. Transfers its data to its successor.

The network is still in a state that has errors; in particular the node that left 
may still appear in the finger tables of some nodes. These nodes will discover 
the error, either when they periodically update their finger tables, as discussed 
in Section 20.7.7, or when they try to communicate with the node that has 
disappeared. In the latter case, they can recompute the erroneous finger-table 
entry exactly as they would during periodic update.

20.7.9 When a Peer Fails
A harder problem occurs when a node fails, is turned off, or decides to leave 
without doing the “graceful” steps of Section 20.7.8. If the data is not replicated, 
then data at the failed node is now unavailable to the network. To avoid total 
unavailability of data, we can replicate it at several nodes. For example, we can 
place each (K , V) pair at three nodes: the correct node, its predecessor in the 
circle, and its successor.

To reestablish the circle when a node leaves, we can have each node record 
not only its predecessor and successor, but the predecessor of its predecessor 
and the successor of its successor. An alternative approach is to cluster nodes
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into groups of (say) three or more. Nodes in a cluster replicate their data 
and can substitute for one another, if one leaves or fails. When clusters get 
too large, they can be split into two clusters that are adjacent on the circle, 
using an algorithm similar to that described in Section 20.7.7 for node insertion. 
Similarly, clusters that get too small can be combined with a neighbor, a process 
similar to graceful leaving as in Section 20.7.8. Insertion of a new node is 
executed by having the node join its nearest cluster.

20.7.10 Exercises for Section 20.7
Exercise 20.7.1: Given the circle of nodes of Fig. 20.14, where do key-value 
pairs reside if the key hashes to: (a) 24 (b) 60?

Exercise 20.7.2: Given the circle of nodes of Fig. 20.14, construct the finger 
tables for: (a) Ni (b) N48 (c) N 56.

Exercise 20.7.3: Given the circle of nodes of Fig. 20.14, what is the sequence 
of messages sent if:

a) iVi searches for a key that hashes to 27.

b) Ni searches for a key that hashes to 0 .

c) N51 searches for a key that hashes to 45.

E xercise 20.7.4: Show the sequence of steps that adjust successor and pre
decessor pointers and share data, for the circle of Fig. 20.14 when nodes are 
added that hash to: (a) 41 (b) 62.

E xercise 20.7.5: Suppose we want to guard against node failures by having 
each node maintain the predecessor information, successor information, and 
data of its predecessor and successor, as well as its own, as discussed in Sec
tion 20.7.9. How would you modify the node-insertion algorithm described in 
Section 20.7.7?

20.8 Summary of Chapter 20
♦  Parallel Machines: Parallel machines can be characterized as shared- 

memory, shared-disk, or shared-nothing. For database applications, the 
shared-nothing architecture is generally the most cost-effective.

♦  Parallel Algorithms: The operations of relational algebra can generally 
be sped up on a parallel machine by a factor close to the number of 
processors. The preferred algorithms start by hashing the data to buckets 
that correspond to the processors, and shipping data to the appropriate 
processor. Each processor then performs the operation on its local data.



♦  The Map-Reduce Framework: Often, highly parallel algorithms on mas
sive files can be expressed by a map function and a reduce function. Many 
map processes execute on parts of the file in parallel, to produce key-value 
pairs. These pairs are then distributed so each key’s pairs can be handled 
by one reduce process.

♦  Distributed Data: In a distributed database, data may be partitioned hor
izontally (one relation has its tuples spread over several sites) or vertically 
(a relation’s schema is decomposed into several schemas whose relations 
are at different sites). It is also possible to replicate data, so presumably 
identical copies of a relation exist at several sites.

♦  Distributed Joins: In an environment with expensive communication, 
semijoins can speed up the join of two relations that are located at differ
ent sites. We project one relation onto the join attributes, send it to the 
other site, and return only the tuples of the second relation that are not 
dangling tuples.

♦  Full Reducers: When joining more than two relations at different sites, it 
may or may not be possible to eliminate all dangling tuples by performing 
semijoins. A finite sequence of semijoins that is guaranteed to eliminate 
all dangling tuples, no matter how large the relations are, is called a full 
reducer.

♦  Hypergraphs: A natural join of several relations can be represented by a 
hypergraph, which has a node for each attribute name and a hyperedge 
for each relation, which contains the nodes for all the attributes of that 
relation.

♦  Acyclic Hypergraphs: These are the hypergraphs that can be reduced to a 
single hyperedge by a series of ear-reductions — elimination of hyperedges 
all of whose nodes are either in no other hyperedge, or in one particular 
other hyperedge. Full reducers exist for all and only the hypergraphs that 
are acyclic.

♦  Distributed Transactions: In a distributed database, one logical trans
action may consist of components, each executing at a different site. To 
preserve consistency, these components must all agree on whether to com
mit or abort the logical transaction.

♦  Two-Phase Commit: This algorithm enables transaction components to 
decide whether to commit or abort, often allowing a resolution even in the 
face of a system crash. In the first phase, a coordinator component polls 
the components whether they want to commit or abort. In the second 
phase, the coordinator tells the components to commit if and only if all 
have expressed a willingness to commit.
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♦  Distributed Locks: If transactions must lock database elements found at 
several sites, a method must be found to coordinate these locks. In the 
centralized-site method, one site maintains locks on all elements. In the 
primary-copy method, the home site for an element maintains its locks.

♦  Locking Replicated Data: When database elements are replicated at sev
eral sites, global locks on an element must be obtained through locks on 
one or more replicas. The majority locking method requires a read- or 
write-lock on a majority of the replicas to obtain a global lock. Alterna
tively, we may allow a global read lock by obtaining a read lock on any 
copy, while allowing a global write lock only through write locks on every 
copy.

♦  Peer-to-Peer Networks: These networks consist of independent, autono
mous nodes that all play the same role in the network. Such networks axe 
generally used to share data among the peer nodes.

♦  Distributed Hashing: Distributed hashing is a central database problem in 
peer-to-peer networks. We are given a set of key-value pairs to distribute 
among the peers, and we must find the value associated with a given 
key without sending messages to all, or a large fraction of the peers, and 
without relying on any one peer that has all the key-value pairs.

♦  Chord Circles: A solution to the distributed hashing problem begins by 
using a hash function that hashes both node ID’s and keys into the same 
m-bit values, which we perceive as forming a circle with 2m positions. 
Keys are placed at the node at the position immediately clockwise of the 
position to which the key hashes. By use of a finger-table, which gives the 
nodes at distances 1, 2 ,4 ,8 , . . .  around the circle from a given node, key 
lookup can be accomplished in time that is logarithmic in the number of 
nodes.

20.9 References for Chapter 20
The use of hashing in parallel join and other operations has been proposed 
several times. The earliest source we know of is [8]. The map-reduce framework 
for parallelism was expressed in [2]. There is an open-souce implementation 
available [6].

The relationship between full reducers and acyclic hypergraphs is from [1], 
The test for whether a hypergraph is acyclic was discovered by [5] and [13].

The two-phase commit protocol was proposed in [7]. A more powerful 
scheme (not covered here) called three-phase commit is from [9]. The leader- 
election aspect of recovery was examined in [4].

Distributed locking methods have been proposed by [3] (the centralized lock
ing method) [11] (primary-copy) and [12] (global locks from locks on copies).

The chord algorithm for distributed hashing is from [10].
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Chapter 21

Information Integration

Information integration is the process of taking several databases or other in
formation sources and making the data in these sources work together as if 
they were a single database. The integrated database may be physical (a 
“warehouse”) or virtual (a “mediator” or “middleware” that may be queried 
even though its does not exist physically). The sources may be conventional 
databases or other types of information, such as collections of Web pages.

We begin by exploring the ways in which seemingly similar databases can 
actually embody conflicts that are hard to resolve correctly. The solution lies 
in the design of “wrappers” — translators between the schema and data values 
at a source and the schema and data values at the integrated database.

Information-integration systems require special kinds of query-optimization 
techniques for their efficient operation. Mediator systems can be divided into 
two classes: “global-as-view” (the data at the integrated database is defined by 
how it is constructed from the sources) and “local-as-view” (the content of the 
sources is defined in terms of the schema that the integrated database supports). 
We examine capability-based optimization for global-as-view mediators. We 
also consider local-as-view mediation, which requires effort even to figure out 
how to compose the answer to a query from defined views, but which offers 
advantages in flexibility of operation.

In the last section, we examine another important issue in information in
tegration, called “entity resolution.” Different information sources may talk 
about the same entities (e.g., people) but contain discrepancies such as mis
spelled names or out-of-date addresses. We need to make a best estimate of 
which data elements at the different sources actually refer to the same entity.

21.1 Introduction to Information Integration
In this section, we discuss the ways in which information-integration is essential 
for many database applications. We then sample some of the problems that 
make information integration difficult.
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21.1.1 W hy Information Integration?
If we could start anew with an architecture and schema for all the data in 
the world, and we could put that data in a single database, there would be no 
need for information integration. However, in the real world, matters are rather 
different.

• Databases are created independently, even if they later need to work to
gether.

• The use of databases evolves, so we cannot design a database to support 
every possible future use.

To see the need for information integration, we shall consider two typical scenar
ios: building applications for a university and integrating employee databases. 
In both scenarios, a key problem is that the overall data-management system 
must make use of legacy data sources — databases that were created indepen
dently of any other data source. Each legacy source is used by applications that 
expect the structure of “their” database not to change, so modification of the 
schema or data of legacy sources is not an option.

U n iversity  D atab ases

As databases came into common use, each university started using them for 
several functions that were once done by hand. Here is a typical scenario. The 
Registrar builds a database of courses, and uses it to record the courses each 
student took and their grades. Applications are built using this database, such 
as a transcript generator.

The Bursar builds another database for recording tuition payments by stu
dents. The Human Resources Department builds a database for recording em
ployees, including those students with teaching-assistant or research-assistant 
jobs. Applications include generation of payroll checks, calculation of taxes and 
social-security payments to the government, and many others. The Grants Of
fice builds a database to keep track of expenditures on grants, which includes 
salaries to certain faculty, students, and staff. It may also include information 
about biohazards, use of human subjects, and many other matters related to 
research projects.

Pretty soon, the university realizes that all these databases are not helping 
nearly as much as they could, and are sometimes getting in the way. For 
example, suppose we want to make sure that the Registrar does not record 
grades for students that the Bursar says did not pay tuition. Someone has to 
get a list of students who paid tuition from the Bursar’s database and compare 
that with a list of students from the Registrar’s database. As another example, 
when Sally is appointed on grant 123 as a research assistant, someone needs to 
tell the Grants Office that her salary should be charged to grant 123. Someone 
also needs to tell Human Resources that they should pay her salary. And the 
salaries in the two databases had better be exactly the same.
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So at some point, the university decides that it needs one database for all 
functions. The first thought might be: start over. Build one database that 
contains all the information of all the legacy databases and rewrite all the 
applications to use the new database. This approach has been tried, with great 
pain resulting. In addition to paying for a very expensive software-architecture 
task, the university has to run both the old and new systems in parallel for 
a long time to see that the new system actually works. And when they cut 
over to the new system, the users find that the applications do not work in the 
accustomed way, and turmoil results.

A better way is to build a layer of abstraction, called middleware, on top 
of all the legacy databases and allow the legacy databases to continue serving 
their current applications. The layer of abstraction could be relational views — 
either virtual or materialized. Then, SQL can be used to “query” the middle
ware layer. Often, this layer is defined by a collection of classes and queried 
in an object-oriented language. Or the middleware layer could use XML docu
ments, which are queried using XQuery. We mentioned in Section 9.1 that this 
middleware may be an important component of the application tier in a 3-tier 
architecture, although we did not show it explicitly.

Once the middleware layer is built, new applications can be written to access 
this layer for data, while the legacy applications continue to run using the legacy 
databases. For example, we can write a new application that enters grades for 
students only if they have paid their tuition. Another new application could 
appoint a research assistant by getting their name, grant, and salary from the 
user. This application would then enter the name and salary into the Human- 
Resources database and the name, salary, and grant into the Grants-Office 
database.

Integrating E m ployee D atabases

Compaq bought DEC and Tandem, and then Hewlett-Packard bought Com
paq. Each company had a database of employees. Because the companies were 
previously independent, the schemas and architecture of their databases nat
urally differed. Moreover, each company actually had many databases about 
employees, and these databases probably differed on matters as basic as who is 
an employee. For example, the Payroll Department would not include retirees, 
but might include contractors. The Benefits Department would include retirees 
but not contractors. The Safety Office would include not only regular employees 
and contractors, but the employees of the company that runs the cafeteria.

For reasons we discussed in connection with the university database, it may 
not be practical to shut down these legacy databases and with them all the 
applications that run on them. However, it is possible to create a middleware 
layer that holds — virtually or physically — all information available for each 
employee.
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21.1.2 The Heterogeneity Problem
When we try to connect information sources that were developed independently, 
we invariably find that the sources differ in many ways, even if they are intended 
to store the same kinds of data. Such sources are called heterogeneous, and the 
problem of integrating them is referred to as the heterogeneity problem. We 
shall introduce a running example of an automobile database and then discuss 
examples of the different levels at which heterogeneity can make integration 
difficult.

E xam ple  2 1 .1 : The Aardvark Automobile Co. has 1000 dealers, each of which 
maintains a database of their cars in stock. Aardvark wants to create an inte
grated database containing the information of all 1000 sources.1 The integrated 
database will help dealers locate a particular model at another dealer, if they 
don’t have one in stock. It also can be used by corporate analysts to predict 
the' market and adjust production to provide the models most likely to sell.

However, the dealers’ databases may differ in a great number of ways. We 
shall enumerate below the most important ways and give some examples in 
terms of the Aardvark database. □

C om m unication  H eterogen eity

Today, it is common to allow access to your information using the HTTP proto
col that drives the Web. However, some dealers may not make their databases 
available on the Web, but instead accept remote accesses via remote procedure 
calls or anonymous FTP, for instance.

Q uery-L anguage H eterogen eity

The manner in which we query or modify a dealer’s database may vary. It 
would be nice if the database accepted SQL queries and modifications, but not 
all do. Of those that do, each accepts a dialect of SQL — the version supported 
by the vendor of the dealer’s DBMS. Another dealer may not have a relational 
database at all. They could use an Excel Spreadsheet, or an object-oriented 
database, or an XML database using XQuery as the language.

Schem a H ete rogene ity

Even assuming that all the dealers use a relational DBMS supporting SQL as 
the query language, we can find many sources of heterogeneity. At the highest 
level, the schemas can differ. For example, one dealer might store cars in a 
single relation that looks like:

1 M ost real au tom ob ile  com panies have sim ilar facilities in  p lace, an d  th e  h is to ry  o f th e ir  
developm ent m ay  be  different from  o u r exam ple; e.g ., th e  cen tralized  d a ta b a se  m ay  have com e 
firs t, w ith  dealers la te r  able to  dow nload relevant p o rtio n s  to  th e ir  own d a tab ase . However, 
th is  scenario  serves as an  exam ple  o f w h at com panies in m an y  in d u stries  a re  a tte m p tin g  
today.
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C ars(se ria lN o , model, co lo r, autoTrans, n a v i , . . . )

with one boolean-valued attribute for every possible option. Another dealer 
might use a schema in which options are separated out into a second relation, 
such as:

A u to s (se r ia l,  model, co lor)
O p tio n s (se r ia l, option)

Notice that not only is the schema different, but apparently equivalent relation 
or attribute names have changed: Cars becomes Autos, and serialNo becomes 
serial.

Moreover, one dealer’s schema might not record information that most of 
the other dealers provide. For instance, one dealer might not record colors at 
all. To deal with missing values, sometimes we can use NULL’s or default values. 
However, because missing schema elements are a common problem, there is a 
trend toward using semistructured data such as XML as the data model for 
integrating middleware.

D ata  ty p e  differences

Serial numbers might be represented by character strings of varying length at 
one source and fixed length at another. The fixed lengths could differ, and some 
sources might use integers rather than character strings.

Value H eterogen eity

The same concept might be represented by different constants at different 
sources. The color black might be represented by an integer code at one source, 
the string BLACK at another, and the code BL at a third. The code BL might 
stand for “blue” at yet another source.

Sem antic H eterogen eity

Terms may be given different interpretations at different sources. One dealer 
might include trucks in the Cars relation, while another puts only automobile 
data in the Cars relation. One dealer might distinguish station wagons from 
minivans, while another doesn’t.

21.2 M odes of Information Integration
There are several ways that databases or other distributed information sources 
can be made to work together. In this section, we consider the three most 
common approaches:

1. Federated databases. The sources are independent, but one source can call 
on others to supply information.
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2. Warehousing. Copies of data from several sources are stored in a single 
database, called a (data) warehouse. Possibly, the data stored at the 
warehouse is first processed in some way before storage; e.g., data may 
be filtered, and relations may be joined or aggregated. The warehouse is 
updated periodically, perhaps overnight. As the data is copied from the 
sources, it may need to be transformed in certain ways to make all data 
conform to the schema at the warehouse.

3. Mediation. A mediator is a software component that supports a virtual 
database, which the user may query as if it were materialized (physi
cally constructed, like a warehouse). The mediator stores no data of its 
own. Rather, it translates the user’s query into one or more queries to 
its sources. The mediator then synthesizes the answer to the user’s query 
from the responses of those sources, and returns the answer to the user.

We shall introduce each of these approaches in turn. One of the key issues for 
all approaches is the way that data is transformed when it is extracted from an 
information source. We discuss the architecture of such transformers — called 
wrappers, adapters, or extractors — in Section 21.3.

21.2.1 Federated Database Systems
Perhaps the simplest architecture for integrating several databases is to imple
ment one-to-one connections between all pairs of databases that need to talk to 
one another. These connections allow one database system D\ to query another 
D2 in terms that Da can understand. The problem with this architecture is 
that if n  databases each need to talk to the n  — 1 other databases, then we 
must write n(n  — 1) pieces of code to support queries between systems. The 
situation is suggested in Fig. 21.1. There, we see four databases in a federation. 
Each of the four needs three components, one to access each of the other three 
databases.

Figure 21.1: A federated collection of four databases needs 12 components to 
translate queries from one to another
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Nevertheless, a federated system may be the easiest to build in some circum
stances, especially when the communications between databases are limited in 
nature. An example will show how the translation components might work.

E xam ple 21.2: Suppose the Aardvark Automobile dealers want to share in
ventory, but each dealer only needs to query the database of a few local dealers 
to see if they have a needed car. To be specific, consider Dealer 1, who has a 
relation

NeededCars(model, co lo r, autoTrans)

whose tuples represent cars that customers have requested, by model, color, and 
whether or not they want an automatic transmission ( ’y e s ’ or ’no ’ are the 
possible values). Dealer 2 stores inventory in the two-relation schema discussed 
in Example 21.1:

A u to s (se r ia l,  model, co lo r)
O p tio n s (se r ia l, option)

Dealer 1 writes an application program that queries Dealer 2 remotely for cars 
that match each of the cars described in NeededCars. Figure 21.2 is a sketch 
of a program with embedded SQL that would find the desired cars. The intent 
is that the embedded SQL represents remote queries to the Dealer 2 database, 
with results returned to Dealer 1. We use the convention from standard SQL of 
prefixing a colon to variables that represent constants retrieved from a database.

These queries address the schema of Dealer 2. If Dealer 1 also wants to ask 
the same question of Dealer 3, who uses the first schema discussed in Exam
ple 21.1, with a single relation

C ars(se ria lN o , model, co lo r, a u to T ra n s ,. . . )

the query would look quite different. But each query works properly for the 
database to which it is addressed. □

21.2.2 Data Warehouses
In the data warehouse integration architecture, data from several sources is 
extracted and combined into a global schema. The data is then stored at the 
warehouse, which looks to the user like an ordinary database. The arrangement 
is suggested by Fig. 21.3, although there may be many more than the two 
sources shown.

Once the data is in the warehouse, queries may be issued by the user exactly 
as they would be issued to any database. There are at least three approaches 
to constructing the data in the warehouse:

1. The warehouse is periodically closed to queries and reconstructed from 
the current data in the sources. This approach is the most common, with 
reconstruction occurring once a night or at even longer intervals.
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fo r(each  tu p le  (:m, :c , :a) in  NeededCars) {
i f ( : a  = TRUE) { /*  autom atic tran sm issio n  wanted */ 

SELECT s e r ia l  FROM Autos, Options 
WHERE A u to s .se r ia l = O p tio n s .se r ia l AND 

O ptions.op tion  = ’au toT rans’ AND 
Autos.model = :m AND A utos.co lo r = :c;

>
e ls e  { /*  autom atic transm ission  not wanted */

SELECT s e r ia l  
FROM Autos
WHERE Autos.model = :m AND A utos.co lo r = :c AND 

NOT EXISTS (
SELECT * FROM Options 
WHERE s e r ia l  = A u to s .se r ia l AND 

option  = ’au toT rans’
);

}
}

Figure 21.2: Dealer 1 queries Dealer 2 for needed cars

2. The warehouse is updated periodically (e.g., each night), based on the 
changes that have been made to the sources since the last time the ware
house was modified. This approach can involve smaller amounts of data, 
which is very important if the warehouse needs to be modified in a short 
period of time, and the warehouse is large (multiterabyte warehouses are 
in common use). The disadvantage is that calculating changes to the 
warehouse, a process called incremental update, is complex, compared 
with algorithms that simply construct the warehouse from scratch.

Note that either of these approaches allow the warehouse to get out of date. 
However, it is generally too expensive to reflect immediately, at the warehouse, 
every change to the underlying databases.

E xam ple 21.3: Suppose for simplicity that there axe only two dealers in the 
Aardvark system, and they respectively use the schemas

C ars(seria lN o , model, co lo r, autoTrans, n a v i , . . . )

and

A u to s (se r ia l, model, co lo r)
O p tio n s (se r ia l, op tion)

We wish to create a warehouse with the schema
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Extractor

Source 1

Extractor

Source 2

Figure 21.3: A data warehouse stores integrated information in a separate 
database

AutosWhse(serialNo, model, color, autoTrans, dealer)

That is, the global schema is like that of the first dealer, but we record only the 
option of having an automatic transmission, and we include an attribute that 
tells which dealer has the car.

The software that extracts data from the two dealers’ databases and popu
lates the global schema can be written as SQL queries. The query for the first 
dealer is simple:

INSERT INTO AutosWhse(serialNo, model, color, 
autoTrans, dealer)

SELECT serialNo, model, color, autoTrans, ’dealer1’
FROM Cars;

The extractor for the second dealer is more complex, since we have to decide 
whether or not a given car has an automatic transmission. We leave this SQL 
code as an exercise.

In this simple example, the combiner, shown in Fig. 21.3, for the data ex
tracted from the sources is not needed. Since the warehouse is the union of 
the relations extracted from each source, the data may be loaded directly into 
the warehouse. However, many warehouses perform operations on the relations 
that they extract from each source. For instance relations extracted from two 
sources might be joined, and the result put at the warehouse. Or we might 
take the union of relations extracted from several sources and then aggregate
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the data of this union. More generally, several relations may be extracted from 
each source, and different relations combined in different ways. □

21.2.3 Mediators
A mediator supports a virtual view, or collection of views, that integrates several 
sources in much the same way that the materialized relation (s) in a warehouse 
integrate sources. However, since the mediator doesn’t store any data, the 
mechanics of mediators and warehouses are rather different. Figure 21.4 shows 
a mediator integrating two sources; as for warehouses, there would typically 
be more than two sources. To begin, the user or application program issues a 
query to the mediator. Since the mediator has no data of its own, it must get 
the relevant data from its sources and use that data to form the answer to the 
user’s query.

Thus, we see in Fig. 21.4 the mediator sending a query to each of its wrap
pers, which in turn send queries to their corresponding sources. The mediator 
may send several queries to a wrapper, and may not query all wrappers. The 
results come back and are combined at the mediator; we do not show an explicit 
combiner component as we did in the warehouse diagram, Fig. 21.3, because in 
the case of the mediator, the combining of results from the sources is one of the 
tasks performed by the mediator.

Figure 21.4: A mediator and wrappers translate queries into the terms of the 
sources and combine the answers

E xam ple 21 .4 : Let us consider a scenario similar to that of Example 21.3, 
but use a mediator. That is, the mediator integrates the same two automobile 
sources into a view that is a single relation with schema:

AutosMed(serialNo, model, color, autoTrans, dealer)
Suppose the user asks the mediator about red cars, with the query:
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SELECT serialNo, model 
FROM AutosMed 
WHERE color = ’red’;

The mediator, in response to this user query, can forward the same query to each 
of the two wrappers. The way that wrappers can be designed and implemented 
to handle queries like this one is the subject of Section 21.3. In more complex 
scenarios, the mediator would first have to break the query into pieces, each of 
which is sent to a subset of the wrappers. However, in this case, the translation 
work can be done by the wrappers alone.

The wrapper for Dealer 1 translates the query into the terms of that dealer’s 
schema, which we recall is

Cars(serialNo, model, color, autoTrans, navi,...)
A suitable translation is:

SELECT serialNo, model 
FROM Cars
WHERE color = ’red’;

An answer, which is a set of serialNo-model pairs, will be returned to the 
mediator by the first wrapper.

At the same time, the wrapper for Dealer 2 translates the same query into 
the schema of that dealer, which is:

Autos(serial, model, color)
Options(serial, option)

A suitable translated query for Dealer 2 is almost the same:

SELECT serial, model
FROM Autos
WHERE color = ’red’;

It differs from the query at Dealer 1 only in the name of the relation queried, 
and in one attribute. The second wrapper returns to the mediator a set of 
serial-m odel pairs, which the mediator interprets as serialNo-model pairs. 
The mediator takes the union of these sets and returns the result to the user.
□

There are several options, not illustrated by Example 21.4, that a mediator 
may use to answer queries. For instance, the mediator may issue one query to 
one source, look at the result, and based on what is returned, decide on the 
next query or queries to issue. This method would be appropriate, for instance, 
if the user query asked whether there were any Aardvark “Gobi” model sport- 
utility vehicles available in blue. The first query could ask Dealer 1, and only 
if the result was an empty set of tuples would a query be sent to Dealer 2.
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21.2.4 Exercises for Section 21.2
! E xercise 21.2.1: Computer company A  keeps data about the PC models it 

sells in the schema:

Computers(number, proc, speed, memory, hd)
Monitors(number, screen, maxResX, maxResY)

For instance, the tuple (123, Athlon64,3.1,512,120) in Computers means that 
model 123 has an Athlon 64 processor running at 3.1 gigahertz, with 512M of 
memory and a 120G hard disk. The tuple (456,19,1600,1050) in Monitors 
means that model 456 has a 19-inch screen with a maximum resolution of 
1600 x 1050.

Computer company B  only sells complete systems, consisting of a computer 
and monitor. Its schema is

Systems(id, processor, mem, disk, screenSize)

The attribute p rocesso r is the speed in gigahertz; the type of processor (e.g., 
Athlon 64) is not recorded. Neither is the maximum resolution of the monitor 
recorded. Attributes id , mem, and d isk  are analogous to number, memory, and 
hd from company A, but the disk size is measured in megabytes instead of 
gigabytes.

a) If company A  wants to insert into its relations information about the 
corresponding items from B, what SQL insert statements should it use?

b) If Company B  wants to insert into Systems as much information about 
the systems that can be built from computers and monitors made by A, 
what SQL statements best allow this information to be obtained?

! Exercise 21.2 .2 : Suggest a global schema that would allow us to maintain as 
much information as we could about the products sold by companies A  and B  
of Exercise 21.2.1.

Exercise 21.2 .3 : Write SQL queries to gather the information from the data 
at companies A  and B  and put it in a warehouse with your global schema of 
Exercise 21.2.2.

E xercise 21.2.4: Suppose your global schema from Exercise 21.2.2 is used 
at a mediator. How would the mediator process the query that asks for the 
maximum amount of hard-disk available with any computer with a 3 gigahertz 
processor speed?

! E xercise 21.2.5: Suggest two other schemas that computer companies might 
use to hold data like that of Exercise 21.2.1. How would you integrate your 
schemas into your global schema from Exercise 21.2.2?
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Exercise 21.2.6: In Example 21.3 we talked about a relation Cars at Dealer 1 
that conveniently had an attribute autoTrans with only the values ’ yes ’ and 
’ no ’. Since these were the same values used for that attribute in the global 
schema, the construction of relation AutosWhse was especially easy. Suppose 
instead that the attribute Cars. autoTrans has values that are integers, with 
0 meaning no automatic transmission, and i > 0 meaning that the car has 
an i-speed automatic transmission. Show how the translation from Cars to 
AutosWhse could be done by a SQL query.

E xercise 21.2.7: Write the insert-statements for the second dealer in Exam
ple 21.3. You may assume the values of autoTrans are ’y e s’ and ’no ’.

E xercise 21.2.8: How would the mediator of Example 21.4 translate the fol
lowing queries?

a) Find the serial numbers of cars with automatic transmission.

b) Find the serial numbers of cars without automatic transmission.

! c) Find the serial numbers of the blue cars from Dealer 1.

E xercise 21.2.9: Go to the Web pages of several on-line booksellers, and see 
what information about this book you can find. How would you combine this 
information into a global schema suitable for a warehouse or mediator?

21.3 Wrappers in M ediator-Based Systems
In a data warehouse system like Fig. 21.3, the source extractors consist of:

1. One or more predefined queries that are executed at the source to produce 
data for the warehouse.

2. Suitable communication mechanisms, so the wrapper (extractor) can:

(a) Pass ad-hoc queries to the source,
(b) Receive responses from the source, and
(c) Pass information to the warehouse.

The predefined queries to the source could be SQL queries if the source is a SQL 
database as in our examples of Section 21.2. Queries could also be operations in 
whatever language was appropriate for a source that was not a database system; 
e.g., the wrapper could fill out an on-line form at a Web page, issue a query to 
an on-line bibliography service in that system’s own, specialized language, or 
use myriad other notations to pose the queries.

However, mediator systems require more complex wrappers than do most 
warehouse systems. The wrapper must be able to accept a variety of queries 
from the mediator and translate any of them to the terms of the source. Of
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course, the wrapper must then communicate the result to the mediator, just 
as a wrapper in a warehouse system communicates with the warehouse. In the 
balance of this section, we study the construction of flexible wrappers that are 
suitable for use with a mediator.

21.3.1 Templates for Query Patterns
A systematic way to design a wrapper that connects a mediator to a source is to 
classify the possible queries that the mediator can ask into templates, which are 
queries with parameters that represent constants. The mediator can provide 
the constants, and the wrapper executes the query with the given constants. 
An example should illustrate the idea; it uses the notation T  => S  to express 
the idea that the template T  is turned by the wrapper into the source query S.

E xam ple  21.5: Suppose we want to build a wrapper for the source of Dealer 1, 
which has the schema

Cars(serialNo, model, color, autoTrans, navi,...)

for use by a mediator with schema

AutosMed(serialNo, model, color, autoTrans, dealer)

Consider how the mediator could ask the wrapper for cars of a given color. If 
we denote the code representing that color by the parameter $c, then we can 
use the template shown in Fig. 21.5.

SELECT *
FROM AutosMed 
WHERE color = ’$c’;

=>

SELECT serialNo, model, color, autoTrans, ’dealer1’
FROM Cars
WHERE color = ’$c’;

Figure 21.5: A wrapper template describing queries for cars of a given color

Similarly, the wrapper could have another template that specified only the 
parameter $m representing a model, yet another template in which it was only 
specified whether an automatic transmission was wanted, and so on. In this 
case, there are eight choices, if queries are allowed to specify any of three at
tributes: model, co lo r, and autoTrans. In general, there would be 2n tem
plates if we have the option of specifying n  attributes.2 Other templates would

2If the source is a database that can be queried in SQL, as in our example, you would 
rightly expect that one template could handle any number of attributes equated to constants,
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be needed to deal with queries that asked for the total number of cars of cer
tain types, or whether there exists a car of a certain type. The number of 
templates could grow unreasonably large, but some simplifications are possible 
by adding more sophistication to the wrapper, as we shall discuss starting in 
Section 21.3.3. □

21.3.2 Wrapper Generators
The templates defining a wrapper must be turned into code for the wrapper 
itself. The software that creates the wrapper is called a wrapper generator; it is 
similar in spirit to the parser generators (e.g., YACC) that produce components 
of a compiler from high-level specifications. The process, suggested in Fig. 21.6, 
begins when a specification, that is, a collection of templates, is given to the 
wrapper generator.

Queries from 
m ediator Results

Figure 21.6: A wrapper generator produces tables for a driver; the driver and 
tables constitute the wrapper

The wrapper generator creates a table that holds the various query patterns 
contained in the templates, and the source queries that are associated with 
each. A driver is used in each wrapper; in general the driver can be the same 
for each generated wrapper. The task of the driver is to:

1. Accept a query from the mediator. The communication mechanism may 
be mediator-specific and is given to the driver as a “plug-in,” so the same

simply by making the WHERE clause a parameter. While that approach will work for SQL 
sources and queries that only bind attributes to constants, we could not necessarily use the 
same idea with an arbitrary source, such as a Web site that allowed only certain forms as 
an interface. In the general case, we cannot assume that the way we translate one query 
resembles at all the way similar queries are translated.
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driver can be used in systems that communicate differently.

2. Search the table for a template that matches the query. If one is found, 
then the parameter values from the query are used to instantiate a source 
query. If there is no matching template, the wrapper responds negatively 
to the mediator.

3. The source query is sent to the source, again using a “plug-in” communi
cation mechanism. The response is collected by the wrapper.

4. The response is processed by the wrapper, if necessary, and then returned 
to the mediator. The next sections discuss how wrappers can support a 
larger class of queries by processing results.

21.3.3 Filters
Suppose that a wrapper on a car dealer’s database has the template shown in 
Fig. 21.5 for finding cars by color. However, the mediator is asked to find cars 
of a particular model and color. Perhaps the wrapper has been designed with 
a more complex template such as that of Fig. 21.7, which handles queries that 
specify both model and color. Yet, as we discussed at the end of Example 21.5, 
it is not always realistic to write a template for every possible form of query.

SELECT *
FROM AutosMed
WHERE model = ’$m’ AND color = ’$c’;

=>
SELECT serialNo, model, color, autoTrans, ’dealer1’
FROM Cars
WHERE model = ’$m’ AND color = ’$c’;

Figure 21.7: A wrapper template that gets cars of a given model and color

Another approach to supporting more queries is to have the wrapper filter 
the results of queries that it poses to the source. As long as the wrapper has a 
template that (after proper substitution for the parameters) returns a superset 
of what the query wants, then it is possible to filter the returned tuples at the 
wrapper and pass only the desired tuples to the mediator.

E xam ple  21.6: Suppose the only template we have is the one in Fig. 21.5 
that finds cars given a color. However, the wrapper is asked by the mediator 
to find blue Gobi model cars. A possible way to answer the query is to use the 
template of Fig. 21.5 with $c =  ’b lu e ’ to find ail the blue cars and store them 
in a temporary relation

TempAutos(serialNo, model, color, autoTrans, dealer)
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Position of the Filter Component

We have, in our examples, supposed that the filtering operations take place 
at the wrapper. It is also possible that the wrapper passes raw data to 
the mediator, and the mediator filters the data. However, if most of the 
data returned by the template does not match the mediator’s query, then 
it is best to filter at the wrapper and avoid the cost of shipping unneeded 
tuples.

The wrapper may then return to the mediator the desired set of automobiles 
by executing the local query:

SELECT *
FROM TempAutos 
WHERE model = ’Gobi’;

In practice, the tuples of TempAutos could be produced one-at-a-time and fil
tered one-at-a-time, in a pipelined fashion, rather than having the entire relation 
TempAutos materialized at the wrapper and then filtered. □

21.3.4 Other Operations at the Wrapper
It is possible to transform data in other ways at the wrapper, as long as we are 
sure that the source-query part of the template returns to the wrapper all the 
data needed in the transformation. For instance, columns may be projected out 
of the tuples before transmission to the mediator. It is even possible to take 
aggregations or joins at the wrapper and transmit the result to the mediator.

E xam ple 21.7: Suppose the mediator wants to know about blue Gobis at 
the various dealers, but only asks for the serial number, dealer, and whether 
or not there is an automatic transmission, since the value of the model and 
co lo r attributes are obvious from the query. The wrapper could proceed as 
in Example 21.6, but at the last step, when the result is to be returned to the 
mediator, the wrapper performs a projection in the SELECT clause as well as 
the filtering for the Gobi model in the WHERE clause. The query

SELECT serialNo, autoTrans, dealer 
FROM TempAutos 
WHERE model = ’Gobi’;

does this additional filtering, although as in Example 21.6 relation TempAutos 
would probably be pipelined into the projection operator, rather than materi
alized at the wrapper. □
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E xam ple 21 .8 : For a more complex example, suppose the mediator is asked 
to find dealers and models such that the dealer has two red cars, of the same 
model, one with and one without an automatic transmission. Suppose also that 
the only useful template for Dealer 1 is the one about colors from Fig. 21.5. 
That is, the mediator asks the wrapper for the answer to the query of Fig. 21.8. 
Note that we do not have to specify a dealer for either Al or A2, because this 
wrapper can only access data belonging to Dealer 1. The wrappers for all the 
other dealers will be asked the same query by the mediator.

SELECT Al.model Al.dealer 
FROM AutosMed Al, AutosMed A2 
WHERE Al.model = A2.model AND 

Al.color = ’red’ AND 
A2.color = ’red’ AND 
Al.autoTrans = ’no’ AND 
A2.autoTrans = ’yes’;

Figure 21.8: Query from mediator to wrapper

A cleverly designed wrapper could discover that it is possible to answer the 
mediator’s query by first obtaining from the Dealer-1 source a relation with all 
the red cars at that dealer:

RedAutos(serialNo, model, color, autoTrans, dealer)

To get this relation, the wrapper uses its template from Fig. 21.5, which handles 
queries that specify a color only. In effect, the wrapper acts as if it were given 
the query:

SELECT *
FROM AutosMed 
WHERE color = ’red’;

The wrapper can then create the relation RedAutos from Dealer l ’s database 
by using the template of Fig. 21.5 with $c =  ’r e d ’. Next, the wrapper joins 
RedAutos with itself, and performs the necessary selection, to get the relation 
asked for by the query of Fig. 21.8. The work performed by the wrapper for 
this step is shown in Fig. 21.9. □

21.3.5 Exercises for Section 21.3
Exercise 21.3 .1 : In Fig. 21.5 we saw a simple wrapper template that trans
lated queries from the mediator for cars of a given color into queries at the dealer 
with relation Cars. Suppose that the color codes used by the mediator in its 
schema were different from the color codes used at this dealer, and there was
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SELECT DISTINCT Al.model, Al.dealer 
FROM RedAutos Al, RedAutos A2 
WHERE Al.model = A2.model AND 

Al.autoTrans = ’no’ AND 
A2.autoTrans = ’yes’;

Figure 21.9: Query performed at the wrapper (or mediator) to complete the 
answer to the query of Fig. 21.8

a relation G toL(globalC olor, localC olor) that translated between the two 
sets of codes. Rewrite the template so the correct query would be generated.

E xercise 21.3.2: In Exercise 21.2.1 we spoke of two computer companies, 
A  and B,  that used different schemas for information about their products. 
Suppose we have a mediator with schema

PCMed(manf, speed, mem, disk, screen)

with the intuitive meaning that a tuple gives the manufacturer (A or B), pro
cessor speed, main-memory size, hard-disk size, and screen size for one of the 
systems you could buy from that company. Write wrapper templates for the 
following types of queries. Note that you need to write two templates for each 
query, one for each of the manufacturers.

a) Given a speed, find the tuples with that speed.

b) Given a screen size, find the tuples with that size.

c) Given memory and disk sizes, find the matching tuples.

Exercise 21.3.3: Suppose you had the wrapper templates described in Ex
ercise 21.3.2 available in the wrappers at each of the two sources (computer 
manufacturers). How could the mediator use these capabilities of the wrappers 
to answer the following queries?

a) Find the manufacturer, memory size, and screen size of all systems with 
a 3.1 gigahertz speed and a 120 gigabyte disk.

! b) Find the maximum amount of hard disk available on a system with a 2.8 
gigahertz processor.

c) Find all the systems with 512M memory and a screen size (in inches) that 
exceeds the disk size (in gigabytes).



1056 CHAPTER 21. INFORMATION INTEGRATION

21.4 Capability-Based Optimization
In Section 16.5 we introduced the idea of cost-based query optimization. A 
typical DBMS estimates the cost of each query plan and picks what it believes 
to be the best. When a mediator is given a query to answer, it often has little 
knowledge of how long its sources will take to answer the queries it sends them. 
Furthermore, many sources are not SQL databases, and often they will answer 
only a small subset of the kinds of queries that the mediator might like to pose. 
As a result, optimization of mediator queries cannot rely on cost measures alone 
to select a query plan.

Optimization by a mediator usually follows the simpler strategy known as 
capability-based optimization. The central issue is not what a query plan costs, 
but whether the plan can be executed at all. Only among plans found to be 
executable (“feasible”) do we try to estimate costs.

21.4.1 The Problem of Limited Source Capabilities
Today, many useful sources have only Web-based interfaces, even if they are, 
behind the scenes, an ordinary database. Web sources usually permit query
ing only through a query form, which does not accept arbitrary SQL queries. 
Rather, we are invited to enter values for certain attributes and can receive a 
response that gives values for other attributes.

E xam ple  21 .9 : The Amazon.com interface allows us to query about books 
in many different ways. We can specify an author and get all their books, or 
we can specify a book title and receive information about that book. We can 
specify keywords and get books that match the keywords. However, there is 
also information we can receive in answers but cannot specify. For instance, 
Amazon ranks books by sales, but we cannot ask “give me the top 10 sellers.” 
Moreover, we cannot ask questions that are too general. For instance, the query:

SELECT * FROM Books;

“tell me everything you know about books,” cannot be asked or answered 
through the Amazon Web interface, although it could be answered behind the 
scenes if we were able to access the Amazon database directly. □

There are a number of other reasons why a source may limit the ways in 
which queries can be asked. Among them are:

1. Many of the earliest data sources did not use a DBMS, surely not a 
relational DBMS that supports SQL queries. These systems were designed 
to be queried in certain very specific ways only.

2. For reasons of security, a source may limit the kinds of queries that it 
will accept. Amazon’s unwillingness to answer the query “tell me about
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all your books” is a rudimentary example; it protects against a rival ex
ploiting the Amazon database. As another instance, a medical database 
may answer queries about averages, but won’t disclose the details of a 
particular patient’s medical history.

3. Indexes on large databases may make certain kinds of queries feasible, 
while others are too expensive to execute. For instance, if a books data
base were relational, and one of the attributes were author, then without 
an index on that attribute, it would be infeasible to answer queries that 
specified only an author.3

21.4.2 A Notation for Describing Source Capabilities
If data is relational, or may be thought of as relational, then we can describe the 
legal forms of queries by adornments. These are sequences of codes that repre
sent the requirements for the attributes of the relation, in their standard order. 
The codes we shall use for adornments reflect the most common capabilities of 
sources. They are:

1. /  (free) means that the attribute can be specified or not, as we choose.

2. b (bound) means that we must specify a value for the attribute, but any 
value is allowed.

3. u (unspecified) means that we are not permitted to specify a value for the 
attribute.

4. c[S] (choice from set S) means that a value must be specified, and that 
value must be one of the values in the finite set S. This option corre
sponds, for instance, to values that are specified from a pulldown menu 
in a Web interface.

5. o[S] (optional, from set S) means that we either do not specify a value, 
or we specify one of the values in the finite set S.

In addition, we place a prime (e.g., / ')  on a code to indicate that the attribute 
is not part of the output of the query.

A capabilities specification for a source is a set of adornments. The intent is 
that in order to query the source successfully, the query must match one of the 
adornments in its capabilities specification. Note that, if an adornment has free 
or optional components, then queries with different sets of attributes specified 
may match that adornment.

3We should be aware, however, that information like Amazon’s about products is not 
accessed as if it were a relational database. Rather, the information about books is stored 
as text, with an inverted index, as we discussed in Section 14.1.8. Thus, queries about any 
aspect of books — authors, titles, words in titles, and perhaps words in descriptions of the 
book — are supported by this index.
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E xam ple 21.10: Suppose we have two sources like those of the two dealers in 
Example 21.4. Dealer 1 is a source of data in the form:

C ars(se ria lN o , model, c o lo r , au toT rans, navi)

Note that in the original, we suggested relation Cars could have additional 
attributes representing options, but for simplicity in this example, let us limit 
our thinking to automatic transmissions and navigation systems only. Here are 
two possible ways that Dealer 1 might allow this data to be queried:

1. The user specifies a serial number. All the information about the car with 
that serial number (i.e., the other four attributes) is produced as output. 
The adornment for this query form is b'uuuu. That is, the first attribute, 
seria lN o  must be specified and is not part of the output. The other 
attributes must not be specified and are part of the output.

2. The user specifies a model and color, and perhaps whether or not auto
matic transmission and navigation system are wanted. All five attributes 
are printed for all matching cars. An appropriate adornment is

ubbo[yes, no]o[yes, no]

This adornment says we must not specify the serial number; we must 
specify a model and color, but are allowed to give any possible value in 
these fields. Also, we may, if we wish, specify whether we want automatic 
transmission and/or a navigation system, but must do so by using only 
the values “yes” and “no” in those fields.

□

21.4.3 Capability-Based Query-Plan Selection
Given a query at the mediator, a capability-based query optimizer first con
siders what queries it can ask at the sources to help answer the query. If 
we imagine those queries asked and answered, then we have bindings for some 
more attributes, and these bindings may make some more queries at the sources 
possible. We repeat this process until either:

1. We have asked enough queries at the sources to resolve all the conditions 
of the mediator query, and therefore we may answer that query. Such a 
plan is called feasible.

2. We can construct no more valid forms of source queries, yet we still cannot 
answer the mediator query, in which case the mediator must give up; it 
has been given an impossible query.
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W hat Do Adornments Guarantee?

It would be wonderful if a source that supported queries matching a given 
adornment would return all possible answers to the query. However, 
sources normally have only a subset of the possible answers to a query. 
For instance, Amazon does not stock every book that has ever been writ
ten, and the two dealers of our running automobiles example each have 
distinct sets of cars in their database. Thus, a more proper interpretation 
of an adornment is: “I will answer a query in the form described by this 
adornment, and every answer I give will be a true answer, but I do not 
guarantee to provide all true answers.” An important consequence of this 
state of affairs is that if we want all available tuples for a relation R, then 
we must query every source that might contribute such tuples.

The simplest form of mediator query for which we need to apply the above 
strategy is a join of relations, each of which is available, with certain adorn
ments, at one or more sources. If so, then the search strategy is to try to get 
tuples for each relation in the join, by providing enough argument bindings that 
some source allows a query about that relation to be asked and answered. A 
simple example will illustrate the point.

E xam ple 21.11: Let us suppose we have sources like the relations of Dealer 2 
in Example 21.4:

Autos(serial, model, color)
Options(serial, option)

Suppose that ubf is the sole adornment for Autos, while Options has two adorn
ments, bu and uc[autoTrans, navi], representing two different kinds of queries 
that we can ask at that source. Let the query be “find the serial numbers and 
colors of Gobi models with a navigation system.”

Here are three different query plans that the mediator must consider:

1. Specifying that the model is Gobi, query Autos and get the serial numbers 
and colors of all Gobis. Then, using the bu adornment for Options, for 
each such serial number, find the options for that car and filter to make 
sure it has a navigation system.

2. Specifying the navigation-system option, query Options using the

uc[autoTrans, navi]

adornment and get all the serial numbers for cars with a navigation sys
tem. Then query Autos as in (1), to get all the serial numbers and colors 
of Gobis, and intersect the two sets of serial numbers.
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3. Query Options as in (2) to get the serial numbers for cars with a naviga
tion system. Then use these serial numbers to query Autos and see which 
of these cars are Gobis.

Either of the first two plans are acceptable. However, the third plan is one 
of several plans that will not work; the system does not have the capability to 
execute this plan because the second part — the query to Autos — does not 
have a matching adornment. □

21.4.4 Adding Cost-Based Optimization
The mediator’s query optimizer is not done when the capabilities of the sources 
are examined. Having found the feasible plans, it must choose among them. 
Making an intelligent, cost-based optimization requires that the mediator know 
a great deal about the costs of the queries involved. Since the sources are usually 
independent of the mediator, it is difficult to estimate the cost. For instance, 
a source may take less time during periods when it is lightly loaded, but when 
are those periods? Long-term observation by the mediator is necessary for the 
mediator even to guess what the response time might be.

In Example 21.11, we might simply count the number of queries to sources 
that must be issued. Plan (2) uses only two source queries, while plan (1) uses 
one plus the number of Gobis found in the Autos relation. Thus, it appears 
that plan (2) has lower cost. On the other hand, if the queries of Options, one 
with each serial number, could be combined into one query, then plan (1) might 
turn out to be the superior choice.

21.4.5 Exercises for Section 21.4
E xercise 21.4 .1 : Suppose each relation from Exercise 21.2.1:

Computers(number, proc, speed, memory, hd)
Monitors(number, screen, maxResX, maxResY)

is an information source. Using the notation from Section 21.4.2, write one or 
more adornments that express the following capabilities:

a) We can query for computers having a given processor, which must be one 
of “P-IV,” “G5,” or “Athlon,” a given speed, and (optionally) a given 
amount of memory.

b) We can query for computers having any specified hard-disk size and/or 
any given memory size.

c) We can query for monitors if we specify either the number of the monitor, 
the screen size, or the maximum resolution in both dimensions.



21.5. OPTIMIZING MEDIATOR QUERIES 1061

d) We can query for monitors if we specify the screen size, which must be 
either 19, 22, 24, or 30 inches. All attributes except the screen size are 
returned.

! e) We can query for computers if we specify any two of the processor type, 
processor speed, memory size, or disk size.

E xercise 21.4.2: Suppose we have the two sources of Exercise 21.4.1, but 
understand the attribute number of both relations to refer to the number of a 
complete system, some of whose attributes are found in one source and some in 
the other. Suppose also that the adornments describing access to the Computers 
relation are buuuu, ubbff, and uuubb, while the adornments for Monitors are 
bfff and ubbb. Tell what plans are feasible for the following queries (exclude any 
plans that are obviously more expensive than other plans on your list):

a) Find the systems with 512 megabytes of memory, an 80-gigabyte hard 
disk, and a 22-inch monitor.

b) Find the systems with a Pentium-IV processor running at 3.0 gigahertz 
with a 22-inch monitor and a maximum resolution of 1600-by-1050.

! c) Find all systems with a G5 processor running at 1.8 gigahertz, with 2 
gigabytes of memory, a 300 gigabyte disk, and a 19-inch monitor.

21.5 Optimizing M ediator Queries
In this section, we shall give a greedy algorithm for answering queries at a 
mediator. This algorithm, called chain, always finds a way to answer the query 
by sending a sequence of requests to its sources, provided at least one solution 
exists. The class of queries that can be handled is those that involve joins 
of relations that come from the sources, followed by an optional selection and 
optional projection onto output attributes. This class of queries is exactly what 
can be expressed as Datalog rules (Section 5.3).

21.5.1 Simplified Adornment Notation
The Chain Algorithm concerns itself with Datalog rules and with whether prior 
source requests have provided bindings for any of the variables in the body of 
the rule. Since we care only about whether we have found all possible constants 
for a variable, we can limit ourselves, in the query at the mediator (although 
not at the sources), to the b (bound) and /  (free) adornments. That is, a c[5] 
adornment for an attribute of a source relation can be used as soon as we know 
all possible values of interest for that attribute (i.e., the corresponding position 
in the mediator query has a b adornment). Note that the source will not provide 
matches for the values outside S, so there is no point in asking questions about 
these values. The optional adornment o[5] can be treated as free, since there is
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no need to have a binding for the corresponding attribute in the query at the 
mediator (although we could). Likewise, adornment u  can be treated as free, 
since although we cannot then specify a value for the attribute at the source, we 
can have, or not have, a binding for the corresponding variable at the mediator.

E xam ple 21.12: Let us use the same query and source relations as in Exam
ple 21.11, but with different capabilities at the sources. In what follows we shall 
use superscripts on the predicate or relation names to show the adornment or 
permitted set of adornments. In this example, the permitted adornments for 
the two source relations are:

Autos6""(serial, model, color)
Options“ctautoTra“B■ navi)(serial, option)

That is, we can only access Options by providing a binding “autoTrans” or 
“navi” for the o p tion  attribute, and we can only access Autos by providing a 
binding for the s e r i a l  attribute.

The query “find the serial numbers and colors of Gobi models with a navi
gation system” is expressed in Datalog by:

Answer(s,c) «— Autos-^(s,"Gobi",c) AND Options^6(s,"navi")
Here, notice the adornments on the subgoals of the body. These, at the moment, 
are commentaries on what arguments of each subgoal are bound to a set of 
constants. Initially, only the middle argument of the Autos subgoal is bound 
(to the set containing only the constant “Gobi”) and the second argument of 
the Options subgoal is bound to the set containing only “navi.” We shall see 
shortly that as we use the sources to find tuples that match one or another 
subgoal, we get bindings for some of the variables in the Datalog rule, and thus 
change some of the / ’s to Vs in the adornments. □

21.5.2 Obtaining Answers for Subgoals
We now need to formalize the comments made at the beginning of Section 21.5.1 
about when a subgoal with some of its arguments bound can be answered by a 
source query. Suppose we have a subgoal R XlX2'"Xn(ai,a 2 , ■ ■ ■ , an), where each 
Xi is either b or / .  R  is a relation that can be queried at some source, and 
which has some set of adornments.

Suppose j/i ?/2 ■ • 'Un is one of the adornments for R  at its source. Each yi 
can be any of b, f ,  u, c[S] or o[S] for any set S. Then it is possible to obtain a 
relation for the subgoal provided, for each i = 1 ,2 ,. ..  , n, provided:

• If j/j is b or of the form cfS1], then x* =  b.

• If Xi =  / ,  then yi is not output restricted (i.e., not primed).

Note that if y% is any of / ,  u, or o[S], then Xi can be either b or / .  We say that 
the adornment on the subgoal matches the adornment at the source.
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E xam ple 21.13: Suppose the subgoal in question is R hbB (p ,q ,r ,s ), and the 
adornments for R  at its source are ati — fc[S-i]uo[S2 ] and a 2 =  c[5s]6/c[54]. 
Then bbff matches adornment a i , so we may use a j to get the relation for 
subgoal R(p,q,r,s).  That is, a x has no b’s and only one c, in the second 
position. Since the adornment of the subgoal has b in the second position, we 
know that there is a set of constants to which the variable q (the variable in the 
second argument of the subgoal) has been bound. For each of those constants 
that are a member of the set Si we can issue a query to the source for R, 
using that constant as the binding for the second argument. We do not provide 
bindings for any other argument, even though c*i allows us to provide a binding 
for the first and/or fourth argument as well.

However, bbff does not match a 2. The reason is that a 2 has cfS-j] in the 
fourth position, while bbff has /  in that position. If we were to try to obtain R  
using a 2, we would have to provide a binding for the fourth argument, which 
means that variable s in R(p, q, r, s) would have to be bound to a set of con
stants. But we know that is not the case, or else the adornment on the subgoal 
would have had b in the fourth position. □

21.5.3 The Chain Algorithm
The Chain Algorithm is a greedy approach to selecting an order in which we 
obtain relations for each of the subgoals of a Datalog rule. It is not guaranteed 
to provide the most efficient solution, but it will provide a solution whenever 
one exists, and in practice, it is very likely to obtain the most efficient solution. 
The algorithm maintains two kinds of information:

• An adornment is maintained for each subgoal. Initially, the adornment 
for a subgoal has b if and only if the mediator query provides a constant 
binding for the corresponding argument of that subgoal, as for instance, 
the query in Example 21.12 provided bindings for the second arguments of 
both the Autos and Options subgoals. In all other places, the adornment 
has / ’s.

• A relation X  that is (a projection of) the join of the relations for all 
the subgoals that have been resolved. We resolve a subgoal when the 
adornment for the subgoal matches one of the adornments at the source 
for this subgoal, and we have extracted from the source all possible tuples 
for that subgoal. Initially, since no subgoals have been resolved, X  is 
a relation over no attributes, containing just the empty tuple (i.e., the 
tuple with zero components). Note that for empty X  and any relation 
R, X  ix R = R; i.e., X  is initially the identity relation for the natural- 
join operation. As the algorithm progresses, X  will have attributes that 
are variables of the rule — those variables that correspond to b’s in the 
adornments of the subgoals in which they appear.

The core of the Chain Algorithm is as follows. After initializing relation X  
and the adornments of the subgoals as above, we repeatedly select a subgoal
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that can be resolved. Let R a(ai,a,2 , . . .  , an) be the subgoal to be resolved. We 
do so by:

1. Wherever a  has a b, we shall find that either the corresponding argument 
of R  is a constant rather than a variable, or it is one of the variables 
in the schema of the relation X .  Project X  onto those of its variables 
that appear in subgoal R.  Each tuple in the projection, together with 
constants in the subgoal R, if any, provide sufficient bindings to use one 
of the adornments for the source relation R  — whichever adornment a  
matches.

2. Issue a query to the source for each tuple t in the projection of X .  We 
construct the query as follows, depending on the source adornment [3 that 
a  matches.

(a) If a component of is b, then the corresponding component of a  is 
too, and we can use the corresponding component of t (or a constant 
in the subgoal) to provide the necessary binding for the source query.

(b) If a component of /3 is c[S], then again the corresponding component 
of a  will be b, and we can obtain a constant from the subgoal or 
the tuple t. However, if that constant is not in S, then there is no 
chance the source can produce any tuples that match t, so we do not 
generate any source query for t.

(c) If a component of /3 is / ,  then produce a constant value for this 
component in the source query if we can; otherwise do not provide 
a value for this component in the source query. Note that we can 
provide a constant exactly when the corresponding component of a  
is b.

(d) If a component of /3 is u, provide no binding for this component, 
even if the corresponding component of a  is b.

(e) If a component of (3 is o[S], treat this component as if it were /  in 
the case that the corresponding component of a  is / ,  and as c[S] if 
the corresponding component of a  is b.

For each tuple returned, extend the tuple so it has one component for 
each argument of the subgoal (i.e., n  components). Note that the source 
will return every component of R  that is not output restricted, so the 
only components that are not present have b in the adornment a. Thus, 
the returned tuples can be padded by using either the constant from the 
subgoal, or the constant from the tuple in the projection of X .  The union 
of all the responses is the relation R  for the subgoal R(ai, a2, . . .  , an).

3. Every variable among a \,a 2, . . .  ,an is now bound. For each subgoal that 
has not yet been resolved, change its adornment so any position holding 
one of these variables is now bound (b).



21.5. OPTIMIZING MEDIATOR QUERIES 1065

4. Replace X  by X  tx tts(R), where S  is all the variables among

5. Project out of X  all components that correspond to variables that do not 
appear in the head or in any unresolved subgoal. These components can 
never be useful in what follows.

The complete Chain Algorithm, then, consists of the initialization described 
above, followed by as many subgoal-resolution steps as we can manage. If 
we succeed in resolving every subgoal, then relation X  will be the answer to 
the query. If at some point, there are unresolved subgoals, yet none can be 
resolved, then the algorithm fails. In that case, there can be no other sequence 
of resolution steps that answers the query.

E xam ple 21.14: Consider the mediator query

Q: Answer(c) «- R6/(l,a) AND S^(a,b) AND T^(b,c)

There are three sources that provide answers to queries about R, S, and T, 
respectively. The contents of these relations at the sources and the only adorn
ments supported by these sources are shown in Fig. 21.10.

Relation R

Data

Adornment bf

w X X y y z

1 2 2 4 4 6
1 3 3 5 5 7
1 4 5 8

c'[2,3 ,5]/ bu

Figure 21.10: Data for Example 21.14

Initially, the adornments on the subgoals are as shown in the query Q, and 
the relation X  that we construct initially contains only the empty tuple. Since 
subgoals S  and T  have f f  adornments, but the adornments at the corresponding 
sources each have a component with b or c, neither of these subgoals can be 
resolved. Fortunately, the first subgoal, i?(l,a), can be resolved, since the bf  
adornment at the corresponding source is matched by the adornment of the 
subgoal. Thus, we send the source for R(w,x)  a query with w =  1, and the 
response is the set of three tuples shown in the first column of Fig. 21.10.

We next project the subgoal’s relation onto its second component, since only 
the second component of R (l,a )  is a variable. That gives us the relation
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a
~ 2 ~

3
4

This relation is joined with X ,  which currently has no attributes and only the 
empty tuple. The result is that X  becomes the relation above. Since a is now 
bound, we change the adornment on the S  subgoal from f f to  bf.

At this point, the second subgoal, S bf(a,b), can be resolved. We obtain 
bindings for the first component by projecting X  onto a; the result is X  itself. 
That is, we can go to the source for S(x ,y)  with bindings 2, 3, and 4 for x. We 
do not need bindings for y, since the second component of the adornment for 
the source is / .  The c'[2,3,5] code for x  says that we can give the source the 
value 2, 3, or 5 for the first argument. Since there is a prime on the c, we know 
that only the corresponding y value(s) will be returned, not the value of x  that 
we supplied in the request. We care about values 2, 3, and 4, but 4 is not a 
possible value at the source for 5 , so we never ask about it.

When we ask about x = 2, we get one response: y — 4. We pad this response 
with the value 2 we supplied to conclude that (2,4) is a tuple in the relation for 
the 5  subgoal. Similarly, when we ask about x  =  3, we get y — 5 as the only 
response and we add (3,5) to the set of tuples constructed for the S  subgoal. 
There are no more requests to ask at the source for S, so we conclude that the 
relation for the S  subgoal is

a b
2 4
3 5

When we join this relation with the previous value of X ,  the result is just 
the relation above. However, variable a now appears neither in the head nor in 
any unresolved subgoal. Thus, we project it out, so X  becomes

b
~ 4 ~

5

Since b is now bound, we change the adornment on the T  subgoal, so it 
becomes T bf(b,c). Now this last subgoal can be resolved, which we do by 
sending requests to the source for T(y, z) with y — 4 and y =  5. The responses 
we get back give us the following relation for the T  subgoal:

b c
4 6
5 7 
5 8
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We join it with the relation for X  above, and then project onto the c attribute to 
get the relation for the head. That is, the answer to the query at the mediator 
is {(6), (7), (8)}. □

21.5.4 Incorporating Union Views at the Mediator
In our description of the Chain Algorithm, we assumed that each predicate 
in the Datalog query at the mediator was a “view” of data at one particular 
source. However, it is common for there to be several sources that can contribute 
tuples to the relation for the predicate. How we construct the relation for such 
a predicate depends on how we expect the sources for the predicate to interact.

The easy case is where we expect the sources for a predicate to contain 
replicated information. In that case, we can turn to any one of the sources to 
get the relation for a predicate. This case thus looks exactly like the case where 
there is a single source for a predicate, but there may be several adornments 
that allows us to query that source.

The more complex case is when the sources each contribute some tuples to 
the predicate that the other sources may not contribute. In that case, we should 
consult all the sources for the predicate. However, there is still a policy choice 
to be made. Either we can refuse to answer the query unless we can consult all 
the sources, or we can make best efforts to return all the answers to the query 
that we can obtain by combinations of sources.

C onsu lt All Sources

If we must consult all sources to consider a subgoal resolved, then we can only 
resolve a subgoal when each source for its relation has an adornment matched 
by the current adornment of the subgoal. This rule is a small modification of 
the Chain Algorithm. However, not only does it make queries harder to answer, 
it makes queries impossible to answer when any source is “down,” even if the 
Chain Algorithm provides a feasible ordering in which to resolve the subgoals. 
Thus, as the number of sources grows, this policy becomes progressively less 
practical.

B est E fforts

Under this assumption, we only need one source with a matching adornment to 
resolve a subgoal. However, we need to modify the chain algorithm to revisit 
each subgoal when that subgoal has new bound arguments. We may find that 
some source that could not be matched is now matched by the subgoal with its 
new adornment.

E xam ple 21.15: Consider the mediator query

answer (a,c) <r- R^(a,b) AND S^Cb.c)
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Suppose also that R  has two sources, one described by adornment f f  and the 
other by fb. Likewise, S  has two sources, described by i f  and bf. We could start 
by using either source with adornment ff, suppose we start with R ’s source. We 
query this source and get some tuples for R.

Now, we have some bindings, but perhaps not all, for the variable b. We can 
now use both sources for S  to obtain tuples and the relation for 5  can be set 
to their union. At this point, we can project the relation for S  onto variable b 
and get some 6-values. These can be used to query the second source for R,  the 
one with adornment fb. In this manner, we can get some additional il-tuples. 
It is only at this point that we can join the relations for R  and S,  and project 
onto a and c to get the best-effort answer to the query. □

21.5.5 Exercises for Section 21.5
E xercise 21.5 .1 : Apply the Chain Algorithm to the mediator query

Answer(a,e) «- E(a,b,c) AND S(c,d) AND T(b,d,e)
with the following adornments at the sources for R, S,  and T. If there is more 
than one adornment for a predicate, either may be used.

a) R f f f ,  S b*, T bf f ,  T W .

b) R f f b, S f b, T f bf ,  T bf f .

c) R W ,  S f b, S bf, Tf f f .

In each case:

v i. Indicate all possible orders in which the subgoals can be resolved.

ii. Does the Chain Algorithm produce an answer to the query?

Hi. Give the sequence of relational-algebra operations needed to compute the 
intermediate relation X  at each step and the result of the query.

! Exercise 21 .5 .2 : Suppose that for the mediator query of Exercise 21.5.1, each 
predicate is a view defined by the union of two sources. For each predicate, one 
of the sources has an all-/ adornment. The other sources have the following 
adornments: R f bb, S bf , and T b̂ . Find a best-effort sequence of source requests 
that will produce all the answers to the mediator query that can be obtained 
from these sources.

Exercise 21 .5 .3 : Describe all the source adornments that are matched by a 
subgoal with adornment R bf .

!! E xercise 21.5 .4 : Prove that if there is any sequence of subgoal resolutions 
that will resolve all subgoals, then the Chain Algorithm will find one. Hint'. 
Notice that if a subgoal can be resolved at a certain step, then if it is not 
selected for resolution, it can still be resolved at the next step.
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21.6 Local-as-View Mediators
The mediators discussed so far are called global-as-view (GAV) mediators. The 
global data (i.e., the data available for querying at the mediator) is like a view; 
it doesn’t exist physically, but pieces of it are constructed by the mediator, as 
needed, by asking queries of the sources.

In this section, we introduce another approach to connecting sources with 
a mediator. In a local-as-view (LAV) mediator, we define global predicates at 
the mediator, but we do not define these predicates as views of the source data. 
Rather, we define, for each source, one or more expressions involving the global 
predicates that describe the tuples that the source is able to produce. Queries 
are answered at the mediator by discovering all possible ways to construct the 
query using the views provided by the sources.

21.6.1 Motivation for LAV Mediators
In many applications, GAV mediators are easy to construct. You decide on 
the global predicates or relations that the mediator will support, and for each 
source, you consider which predicates it can support, and how it can be queried. 
That is, you determine the set of adornments for each predicate at each source. 
For instance, in our Aardvark Automobiles example, if we decide we want Autos 
and Options predicates at the mediator, we find a way to query each dealer’s 
source for those concepts and let the Autos and Options predicates at the 
mediator represent the union of what the sources provide. Whenever we need 
one or both of those predicates to answer a mediator query, we make requests 
of each of the sources to obtain their data.

However, there are situations where the relationship between what we want 
to provide to users of the mediator and what the sources provide is more subtle. 
We shall look at an example where the mediator is intended to provide a single 
predicate Par(c,p), meaning that p  is a parent of c. As with all mediators, this 
predicate represents an abstract concept — in this case, the set of all child- 
parent facts that could ever exist — and the sources will provide information 
about whatever child-parent facts they know. Even put together, the sources 
probably do not know about everyone in the world, let along everyone who ever 
lived.

Life would be simple if each source held some child-parent information and 
nothing else that was relevant to the mediator. Then, all we would have to 
do is determine how to query each one for whatever facts they could provide. 
However, suppose we have a database maintained by the Association of Grand
parents that doesn’t provide any child-parent facts at all, but provides child- 
grandparent facts. We can never use this source to help answer a query about 
someone’s parents or children, but we can use it to help answer a mediator 
query that uses the Pax predicate several times to ask for the grandparents 
of an individual, or their great-grandparents, or another complex relationship 
among people.



1070 CHAPTER 21. INFORMATION INTEGRATION

GAV mediators do not allow us to use a grandparents source at all, if our 
goal is to produce a Par relation. Producing both a parent and a grandparent 
predicate at the mediator is possible, but it might be confusing to the user and 
would require us to figure out how to extract grandparents from all sources, 
including those that only allow queries for child-parent facts. However, LAV 
mediators allow us to say that a certain source provides grandparent facts. 
Moreover, the technology associated with LAV mediators lets us discover how 
and when to use that source in a given query.

21.6.2 Terminology for LAV Mediation
LAV mediators are always defined using a form of logic that serves as the 
language for defining views. In our presentation, we shall use Datalog. Both 
the queries at the mediator and the queries (view definitions) that describe the 
sources will be single Datalog rules. A query that is a single Datalog rule is 
often called a conjunctive query, and we shall use the term here.

A LAV mediator has a set of global predicates, which are used as the subgoals 
of mediator queries. There are other conjunctive queries that define views; i.e., 
their heads each have a unique view predicate that is the name of a view. Each 
view definition has a body consisting of global predicates and is associated with 
a particular source, from which that view can be constructed. We assume that 
each view can be constructed with an all-free adornment. If capabilities are 
limited, we can use the chain algorithm to decide whether solutions using the 
views are feasible.

Suppose we are given a conjunctive query Q whose subgoals are predicates 
defined at the mediator. We need to find all solutions — conjunctive queries 
whose bodies are composed of view predicates, but that can be “expanded” 
to produce a conjunctive query involving the global predicates. Moreover, this 
conjunctive query must produce only tuples that are also produced by Q. We 
say such expansions are contained in Q. An example may help with these tricky 
concepts, after which we shall define “expansion” formally.

E xam ple  21.16: Suppose there is one global predicate Par(c,p) meaning that 
p  is a parent of c. There is one source that produces some of the possible parent 
facts; its view is defined by the conjunctive query

Vi (c,p) «- Par(c,p)
There is another source that produces some grandparent facts; its view is defined 
by the conjunctive query

V2Cc,g) <- Par(c,p) AND Par(p,g)
Our query at the mediator will ask for great-grandparent facts that can be 

obtained from the sources. That is, the mediator query is

Q(w,z) Par(w,x) AND Par(x,y) AND Par(y,z)
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How might we answer this query? The source view Vi contributes to the parent 
predicate directly, so we can use it three times in the obvious solution

Q(w,z) «-Vi(w,x)  AND Vi(x,y)  AND Vi(y ,z )

There are, however, other solutions that may produce additional answers, and 
thus must be part of the logical query plan for answering the query. In partic
ular, we can use the view V2 to get grandparent facts, some of which may not 
be inferrable by using two parent facts from Vi. We can use Vi to make a step 
of one generation, and then use V2 to make a step of two generations, as in the 
solution

Q(w,z) «— Vi(w,x) AND V2(x ,z )

Or, we can use V2 first, followed by Vi, as

Q(w,z) V2(w,y) AND Vx(y ,z )

It turns out these are the only solutions we need; their union is all the great- 
grandparent facts that we can produce from the sources Vi and V2. There is 
still a great deal to explain. Why are these solutions guaranteed to produce 
only answers to the query? How do we tell whether a solution is part of the 
answer to a query? How do we find all the useful solutions to a query? We 
shall answer each of these questions in the next sections. □

21.6.3 Expanding Solutions
Given a query Q, a solution S  has a body whose subgoals are views, and each 
view V  is defined by a conjunctive query with that view as the head. We 
can substitute the body of V’s conjunctive query for a subgoal in S  that uses 
predicate V, as long as we are careful not to confuse variable names from one 
body with those of another. Once we substitute rule bodies for the views that 
are in S, we have a body that consists of global predicates only. The expanded 
solution can be compared with Q, to see if the results produced by the solution
S  are guaranteed to be answers to the query Q, in a manner we shall discuss 
later.

However, first we must be clear about the expansion algorithm. Suppose 
that there is a solution S  that has a subgoal V(a i,a 2 , . . .  ,a„). Here the at s 
can be any variables or constants, and it is possible that two or more of the a*’s 
are actually the same variable. Let the definition of view V  be of the form

V(bi, &2> • • • ! bn) •<— B

where B  represents the entire body. We may assume that the V s are dis
tinct variables, since there is no need to have two identical components in a 
view, nor is there a need for components that are constant. We can replace 
V (a i,a2, . .. , a„) in solution S  by a version of body B  that has all the subgoals 
of B, but with variables possibly altered. The rules for altering the variables of 
B  are:
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1. First, identify the local variables o iB  — those variables that appear in the 
body, but not in the head. Note that, within a conjunctive query, a local 
variable can be replaced by any other variable, as long as the replacing 
variable does not appear elsewhere in the conjunctive query. The idea is 
the same as substituting different names for local variables in a program.

2. If there are any local variables of B  that appear in B  or in S,  replace each 
one by a distinct new variable that appears nowhere in the rule for V  or 
in S.

3. In the body B,  replace each bi by a*, for i = 1 ,2 , . . .  , n.

E xam ple 2 1 .17 : Suppose we have the view definition

V (a ,b ,c ,d )  < -  E (a , b , x , y )  AND F ( x , y , c , d )

Suppose further that some solution S  has in its body a subgoal V(x ,y ,  1, x).
The local variables in the definition of V  are x  and y, since these do not 

appear in the head. We need to change them both, because they appear in the 
subgoal for which we are substituting. Suppose e and /  are variable names that 
appear nowhere in S. We can rewrite the body of the rule for V  as

V ( a ,b ,c ,d )  <— E ( a , b , e , f )  AND F ( e , f , c , d )

Next, we must substitute the arguments of the V  subgoal for a, b, c, and 
d. The correspondence is that a and d become x, b becomes y, and c be
comes the constant 1. We therefore substitute for V (x ,y ,  1, x) the two subgoals 
E { x ,y ,e , f )  and F (e , f ,  l ,x) .  □

The expansion process is essentially the substitution described above for 
each subgoal of the solution S. There is one extra caution of which we must be 
aware, however. Since we may be substituting for the local variables of several 
view definitions, and may in fact need to create several versions of one view 
definition (if S  has several subgoals with the same view predicate), we must 
make sure that in the substitution for each subgoal of S,  we use unique local 
variables — ones that do not appear in any other substitution or in S  itself. 
Only then can we be sure that when we do the expansion we do not use the 
same name for two variables that should be distinct.

E xam ple 21 .18: Let us resume the discussion we began in Example 21.16, 
where we had view definitions

Vi(c ,p)  < -  Par(c,p)
V2 ( c ,g )  «- Par(c ,p)  AND Par(p,g)

One of the proposed solutions S  is

Q(w,z) Vi(w,x) AND V2(x , z )
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Let us expand this solution. The first subgoal, with predicate V\ is easy to 
expand, because the rule for V\ has no local variables. We substitute w and x  
for c and p  respectively, so the body of the rule for V\ becomes Par(w, x). This 
subgoal will be substituted in S  for Vi(w,x).

We must also substitute for the V2 subgoal. Its rule has local variable p. 
However, since p  does not appear in S, nor has it been used as a local variable 
in another substitution, we are free to leave p as it is. We therefore have only 
to substitute x  and z  for the variables c and g , respectively. The two subgoals 
in the rule for V2  become Par(x,p ) and Par(p,z). When we substitute these 
two subgoals for V2  (x, z) in S, we have constructed the complete expansion of 
S:

Q(w,z) «— Par(w,x) AND Par(x,p)  AND Par(p,z)

Notice that this expansion is practically identical to the query in Exam
ple 21.16. The only difference is that the query uses local variable y where the 
expansion uses p. Since the names of local variables do not affect the result, it 
appears that the solution S  is the answer to the query. However, that is not 
quite right. The query is looking for all great-grandparent facts, and all the 
expansion says is that the solution S  provides only facts that answer the query.
S  might not produce all possible answers. For example, the source of V2 might 
even be empty, in which case nothing is produced by solution S, even though 
another solution might produce some answers. □

21.6.4 Containment of Conjunctive Queries
In order for a conjunctive query S  to be a solution to the given mediator query 
Q, the expansion of S, say E, must produce only answers that Q produces, 
regardless of what relations are represented by the predicates in the bodies of 
E  and Q. If so, we say that E  C  Q.

There is an algorithm to tell whether E  C  Q; we shall see this test after 
introducing the following important concept. A containment mapping from Q 
to E  is a function r  from the variables of Q to the variables and constants of 
E, such that:

1. If x  is the «th argument of the head of Q, then t (x ) is the ith  argument 
of the head of E.

2. Add to r  the rule that r(c) =  c for any constant c. If P (x i,ar2, • • ■ , x n) 
is a subgoal of Q, then P (t (x 1), r(x2) , . . .  , t (x„)) is a subgoal of E.

E xam ple 21.19: Consider the following two conjunctive queries:

Qi- H(x,y) <r- A(x,z)  AND B(z ,y)
Q 2 : H(a,b) <- A(a,c ) AND B(d,b) AND A(a,d)
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We claim that Q2 QQ i-  In proof, we offer the following containment mapping: 
t (x ) = a, r(y) = b, and r(z) = d. Notice that when we apply this substitution, 
the head of Q\ becomes H(a, b), which is the head of Q2. The first subgoal of Q1 
becomes A(a, d), which is the third subgoal of Q2 . Likewise, the second subgoal 
of Q1 becomes the second subgoal of That proves there is a containment 
mapping from Q1 to Q 2 , and therefore Q2  Q Qi- Notice that no subgoal of Q\ 
maps to the first subgoal of Q2, but the containment-mapping definition does 
not require that there be one.

Surprisingly, there is also a containment mapping from Q2  to Q i, so the two 
conjunctive queries are in fact equivalent. That is, not only is one contained in 
the other, but on any relations A  and B,  they produce exactly the same set of 
tuples for the relation H. The containment mapping from Qi to Q 1 is p(a) — x, 
p(b) — y, and p(c) =  p(d) — z. Under this mapping, the head of Q2 becomes 
the head of Q1, the first and third subgoals of Q2 become the first subgoal of 
Q i , and the second subgoal of Q2  becomes the second subgoal of Q \.

While it may appear strange that two such different looking conjunctive 
queries are equivalent, the following is the intuition. Think of A  and B  as two 
different colored edges on a graph. Then Q1 asks for the pairs of nodes x  and 
y such that there is an A-edge from x  to some 2 and a B-edge from z to y. 
Q2  asks for the same thing, using its second and third subgoals respectively, 
although it calls x, y, and 2 by the names a, b, and d respectively. In addition, 
Q2  seems to have the added condition expressed by the first subgoal that there 
is an edge from node a to somewhere (node c). But we already know that there 
is an edge from a to somewhere, namely d. That is, we are always free to use 
the same node for c as we did for d, because there are no other constraints on 
c. □

E xam ple  21.20: Here are two queries similar, but not identical, to those of 
Example 21.19:

P i :  H(x,y) < -  A(x,z)  AND A(z,y)
P2: H(a,b) A(a ,c )  AND A(c,d) AND A(d,b)

Intuitively, if we think of A  as representing edges in a graph, then Pi asks for 
paths of length 2 and P2 asks for paths of length 3. We do not expect either to 
be contained in the other, and indeed the containment-mapping test confirms 
that fact.

Consider a possible containment mapping r  from Pi to P2. Because of the 
conditions on heads, we know r(x) = a and r(y) = b. To what does 2 map? 
Since we already know t (x ) =  a, the first subgoal A (x ,z)  can only map to 
A{a , c) of P-2 - That means r(z) must be c. However, since r(y) = b, the subgoal 
A(z, y) of Pi can only become A(d,b) in P2. That means t (z ) must be d. But 
2 can only map to one value; it cannot map to both c and d. We conclude that 
no containment mapping from Pi to P2 exists.

A similar argument shows that there is no containment mapping from P2 to 
P i . We leave it as an exercise. □



21.6. LOCAL-AS-VIEW MEDIATORS 1075

Complexity of the Containment-Mapping Test

It is NP-complete to decide whether there is a containment mapping from 
one conjunctive query to another. However, in practice, it is usually quite 
easy to decide whether a containment mapping exists. Conjunctive queries 
in practice have few subgoals and few variables. Moreover, for the class of 
conjunctive queries that have no more than two subgoals with the same 
predicate — a very common condition — there is a linear-time test for the 
existence of a containment mapping.

The importance of containment mappings is expressed by the following the
orem:

• If Q i and Qa are conjunctive queries, then Qa C Q\ if and only if there 
is a containment mapping from Q\ to Q2.

Notice that the containment mapping goes in the opposite direction from the 
containment; that is, the containment mapping is from the conjunctive query 
that produces the larger set of answers to the one that produces the smaller, 
contained set.

21.6.5 Why the Containment-Mapping Test Works
We need to argue two points. First, if there is a containment mapping, why must 
there be a containment of conjunctive queries? Second, if there is containment, 
why must there be a containment mapping? We shall not give formal proofs, 
but will sketch the arguments.

First, suppose there is a containment mapping r  from Q i to Qa. Recall from 
Section 5.3.4 that when we apply Q2 to a database, we look for substitutions a 
for all the variables of Q2 that make all its relational subgoals be tuples of the 
corresponding relation of the database. The substitution for the head becomes 
a tuple t that is returned by Q-i. If we compose r  and then <r, we have a 
mapping from the variables of Q i to tuples of the database that produces the 
same tuple t for the head of Q \. Thus, on any given database, everything that 
Q2  produces is also produced by Q i.

Conversely, suppose that Q2  C Q\. That is, on any database D, everything 
that Q2  produces is also produced by Qi- Construct a particular database 
D that has only the subgoals of <52- That is, pretend the variables of Q2  

are distinct constants, and for each subgoal P(a\,a,2 , .. ■ ,an), put the tuple 
(01, ci2, . . .  , an) in the relation for P. There are no other tuples in the relations 
of D.

When Q2  is applied to database D, surely the tuple whose components are 
the arguments of the head of Q2 is produced. Since Q2  C Q1, it must be that
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Q i applied to D also produces the head of Q2. Again, we use the definition 
in Section 5.3.4 of how a conjunctive query is applied to a database. That 
definition tells us that there is a substitution of constants of D for the variables 
of Q i that turns each subgoal of Qi into a tuple in D  and turns the head of 
Q i into the tuple that is the head of <52- But remember that the constants of 
D  are the variables of Q2. Thus, this substitution is actually a containment 
mapping.

21.6.6 Finding Solutions to a Mediator Query
We have one more issue to resolve. We are given a mediator query Q, and 
we need to find all solutions S  such that the expansion E  of S  is contained in 
Q. But there could be an infinite number of S  built from the views using any 
number of subgoals and variables. The following theorem limits our search.

• If a query Q has n  subgoals, then any answer produced by any solution 
is also produced by a solution that has at most n  subgoals.

This theorem, often called the LMSS Theorem,4 gives us a finite, although 
exponential task to find a sufficient set of solutions. There has been considerable 
work on making the test much more efficient in typical situations.

E xam ple 21.21: Recall the query

Q\: Q(w,z) 4 -  Par(w,x) AND Par(x,y)  AND Par(y ,z )

from Example 21.16. This query has three subgoals, so we don’t have to look 
at solutions with more than three subgoals. One of the solutions we proposed 
was

S i :  Q(w,z) « -V i(w ,x )  AND V2(x , z )

This solution has only two subgoals, and its expansion is contained in the query. 
Thus, it needs to be included among the set of solutions that we evaluate to 
answer the query.

However, consider the following solution:

S2: Q(w,z) < -Vi(w,x )  AND V2( x ,z )  AND V i ( t ,u )  AND V2 (u,v)

It has four subgoals, so we know by the LMSS Theorem that it does not need 
to be considered. However, it is truly a solution, since its expansion

E2 : Q(w ,z ) Par(w,x) AND Par(x,p)  AND Par(p ,z )  AND P ar ( t ,u )  
AND Par(u,q)  AND Par(q,v)

4For th e  au th o rs , A. Y. Levy, A. O . M endelzon, Y . Sagiv, an d  D. S rivastava.
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is contained in the query Q i. To see why, use the containment mapping that 
maps w, x, and 2 to themselves and y to p.

However, E 2 is also contained in the expansion Ei of the smaller solution 
Si.  Recall from Example 21.18 that the expansion of Si is

E i ' .  Q(w,z) «— Par(w,x) AND Par(x,p)  AND Par(p,z)

We can see immediately that E2 C E \ , using the containment mapping that 
sends each variable of E\ to the same variable in E2. Thus, every answer to Qi 
produced by S2 is also produced by Si. Notice, incidentally, that S2 is really
Si with the two subgoals of Si repeated with different variables. □

In principle, to apply the LMSS Theorem, we must consider a number of 
possible solutions that is exponential in the query size. We must consider not 
only the choices of predicates for the subgoals, but which arguments of which 
subgoals hold the same variable. Note that within a conjunctive query, the 
names of the variables do not matter, but it matters which sets of arguments 
have the same variable. Most query processing is worst-case exponential in 
the query size anyway, as we learned in Chapter 16. Moreover, there are some 
powerful techniques known for limiting the search for solutions by looking at 
the structure of the conjunctive queries that define the views. We shall not go 
into depth here, but one easy but powerful idea is the following.

• If the conjunctive query that defines a view V  has in its body a predicate 
P  that does not appear in the body of the mediator query, then we need 
not consider any solution that uses V.

21.6.7 Why the LMSS Theorem Holds
Suppose we have a query Q with n  subgoals, and there is a solution S  with 
more than n subgoals. The expansion E  of S  must be contained in query Q, 
which means that there is a containment mapping from Q to the expansion 
E, as suggested in Fig. 21.11. If there are n subgoals (n =  2 in Fig. 21.11) 
in Q, then the containment mapping turns Q’s subgoals into at most n of the 
subgoals of the expansion E. Moreover, these subgoals of E  come from at most 
n  of the subgoals of the solution S.

Suppose we removed from S  all subgoals whose expansion was not the target 
of one of Q 's subgoals under the containment mapping. We would have a new 
conjunctive query S' with at most n  subgoals. Now S'  must also be a solution 
to Q, because the same containment mapping that showed E  C Q in Fig. 21.11 
also shows that E' C Q ,  where E'  is the expansion of S'.

We must show one more thing: that any answer provided by S  is also 
provided by S'. That is, S  C. S'. But there is an obvious containment mapping 
from S' to S: the identity mapping. Thus, there is no need for solution S  
among the solutions to query Q.
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Solution S

Expansion E N{...)

\
Query Q

Figure 21.11: Why a query with n subgoals cannot need a solution with more 
than n  subgoals

21.6.8 Exercises for Section 21.6
Exercise 21 .6 .1 : Find all the containments among the following four conjunc
tive queries:

Qi: P(x ,y)  •(- Q(x,a) AND Q(a,b) AND Q(b,y)
Q 2 : P(x ,y )  <- Q(x,a) AND Q(a,b) AND Q(b,c) AND Q(c,y)
Q 3 : P(x ,y )  <- Q(x,a) AND Q(b,c) AND Q(d,y) AND Q(x,b) AND

Q(a,c)  AND Q(c,y)
Q i : P(x ,y)  Q(x,a) AND q ( a , l )  AND Q(l ,b)  AND Q(b,y)

! Exercise 21 .6 .2 : For the mediator and views of Example 21.16, find all the 
needed solutions to the great-great-grandparent query:

Q(x,y) <— Par(x ,a)  AND Par(a ,b)  AND Par(b ,c )  AND Par(c ,y)

! E xercise 21.6 .3 : Show that there is no containment mapping from P2 to Pi 
in Example 21.20.

! E xercise 21 .6 .4 : Show that if conjunctive query Q2 is constructed from con
junctive query Q i by removing one or more subgoals of Q i, then Q\ C  Q2.

We shall now take up a problem that must be solved in many information- 
integration scenarios. We have tacitly assumed that sources agree on the rep
resentation of entities or values, or at least that it is possible to perform a 
translation of data as we go through a wrapper. Thus, we are not afraid of 
two sources that report temperatures, one in Fahrenheit and one in Centigrade. 
Neither are we afraid of sources that support a concept like “employee” but 
have somewhat different sets of employees.

What happens, however, if two sources not only have different sets of em
ployees, but it is unclear whether records at the two sources represent the same

21.7 Entity Resolution
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individual or not? Discrepancies can occur for many reasons, such as mis
spellings. In this section, we shall begin by discussing some of the reasons why 
entity resolution — determining whether two records or tuples do or do not 
represent the same person, organization, place, or other entity — is a hard 
problem. We then look at the process of comparing records and merging those 
that we believe represent the same entity. Under some fairly reasonable condi
tions, there is an algorithm for finding a unique way to group all sets of records 
that represent a common entity and to perform this grouping efficiently.

21.7.1 Deciding W hether Records Represent a Common 
Entity

Imagine we have a collection of records that represent members of an entity set. 
These records may be tuples derived from several different sources, or even from 
one source. We only need to know that the records each have the same fields 
(although some records may have null in some fields). We hope to compare the 
values in corresponding fields to decide whether or not two records represent 
the same entity.

To be concrete, suppose that the entities are people, and the records have 
three fields: name, address, and phone. Intuitively, we want to say that two 
records represent the same individual if the two records have similar values 
for each of the three fields. It is not sufficient to insist that the values of 
corresponding fields be identical for a number of reasons. Among them:

1. Misspellings. Often, data is entered by a clerk who hears something over 
the phone, or who copies a written form carelessly. Thus, “Smythe” may 
appear as “Smith,” or “Jones” may appear as “Jomes” (“m” and “n” are 
adjacent on the keyboard). Two phone numbers or street addresses may 
differ in a digit, yet really represent the same phone or house.

2. Variant Names. A person may supply their middle initial or not. They 
may use their complete first name or just their initial, or a nickname. 
Thus, “Susan Williams” may appear as “Susan B. Williams,” “S. Will
iams,” or “Sue Williams” in different records.

3. Misunderstanding of Names. There are many different systems of names 
used throughout the world. In the US, it is sometimes not understood 
that Asian names generally begin with the family name. Thus, “Chen 
Li” and “Li Chen” may or may not turn out to be the same person. The 
first author of this book has been referred to as “Hector Garcia-Molina,” 
“Hector Garcia,” and even “Hector G. Molina.”

4. Evolution of Values. Sometimes, two different records that represent the 
same entity were created at different times. A person may have moved 
in the interrim, so the address fields in the two records are completely 
different. Or they may have started using a cell phone, so the phone
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fields are completely different. Area codes are sometimes changed. For 
example, every (650) number used to be a (415) number, so an old record 
may have (415) 555-1212 and a newer record (650) 555-1212, and yet these 
numbers refer to the same phone.

5. Abbreviations. Sometimes words in an address are spelled out; other times 
an abbreviation may be used. Thus, “Sesame St.” and “Sesame Street” 
may be the same street.

Thus, when deciding whether two records represent the same entity, we need 
to look carefully at the kinds of discrepancies that occur and devise a scoring 
system or other test that measures the similarity of records. Ultimately, we 
must turn the score into a yes /no decision: do the records represent the same 
entity or not? We shall mention below two useful approaches to measuring the 
similarity of records.

E d it D istan ce

Values that are strings can be compared by counting the number of insertions 
and/or deletions of characters it takes to turn one string into another. Thus, 
Smythe and Smith are at distance 3 (delete the “y” and “e,” then insert the 
“i”).

An alternative edit distance counts 1 for a mutation, that is, a replacement 
of one letter by another. In this measure, Smythe and Smith are at distance 2 
(mutate “y” to “i” and delete “e”). This edit distance makes mistyped charac
ters “cost” less, and therefore may be appropriate if typing errors are common 
in the data.

Finally, we may devise a specialized distance that takes into account the 
way the data was constructed. For instance, if we decide that changes of area 
codes are a major source of errors, we might charge only 1 for changing the 
entire area code from one to another. We might decide that the problem of 
misinterpreted family names was severe and allow two components of a name 
to be swapped at low cost, so Chen Li and Li Chen are at distance 1.

Once we have decided on the appropriate edit distance for each field, we 
can define a similarity measure for records. For example, we could sum the edit 
distances of each of the pairs of corresponding fields in the two records, or we 
could compute the sum of the squares of those distances. Whatever formula we 
use, we have then to say that records represent the same entity if their similarity 
measure is below a given threshold.

N  orm alization

Before applying an edit distance, we might wish to “normalize” records by 
replacing certain substrings by others. The goal is that substrings representing 
the same “thing” will become identical. For instance, it may make sense to use 
a table of abbreviations and replace abbreviations by what they normally stand
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for. Thus, St. would be replaced by Street in street addresses and by Saint 
in town names. Also, we could use a table of nicknames and variant spellings, 
so Sue would become Susan and Jeffery would become Geoffrey.

One could even use the Soundex encoding of names, so names that sound 
the same are represented by the same string. This system, used by telephone in
formation services, for example, would represent Smith and Smythe identically. 
Once we have normalized values in the records, we could base our similarity test 
on identical values only (e.g., a majority of fields have identical values in the 
two records), or we could further use an edit distance to measure the difference 
between normalized values in the fields.

21.7.2 Merging Similar Records
In many applications, when we find two records that are similar enough to 
merge, we would like to replace them by a single record that, in some sense, 
contains the information of both. For instance, if we want to compile a “dossier” 
on the entity represented, we might take the union of all the values in each 
field. Or we might somehow combine the values in corresponding fields to make 
a single value. If we try to combine values, there are many rules that we might 
follow, with no obvious best approach. For example, we might assume that a 
full name should replace a nickname or initials, and a middle initial should be 
used in place of no middle initial. Thus, “Susan Williams” and “S. B. Williams” 
would be combined into “Susan B. Williams.”

It is less clear how to deal with misspellings. For instance, how would we 
combine the addresses “123 Oak St.” and “123 Yak St.”? Perhaps we could 
look at the town or zip-code and determine that there was an Oak St. there 
and no Yak St. But if both existed and had 123 in their range of addresses, 
there is no right answer.

Another problem that arises if we use certain combinations of a similarity 
test and a merging rule is that our decision to merge one pair of records may 
preclude our merging another pair. An example may help illustrate the risk.

name address phone
(1) Susan Williams 123 Oak St. 818-555-1234
(2) Susan Williams 456 Maple St. 818-555-1234
(3) Susan Williams 456 Maple St. 213-555-5678

Figure 21.12: Three records to be merged

E xam ple 21.22: Suppose that we have the three name-address-phone records 
in Fig. 21.12. and our similarity rule is: “must agree exactly in at least two out 
of the three fields.” Suppose also that our merge rule is: “set the field in which 
the records disagree to the empty string.”
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Then records (1) and (2) are similar; so are records (2) and (3). Note that 
records (1) and (3) are not similar to each other, which serves to remind us that 
“similarity” is not normally a transitive relationship. If we decide to replace 
(1) and (2) by their merger, we are left with the two tuples:

name address phone

(1-2) Susan Williams 818-555-1234
(3) Susan Williams 456 Maple St. 213-555-5678

These records disagree in two fields, so they cannot be merged. Had we merged 
(1) and (3) first, we would again have a situation where the remaining record 
cannot be merged with the result.

Another choice for similarity and merge rules is:

1. Merge by taking the union of the values in each field, and

2. Declare two records similar if at least two of the three fields have a 
nonempty intersection.

Consider the three records in Fig. 21.12. Again, (1) is similar to (2) and (2) is 
similar to (3), but (1) is not similar to (3). If we choose to merge (1) and (2) 
first, we get:

name address phone

(1-2) Susan Williams {123 Oak St. 818-555-1234
456 Maple St.}

(3) Susan Williams 456 Maple St. 213-555-5678
Now, the remaining two tuples are similar, because 456 Maple S t . is a member 
of both address sets and Susan W illiams is a member of both name sets. The 
result is a single tuple:

name address phone

(1-2-3) Susan Williams {123 Oak St., {818-555-1234,
456 Maple St.} 213-555-5678}

□

21.7.3 Useful Properties of Similarity and Merge 
Functions

Any choice of similarity and merge functions allows us to test pairs of records for 
similarity and merge them if so. As we saw in the first part of Example 21.22, 
the result we get when no more records can be merged may depend on which 
pairs of mergeable records we consider first. Whether or not different ending 
configurations can result depends on properties of similarity and merger.

There are several properties that we would expect any merge function to 
satisfy. If A is the operation that produces the merge of two records, it is 
reasonable to expect:
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1. r  A r  = r ( Idempotence). That is, the merge of a record with itself should 
surely be that record.

2. rA s = sA r ( Commutativity). If we merge two records, the order in which 
we list them should not matter.

3. (rA s)A t = rA (sA t) (Associativity). The order in which we group records 
for a merger should not matter.

These three properties say that the merge operation is a semilattice. Note that 
both merger functions in Example 21.22 have these properties. The only tricky 
point is that we must remember that r  A s need not defined for all records r  
and s. We do, however, assume that:

• If r  and s are similar, then r  A s is defined.

There are also some properties that we expect the similarity relationship to 
have, and ways that we expect similarity and merging to interact. We shall use 
r  «  s to say that records r  and s are similar.

a) r  ~  r (Idempotence for similarity). A record is always similar to itself.

b) r « s if and only if s « r (Commutativity of similarity). That is, in 
deciding whether two records are similar, it does not matter in which 
order we list them.

c) If r «  s, then r «  (s A t) (Representability). This rule requires that if r  is 
similar to some other record s (and thus could be merged with s), but s 
is instead merged with some other record t, then r remains similar to the 
merger of s and t and can be merged with that record.

Note that representability is the property most likely to fail. In particular, 
it fails for the first merger rule in Example 21.22, where we merge by setting 
disagreeing fields to the empty string. In particular, representability fails when 
r  is record (3) of Fig. 21.12, s is (2), and t is (1). On the other hand, the second 
merger rule of Example 21.22 satisfies the representability rule. If r  and s have 
nonempty intersections in at least two fields, those shared values will still be 
present if we replace s by s At.

The collection of properties above are called the ICAR properties. The let
ters stand for Idempotence, Commutativity, Associativity, and Representability, 
respectively.

21.7.4 The R-Swoosh Algorithm for ICAR Records
When the similarity and merge functions satisfy the ICAR properties, there 
is a simple algorithm that merges all possible records. The representability 
property guarantees that if two records are similar, then as they are merged 
with other records, the resulting records are also similar and will eventually
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be merged. Thus, if we repeatedly replace any pair of similar records by their 
merger, until no more pairs of similar records remain, then we reach a unique 
set of records that is independent of the order in which we merge.

A useful way to think of the merger process is to imagine a graph whose 
nodes are the records. There is an edge between nodes r and s if r «  s. Since 
similarity need not be transitive, it is possible that there are edges between r  
and s and between s and t, yet there is no edge between r and t. For instance, 
the records of Fig. 21.12 have the graph of Fig. 21.13.

Figure 21.13: Similarity graph from Fig. 21.12

However, representability tells us that if we merge s and t, then because r  
is similar to s, it will be similar to s A t. Thus, we can merge all three of r, s, 
and t. Likewise, if we merge r and s first, representability says that because 
s «  i, we also have (r  A s) «  t, so we can merge t with r  As. Associativity tells 
us that the resulting record will be the same, regardless of the order in which 
we do the merge.

The idea described above extends to any set of ICAR nodes (records) that 
are connected in any way. That is, regardless of the order in which we do the 
merges, the result is that every connected component of the graph becomes a 
single record. This record is the merger of all the records in that component. 
Commutativity and associativity are enough to tell us that the order in which 
we perform the mergers does not matter.

Although computing connected components of a graph is simple in principle, 
when we have millions of records or more, it is not feasible to construct the 
graph. To do so would require us to test similarity of every pair of records. 
The “R-Swoosh” algorithm is an implementation of this idea that organizes 
the comparisons so we avoid, in many cases, comparing all pairs of records. 
Unfortunately, if no records at all are similar, then there is no algorithm that 
can avoid comparing all pairs of records to determine this fact.

A lg o rith m  21.23: R-Swoosh.

IN P U T : A set of records I, a similarity function « , and a merge function A. 
We assume that «  and A satisfy the ICAR properties. If they do not, then the 
algorithm will still merge some records, but the result may not be the maximum 
or best possible merging.

O U T P U T : A se t o f  m erg ed  reco rd s O.

M E T H O D : Execute the steps of Fig. 21.14. The value of O a t the end is the 
output. □
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0 := emptyset;
WHILE I is not empty DO BEGIN 

let r be any record in I;
find, if possible, some record s in 0 that is similar to r; 
IF no record s exists THEN 

move r from I to 0 
ELSE BEGIN

delete r from I; 
delete s from 0; 
add the merger of r and s to I;

END;
END;

Figure 21.14: The R-Swoosh Algorithm

E xam ple 21.24: Suppose that I  is the three records of Fig. 21.12, and that 
we use the ICAR similarity and merge functions from Example 21.22, where we 
take the union of possible values for a field to produce the corresponding field 
in the merged record. Initially, O is empty. We pick one of the records from I, 
say record (1) to be the record r in Fig. 21.14. Since O is empty, there is no 
possible record s, so we move record (1) from I  to O.

We next pick a new record r. Suppose we pick record (3). Since record (3) 
is not similar to record (1), which is the only record in O, we again have no 
value of s, so we move record (3) from I  to O. The third choice of r must be 
record (2). That record is similar to both of the records in O, so we must pick 
one to be s; say we pick record (1). Then we merge records (1) and (2) to get 
the record

name address phone
( 1- 2 ) Susan Williams {123 Oak St., 818-555-1234

456 Maple St.}
We remove record (2) from I, remove record (1) from O, and insert the above 
record into I. At this point, I  consists of only the record (1-2) and O consists 
of only the record (3).

The execution of the R-Swoosh Algorithm ends after we pick record (1-2) 
as r — the only choice — and pick record (3) as s — again the only choice. 
These records are merged, to produce

name address phone
(1-2-3) Susan Williams {123 Oak St., {818-555-1234,

456 Maple St.} 213-555-5678}

and deleted from I  and O, respectively. The record (1-2-3) is put in I ,  at which 
point it is the only record in I ,  and O is empty. At the last step, this record is 
moved from I  to O, and we are done. □
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21.7.5 W hy R-Swoosh Works

Recall that for ICAR similarity and merge functions, the goal is to merge records 
that form connected components. There is a loop invariant that holds for the 
while-loop of Fig. 21.14:

• If a connected component C  is not completely merged into one record, 
then there is at least one record in I  that is either in C  or was formed by 
the merger of some records from C.

To see why this invariant must hold, suppose that the selected record r in 
some iteration of the loop is the last record in I  from its connected component 
C. If r  is the only record that is the merger of one or more records from C, 
then it may be moved to O without violating the loop invariant.

However, if there are other records that are the merger of one or more records 
from C, they are in O. Let r  be the merger of the set of records R  C C. Note 
that R  could be only one record, or could be many records. However, since R  is 
not all of C , there must be an original record ri in R  that is similar to another 
original record r 2 that is in C  — R. Suppose r2 is currently merged into a record 
r' in O. By representability, perhaps applied several times, we can start with 
the known rj «  r2 and deduce that r  «  r ' . Thus, r' can be s in Fig. 21.14. 
As a result, r will surely be merged with some record from O. The resulting 
merged record will be placed in I  and is the merger of some or all records from 
C. Thus, the loop invariant continues to hold.

21.7.6 Other Approaches to Entity Resolution
There are many other algorithms known to discover and (optionally) merge 
similar records. We shall outline some of them briefly here.

N on -IC A R  D a ta sets

First, suppose the ICAR properties do not hold, but we want to find all possible 
mergers of records, including cases where one record r i is merged with a record 
r2, but later, n  (not the merger n  Ar2) is also merged with r3. If so, we need to 
systematically compare all records, including those we constructed by merger, 
with all other records, again including those constructed by merger.

To help control the proliferation of records, we can define a dominance 
relation r < s that means record s contains all the information contained in 
record r. If so, we can eliminate record r from further consideration. If the 
merge function is a semilattice, then the only reasonable choice for < is a < b 
if and only if a A b = b. This dominance function is always a partial order, 
regardless of what semilattice is used. If the merge operation is not even a 
semilattice, then the dominance function must be constructed in an ad-hoc 
manner.
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C lustering

In some entity-resolution applications, we do not want to merge at all, but will 
instead group records into clusters such that members of a cluster are in some 
sense similar to each other and members of different clusters are not similar. 
For example, if we are looking for similar products sold on eBay, we might want 
the result to be not a single record for each kind of product, but rather a list of 
the records that represent a common product for sale. Clustering of large-scale 
data involves a complex set of options. We shall discuss the matter further in 
Section 22.5.

P a rtitio n in g

Since any algorithm for doing a complete merger of similar records may be forced 
to examine each pair of records, it may be infeasible to get an exact answer to a 
large entity-resolution problem. One solution is to group the records, perhaps 
several times, into groups that are likely to contain similar records, and look 
only within each group for pairs of similar records.

E xam ple 21.25: Suppose we have millions of name-address-phone records, 
and our measure of similarity is that the total edit distance of the values in the 
three fields must be at most 5. We could partition the records into groups such 
that each group has the same name field. We could also partition the records 
according to the value in their address field, and a third time according to their 
phone numbers. Thus, each record appears in three groups and is compared 
only with the members of those groups. This method will not notice a pair of 
similar records that have edit distance 2 in their phone fields, 2 in their name 
fields, and 1 in their address fields. However, in practice, it will catch almost 
all similar pairs. □

The idea in Example 21.25 is actually a special case of an important idea: 
“locality-sensitive hashing.” We discuss this topic in Section 22.4.

21.7.7 Exercises for Section 21.7
Exercise 21.7.1: A string s is a subsequence of a string t if s is formed from 
t  by deleting 0 or more positions of t. For example, if t = "abcab", then 
substrings of t include "aba" (delete positions 3 and 5), "be" (delete positions
1, 4, and 5), and the empty string (delete all positions).

a) What are all the other subsequences of "abcab"?

b) What are the subsequences of "aabb"?

! c) If a string consists of n distinct characters, how many subsequences does 
it have?
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Exercise 21.7 .2 : A longest common subsequence of two strings s and t is any 
string r that is a subsequence of both s and t and is as long as any other string 
that is a substring of both. For example, the longest common subsequences of 
"aba" and "bab" are "ab" and "ba". Give a the longest common subsequence 
for each pair of the following strings: "she", "hers", "they", and " th e ir s " ?

Exercise 21 .7 .3 : A shortest common supersequence of two strings s and t is 
any string r  of which both s and t are subsequences, such that no string shorter 
than r  has both s and t as subsequences. For example, the some of the shortest 
common supersequences of "abc" and "cb" are "abcb" and "acbc".

a) What are the shortest common supersequences of each pair of strings in 
Exercise 21.7.2?

! b) What are all the other shortest common supersequences of "abc" and 
"cb"?

!! c) If two strings have no characters in common, and are of lengths m  and 
n, respectively, how many shortest common supersequences do the two 
strings have?

!! Exercise 21.7 .4 : Suppose we merge records (whose fields are strings) by tak
ing, for each field, the lexicographically first longest common subsequence of 
the strings in the corresponding fields.

a) Does this definition of merge satisfy the idempotent, commutative, and 
associative laws?

b) Repeat (a) if instead corresponding fields are merged by taking the lexi
cographically first shortest common supersequence.

! Exercise 21 .7 .5 : Suppose we define the similarity and merge functions by:

i. Records are similar if in all fields, or in all but one field, either both 
records have the same value or one has NULL.

ii. Merge records by letting each field have the common value if both records 
agree in that field or have value NULL if the records disagree in that field. 
Note that NULL disagrees with any nonnull value.

Show that these similarity and merge functions have the ICAR properties.

! E xercise 21.7 .6 : In Section 21.7.6 we suggested that if A is a semilattice, then 
the dominance relationship defined by a < b if and only if a A b =  b is a partial 
order. That is, a < b and b < c imply a < c (transitivity) and a < b and b < a 
if and only if a — b (antisymmetry). Prove that < is a partial order, using the 
reflexivity, commutativity, and associativity properties of a semilattice.
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21.8 Summary of Chapter 21
♦  Integration of Information: When many databases or other information 

sources contain related information, we have the opportunity to combine 
these sources into one. However, heterogeneities in the schemas often ex
ist; these incompatibilities include differing types, codes or conventions 
for values, interpretations of concepts, and different sets of concepts rep
resented in different schemas.

♦  Approaches to Information Integration: Early approaches involved “fed
eration,” where each database would query the others in the terms un
derstood by the second. A more recent approach is warehousing, where 
data is translated to a global schema and copied to the warehouse. An 
alternative is mediation, where a virtual warehouse is created to allow 
queries to a global schema; the queries are then translated to the terms 
of the data sources.

♦  Extractors and Wrappers: Warehousing and mediation require compo
nents at each source, called extractors and wrappers, respectively. A 
major function of either is to translate queries and results between the 
global schema and the local schema at the source.

♦  Wrapper Generators: One approach to designing wrappers is to use tem
plates, which describe how a query of a specific form is translated from the 
global schema to the local schema. These templates are tabulated and in
terpreted by a driver that tries to match queries to templates. The driver 
may also have the ability to combine templates in various ways, and/or 
perform additional work such as filtering, to answer more complex queries.

♦  Capability-Based Optimization: The sources for a mediator often are able 
or willing to answer only limited forms of queries. Thus, the mediator 
must select a query plan based on the capabilities of its sources, before it 
can even think about optimizing the cost of query plans as conventional 
DBMS’s do.

♦  Adornments: These provide a convenient notation in which to describe 
the capabilities of sources. Each adornment tells, for each attribute of 
a relation, whether, in queries matching that adornment, this attribute 
requires or permits a contant value, and whether constants must be chosen 
from a menu.

♦  Conjunctive Queries: A single Datalog rule, used as a query, is a con
venient representation for queries involving joins, possibly followed by 
selection and/or projection.

♦  The Chain Algorithm: This algorithm is a greedy approach to answering 
mediator queries that are in the form of a conjunctive query. Repeatedly 
look for a subgoal that matches one of the adornments at a source, and
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obtain the relation for that subgoal from the source. Doing so may provide 
a set of constant bindings for some variables of the query, so repeat the 
process, looking for additional subgoals that can be resolved.

♦  Local-as-View Mediators: These mediators have a set of global, virtual 
predicates or relations at the mediator, and each source is described by 
views, which axe conjunctive queries whose subgoals use the global predi
cates. A query at the mediator is also a conjunctive query using the global 
predicates.

♦  Answering Queries Using Views: A local-as-view mediator searches for 
solutions to a query, which are conjunctive queries whose subgoals use the 
views as predicates. Each such subgoal of a proposed solution is expanded 
using the conjunctive query that defines the view, and it is checked that 
the expansion is contained in the query. If so, the proposed solution does 
indeed provide (some of the) answers to the query.

♦  Containment of Conjunctive Queries: We test for containment of conjunc
tive queries by looking for a containment mapping from the containing 
query to the contained query. A containment mapping is a substitution 
for variables that turns the head of the first into the head of the second 
and turns each subgoal of the first into some subgoal of the second.

♦  Limiting the Search for Solutions: The LMSS Theorem says that when 
seaching for solutions to a query at a local-as-view mediator, it is sufficient 
to consider solutions that have no more subgoals than the query does.

♦  Entity Resolution: The problem is to take records with a common schema, 
find pairs or groups of records that are likely to represent the same entity 
(e.g., a person) and merge these records into a single record that represents 
the information of the entire group.

♦  ICAR Similarity and Merge Functions: Certain choices of similarity and 
merge functions satisfy the properties of idempotence, commutativity, as
sociativity, and representability. The latter is the key to efficient algo
rithms for merging, since it guarantees that if two records are similar, 
their successors will also be similar even as they are merged into records 
that represent progressively larger sets of original records.

♦  The R-Swoosh Algorithm: If similarity and merge functions have the 
ICAR properties, then the complete merger of similar records will group 
all records that are in a connected component of the graph formed from 
the similarity relation on the original records. The R-Swoosh algorithm 
is an efficient way to make all necessary mergers without determining 
similarity for every pair of records.
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Chapter 22 

Data Mining

“Data mining” is the process of examining data and finding simple rules or 
models that summarize the data. The rules can range from very general, such 
as “50% of the people who buy hot dogs also buy mustard,” to the very specific: 
“these three individual’s pattern of credit-card expenditures indicate that they 
are running a terrorist cell.” Our discussion of data mining will concentrate on 
mining information from very large databases.

We begin by looking at “market-basket” data, records of the things people 
buy together, such as at a supermarket. This study leads to a number of 
efficient algorithms for finding “frequent itemsets” in large databases, including 
the “A-Priori” Algorithm and its extensions.

We next turn to finding “similar” items in a large collection. Example appli
cations include finding documents on the Web that share a significant amount 
of common text or finding books that have been bought by many of the same 
Amazon customers. Two key techniques for this problem are “minhashing” and 
“locality-sensitive hashing.”

We conclude the chapter with a discussion of the problem of large-scale 
clustering in high dimensions. An example application is clustering Web pages 
by the words they use. In that case, each word might be a dimension, and a 
document is placed in this space by counting the number of occurrences of each 
word.

22.1 Frequent-Itemset Mining

There is a family of problems that arise from attempts by marketers to use 
large databases of customer purchases to extract information about buying 
patterns. The fundamental problem is called “frequent itemsets” — what sets 
of items are often bought together? This information is sometimes further 
refined into “association rules” — implications that people who buy one set of 
items are likely to buy another particular item. The same technology has many

1093
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other uses, from discovering combinations of genes related to certain diseases 
to finding plagiarism among documents on the Web.

22.1.1 The Market-Basket Model
In several important applications, the data involves a set of items, perhaps all 
the items that a supermarket sells, and a set of baskets-, each basket is a subset 
of the set of items, typically a small subset. The baskets each represent a set 
of items that someone has bought together. Here are two typical examples of 
where market-basket data appears.

Superm arket C heckout

A supermarket chain may sell 10,000 different items. Daily, millions of cus
tomers wheel their shopping carts (“market baskets”) to the checkout, and the 
cash register records the set of items they purchased. Each such set is one 
basket, in the sense used by the market-basket model. Some customers may 
have identified themselves, using a discount card that many supermarket chains 
provide, or by their credit card. However, the identity of the customer often is 
not necessary to get useful information from the data.

Stores analyze the data to learn what typical customers buy together. For 
example, if a large number of baskets contain both hot dogs and mustard, the 
supermarket manager can use this information in several ways.

1. Apparently, many people walk from where the hot dogs are to where the 
mustard is. We can put them close together, and put between them other 
foods that might also be bought with hot dogs and mustard, e.g., ketchup 
or potato chips. Doing so can generate additional “impulse” sales.

2. The store can run a sale on hot dogs and at the same time raise the price 
of mustard (without advertising that fact, of course). People will come 
to the store for the cheap hot dogs, and many will need mustard too. It 
is not worth the trouble to go to another store for cheaper mustard, so 
they buy that too. The store makes back on mustard what it loses on hot 
dogs, and also gets more customers into the store.

While the relationship between hot dogs and mustard may be obvious to 
those who think about the matter, even if they have no data to analyze, there 
are many pairs of items that are connected but may be less obvious. The most 
famous example is diapers and beer.1

There are some conditions on when a fact about co-occurrence of sets of 
items can be useful. Any useful pair (or larger set) of items must be bought 
by many customers. It is not even necessary that there be any connection 
between purchases of the items, as long as we know lots of customers buy them

1One theory: if you buy diapers, you probably have a baby at home. If so, you are not 
going out to a bar tonight, so you are more likely to buy beer at a supermarket.
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all. Conversely, strongly linked, but rarely purchased items (e.g., caviar and 
champagne) are not very interesting to the supermarket, because it doesn’t pay 
to advertise things that few customers are interested in buying anyway.

O n-Line Purchases

Amazon.com offers several million different items for sale, and has several tens of 
millions of customers. While brick-and-mortar stores such as the supermarket 
discussed above can only make money on combinations of items that large 
numbers of people buy, Amazon and other on-line sellers have the opportunity 
to tailor their offers to every customer. Thus, an interesting question is to 
find pairs of items that many customers have bought together. Then, if one 
customer has bought one of these items but not the other, it might be good 
for Amazon to advertise the second item when this customer next logs in. We 
can treat the purchase data as a market-basket problem, where each “basket” 
is the set of items that one particular customer ever has bought.

But there is another way Amazon can use the same data. This approach, 
often called “collaborative filtering,” has us look for customers that are similar 
in their purchase habits. For example, we could look for pairs, or even larger 
sets, of customers that have bought many of the same items. Then, if a customer 
logs in, Amazon might pitch an item that a similar customer bought, but this 
customer has not.

Finding similar customers also can be couched as a market-basket problem. 
Here, however, the “items” are the customers and the “baskets” are the items 
for sale by Amazon. That is, for each item /  sold by Amazon there is a “basket” 
consisting of all the customers who bought I.

It is worth noting that the meaning of “many baskets” differs in the on-line 
and brick-and-mortar situations. In the brick-and-mortar case, we may need 
thousands of baskets containing a set of items before we can exploit that infor
mation profitably. For on-line stores, we need many fewer baskets containing a 
set of items, before we can use the information in the limited context we intend 
(pitching one item to one customer).

On the other hand, the brick-and-mortar store doesn’t need too many ex
amples of good sets of items to use; they can’t  run sales on millions of items. In 
contrast, the on-line store needs millions of good pairs to work with — at least 
one for each customer. As a result, the most effective techniques for analyzing 
on-line purchases may not be those of this section, which exploit the assumption 
that many occurrences of a pair of items are needed. Rather, we shall resume 
our discussion of finding correlated, but infrequent, pairs in Section 22.3.

22.1.2 Basic Definitions
Suppose we are given a set of items I  and a set of baskets B. Each basket b 
in B  is a subset of I. To talk about frequent sets of items, we need a support 
threshold s, which an integer. We say a set of items J  C  I  is frequent if there
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are at least s baskets that contain all the items in J  (perhaps along with other 
items). Optionally, we can express the support s as a percentage of |B |, the 
number of baskets in B.

E xam ple 22.1: Suppose our set of items I  consists of the six movies

{B I, B S , BU, H Pl, HP2, HP3}

standing for the Bourne Identity, Bourne Supremacy, Bourne Ultimatum, and 
Harry Potter I, II, and III. The table of Fig. 22.1 shows eight viewers (baskets 
of items) and the movies they have seen. An x  indicates they saw the movie.

B I  B S  BU H P l HP2 HPS
Vl X  X
V2

v3 X
V4 X X
V5 X X
V6 X
v7 X
v8 X X

x
x

X
X
X
X

X
X

X
X

Figure 22.1: Market-basket data about viewers and movies

Suppose that s =  3. That is, in order for a set of items to be considered a 
frequent itemset, it must be a subset of at least three baskets. Technically, the 
empty set is a subset of all baskets, so it is frequent but uninteresting. In this 
example, all singleton sets except {HPS} appear in at least three baskets. For 
example, {B I}  is contained in V\, V3, V4 , V5, Vq, and Vg.

Now, consider which doubleton sets (pairs of items) are frequent. Since HP3 
is not frequent by itself, it cannot be part of a frequent pair. However, each of 
the 10 pairs involving the other five movies might be frequent. For example, 
{B I, B S }  is frequent because it appears in at least three baskets; in fact it 
appears in four: Vi, V4 , V5, and Vs.

Also:

• {B I, H P l}  is frequent appearing in V3, V4 , V5, and Vg.

• {BS, HP 1} is frequent, appearing in V4, V5, V7, and Vs.

• {H Pl, HP2} is frequent, appearing in V2, V4, V7, and Vg.

No other pair is frequent.
There is one frequent triple: {B I,B S ,H P  1}. This set is a subset of the 

baskets V4 , V5, and Vs. There are no frequent itemsets of size greater than 
three. □
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22.1.3 Association Rules
A natural query about market-basket data asks for implications among pur
chases that people make. That is, we want to find pairs of items such that 
people buying the first are likely to buy the second as well. More generally, 
people buying a particular set of items are also likely to buy yet another par
ticular item. This idea is formalized by “association rules.”

An association rule is a statement of the form { i i , i2, . . .  , i n} => j ,  where 
the i ’s and j  are items. In isolation, such a statement asserts nothing. However, 
three properties that we might want in useful rules of this form are:

1. High Support: the support of this association rule is the support of the 
itemset {*i,j2, . . .  , i n,j}-

2. High Confidence: the probability of finding item j  in a basket that has 
all of {*i, *2, . .  ■ , in} is above a certain threshold, e.g., 50%, e.g., “at least 
50% of the people who buy diapers buy beer.”

3. Interest: the probability of finding item j  in a basket that has all of 
{*i, *2 , . . .  , in} is significantly higher or lower than the probability of find
ing j  in a random basket. In statistical terms, j  correlates with

{ ^ 1 1 •• • i in}

either positively or negatively. The alleged relationship between diapers 
and beer is really a claim that the association rule {diapers} => beer has 
high interest in the positive direction.

Note that even if an association rule has high confidence or interest, it will 
tend not to be useful unless it also has high support. The reason is that if 
the support is low, then the number of instances of the rule is not large, which 
limits the benefit of a strategy that exploits the rule. Also, it is important not 
to confuse an association rule, even with high values for support, confidence, 
and interest, with a causal rule. For instance, the “beer and diapers” example 
mentioned in Section 22.1.1 suggests that the association rule {beer} => diapers 
has high confidence, but that does not mean beer “causes” diapers. Rather, 
the theory suggested there is that both are caused by a “hidden variable” — 
the baby at home.

E xam ple 22.2 : Using the data from Fig. 22.1, consider the association rule

{B I, B S}  => BU

Its support is 2, since there are two baskets, V\ and V5 that contain all three 
“Bourne” movies. The confidence of the rule is 1/2, since there are four baskets 
that contain both B I  and B S , and two of these also contain BU. The rule is 
slightly interesting in the positive direction. That is, BU  appears in 3/8 of all 
baskets, but appears in 1 /2  of those baskets that contain the left side of the 
association rule. □



1098 CHAPTER 22. DATA MINING

As long as high support is a significant requirement for a useful association 
rule, the search for high-confidence or high-interest association rules is really the 
search for high-support itemsets. Once we have these itemsets, we can consider 
each member of an itemset as the item on the right of the association rule. We 
may, as part of the process of finding frequent itemsets, already have computed 
the counts of baskets for the subsets of this frequent itemset, since they also 
must be frequent. If so, we can compute easily the confidence and interest of 
each potential association rule. We shall thus, in what follows, leave aside the 
problem of finding association rules and concentrate on efficient methods for 
finding frequent itemsets.

22.1.4 The Computation Model for Frequent Itemsets
Since we are studying database systems, our first thought might be that the 
market-basket data is stored in a relation such as:

Baskets(basket, item)

consisting of pairs that are a basket ID and the ID of one of the items in 
that basket. In principle, we could find frequent itemsets by a SQL query. 
For instance, the query in Fig. 22.2 finds all frequent pairs. It joins Baskets 
with itself, grouping the resulting tuples by the two items found in that tuple, 
and throwing away groups where the number of baskets is below the support 
threshold s. Note that the condition I. item  < J . item  in the WHERE-clause is 
there to prevent the same pair from being considered in both orders, or for a 
“pair” consisting of the same item twice from being considered at all.

SELECT I.item, J.item, C0UNT(I.basket)
FROM Baskets I, Baskets J 
WHERE I.basket = J.basket AND 

I.item < J.item 
GROUP BY I.item, J.item 
HAVING COUNT(I.basket) >= s;

Figure 22.2: Naive way to find all high-support pairs of items

However, if the size of the Baskets relation is very large, the join of the 
relation with itself will be too large to construct, or at least too time-consuming 
to construct. No m atter how efficiently we compute the join, the result relation 
contains one tuple for each pair of items in a basket. For instance, if there 
are 1,000,000 baskets, and each basket contains 20 items, then there will be
190,000,000 tuples in the join [since (22°) =  190]. We shall see in Section 22.2 
that it is often possible to do much better by preprocessing the Baskets relation.

But in fact, it is not common to store market-basket data as a relation. It 
is far more efficient to put the data in a file or files consisting of the baskets,
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in some order. A basket is represented by a list of its items, and there is some 
punctuation between baskets.

Example 22.3: The data of Fig. 22.1 could be represented by a file that 
begins:

{BI,BS,BU}{HP1,HP2)HP3>{BI,HP1>{BI,BS,HP1,HP2}{...

Here, we are using brackets to surround baskets and commas to separate items 
within a basket. □

When market-basket data is represented this way, the cost of an algorithm 
is relatively simple to estimate. Since we are interested only in cases where the 
data is too large to fit in main memory, we can count disk-I/O’s as our measure 
of complexity.

However, the matter is even simpler than disk-I/O’s. All the successful 
algorithms for finding frequent itemsets read the data file several times, in the 
order given. They thus make several passes over the data, and the information 
preserved from one pass to the next is small enough to fit in main memory. 
Thus, we do not even have to count disk-I/O’s; it is sufficient to count the 
number of passes through the data.

22.1.5 Exercises for Section 22.1
Exercise 22.1.1: Suppose we are given the eight “market baskets” of Fig. 
22.3.

B 1 = {milk, coke, beer}
b 2  = {milk, pepsi, juice}
Bz = {milk, beer}
b 4  = {coke, juice}
b 5  = {milk, pepsi, beer}
b 6  = {milk, beer, juice, pepsi}
b 7  = {coke, beer, juice}
BS = {beer, pepsi}

Figure 22.3: Example market-basket data

a) As a percentage of the baskets, what is the support of the set {beer, juice}?

b) What is the support of the itemset {coke, pepsi}?

c) What is the confidence of milk given beer (i.e., of the association rule 
{beer} => milk)?

d) What is the confidence of juice given milk?



1100 CHAPTER 22. DATA MINING

e) W hat is the confidence of coke, given beer and juice?

f) If the support threshold is 37.5% (i.e., 3 out of the eight baskets are 
needed), which pairs of items are frequent?

g) If the support threshold is 50%, which pairs of items are frequent?

! h) W hat is the most interesting association rule with a singleton set on the 
left?

22.2 A lgorithm s for Finding Frequent Item sets

We now look at how many passes are needed to find frequent itemsets of a 
certain size. We first argue why, in practice, finding frequent pairs is often the 
bottleneck. Then, we present the A-Priori Algorithm, a key step in minimizing 
the amount of main memory needed for a multipass algorithm. Several im
provements on A-Priori make better use of main memory on the first pass, in 
order to  make it more feasible to complete the algorithm without exceeding the 
capacity of main memory on later passes.

22.2.1 The Distribution of Frequent Item sets

If we pick a support threshold s = 1, then all itemsets that appear in any basket 
are “frequent,” so just producing the answer could be infeasible. However, in 
applications such as managing sales at a store, a small support threshold is not 
useful. Recall that we need many customers buying a set of items before we can 
exploit that itemset. Moreover, any data mining of market-basket data must 
produce a small number of answers, say tens or hundreds. If we get no answers, 
we cannot act, but if we get millions of answers, we cannot read them all, let 
alone act on them all.

The consequence of this reasoning is that the support threshold must be 
set high enough to make few itemsets frequent. Typically, a threshold around 
1% of the baskets is used. Since the probability of an itemset being frequent 
goes down rapidly with size, most frequent itemsets will be small. However, 
an itemset of size one is generally not useful; we need at least two items in 
a frequent itemset in order to apply the marketing techniques mentioned in 
Section 22.1.1, for example.

Our conclusion is that in practical uses of algorithms to find frequent item
sets, we need to  use a support threshold so tha t there will be a small number 
of frequent pairs, and very few frequent itemsets that are larger. Thus, our 
algorithms will focus on how to find frequent pairs in a few passes through the 
data. If larger frequent itemsets are wanted, the computing resources used to 
find the frequent pairs are usually sufficient to find the small number of frequent 
triples, quadruples, and so on.
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What if Items Aren’t Numbered Conveniently

We assume that items have integer ID’s starting at 0. However, in practice, 
items could be represented by long ID’s or by their full names. If so, we 
need to keep in main memory a hash table that maps each true item-ID 
to a unique integer in the range 0 to k — 1. This table consumes main 
memory proportional to the number of items k. No algorithm for finding 
frequent pairs or larger itemsets works if the number of items is not small 
compared with the available main memory. Thus, we neglect the possible 
need for a main-memory table whose size is proportional to the number of 
items.

22.2.2 The Naive Algorithm for Finding Frequent 
Itemsets

Let us suppose that there is some fixed number of bytes of main memory M , 
perhaps a gigabyte, or 16 gigabytes, or whatever our machine has. Let there be 
k  different items in our market-basket dataset, and assume they are numbered
0 ,1,. . .  , k — 1. Finally, as suggested in Section 22.2.1, we shall focus on the 
counting of pairs, assuming that is the bottleneck for memory use.

If there is enough room in main memory to count all the pairs of items as 
we make a single pass over the baskets, then we can solve the frequent-pairs 
problem in a single pass. In that pass, we read one block of the data file at a 
time. We shall neglect the amount of main memory needed to hold this block 
(or even several blocks if baskets span two or more blocks), since we may assume 
that the space needed to represent a basket is tiny compared with M . For each 
basket found on this block, we execute a double loop through its items and for 
each pair of items in the basket, we add one to the count for that pair.

The essential problem we face, then, is how do we store the counts of the 
pairs of items in M  bytes of memory. There are two reasonable ways to do 
so, and which is better depends on whether it is common or unlikely that a 
given pair of items occurs in at least one basket. In what follows, we shall make 
the simplifying assumption that all integers, whether used for a count or to 
represent an item, require four bytes. Here are the two contending approaches 
to maintaining counts.

Triangular M atrix

If most of the possible pairs of items are expected to appear at least once in 
the dataset, then the most efficient use of main memory is a triangular array. 
That is, let a be a one-dimensional integer array occupying all available main 
memory. We count the pair ( i,j) , where 0 < i < j  < k in <z[n], where:
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n =  (i+  j )2/ 4 + i — 1/4 if i + j  is odd 
n =  (i +  j )2/ 4 +  i if i + j  is even

As long as M  > 2k2, there is enough room to store array a, with four bytes per 
count. Notice that this method takes only half the space that would be used 
by a square array, of which we used only the upper or lower triangle to count 
the pairs (i, j )  where i < j .

T able o f  C ounts

If the probability of a pair of items ever occurring is small, then we can do 
with space less than 0 (k 2). We instead construct a hash table of triples (i , j ,c ), 
where i < j  and { i ,j}  is one of the itemsets that actually occurs in one or more 
of the baskets. Here, c is the count for that pair. We hash the pair (i , j ) to find 
the bucket in which the count for that itemset is kept.

A triple (i , j ,  c) requires 12 bytes, so we can maintain counts for M /12 pairs.2 
Put another way, if p pairs ever occur in the data, we need main memory at 
least M  > 12p.

Notice that there are approximately k2/ 2 possible pairs if there are k dif
ferent items. If the number of pairs p  =  k 2  / 2, then the table of counts requires 
three times as much main memory as the triangular matrix. However, if only 
1/3 of all possible pairs occur, then the two methods have the same memory 
requirements, and if the probability that a given pair occurs is less than 1/3, 
then the table of counts is preferable.

A d d ition a l C om m en ts A b o u t th e  N a ive  A lgorith m

In summary, we can use the naive, one-pass algorithm to find all frequent pairs 
if the number of bytes of main memory M  exceeds either 2fc2 or 12p, where k is 
the number of different items and p  is the number of pairs of items that occur 
in at least one basket of the dataset.

The same approach can be used to count triples, provided that there is 
enough memory to count either all possible triples or all triples that actually 
occur in the data. Likewise, we can count quadruples or itemsets of any size, 
although the likelihood that we have enough memory goes down as the size goes 
up. We leave the formulas for how much memory is needed as an exercise.

22.2.3 The A-Priori Algorithm
The A-Priori Algorithm is a method for finding frequent itemsets of size n, 
for any n, in n  passes. It normally uses much less main memory than the 
naive algorithm, and it is certain to use less memory if the support threshold 
is sufficiently high that some singleton sets are not frequent. The important

2Whatever kind of hash table we use, there will be some additional overhead, which we 
shall neglect. For example, if we use open addressing, then it is generally necessary to leave 
a small fraction of the buckets unfilled, to limit the average search for a triple.
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insight that makes the algorithm work is monotonicity of the property of being 
frequent. That is:

• If an itemset S  is frequent, so is each of its subsets.

The truth of the above statement is easy to see. If 5  is a subset of at least s 
baskets, where s is the support threshold, and T  C  5, then T  is also a subset 
of the same baskets that contain S, and perhaps T  is a subset of other baskets 
as well. The use of monotonicity is actually in its contrapositive form:

• If S  is not a frequent itemset, then no superset of 5  is frequent.

On the first pass, the a-priori algorithm counts only the singleton sets of 
items. If some of those sets are not frequent by themselves, then their items 
cannot be part of any frequent pair. Thus, the nonfrequent items can be ignored 
on a second pass through the data, and only the pairs consisting of two frequent 
items need be counted. For example, if only half the items are frequent, then 
we need to count only 1/4 of the number of pairs, so we can use 1/4 as much 
main memory. Or put another way, with a fixed amount of main memory, we 
can deal with a dataset that has twice as many items.

We can continue to construct the frequent triples on another pass, the fre
quent quadruples on the fourth pass, and so on, as high as we like and that 
frequent itemsets exist. The generalization is that for the nth  pass we begin 
with a candidate set of itemsets C„, and we produce a subset Fn of Cn consist
ing of the frequent itemsets of size n. That is, C\ is the set of all singletons, 
and Fi is those singletons that are frequent. C2 is the set of pairs of items, both 
of which are in F i, and F2  is those pairs that are frequent. The candidate set 
for the third pass, C3, is those triples { i,j , k} such that each doubleton subset, 
{ i ,j} ,  {*,£}, and { j,k } , is in F2. The following gives the algorithm formally.

A lg o rith m  22.4: A-Priori Algorithm.

IN P U T : A file D consisting of baskets of items, a support threshold s, and a 
size limit q for the size of frequent itemsets.

O U T P U T : The sets o f itemsets F i,F 2, . . .  ,F q, where Fi is the set o f all itemsets 
o f size i that appear in at least s baskets o f D.

M E T H O D : Execute the algorithm of Fig. 22.4 and output each set Fn of fre
quent items, for n  =  1, 2 , . . .  , q. □

E xam ple 22 .5 : Let us execute the A-Priori Algorithm on the data of Fig. 22.1 
with support s =  4. Initially, C\ is the set of all six movies. In the first pass, 
we count the singleton sets, and we find that B I, B S , HP 1, and HP2 occur at 
least four times; the other two movies do not. Thus, Fi — {B I, B S, HP 1, HP2}, 
and C2 is the set of six pairs that can be formed by choosing two of these four 
movies.
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1) LET Ci = all items that appear in file F ;
2) FOR n := 1 TO q DO BEGIN
3) Fn := those sets in Cn that occur at least

s times in D;
4) IF n  = q BREAK;
5) LET Cn+i = all itemsets S  of size n + 1 such that

every subset of S  of size n  is in Fn ;
END

Figure 22.4: The A-Priori Algorithm

On the second pass, we count only these six pairs, and we find that F2  = 
{ {B I, B S } , {H Pl, HP2}, {B I, H Pl}, {BS, H P l}}; the other two pairs are not 
frequent. Assuming q > 2, we try to find frequent triples. Cz consists of only 
the triple {B I, B S , H P l}, because that is the only set of three movies, all pairs 
of which are in F2. However, these three movies appear together only in three 
rows: V4 , V5 , and V». Thus, F3  is empty, and there are no more frequent 
itemsets, no m atter how large q is. The algorithm returns Fi U F2. □

22.2.4 Implementation of the A-Priori Algorithm

Figure 22.4 is just an outline of the algorithm. We must consider carefully how 
the steps are implemented. The heart of the algorithm is line (3), which we 
shall implement, each time through, by a single pass through the input data. 
The let-statements of lines (1) and (5) are just definitions of what Cn is, rather 
than assignments to be executed. That is, as we run through the baskets in 
line (3), the definition of Cn tells us which sets of size n  need to be counted in 
main memory, and which need not be counted.

The algorithm should be used only if there is enough main memory to satisfy 
the requirements to count all the candidate sets on each pass. If there is not 
enough memory, then either a more space-efficient algorithm must be used, or 
several passes must be used for a single value of n. Otherwise, the system will 
“thrash,” with pages being moved in and out of main memory during a pass, 
thus greatly increasing the running time.

We can use either method discussed in Section 22.2.2 to organize the main- 
memory counts during a pass. It may not be obvious that the triangular-matrix 
method can be used with a-priori on the second pass, since the frequent items 
are not likely to have numbers 0 , 1, . . .  up to as many frequent items as there 
are. However, after finding the frequent items on pass 1, we can construct a 
small main-memory table, no larger than the set of items itself, that translates 
the original items numbers into consecutive numbers for just the frequent items.
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22.2.5 Making Better Use of Main Memory
We expect that the memory bottleneck comes on the second pass of Algo
rithm 22.4, that is, at the execution of line (3) of Fig. 22.4 with n — 2. That is, 
we assume counting candidate pairs takes more space than counting candidate 
triples, quadruples, and so on. Thus, let us concentrate on how we could reduce 
the number of candidate pairs for the second pass. To begin, the typical use of 
main memory on the first two passes of the A-Priori Algorithm is suggested by 
Fig. 22.5.

Item Counts Frequent Items
_ _-- ---1

Counts of 
Candidate 

Pairs

Pass 1 Pass 2

Figure 22.5: Main-memory use by the A-Priori Algorithm

On the first pass (n =  1), all we need is space to count all the items, which 
is typically very small compared with the amount of memory needed to count 
pairs. On the second pass (n  =  2), the counts are replaced by a list of the 
frequent items, which is expected to take even less space than the counts took 
on the first pass. All the available memory is devoted, as needed, to counts of 
the candidate pairs.

Could we do anything with the unused memory on the first pass, in order to 
reduce the number of candidate pairs on the second pass? If so, data sets with 
larger numbers of frequent pairs could be handled on a machine with a fixed 
amount of main memory. The P C Y  Algorithm3 exploits the unused memory by 
filling it entirely with an unusual sort of hash table. The “buckets” of this table 
do not hold pairs or other elements. Rather, each bucket is a single integer 
count, and thus occupies only four bytes. We could even use two-byte buckets 
if the support threshold were less than 216, since once a count gets above the 
threshold, we do not need to see how large it gets.

During the first pass, as we examine each basket, we not only add one to 
the count for each item in the basket, but we also hash each pair of items to 
its bucket in the hash table and add one to the count in that bucket. What we

3For th e  au th o rs , J . S. P a rk , M .-S. C hen, an d  P. S. Yu.
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hope for is that some buckets will wind up with a count less than s, the support 
threshold. If so, we know that no pair {*, j }  that hashes to that bucket can be 
frequent, even if both i and j  are frequent as singletons.

Pass 1 Pass 2

Figure 22.6: Main-memory use by the PCY Algorithm

Between the first and second passes, we replace the buckets by a bitmap with 
one bit per bucket. The bit is 1 if the corresponding bucket is a frequent bucket; 
that is, its count is at least the support threshold s; otherwise the bit is 0. A 
bucket, occupying 32 bits (4 bytes) is replaced by a single bit, so the bitmap 
occupies roughly 1/32 of main memory on the second pass. There is thus almost 
as much space available for counts on the second pass of the PCY Algorithm as 
there is for the A-Priori Algorithm. Figure 22.6 illustrates memory use during 
the first two passes of PCY.

On the second pass, { i , j}  is a candidate pair if and only if the following 
conditions are satisfied:

1. Both i and j  are frequent items.

2. { i , j}  hashes to a bucket that the bitmap tells us is a frequent bucket.

Then, on the second pass, we can count only this set of candidate pairs, rather 
than all the pairs that meet the first condition, as in the A-Priori Algorithm.

22.2.6 W hen to Use the PC Y Algorithm
In the PCY Algorithm, the set of candidate pairs is sufficiently irregular that 
we cannot use the triangular-matrix method for organizing counts; we must use 
a table of counts. Thus, it does not make sense to use PCY unless the number 
of candidate pairs is reduced to at most 1 /3  of all possible pairs. Passes of the 
PCY Algorithm after the second can proceed just as in the A-Priori Algorithm, 
if they are needed.
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Further, in order for PCY to be an improvement over A-Priori, a good 
fraction of the buckets on the first pass must not be frequent. For if most 
buckets are frequent, condition (3) above does not eliminate many pairs. Any 
bucket to which even one frequent pair hashes will itself be frequent. However, 
buckets to which no frequent pair hashes could still be frequent if the sum of 
the counts of the pairs that do hash there exceeds the threshold s. To a first 
approximation, if the average count of a bucket is less then s, we can expect at 
least half the buckets not to be frequent, which suggests some benefit from the 
PCY approach. However, if the average bucket has a count above s, then most 
buckets will be frequent.

Suppose the total number of occurrences of pairs of items among all the 
baskets in the dataset is P. Since most of the main memory M  can be devoted 
to buckets, the number of buckets will be approximately M /4. The average 
count of a bucket will then be A P /M . In order that there be many buckets that 
are not frequent, we need 4P /M  < s, or M  > 4P /s. The exercises allow you to 
explore some more concrete examples.

22.2.7 The M ultistage Algorithm
Instead of counting pairs on the second pass, as we do in A-Priori or PCY, 
we could use the same bucketing technique (with a different hash function) on 
the second pass. To make the average counts even smaller on the second pass, 
we do not even have to consider a pair on the second pass unless it would be 
counted on the second pass of PCY; that is, the pair consists of two frequent 
items and also hashed to a frequent bucket on the first pass.

Pass 1 Pass 2 Pass 3

Figure 22.7: Main-memory use in the three-pass version of the multistage algo
rithm

This idea leads to the three-pass version of the Multistage Algorithm for 
finding frequent pairs. The algorithm is sketched in Fig. 22.7. Pass 1 is just
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like Pass 2 of PCY, and between Passes 1 and 2 we collapse the buckets to bits 
and select the frequent items, also as in PCY.

However, on Pass 2, we again use all available memory to hash pairs into as 
many buckets as will fit. Because there is a bitmap to store in main memory 
on the second pass, and this bitmap compresses a 4-byte (32-bit) integer into 
one bit, there will be approximately 31/32 as many buckets on the second pass 
as on the first. On the second pass, we use a different hash function from that 
used on Pass 2. We hash a pair {*, j }  to a bucket and add one to the count 
there if and only if:

1. Both i and j  are frequent items.

2. { i , j}  hashed to a frequent bucket on the first pass. This decision is made 
by consulting the bitmap.

That is, we hash only those pairs we would count on the second pass of the 
PCY Algorithm.

Between the second and third passes, we condense the buckets of the second 
pass into another bitmap, which must be stored in main memory along with the 
first bitmap and the set of frequent items. On the third pass, we finally count 
the candidate pairs. In order to be a candidate, the pair { i ,j}  must satisfy all 
of:

1. Both i and j  are frequent items.

2. { i ,j}  hashed to a frequent bucket on the first pass. This decision is made 
by consulting the first bitmap.

3. { i ,j}  hashed to a frequent bucket on the second pass. This decision is 
made by consulting the second bitmap.

As with PCY, subsequent passes can construct frequent triples or larger item
sets, if desired, using the same method as A-Priori.

The third condition often eliminates many pairs that the first two conditions 
let through. One reason is that on the second pass, not every pair is hashed, 
so the counts of buckets tend to be smaller than on the first pass, resulting in 
many more infrequent buckets. Moreover, since the hash functions on the first 
two passes are different, infrequent pairs that happened to hash to a frequent 
bucket on the first pass have a good chance of hashing to an infrequent bucket 
on the second pass.

The Multistage Algorithm is not limited to three passes for computation 
of frequent pairs. We can have a large number of bucket-filling passes, each 
using a different hash function. As long as the first pass eliminates some of the 
pairs because they belong to a nonfrequent bucket, then subsequent passes will 
eliminate a rapidly growing fraction of the pairs, until it is very unlikely that 
any candidate pair will turn out not to be frequent. However, there is a point 
of diminishing returns, since each bitmap requires about 1/32 of the memory.
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If we use too many passes, not only will the algorithm take more time, but we 
can find ourselves with available main memory that is too small to count all 
the frequent pairs.

22.2.8 Exercises for Section 22.2
Exercise 22.2 .1 : Simulate the A-Priori Algorithm on the data of Fig. 22.3, 
with s — 3.

! Exercise 22.2.2: Suppose we want to count all itemsets of size n  using one 
pass through the data.

a) What is the generalization of the triangular-matrix method for n  > 2? 
Give the formula for locating the array element that counts a given set of 
n  elements {*i, *2> — ,*«}■

b) How much main memory does the generalized triangular-matrix method 
take if there are k items?

c) What is the generalization of the table-of-counts method for n > 2?

d) How much main memory does the generalized table-of-counts method take 
if there are p  itemsets of size n  that appear in the data?

E xercise 22.2.3: Imagine that there are 1100 items, of which 100 are “big” 
and 1000 are “little.” A basket is formed by adding each big item with proba
bility 1/10, and each little item with probability 1/100. Assume the number of 
baskets is large enough that each itemset appears in a fraction of the baskets 
that equals its probability of being in any given basket. For example, every 
pair consisting of a big item and a little item appears in 1/1000 of the baskets. 
Let s be the support threshold, but expressed as a fraction of the total number 
of baskets rather than as an absolute number. Give, as a function of s ranging 
from 0 to 1, the number of frequent items on Pass 1 of the A-Priori Algorithm. 
Also, give the number of candidate pairs on the second pass.

! E xercise 22.2.4: Consider running the PCY Algorithm on the data of Ex
ercise 22.2.3, with 100,000 buckets on the first pass. Assume that the hash 
function used distributes the pairs to buckets in a conveniently random fash
ion. Specifically, the 499,500 little-little pairs are divided as evenly as possible 
(approximately 5 to a bucket). One of the 100,000 big-little pairs is in each 
bucket, and the 4950 big-big pairs each go into a different bucket.

a) As a function of s, the ratio of the support threshold to the total number 
of baskets (as in Exercise 22.2.3), how many frequent buckets are there 
on the first pass?

b) As a function of s, how many pairs must be counted on the second pass?
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E xercise 22.2.5: Using the assumptions of Exercise 22.2.4, suppose we run a 
three-pass Multistage Algorithm on the dataset. Assuming that on the second 
pass there are again 100,000 buckets, and the hash function distributes pairs 
randomly among the buckets, answer the following questions, all in terms of s 
the ratio of the support threshold to the number of baskets.

a) Approximately how many frequent buckets will there be on the second 
pass?

b) Approximately how many pairs are counted on the third pass?

E xercise 22.2.6: Suppose baskets are in a file that is distributed over many 
processors. Show how you would use the map-reduce framework of Section 20.2 
to:

a) Find the counts of all items.

! b) Find the counts of all pairs of items.

22.3 Finding Similar Items
We now turn to the version of the frequent-itemsets problem that supports 
marketing activities for on-line merchants and a number of other interesting 
applications such as finding similar documents on the Web. We may start with 
the market-basket model of data, but now we search for pairs of items that 
appear together a large fraction of the times that either appears, even if neither 
item appears in very many baskets. Such items are said to be similar. The key 
technique is to create a short “signature” for each item, such that the difference 
between signatures tells us the difference between the items themselves.

22.3.1 The Jaccard Measure of Similarity
Our starting point is to define exactly what we mean by “similar” items. Since 
we are interested in finding items that tend to appear together in the same 
baskets, the natural viewpoint is that each item is a set: the set of baskets in 
which it appears. Thus, we need a definition for how similar two sets are.

The Jaccard similarity (or just similarity, if this similarity measure is un
derstood) of sets S  and T  is |S fl T |/ |S  U T\, that is, the ratio of the sizes of 
their intersection and union. Thus, disjoint sets have a similarity of 0, and the 
similarity of a set with itself is 1. As another example, the similarity of sets 
{1,2,3} and {1,3,4,5} is 2/5, since there are two elements in the intersection 
and five elements in the union.

22.3.2 Applications of Jaccard Similarity
A number of important data-mining problems can be expressed as finding sets 
with high Jaccard similarity. We shall discuss two of them in detail here.
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C ollaborative F ilterin g

Suppose we are given data about customers’ on-line purchases. One way to 
tell what items to pitch to a customer is to find pairs of customers that bought 
similar sets of items. When a customer logs in, they can be pitched an item that 
a similar customer bought, but that they did not buy. To compaxe customers, 
represent a customer by the set of items they bought, and compute the Jaccard 
similarity for each pair of customers.

There is a dual view of the same data. We might want to know which 
pairs of items are similar, based on their having been bought by similar sets 
of customers. We can frame this problem in the same terms as finding similar 
customers. Now, the items are represented by the set of customers that bought 
them, and we need to find pairs of items that have similar sets of customers.

Notice, incidentally, that the same data can be viewed as market-basket 
data in two different ways. The products can be the “items” and the customers 
the “baskets,” or vice-versa. You should not be surprised. Any many-many 
relationship can be seen as market-basket data in two ways. In Section 22.1 
we viewed the data in only one way, because when the “baskets” are really 
shopping carts at a store’s checkout stand, there is no real interest in finding 
similar shopping carts or carts that contain many items in common.

Sim ilar D ocu m en ts

There are many reasons we would like to find pairs of textually similar docu
ments. If we are crawling the Web, documents that are very similar might be 
mirrors of one another, perhaps differing only in links to other documents at 
the local site. A search engine would not want to offer both sites in response to 
a search query. Other similar pairs might represent an instance of plagiarism. 
Note that one document d\ might contain an excerpt from another document 
d2, yet di and d2 are identical in only 10% of each; that could still be an instance 
of plagiarism.

Telling whether documents are character-for-character identical is easy; just 
compare characters until you find a mismatch or reach the ends of the docu
ments. Finding whether a sentence or short piece of text appears character- 
for-character in a document is not much harder. Then you have to consider all 
places in the document where the sentence of fragment might start, but most 
of those places will have a mismatch very quickly. What is harder is to find 
documents that are similar, but are not exact copies in long stretches. For 
instance, a draft document and its edited version might have small changes in 
almost every sentence.

A technique that is almost invulnerable to large numbers of small changes is 
to represent a document by its set of k-grams, that is, by the set of substrings 
of length k. k-Shingle is another word for fc-gram. For example, the set of 
3-grams that we find in the first sentence of Section 22.3.2 (“A number of- • • ”) 
contains "A n", " nu", "num", and so on. If we pick k large enough so that 
the probability of a randomly chosen fc-gram appearing in a document is small,
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Compressed Shingles

In order that a document be characterized by its set of fc-shingles, we have 
to pick k sufficiently large that it is rare for a given shingle to appear in 
a document, fc =  5 is about the smallest we can choose, and it is not 
unusual to have k around 10. However, then there are so many possible 
shingles, and the shingles are so long, that certain algorithms take more 
time than necessary. Therefore, it is common to hash the shingles to 
integers of 32 bits or less. These hash-values are still numerous enough 
that they differentiate between documents, but they can be compared and 
processed quickly.

then a high Jaccard similarity of the sets of fc-grams representing a pair of 
documents is a strong indication that the documents themselves are similar.

22.3.3 Minhashing
Computing the Jaccard similarity of two large sets is time consuming. Moreover, 
even if we can compute similarities efficiently, a large dataset has fax too many 
pairs of sets for us to compute the similarity of every pair. Thus, there are two 
“tricks” we need to learn to extract only the similar pairs from a large dataset. 
Both are a form of “hashing,” although the techniques are completely different 
uses of hashing.

1. Minhashing is a technique that lets us form a short signature for each 
set. We can compute the Jaccard similarity of the sets by measuring 
the similarity of the signatures. As we shall see, the “similarity” for 
signatures is simple to compute, but it is not the Jaccard similarity. We 
take up minhashing in this section.

2. Locality-Sensitive Hashing is a technique that lets us focus on pairs of 
signatures whose underlying sets are likely to be similar, without exam
ining all pairs of signatures. We take up locality-sensitive hashing in 
Section 22.4.

To introduce minhashing, suppose that the elements of each set are chosen 
from a “universal” set of n elements eo ,e i,. . .  ,en_ i. Pick a random permuta
tion of the n  elements. Then the minhash value of a set S  is the first element, 
in the permuted order, that is a member of S.

E xam ple 2 2 .6 : Suppose the universal set of elements is {1,2,3,4 ,5} and the 
permuted order we choose is (3,5,4,2,1). Then the hash value of any set that 
contains 3, such as {2,3,5} is 3. A set that contains 5 but not 3, such as {1,2,5}, 
hashes to 5. For another example, {1,2} hashes to 2, because 2 appears before 
1 in the permuted order. □
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Suppose we have a collection of sets. For example, we might be given a 
collection of documents and think of each document as represented by its set of 
10-grams. We compute signatures for the sets by picking a list of m permuta
tions of all the possible elements (e.g., all possible character strings of length 10, 
if the elements are 10-grams). Typically, m  would be about 100. The signature 
of a set S  is the list of the minhash values of S, for each of the m  permutations, 
in order.

E xam ple 22.7: Suppose the universal set of elements is again {1,2,3,4,5}, 
and choose m — 3, that is, signatures of three minhash values. Let the per
mutations be 7Ti =  (1,2,3,4,5), ir? =  (5,4,3,2,1), and ir3 — (3,5,1,4,2). The 
signature of S  = {2,3,4} is (2,4,3). To see why, first notice that in the order 
7Ti, 2 appears before 3 and 4, so 2 is the first minhash value. In 7r2, 4 appears 
before 2 and 3, so 4 is the second minhash value. In -jt3, 3 appears before 2 and
4, so 3 is the third minhash value. □

22.3.4 Minhashing and Jaccard Distance
There is a surprising relationship between the minhash values and the Jaccard 
similarity:

• If we choose a permutation at random, the probability that it will produce 
the same minhash values for two sets is the same as the Jaccard similarity 
of those sets.

Thus, if we have the signatures of two sets S  and T, we can estimate the Jaccard 
similarity of S  and T  by the fraction of corresponding minhash values for the 
two sets that agree.

E xam ple 22.8: Let the permutations be as in Example 22.7, and consider 
another set, T  — {1,2,3}. The signature for T  is (1,3,3). If we compare 
this signature with (2,4,3), the signature of the set S  = {2,3,4}, we see that 
the signatures agree in only the last of the three components. We therefore 
estimate the Jaccard similarity of S  and T  to be 1/3. Notice that the true 
Jaccard similarity of S  and T  is 1/2. □

In order that the signatures are very likely to estimate the similarity closely, 
we need to pick considerably more than three permutations. We suggest that 
100 permutations may be enough for the “law of large numbers” to hold. How
ever, the exact number of signatures needed depends on how closely we need 
to estimate the similarity.

22.3.5 Why Minhashing Works
To see why the Jaccard similarity is the probability that two sets have the same 
minhash value according to a randomly chosen permutation of elements, let S
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and T  be two sets. Imagine going down the list of elements in the permuted 
order, until you find an element e that appears in at least one of S  and T. 
There are two cases:

1. If e appears in both S  and T, then both sets have the same minhash value, 
namely e.

2. But if e appears in one of S  and T  but not the other, then one set gets 
minhash value e and the other definitely gets some other minhash value.

We do not meet e until the first time we find, in the permuted order, an 
element that is in S  U  T. The probability of Case 1 occuring is the fraction 
of members of S  U T  that are in S  fl T. That fraction is exactly the Jaccard 
similarity of 5  and T. But Case 1 is also exactly when S  and T have the same 
minhash value, which proves the relationship.

22.3.6 Implementing Minhashing
While we have spoken of choosing a random permutation of all possible ele
ments, it is not feasible to do so. It would take far too long, and we might have 
to deal with elements that appeared in none of our sets. Rather, we simulate 
the choice of a random permutation by instead picking a random hash function 
h from elements to some large sequence of integers 0 ,1 ,. . .  , B  — 1 (i.e., bucket 
numbers). We pretend that the permutation that h represents places element 
e in the position h(e). Of course, several elements might thus wind up in the 
same position, but as long as B  is large, we can break ties as we like, and 
the simulated permutations will be sufficiently random that the relationship 
between signatures and similarity still holds.

Suppose our dataset is presented one set at a time. To compute the minhash 
value for a set S  — {ai, a2, . . .  , ara} using a hash function h, we can execute:

V  := oo;
FOR i  := 1 TO n  DO

IF h{a,i) < V  THEN V  := /i(af);

As a result, V  will be set to the hash value of the element of S  that has the 
smallest hash value. This hash value may not identify a unique element, because 
several elements in the universe of possible elements may hash to this value, 
but as long as h hashes to a large number of possible values, the chances of a 
coincidence is small, and we may continue to assume that a common minhash 
value suggests two sets have an element in common.

If we want to compute not just one minhash value but the minhash values 
for set S  according to m  hash functions h\, h2, ■ ■ ■ , hm, then we can compute 
m  minhash values in parallel, as we process each member of S. The code is 
suggested in Fig. 22.8.



22.3. FINDING SIMILAR ITEMS 1115

FOR j  := 1 TO m  DO 
Vj : = oo ;

FOR i := 1 TO n DO
FOR j  := 1 TO m  DO

IF hj(ai) < Vj THEN Vj := hj(ai);

Figure 22.8: Computing m  minhash values at once

It is somewhat harder to compute signatures if the data is presented basket- 
by-basket as in Section 22.1. That is, suppose we want to compute the sig
natures of “items,” but our data is in a file consisting of baskets. Similarity 
of items is the Jaccard similarity of the sets of baskets in which these items 
appear.

Suppose there are k items, and we want to construct their minhash signa
tures using m  different hash functions h i,h 2, . . .  ,h m. Then we need to maintain 
km  values, each of which will wind up being the minhash value for one of the 
items according to one of the hash functions. Let Vy be the value for item i 
and hash function h j . Initially, set all Vy’s to infinity. When we read a basket 
b, we compute hj(b) for all j  =  1 ,2 ,...  , m. However, we adjust values only for 
those items i that are in b. The algorithm is sketched in Fig. 22.9. At the end, 
Vij holds the j th  minhash value for item i.

FOR i := 1 TO k DO
FOR j  := 1 TO m  DO 

V  ̂ : =  0 0 ;
FOR EACH basket b DO BEGIN 

FOR j  := 1 TO m DO 
compute hj(b);

FOR EACH item  i in  b DO 
FOR j  := 1 TO m  DO

IF hj (b) < Vij THEN Vij := hj(b);
END

Figure 22.9: Computing minhash values for all items and hash functions

22.3.7 Exercises for Section 22.3
E xercise 22.3 .1 : Compute the Jaccard similarity of each pair of the following 
sets: {1,2,3,4,5}, {1,6,7}, {2,4,6,8}.

Exercise 22.3 .2 : What are all the 4-grams of the following string:

"abc def ghi"
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Do not count the quotation marks as part of the string, but remember that 
blanks do count.

Exercise 22.3 .3 : Suppose that the universal set is { 1 ,2 ,... , 10}, and signa
tures for sets are constructed using the following list of permutations:

1. (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10)

2. (10 ,8 ,6 ,4 ,2 ,9 ,7 ,5 ,3 ,1)

3. (4 ,7 ,2 ,9 ,1 ,5 ,3 ,10,6 ,8)

Construct minhash signatures for the following sets:

a) {3,6,9}.

b) {2,4,6,8}

c) {2,3,4}

How does the estimate of the Jaccard similarity for each pair, derived from the 
signatures, compare with the true Jaccard similarity?

Exercise 22.3 .4 : Suppose that instead of using particular permutations to 
construct signatures for the three sets of Exercise 22.3.3, we use hash functions 
to construct the signatures. The three hash functions we use are:

f(x )  — x  mod 10 
g(x) =  (2x +  1) mod 10 
h(x) = (3a: -I- 2) mod 10

Compute the signatures for the three sets, and compare the resulting estimate 
of the Jaccard similarity of each pair with the true Jaccard similarity.

! Exercise 22.3.5: Suppose data is in a file that is distributed over many pro
cessors. Show how you would use the map-reduce framework of Section 20.2 to 
compute a minhash value, using a single hash function, assuming:

a) The file must be partitioned by rows.

b) The file must be partitioned by columns.

22.4 Locality-Sensitive Hashing
Now, we take up the problem that was not really solved by taking minhash 
signatures. It is true that these signatures may make it much faster to estimate 
the similarity of any pair of sets, but there may still be far too many pairs of sets 
to find all pairs that meet a given similarity threshold. The technique called 
“locality-sensitive hashing,” or LSH, may appear to be magic; it allows us, in
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a sense, to hash sets or other elements to buckets so that “similar” elements 
are assigned to the same bucket. There are tradeoffs, of course. There is a 
(typically small) probability that we shall miss a pair of similar elements, and 
the lower we want that probability to be, the more work we must do. After 
some examples, we shall take up the general theory.

22.4.1 Entity Resolution as an Example of LSH
Recall our discussion of entity resolution in Section 21.7. There, we had a large 
collection of records, and we needed to find similar pairs. The notion of “sim
ilarity” was not Jaccard similarity, and in fact we left open what “similarity” 
meant. Whatever definition we use for similarity of records, there may be far too 
many pairs to measure them all. For example, if there are a million records — 
not a very large number — then there are about 500 billion pairs of records. 
An algorithm like R-Swoosh may allow merging with fewer than that number 
of comparisons, provided there are many large sets of similar records, but if no 
records are similar to other records, then there is no way we can discover that 
fact without doing all possible comparisons.

It would be wonderful to have a way to “hash” records so that similar 
records fell into the same bucket, and nonsimilar pairs never did, or rarely did. 
Then, we could restrict our examination of pairs to those that were in the same 
bucket. If, say, there were 1000 buckets, and records distributed evenly, then 
we would only have to compare 1/1000 of the pairs. We cannot do exactly what 
is described above, but we can come surprisingly close.

E xam ple 22.9: Suppose for concreteness that records are as in the running 
example of Section 21.7: name-address-phone triples, where each of the three 
fields is a character string. Suppose also that we define records to be similar if 
the sum of the edit distances of their three corresponding pairs of fields is no 
greater than 5. Let us use a hash function h that hashes the name field of a 
record to one of a million buckets. How h works is unimportant, except that it 
must be a good hash function — one that distributes names roughly uniformly 
among the buckets.

But we do not stop here. We also hash the records to another set of a million 
buckets, this time using the address, and a suitable hash function on addresses. 
If h operates on any strings, we can even use h. Then, we hash records a third 
time to a million buckets, using the phone number.

Finally, we examine each bucket in each of the three hash tables, a total of
3,000,000 buckets. For each bucket, we compare each pair of records in each 
bucket, and we report any pair that has total edit distance 5 or less. Suppose 
there are n  records. Assuming even distribution of records in each hash table, 
there are n/106 records in each bucket. The number of pairs of records in each 
bucket is approximately n2/ ( 2 x 1012). Since there are 3 x 106 buckets, the 
total number of comparisons is about 1.5n2/106. And since there are about 
ra2/ 2 pairs of records, we have managed to look at only fraction 3 x 10-6 of the 
records, a big improvement.
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In fact, since the number of buckets was chosen arbitrarily, it seems we 
can reduce the number of comparisons to whatever degree we wish. There are 
limitations, of course. If we choose too large a number of buckets, we run out 
of main-memory space, and regardless of how many buckets we use, we cannot 
avoid the pairs of records that are really similar.

Have we given up anything? Yes, we have; we shall miss some similar 
pairs of records that meet the similarity threshold, because they differ by a few 
characters in each of the three fields, yet no more than five characters in total. 
What fraction of the truly similar pairs we lose depends on the distribution of 
discrepancies among the fields of records that truly represent the same entity. 
However, if the threshold for total edit distance is 5, we do not expect to miss 
too many truly similar pairs. □

But what if the threshold on edit distance in Example 22.9 were not 5, 
but 20? There might be many pairs of similar records that had no one field 
identical. To deal with this problem, we need to:

1. Increase the number of hash functions and hash tables.

2. Base each hash function on a small part of a field.

E xam ple 22.10: We could break the name into first, middle, and last names, 
and hash each to buckets. We could break the address into house number, street 
name, city name, state, and zip code. The phone number could be broken into 
area code, exchange, and the last four digits. Since phones are numbers, we 
could even choose any subset of the ten digits in a phone number, and hash on 
those. Unfortunately, since we are now hashing short subfields, we are limited 
in the number of buckets that we can use. If we pick too many buckets, most 
will be empty.

After hashing records many times, we again look in each bucket of each of 
the hash tables, and we compare each pair of records that fall into the same 
bucket at least once. However, the total running time is much higher than for 
our first example, for two reasons. First, the number of record occurrences 
among all the buckets is proportional to the number of hash functions we use. 
Second, hash functions based on small pieces of data cannot divide the records 
into as many buckets as in Example 22.9. □

22.4.2 Locality-Sensitive Hashing of Signatures
The use of locality-sensitive hashing in Example 22.10 is relatively straightfor
ward. For a more subtle application of the general idea, let us return to the 
problem introduced in Section 22.3, where we saw the advantage of replacing 
sets by their signatures. When we need to find similar pairs of sets that are 
represented by signatures, there is a way to build hash functions for a locality- 
sensitive hashing, for any desired similarity threshold. Think of the signatures 
of the various sets as a matrix, with a column for each set’s signature and a row
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for each hash function. Divide the matrix into b bands of r rows each, where 
br is the length of a signature. The arrangement is suggested by Fig. 22.10.

Buckets

t
rows

I b bands

Figure 22.10: Dividing signatures into bands and hashing based on the values 
in a band

For each band we choose a hash function that maps the portion of a signature 
in that band to some large number of buckets, B. That is, the hash function 
applies to sequences of r integers and produces one integer in the range 0 to 
B  — 1. In Fig. 22.10, B  =  4. If two signatures agree in all rows of any one band, 
then they surely will wind up in the same bucket. There is a small chance that 
they will be in the same bucket even if they do not agree, but by using a very 
large number of buckets B, we can make sure there are very few “false positives.” 
Every bucket of each hash function has its members compared for similarity, so 
a pair of signatures that agree in even one band will be compared. Signatures 
that do not agree in any band probably will not be compared, although as 
we mentioned, there is a small probability they will hash to the same bucket 
anyway, and would therefore be compared.

Let us compute the probability that a pair of minhash signatures will be 
compared, as a function of the Jaccard similarity s of their underlying sets, the



1120 CHAPTER 22. DATA MINING

number of bands b, and the number of rows r  in a band. For simplicity, we shall 
assume that the number of buckets is so large that there are no coincidences; 
signatures hash to the same bucket if and only if they have the same values in 
the entire band on which the hash function is based.

First, the probability that the signatures agree on one row is s, as we saw in 
Section 22.3.5. The probability that they agree on all r  rows of a given band is 
sr. The probability that they do not agree on all rows of a band is 1 — sr, and 
the probability that for none of the b bands do they agree in all rows of that 
band is (1 — sr)b. Finally, the probability that the signatures will agree in all 
rows of at least one band is 1 — (1 — sr)b. This function is the probability that 
the signatures will be compared for similiarity.

E xam ple  22.11: Suppose r  =  5 and b — 20; that is, we have signatures of 100 
integers, divided into 20 bands of five rows each. The formula for the probability 
that two signatures of similarity s will be compared becomes 1 — (1 — s5)20. 
Suppose s — 0.8; i.e., the underlying sets have Jaccard similarity 80%. s5 =
0.328. That is, the chance that the two signatures agree in a given band is small, 
only about 1/3. However, we have 20 chances to “win,” and (1 — 0.328)20 is tiny, 
only about 0.00035. Thus, the chance that we do find this pair of signatures 
together in at least one bucket is 1 — 0.00035, or 0.99965.

On the other hand, suppose s =  0.4. Then 1 — (l — (0.4)5)20 =  (1 — .Ol)20, 
or approximately 20%. If s is much smaller than 0.4, the probability that the 
signatures will be compared drops below 20% very rapidly. We conclude that 
the choice b =  20 and r  =  5 is a good one if we are looking for pairs with a very 
high similarity, say 80% or more, although it would not be a good choice if the 
similarity threshold were as small as 40%. □

Similarity s

Figure 22.11: The probability that a pair of signatures will appear together in 
at least one bucket

The function 1 — (1 — sr)b always looks like Fig. 22.11, but the point of rapid
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transition from a very small value to a value close to 1 varies, depending on b 
and r. Roughly, the breakpoint is at similarity s =  (1 /b)1/ r.

22.4.3 Combining Minhashing and Locality-Sensitive 
Hashing

The two ideas, minhashing and LSH. must be combined properly to solve the 
sort of problems we discussed in Section 22.3.2. Suppose, for example, that we 
have a large repository of documents, which we have already represented by 
their sets of shingles of some length. We want to find those documents whose 
shingle sets have a Jaccard similarity erf at least s.

1. Start by computing a minhash signature for each document; how many 
hash functions to use depends on the desired accuracy, but several hundred 
should be enough for most purposes.

2. Perform a locality-sensitive hashing to get candidate pairs of signatures 
that hash to the same bucket for at least one band. How many bands 
and how many rows per band depend on the similarity threshold s, as 
discussed in Section 22.4.2.

3. For each candidate pair, compote the estimate of their Jaccard similarity 
by counting the number of components in which their signatures agree.

4. Optionally, for each pair whose signatures are sufficiently similar, compute 
their true Jaccard similarity hr examining the sets themselves.

Of course, this method introduces false positives — candidate pairs that get 
eliminated in step (2), (3), or (4). However, the second and third steps also 
allow some false negatives — pairs with a sufficiently high Jaccard similarity 
that are not candidates or are ehminated from the candidate pool.

a) At step (2), a pair could have TCfy similar signatures, yet there happens 
to be no band in which the signatures agree in all rows of the band.

b) In step (3), a pair could have Jaccard similarity at least s, but their 
signatures do not agree in fraction * o f the components.

One way to reduce the number of false negatives is to lower the similarity 
threshold at the initial stages. At step (2), choose a smaller number of rows r or 
a larger number of bands b than would be indicated by the target similarity s. At 
step (3) choose a smaller fraction than s  of corresponding signature components 
that allows a pair to move on to step (4). Unfortunately, these changes each 
increase the number of false positives, so t o o  must consider carefully how small 
you can afford to make your thresholds.

Another possible way to avoid false negatives is to skip step (3) and go 
directly to step (4) for each candidate pair. That is, we compute the true
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Jaccard similarity of every candidate pair. The disadvantage of doing so is 
that the minhash signatures were devised to make it easier to compare the 
underlying sets. For example, if the objects being compared are actually large 
documents, comparing complete sets of Ai-shingles is far more time consuming 
than matching several hundred components of signatures.

In some applications, false negatives are not a problem, so we can tune our 
LSH to allow a significant fraction of false negatives, in order to reduce false 
positives and thus to speed up the entire process. For instance, if an on-line 
retailer is looking for pairs of similar customers, in order to select an item to 
pitch to each customer, it is not necessary to find every single pair of similar 
customers. It is sufficient to find a few very similar customers for each customer.

22.4.4 Exercises for Section 22.4
E xercise 22 .4 .1 : This exercise is based on the entity-resolution problem of 
Example 22.9. For concreteness, suppose that the only pairs records that could 
possibly be total edit distance 5 or less from each other consist of a true copy of 
a record and another corrupted version of the record. In the corrupted version, 
each of the three fields is changed independently. 50% of the time, a field has 
no change. 20% of the time, there is a change resulting in edit distance 1 for 
that field. There is a 20% chance of edit distance 2 and 10% chance of edit 
distance 10. Suppose there are one million pairs of this kind in the dataset.

a) How many of the million pairs are within total edit distance 5 of each 
other?

b) If we hash each field to a large number of buckets, as suggested by Ex
ample 22.9, how many of these one million pairs will hash to the same 
bucket for at least one of the three hashings?

c) How many false negatives will there be; that is, how many of the one 
million pairs are within total edit distance 5, but will not hash to the 
same bucket for any of the three hashings?

E xercise 22.4.2 : The function p  =  1 — (1 — sr)b gives the probability p  that 
two minhash signatures that come from sets with Jaccard similarity s will hash 
to the same bucket at least once, if we use an LSH scheme with b bands of r 
rows each. For a given similarity threshold s, we want to choose b and r  so that 
p = 1/2 at s. we suggested that approximately s =  (1 /b)1/ r is where p  =  1/2, 
but that is only an approximation. Suppose signatures have length 24. We can 
pick any integers b and r whose product is 24. That is, the choices for r  are 1,
2, 3, 4, 6, 8, 12, or 24, and b must then be 24/r.

a) If s — 1/2, determine the value of p  for each choice of b and r. Which 
would you choose, if 1/2 were the similarity threshold?

! b) For each choice of b and r, determine the value of s that makes p = 1/2.
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22.5 Clustering of Large-Scale Data
Clustering is the problem of taking a dataset consisting of “points” and grouping 
the points into some number of clusters. Points within a cluster must be “near” 
to each other in some sense, while points in different clusters are “far” from each 
other. We begin with a study of distance measures, since only if we have a notion 
of distance can we talk about whether points are near or far. An important kind 
of distance is “Euclidean,” a distance based on the location of points within a 
space. Curiously, not all distances are Euclidean, and an important problem in 
clustering is dealing with sets of points that do not “live” anywhere in a space, 
yet have a notion of distance.

We next consider the two major approaches to clustering. One, called “ag- 
glomerative,” is to start with points each in their own cluster, and repeatedly 
merge “nearby” clusters. The second, “point assignment,” initializes the clus
ters in some way and then assigns each point to its “best” cluster.

22.5.1 Applications of Clustering
Many discussions of clustering begin with a small example, in which a small 
number of points are given in a two-dimensional space, such as Fig, 22.12. Al
gorithms to cluster such data are relatively simple, and we shall mention the 
techniques only in passing. The problem becomes hard when the dataset is 
large. It becomes even harder when the number of dimensions of the data is 
large, or when the data doesn’t even belong to a space that has “dimensions.” 
Let us begin by examining some examples of interesting uses of clustering al
gorithms on large-scale data.

• # 
•  •

: :
•  •  

•  •  •

Figure 22.12: Data that can be clustered easily

C ollaborative F ilter in g

In Section 22.3.2 we discussed the problem of finding similar products or similar 
customers by looking at the set of items each customer bought. The output of 
analysis using minhashing and locality-sensitive hashing could be a set of pairs 
of similar products (those bought by many of the same customers. Alternatively,
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we could look for pairs of similar customers (those buying many of the same 
products). It may be possible to get a better picture of relationships if we 
cluster products (points) into groups of similar products. These might represent 
a natural class of products, e.g., classical-music CD’s. Likewise, we might find 
it useful to cluster customers with similar tastes; e.g., one cluster might be 
“people who like classical music.” For clustering to make sense, we must view 
the distance between points representing customers or items as “low” if the 
similarity is high. For example, we shall see in Section 22.5.2 how one minus 
the Jaccard similarity can serve as a suitable notion of “distance.”

C lustering D ocu m en ts by Topic

We could use the technique described above for products and customers to 
cluster documents based on their Jaccard similarity. However, another applica
tion of document clustering is to group documents into clusters based on their 
“topics” (e.g., topics such as “sports” or “medicine”), even if documents on 
the same topic are not very similar character-by-character. A simple approach 
is to imagine a very high-dimensional space, where there is one dimension for 
each word that might appear in the document. Place the document at point 
(x i ,x 2 , ■ ■ ■), where X{ = 1 if the ith word appears in the document and x; =  0 
if not. Distance can be taken to be the ordinary Euclidean distance, although 
as we shall see, this distance measure is not as useful as it might appear at first.

C lustering D N A  Sequences

DNA is a sequence of base-pairs, represented by the letters C, G, A, and T. 
Because these strands sometimes change by substitution of one letter for another 
or by insertion or deletion of letters, there is a natural edit-distance between 
DNA sequences. Clustering sequences based on their edit distance allows us to 
group similar sequences.

E n tity  R eso lu tion

In Section 21.7.4, we discussed an algorithm for merging records that, in effect, 
created clusters of records, where each cluster was one connected component of 
the graph formed by connecting records that met the similarity condition.

SkyC at

In this project, approximately two billion “sky objects” such as stars and galax
ies were plotted in a 7-dimensional space, where each dimension represented the 
radiation of the object in one of seven different bands of the electromagnetic 
spectrum. By clustering these objects into groups of similar radiation patterns, 
the project was able to identify approximately 20 different kinds of objects.
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Euclidean Spaces

Without going into the theory, for our purposes we may think of a Eu
clidean space as one with some number of dimensions n. The points in 
the space are all n-tuples of real numbers (x \ , x 2, ■ ■ ■ , x n). The common 
Euclidean distance is but one of many plausible distance measures in a 
Euclidean space.

22.5.2 Distance Measures
A distance measure on a set of points is a function d{x, y) that satisfies:

1. d(x,y) > 0 for all points x  and y.

2. d(x,y) =  0 if and only if x = y.

3. d(x,y) =  d(y,x) (symmetry).

4. d(x,y) < d(x,z) + d(z, y) for any points x, y, and 2 (triangle inequality).

That is, the distance from a point to itself is 0, and the distance between any 
two different points is positive. The distance between points does not depend 
on which way you travel (symmetry), and it never reduces the distance if you 
force yourself to go through a particular third point (the triangle inequality).

The most common distance measure is the Euclidean distance between 
points in an n-dimensional Euclidean space. In such a space, points can be 
represented by n coordinates x = (x-i, ■ , x n) and y — (y i, 2/2, • ■ • , yn). 
The distance d(x,y) is y/J2i=i(x i ~ Vi)2’ is, the square root of the sum 
of the squares of the differences in each dimension. However, there are many 
other ways to define distance; we shall examine some below.

D istan ces B ased  on  N orm s

In a Euclidean space, the conventional distance mentioned above is only one 
possible choice. More generally, we can define the distance

n

d(x,y) =  ( ^ 2 \ x i -  V i \ r ) 1 / r  
i= 1

for any r. This distance is said to be derived from the L r-norm. The conven
tional Euclidean distance is the case r  =  2, and is often called the L2-norm.

Another common choice is the Li-norm, that is, the sum of the distances 
along the coordinates of the space. This distance is often called the Manhattan 
distance, because it is the distance one has to travel along a rectangular grid of 
streets found in many cities such as Manhattan.



1126 CHAPTER 22. DATA MINING

Yet another interesting choice is the Loo-norm, which is the maximum of 
the distances in any one coordinate. That is, as r approaches infinity, the value 
°f Yli=1 1x i ~  Vi\r)1 r̂ approaches the maximum over all i of |Xi —yi\.

E xam ple 2 2 .12 : Let x  =  (1,2,3) and y  =  (2,4,1). Then the L a distance 
d{x,y) is v / |l  -  2|2 +  |2 — 4|2 +  |3 -  1|2 =  ^ (1  +  4 + 4) =  3. Note that this 
distance is the conventional Euclidean distance. The M anhattan distance be
tween x  and y is |1 — 2| +  |2 — 4| +  |3 — 1| =  5. The Loo-norm gives distance 
between x  and y of m ax(|l — 2|, |2 — 4|, |3 — 1|) =  2. □

Jaccard D istan ce

The Jaccard distance between points that are sets is one minus the Jaccard 
similarity of those sets. That is, if x  and y are sets, then

d(x,y) =  1 -  (\x C\ y \/\x  U y\)

For example, if the two points represent sets {1,2,3} and {2,3,4,5}, then the 
Jaccard similarity is 2/5, so the Jaccard distance is 3/5.

One might naturally ask whether the Jaccard distance satisfies the axioms 
of a distance measure. It is easy to see that d(x, x) =  0, because

1 -  (|ar D x \/\x  U  x|) =  1 — (1/1) '' 0

It is also easy to see that the Jaccard distance cannot be negative, since the 
intersection of sets cannot be bigger than their union. Symmetry of the Jac
card distance is likewise straightforward, since both union and intersection are 
commutative.

The hard part is showing the triangle inequality. Coming to our rescue is 
the theorem from Section 22.3.4 that says the Jaccard similarity of two sets 
is the probability that a random permutation will result in the same minhash 
value for those sets. Thus, the Jaccard distance is the probability that the 
sets will not have the same minhash value. Suppose x  and y have different 
minhash values according to a permutation tt . Then at least one of the pairs 
{x ,z}  and {z ,y }  must have different minhash values; possibly both do. Thus, 
the probability that x  and y have different minhash values is no greater than 
the sum of the probability that x  and z  have different minhash values plus the 
probability that 2 and y have different minhash values. These probabilities are 
the Jaccard distances mentioned in the triangle inequality. That is, we have 
shown that the Jaccard distance from x  to y is no greater than the sum of the 
Jaccard distances from x  to z  and from z to y.

C osine D istan ce

Suppose our points are in a Euclidean space. We can think of these points as 
vectors from the origin of the space. The cosine distance between two points is 
the angle between the vectors.
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The Curse of Dimensionality

Our intuition is pretty good when clustering points in one or two dimen
sions. However, when the points are in a high-dimensional space, our 
intuition goes awry in several ways. For example, suppose our points are 
in an n-dimensional hypercube of side 1. If n  =  2 (i.e., a square), there 
are many points near the center, and many near the edges. However, for 
large n, the volume of a hypercube of side just slightly less than 1 is tiny 
compared with the hypercube of side 1. That means almost every point 
in the hypercube is very near the surface. There is no “center” and no 
points to form clusters other than on the surface.

E xam ple 22.13: Suppose documents are characterized by the presence or 
absence of five words, so points (documents) are vectors of five 0’s or l ’s. Let 
(0,0,1,1,1) and (1,0,0,1,1) be the two points. The cosine of the angle between 
them is computed by taking the dot product of the vectors, and dividing by 
the product of the lengths of the vectors. In this case, the dot product is 
0 x l  +  0 x 0  +  l x 0 + l x l  +  l x l  =  0 +  0+0  +  l  +  l = 2 .  Both vectors have length 
\/3. Thus, the cosine of the angle between the vectors is 2 /(\/3  x y/S) =  2/3. 
The angle is about 48 degrees. □

Cosine distance satisfies the axioms of a distance measure, as long as points 
are treated as directions, so two vectors, one of which is a multiple of the other 
are treated as the same. Angles can only be positive, and if the angle is 0 
then the vectors must be in the same direction. Symmetry holds because the 
angle between x  and y is the same as the angle between y and x. The triangle 
inequality holds because the angle between two vectors is never greater than 
the sum of the angles between those vectors and a third vector.

E d it D istance

Various forms of edit distance satisfy the axioms of a distance measure. Let us 
focus on the edit distance that allows only insertions and deletions. If strings 
x  and y are at distance 0 (i.e., no edits are needed) then they surely must be 
the same. Symmetry follows because insertions and deletions can be reversed. 
The triangle inequality follows because one way to turn x  into y is to first turn 
x  into 2 and then turn 2 into y. Thus, the sum of the edit distances from x  to 
z and from z to y is the number of edits needed for one possible way to turn x  
into y. This number of edits cannot be less than the edit distance from x  to y ,  
which is the minimum over all possible ways to get from x  to y.
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22.5.3 Agglomerative Clustering
We shall now begin our study of algorithms for computing clusters. The first 
approach is, at the highest level, straightforward. Start with every point in 
its own cluster. Until some stopping condition is met, repeatedly find the 
“closest” pair of clusters to merge, and merge them. This methodology is called 
agglomerative or hierarchical clustering. The term “hierarchical” comes from 
the fact that we not only produce clusters, but a cluster itself has a hierarchical 
substructure that reflects the sequence of mergers that formed the cluster. The 
devil, as always, is in the details, so we need to answer two questions:

1. How do we measure the “closeness” of clusters?

2. How do we decide when to stop merging?

D efin ing  “C losen ess”

There are many ways we could define the closeness of two clusters C and D. 
Here are two popular ones:

a) Find the minimum distance between any pair of points, one from C  and 
one from D.

b) Average the distance between any pair of points, one from C  and one 
from D.

These measures of closeness work for any distance measure. If the points are in 
a Euclidean space, then we have additional options. Since real numbers can be 
averaged, any set of points in a Euclidean space has a centroid, the point that 
is the average, in each coordinate, of the points in the set. For example, the 
centroid of the set {(1,2,3), (4,5,6), (2,2,2)} is (2.33, 3, 3.67) to two decimal 
places. For Euclidean spaces, another good choice of closeness measure is:

c) The distance between the centroids of clusters C  and D.

S top p in g  th e  M erger

One common stopping criterion is to pick a number of clusters k, and keep 
merging until you are down to k clusters. This approach is good if you have an 
intuition about how many clusters there should be. For instance, if you have 
a set of documents that cover three different topics, you could merge until you 
have three clusters, and hope that these clusters correspond closely to the three 
topics.

Other stopping criteria involve a notion of cohesion, the degree to which 
the merged cluster consists of points that are all close. Using a cohesion-based 
stopping policy, we decline to merge two clusters whose combination fails to 
meet the cohesion condition that we have chosen. At each merger round, we 
may merge two clusters that are not closest of all pairs of clusters, but are closer
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than any other pair that meet the cohesion condition. We even could define 
“closeness” to be the cohesion score, thus combining the merger selection with 
the stopping criterion. Here are some ways that we could define a cohesion 
score for a cluster:

i. Let the cohesion of a cluster be the average distance of each point to the 
centroid. Note that this definition only makes sense in a Euclidean space.

ii. Let the cohesion be the diameter, the largest distance between any pair 
of points in the cluster.

in . Let the cohesion be the average distance between pairs of points in the 
cluster.

(1,5)

(3,4)

#d,2) # (6,2)
A F

•  (5,1)
D

Figure 22.13: Data for Example 22.14

E xam ple 22.14: Consider the six points in Fig. 22.13. Assume the normal 
Euclidean distance as our distance measure. We shall choose as the distance 
between clusters the minimum distance between any pair of points, one from 
each cluster. Initially, each point is in a cluster by itself, so the distances 
between clusters are just the distances between the points. These distances, to 
two decimal places, are given in Fig. 22.14

A B C D E
F 4.00 5.83 3.61 1.41 2.00
E 5.39 5.10 3.00 3.16
D 4.12 5.66 3.61
C 2.83 2.24
B 3.00

Figure 22.14: Distances between points in Fig. 22.13
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The closest two points are D  and F, so these get merged into one cluster. 
We must compute the distance between the cluster D F  and each of the other 
points. By the “closeness” rule we chose, this distance is the minimum of the 
distances from a node to D or F. The table of distances becomes:

A B C D F
E 5.39 5.10 3.00 2.00
D F 4.00 5.66 3.61
C 2.83 2.24
B 3.00

The shortest distance above is between E  and DF, so we merge these two 
clusters into a single cluster D E F . The distance to this cluster from each of 
the other points is the minimum of the distance to any of D, E, and F. This 
table of distances is:

A B C
D E F 4.00 5.10 3.00
C 2.83 2.24
B 3.00

Next, we merge the two closest clusters, which are B  and C. The new table of 
distances is:

A BC
D E F 4.00 3.00
BC 2.83

The last possible merge is A  with BC. The result is two clusters, AB C  and 
D EF.

However, we may wish to stop the merging earlier. As an example stop
ping criterion, let us reject any merger that results in a cluster with an average 
distance between points over 2.5. Then we can merge D, E, and F; the cohe
sion (average of the three distances between pairs of these points) is 2.19 (see 
Fig. 22.14 to check).

At the point where the clusters are A, BC, and D E F, we cannot merge 
A  with BC , even though these are the closest clusters. The reason is that the 
average distance among the points in A B C  is 2.69, which is too high. We might 
consider merging D E F  with BC, which is the second-closest pair of clusters at 
that time, but the cohesion for the cluster B C D E F  is 3.56, also too high. The 
third option would be to merge A  with D E F, but the cohesion of A D E F  is 
3.35, again too high. □

22.5.4 A>Means Algorithms
The second broad approach to clustering is called point-assignment. A popular 
version, which is typical of the approach is called k-means. This approach is 
really a family of algorithms, just as agglomerative clustering is. The outline 
of a fc-means algorithm is:
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1. Start by choosing k  initial clusters in some way. These clusters might be 
single points, or small sets of points.

2. For each unassigned point, place it in the “nearest” cluster.

3. Optionally, after all points are assigned to clusters, fix the centroid of each 
cluster (assuming the points are in a Euclidean space, since non-Euclidean 
spaces do not have a notion of “centroid”). Then reassign all points to 
these k clusters. Occasionally, some of the earliest points to be assigned 
will thus wind up in another cluster.

One way to initialize a ft-means clustering is to pick the first point at random. 
Then pick a second point as far from the first point as possible. Pick a third 
point whose minimum distance to either of the other two points is as great as 
possible. Proceed in this manner, until k points are selected, each with the 
maximum possible minimum distance to the previously selected points. These 
points become the initial k clusters.

E xam ple 22.15: Suppose our points are those in Fig. 22.13, k = 3, and we 
choose A  as the seed of the first cluster. The point furthest from A  is E. so 
E  becomes the seed of the second cluster. For the third point, the minimum 
distances to A or £  are as follows.

B: 3.00, C: 2.83, D : 3.16, F: 2.00

The winner is D, with the largest minimum distance of 3.16. Thus, D becomes 
the third seed. □

Having picked the seeds for the k clusters, we visit each of the remaining 
points and assign it to a cluster. A simple way is to assign each point to the 
closest seed. However, if we are in a Euclidean space, we may wish to maintain 
the centroid for each cluster, and as we assign each point, put it in the cluster 
with the nearest centroid.

E xam ple 22.16: Let us continue with Example 22.15. We have initialized 
each of the three clusters A, D, and E, so their centroids are the points them
selves. Suppose we assign B  to a cluster. The nearest centroid is A, at distance
3.00. Thus, the first cluster becomes AB, and its centroid is (1,3.5). Suppose 
we assign C next. Clearly C is closer to the centroid of A B  than it is to either 
D  or E, so C  is assigned to A B , which becomes A B C  with centroid (1.67,3.67). 
Last, we assign F; it is closer to D than to E  or to the centroid of ABC . Thus, 
the three clusters are A BC , DF, and E, with centroids (1.67,3.67), (5.5,1.5), 
and (6,4), respectively. We could reassign all points to the nearest of these 
three centroids, but the resulting clusters would not change. □
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22.5.5 /c-Means for Large-Scale Data
We shall now examine an extension of fc-means that is designed to deal with 
sets of points that are so large they cannot fit in main memory. The goal is not 
to assign every point to a cluster, but to determine where the centroids of the 
clusters are. If we really wanted to know the cluster of every point, we would 
have to make another pass through the data, assigning each point to its nearest 
centroid and writing out the cluster number with the point.

This algorithm, called the BFR Algorithm,4 assumes an n-dimensional Eu
clidean space. It may therefore represent clusters, as they are forming, by their 
centroids. The BFR Algorithm also assumes that the cohesion of a cluster can 
be measured by the variance of the points within a cluster; the variance of a 
cluster is the average square of the distance of a point in the cluster from the 
centroid of the cluster. However, for convenience, it does not record the centroid 
and variance, but rather the following 2n +  1 summary statistics:

1. N , the number of points in the cluster.

2. For each dimension i, the sum of the ith  coordinates of the points in the 
cluster, denoted SUM*.

3. For each dimension i, the sum of the squares of the ith  coordinates of the 
points in the cluster, denoted SUMSQ^.

The reason to use these parameters is that they are easy to compute when 
we merge clusters. Just add the corresponding values from the two clusters. 
However, we can compute the centroid and variance from these values. The 
rules are:

• The ith  coordinate of the centroid is SUMi/N .

• The variance in the ith  dimension is SUMSQi/iV — (SUMj/iV)2.

Also remember that ct*, the standard deviation in the ith  dimension is the 
square root of the variance in that dimension.

The BFR Algorithm reads the data one main-memory-full at a time, leaving 
space in memory for the summary statistics for the clusters and some other data 
that we shall discuss shortly. It can initialize by picking k points from the first 
memory-load, using the approach of Example 22.15. It could also do any sort of 
clustering on the first memory load to obtain k clusters from that data. During 
the running of the algorithm, points are divided into three classes:

1. The discard set: points that have been assigned to a cluster. These points 
do not appear in main memory. They are represented only by the sum
mary statistics for their cluster.

4F or th e  au th o rs , P . S. B radley, U. M. Fayyad, an d  C . R eina .
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2. The compressed set: There can be many groups of points that are suffi
ciently close to each other that we believe they belong in the same cluster, 
but they are not close to any cluster’s current centroid, so we do not know 
to which cluster they belong. Each such group is represented by its sum
mary statistics, just like the clusters are, and the points themselves do 
not appear in main memory.

3. The retained set: These points are not close to any other points; they are 
“outliers.” They will eventually be assigned to the nearest cluster, but 
for the moment we retain each such point in main memory.

These sets change as we process successive memory-loads of the data. Fig
ure 22.15 suggests the state of the data after some number of memory-loads 
have been processed by the BFR Algorithm.

A  cluster. Its po in ts are 
in  the  d iscard  set

Figure 22.15: A cluster, several compressed sets and several points of the re
tained set

22.5.6 Processing a Memory Load of Points
We shall now describe how one memory load of points is processed. We assume 
that main memory current contains the summary statistics for the k clusters 
and also for zero or more groups of points that are in the compressed set. Main 
memory also holds the current set of points in the retained set. We do the 
following steps:
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1. For all points (x i , x 2,■■■ ,x n) that are “sufficiently close” (a term we 
shall define shortly) to the centroid of a cluster, add the point to this 
cluster. The point itself goes into the discard set. We add 1 to AT in the 
summary statistics for that cluster. We also add Xi to SUM, and add x 2 
to SUMSQj for that cluster.

2. If this memory load is the last, then merge each group from the compressed 
set and each point of the retained set into its nearest cluster. Remember 
that it is easy to merge clusters and groups using their summary statistics. 
Just add the counts N , and add corresponding components of the SUM 
and SUMSQ vectors. The algorithm ends at this point.

3. Otherwise (the memory load is not the last), use any main-memory clus
tering algorithm to cluster the remaining points from this memory load, 
along with all points in the current retained set. Set a threshold on the 
cohesiveness of a cluster, so we do not merge points unless they are rea
sonably close.

4. Those points that remain in clusters of size 1 (i.e., they are not near any 
other point) become the new retained set. Clusters of more than one point 
become groups in the compressed set and are replaced by their summary 
statistics.

5. Consider merging groups in the compressed set. Use some cohesiveness 
threshold to decide whether groups are close enough; we shall discuss how 
to make this decision shortly. If they can be merged, then it is easy to 
combine their summary statistics, as in (2) above.

D ecid in g  W h eth er  a P o in t is C lose E nough  to  a C luster

Intuitively, each cluster has a size in each dimension that indicates how far 
out in that dimension typical points extend. Since we have only the summary 
statistics to work with, the appropriate statistic is the standard deviation in 
that dimension. Recall from Section 22.5.5 that we can compute the standard 
deviations from the summary statistics, and in particular, the standard devia
tion is the square root of the variance. However, clusters may be “cigar-shaped, 
so the standard deviations could vary widely. We want to include a point if its 
distance from the cluster centroid is not too many standard deviations in any 
dimension.

Thus, the first thing to do with a point p =  (x i , x 2, . . .  , x n) that we are 
considering for inclusion in a cluster is to normalize p  relative to the centroid 
and the standard deviations of the cluster. That is, we transform the point into 
P1 =  (v i, 2/2, • • ■ ,y n), where «/.; =  (xi — cij/a f, here c* is the coordinate of the 
centroid in the ith  dimension and <Ji is the standard deviation of the cluster in 
that dimension. The normalized distance of p  from the centroid is the absolute 
distance of p' from the origin, that is, y/Y l'iLi Vi2- This distance is sometimes
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called the Mahalanobis distance, although it is actually a simplifed version of 
the concept.

E xam ple 22.17: Suppose p  is the point (5,10,15), and we are considering 
whether to include p  in a cluster with centroid (10,20,5). Also, let the standard 
deviation of the cluster in the three dimensions be 1, 2, and 10, respectively. 
Then the Mahalanobis distance of p  is

y/ ((5 -  10)/1)2 +  ((10 -  20)/2 )2 +  ((15 -  5)/10)2 =  V25 +  25+  1 =  7.14

□

Having computed the Mahalanobis distance of point p, we can apply a 
threshold to decide whether or not to include p  in the cluster. For instance, 
suppose we use 3 as the threshold; that is, we shall include the point if and only 
if its Mahalanobis distance from the centroid is not greater than 3. If values axe 
normally distributed, then very few of these values will be more than 3 standard 
deviations from the mean (approximately one in a million will be that far from 
the mean). Thus, we would only reject one in a million points that belong in 
the cluster. There is a good chance that, at the end, the rejected points would 
wind up in the cluster anyway, since there may be no closer cluster.

D eciding W h e th e r to  M erge G roups o f th e  C om pressed  Set

We discussed methods of computing the cohesion of a prospective cluster in 
Section 22.5.3. However, for the BFR algorithm, these ideas must be modified 
so we can make a decision using only the summary statistics for the two groups. 
Here are some options:

1. Choose an upper bound on the sum of the variances of the combined group 
in each dimension. Recall that we compute the summary statistics for the 
combined group by adding corresponding components, and compute the 
variance in each dimension using the formula in Section 22.5.5. This 
approach has the effect of limiting the region of space in which the points 
of a group exist. Groups in which the distances between typical pairs of 
points is too large will exceed the upper bound on variance, no matter 
how many points are in the group and how dense the points are within 
the region of space the group occupies.

2. Put an upper limit on the diameter in any dimension. Since we do not 
know the locations of the points exactly, we cannot compute the exact 
diameter. However, we could estimate the diameter in the ith  dimension 
as the distance between the centroids of the two groups in dimension i 
plus the standard deviation of each group in dimension i. This approach 
also limits the size of the region of space occupied by a group.
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3. Use one of the first two approaches, but divide the figure of merit (sum 
of variances or maximum diameter) by a quantity such as N  or y/N  that 
grows with the number of points in the group. That way, groups can 
occupy more space, as long as they remain dense within that space.

22.5.7 Exercises for Section 22.5
E xercise 2 2 .5 .1 : For each pair of the points in Fig. 22.13:

a) Compute the M anhattan distance (Li-norm).

b) Compute the Loo-norm.

E xercise 2 2 .5 .2 : Show that for any r > 1, the distance based on the L r norm 
satisfies the axioms of a distance measure. What happens if r  < 1?

E xercise  2 2 .5 .3 : In Example 22.14 we performed a hierarchical clustering of 
the points in Fig. 22.13, using minimum distance between points as the measure 
of closeness of clusters. Repeat the example using each of the following ways of 
measuring the distance between clusters.

a) The distance between the centroids of the clusters.

b) The maximum distance between points, one from each cluster.

c) The average distance between points, one from each cluster.

E xercise  22 .5 .4 : We could also modify Example 22.14 by using a different 
distance measure. Suppose we use the Loo-norm as the distance measure. Note 
that this distance is the maximum of the distances along any axis, but when 
comparing distances you can break ties according to the next largest dimension. 
Show the sequence of mergers of the points in Fig. 22.13 that result from the 
use of this distance measure.

E xercise 2 2 .5 .5 : Suppose we want to select three nodes in Fig. 22.13 to start 
three clusters, and we want them to be as far from each other as possible, as in 
Example 22.15. What points are selected if we start with (a) point B  (b) point 
Cl

E xercise  2 2 .5 .6 : The BFR Algorithm represents clusters by summary statis
tics, as described in Section 22.5.5. Suppose the current members of a cluster 
are {(1,2), (3,4), (2,1), (0,5)}. W hat are the summary statistics for this clus
ter?

E xercise  2 2 .5 .7 : For the cluster described in Example 22.17, compute the 
Mahalanobis distance of the points: (a) (8,21,0) (b) (10,25,25).
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22.6 Summary of Chapter 22

♦  Data Mining: This term refers to the discovery of simple summaries of 
data.

♦  The Market-Basket Model of Data: A common way to represent a many- 
many relation is as a collection of baskets, each of which contains a set 
of items. Often, this data is presented not as a relation but as a file of 
baskets. Algorithms typically make passes through this file, and the cost 
of an algorithm is the number of passes it makes.

♦  Frequent Itemsets: An important summary of some market-basket data 
is the collection of frequent itemsets: sets of items that occur in at least 
some fixed number of baskets. The minimum number of baskets that 
make an itemset frequent is called the support threshold.

♦  Association Rules: These are statements of the form that say if a certain 
set of items appears in a basket, then there is at least some minimum 
probability that another particular item is also in that basket. The prob
ability is called the confidence of the rule.

♦  The A-Priori Algorithm: This algorithm finds frequent itemsets by ex
ploiting the fact that if a set of items occurs at least s times, then so does 
each of its subsets. For each size of itemset, we start with the candidate 
itemsets, which are all those whose every immediate subset (the set minus 
one element) is known to be frequent. We then count the occurrences of 
the candidates in a single pass, to determine which are truly frequent.

♦  The P C Y  Algorithm: This algorithm makes better use of main memory 
than A-priori does, while counting the singleton items. PCY additionally 
hashes all pairs to buckets and counts the total number of baskets that 
contain a pair hashing to each bucket. To be a candiate on the second 
pass, a pair has to consist of items that not only are frequent as singletons, 
but also hash to a bucket whose count exceeded the support threshold.

♦  The Multistage Algorithm: This algorithm improves on PCY by using 
several passes in which pairs are hashed to buckets using different hash 
functions. On the final pass, a pair can only be a candidate if it consists 
of frequent items and also hashed each time to a bucket that had a count 
at least equal to the support threshold.

♦  Similar Sets and Jaccard Similarity: Another important use of market- 
basket data is to find similar baskets, that is, pairs of baskets with many 
elements in common. A useful measure is Jaccard similarity, which is the 
ratio of the sizes of the intersection and union of the two sets.



♦  Shingling Documents: We can find similar documents if we convert each 
document into its set of fc-shingles — all substrings of k  consecutive char
acters in the document. In this manner, the problem of finding similar 
documents can be solved by any technique for finding similar sets.

♦  Minhash Signatures: We can represent sets by short signatures that en
able us to estimate the Jaccard similarity of any two represented sets. 
The technique known as minhashing chooses a sequence of random per
mutations, implemented by hash functions. Each permutation maps a set 
to the first, in the permuted order, of the members of that set, and the 
signature of the set is the list of elements that results by applying each 
permutation in this way.

♦  Minhash Signatures and Jaccard Similarity: The reason minhash signa
tures serve to represent sets is that the Jaccard similarity of sets is also 
the probability that two sets will agree on their minhash values. Thus, 
we can estimate the Jaccard similarity of sets by counting the number of 
components on which their minhash signatures agree.

♦  Locality-Sensitive Hashing: To avoid having to compare all pairs of sig
natures, locality-sensitive hashing divides the signatures into bands, and 
compares two signatures only if they agree exactly in at least one band. 
By tuning the number of bands and the number of components per band, 
we can focus attention on only the pairs that are likely to meet a given 
similarity threshold.

♦  Clustering: The problem is to find groups (clusters) of similar items 
(points) in a space with a distance measure. One approach, called agglom
erative, is to build bigger and bigger clusters by merging nearby clusters. 
A second approach is to estimate the clusters initially and assign points 
to the nearest cluster.

♦  Distance Measures: A distance on a set of points is a function that assigns 
a nonnegative number to any pair of points. The function is 0 only if the 
points are the same, and the function is commutative. It must also satisfy 
the triangle inequality.

♦  Commonly Used Distance Measures: If points occupy a Euclidean space, 
essentially a space with some number of dimensions and a coordinate 
system, we can use the ordinary Euclidean distance, or modifications such 
as the M anhattan distance (sum of the distances along the coordinates). 
In non-Euclidean spaces, we can use distance measures such as the Jaccard 
distance between sets (one minus Jaccard similiarity) or the edit distance 
between strings.

♦  BFR Algorithm: This algorithm is a variant of fc-means, where points are 
assigned to k clusters. Since the BFR Algorithm is intended for data sets 
that are two large to fit in main memory, it compresses most points into
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sets that are represented only by their count and, for each dimension, the 
sum of their coordinates and the sum of the squares of their coordinates, 
each

22.7 References for Chapter 22
Two useful books on data mining are [7] and [10].

The A-Priori Algorithm comes from [1] and [2], The PCY Algorithm is from 
[9] and the multistage algorithm is from [6].

The use of shingling and minhashing to discover similar documents is from 
[4] and the theory of minhashing is in [5]. Locality-sensitive hashing is from [8].

Clustering of non-main-memory data sets was first considered in [11]. The 
BFR Algorithm is from [3].
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Chapter 23

Database Systems and the 
Internet

The age of the World-Wide Web has had a profound effect on database tech
nology. Conventional relational databases sit behind, and power, many of the 
most important Web applications, as we discussed in Section 9.1. But Web 
applications have also forced databases to assume new forms. Often, massive 
databases are not found inside a relational DBMS, but in complex, ad-hoc file 
structures. One of the most important examples of this phenomenon is the 
way search engines manage their data. Thus, in this chapter we shall examine 
algorithms for crawling the Web and for answering search-engine queries.

Other sources of data are dynamic in nature. Rather than existing in a 
database, the data is a stream of information that must either be processed 
and stored as it arrives, or thrown away. One example is the click streams 
(sequence of URL requests) received at major Web sites. Non-Web-related 
streams of data also exist, such as the “call-detail records” generated by all the 
telephone calls traveling through a network, and data generated by satellites 
and networks of sensors. Thus, the second part of this chapter addresses the 
stream data model and the technology needed to manage massive data in the 
form of streams.

23.1 The Architecture of a Search Engine

The search engine has become one of the most important tools of the 21st 
century. The repositories managed by the major search engines are among the 
largest databases on the planet, and surely no other database is accessed so 
frequently and by so many users. In this section, we shall examine the key 
components of a search engine, which are suggested schematically in Fig. 23.1.
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Figure 23.1: The components of a search engine

23.1.1 Components of a Search Engine

There are two main functions that a search engine must perform.

1. The Web must be crawled. That is, copies of many of the pages on the 
Web must be brought to the search engine and processed.

2. Queries must be answered, based on the material gathered from the Web. 
Usually, the query is in the form of a word or words that the desired Web 
pages should contain, and the answer to a query is a ranked list of the 
pages that contain all those words, or at least some of them.

Thus, in Fig. 23.1, we see the crawler interacting with the Web and with 
the page repository, a database of pages that the crawler has found. We shall 
discuss crawling in more detail in Section 23.1.2.

The pages in the page repository are indexed. Typically, these indexes are 
inverted indexes, of the type discussed in Section 14.1.8. That is, for each word, 
there is a list of the pages that contain that word. Additional information in 
the index for the word may include its location(s) within the page or its role, 
e.g., whether the word is in the header.

We also see in Fig. 23.1 a user issuing a query that consists of one or more 
words. A query engine takes those words and interacts with the indexes, to 
determine which pages satisfy the query. These pages are then ordered by a 
ranker, and presented to the user, typically 10 at a time, in ranked order. We 
shall have more to say about the query process in Section 23.1.3.



23.1. THE ARCHITECTURE OF A SEARCH ENGINE 1143

23.1.2 Web Crawlers
A crawler can be a single machine that is started with a set S, containing the 
URL’s of one or more Web pages to crawl. There is a repository R  of pages, 
with the URL’s that have already been crawled; initially R  is empty.

A lgorithm  23.1: A Simple Web Crawler.

IN PUT: An initial set of URL’s S.

O U TPU T: A repository R  of Web pages.

M ETHOD: Repeatedly, the crawler does the following steps.

1. If S  is empty, end.

2. Select a page p from the set S  to “crawl” and delete p from S.

3. Obtain a copy of p , using its URL. If p is already in repository R, return 
to step (1) to select another page.

4. If p  is not already in R:

(a) Add p to R.
(b) Examine p  for links to other pages. Insert into S  the URL of each 

page q that p links to, but that is not already in R  or S.

5. Go to step (1).

□

Algorithm 23.1 raises several questions.

a) How do we terminate the search if we do not want to search the entire 
Web?

b) How do we check efficiently whether a page is already in repository R ?

c) How do we select a page p from S  to search next?

d) How do we speed up the search, e.g., by exploiting parallelism?

T erm ina ting  Search

Even if we wanted to search the “entire Web,” we must limit the search some
how. The reason is that some pages are generated dynamically, so when the 
crawler asks a site for a URL, the site itself constructs the page. Worse, that 
page may have URL’s that also refer to dynamically constructed pages, and 
this process could go on forever.

As a consequence, it is generally necessary to cut off the search at some 
point. For example, we could put a limit on the number of pages to crawl, and
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stop when that limit is reached. The limit could be either on each site or on 
the total number of pages. Alternatively, we could limit the depth of the crawl. 
That is, say that the pages initially in set S  have depth 1. If the page p  selected 
for crawling at step (2) of Algorithm 23.1 has depth i, then any page q that we 
add to S  at step (4b) is given depth i +  1. However, if p  has depth equal to the 
limit, then we do not examine links out of p  at all. Rather we simply add p  to 
R, if it is not already there.

M anaging th e  R ep ository

There are two points where we must avoid duplication of effort. First, when we 
add a new URL for a page q to the set S, we should check that it is not already 
there or among the URL’s of pages in R. There may be billions of URL’s in 
R  and/or S, so this job requires an efficient index structure, such as those in 
Chapter 14.

Second, when we decide to add a new page p  to R  at step (4a) of Algo
rithm 23.1, we should be sure the page is not already there. How could it be, 
since we make sure to search each URL only once? Unfortunately, the same 
page can have several different URL’s, so our crawler may indeed encounter the 
same page via different routes. Moreover, the Web contains mirror sites, where 
large collection of pages are duplicated, or nearly duplicated (e.g., each may 
have different internal links within the site, and each may refer to the other 
mirror sites). Comparing a page p  with all the pages in R  can be much too 
time-consuming. However, we can make this comparison efficient as follows:

1. If we only want to detect exact duplicates, hash each Web page to a 
signature of, say, 64 bits. The signatures themselves are stored in a hash 
table T ; i.e., they are further hashed into a smaller number of buckets, say 
one million buckets. If we are considering inserting p into R, compute the 
64-bit signature h(p), and see whether h(p) is already in the hash table T. 
If so, do not store p; otherwise, store p  in R. Note that we could get some 
false positives; it could be that h(p) is in T, yet some page other than p 
produced the same signature. However, by making signatures sufficiently 
long, we can reduce the probability of a false positive essentially to zero.

2. If we want to detect near duplicates of p, then we can store minhash signa
tures (see Section 22.3) in place of the simple hash-signatures mentioned 
in (1). Further, we need to use locality-sensitive hashing (see Section 22.4) 
in place of the simple hash table T  of option (1).

Selectin g  th e  N ex t Page

We could use a completely random choice of next page. A better strategy is to 
manage 5  as a queue, and thus do a breadth-first search of the Web from the 
starting point or points with which we initialized S. Since we presumably start 
the search from places in the Web that have “important” pages, we thus are
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assured of visiting preferentially those portions of the Web that the authors of 
these “important” pages thought were also important.

An alternative is to try to estimate the importance of pages in the set S, 
and to favor those pages we estimate to be most important. We shall take up 
in Section 23.2 the idea of PageRank as a measure of the importance that the 
Web attributes to certain pages. It is impossible to compute PageRank exactly 
while the crawl is in progress. However, a simple approximation is to count the 
number of known in-links for each page in set S. That is, each time we examine 
a link to a page q at step (4b) of Algorithm 23.1, we add one to the count of 
in-links for q. Then, when selecting the next page p  to crawl at step (2), we 
always pick one of the pages with the highest number of in-links.

S p eed in g  U p th e  Crawl

We do not need to limit ourselves to one crawling machine, and we do not 
need to limit ourselves to one process per machine. Each process that acts on 
the set of available URL’s (what we called S  in Algorithm 23.1) must lock the 
set, so we do not find two processes obtaining the same URL to crawl, or two 
processes writing the same URL into the set at the same time. If there are 
so many processes that the lock on S  becomes a bottleneck, there are several 
options.

We can assign processes to entire hosts or sites to be crawled, rather than 
to individual URL’s. If so, a process does not have to access the set of URL’s 
S  so often, since it knows no other process will be accessing the same site while 
it does.

There is a disadvantage to this approach. A crawler gathering pages at a site 
can issue page requests at a very rapid rate. This behavior is essentially a denial- 
of-service attack, where the site can do no useful work while it strives to answer 
all the crawler’s requests. Thus, a responsible crawler does not issue frequent 
requests to a single site; it might limit itself to one every several seconds. If 
a crawling process is visiting a single site, then it must slow down its rate of 
requests to the point that it is often idle. That in itself is not a problem, since 
we can run many crawling processes at a single machine. However, operating- 
system software has limits on how many processes can be alive at any time.

An alternative way to avoid bottlenecks is to partition the set 5, say by 
hashing URL’s into several buckets. Each process is assigned to select new 
URL’s to crawl from a particular one of the buckets. When a process follows 
a link to find a new URL, it hashes that URL to determine which bucket it 
belongs in. That bucket is the only one that needs to be examined to see if the 
new URL is already there, and if it is not, that is the bucket into which the 
new URL is placed.

The same bottleneck issues that arise for the set S  of active URL’s also 
come up in managing the page repository R  and its set of URL’s. The same 
two techniques — assigning processes to sites or partitioning the set of URL’s 
by hashing — serve to avoid bottlenecks in the accessing of R  as well.
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23.1.3 Query Processing in Search Engines
Search engine queries are not like SQL queries. Rather they are typically a set 
of words, for which the search engine must find and rank all pages containing all, 
or perhaps a subset of, those words. In some cases, the query can be a boolean 
combination of words, e.g., all pages that contain the word “data” or the word 
“base.” Possibly, the query may require that two words appear consecutively, 
or appear near each other, say within 5 words.

Answering queries such as these requires the use of inverted indexes. Recall 
from our discussion of Fig. 23.1 that once the crawl is complete, the indexer 
constructs an inverted index for all the words on the Web. Note that there 
will be hundreds of millions of words, since any sequence of letters and digits 
surrounded by punctuation or whitespace is an indexable word. Thus, “words” 
on the Web include not only the words in any of the world’s natural languages, 
but all misspellings of these words, error codes for all sorts of systems, acronyms, 
names, and jargon of many kinds.

The first step of query processing is to use the inverted index to determine 
those pages that contain the words in the query. To offer the user acceptable 
response time, this step must involve few, if any, disk accesses. Search engines 
today give responses in fractions of a second, an amount of time so small that 
it amounts to only a few disk-access times.

On the other hand, the vectors that represent occurrences of a single word 
have components for each of the pages indexed by the search engine, perhaps 
tens of billions of pages. Very rare words might be represented by listing their 
occurrences, but for common, or even reasonably rare words, it is more efficient 
to represent by a bit vector the pages in which they occur. The AND of bit vec
tors gives the pages containing both words, and the OR of bit vectors gives the 
pages containing one or both. To speed up the selection of pages, it is essential 
to keep as many vectors as possible in main memory, since we cannot afford 
disk accesses. Teams of machines may partition the job, say each managing the 
portion of bit vectors corresponding to a subset of the Web pages.

23.1.4 Ranking Pages
Once the set of pages that match the query is determined, these pages are 
ranked, and only the highest-ranked pages are shown to the user. The exact way 
that pages are ranked is a secret formula, as closely guarded by search engines 
as the formula for Coca Cola. One important component is the “PageRank,” a 
measure of how important the Web itself believes the page to be. This measure 
is based on links to the page in question, but is significantly more complex than 
that. We discuss PageRank in detail in Section 23.2.

Some of the other measures of how likely a page is to be a relevant response 
to the query are fairly easy to reason out. The following is a list of typical 
components of a relevance measure for pages.

1. The presence of all the query words. While search engines will return
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pages with only a proper subset of the query words, these pages are gen
erally ranked lower than pages having all the words.

2. The presence of query words in important positions in the page. For ex
ample, we would expect that a query word appearing in a title of the page 
would indicate more strongly that the page was relevant to that word than 
its mere occurrence in the middle of a paragraph. Likewise, appearance of 
the word in a header cell of a table would be a more favorable indication 
than its appearance in a data cell of the same table.

3. Presence of several query words near each other would be a more favorable 
indication than if the words appeared in the page, but widely separated. 
For example, if the query consists of the words “sally” and “jones,” we are 
probably looking for pages that mention a certain person. Many pages 
have lists of names in them. If “sally” and “jones” appear adjacent, or 
perhaps separated by a middle initial, then there is a better chance the 
page is about the person we want than if “sally” appeared, but nowhere 
near “jones.” In that case, there are probably two different people, one 
with first name Sally, and the other with last name Jones.

4. Presence of the query words in or near the anchor text in links leading 
to the page in question. This insight was one of the two key ideas that 
made the Google search engine the standard for the field (the other is 
PageRank, to be discussed next). A page may lie about itself, by using 
words designed to make it appear to be a good answer to a query, but it 
is hard to make other people confirm your lie in their own pages.

23.2 PageRank for Identifying Important Pages
One of the key technological advances in search is the PageRank1 algorithm for 
identifying the “importance” of Web pages. In this section, we shall explain 
how the algorithm works, and show how to compute PageRank for very large 
collections of Web pages.

23.2.1 The Intuition Behind PageRank
The insight that makes Google and other search engines able to return the 
“important” pages on a topic is that the Web itself points out the important 
pages. When you create a page, you tend to link that page to others that you 
think are important or valuable, rather than pages you think are useless. Of 
course others may differ in their opinions, but on balance, the more ways one 
can get to a page by following links, the more likely the page is to be important.

We can formalize this intuition by imagining a random walker on the Web. 
At each step, the random walker is at one particular page p  and randomly

'A f te r  L arry  Page, w ho first p roposed th e  a lgorithm .
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picks one of the pages that p  links to. At the next step, the walker is at the 
chosen successor of p. The structure of the Web links determines the long- 
run probability that the walker is at each individual page. This probability is 
termed the PageRank of the page.

Intuitively, pages that a lot of other pages point to are more likely to be 
the location of the walker than pages with few in-links. But all in-links are not 
equal. It is better for a page to have a few links from pages that themselves are 
likely places for the walker to be than to have many links from pages that the 
walker visits infrequently or not at all. Thus, it is not sufficient to count the 
in-links to compute the PageRank. Rather, we must solve a recursive equation 
that formalizes the idea:

• A Web page is important if many important pages link to it.

23.2.2 Recursive Formulation of PageRank —  First Try
To describe how the random walker moves, we can use the transition matrix of 
the Web. Number the pages 1 ,2 ,. ..  ,n . The matrix M , the transition matrix 
of the Web has element m y in row i and column j ,  where:

1. rriij =  1 /r if page j  has a link to page i, and there are a total of r  > 1 
pages that j  links to.

2. m y =  0 otherwise.

If every page has at least one link out, then the transition matrix will be (left) 
stochastic — elements are nonnegative, and its columns each sum to exactly 1. 
If there are pages with no links out, then the column for that page will be all 
0’s, and the transition matrix is said to be substochastic (all columns sum to at 
most 1).

E xam p le 2 3 .2 : As we all know, the Web has been growing exponentially, so 
if you extrapolate back to 1839, you find that the Web consisted of only three 
pages. Figure 23.2 shows what the Web looked like in 1839.

We have numbered the pages 1, 2, and 3, so the transition matrix for this 
graph is:

For example, node 3, the page for Microsoft, links only to node 2, the page for 
Amazon. Thus, in column 3, only row 2 is nonzero, and its value is 1 divided 
by the number of out-links of node 3, which is 1. As another example, node 1, 
Yahoo!, links to itself and to Amazon (node 2). Thus, in column 1, row 3 is 0, 
and rows 1 and 2 are each 1 divided by the number of out-links from node 1,
i.e., 1/2. □

■ 1/2  
M =  1/2  

0

1/2 0 

0 1 
1 /2  0



23.2. PAGERANK FOR IDENTIFYING IMPORTANT PAGES 1149

PageRank Combats Spam

Before Google and PageRank, search engines had a great deal of trouble 
recognizing important pages on the Web. It was common for unscrupulous 
Web sites (“spammers”) to put bogus content on their pages, often in 
ways that could not be seen by users, but that search engines would see 
in the text of the page (e.g., by making the writing have the same color 
as the background). If Google had simply counted in-links to measure 
the importance of pages, then the spammers could have created massive 
numbers of other bogus pages that linked to the page they wanted the 
search engines to think was important. However, simply creating a page 
doesn’t give it much PageRank, since truly important pages are unlikely 
to link to it. Thus, PageRank defeated the spammers of the day.

Interestingly, the war between spammers and search engines contin
ues. The spammers eventually learned how to increase the PageRank of 
bogus pages, which led to techniques for combating new forms of spam, 
often called “link spam.” We shall address link spam in Section 23.3.3.

Suppose y, a, and m  represent the fractions of the time the random walker 
spends at the three pages of Fig. 23.2. Then multiplying the column-vector of 
these three values by M  will not change their values. The reason is that, after 
a large number of moves, the walker’s distribution of possible locations is the 
same at each step, regardless where the walker started. That is, the unknowns 
y, a, and m  must satisfy:

y ■ 1/2 1/2
a — 1/2 0
m 0 1/2

0 ' ’ y
1 a
0 m

Although there are three equations in three unknowns, you cannot solve these 
equations for more than the ratios of y, a, and m. That is, if [y. a, m] is a 
solution to the equations, then [cy, ca, cm] is also a solution, for any constant 
c. However, since y, a, and m  form a probability distribution, we also know 
y + a +  m  = 1.

While we could solve the resulting equations without too much trouble, 
solving large numbers of simultaneous linear equations takes time 0 (n 3), where 
n  is the number of variables or equations. If n is in the billions, as it would be 
for the Web of today, it is utterly infeasible to solve for the distribution of the 
walker’s location by Gaussian elimination or another direct solution method. 
However, we can get a good approximation by the method of relaxation, where 
we start with some estimate of the solution and repeatedly multiply the estimate 
by the matrix M . As long as the columns of M  each add up to 1, then the sum 
of the values of the variables will not change, and eventually they converge to
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Figure 23.2: The Web in 1839

the distribution of the walker’s location. In practice, 50 to 100 iterations of this 
process suffice to get very close to the exact solution.

E xam ple 23.3: Suppose we start with [y,a,m] = [1/3,1/3,1/3]. Multiply 
this vector by M  to get

2/6 ' ' 1/2 1/2 0 ‘ ' 1/3 1
3/6 = 1/2 0 1 1/3
1/6 0 1/2 0 1/3

At the next iteration, we multiply the new estimate [2/6,3/6,1/6] by M , as:

5/12 ' ' 1/2 1/2 0 ‘ ' 2/6 '
4/12 = 1/2 0 1 3/6
3/12 0 1/2 0 1/6

If we repeat this process, we get the following sequence of vectors:

9/24 ' ' 20/48 ' ' 2/5 '
11/24 > 17/48 5 * * * 5 2/5
4/24 11/48

.  VS .

That is, asymptotically, the walker is equally likely to be at Yahoo! or Amazon, 
and only half as likely to be at Microsoft as either one of the other pages. □

23.2.3 Spider Traps and Dead Ends
The graph of Fig. 23.2 is atypical of the Web, not only because of its size, but 
for two structural reasons:
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1. Some Web pages (called dead ends) have no out-links. If the random 
walker arrives at such a page, there is no place to go next, and the walk 
ends.

2. There are sets of Web pages (called spider traps) with the property that 
if you enter that set of pages, you can never leave, because there are no 
links from any page in the set to any page outside the set.

Any dead end is, by itself, a spider trap. However, one also finds on the Web 
spider traps all of whose pages have out-links. For example, any page that links 
only to itself is a spider trap.

If a spider trap can be reached from outside, then the random walker may 
wind up there eventually, and never leave. Put another way, applying relaxation 
to the matrix of the Web with spider traps can result in a limiting distribution 
where all probabilities outside a spider trap are 0.

Figure 23.3: The Web, if Microsoft becomes a spider trap

E xam ple 23.4: Suppose Microsoft decides to link only to itself, rather than 
Amazon, resulting in the Web of Fig. 23.3. Then the set of pages consisting of 
Microsoft alone is a spider trap, and that trap can be reached from either of 
the other pages. The matrix M  for this Web graph is

'  1/2  1 /2  0 
M  =  1/2 0 0 

0 1 /2  1

Here is the sequence of approximate distributions that is obtained if we start, as 
we did in Example 23.3, with [y, a, m] — [1/3,1/3,1/3] and repeatedly multiply 
by the matrix M  for Fig. 23.3:

r 1/3 ' 2/6 ' ' 3/12 ' 5/24 ' 8/48 ' ' 0 '
1/3 > 1/6 5 2/12 5 3/24 5/48 ) * * * ? 0
1/3 3/6 7/12 16/24 35/48 1
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That is, with probability 1, the walker will eventually wind up at the Microsoft 
page and stay there. □

If we interpret these PageRank probabilities as “importance” of pages, then 
the Microsoft page has gathered all importance to itself simply by choosing 
not to link outside. That situation intuitively violates the principle that other 
pages, not you yourself, should determine your importance on the Web. The 
other problem we mentioned — dead ends — also cause the PageRank not to 
reflect importance of pages, as we shall see in the next example.

Figure 23.4: Microsoft becomes a dead end

E xam ple  23.5: Suppose that instead of linking to itself, Microsoft links no
where, as suggested in Fig. 23.4. The matrix M  for this Web graph is

M  =
1 /2  1 /2  0 
1 /2  0 0 

0 1 /2  0

Notice that this matrix is not stochastic, because its columns do not all add up 
to 1. If we try to apply the method of relaxation to this matrix, with initial 
vector [1/3,1/3,1/3], we get the sequence:

r 1/3 ] '.2 /6  ‘ ‘ 3/12 ‘ ' 5/24 ‘ ' 8/48 ' ' 0 ‘
1/3 J 1/6 2/12 > 3/24 5 5/48 ,  .  .  .  , 0
1/3 .  1/6 . 1/12 2/24 3/48 0

That is, the walker will eventually arrive at Microsoft, and at the next step has 
nowhere to go. Eventually, the walker disappears. □
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23.2.4 PageRank Accounting for Spider Traps and Dead 
Ends

The solution to both spider traps and dead ends is to limit the time the random 
walker is allowed to wander at random. We pick a constant (3 < 1, typically 
in the range 0.8 to 0.9, and at each step, we let the walker follow a random 
out-link, if there is one, with probability /3. With probability 1 — f3 (called the 
taxation rate) , we remove that walker and deposit a new walker at a randomly 
chosen Web page. This modification solves both problems.

• If the walker gets stuck in a spider trap, it doesn’t matter, because after 
a few time steps, that walker will disappear and be replaced by a new 
walker.

• If the walker reaches a dead end and disappears, a new walker will take 
over shortly.

E xam ple 23.6: Let us use f i = 0.8 and reformulate the calculation of Page- 
Rank for the Web of Fig. 23.3. If p n e w and p m  are the new and old distributions 
of the location of the walker after one iteration, the relationship between these 
two can be expressed as:

■ 1/2 1/2 0 ' ' 1/3 '
P n ew — 0.8 1/2 0 0 P old 0*2 1/3

0 1/2 1 1/3

That is, with probability 0.8, we multiply p 0u  by the matrix of the Web to get 
the new location of the walker, and with probability 0.2 we start with a new 
walker at a random place. If we start with p 0M = [1/3,1/3,1/3] and repeatedly 
compute p new and then replace p 0id by Pnew, we get the following sequence of 
approximations to the asymptotic distribution of the walker:

' .333 ‘ ' .333 ' ' .280 ‘ ' .259 ' 7/33 '
.333 5 .200 > .200 1 .179 , . . .  , 5/33
.333 .467 .520 .563 21/33

Notice that Microsoft, because it is a spider trap, gets a large share of the im
portance. However, the effect of the spider trap has been mitigated considerably 
by the policy of redistributing the walker with probability 0.2. □

The same idea fixes dead ends as well as spider traps. The resulting matrix 
that describes transitions is substochastic, since a column will sum to 0 if there 
are no out-links. Thus, there will be a small probability that the walker is 
“nowhere” at any given time. That is, the sums of the probabilities of the 
walker being at each of the pages will be less than one. However, the relative 
sizes of the probabilities will still be a good measure of the importance of the 
page.
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Teleportation of Walkers

Another view of the random-walking process is that there are no “new” 
walkers, but rather the walker teleports to a random page with probability 
1—/?. For this view to make sense, we have to assume that if the walker is at 
a dead end, then the probability of teleport is 100%. Equivalently, we can 
scale up the probabilities to sum to one at each step of the iteration. Doing 
so does not affect the ratios of the probabilities, and therefore the relative 
PageRank of pages remains the same. For instance, in Example 23.7, the 
final pageRank vector would be [35/81,25/81,21/81],

E xam ple  23.7: Let us reconsider Example 23.5, using f3 =  0.8. The formula 
for iteration is now:

‘  1/2 1/2 0 ' r 1/3
P n e w — 0.8 1/2 0 0 P old +  0.2 1/3

0 1/2 0 1/3

Starting with p 0u  =  [1/3,1/3,1/3], we get the following sequence of approxi
mations to the asymptotic distribution of the walker:

' .333 ‘ ' .333 ' ' .280 ‘ ' .259 ' ' 35/165 ‘
.333 J .200 J .200 > .179 ,  .  .  .  , 25/165
.333 .200 .147 .147 21/165

Notice that these probabilities do not sum to one, and there is slightly more than 
50% probability that the walker is “lost” at any given time. However, the ratio 
of the importances of Yahoo!, and Amazon are the same as in Example 23.6. 
That makes sense, because in neither Fig. 23.3 nor Fig. 23.4 are there links 
from the Microsoft page to influence the importance of Yahoo! or Amazon. □

23.2.5 Exercises for Section 23.2
E xercise 23 .2 .1 : Compute the PageRank of the four nodes in Fig. 23.5, as
suming no “taxation.”

E xercise 23 .2 .2 : Compute the PageRank of the four nodes in Fig. 23.5, as
suming a taxation rate of: (a) 10% (b) 20%.

E xercise 23.2 .3 : Repeat Exercise 23.2.2 for the Web graph of

i. Fig. 23.6.

ii. Fig. 23.7.



23.2. PAGERANK FOR IDENTIFYING IM PORTANT PAGES 1155

Figure 23.5: A Web graph with no dead-ends or spider traps

Figure 23.7: A Web graph with a spider trap
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! Exercise 23.2 .4 : Suppose that we want to use the map-reduce framework 
of Section 20.2 to compute one iteration of the PageRank computation. That 
is, we are given data that represents the transition matrix of the Web and 
the current estimate of the PageRank for each page, and we want to compute 
the next estimate by multiplying the old estimate by the matrix of the Web. 
Suppose it is possible to break the data into chunks that correspond to sets of 
pages — that is, the PageRank estimates for those pages and the columns of the 
matrix for the same pages. Design map and reduce functions that implement 
the iteration, so that the computation can be partitioned onto any number of 
processors.

23.3 Topic-Specific PageRank
The calculation of PageRank is unbiased as to the content of pages. However, 
there are several reasons why we might want to bias the calculation to favor 
certain pages. For example, suppose we axe interested in answering queries only 
about sports. We would want to give a higher PageRank to a page that discusses 
some sport than we would to another page that had similar links from the Web, 
but did not discuss sports. Or, we might want to detect and eliminate “spam” 
pages — those that were placed on the Web only to increase the PageRank of 
some other pages, or which were the beneficiaries of such planned attempts to 
increase PageRank illegitimately.

In this section, we shall show how to modify the PageRank computation to 
favor pages of a certain type. We then show how the technique yields solutions 
to the two problems mentioned above.

23.3.1 Teleport Sets
In Section 23.2.4, we “taxed” each page 1 — fi of its estimated PageRank and 
distributed the tax equally among all pages. Equivalently, we allowed random 
walkers on the graph of the Web to choose, with probability 1 — fi, to teleport 
to a randomly chosen page. We axe forced to have some taxation scheme in 
any calculation of PageRank, because of the presence of dead-ends and spider 
traps on the Web. However, we are not obliged to distribute the tax (or random 
walkers) equally. We could, instead, distribute the tax or walkers only among 
a selected set of nodes, called the teleport set. Doing so has the effect not only 
of increasing the PageRank of nodes in the teleport set, but of increasing the 
PageRank of the nodes they link to, and with diminishing effect, the nodes 
reachable from the teleport set by paths of lengths two, three, and so on.

E xam ple 23.8: Let us reconsider the original Web graph of Fig. 23.2, which 
we reproduce here as Fig. 23.8. Assume we are interested only in retail sales, so 
we chose a teleport set that consists of Amazon alone. We shall use fi — 0.8, i.e., 
a taxation rate of 20%. If y, a, and m  are variables representing the PageRanks
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Figure 23.8: Web graph for Example 23.8

of Yahoo!, Amazon, and Microsoft, respectively, then the equations we need to 
solve are:

y " ■ 1/2 1/2 0 ‘ y ' 0
a =  0.8 1/2 0 1 a +  0.2 1
m 0 1/2 0 m 0

The vector [0,1,0] added at the end represents the fact that all the tax is 
distributed equally among the members of the teleport set. In this case, there 
is only one member of the teleport set, so the vector has 1 for that member 
(Amazon) and 0’s elsewhere. We can solve the equations by relaxation, as we 
have done before. However, the example is small enough to apply Gaussian 
elimination and get the exact solution; it is y =  10/31, a — 15/31, and m =  
6/31. The expected thing has happened; the PageRank of Amazon is elevated, 
because it is a member of the teleport set. □

The general rule for setting up the equations in a topic-specific PageRank 
problem is as follows. Suppose there are k pages in the teleport set. Let t  be a 
column-vector that has l / k  in the positions corresponding to members of the 
teleport set and 0 elsewhere. Let 1 — fi be the taxation rate, and let M  be the 
transition matrix of the Web. Then we must solve by relaxation the following 
iterative rule:

P  new — +  (1 / )̂^

Example 23.8 was an illustration of this process, although we set both p„ew 
and p 0u  to [y,a,m\ and solved for the fixedpoint of the equations, rather than 
iterating to converge to the solution.
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23.3.2 Calculating A Topic-Specific PageRank
Suppose we had a set of pages that we were certain were about a particular 
topic, say sports. We make these pages the teleport set, which has the effect of 
increasing their PageRank. However, it also increases the PageRank of pages 
linked to by pages in the teleport set, the pages linked to by those pages, and 
so on. We hope that many of these pages are also about sports, even if they 
are not in the teleport set. For example, the page mlb.com, the home page 
for major-league baseball, would probably be in the teleport set for the sports 
topic. That page links to many other pages on the same site — pages that sell 
baseball-related products, offer baseball statistics, and so on. It also links to 
news stories about baseball. All these pages are, in some sense, about sports.

Suppose we issue a search query “batter.” If the PageRank that the search 
engine uses to rank the importance of pages were the general PageRank (i.e., 
the version where all pages are in the teleport set), then we would expect to 
find pages about baseball batters, but also cupcake recipes. If we used the 
PageRank that is specific to sports, i.e., one where only sports pages are in 
the teleport set, then we would expect to find, among the top-ranked pages, 
nothing about cupcakes, but only pages about baseball or cricket.

It is not hard to reason that the home page for a major-league sport will be 
a good page to use in the teleport set for sports. However, we might want to be 
sure we got a good sample of pages that were about sports into our teleport set, 
including pages we might not think of, even if we were an expert on the subject. 
For example, starting at major-league baseball might not get us to pages for the 
Springfield Little League, even though parents in Springfield would want that 
page in response to a search involving the words “baseball” and “Springfield.” 
To get a larger and wider selection of pages on sports to serve as our teleport 
set, some approaches are:

1. Start with a curated selection of pages. For example, the Open Directory 
(www.dmoz.org) has human-selected pages on sixteen topics, including 
sports, as well as many subtopics.

2. Learn the keywords that appear, with unusually high frequency, in a small 
set of pages on a topic. For instance if the topic were sports, we would 
expect words like “ball,” “player,” and “goal” to be among the selected 
keywords. Then, examine the entire Web, or a larger subset thereof, to 
identify other pages that also have unusually high concentrations of some 
of these keywords.

The next problem we have to solve, in order to use a topic-specific Page- 
Rank effectively, is determining which topic the user is interested in. Several 
possibilities exist.

a) The easiest way is to ask the user to select a topic.

b) If we have keywords associated with different topics, as described in (2) 
above, we can try to discover the likely topic on the user’s mind. We can
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examine pages that we think are important to the user, and find, in these 
pages, the frequency of keywords that are associated with each of the 
topics. Topics whose keywords occur frequently in the pages of interest 
are assumed to be the preference(s) of the user. To find these “pages of 
interest,” we might:

i. Look at the pages the user has bookmarked.
ii. Look at the pages the user has recently searched.

23.3.3 Link Spam
Another application of topic-specific PageRank is in combating “link spam.” 
Because it is known that many search engines use PageRank as part of the 
formula to rank pages by importance, it has become financially advantageous to 
invest in mechanisms to increase the PageRank of your pages. This observation 
spawned an industry: spam farming. Unscrupulous individuals create networks 
of millions of Web pages, whose sole purpose is to accumulate and concentrate 
PageRank on a few pages.

Links from 
outside

Figure 23.9: A spam farm concentrates PageRank in page T

A simple structure that accumulates PageRank in a target page T  is shown 
in Fig. 23.9. Suppose that, in a PageRank calculation with taxation 1 — fi, 
the pages shown in the bottom row of Fig. 23.9 get, from the outside, a total 
PageRank of r, and let the total PageRank of these pages be x. Also, let the 
PageRank of page T  be t. Then, in the limit, t  =  fix, because T  gets all the 
PageRank of the other pages, except for the tax. Also, x  = r + fit, because the 
other pages collectively get r  from the outside and a total of fit from T. If we 
solve these equations for t, we get t = fir /( l  — fi2). For instance, if fi — .85, then 
we have amplified the external PageRank by factor 0 .85/(l — (0.85)2) =  3.06. 
Moreover, we have concentrated this PageRank in a single page, T.

Of course, if r — 0 then T  still gets no PageRank at all. In fact, it is cut off 
from the rest of the Web and would be invisible to search engines. However, it is 
not hard for spam farmers to get a reasonable value for r. As one example, they 
create links to the spam farm from publicly accessible blogs, with messages like 
“I agree with you. See xl23456.mySpamFarm.com.” Moreover, if the number
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of pages in the bottom row is large, and the “tax” is distributed among all 
pages, then r will include the share of the tax that is given to these pages. 
That is why spam farmers use many pages in their structure, rather than just 
one or two.

23.3.4 Topic-Specific PageRank and Link Spam
A search engine needs to detect pages that are on the Web for the purpose of 
creating link spam. A useful tool is to compute the TrustRank of pages. Al
though the original definition is somewhat different, we may take the TrustRank 
to be the topic-specific PageRank computed with a teleport set consisting of 
only “trusted” pages. Two possible methods for selecting the set of trusted 
pages are:

1. Examine pages by hand and do an evaluation of their role on the Web. 
It is hard to automate this process, because spam farmers often copy 
the text of perfectly legitimate pages and populate their spam farm with 
pages containing that text plus the necessary links.

2. Start with a teleport set that is likely to contain relatively little spam. 
For example, it is generally believed that the set of university home pages 
form a good choice for a widely distributed set of trusted pages. In fact, 
it is likely that modern search engines routinely compute PageRank using 
a teleport set similar to this one.

Either of these approaches tends to assign lower PageRank to spam pages, 
because it is rare that a trusted page would link to a spam page. Since 
TrustRank, like normal PageRank, is computed with a positive taxation factor
1 — /3, the trust imparted by a trusted page attenuates, the further we get from 
that trusted page. The TrustRank of pages may substitute for PageRank, when 
the search engine chooses pages in response to a query. So doing reduces the 
likelihood that spam pages will be offered to the queryer.

Another approach to detecting link-spam pages is to compute the spam mass 
of pages as follows:

a) Compute the ordinary PageRank, that is, using all pages as the teleport 
set.

b) Compute the TrustRank of all pages, using some reasonable set of trusted 
pages.

c) Compute the difference between the PageRank and TrustRank for each 
page. This difference is the negative TrustRank.

d) The spam mass of a page is the ratio of its negative TrustRank to its 
ordinary PageRank, that is, the fraction of its PageRank that appears to 
come from spam farms.
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While TrustRank alone can bias the PageRank to minimize the effect of link 
spam, computing the spam mass also allows us to see where the link spam is 
coming from. Sites that have many pages with high spam mass may be owned 
by spam farmers, and a search engine can eliminate from its database all pages 
from such sites.

23.3.5 Exercises for Section 23.3
E xercise 23.3.1: Compute the topic-specific PageRank for Fig. 23.5, assum
ing

a) Only A  is in the teleport set.

b) The teleport set is {A ,B }.

Assume a taxation rate of 20%.

E xercise 23.3 .2 : Repeat Exercise 23.3.1 for the graph of Fig. 23.6.

Exercise 23.3 .3 : Repeat Exercise 23.3.1 for the graph of Fig. 23.7.

!! Exercise 23.3.4: Suppose we fix the taxation rate and compute the topic- 
specific PageRank for a graph G, using only node a as the teleport set. We 
then do the same using only another node b as the teleport set. Prove that 
the average of these PageRanks is the same as what we get if we repeated the 
calculation with {a, 6} as the teleport set.

!! E xercise 23.3 .5 : What is the generalization of Exercise 23.3.4 to a situation 
where there are two disjoint teleport sets Si and S2, perhaps with different 
numbers of elements? That is, suppose we compute the PageRanks with just 
Si and then just S2 as the teleport sets. How could we use these results to 
compute the PageRank with Si U 52 as the teleport set?

23.4 Data Streams
We now turn to an extension of the ideas contained in the traditional DBMS to 
deal with data streams. As the Internet has made communication among ma
chines routine, a class of applications has developed that stress the traditional 
model of a database system. Recall that a typical database system is primarily 
a repository of data. Input of data is done as part of the query language or a 
special data-load utility, and is assumed to occur at a rate controlled by the 
DBMS.

However, in some applications, the inputs arrive at a rate the DBMS cannot 
control. For example, Yahoo! may wish to record every “click,” that is, every 
page request made by any user anywhere. The sequence of URL’s representing 
these requests arrive at a very high rate that is determined only by the desires 
of Yahoo!’s customers.
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23.4.1 Data-Stream-Management Systems
If we are to allow queries on such streams of data, we need some new mecha
nisms. While we may be able to store the data on high-rate streams, we cannot 
do so in a way that allows instantaneous queries using a language like SQL. 
Further, it is not even clear what some queries mean; for instance, how can we 
take the join of two streams, when we never can see the completed streams? 
The rough structure of a data-stream-management system (DSMS) is shown in 
Fig. 23.10.

Ad-hoc
Queries Results

Results of
Standing
Queries

The system accepts data streams as input, and also accepts queries. These 
queries may be of two kinds:

1. Conventional ad-hoc queries.

2. Standing queries that are stored by the system and run on the input 
stream(s) at all times.

E xam ple 23.9: Whether ad-hoc or standing, queries in a DSMS need to be 
expressed so they can be answered using limited portions of the streams. As 
an example, suppose we are receiving streams of radiation levels from sensors 
around the world. While the DSMS cannot store and query streams from 
arbitrarily far back in time, it can store a sliding window of each input stream. It 
might be able to keep on disk, in the “working storage” referred to in Fig. 23.10, 
all readings from all sensors for the past 24 hours. Data from further back 
in time could be dropped, could be summarized (e.g., replaced by the daily 
average), or copied in its entirety to the permanent store (archive).
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An ad-hoc query might ask for the average radiation level over the past hour 
for all locations in North Korea. We can answer this query, because we have all 
data from all streams over the past 24 hours in our working store. A standing 
query might ask for a notification if any reading on any stream exceeds a certain 
limit. As each data element of each stream enters the system, it is compared 
with the threshold, and an output is made if the entering value exceeds the 
threshold. This sort of query can be answered from the streams themselves, 
although we would need to examine the working store if, say, we asked to be 
alerted if the average over the past 5 minutes for any one stream exceeded the 
threshold. □

23.4.2 Stream Applications

Before addressing the mechanics of data-stream-management systems, let us 
look at some of the applications where the data is in the form of a stream or 
streams.

1. Click Streams. As we mentioned, a common source of streams is the clicks 
by users of a large Web site. A Web site might wish to analyze the clicks 
it receives for a number of reasons; an increase in clicks on a link may 
indicate that link is broken, or that it has become of much more interest 
recently. A search engine may want to analyze clicks on the links to ads 
that it shows, to determine which ads are most attractive.

2. Packet Streams. We may wish to analyze the sources and destinations of 
IP packets that pass through a switch. An unusual increase in packets for 
a destination may warn of a denial-of-service attack. Examination of the 
recent history of destinations may allow us to predict congestion in the 
network and to reroute packets accordingly.

3. Sensor Data. We also mentioned a hypothetical example of a network 
of radiation sensors. There are many kinds of sensors whose outputs 
need to be read and considered collectively, e.g., tsunami warning sensors 
that record ocean levels at subsecond frequencies or the signals that come 
from seismometers around the world, recording the shaking of the earth. 
Cities that have networks of security cameras can have the video from 
these cameras read and analyzed for threats.

4. Satellite Data. Satellites send back to earth incredible streams of data, 
often petabytes per day. Because scientists are reluctant to throw any 
of this data away, it is often stored in raw form in archival memory sys
tems. These are half-jokingly referred to as “write-only memory.” Useful 
products are extracted from the streams as they arrive and stored in 
more accessible storage places or distributed to scientists who have made 
standing requests for certain kinds of data.
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5. Financial Data. Trades of stocks, commodities, and other financial instru
ments are reported as a stream of tuples, each representing one financial 
transaction. These streams are analyzed by software that looks for events 
or patterns that trigger actions by traders. The most successful traders 
have access to the largest amount of data and process it most quickly, 
because opportunities involving stock trades often last for only fractions 
of a second.

23.4.3 A Data-Stream Data Model
We shall now offer a data model useful for discussing algorithms on data 
streams. First, we shall assume the following about the streams themselves:

• Each stream consists of a sequence of tuples. The tuples have a fixed 
relation schema (list of attributes), just as the tuples of relations do. 
However, unlike relations, the sequence of tuples in a stream may be 
unbounded.

• Each tuple has an associated arrival time, at which time it becomes avail
able to the data-stream-management system for processing. The DSMS 
has the option of placing it in the working storage or in the permanent 
storage, or of dropping the tuple from memory altogether. The tuple may 
also be processed in simple ways before storing it.

For any stream, we can define a sliding window (or just “window”), which is 
a set consisting of the most recent tuples to arrive. A window can be time-based 
with a constant r ,  in which case it consists of the tuples whose arrival time is 
between the current time t and t — r. Or, a window can be tuple-based, in which 
case it consists of the most recent n  tuples to arrive, for some fixed n.

We shall describe windows on a stream 5  by the notation S  [PF], where W  
is the window description, either:

1. Rows n, meaning the most recent n tuples of the stream, or

2. Range r ,  meaning all tuples that arrived within the previous amount of 
time r.

E xam ple  23.10: Let Sensors(sensID , temp, tim e) be a stream, each of 
whose tuples represent a temperature reading of temp at a certain tim e by the 
sensor named sensID. It might be more common for each sensor to produce its 
own stream, but all readings could also be merged into one stream if the data 
were accumulated outside the data-stream-management system. The expression

Sensors [Rows 1000]

describes a window on the Sensors stream consisting of the most recent 1000 
tuples. The expression



23.4. DATA STREAM S 1165

Sensors [Range 10 Seconds]

describes a window on the same stream consisting of all tuples that arrived in 
the past 10 seconds. □

23.4.4 Converting Streams Into Relations
Windows allow us to convert streams into relations. That is, the window ex
pressions as in Example 23.10 describe a relation at any time. The contents 
of the relation typically changes rapidly. For example, consider the expression 
Sensors [Rows 1000] . Each time a new tuple of Sensors arrives, it is inserted 
into the described relation, and the oldest of the tuples is deleted. For the ex
pression Sensors [Range 10 Seconds], we must insert tuples of the stream 
when they arrive and delete tuples 10 seconds after they arrive.

Window expressions can be used like relations in an extended SQL for 
streams. The following example suggests what such an extended SQL looks 
like.

E xam ple 23.11: Suppose we would like to know, for each sensor, the highest 
recorded temperature to arrive at the DSMS in the past hour. We form the 
appropriate time-based window and query it as if it were an ordinary relation. 
The query looks like:

SELECT sensID, MAX(temp)
FROM Sensors [Range 1 Hour]
GROUP BY sensID;

This query can be issued as an ad-hoc query, in which case it is executed 
once, based on the window that exists at the instant the query is issued. Of 
course the DSMS must have made available to the query processor a window 
on Sensors of at least one hour’s length.2 The same query could be a standing 
query, in which case the current result relation should be maintained as if it 
were a materialized view that changes from time to time. In Section 23.4.5 
we shall consider an alternative way to represent the result of this query as a 
standing query. □

Window relations can be combined with other window relations, or with 
“ordinary” relations — those that do not come from streams. An example will 
suggest what is possible.

E xam ple 23.12: Suppose that our DSMS has the stream Sensors as an input 
stream and also maintains in its working storage an ordinary relation

Calibrate(sensID, mult, add)
2S tric tly  speak ing , th e  DSM S only needs to  have re ta in ed  enough in fo rm ation  to  answ er 

th e  query. For exam ple, it could still answ er th e  query  a t any  tim e  if it  th rew  away every 
tu p le  for w hich th e re  was a  la te r  read ing  from  th e  sam e sensor w ith  a  h igher tem p era tu re .
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which gives a multiplicative factor and additive term that are used to correct 
the reading from each sensor. The query

SELECT MAX(mult*temp + add)
FROM Sensors [Range 1 Hour], Calibrate 
WHERE Sensors.sensID = Calibrate.sensID;

finds the highest, properly calibrated temperature reported by any sensor in 
the past hour. Here, we have joined a window relation from Sensors with the 
ordinary relation C a lib ra te . □

We can also compute joins of window-relations. The following query illus
trates a self-join by means of a subquery, but all the SQL tools for expressing 
joins are available.

E xam ple 23.13: Suppose we wanted to give, for each sensor, its maximum 
temperature over the past hour (as in Example 23.11), but we also wanted the 
resulting tuples to give the most recent time at which that maximum temper
ature was recorded. Figure 23.11 is one way to write the query using window 
relations.

SELECT s.sensID, s.temp, s.time 
FROM Sensors [Range 1 Hour] s 
WHERE NOT EXISTS (

SELECT * FROM Sensors [Range 1 Hour]
WHERE sensID = s.sensID AND ( 

temp > s.temp OR
(temp = s.temp AND time > s.time)

)
) ;

Figure 23.11: Including time with the maximum temperature readings of sensors

That is, the subquery checks if there is not another tuple in the window- 
relation Sensors [Range 1 Hour] that refers to the same sensor as the tuple 
s, and has either a higher temperature or has the same temperature but a more 
recent time. If no such tuple exists, then the tuple s is part of the result. □

23.4.5 Converting Relations Into Streams
When we issue queries such as that of Example 23.11 as standing queries, the 
resulting relations change frequently. Maintaining these relations as material
ized views may result in a lot of effort making insertions and deletions that no 
one ever looks at. An alternative is to convert the relation that is the result of 
the query back into streams, which may be processed like any other streams.
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For example, we can issue an ad-hoc query to construct the query result at a 
particular time when we are interested in its value.

If R  is a relation, define Istream (i?) to be the stream consisting of each 
tuple that is inserted into R. This tuple appears in the stream at the time 
the insertion occurs. Similarly, define Dstreajn(i?) to be the stream of tuples 
deleted from R; each tuple appears in this stream at the moment it is deleted. 
An update to a tuple can be represented by an insertion and deletion at the 
same time.

E xam ple 23.14: Let R  be the relation constructed by the query of Exam
ple 23.13, that is, the relation that has, for each sensor, the maximum temper
ature it recorded in any tuple that arrived in the past hour, and the time at 
which that temperature was most recently recorded. Then Istream  (i?) has a 
tuple for every event in which a new tuple is added to R. Note that there are 
two events that add tuples to R:

1. A Sensors tuple arrives with a temperature that is at least as high as 
any tuple currently in R  with the same sensor ID. This tuple is inserted 
into R  and becomes an element of Istream(_R) at that time.

2. The current maximum temperature for a sensor i was recorded an hour 
ago, and there has been at least one tuple for sensor i in the Sensors 
stream in the past hour. In that case, the new tuple for R  and for 
Istream(-R) is the Sensors tuple for sensor i that arrived in the past 
hour, but no other tuple for i that also arrived in the past hour has:

(a) A higher temperature, or
(b) The same temperature and a more recent time.

The same two events may generate tuples for the stream Dstreeun(J?) as 
well. In (1) above, if there was any other tuple in R  for the same sensor, then 
that tuple is deleted from R  and becomes an element of Dstream(i?). In (2), 
the hour-old tuple of R  for sensor i is deleted from R  and becomes an element 
of D stream (il). □

If we compute the Istream and Dstream for a relation like that constructed 
by the query of Fig. 23.11, then we do not have to maintain that relation as 
a materialized view. Rather, we can query its Istream and Dstream to answer 
queries about the relation when we wish.

E xam ple 23.15: Suppose we form the Istream I  and the Dstream D  for the 
relation R  of Fig. 23.11. When we wish, we can issue an ad-hoc query to 
these streams. For instance, suppose we want to find the maximum tempera
ture recorded by sensor 100 that arrived over the past hour. That will be the 
temperature in the tuple in I  for sensor 100 that:

1. Has a time in the past hour.
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2. Was not deleted from R  (i.e., is not in D  restricted to the past hour).

This query can be written as shown in Fig. 23.12. The keyword Now represents 
the current time.

Note that we must check that a tuple of I  both arrived in the past hour and 
that it has a timestamp within the past hour. To see why these conditions are 
not the same, consider the case of a tuple of I  that arrived in the past hour, 
because it became the maximum temperature t for sensor 100 thirty minutes 
ago. However, that temperature itself has an associated tim e that is eighty 
minutes ago. The reason is that a temperature higher than t was recorded by 
sensor 100 ninety minutes ago. It wasn’t until 30 minutes ago that t became 
the highest temperature for sensor 100 in the sixty minutes preceding. □

(SELECT * FROM I [Range 1 Hour]
WHERE sensID = 100 AND

time >= [Now - 1 Hour])
EXCEPT

(SELECT * FROM D [Range 1 Hour]
WHERE sensID = 100);

Figure 23.12: Querying an Istream and a Dstream

23.4.6 Exercises for Section 23.4
Exercise 23.4 .1 : Using the Sensors stream from Example 23.11, write the 
following queries:

a) Find the oldest tuple (lowest time) among the last 1000 tuples to arrive.

b) Find those sensors for which at least two readings have arrived in the past 
minute.

! c) Find those sensors for which more readings arrived in the past minute 
than arrived between one and two minutes ago.

Exercise 23 .4 .2 : Following the example of sensor data from this section, sup
pose that the following temperature-time readings are generated by sensor 100, 
and each arrives at the DSMS at the time generated: (80,0), (70,50), (60,70), 
(65,100). Times are in minutes. If R  is the query of Fig. 23.11, W hat are 
the tuples of Istream (.R) and Dstream(/?), and at what time is each of these 
tuples generated?

E xercise 23.4 .3 : Suppose our stream consists of baskets of items, as in the 
market-basket model of Section 22.1.1. Since we assume elements of streams 
are tuples, the contents of a basket must be represented by several consecutive 
tuples with the schema B askets (b ask e t, item ). Write the following queries:
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a) Find those items that have appeared in at least 1% of the baskets that 
arrived over the past hour.3

b) Find those pairs of items that have appeared in at least twice as many 
baskets in the previous half hour as in the half hour before that.

c) Find the most frequent pair(s) of items over the past hour.

23.5 D ata Mining of Streams
When processing streams, there are a number of problems that become quite 
hard, even though the analogous problems for relations are easy. In this section, 
we shall concentrate on representing the contents of windows more succinctly 
than by listing the current set of tuples in the window. Surely, we are not then 
able to answer all possible queries about the window, but if we know what kinds 
of queries we are expected to support, we might be able to compress the window 
and answer those queries. Another possibility is that we cannot compress the 
window and answer our selected queries exactly, but we can guarantee to be 
able to answer them within a fixed error bound.

We shall consider two fundamental problems of this type. First, we con
sider binary streams (streams of 0’s and l ’s), and ask whether we can answer 
queries about the number of l ’s in any time range contained within the window. 
Obviously, if we keep the exact sequence of bits and their timestamps, we can 
manage to answer those questions exactly. However, it is possible to compress 
the data significantly and still answer this family of queries within a fixed error 
bound. Second, we address the problem of counting the number of different 
values within a sliding window. Here is another family of problems that cannot 
be answered exactly without keeping the data in the window exactly. However, 
we shall see that a good approximation is possible using much less space than 
the size of the window.

23.5.1 Motivation

Suppose we wish to have a stream with a window of a billion integers. Such a 
window could fit in a large main memory of four gigabytes, and it would have 
no trouble fitting on disk. Surely, if we are only interested in recent data from 
the stream, a billion tuples should suffice. But what if there are a million such 
streams?

For example, we might be trying to integrate the data from a million sensors 
placed around a city. Or we might be given a stream of market baskets, and try 
to compute the frequency, over any time range, of all sets of items contained in

3Technically, som e b u t no t all of a  basket could arrive  w ith in  th e  p as t hour. Ignore th is  
“edge effect,” an d  assum e th a t  e ith er all o r none of a  b ask e t’s tup les  ap p ea r in  any  given 
window.
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those baskets. In that case, we need a window for each set, with bits indicating 
whether or not that set was contained in each of the baskets.

In situations such as these, the amount of space needed to store all the 
windows exceeds what is available using disk storage. Moreover, for efficient 
response, we might want to keep all windows in main memory. Then, a few 
windows of length a billion, or a few thousand windows of length a million 
exceed what even a large main memory can hold. We are thus led to consider 
compressing the data in windows. Unfortunately, even some very simple queries 
cannot be answered if we compress the window, as the next example suggests.

E xam ple  23.16: Suppose we have a sliding window that stores stream ele
ments that are integers, and we have a standing query that asks for an alert 
any time the sum of the integers in the window exceeds a certain threshold t. 
We thus only need to maintain the sum of the integers in the window in order 
to answer this query. When a new integer comes in, we can add it to the sum.

However, at certain times, integers leave the window and must be subtracted 
from the sum. If the window is tuple-based, then we must subtract the last 
integer from the sum each time a new integer arrives. If the window is time- 
based, then when the time of an integer in the window expires, it must be 
subtracted from the sum.

Unfortunately, if we don’t  know exactly what integers are in the window, or 
we don’t know their order of arrival (for tuple-based windows) or their time of 
arrival (for time-based windows), then we cannot maintain the sum properly. To 
see why we cannot compress, observe the following. If there is any compression 
at all, then two different window-contents, W\ and W2, must have the same 
compressed value. Since W\ ^  W2, there is some time t  at which the integers 
for time t  are different in W\ and W2. Consider what happens when t is the 
oldest time in the window, and another integer arrives. We must have to do 
different subtractions from the sum, to maintain the sums for W\ and W2. But 
since the compressed representation does not tell us which of Wi and W2 is the 
true contents of the window, we cannot maintain the proper sum in both cases.
□

Example 23.16 tells us that we cannot compress the sum of a sliding window 
if we are to get exact answers for the sum at all times. However, suppose we 
are willing to accept an approximate sum. Then there are many options, and 
we shall look at a very simple one here. We can group the stream elements into 
groups of 100; say the first hundred elements of the stream ever to arrive, then 
the next hundred, and so on. Each group is represented by the sum of elements 
in that group. Thus, we have a compression factor of 100; i.e., the window is 
represented by 1 /100th of the number of integers that are theoretically “in” in 
window.

Suppose for simplicity that we have a tuple-based window, and the number 
of tuples in the window is a multiple of 100. When the number of stream 
elements that have arrived is also a multiple of 100, then we can get the sum of 
the elements in the window exactly, just by summing the sums of the groups.
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Suppose another integer arrives. That integer starts another group, so we keep 
it as the sum of that group. Now, we can only estimate the sum of all the 
integers in the window. The reason is that the last group has only 99 of its 100 
members in the window, and we don’t know the value of the integer, from the 
last group, that is no longer in the window.

The best estimate of the deleted integer is 1% of the sum of the last group. 
That is, we estimate the sum of all the integers in the window by taking 0.99 
times the recorded sum of the last group, plus the recorded sums of all the other 
groups.

Forty-nine arrivals later, there are fifty integers in the group formed from 
the most recent arrivals, and the sum of the window includes exactly half of 
the last group. Our best estimate of the sum of the fifty integers of the last 
group that remain in the window is half the group’s sum. After another fifty 
arrivals, the most recent group is complete, and the last group has left the 
window entirely. We therefore can drop the recorded sum of the last group and 
prepare to start another group with the next arrival.

Intuitively, this method gives a “good” approximation to the sum. If integers 
are nonnegative, and there is not too much variance in the values of the integers, 
then assuming that the missing integers are average for their group is a close 
estimate. Unfortunately, if the variance is high, or integers can be both positive 
and negative, there is no worst-case bound on how bad the estimate of the sum 
can be. Consider what happens if integers can range from minus infinity to plus 
infinity, and the last group consists of fifty large negative numbers followed by 
fifty large positive numbers, such that the sum for the group is 0. Then the 
estimate of the contribution of the last group, when only half of it is in the 
window is zero, but in fact the true sum is very large — perhaps much larger 
than the sum of all the integers that followed them in the stream.

One can modify this compression approach in various ways. For example, 
we can increase the size of the groups to reduce the amount of space taken by 
the representation. Doing so increases the error in the estimate, however. In 
the next section, we shall see how to get a bounded error rate, while getting 
significant compression, for the binary version of this problem, where stream 
elements are either 0 or 1. The same method extends to streams of positive inte
gers with an upper bound, if we treat each position in the binary representation 
of the integers as a bit stream (see Exercise 23.5.3).

23.5.2 Counting Bits
In this section, we shall examine the following problem. Assume that the length 
of the sliding window is N , and the stream consists of bits, 0 or 1. We assume 
that the stream began at some time in the past, and we associate a time with 
each arriving bit that is its position in the stream; i.e., the first to arrive is at 
time 1, the next at time 2, and so on.

Our queries, which may be asked at any time, are of the form “how many 
l ’s are there in the most recent k bits?” where k is any integer between 1 and
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N . Obviously, if we stored the window with no compression, we could answer 
any such query exactly, although we would have to sum the last k bits to do 
so. Since k could be very large, the time needed to answer queries could itself 
be large. Suppose, however, that along with the bits themselves we stored the
sums of certain groups of consecutive bits — groups of size 2, 4, 8,__  We
could then decrease the time needed to answer the queries exactly to 0(log N). 
However, if we also stored sums of these groups, then even more space would 
be needed than what we use to store the window elements themselves.

An attractive alternative is to keep an amount of information about the 
window that is logarithmic in N , and yet be able to answer any query of the 
type described above, with a fractional error that is as low as we like. Formally, 
for any e > 0, we can produce an estimate that is in the range of 1 — e to 1 +  e 
times the true result. We shall give the method for e = 1/2, and we leave the 
generalization to any e >  0 as an exercise with hints (see Exercise 23.5.4).

B uckets

To describe the algorithm for approximate counting of l ’s, we need to define 
a bucket of size m; it is a section of the window that contains exactly m  l ’s. 
The window will be partitioned completely into such buckets, except possibly 
for some 0’s that are not part of any bucket. Thus, we can represent any such 
bucket by (m ,t ), where m  is the size of the bucket, and t is the time of the 
most recent 1 belonging to that bucket. There axe a number of rules that we 
shall follow in determining the buckets that represent the current window:

1. The size of every bucket is a power of 2.

2. As we look back in time, the sizes of the buckets never decrease.

3. For m  =  1 ,2 ,4 ,8 ,. ..  up to some largest-size bucket, there are one or two 
buckets of each size, never zero and never more than two.

4. Each bucket begins somewhere within the current window, although the 
last (largest) bucket maybe partially outside the window.

Figure 23.13 suggests what a window partitioned into buckets might look like. 

R ep resen tin g  B uckets

We shall see that under these assumptions, a bucket can be represented by 
0(\ogN )  bits. Further, there axe at most (9(log N ) buckets that must be rep
resented. Thus, a window of length N  can be represented in space 0(log2 TV), 
rather than O(N) bits. To see why only 0(log2 N) bits axe needed, observe the 
following:

• A bucket (m ,t ) can be represented in O(log N ) bits. First, m, the size of 
a bucket, can never get above N . Moreover, m  is always a power of 2, so
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One of length 16, 
partially beyond 
the window

One of 
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Figure 23.13: Bucketizing a sliding window

we don’t have to represent m  itself; rather we can represent log2 m. That 
requires O (log logiV) bits. However, we also need to represent t, the time 
of the most recent 1 in the bucket. In principle, t can be an arbitrarily 
large integer, but it is sufficient to represent t modulo N , since we know 
t has to be in the window of length N . Thus, 0(log N ) bits suffice to 
represent both m  and t. So that we can know the time of newly arriving 
l ’s, we maintain the current time, but also represent it modulo N , so 
O(logiV) bits suffice for this count.

• There can be only O(logiV) buckets. The sum of the sizes of the buckets 
is at most N , and there can be at most two of any size. If there are 
more than 2 +  2 log2 N  buckets, then the largest one is of size at least
2 x 2log2 N , which is 2N. There must be a smaller bucket of half that 
size, so the supposed largest bucket is certainly completely outside the 
window.

A nsw ering Q ueries A pproxim ately , U sing B uckets

Notice that we can answer a query to count the l ’s in the most recent k bits 
approximately, as follows. Find the least recent bucket B  whose most recent 
bit arrived within the last k time units. All later buckets are entirely within 
the range of k time units. We know exactly how many l ’s are in each of these 
buckets; it is their size. The bucket B  is partially in the query’s range, and 
partially outside it. We cannot tell how much is in and how much is out, so we 
choose half its size as the best guess.

E xam ple 23.17: Suppose k = N  and the window is represented by the buckets 
of Fig. 23.13. We see two buckets of size 1 and one of size 2, which implies four 
l ’s. Then, there are two buckets of size 4, giving another eight l ’s, and two 
buckets of size 4, implying another sixteen l ’s. Finally, the last bucket, of 
size 16, is partially in the window, so we add another 8 to the estimate. The 
approximate answer is thus 2 x l  +  l x 2  +  2 x 4  +  2 x 8  +  8 =  36. □
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M ain tain ing  B uckets

There Eire two reasons the buckets change as new bits arrive. The first is easy 
to handle: if a new bit arrives, and the last bucket now has a most recent bit 
that is more than N  lower than the time of the arriving bit, then we can drop 
that bucket from the representation. Such a bucket can never be part of the 
answer to any query.

Now, suppose a new bit arrives. If the bit is a 0, there are no changes, 
except possibly the deletion of the last bucket as mentioned above. Suppose 
the new bit is a 1. We create a new bucket of size 1 representing just that bit. 
However, we may now have three buckets of size 1, which violates the rule that 
there can be only one or two buckets of each size. Thus, we enter a recursive 
combining-buckets phase.

Suppose we have three consecutive buckets of size m, say (m, t2),
and (m, t-j), where ti < t 2 < t$. We combine the two least recent of the buckets, 
(m, t\) and (m, t2), into one bucket of size 2m. The time of the most recent bit 
for the combined bucket is that of the most recent bit for the more recent of 
the two combined buckets. That is, (m, <i) and (m, t2) are replaced by a bucket
(2 m ,t2).

This combination may cause there to be three consecutive buckets of size 
2m, if there were two of that size previously. Thus, we apply the combination 
algorithm recursively, with the size now 2m. It can take no more than 0(log N) 
time to do all the necessary combinations.

E xam ple 23.18: Suppose we have the list of bucket sizes implied by Fig. 23.13, 
that is, 16,8,8,4,4,2,1,1. If a 1 arrives, we have three buckets of size 1, so we 
combine the two earlier l ’s, to get the list 16,8,8,4,4,2,2,1. As this combina
tion gives us only two buckets of size 2, no recursive combining is needed. If 
another 1 arrives, no combining at all is needed, and we get sequence of bucket 
sizes 16,8 ,8 ,4 ,4 ,2 ,2 ,1 ,1 . When the next 1 arrives, we must combine l ’s, leav
ing 16,8,8,4 ,4 ,2 ,2 ,2 ,1 . Now we have three 2’s, so we recursively combine the 
least recent of them, leaving 16,8,8,4,4,4,2,1. Now there are three 4’s, and 
the least recent of them are combined to give 16,8,8,8,4,2,1. Again, we must 
combine the least recent of the three 8’s, giving us the final list of bucket sizes 
16,16,8,4,2,1. □

A B ound on  th e  E rro r

Suppose that in answer to a query the last bucket whose represented l ’s are in 
the range of the query has size m. Since we estimate m /2  for its contribution to 
the count, we cannot be off by more than m /2. The correct answer is at least 
the sum of all the smaller buckets, and there is at least one bucket of each size 
m /2, m /4, m /8 ,. . .  ,1. This sum is m — 1. Thus, the fractional error is at most 
(m /2)/(m  — 1), or approximately 50%. In fact, if we look more carefully, 50% 
is an exact upper bound. The reason is that when we underestimate (i.e., all m 
l ’s from the last bucket are in the query range), the error is no more than 1/3.
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When we overestimate, we can really only overestimate by (m/2) — 1, not m /2, 
since we know that at least one 1 contributes to the query. Since (m/2) — 1 is 
less than half m  — 1, the error is truly upper bounded by 50%.

23.5.3 Counting the Number of D istinct Elements
We now turn to another important problem: counting the distinct elements in 
a (window on) a stream. The problem has a number of applications, such as 
the following:

1. The popularity of a Web site is often measured by unique visitors per 
month or similar statistics. Think of the logins at a site like Yahoo! as a 
stream. Using a window of size one month, we want to know how many 
different logins there are.

2. Suppose a crawler is examining sites. We can think of the words encoun
tered on the pages as forming a stream. If a site is legitimate, the number 
of distinct words will fall in a range that is neither too high (few repeti
tions of words) nor too low (excessive repetition of words). Falling outside 
that range suggests that the site could be artificial, e.g., a spam site.

To get an exact answer to the question, we must store the entire window 
and apply the 8 operator to it, in order to find the distinct elements. However, 
we don’t want to see the distinct elements; we just want to know how many 
there are. Even getting this count requires that we maintain the window in 
its entirety, but we can get an approximation to the count by several different 
methods. The following technique actually computes the number of distinct 
elements in the entire stream, rather than in a finite window. However, we can, 
if we like, restart the process periodically, e.g., once a month to count unique 
visitors or each time we visit a new site (to count distinct words).

The necessary tools are a number N  that is certain to be at least as large as 
the number of distinct values in the stream, and a hash function h that maps 
values to log2 N  bits. We maintain a number R  that is initially 0. As each 
stream value v arrives, do the following:

1. Compute h(v).

2. Let r be the number of trailing 0’s in h(v).

3. If r > R, set R  to be r.

Then, the estimate of the number of distinct values seen so far is 2R. To see 
why this estimate makes sense, note the following.

a) The probability that h(v) ends in at least i 0’s is 2“ *.

b) If there are m  distinct elements in the stream so far, the probability that 
R  > i is (1 -  2~i)m.
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c) If i is much less than log2 m, then this probability is close to 1, and if i is 
much greater than log2 m, then this probability is close to 0.

d) Thus, R  will frequently be near log2 rn, and 2R, our estimate, will fre
quently be near m.

While the above reasoning is comforting, it is actually inaccurate, to say 
the least. The reason is that the expected value of 2R is infinite, or at least it 
is as large as possible given that N  is finite. The intuitive reason is that, for 
large R, when R  increases by 1, the probability of R  being that large halves, 
but the value of R  doubles, so each possible value of R  contributes the same to 
the expected value.

It is therefore necessary to get around the fact that there will occasionally 
be a value of R  that is so large it biases the estimate of m upwards. While we 
shall not go into the exact justification, we can avoid this bias by:

1. Take many estimates of R, using different hash functions.

2. Group these estimates into small groups and take the median of each 
group. Doing so eliminates the effect of occasional large U’s.

3. Take the average of the medians of the groups.

23.5.4 Exercises for Section 23.5
E xercise 23.5.1: Starting with the window of Fig. 23.13, suppose that the 
next ten bits to arrive are all l ’s. What will be the sequence of buckets at that 
time?

E xercise 23.5.2: What buckets are used in Fig. 23.13 to answer queries of the 
form “how many l ’s in the most recent k bits?” if k is (a) 10 (b) 15 (c) 20? 
What are the estimates for each of these queries? How close are the estimates?

! E xercise 23.5.3: Suppose that we have a stream of integers in the range 0 to 
1023. How can you adapt the method of Section 23.5.2 to estimate the sum of 
the integers in a window of size N , keeping the error to 50%? Hint: treat each 
of the ten bits that represent an integer as a separate stream.

! E xercise 23.5.4: We can modify the algorithm of Section 23.5.2 to use buckets 
whose sizes are powers of 2, but there are between p and p  +  1 buckets of each 
size, for a chosen integer p > 1. As before, sizes do not decrease as we go further 
back in time.

a) Give the recursive rule for combining buckets when there are too many 
buckets of a given size.

b) Show that the fractional error of this scheme is at most 1/2p.
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E xercise 23.5.5: Suppose that we wish to estimate the number of distinct 
values in a stream of integers. The integers are in the range 0 to 1023. We’ll 
use the following hash functions, each of which hashes to a 9-bit integer:

a) hi(v) — v modulo 512.

b) h,2 (v) =  v + 159 modulo 512.

c) hs(v) = v +  341 modulo 512.

Compute the estimate of the number of distinct values in the following stream, 
using each of these hash functions:

24,45,102,24,78,222,45,24,670,78,999,576,222,24

Exercise 23.5 .6 : In Example 23.11 we observed that if all we wanted was the 
maximum of N  temperature readings in a sliding window of time-temperature 
tuples, then when a reading of t arrives, we can delete immediately any earlier 
reading that is smaller than t.

! a) Does this rule always compress the data in the window?

!! b) Suppose temperatures are real numbers chosen uniformly and at random 
from some fixed range of values. On average, how many tuples will be 
retained, as a function of N ?

23.6 Summary of Chapter 23
♦  Search Engines: A search engine requires a crawler to gather information 

about pages and a query engine to answer search queries.

♦  Crawlers: A crawler consists of one or more processes that visit Web 
pages and follow links found in those pages. The crawler must maintain 
a repository of pages already visited, so it does not revisit the same page 
too frequently. Shingling and minhashing can be used to detect duplicate 
pages with different URL’s.

♦  Limiting the Crawl: Crawlers normally limit the depth to which they will 
search, declining to follow links from pages that are too far from their root 
page or pages. They also can prioritize the search to visit preferentially 
pages that are estimated to be popular.

♦  Preparing Crawled Pages to Be Searched: The search engine creates an 
inverted index on the words of the crawled pages. The index may also in
clude information about the role of the word (e.g., is it part of a header?), 
and the index for each word may be represented by a bit-vector indicating 
on which pages the word appears.



♦  Answering Search Queries: A search query normally consists of a set of 
words. The query engine uses the inverted index to find the Web pages 
containing all these words. The pages are then ranked, using a formula 
that is determined by each search engine, but typically favors pages with 
close occurrences of the words, use of the words in important places (e.g., 
headers), and favors important pages using a measure such as PageRank.

♦  The Transition Matrix of the Web: This matrix is an important analytic 
tool for estimating the importance of Web pages. There is a row and 
column for each page, and the column for page j  has 1 / r  in the *th row 
if page i is one of r pages with links from page j ,  and 0 otherwise.

♦  PageRank: The PageRank of Web pages is the principal eigenvector of 
the transition matrix of the Web. If there are n pages, we can compute 
the PageRank vector by starting with a vector of length n, and repeatedly 
multiplying the current vector by the transition matrix of the Web.

♦  Taxation of PageRank: Because of Web artifacts such as dead ends (pages 
without out-links) and spider traps (sections of the Web that cannot be 
exited), it is normal to introduce a small tax, say 15%, and redistribute 
that fraction of a page’s PageRank equally among all pages, after each 
matrix-vector multiplication.

♦  Teleport Sets: Instead of redistributing the tax equally among all pages 
during an iteration of the PageRank computation, we can distribute the 
tax only among a subset of the pages, called the teleport set. Then, the 
computation of PageRank simulates a walker on the graph of the Web 
who normally follows a randomly chosen out-link from their current page, 
but with a small probability instead jumps to a random member of the 
teleport set.

♦  Topic-Specific PageRank: One application of the teleport-set idea is to 
pick a teleport set consisting of a set of pages known to be about a certain 
topic. Then, the PageRank will measure not only the importance of the 
page in general, but to what extent it is relevant to the selected topic.

♦  Link Spam: Spam farmers create large collections of Web pages whose 
sole purpose is to increase the PageRank of certain target pages, and thus 
make them more likely to be displayed by a search engine. One way to 
combat such spam farms is to compute PageRank using a teleport set 
consisting of known, trusted pages — those that are unlikely to be spam.

♦  Data Streams: A data stream is a sequence of tuples arriving at a fixed 
place, typically at a rate so fast as to make processing and storage in its 
entirety difficult. Examples include streams of data from satellites and 
click streams of requests at a Web site.
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♦  Data-Stream-Management Systems-. A DSMS accepts data in the form of 
streams. It maintains working storage and permanent (archival) storage. 
Working storage is limited, although it may involve disks. The DSMS 
accepts both ad-hoc and standing queries about the streams.

♦  Sliding Windows: To query a stream, it helps to be able to talk about 
portions of the stream as a relation. A sliding window is the most recent 
portion of the stream. A window can be time-based, in which case it 
consists of all tuples arriving over some fixed time interval, or tuple-based, 
in which case it is a fixed number of the most recently arrived tuples.

♦  Compressing Windows: If the DSMS must maintain large windows on 
many streams, it can run out of main memory, or even disk space. De
pending on the family of queries that will be asked about the window, it 
may be possible to compress the window so it uses significantly less space. 
However, in many cases, we can compress a window only if we are willing 
to accept approximate answers to queries.

♦  Counting Bits: A fundamental problem that allows a space/accuracy 
trade-off is that of counting the number of l ’s in a window of a bit
stream. We partition the window into buckets representing exponentially 
increasing numbers of l ’s. The last bucket may be partially outside the 
window, leading to inaccuracy in the count of l ’s, but the error is limited 
to a fixed fraction of the count and can be any e > 0.

♦  Counting Distinct Elements: Another important stream problem is count
ing the number of distinct elements in the stream without keeping a table 
of all the distinct elements ever seen. An unbiased estimate of this number 
can be made by picking a hash function, hashing elements to bit strings, 
and estimating the number of distinct elements to be 2 raised to the power 
that is the largest number of consecutive 0’s ever seen at the end of the 
hash function of any stream element.

23.7 References for Chapter 23
References [3] and [8] summarize issues in crawling, based on the Stanford 
WebBase system. An analysis of the degree to which crawlers reach the entire 
Web was given in [15].

PageRank and the Google search engine are described in [6] and [16]. An 
alternative formulation of Web structure, often referred to as “hubs and au
thorities,” is in [14].

Topic-specific PageRank, as described here, is from [12]. TrustRank and 
combating link spam are discussed in [11].

Two on-line histories of search engines are [17] and [18].
The study of data streams as a data model can be said to begin with the 

“chronicle data model” of [13]. References [7] and [2] describe the architecture
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of early data-stream management systems. Reference [5] surveys data-stream 
systems.

The algorithm described here for approximate counting of l ’s in a sliding 
window is from [9],

The problem of estimating the number of distinct elements in a stream 
originated with [10] and [4], The method described here is from [1], which also 
generalizes the technique to estimate higher moments of the data, e.g., the sum 
of the squares of the number of occurrences of each element.
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